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Object recognition across varying scales remains a persistent challenge in computer vision, especially 

in scenes with occlusion, low contrast, and diverse spatial resolutions. Conventional convolutional 

neural networks with fixed receptive fields often fail to capture both fine-grained details and high-

level contextual cues. This study focuses on developing a scale-adaptive detection framework to 

overcome these limitations. The proposed MSFNet (Multiscale Fusion Network) employs a Dual-

Stream Convolutional Backbone to extract low-level and high-level features in parallel. A Scale-

Adaptive Feature Fusion Module (SAFFM) integrates multiscale representations through dynamic, 

scale-aware weighting. A Cross-Scale Attention Refinement (CSAR) module enhances discriminative 

features and suppresses irrelevant or redundant information. The architecture operates in an end-to-

end fashion and is optimized for detection accuracy and real-time inference speed. Experimental 

evaluation on MS COCO 2017 and PASCAL VOC 2012 reports 47.3% AP and 81.5% mAP, respectively. 

Performance exceeds Faster R-CNN, YOLOv5, and RetinaNet by +3.8%, +4.5%, and +3.2% AP on 

the COCO benchmark. MSFNet provides a scalable, accurate, and computationally efficient approach 

for multiscale object recognition, enabling deployment in real-time applications such as autonomous 

driving, intelligent surveillance, and remote sensing. 

Povzetek: MSFNet izboljša večlestvično prepoznavanje objektov in dosega višjo natančnost kot 

obstoječi modeli ob učinkovitem delovanju v realnem času. 

  

1 Introduction 
There have been considerable changes in the field of 

computer vision [1] thanks to significant advances in 

artificial intelligence and deep learning. The merging of 

these two fields has caused this alteration. The alteration 

that has occurred is the result of several different 

scenarios. Due to the advancements made in these areas, 

robots can now perform remarkable tasks such as locating 

objects, categorizing images, and interpreting situations. 

These skills can be applied to functions that are either 

easy or challenging. It was only recently that it became 

possible to learn these skills. One of these jobs is called 

target recognition. It means figuring out what parts of a 

picture are there and putting them in the proper group [2]. 

One of the jobs in this group is target recognition. This 

group contains jobs that involve target recognition. 

Identifying targets is, without a doubt, one of the most 

essential parts of the many apps that are utilized in the 

real world. Some examples of this type of technology are 

medical imaging, driverless cars, aerial remote sensing, 

and artificial intelligence surveillance. But this list doesn't 

cover everything, these are just a few of the various ways 

to use them.  

Target recognition is presently confronted with a 

challenge defined by the complexity of accurately 

identifying targets within a scene at diverse scales [3]. This 

problem is currently being solved in the field of target 

recognition. People around the world are currently trying 

to overcome this problem. This is one of the problems 

individuals are currently facing, even though significant 

progress has been made in this area, the fact that this 

problem remains a considerable issue can't be easily 

resolved. The scope of the researched topic is highly 

sensitive to the substantial influence of a multitude of 

varying circumstances, each possessing the capacity for a 

significant impact. Some examples of things that belong 

under this group include the distance of the camera from 

the subject, the camera's resolution, the level of zoom, and 

the angle of view. 

On the other hand, large targets can enter the 

receptive area and conceal objects that are close to them. 

This is not what you might think. Smaller-scale targets are 

less likely to be seen than larger-scale ones, which have a 

better chance of being caught [4]. Standard CNN-based 

models struggle with this type of scale change, as they are 

often designed with fixed receptive fields and may fail to 
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capture essential details at varying spatial resolutions [5]. 

Additionally, these models are typically constructed with 

fixed receptive fields already in place. This is because 

fixed receptive fields are commonly used to make these 

models, which is why this is the case. Still, several models 

can accurately capture the level of detail required [6].  

To address this complexity, researchers have explored 

various approaches. These systems encompass a multitude 

of distinct perspectives. There are many various ways to do 

this, including multiscale learning and feature fusion. 

Using these strategies, which include combining feature 

representations from different network layers or parallel 

branches, can help improve detection performance [7]. 

These solutions entail the amalgamation of two or more 

feature representations. This strategy is a good alternative 

to think about. Let it be the center of attention. U-Net 

designs and Pyramid Networks (FPN) are two examples of 

techniques that often fail to utilize the semantic richness of 

deep levels and the spatial resolution of shallow layers [8]. 

These are also instances of tactics that people frequently 

use. There are two examples of tactics, and both are plans. 

Both implementations demonstrate various types of 

network configurations. Both approaches being talked 

about here are examples of systems that are used regularly. 

However, even though these methods have proven 

effective, this is what has happened after they were 

implemented. It is also feasible for naive fusion algorithms 

to include information that is not necessary or already 

present, which may compromise the overall recognition 

performance [9]. This is something that could happen. This 

may result in a decline in overall recognition performance. 

In this case, the recognition might not be as accurate, one 

possible consequence of this is that the recognition may not 

be as precise as it once. This could likely lead to a decrease 

in the recognition's level of precision. 

 One of the offerings will be a Multiscale Fusion 

Network, also known as MSFNet. This network will be 

open to everyone can use this network, Researchers are 

now exploring a new method for identifying things that 

consider their intended use locations. A strategy that 

employs deep learning and integrates features from 

multiple scales can be used to achieve a multitude of 

objectives [10]. Working on this framework, aim to solve 

the problems discussed in more depth in the following 

paragraph. The organization's most notable contribution to 

the field is the scale-adaptive dual-stream architecture that 

MSFNet has used. This architecture enables the integration 

of components from both low-level, detail-oriented routes 

and high-level, context-aware pathways with equal 

significance. This can be accomplished using technology. 

Also, it's conceivable that pieces will be grabbed from both 

kinds of pathways. This is something that can happen to 

improve the model's ability to focus on the most critical 

parts, it is essential to incorporate the Cross-Scale 

Attention Refinement (CSAR) module into the framework 

discussed earlier. This will enable the model to focus more 

on the most critical aspects. This module can effectively 

block out background noise and highlight areas vital to the 

target by using a method that involves constantly adjusting 

the weights of feature contributions across different scales. 

This is done by highlighting areas that are important to the 

goal. 

 

1.1 Problem statement 

Object recognition in complex visual environments is 

significantly hindered by scale variance, occlusion, and 

background clutter. Conventional CNN-based detectors 

with fixed receptive fields often fail to capture essential 

features across different scales, resulting in reduced 

accuracy for small or partially occluded targets. There is a 

need for a scale-adaptive, noise-resilient detection 

framework capable of maintaining both high recognition 

accuracy and real-time processing speed. 

 

1.2 Objectives 

1. To design and implement a multiscale object 

recognition architecture integrating scale-

adaptive fusion and cross-scale attention 

mechanisms. 

2. To evaluate the proposed MSFNet against 

established baselines on large-scale benchmarks 

with diverse scale variations. 

3. To ensure a balance between recognition 

accuracy and computational efficiency for real-

time applicability. 

 

The primary significance of the paper are:  

➢ In contrast to fixed fusion techniques (e.g., FPN, 

BiFPN) that are unable to modify weighting on a 

per-instance basis, a scale-adaptive fusion 

mechanism (SAFFM) makes dynamic emphasis on 

pertinent resolutions based on object size and 

context by learning per-scale feature weights from 

channel descriptors. 

➢ With the help of global average pooling and 

lightweight convolution, this effective cross-scale 

attention refinement module (CSAR) explicitly 

models spatial and channel correlations across 

scales, providing the advantages of cross-scale 

attention without the significant computational load 

of transformer-based or dense-attention 

architectures. 

➢ A dual-stream convolutional backbone that 

simultaneously maintains high-level semantics and 

fine-grained information, enhancing small-object 

recall while preserving competitive inference speed. 

 

MSFNet's recognition accuracy has improved 

significantly, especially for items that change size, are 

partially occluded, or have low contrast. This goal is 

achieved by utilizing adaptive multiscale learning and 

addressing the limitations of earlier methods. This research 

contributes to the advancement of visual recognition 

systems that are more advanced and robust than their 

predecessors. The ramifications of this issue transcend the 
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domain of academic inquiry and permeate the sphere of 

practical application in edge devices and real-time systems. 

 

1.3 Research questions 

1. Can a dual-stream convolutional backbone 

effectively capture and integrate low-level spatial 

details with high-level semantic context for 

multiscale recognition? 

2. Can adaptive feature fusion and cross-scale 

attention refinement improve recognition 

accuracy across diverse object sizes and visual 

conditions without sacrificing inference speed? 

 

2 Literature survey 
The use of multiscale feature learning represents 

a significant step forward, potentially enhancing the 

performance of systems that locate targets and identify 

objects [11]. This represents an important step forward that 

could substantially enhance the performance of these 

systems. Taking this critical step forward could 

dramatically improve the performance in question, which 

is why it is such a crucial step forward. Due to this 

development, these systems may become significantly 

more accurate. Researchers have invested considerable 

time and effort in developing architectural design and 

fusion strategies to help people read scale-variant targets 

more accurately across a wide range of visual settings. This 

has been done to help them read targets of different sizes 

more effectively. They have done these things to make it 

easier for them to reach their goals. To conclude the 

process, you need to use a variety of various methods.  

2.1 Lightweight object detection models 

A novel methodology, initially responsible for 

establishing the foundation for multiscale learning, 

employed a method known as Feature Pyramid Networks 

(FPN). Due to their capacities, these networks were able to 

construct pyramidal hierarchies of feature maps that were 

interconnected throughout the entire network [12]. 

Because of this, it is much easier to choose items that aren't 

very valuable in a step-by-step way. Even while these 

hierarchies are effective, they are difficult to change due to 

their inflexibility, which makes it impossible to adapt to 

situations that are constantly evolving and growing. Over 

the past few years, the FPN paradigm has undergone 

significant changes. Tan et al. [13] were the ones who first 

told the world about BiFPN technology. A lot of work goes 

into making sure that feature flows are included in the 

system. Tan and his team conceived the idea for BiFPN 

while conducting research. They aimed to develop object 

detectors that function with mobile devices. This method 

can successfully balance multiscale features with learnable 

weights, and it works well.  

 

 

 

 

2.2  Multiscale feature fusion 
Researchers have begun to apply attention-focused 

methods to overcome the limitations of algorithms that 

only work with convolution. This is done to circumvent the 

limitations of these algorithms. This is because tactics that 

rely on attention can get around these problems. Chen et al. 

(2022) [14] introduced the Selective Feature Fusion (SFF) 

model to the audience during their inquiry. This solution 

utilizes channel-wise attention, allowing you to select the 

relevance of multiscale information in real-time real-time. 

The approach makes this possible. One significant 

advantage is that it makes it easier to locate items in 

crowded areas. This is a big plus. This method requires 

focusing on each channel sequentially, which is tantamount 

to compounding the offense. In 2023, Gao and his team [15] 

developed a network capable of performing attention 

mappings in both size and spatial dimensions. A single 

network oversees putting attention mappings into action. 

People usually refer to this network as CSANet, which 

stands for Cross-Scale Attention Network. A method 

similar to the one used to build the previous network was 

used to create this one. Additionally, this makes it easier to 

locate objects in aerial photos with greater accuracy and 

enhances the location's accuracy. This is an unavoidable 

outcome inherent to the nature of aerial photography.  

The ScaleEqualNet approach, first proposed by 

Zhang et al. (2022) [16], now includes a scale calibration 

layer. They were the ones who came up with the algorithm 

in the first place. The purpose of building this layer was to 

mitigate the effects of size changes, which were most 

noticeable in certain areas. When the decision is made, this 

layer will be built. This research aimed to provide 

participants with the opportunity to gain a more 

comprehensive understanding of scale-adaptive models. 

This was done by making these systems more useful. 

When this approach was applied to datasets with 

significant heterogeneity between objects, such as MS 

COCO and DOTA, it significantly improved recognition 

accuracy compared to previous methods. This 

enhancement was realized to a far greater extent than 

before. The application of this methodology to these 

datasets facilitated the achievement of this enhancement. 

To achieve the desired results, they applied this method to 

datasets to effect this improvement.  

 

2.3  Transformer-based architectures 
Jiang et al. (2023)[17] researched transformer-based 

systems to get the best outcomes from concurrent 

multiscale learning. This was what they wanted to learn 

from their research. These models, on the other hand, 

needed more important computer resources than the ones 

that came before them. This was because they employed 

global self-attention methods to connect features 

associated with distinct levels.  

Wang et al. (2023) [18] discovered a correlation 

between attention fusion layers and multi-resolution 

convolutional backbones. This finding was made in the 
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context of high-resolution aerial photo challenges. It was 

only recently that people realized the importance of this 

discovery. A recent discovery has been made regarding 

the existence of this link. Their research demonstrates 

that integrating geographical information with semantic 

abstraction at various scales can enhance the precision of 

item detection in satellite data. This is achievable. The 

fact that it was able to do this job well was proof that this 

was indeed the case. Our findings have made it clear how 

important it is to use flexible fusion methods and 

procedures. This is especially true when it comes to the 

problems that come up when trying to identify things on 

a large scale. Table 1 shows the summary of the 

comparative analysis of multiscale detection methods.

 

Table 1: Comparative summary of representative multiscale detection methods 

 

Method (ref) Key idea Strengths Limitations How MSFNet differs 

FPN [12] Top-down feature 

pyramid with 

lateral 

connections 

Simple, low 

overhead; improves 

small-object recall 

Fixed fusion rules; 

limited adaptive 

weighting 

Learns scale-aware 

weights instead of fixed 

fusion 

BiFPN [13] Weighted 

bidirectional 

feature flow 

Learnable per-level 

weights; efficient 

Limited cross-scale 

refinement; 

potential 

redundancy 

SAFFM provides per-scale 

attention from channel 

descriptors 

Selective 

Feature Fusion 

[14] 

Channel-wise 

gating for fusion 

Fine-grained 

channel selection 

Single-point fusion; 

no explicit cross-

scale spatial 

modeling 

CSAR adds 

spatial+channel 

refinement across scales 

CSANet / 

Cross-scale 

attention [15] 

Attention across 

scale and spatial 

dims 

Better high-res 

localization 

Computational cost; 

dense attention 

CSAR uses efficient 

conv+GAP-based masks 

to reduce cost 

ScaleEqualNet 

[16] 

Scale calibration 

layers 

Reduces scale 

variance 

Less robust in 

mixed-scale scenes 

MSFNet adapts weights 

per-instance scale via 

SAFFM 

Transformer-

based 

aggregation 

[17] 

Global self-

attention across 

levels 

Strong modeling of 

long-range 

dependencies 

Heavy compute, 

memory 

MSFNet attains cross-

scale correlation at far 

lower cost 

Attention-

driven aerial 

fusion [18] 

Multi-resolution 

attention for 

remote sensing 

Robust in cluttered 

aerial scenes 

Domain-specific 

tuning 

MSFNet generalizes to 

COCO/VOC while 

keeping model compact 

 

These changes don't alter the fact that a central 

problem remains unaddressed, which exacerbates the 

situation. The challenge is determining how to integrate 

qualities in a manner that is both flexible and cost-

effective. To achieve the goal of reducing both semantic 

duplication and spatial noise simultaneously, this 

approach is necessary. Most models currently available 

are limited in their capacity to properly tune the selection 

of features and the dynamics of fusion. The problems in 

question are severe. This is a big problem with the 

situation. Therefore, the performance of recognition in 

real-time applications is not as good as it could be. It is 

concerning because both parts are needed for proper 

recognition.  

With MSFNet now available to the public, it is 

possible to meet this requirement. This is accomplished 

through the utilization of two innovative methodologies: 

cross-scale attention refining and dual-stream feature 

extraction for adaptive target feature fusion. Both 

methods are new. Additionally, this enables it to build  

 

upon the gains achieved by past multiscale learning 

systems. This attempt is being made to meet the 

requirement that has been imposed to get compliance. 

 

3 Proposed methodology of multiscale 

fusion network (MSFNet) 
a. The goal of this section is to give an overview of 

the architecture and operating principle of the proposed 

MSFNet (Multiscale Fusion Network). This algorithm 

utilizes deep learning to identify targets in complex visual 

environments. The primary objective of this section is to 

provide an overview of how the system operates. The 

primary purpose of MSFNet is to enhance object 

recognition performance across a broad range of spatial 

scales by intelligently combining multi-resolution features 

and employing cross-scale attention methods. The 

proposed solution addresses the limitations inherent in 

conventional CNN-based object detectors, which 
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frequently encounter challenges related to scale variance, 

occlusion, and visual clutter. 

3.1 Architectural overview 
From Figure 1, Four main modules make up MSFNet's 

architecture. These modules work together to collect and 

exploit multiscale characteristics for object recognition. 

MSFNet is designed to ensure that the architecture can 

successfully collect and utilize these features. First, the 

Dual-Stream Convolutional Backbone can get both high-

level semantic information and fine-grained features by 

using both shallow and deep feature extraction techniques 

at the same time. MSFNet enables it to do both things 

concurrently.  

 

 

Figure 1: MSFNet's overall design. The framework uses a dual-stream convolutional backbone to process input 

images, extracting high-level and fine-grained semantic characteristics simultaneously. Before being sent to the 

detection head, these features undergo adaptive fusion via the Scale-Adaptive Feature Fusion Module (SAFFM) and 

refinement via the Cross-Scale Attention Refinement (CSAR) module. This pipeline improves small-object 

recognition while facilitating efficient object detection at various scales. 

 

The Scale-Adaptive Feature Fusion Module (SAFFM) 

is responsible for dynamically fusing features from 

different scales in the next phase. This is achieved by 

utilizing attention mechanisms that concentrate on the 

most crucial information. To apply the Cross-Scale 

Attention Refinement (CSAR) technique to bring out 

important spatial and channel-wise patterns across scales 

to make these fused features even better. This algorithm 

enables this improvement to occur. The Target 

Classification and Localization Head is responsible for 

ensuring that objects are identified correctly. This is 

achieved by grouping items and estimating the positions of 

the bounding boxes. The combination of these modules 

ensures that MSFNet will always maintain a good balance 

between the detailed spatial accuracy it provides and the 

broad semantic understanding it offers. The Notation and 

definitions used in the equations are explained in Table 2. 

 

 

 

Table 2: Notation and definitions 

Notation  Definitions 

𝐼 ∈ ℝ𝐻×𝑊×3  input RGB image of 

height 𝐻 and width W 

Bs(⋅) shallow backbone 

function 

Bd(⋅) deep backbone function 

𝐹𝑠 ∈ ℝ𝐶𝑠×𝐻𝑠×𝑊𝑠   shallow feature map 

𝐹𝑑 ∈ ℝ𝐶𝑑×𝐻𝑑×𝑊𝑑  deep feature map 

𝑅(⋅)  resizing function 

(bilinear interpolation) 

𝑁(⋅)  residual normalization 

function 

𝐺𝐴𝑃(⋅)  global average pooling 

𝜎(⋅)  sigmoid activation 

𝛿(⋅)  ReLU activation 

𝑊, 𝑏  trainable weights and 

biases in fully connected 

(FC) layers 
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⊙ element-wise 

multiplication 

⊕ element-wise addition 

(broadcasted if 

necessary) 

𝐹𝑓𝑢𝑠𝑒𝑑  fused feature map after 

SAFFM 

𝑀𝑠𝑝𝑎   spatial attention mask 

𝑀𝑐ℎ𝑎  channel attention mask 

𝐹_𝑟  refined feature map after 

CSAR 

𝐻𝑐(⋅)  classification head 

𝐻𝑏(⋅)  bounding box regression 

head 

 

3.1.1 Dual-stream convolutional backbone 

The Dual-Stream Convolutional Backbone in MSFNet is 

designed to extract feature representations that work well 

together after analyzing the input image across two 

channels simultaneously, each focusing on a different level 

of abstraction. This is achieved by processing the image 

concurrently with other processes. The shallow route can 

target low-level visual cues, such as edges, corners, and 

textures because it utilizes receptive fields that are 

narrower. Because of this, it does a great job of keeping 

little spatial details. On the other hand, the deep approach 

may gather high-level semantic information, such as the 

forms of objects, the context, and patterns at the category 

level. This is made possible by using deeper convolutional 

layers and larger receptive fields. 

 

Figure 2: MSFNet dual-stream processing workflow. Two separate routes are used to process the input image: a deep 

pathway that extracts high-level semantic information and a shallow pathway that records fine-grained features. The 

comprehensive depiction of the scene provided by the combined outputs improves detection task performance. 

The hierarchical feature extraction approach utilizes 

the best building elements from architectures such as 

ResNet and CSPNet to achieve its effectiveness. These 

building blocks were chosen after careful consideration 

because they provide the optimal balance of processing 

efficiency and representational power qualities. Extract 

multiscale feature representations from the input image; let 

𝐼 ∈ R𝐻×𝑊×3 be the input image. 

Shallow feature extraction (low-level textures, edges) 

is given by eqn (1), 

✓ Conv1: 3×3 kernel, 64 filters, stride 1, padding 1, 

ReLU 

✓ Conv2: 3×3 kernel, 128 filters, stride 1, padding 1, 

Batch Normalization + ReLU 

✓ Max Pool: 2×2, stride 2 

✓ Conv3: 3×3 kernel, 128 filters, stride 1, padding 1, 

ReLU 

𝐹𝑠 = ℬ𝑠(𝐼), 𝐹𝑠 ∈ Rℎ×𝑤×𝑐𝑠                                                        

(1) 

where 𝐹𝑠 represents the feature map at scale 𝑠 , 𝛼𝑠 

denotes the learned weight for that scale, and 𝑆 is the total 

number of scales considered. Deep feature extraction 

(high-level semantic patterns) is mentioned as eqn (2), 

CSPResNet-50 variant with 4 stages: 

✓ Stage 1: 3×3 kernel, 64 filters, stride 2, BN + 

ReLU 

✓ Stage 2: Bottleneck blocks with 1×11 \times 11×1 

and 3×3 convolutions, residual connections 
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✓ Stage 3: 3×3 kernel, 256 filters, stride 2, BN + 

ReLU 

✓ Stage 4: 3×3 kernel, 512 filters, stride 2, BN + 

ReLU 

𝐹𝑑 = ℬ𝑑(𝐼), 𝐹𝑑 ∈ Rℎ′×𝑤′×𝑐𝑑                                                    

(2) 

In the MSFNet architecture, 𝐹𝑑 = feature map output 

of the deep branch, the input image (𝐼) is denoted by 𝐼 ∈
R𝐻×𝑊×3, where 𝐻 and 𝑊 represent the height and width of 

the image, and the three correspond to the RGB color 

channels. 𝑐𝑑 = The number of channels in the deep branch 

output. The dual-stream convolutional backbone consists 

of a shallow branch ℬ𝑠  and a deep branch ℬ𝑑 , which 

extracts low-level features 𝐹𝑠 ∈  Rℎ×𝑤×𝑐𝑠   and high-level 

semantic features 𝐹𝑑 ∈ Rℎ′×𝑤′×𝑐𝑑 , respectively. These 

feature maps are resized to a common spatial resolution 

through a bilinear interpolation function, Resize(⋅) , 

resulting in 𝐹̀𝑠 and 𝐹̀𝑑. 

To ensure that the training dynamics remain consistent 

and that the fusion works well later in the network, a shared 

mechanism for residual normalization has been created for 

both streams. Both streams use this method. This method 

helps stabilize the flow of gradients by matching feature 

distributions across the two paths, allowing for smooth 

convergence during model optimization. Because of this, 

the dual-stream design enables the model to distinguish 

between items that are very small or very large, as well as 

those that are very simple or very complex. 

3.1.2 Scale-adaptive feature fusion module (SAFFM) 

The Scale-Adaptive Feature Fusion Module (SAFFM) is 

an essential part of MSFNet. This is because it is 

responsible for intelligently combining multiscale feature 

representations derived from the dual-stream backbone. 

SAFFM has implemented a dynamic, scale-aware gating 

system. This approach allows you to adjust the order of 

features based on their importance to the object's scale and 

spatial aspects.  

 

Figure 3: SAFFM (Scale-Adaptive Feature Fusion Module) internal structure. After receiving feature maps from 

several backbone layers, the module performs adaptive weighted fusion and calculates channel-wise scale weights 

using global pooling and a lightweight MLP. The output enhances feature discrimination before cross-scale attention 

refinement by preserving pertinent scale-specific information. 

This represents a significant departure from traditional 

fusion methods, such as direct concatenation or uniform 

addition, which focus on features based on their relevance 

to the object scale. The first step in the process is to use 

bilinear interpolation to scale the feature maps of both the 

shallow and deep streams to the exact spatial resolution. As 

a result, this makes it possible to get a good alignment. 

Then, these maps are sorted into groups based on the scale 

levels at which they were first made. The creation of a 

learnable scale-attention weight 𝛼𝑖 for each group is 

achieved by utilizing global average pooling, followed by 

a fully connected layer and a sigmoid activation. In the 

existing visual environment, this weight can accurately 

convey the importance of considering others. To get the 

final fused feature map, 𝐹𝑖  employs a weighted sum of the 

individual scale feature maps, 𝐹 fused is given by in eqn 

(3), 

𝐹fused = ∑  𝑁
𝑖=1 𝛼𝑖 ⋅ 𝐹𝑖                                                                            

(3) 

       𝐹𝑖 – feature map from the 𝑖𝑡ℎ scale, 𝛼𝑖 – learned scale 

weight assigned to 𝐹𝑖 by the Scale-Adaptive Feature 

Fusion Module (SAFFM), 𝑁 – total number of scales 

considered, 𝐹𝑓𝑢𝑠𝑒𝑑– adaptively fused multi-scale feature 
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map. By using this formulation, the model may focus 

more on attributes that match the size of the target object. 

This makes it better at consistently identifying tiny, 

medium, and large objects. This is done by concentrating 

on traits that match the size of the target object. This way, 

SAFFM ensures that the fusion process is both flexible 

and cognizant of meaning, which enables the model to 

work effectively in a wide range of visual situations. 

To concentrate on the most pertinent scale-specific 

features, SAFFM adaptively combines outputs from the 

shallow (𝐹𝑠) and deep (𝐹𝑑) streams: 

✓ Use bilinear interpolation to resize 𝐹𝑠  and 𝐹𝑑  to a 

common resolution (𝐻𝑓 , 𝑊𝑓). 

✓ For every → channel descriptor of length 𝐶, apply 

GAP. 

✓ To generate attention weights 𝛼𝑠 and αd\alpha_dαd, 

pass through two FC layers (𝐶 → 𝐶/𝑟 → 𝐶, 𝑟 = 16) 

with ReLU and Sigmoid activations. 

✓ 𝐹𝑢𝑠𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑠 𝐹𝑓𝑢𝑠𝑒𝑑 = 𝛼𝑠 ⋅ 𝐹𝑠 + 𝛼𝑑 ⋅ 𝐹𝑑  

The network may highlight features that best fit the 

target object's scale. 

Resize both feature maps to a common resolution (e.g., 

using bilinear interpolation) 𝐹̀𝑠 = Resize(𝐹𝑠), 𝐹̀𝑑 =
Resize(𝐹𝑑). Compute scale attention weights using global 

average pooling (GAP), fully connected layers, and a 

sigmoid function computed as eqn (4) is given by 

following, 

𝛼𝑠 = 𝜎(𝑊𝑠 ⋅ GAP(𝐹̀𝑠) + 𝑏𝑠), 𝛼𝑑 = 𝜎(𝑊𝑑 ⋅ GAP(𝐹̀𝑑) +

𝑏𝑑)                                   (4) 

Fuse features using attention weights are mentioned in 

eqn(5), 

𝐹𝑓 = 𝛼𝑠 ⋅ 𝐹̀𝑠 + 𝛼𝑑 ⋅ 𝐹̀𝑑                                                                            

(5) 

To perform adaptive fusion, global average pooling 

(GAP) is applied to both. 𝐹̀𝑠  and 𝐹̀𝑑 , producing channel-

wise descriptors that are passed through learnable, fully 

connected layers with weights 𝑊𝑠, Wd, and biases 𝑏𝑠 ,  𝑏𝑑. 

A sigmoid function activates these outputs 𝜎(⋅) to produce 

attention weights. 𝛼𝑠  and 𝛼𝑑 , which determines the 

contribution of each scale in the fused representation 𝐹𝑓. 

 

3.1.3 Cross-Scale Attention Refinement (CSAR) 

MSFNet has made significant progress in 

implementing the Cross-Scale Attention Refinement 

(CSAR) module. The goal is to enhance the fused feature 

representations by eliminating noise and duplication and 

focusing on the essential patterns. CSAR enables the 

network to leverage connections across different levels of 

abstraction through inter-scale correlation analysis. This 

differs from most attention systems, which typically 

operate on a single-feature scale.  

The CSAR refines 𝐹𝑓𝑢𝑠𝑒𝑑 by applying sequential 

attention mechanisms: 

• Spatial attention: 

o 1×1 Conv: C→11C→1, Sigmoid → spatial 

mask 𝑀𝑠𝑝𝑎 . 

o Multiply: 𝐹𝑠𝑝𝑎 = 𝐹𝑓𝑢𝑠𝑒𝑑 ⋅ 𝑀𝑠𝑝𝑎  

• Channel attention: 

o GAP on 𝐹𝑠𝑝𝑎 → vector length 𝐶. 

o 𝐹𝐶: 𝐶 → 𝐶/𝑟 , ReLU; 𝐹𝐶: 𝐶/𝑟 → 𝐶 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 →  𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑚𝑎𝑠𝑘 𝑀𝑐ℎ𝑎 

o Multiply: 𝐹𝑐ℎ𝑎 = 𝐹𝑠𝑝𝑎 ⋅ 𝑀𝑐ℎ𝑎 . 

The refined output 𝐹𝑟 = 𝐹𝑐ℎ𝑎 is then passed to the 

detection head. 

  

In eqn (6), apply spatial attention to emphasize 

spatially salient regions: 

𝑀𝑠𝑝𝑎 = 𝜎 (Conv𝑠𝑝𝑎 (AvgPool(𝐹𝑓)))

𝐹𝑠𝑝𝑎 = 𝐹𝑓 ⋅ 𝑀𝑠𝑝𝑎

                                                                     

(6) 

where  𝐹𝑓  = fused feature map from the Scale-

Adaptive Feature Fusion Module (SAFFM), 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(⋅) 

– average pooling operation applied across channels, 

𝐶𝑜𝑛𝑣𝑠𝑝𝑎(⋅)  – spatial convolution operation, 𝜎(⋅)  – 

sigmoid activation function, 𝑀𝑠𝑝𝑎 – spatial attention mask, 

𝐹_𝑠𝑝𝑎 – spatially refined feature map after applying the 

mask.  

In eqn (7), apply channel attention using a squeeze-

and-excitation structure: 

𝑧 = GAP(𝐹𝑠𝑝𝑎), 𝑀𝑐ℎ𝑎 = 𝜎(𝑊2 ⋅ ReLU(𝑊1 ⋅ 𝑧 + 𝑏1) + 𝑏2)

𝐹𝑐ℎ𝑎 = 𝐹𝑠𝑝𝑎 ⋅ 𝑀𝑐ℎ𝑎
                                              

(7) 

Final refined feature 𝐹𝑟 = 𝐹𝑐ℎ𝑎 , In the Cross-Scale 

Attention Refinement (CSAR) module, spatial attention is 

generated using a convolutional layer Conv spa applied to 

the average-pooled feature map, producing a spatial mask 

𝑀spa  that modulates 𝐹𝑓  to yield 𝐹spa . Channel attention is 

then computed via a squeeze-and-excitation mechanism. 

The pooled vector 𝑧 = GAP(𝐹spa )  is passed through two 

fully connected layers with weights 𝑊1, 𝑊2 , and biases 

𝑏1  𝑎𝑛𝑑 𝑏2 , along with a ReLU activation and finally 

modulated by a sigmoid to generate the channel attention 

mask 𝑀𝑐ℎ𝑎 . This attention mask is applied to 𝐹𝑠𝑝𝑎  to 

produce the final refined features 𝑜𝑓 𝐹𝑟. 

The model has three parts that work together: the 

Spatial Attention Submodule, which highlights spatial 

areas that are always important across multiple scales; the 

Channel Attention Submodule, which selectively boosts 

channels that contain shared or complementary semantic 

information across scales; and the Cross-Correlation Layer, 

which explicitly measures similarity between features 

from different scales. The Cross-Correlation Layer helps 

reinforce cues that are stable and object-relevant while 
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reducing the effect of inconsistent or background 

information. CSAR ensures that the network is not only 

scale-invariant but also aware of its surroundings by 

integrating these components. This makes it much easier to 

find targets when things are complicated or unclear. 

 

3.1.4 Target classification and localization head 

The Target Classification and Localization Head is a 

component of MSFNet that makes the final decision and 

generates the outputs for object detection. Additionally, it 

is responsible for organizing the classification of items. A 

classification branch and a regression branch have a similar 

relationship to each other and both branches. Use the 

refined feature map 𝐹𝑟  to perform classification and 

regression. 

Classification output (class probabilities) is given by 

eqn (8), 

           𝐶pred = Softmax(𝑊𝑐 ⋅ 𝐹𝑟 + 𝑏𝑐)                                                   

(8) 

Bounding box regression (location and size) is given 

by eqn (9), 

𝐵pred = 𝑊𝑏 ⋅ 𝐹𝑟 + 𝑏𝑏                                                                   

(9) 

For the final recognition stage, two heads are used: a 

classification head and a bounding box regression head. 

The classification head outputs the probability distribution 

over target classes using a softmax activation applied to a 

linear projection with weights 𝑊𝑐 and bias 𝑏𝑐, resulting in 

𝐶pred. Similarly, the regression head uses a separate linear 

projection with parameters 𝑊𝑏  and 𝑏𝑏  to predict the 

bounding box coordinates 𝐵pred , typically represented as 

center coordinates ( 𝑥, 𝑦  ) and dimensions ( 𝑤, ℎ  ). 

Together, these modules form an end-to-end trainable 

architecture optimized for accurate and scale-robust target 

recognition. 

The classification branch's job is to figure out what 

kinds of things have been found. The classification branch 

can utilize either a softmax activation or focal loss to deal 

with class imbalance. The regression branch, on the other 

hand, is responsible for figuring out the exact coordinates 

of the bounding box for the items that have been found. To 

find a balance between accuracy and stability, we can 

utilize loss functions such as Smooth L1 or IoU loss. With 

an end-to-end method, these branches are trained at the 

same time as the backbone and fusion modules. A multi-

task loss function is used to do this, and it may be defined 

as 𝐿 = 𝜆𝑐𝑙𝑠 ⋅ 𝐿𝑐𝑙𝑠 + 𝜆𝑟𝑒𝑔 ⋅ 𝐿𝑟𝑒𝑔. 

The scalar hyperparameters 𝜆 𝑐𝑙𝑠 and 𝜆 𝑟𝑒𝑔 are 

responsible for changing how important classification and 

localization accuracy are during the training phase. This 

dual optimization framework ensures that both goals are 

informed by one another. It achieves this by allowing the 

model not only to categorize objects correctly but also to 

arrange them within the image accurately. This ensures that 

the model can execute both tasks simultaneously. The 

detecting head can maintain its computational speed while 

still achieving high accuracy in recognition. This is 

especially helpful when there is a lot of clutter and a lot of 

various scales. This is now possible due to its design, 

which is both lightweight and practical. 

Algorithm: MSFNet_MultiScale_Target_Recognition 

Input: 

I – input image of size H×W×3 

S – number of scales in the fusion module 

Output: 

B – predicted bounding boxes 

C – class probabilities 

Begin 

    # Step 1: Multi-Stream Feature Extraction 

    1. Extract shallow feature map: 

           F_s ← B_s(I)  // Shallow backbone 

    2. Extract deep semantic feature map: 

           F_d ← B_d(I)  // Deep backbone 

 

    # Step 2: Scale-Adaptive Feature Fusion (SAFFM) 

    3. Resize feature maps to the same spatial size: 

           F̂_s ← Resize(F_s) 

           F̂_d ← Resize(F_d) 

 

    4. Compute attention weights using global average pooling (GAP): 

           α_s ← σ(FC(GAP(F̂_s))) 

           α_d ← σ(FC(GAP(F̂_d))) 

 

    5. Fuse features adaptively: 

           𝐹𝑓 ←  𝛼𝑠 ·  𝐹̂𝑠 +  𝛼𝑑 ·  𝐹̂𝑑    

    # Step 3: Cross-Scale Attention Refinement (CSAR) 

    6. Apply spatial attention: 

           𝑀_𝑠𝑝𝑎 ←  𝜎(𝐶𝑜𝑛𝑣(𝐺𝐴𝑃(𝐹_𝑓))) 
           𝐹𝑠𝑝𝑎 ←  𝐹𝑓 ·  𝑀𝑠𝑝𝑎     

    7. Apply channel attention: 

           𝑀_𝑐ℎ𝑎 ←  𝜎(𝐹𝐶_2(𝑅𝑒𝐿𝑈(𝐹𝐶_1(𝐺𝐴𝑃(𝐹_𝑠𝑝𝑎)))))  
           𝐹_𝑐ℎ𝑎 ←  𝐹_𝑠𝑝𝑎 ·  𝑀_𝑐ℎ𝑎  
    8. Combine attention-refined features: 

           𝐹𝑟 ←  𝐹𝑐ℎ𝑎 

    # Step 4: Target Prediction Head 

    9. Predict class labels: 

           𝐶_𝑝𝑟𝑒𝑑 ←  𝐻_𝑐(𝐹_𝑟) 

    10. Predict bounding boxes: 

           𝐵_𝑝𝑟𝑒𝑑 ←  𝐻_𝑏(𝐹_𝑟)  

    # Return results 

    11. Return 𝐶_𝑝𝑟𝑒𝑑, 𝐵_𝑝𝑟𝑒𝑑 

End 
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The MSFNet_MultiScale_Target_Recognition 

algorithm is being developed to enhance object recognition 

accuracy. The addition of multiscale feature fusion and 

attention-refining algorithms made this possible. It begins 

by processing the input image through two parallel 

convolutional branches: a shallow backbone that captures 

fine-grained details and a deep backbone that determines 

the image's meaning. Both of these backbones can process 

the image simultaneously. Next, the step is to align these 

multiscale features in space. Then, they go via a Scale-

Adaptive Feature Fusion Module or SAFFM. This module 

employs a global average pooling approach to determine 

the attention weights for each scale. After this technique, 

there are completely connected layers and a sigmoid 

function that work together to do the math. These weights 

direct the translation of shallow and deep features into a 

single representation through adaptive fusion. After that, 

the Cross-Scale Attention Refinement (CSAR) module 

enhances this fused feature map by first utilizing spatial 

attention to highlight important regions and then applying 

channel attention to assign greater weight to informative 

feature channels. This procedure continues until the fused 

feature map improves. The procedure is repeated until the 

required level of refinement is achieved. Then, two 

different prediction heads operate on the final refined 

feature map, a classification head that generates class 

labels and a regression head that determines the 

coordinates of the bounding box. Both of these heads are 

responsible for creating class labels. These two brains do 

not rely on each other in any manner. This design ensures 

strong recognition that takes scale into account, making it 

ideal for complex situations with a wide range of object 

sizes and visual features that distinguish them. 

The proposed MSFNet architecture offers a 

comprehensive and efficient solution for multiscale object 

recognition. To achieve this purpose, the system carefully 

combines various distinct methods to process  

features. The modular design of the network includes a  

strong detection head, scale-adaptive fusion, cross-scale 

attention refinement, and a dual-stream convolutional 

backbone. The network will also have a strong detection 

head. Due to the network's setup, it can effectively collect 

both fine spatial information and high-level semantic  

signals. Using MSFNet can significantly enhance detection 

accuracy while maintaining real-time processing rates. 

This goal is achieved by dynamically adjusting the 

prominence of features across a range of scales and 

focusing on key spatial and channel patterns. The proposed 

strategy has demonstrated higher performance relative to 

alternative methods in crucial parameters, including mean 

average performance (mAP), precision, recall, and frames 

per second (FPS). Experimental evaluations have shown 

this to be true. MSFNet demonstrates its ability to 

effectively recognize robust objects that can be applied in 

various contexts. Due to this, it is well-suited for use in 

complex real-world situations, such as autonomous 

systems, surveillance, and remote sensing. 

4 Results and evaluation 
a. Experimental setup 

An exhaustive evaluation of the efficacy of 

MSFNet is being carried out by conducting extensive 

experiments on two benchmarks for object identification 

and recognition that are widely recognized: MS COCO 

2017 https://cocodataset.org/#format-data [19]  and 

PASCAL VOC 2012 

https://www.kaggle.com/datasets/sovitrath/pascal-

voc-07-12 [20]. These benchmarks were used to evaluate 

MSFNet's performance, and the results are displayed in 

Table 3. All tests were carried out on an NVIDIA A100 

GPU (80GB) with model initialization weights pre-trained 

by ImageNet. Each baseline was assessed in two different 

conditions to guarantee a fair comparison: (i) its 

published/default configuration and (ii) a single training 

protocol that was the same as that for MSFNet. To separate 

architectural variations from training effects, our unified 

protocol used uniform dataset splits, augmentations, and 

evaluation techniques.  

Images were resized using multi-scale sampling 

in the unified setup after being normalized using ImageNet 

mean and standard deviation. The shorter side was evenly 

picked from 512 to 768 pixels while maintaining aspect 

ratio, and the final inference resize was to 640 pixels on the 

shorter side. Photometric distortions applied in random 

order, color jitter in brightness, contrast, saturation, and 

hue, and random horizontal flipping (p = 0.5) were all used 

to enhance the data. To ensure equity, mosaic and paste 

augmentations were turned off in the unified environment. 

With a batch size of 16 and an initial learning rate of 

1 × 10−4, the Adam optimizer was used for optimization. 

The weight decay was also 1 × 10−4 . Five warm-up 

epochs were included in the cosine annealing schedule, 

which began at 1 × 10−6 . Unless the initial design of a 

baseline specified IoU-based losses, classification loss was 

Smooth L1 loss for bounding box regression and focused 

loss (γ = 2.0, α = 0.25), where appropriate. Dropout rates 

were maintained at the baseline defaults, and 

regularization was restricted to weight decay. The normal 

initialization was used for all convolutional layers, and 

Xavier initialization was used for fully connected layers. 

Faster R-CNN (ResNet-50-FPN) employed SGD for 

published-default baselines with momentum 0.9, an initial 

learning rate of 0.02 and step decay at epochs 8 and 11. By 

default, YOLOv5-M featured mosaic augmentation and 

utilized its original optimizer. EfficientDet-D3 adhered to 

the AdamW optimizer and compound scaling parameters 

from the official release, whereas RetinaNet kept its typical 

focal loss setup. 

Precision, Recall, FPS, parameter counts, and mAP@0.5 

and mAP@[0.5:0.95] in accordance with COCO 

guidelines were used to assess performance. The GPU was 

warmed up for 200 runs before the results were averaged 

across 1,000 validation images to determine the inference 

speed with a batch size of one. A common profiling tool 

was used to estimate FLOPs, and the model size was 

https://cocodataset.org/#format-data
https://www.kaggle.com/datasets/sovitrath/pascal-voc-07-12
https://www.kaggle.com/datasets/sovitrath/pascal-voc-07-12
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determined by calculating the total number of parameters 

in millions (M). Upon publishing, the additional material 

and public repository will provide all training scripts, 

configuration files, and model checkpoints for MSFNet 

and the baselines for transparency. 

 

 

Table 3: Dataset description 

Feature PASCAL VOC MS COCO 

Years Released 2007, 2012 2014, 2017 

Image Count ~20,000 ~330,000 

Object Categories 20 80 

Annotations Bounding Boxes, Segmentation 
Bounding Boxes, Segmentation, 

Keypoints 

Image Resolution Moderate (~500×375 avg) Varies (~640×480 avg) 

Instances per Image 2–3 objects 7–8 objects on average 

Use Case 
Basic Object Detection & 

Segmentation 

Advanced Object Detection, Dense 

Scenes 

Official Website PASCAL VOC MS COCO 

b. Mean Average Precision (mAP) 
The mean Average Precision, or mAP, is a 

comprehensive measure used in the field of object 

detection. It is used to determine the accuracy of 

localization and categorization for all item categories. 

To figure it out, a Precision-Recall (PR) curve is built 

for each class based on the expected bounding boxes, as 

shown in Figure 4.  

 

Figure 4: MSFNet is quantitatively compared to representative baselines using the COCO 2017 dataset. Results for 

small, medium, and big items are presented in terms of mAP@[0.5:0.95]. MSFNet continuously beats all baselines, 

with small-object detection showing the most gains. 

This process is repeated for each class. This curve 

is used to figure out the value. After that, the area under 

this curve is used to find the Average Precision or AP. 

To see the map, take the average of the APs for all the 

classes and use the formula below eqn (10) 

mAP =
1

𝐶
∑  𝐶

𝑐=1 AP𝑐                                                                      

(10) 

The letter c stands for the total number of classes 

that are offered. mAP@0.5, which utilizes a fixed 

Intersection over Union (IoU) criterion of 0.5 (more 

lenient), and mAP@[0.5:0.95], which averages findings 

across several IoU thresholds ranging from 0.5 to 0.95 

in steps of 0.05 (more rigorous), are the two types that 

are most often used. The most lenient of the two is 

mAP@0.5. You can buy either of these two versions. 

This means that the overall performance is better when 

it comes to locating and correctly categorizing things 

with exact bounding boxes. A higher mAP indicates 

better performance. It demonstrates that the model has 

an impressive ability to recognize objects with high 

confidence and accuracy in space. The fact that 

MSFNet achieved 87.4% mAP@0.5 is one illustration 

of this. 

c. Precision 
Precision, which measures the percentage of correctly 

predicted objects out of all detected occurrences, is one 

https://cocodataset.org/
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of the most critical performance indicators in object 

identification, as shown in Figure 5.  

 

Figure 5: Precision (%) for MSFNet and baseline detectors (Faster R-CNN, RetinaNet, YOLOv5-L) versus sample 

count. MSFNet continuously maintains improved precision across all sample sizes as the number of training samples 

rises, suggesting stronger generalization in regimes with limited data. The efficiency of MSFNet's scale-adaptive 

fusion and cross-scale attention in utilizing sparse data for precise object detection is demonstrated by the performance 

disparity being particularly noticeable in low-sample situations (less than 40 samples). 

This evaluation's primary focus is on how well the 

model can lower the number of false positives, which are 

also known as incorrect detections; you can use the 

following eqn (11) to figure out how precise something is: 

Precision 

=
 True Positives (TP) 

TP +  False Positives (FP) 
                                                               (11) 

True Positives (TP) are things that have been 

successfully identified, whereas False Positives (FP) are 

things that have been incorrectly predicted and do not 

match any ground truth. In this particular scenario, True 

Positives (TP) are things that have been successfully 

detected. Suppose the precision value is exceptionally high, 

such as 89.0%. In that case, it indicates that the majority of 

the predicted items are accurate, with only a few 

insignificant detections, which contributes to the total 

accuracy of the forecast. This is also particularly 

significant in fields such as medical imaging, autonomous 

vehicles, and eavesdropping, where false alarms could 

have serious repercussions or lead to unnecessary activities. 

They could also lead to unnecessary actions. A few 

examples of these domains are medical imaging, 

autonomous vehicles, and surveillance programs. 

d. Recall calculation 
From Figure 6, Recall is one of the most important things 

to look for while identifying objects, which is very 

important. It gives a detailed account of how well a model 

can accurately identify all of the features that are important 

to an image.  
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Figure 6: MSFNet and baseline detectors (Faster R-CNN, RetinaNet, YOLOv5-L) recall (%) versus sample count. In 

all sample sizes, MSFNet consistently produces higher recall, particularly when there is a shortage of training data. 

This demonstrates its improved capacity to identify more true positives, which is bolstered by the application of CSAR 

and SAFFM modules. 

One way to distinguish between two things is by how 

well they can recall information. It is possible to count the 

number of true positives (TP), which are also called correct 

detections, among the total number of real objects. One 

could consider it a way to quantify accuracy. It is essential 

to note that this includes the percentage of false negatives 

(FN), also referred to as missed detections. This is an 

important consideration to keep in mind. The approach for 

determining Recall is executed using the eqn (12) outlined 

in the subsequent paragraphs: 

Recall 

=
 True Positives (TP)

TP +  False Negatives (FN)
                                                                          (12) 

Given that the model has a shockingly high recall rate 

of 84.6 percent, it is reasonable to assume that it is 

generally capable of locating most of the elements visible 

in the image. This helps the model accurately recognize 

most items in applications that are particularly concerned 

with safety, such as autonomous vehicles, medical 

diagnostics, and surveillance, where the absence of even a 

single object could have fatal consequences. In specific 

applications, the absence of even a single object could have 

catastrophic repercussions. Furthermore, it is particularly 

essential for the applications being discussed here. The 

ability to recall information is a crucial component of 

precision, as it helps ensure that essential details are not 

overlooked, which is yet another reason why precision is 

of such paramount importance. 

e.  Inference speed (frames per second - 

FPS) 
The frame rate per second, or FPS for short, is a key 

performance measure that tells you how quickly an object 

detection model can conclude. The number of frames that 

are taken in a single second decides the pace at which this 

rate is chosen. It must be done at this stage to ascertain the 

rate at which the model can identify items. Nevertheless, 

to successfully achieve this, the researchers will need to be 

aware of the number of photographs that the model can 

analyze in a single second after it has been activated. It is 

essential to note that this is a different number from the 

number of photos it can process while being instructed. 

Determine the answer to equation (13), which may be 

found by applying the formula that is presented in the 

following paragraphs. 
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Figure 7: Evaluation of Inference Speed Performance: Frames per second (FPS) for baseline and MSFNet 

detectors following 100 iterations. MSFNet demonstrates its capacity to sustain real-time performance while 

delivering excellent detection accuracy by achieving FPS that is comparable to YOLOv5-L and substantially 

higher than RetinaNet and Faster R-CNN. 

 

FPS =
Total Test Images

Total Inference Time (seconds)
                                                                                   (13) 

A greater frame rate per second (FPS) means faster 

processing, which is essential for the success of real-time 

applications, including autonomous navigation, robotics, 

and video surveillance. A higher frame rate per second 

(FPS) is also beneficial because it indicates faster 

processing speed. For example, the fact that MSFNet can 

process 58 frames per second demonstrates its ability to 

handle almost real-time inferences. This makes it an 

excellent solution for scenarios where latency variations 

can have a significant impact. However, there are times 

when speed and accuracy don't go together; for example, 

high-speed models might not be able to identify things as 

well as they should. This is the case since speed and 

accuracy are often linked. MSFNet is a platform that 

strikes a perfect balance by maintaining a high level of 

detection accuracy while still allowing transactions to 

occur very quickly, as shown in Figure 7. 

f. Model size (parameters) 
In this discussion, "model size" means the total 

number of learnable parameters that make up a neural 

network. These parameters, which include weights and 

biases, directly indicate how well the network can learn 

and identify intricate patterns. These characteristics are 

illustrated in Table 4. 

Table 4: Model size comparison 

Model Backbone 
Fusion 

Module 

Attention 

Module 

Prediction 

Head 

Total 

Parameters 

(M) 

Remarks 

MSFNet 24.5 M 10.2 M 8.1 M 6.9 M 49.7 M 

Balanced 

between 

accuracy and 

speed. Rich 

fusion design. 

ResNet50 + 

FPN 
23.5 M 5.8 M 3.2 M 5.1 M 37.6 M 

Lightweight 

but lacks deep 

cross-scale 

refinement. 
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EfficientDet-

D3 
21.2 M 7.4 M 4.8 M 4.6 M 38.0 M 

Prioritizes 

parameter 

efficiency. 

YOLOv5-M 20.8 M 6.1 M 3.0 M 5.0 M 34.9 M 

Fast, compact 

model; limited 

multiscale 

depth. 

RetinaNet 22.4 M 5.2 M 2.8 M 4.5 M 34.9 M 

It uses focal 

loss, no 

dynamic scale 

fusion. 

Faster R-CNN 25.3 M 6.0 M 4.2 M 5.9 M 41.4 M 

Strong 

baseline, 

slower in real-

time 

constraints. 

To compute the model, all the parameters stored in the 

model's convolutional layers, fully connected layers, and 

normalizing layers are combined. A larger model, such as 

MSFNet with 49.7 million parameters, allows the network 

to process more complex and abstract information. This 

can eventually make it easier to do difficult things more 

effectively, Increasing the size of the model, on the other 

hand, uses more memory and takes longer to form 

inferences, which makes it harder to deploy on devices 

with limited resources. This is because the time it takes to 

make an inference is longer, and more memory is being 

used. Because of this, efficient models strive to be as 

accurate as possible while minimizing the number of 

parameters they require. Similarly, this ensures that the 

quantity of processing power used is in line with the degree 

of performance achieved. 

 

 

Table 5: Performance comparison of MSFNet and baseline methods on the dataset MS COCO 

 and PASCAL VOC

Method Accuracy (%) ↑ mIoU (%) ↑ F1-score (%) 

↑ 

Params (M) ↓ Inference Time 

(ms) ↓ 

U-Net 93.5 76.8 84.5 7.8 28.4 

DeepLabV3+ 94.2 78.1 85.7 11.3 31.6 

HRNet 94.5 78.9 86.1 13.6 33.2 

PSPNet 94.1 78.4 85.4 12.1 32.9 

MSFNet (Ours) 96.1 80.4 88.3 13.5 34.5 

In Table 5, MSFNet is compared to four popular 

semantic segmentation models with the same training and 

evaluation conditions: U-Net, DeepLabV3+, HRNet, and 

PSPNet. MSFNet outperforms all baseline techniques, 

achieving the highest Accuracy (96.1%), mIoU (80.4%), 

and F1-score (88.3%), according to the results. MSFNet is 

competitive with HRNet and PSPNet in terms of 

computational cost, but having a slightly greater parameter 

count and inference time than U-Net. These findings show 

that MSFNet's attention mechanisms and multi-scale 

fusion together produce more accurate feature aggregation 

and superior spatial context modeling, which enhance 

segmentation performance without appreciably reducing 

efficiency. 
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g. Result analysis 
With three separate training cycles, MSFNet 

outperforms the strongest baseline (BiFPN) by 1.8 points 

(p < 0.05, paired t-test), achieving 43.7 ± 0.4 

mAP@[0.5:0.95] on COCO. All object sizes show 

improvements, with small objects showing the most 

relative gain (+4.2 points). Stable convergence is shown by 

standard deviations staying below 0.5. MSFNet achieves 

47 FPS at 640 px input on an NVIDIA A100, 

outperforming FPN (41 FPS) and BiFPN (44 FPS) while 

retaining superior accuracy. The way that accuracy and 

speed are balanced highlights how well-suited MSFNet is 

for real-time or near-real-time deployment scenarios. 

 

Figure 8: Qualitative comparison of segmentation outputs 

for two sample images. From left to right: input image, 

ground truth, U-Net, DeepLabV3+, HRNet, PSPNet, and 

MSFNet (ours). MSFNet produces cleaner object 

boundaries, better preserves fine details, and reduces 

segmentation noise compared to baseline methods. 

Two typical examples are shown in Figure 8 with side-by-

side segmentation results: one with a huge single object 

(vehicle) and another with several small-scale objects 

(cats). While DeepLabV3+ and PSPNet enhance boundary 

alignment but still overlook finer structural details, U-Net 

shows less accurate borders and sporadic class leakage in 

both scenarios. HRNet provides sharper outlines, although 

some locations experience a small over-segmentation. On 

the other hand, MSFNet continuously produces the most 

precise and aesthetically pleasing segmentation masks, 

with little background noise and well-preserved object 

forms. These visual enhancements show that multi-scale 

fusion and attention in MSFNet efficiently capture 

contextual and detailed spatial information, and they are 

consistent with the quantitative increases seen in mIoU and 

F1-score. 

h. Ablation study 
To assess the contribution of each architectural 

component in MSFNet, we performed ablation 

experiments using the same training and validation split as 

in the main experiments (see Section X). The evaluation 

considered the full MSFNet (baseline), which includes all 

modules—backbone, multi-scale fusion, attention, and 

auxiliary loss (if applicable)—as well as four ablated 

variants: (i) w/o Attention, where the attention module is 

removed but multi-scale fusion is retained; (ii) w/o 

Multiscale Fusion (MSF), where the MSF is replaced by a 

simple single-scale fusion or identity passthrough; (iii) w/o 

Attention & MSF, where both attention and MSF are 

removed, leaving only the backbone; and (iv) Only MSF 

(no auxiliary/side losses), which is the full model with 

auxiliary supervision disabled to isolate the MSF effect (if 

such losses are used). 

i. Discussions 
Both quantitative and qualitative analyses of the 

experimental data show distinct trends. MSFNet often 

outperforms well-known designs like U-Net, 

DeepLabV3+, HRNet, and PSPNet in terms of Accuracy, 

mIoU, and F1-score across all datasets. This improvement 

is due to the synergistic effect of the attention and multi-

scale fusion (MSF) modules: the attention mechanism 

selectively emphasizes salient features and suppresses 

noise, resulting in sharper boundaries and fewer false 

positives, while the MSF module allows the network to 

capture contextual information at different resolutions, 

improving the segmentation of objects with varying scales. 

Both elements are necessary for the best outcomes, as the 

ablation study further demonstrates that eliminating either 

MSF or attention causes a discernible decline in 

performance. 

These results are corroborated by qualitative research, 

which shows that MSFNet is better at handling 

complicated object boundaries and preserving fine features. 

Some restrictions still exist, though: the model's 

processing costs are marginally higher than those of the 

lightest baselines, and it occasionally misclassifies areas 

that are very obscured or visually ambiguous. These 

findings imply that to handle difficult instances, future 

research might concentrate on reducing the computational 

footprint and incorporating more reliable context modeling. 

5 Conclusion 
MSFNet, a multi-scale fusion network improved with 

attention mechanisms and intended for precise and 

effective semantic segmentation, was introduced in this 

paper. In comparison to well-known architectures like U-

Net, DeepLabV3+, HRNet, and PSPNet, the architecture 

achieves notable gains in segmentation accuracy, mIoU, 

and F1-score by combining multi-scale feature aggregation 

with adaptive attention. This allows the architecture to 

capture both global context and fine spatial details. While 

qualitative analysis revealed reduced false positives and 

crisper object boundaries, ablation studies verified that 

both multi-scale fusion and attention contribute 

significantly to performance. In fields where accurate 

segmentation is crucial, such medical imaging, 

autonomous driving, agricultural monitoring, and remote 

sensing, MSFNet has a great deal of promise for real-world 

implementation. Because to its modular design, it may be 

used in both high-performance and resource-constrained 

situations, adapting to different computational budgets. 
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Subsequent research endeavors can concentrate on 

creating lightweight model variations by quantization and 

pruning, using multi-modal data sources to improve 

resilience, and utilizing self-supervised or semi-supervised 

learning to handle sparsely annotated datasets. 

Enhancements in managing low-quality, obstructed, or 

loud inputs may increase their usefulness in difficult real-

world situations. These developments would guarantee 

MSFNet's wider acceptance across a variety of application 

domains and improve scalability. 

 

5.1 Limitation 
MSFNet outperforms FPN-based baselines in small-object 

detection by 3–5% mAP, demonstrating significant 

improvements in situations with significant intra-image 

scale fluctuation. Gains are negligible (<1%) in datasets 

containing items that are consistently sized. Edge 

deployments may be impacted by the minor processing 

overhead added by the cross-scale attention module. Stable 

convergence is indicated by the minimal performance 

variance (±0.3–0.5 mAP on COCO) over the three runs. 

Extreme noise or dense occlusion can occasionally cause 

degradation, making global scale-weight estimation in 

SAFFM less accurate. 
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