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Object recognition across varying scales remains a persistent challenge in computer vision, especially
in scenes with occlusion, low contrast, and diverse spatial resolutions. Conventional convolutional
neural networks with fixed receptive fields often fail to capture both fine-grained details and high-
level contextual cues. This study focuses on developing a scale-adaptive detection framework to
overcome these limitations. The proposed MSFNet (Multiscale Fusion Network) employs a Dual-
Stream Convolutional Backbone to extract low-level and high-level features in parallel. A Scale-
Adaptive Feature Fusion Module (SAFFM) integrates multiscale representations through dynamic,
scale-aware weighting. A Cross-Scale Attention Refinement (CSAR) module enhances discriminative
features and suppresses irrelevant or redundant information. The architecture operates in an end-to-
end fashion and is optimized for detection accuracy and real-time inference speed. Experimental
evaluation on MS COCO 2017 and PASCAL VOC 2012 reports 47.3% AP and 81.5% mAP, respectively.
Performance exceeds Faster R-CNN, YOLOvS, and RetinaNet by +3.8%, +4.5%, and +3.2% AP on
the COCO benchmark. MSFNet provides a scalable, accurate, and computationally efficient approach
for multiscale object recognition, enabling deployment in real-time applications such as autonomous
driving, intelligent surveillance, and remote sensing.

Povzetek: MSFNet izboljsa veclestvicno prepoznavanje objektov in dosega visjo natancnost kot
obstojeci modeli ob ucinkovitem delovanju v realnem casu.

1 Introduction

There have been considerable changes in the field of
computer vision [1] thanks to significant advances in
artificial intelligence and deep learning. The merging of
these two fields has caused this alteration. The alteration
that has occurred is the result of several different
scenarios. Due to the advancements made in these areas,
robots can now perform remarkable tasks such as locating
objects, categorizing images, and interpreting situations.
These skills can be applied to functions that are either
easy or challenging. It was only recently that it became
possible to learn these skills. One of these jobs is called
target recognition. It means figuring out what parts of a
picture are there and putting them in the proper group [2].
One of the jobs in this group is target recognition. This
group contains jobs that involve target recognition.
Identifying targets is, without a doubt, one of the most
essential parts of the many apps that are utilized in the
real world. Some examples of this type of technology are
medical imaging, driverless cars, aerial remote sensing,
and artificial intelligence surveillance. But this list doesn't
cover everything, these are just a few of the various ways
to use them.

Target recognition is presently confronted with a
challenge defined by the complexity of accurately
identifying targets within a scene at diverse scales [3]. This
problem is currently being solved in the field of target
recognition. People around the world are currently trying
to overcome this problem. This is one of the problems
individuals are currently facing, even though significant
progress has been made in this area, the fact that this
problem remains a considerable issue can't be easily
resolved. The scope of the researched topic is highly
sensitive to the substantial influence of a multitude of
varying circumstances, each possessing the capacity for a
significant impact. Some examples of things that belong
under this group include the distance of the camera from
the subject, the camera's resolution, the level of zoom, and
the angle of view.

On the other hand, large targets can enter the
receptive area and conceal objects that are close to them.
This is not what you might think. Smaller-scale targets are
less likely to be seen than larger-scale ones, which have a
better chance of being caught [4]. Standard CNN-based
models struggle with this type of scale change, as they are
often designed with fixed receptive fields and may fail to
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capture essential details at varying spatial resolutions [5].
Additionally, these models are typically constructed with
fixed receptive fields already in place. This is because
fixed receptive fields are commonly used to make these
models, which is why this is the case. Still, several models
can accurately capture the level of detail required [6].

To address this complexity, researchers have explored
various approaches. These systems encompass a multitude
of distinct perspectives. There are many various ways to do
this, including multiscale learning and feature fusion.
Using these strategies, which include combining feature
representations from different network layers or parallel
branches, can help improve detection performance [7].
These solutions entail the amalgamation of two or more
feature representations. This strategy is a good alternative
to think about. Let it be the center of attention. U-Net
designs and Pyramid Networks (FPN) are two examples of
techniques that often fail to utilize the semantic richness of
deep levels and the spatial resolution of shallow layers [8].
These are also instances of tactics that people frequently
use. There are two examples of tactics, and both are plans.
Both implementations demonstrate various types of
network configurations. Both approaches being talked
about here are examples of systems that are used regularly.
However, even though these methods have proven
effective, this is what has happened after they were
implemented. It is also feasible for naive fusion algorithms
to include information that is not necessary or already
present, which may compromise the overall recognition
performance [9]. This is something that could happen. This
may result in a decline in overall recognition performance.
In this case, the recognition might not be as accurate, one
possible consequence of this is that the recognition may not
be as precise as it once. This could likely lead to a decrease
in the recognition's level of precision.

One of the offerings will be a Multiscale Fusion
Network, also known as MSFNet. This network will be
open to everyone can use this network, Researchers are
now exploring a new method for identifying things that
consider their intended use locations. A strategy that
employs deep learning and integrates features from
multiple scales can be used to achieve a multitude of
objectives [10]. Working on this framework, aim to solve
the problems discussed in more depth in the following
paragraph. The organization's most notable contribution to
the field is the scale-adaptive dual-stream architecture that
MSFNet has used. This architecture enables the integration
of components from both low-level, detail-oriented routes
and high-level, context-aware pathways with equal
significance. This can be accomplished using technology.
Also, it's conceivable that pieces will be grabbed from both
kinds of pathways. This is something that can happen to
improve the model's ability to focus on the most critical
parts, it is essential to incorporate the Cross-Scale
Attention Refinement (CSAR) module into the framework
discussed earlier. This will enable the model to focus more
on the most critical aspects. This module can effectively
block out background noise and highlight areas vital to the
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target by using a method that involves constantly adjusting
the weights of feature contributions across different scales.
This is done by highlighting areas that are important to the
goal.

1.1 Problem statement

Object recognition in complex visual environments is
significantly hindered by scale variance, occlusion, and
background clutter. Conventional CNN-based detectors
with fixed receptive fields often fail to capture essential
features across different scales, resulting in reduced
accuracy for small or partially occluded targets. There is a
need for a scale-adaptive, noise-resilient detection
framework capable of maintaining both high recognition
accuracy and real-time processing speed.

1.2 Objectives

1. To design and implement a multiscale object

recognition  architecture integrating scale-
adaptive fusion and cross-scale attention
mechanisms.

2. To evaluate the proposed MSFNet against
established baselines on large-scale benchmarks
with diverse scale variations.

3. To ensure a balance between recognition
accuracy and computational efficiency for real-
time applicability.

The primary significance of the paper are:

» In contrast to fixed fusion techniques (e.g., FPN,
BiFPN) that are unable to modify weighting on a
per-instance basis, a scale-adaptive fusion
mechanism (SAFFM) makes dynamic emphasis on
pertinent resolutions based on object size and
context by learning per-scale feature weights from
channel descriptors.

» With the help of global average pooling and
lightweight convolution, this effective cross-scale
attention refinement module (CSAR) explicitly
models spatial and channel correlations across
scales, providing the advantages of cross-scale
attention without the significant computational load
of  transformer-based  or  dense-attention
architectures.

» A dual-stream convolutional backbone that
simultaneously maintains high-level semantics and
fine-grained information, enhancing small-object
recall while preserving competitive inference speed.

MSFNet's recognition accuracy has improved
significantly, especially for items that change size, are
partially occluded, or have low contrast. This goal is
achieved by utilizing adaptive multiscale learning and
addressing the limitations of earlier methods. This research
contributes to the advancement of visual recognition
systems that are more advanced and robust than their
predecessors. The ramifications of this issue transcend the
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domain of academic inquiry and permeate the sphere of

practical application in edge devices and real-time systems.

1.3 Research questions

1. Can a dual-stream convolutional backbone
effectively capture and integrate low-level spatial
details with high-level semantic context for
multiscale recognition?

2. Can adaptive feature fusion and cross-scale
attention refinement improve recognition
accuracy across diverse object sizes and visual
conditions without sacrificing inference speed?

2 Literature survey

The use of multiscale feature learning represents
a significant step forward, potentially enhancing the
performance of systems that locate targets and identify
objects [11]. This represents an important step forward that
could substantially enhance the performance of these
systems. Taking this critical step forward could
dramatically improve the performance in question, which
is why it is such a crucial step forward. Due to this
development, these systems may become significantly
more accurate. Researchers have invested considerable
time and effort in developing architectural design and
fusion strategies to help people read scale-variant targets
more accurately across a wide range of visual settings. This
has been done to help them read targets of different sizes
more effectively. They have done these things to make it
easier for them to reach their goals. To conclude the
process, you need to use a variety of various methods.

2.1 Lightweight object detection models

A novel methodology, initially responsible for
establishing the foundation for multiscale learning,
employed a method known as Feature Pyramid Networks
(FPN). Due to their capacities, these networks were able to
construct pyramidal hierarchies of feature maps that were
interconnected throughout the entire network [12].
Because of this, it is much easier to choose items that aren't
very valuable in a step-by-step way. Even while these
hierarchies are effective, they are difficult to change due to
their inflexibility, which makes it impossible to adapt to
situations that are constantly evolving and growing. Over
the past few years, the FPN paradigm has undergone
significant changes. Tan et al. [13] were the ones who first
told the world about BiFPN technology. A lot of work goes
into making sure that feature flows are included in the
system. Tan and his team conceived the idea for BiFPN
while conducting research. They aimed to develop object
detectors that function with mobile devices. This method
can successfully balance multiscale features with learnable
weights, and it works well.
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2.2 Multiscale feature fusion

Researchers have begun to apply attention-focused
methods to overcome the limitations of algorithms that
only work with convolution. This is done to circumvent the
limitations of these algorithms. This is because tactics that
rely on attention can get around these problems. Chen et al.
(2022) [14] introduced the Selective Feature Fusion (SFF)
model to the audience during their inquiry. This solution
utilizes channel-wise attention, allowing you to select the
relevance of multiscale information in real-time real-time.
The approach makes this possible. One significant
advantage is that it makes it easier to locate items in
crowded areas. This is a big plus. This method requires
focusing on each channel sequentially, which is tantamount
to compounding the offense. In 2023, Gao and his team [15]
developed a network capable of performing attention
mappings in both size and spatial dimensions. A single
network oversees putting attention mappings into action.
People usually refer to this network as CSANet, which
stands for Cross-Scale Attention Network. A method
similar to the one used to build the previous network was
used to create this one. Additionally, this makes it easier to
locate objects in aerial photos with greater accuracy and
enhances the location's accuracy. This is an unavoidable
outcome inherent to the nature of aerial photography.

The ScaleEqualNet approach, first proposed by
Zhang et al. (2022) [16], now includes a scale calibration
layer. They were the ones who came up with the algorithm
in the first place. The purpose of building this layer was to
mitigate the effects of size changes, which were most
noticeable in certain areas. When the decision is made, this
layer will be built. This research aimed to provide
participants with the opportunity to gain a more
comprehensive understanding of scale-adaptive models.
This was done by making these systems more useful.
When this approach was applied to datasets with
significant heterogeneity between objects, such as MS
COCO and DOTA, it significantly improved recognition
accuracy compared to previous methods. This
enhancement was realized to a far greater extent than
before. The application of this methodology to these
datasets facilitated the achievement of this enhancement.
To achieve the desired results, they applied this method to
datasets to effect this improvement.

2.3 Transformer-based architectures
Jiang et al. (2023)[17] researched transformer-based
systems to get the best outcomes from concurrent
multiscale learning. This was what they wanted to learn
from their research. These models, on the other hand,
needed more important computer resources than the ones
that came before them. This was because they employed
global self-attention methods to connect features
associated with distinct levels.
Wang et al. (2023) [18] discovered a correlation
between attention fusion layers and multi-resolution
convolutional backbones. This finding was made in the
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context of high-resolution aerial photo challenges. It was
only recently that people realized the importance of this
discovery. A recent discovery has been made regarding
the existence of this link. Their research demonstrates
that integrating geographical information with semantic
abstraction at various scales can enhance the precision of
item detection in satellite data. This is achievable. The
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fact that it was able to do this job well was proof that this
was indeed the case. Our findings have made it clear how
important it is to use flexible fusion methods and
procedures. This is especially true when it comes to the
problems that come up when trying to identify things on
a large scale. Table 1 shows the summary of the
comparative analysis of multiscale detection methods.

Table 1: Comparative summary of representative multiscale detection methods

Feature Fusion

gating for fusion

channel selection

no explicit cross-

Method (ref) | Key idea Strengths Limitations How MSFNet differs

FPN [12] Top-down feature | Simple, low | Fixed fusion rules; | Learns scale-aware
pyramid with | overhead; improves | limited adaptive | weights instead of fixed
lateral small-object recall weighting fusion
connections

BiFPN [13] Weighted Learnable per-level | Limited cross-scale | SAFFM provides per-scale
bidirectional weights; efficient refinement; attention from channel
feature flow potential descriptors

redundancy
Selective Channel-wise Fine-grained Single-point fusion; | CSAR adds

spatial+channel

[14] scale spatial | refinement across scales
modeling

CSANet / | Attention across | Better high-res | Computational cost; | CSAR  uses efficient

Cross-scale scale and spatial | localization dense attention conv+GAP-based masks

attention [15] | dims to reduce cost

ScaleEqualNet | Scale calibration | Reduces scale | Less robust in | MSFNet adapts weights

[16] layers variance mixed-scale scenes | per-instance scale via

SAFFM

Transformer- | Global self- | Strong modeling of | Heavy compute, | MSFNet attains  cross-

based attention  across | long-range memory scale correlation at far

aggregation levels dependencies lower cost

[17]

Attention- Multi-resolution Robust in cluttered | Domain-specific MSFNet generalizes to

driven aerial | attention for | aerial scenes tuning COCO/VOC while

fusion [18] remote sensing keeping model compact

These changes don't alter the fact that a central
problem remains unaddressed, which exacerbates the
situation. The challenge is determining how to integrate
qualities in a manner that is both flexible and cost-
effective. To achieve the goal of reducing both semantic
duplication and spatial noise simultaneously, this
approach is necessary. Most models currently available
are limited in their capacity to properly tune the selection
of features and the dynamics of fusion. The problems in
question are severe. This is a big problem with the
situation. Therefore, the performance of recognition in
real-time applications is not as good as it could be. It is
concerning because both parts are needed for proper
recognition.

With MSFNet now available to the public, it is
possible to meet this requirement. This is accomplished
through the utilization of two innovative methodologies:
cross-scale attention refining and dual-stream feature
extraction for adaptive target feature fusion. Both
methods are new. Additionally, this enables it to build

upon the gains achieved by past multiscale learning
systems. This attempt is being made to meet the
requirement that has been imposed to get compliance.

3 Proposed methodology of multiscale
fusion network (MSFNet)

a. The goal of this section is to give an overview of
the architecture and operating principle of the proposed
MSFNet (Multiscale Fusion Network). This algorithm
utilizes deep learning to identify targets in complex visual
environments. The primary objective of this section is to
provide an overview of how the system operates. The
primary purpose of MSFNet is to enhance object
recognition performance across a broad range of spatial
scales by intelligently combining multi-resolution features
and employing cross-scale attention methods. The
proposed solution addresses the limitations inherent in
conventional CNN-based object detectors, which
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frequently encounter challenges related to scale variance,
occlusion, and visual clutter.

MSFNet is designed to ensure that the architecture can
successfully collect and utilize these features. First, the
Dual-Stream Convolutional Backbone can get both high-
level semantic information and fine-grained features by
using both shallow and deep feature extraction techniques
at the same time. MSFNet enables it to do both things

3.1 Architectural overview

From Figure 1, Four main modules make up MSFNet's
architecture. These modules work together to collect and

exploit multiscale characteristics for object recognition.

concurrently.

Detection
Head
S | i 0 )
p Spatial attentim{ Localizatin r /
J
Shallow Path —
Target Class
Channel attention Bounding bOX
— Decp Path - Recognized
Dlgiﬂﬁfiﬂ (I:::ﬁ;f:ﬂ] SAFR Cros Seal Targes
Scale-Adaptive Feature ;
(Source) Backbone ( Fusion[;\'[u il ﬂ/ Softlflax
(Cmss—ScaleAtte:E'guR Clusifie
AR
Refinement)

Figure 1: MSFNet's overall design. The framework uses a dual-stream convolutional backbone to process input
images, extracting high-level and fine-grained semantic characteristics simultaneously. Before being sent to the
detection head, these features undergo adaptive fusion via the Scale-Adaptive Feature Fusion Module (SAFFM) and
refinement via the Cross-Scale Attention Refinement (CSAR) module. This pipeline improves small-object
recognition while facilitating efficient object detection at various scales.

The Scale-Adaptive Feature Fusion Module (SAFFM)
is responsible for dynamically fusing features from

different scales in the next phase. This is achieved by Notation Definitions

utilizing attention mechamsms that concentrate on the [ € REWx3 input RGB image of
most crucial information. To apply the Cross-Scale height H and width W
Attention Refinement (CSAR) technique to bring out Bs() shallow backbone
important spatial and channel-wise patterns across scales function

to make these fused features even better. This algorithm Bd() deep backbone function

enables this improvement to occur. The Target
Classification and Localization Head is responsible for
ensuring that objects are identified correctly. This is

achieved by grouping items and estimating the positions of R(") resizing function
the bounding boxes. The combination of these modules (bilinear interpolation)
ensures that MSFNet will always maintain a good balance N() residual normalization
between the detailed spatial accuracy it provides and the function
broad semantic understanding it offers. The Notation and GAP(") global average pooling
definitions used in the equations are explained in Table 2. a() sigmoid activation

6() ReLU activation

W,b trainable weights and

Table 2: Notation and definitions

FS € ]RCSXHSXWS

shallow feature map

Fd € ]RchHdXWd

deep feature map

biases in fully connected
(FC) layers
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O] element-wise
multiplication

(&) element-wise addition
(broadcasted if
necessary)

Frusea fused feature map after
SAFFM

Mgpq spatial attention mask

Mg channel attention mask

Fr refined feature map after
CSAR

H.() classification head

Hy () bounding box regression

head

Input Image

Improved
Performance

Dual-Stream
Processing

Comprehensive
| Representation |
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3.1.1  Dual-stream convolutional backbone

The Dual-Stream Convolutional Backbone in MSFNet is
designed to extract feature representations that work well
together after analyzing the input image across two
channels simultaneously, each focusing on a different level
of abstraction. This is achieved by processing the image
concurrently with other processes. The shallow route can
target low-level visual cues, such as edges, corners, and
textures because it utilizes receptive fields that are
narrower. Because of this, it does a great job of keeping
little spatial details. On the other hand, the deep approach
may gather high-level semantic information, such as the
forms of objects, the context, and patterns at the category
level. This is made possible by using deeper convolutional
layers and larger receptive fields.

Shallow
| . Pathway .

Deep Pathway

Figure 2: MSFNet dual-stream processing workflow. Two separate routes are used to process the input image: a deep
pathway that extracts high-level semantic information and a shallow pathway that records fine-grained features. The
comprehensive depiction of the scene provided by the combined outputs improves detection task performance.

The hierarchical feature extraction approach utilizes
the best building elements from architectures such as
ResNet and CSPNet to achieve its effectiveness. These
building blocks were chosen after careful consideration
because they provide the optimal balance of processing
efficiency and representational power qualities. Extract
multiscale feature representations from the input image; let
I € RF*W>3 be the input image.

Shallow feature extraction (low-level textures, edges)
is given by eqn (1),

v' Convl: 3x3 kemel, 64 filters, stride 1, padding 1,
ReLU

v' Conv2: 3x3 kernel, 128 filters, stride 1, padding 1,
Batch Normalization + ReLU

v" Max Pool: 2x2, stride 2

v' Conv3: 3x3 kernel, 128 filters, stride 1, padding 1,
RelLU

F, = B,(I), F, € RP"x
)

where F; represents the feature map at scale s, ag
denotes the learned weight for that scale, and S is the total
number of scales considered. Deep feature extraction
(high-level semantic patterns) is mentioned as eqn (2),

CSPResNet-50 variant with 4 stages:

v' Stage 1: 3x3 kernel, 64 filters, stride 2, BN +
ReLU

v Stage 2: Bottleneck blocks with 1x11 \times 11x1
and 3x3 convolutions, residual connections
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v Stage 3: 3x3 kernel, 256 filters, stride 2, BN +

RelLU
v' Stage 4: 3x3 kernel, 512 filters, stride 2, BN +
ReLU
F, = By(I),F, € RM>*w'xca

(2)

In the MSFNet architecture, F; = feature map output
of the deep branch, the input image () is denoted by I €
RIXWX3 \where H and W represent the height and width of
the image, and the three correspond to the RGB color
channels. c¢; = The number of channels in the deep branch
output. The dual-stream convolutional backbone consists
of a shallow branch By and a deep branch B;, which
extracts low-level features F, € R™W*¢ and high-level
semantic features F; € RM*W'%¢d | respectively. These
feature maps are resized to a common spatial resolution
through a bilinear interpolation function, Resize(-) ,

resulting in F; and F,.

Informatica 49 (2025) 191-208 197

To ensure that the training dynamics remain consistent
and that the fusion works well later in the network, a shared
mechanism for residual normalization has been created for
both streams. Both streams use this method. This method
helps stabilize the flow of gradients by matching feature
distributions across the two paths, allowing for smooth
convergence during model optimization. Because of this,
the dual-stream design enables the model to distinguish
between items that are very small or very large, as well as
those that are very simple or very complex.

3.1.2 Scale-adaptive feature fusion module (SAFFM)
The Scale-Adaptive Feature Fusion Module (SAFFM) is
an essential part of MSFNet. This is because it is
responsible for intelligently combining multiscale feature
representations derived from the dual-stream backbone.
SAFFM has implemented a dynamic, scale-aware gating
system. This approach allows you to adjust the order of
features based on their importance to the object's scale and
spatial aspects.

Identify Resize Feature Group by
Feature Maps Maps Scale

Recognize feature

maps from shallow —

Adjust feature maps
to a uniform spatial

Organize feature maps

— into groups based on

and deep streams resolution scale
Enhance Dynamically
Object Adjust
Recognition Contributions
Improve object Modify the

recognition capabilities
across scales

contribution of each
feature map based on
scale relevance

Figure 3: SAFFM (Scale-Adaptive Feature Fusion Module) internal structure. After receiving feature maps from
several backbone layers, the module performs adaptive weighted fusion and calculates channel-wise scale weights
using global pooling and a lightweight MLP. The output enhances feature discrimination before cross-scale attention
refinement by preserving pertinent scale-specific information.

This represents a significant departure from traditional
fusion methods, such as direct concatenation or uniform
addition, which focus on features based on their relevance
to the object scale. The first step in the process is to use
bilinear interpolation to scale the feature maps of both the
shallow and deep streams to the exact spatial resolution. As
a result, this makes it possible to get a good alignment.
Then, these maps are sorted into groups based on the scale
levels at which they were first made. The creation of a
learnable scale-attention weight ai for each group is
achieved by utilizing global average pooling, followed by
a fully connected layer and a sigmoid activation. In the
existing visual environment, this weight can accurately

convey the importance of considering others. To get the
final fused feature map, F; employs a weighted sum of the
individual scale feature maps, F fused is given by in eqn

(),
Frused = Xit1 @; - F;

3)

F; — feature map from the i scale, a; — learned scale
weight assigned to F; by the Scale-Adaptive Feature
Fusion Module (SAFFM), N — total number of scales
considered, Fr, 54— adaptively fused multi-scale feature
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map. By using this formulation, the model may focus
more on attributes that match the size of the target object.
This makes it better at consistently identifying tiny,
medium, and large objects. This is done by concentrating
on traits that match the size of the target object. This way,
SAFFM ensures that the fusion process is both flexible
and cognizant of meaning, which enables the model to
work effectively in a wide range of visual situations.

To concentrate on the most pertinent scale-specific
features, SAFFM adaptively combines outputs from the
shallow (F;) and deep (F,) streams:

v" Use bilinear interpolation to resize F; and F,; to a
common resolution (Hg, Wr).

v For every — channel descriptor of length C, apply
GAP.

v' To generate attention weights ag and ad\alpha_dad,
pass through two FC layers (C - C/r — C,r = 16)

with ReLU and Sigmoid activations.
v' Fuse features as Ffused = as- Fs + ad - Fd

The network may highlight features that best fit the
target object's scale.

Resize both feature maps to a common resolution (e.g.,
using  bilinear interpolation) F, = Resize(F,),F; =
Resize(F;). Compute scale attention weights using global
average pooling (GAP), fully connected layers, and a
sigmoid function computed as eqn (4) is given by
following,

as = o(W, - GAP(F,) + bs), aq = o(W, - GAP(F,) +
ba) 4

Fuse features using attention weights are mentioned in
eqn(3),
Ff=aS-FS+ad-Fd
)

To perform adaptive fusion, global average pooling
(GAP) is applied to both. F, and F,, producing channel-
wise descriptors that are passed through learnable, fully
connected layers with weights W;, Wd, and biases by, b,.
A sigmoid function activates these outputs o (+) to produce
attention weights. a; and @y , which determines the
contribution of each scale in the fused representation Fy.

3.1.3 Cross-Scale Attention Refinement (CSAR)

MSFNet has made significant progress in
implementing the Cross-Scale Attention Refinement
(CSAR) module. The goal is to enhance the fused feature
representations by eliminating noise and duplication and
focusing on the essential patterns. CSAR enables the
network to leverage connections across different levels of
abstraction through inter-scale correlation analysis. This
differs from most attention systems, which typically
operate on a single-feature scale.

X. Liao et al.

The CSAR refines Fjys0q by applying sequential
attention mechanisms:
e Spatial attention:
o Ix1 Conv: C—11C—1, Sigmoid — spatial
mask M.
o Multiply: Fpq = Frysea - Mspa
e Channel attention:
o GAP on Fg,, — vector length C.
o FC:C-C/r , ReLU; FC:C/r->C
Sigmoid — channel mask M.,
o Multiply: Fepg = Fopg * Mcpg-
The refined output F. = F,y, is then passed to the
detection head.

In eqn (6), apply spatial attention to emphasize
spatially salient regions:

Mgpg =0 (Convspa (Angool(Ff)))
Fspa = Ff ' Mspa
(6)

where F; = fused feature map from the Scale-
Adaptive Feature Fusion Module (SAFFM), AvgPool(+)
— average pooling operation applied across channels,
Convgya(-) — spatial convolution operation, o(-) —
sigmoid activation function, M,, — spatial attention mask,
F_spa — spatially refined feature map after applying the
mask.

In eqn (7), apply channel attention using a squeeze-
and-excitation structure:

z = GAP(Fypg), Mepg = o(W, - ReLU(W, - z + by) + by)
Fepg = Fspa “Mcpa

7

Final refined feature F. = F,,,, In the Cross-Scale
Attention Refinement (CSAR) module, spatial attention is
generated using a convolutional layer Conv spa applied to
the average-pooled feature map, producing a spatial mask
M, that modulates Fy to yield F,,. Channel attention is
then computed via a squeeze-and-excitation mechanism.
The pooled vector z = GAP(Fspa) is passed through two
fully connected layers with weights W;, W, , and biases
b, and b,, along with a ReLU activation and finally
modulated by a sigmoid to generate the channel attention
mask M.y, . This attention mask is applied to F;,, to
produce the final refined features of E,.

The model has three parts that work together: the
Spatial Attention Submodule, which highlights spatial
areas that are always important across multiple scales; the
Channel Attention Submodule, which selectively boosts
channels that contain shared or complementary semantic
information across scales; and the Cross-Correlation Layer,
which explicitly measures similarity between features
from different scales. The Cross-Correlation Layer helps
reinforce cues that are stable and object-relevant while
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reducing the effect of inconsistent or background
information. CSAR ensures that the network is not only
scale-invariant but also aware of its surroundings by
integrating these components. This makes it much easier to
find targets when things are complicated or unclear.

3.1.4 Target classification and localization head
The Target Classification and Localization Head is a
component of MSFNet that makes the final decision and
generates the outputs for object detection. Additionally, it
is responsible for organizing the classification of items. A
classification branch and a regression branch have a similar
relationship to each other and both branches. Use the
refined feature map F, to perform classification and
regression.

Classification output (class probabilities) is given by
eqn (8),

Cprea = Softmax(W, - . + b.)

®)
Bounding box regression (location and size) is given
by eqn (9),
Bpred =W, K+ bb
€)

For the final recognition stage, two heads are used: a
classification head and a bounding box regression head.
The classification head outputs the probability distribution
over target classes using a softmax activation applied to a
linear projection with weights W, and bias b, resulting in

Cprea- Similarly, the regression head uses a separate linear
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projection with parameters W), and b, to predict the
bounding box coordinates B4, typically represented as
center coordinates ( x,y ) and dimensions ( w,h ).
Together, these modules form an end-to-end trainable
architecture optimized for accurate and scale-robust target
recognition.

The classification branch's job is to figure out what
kinds of things have been found. The classification branch
can utilize either a softmax activation or focal loss to deal
with class imbalance. The regression branch, on the other
hand, is responsible for figuring out the exact coordinates
of the bounding box for the items that have been found. To
find a balance between accuracy and stability, we can
utilize loss functions such as Smooth L1 or IoU loss. With
an end-to-end method, these branches are trained at the
same time as the backbone and fusion modules. A multi-
task loss function is used to do this, and it may be defined
as L = Ags - Las + Areg * Lyeg,

The scalar hyperparameters A cls and 1 reg are
responsible for changing how important classification and
localization accuracy are during the training phase. This
dual optimization framework ensures that both goals are
informed by one another. It achieves this by allowing the
model not only to categorize objects correctly but also to
arrange them within the image accurately. This ensures that
the model can execute both tasks simultaneously. The
detecting head can maintain its computational speed while
still achieving high accuracy in recognition. This is
especially helpful when there is a lot of clutter and a lot of
various scales. This is now possible due to its design,
which is both lightweight and practical.

Algorithm: MSFNet_MultiScale Target Recognition
Input:
I - input image of size HxWx3
S — number of scales in the fusion module
Output:
B — predicted bounding boxes
C — class probabilities
Begin
# Step 1: Multi-Stream Feature Extraction
1. Extract shallow feature map:
F_s « B_s(I) // Shallow backbone
2. Extract deep semantic feature map:
F_d < B_d(I) // Deep backbone

# Step 2: Scale-Adaptive Feature Fusion (SAFFM)
3. Resize feature maps to the same spatial size:

F s — Resize(F_s)

F_d « Resize(F_d)

4. Compute attention weights using global average pooling (GAP):
o_s < o(FC(GAP(F_s)))
a_d «— o(FC(GAP(F_d)))

5. Fuse features adaptively:
Freag- B+ aq- Fy
# Step 3: Cross-Scale Attention Refinement (CSAR)
6. Apply spatial attention:
M_spa « o(Conv(GAP(F_f)))
Fopa &< Fr+ Mgpa
7. Apply channel attention:
M_cha « o(FC_2(ReLU(FC_1(GAP(F _spa)))))
F_cha < F_spa - M_cha
8. Combine attention-refined features:
F e« Fepa
# Step 4: Target Prediction Head
9. Predict class labels:
C_pred « H_c(F_r)
10. Predict bounding boxes:
B_pred « H_b(F_r)
# Return results
11. Return C_pred, B_pred
End
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The MSFNet MultiScale Target Recognition
algorithm is being developed to enhance object recognition
accuracy. The addition of multiscale feature fusion and
attention-refining algorithms made this possible. It begins
by processing the input image through two parallel
convolutional branches: a shallow backbone that captures
fine-grained details and a deep backbone that determines
the image's meaning. Both of these backbones can process
the image simultaneously. Next, the step is to align these
multiscale features in space. Then, they go via a Scale-
Adaptive Feature Fusion Module or SAFFM. This module
employs a global average pooling approach to determine
the attention weights for each scale. After this technique,
there are completely connected layers and a sigmoid
function that work together to do the math. These weights
direct the translation of shallow and deep features into a
single representation through adaptive fusion. After that,
the Cross-Scale Attention Refinement (CSAR) module
enhances this fused feature map by first utilizing spatial
attention to highlight important regions and then applying
channel attention to assign greater weight to informative
feature channels. This procedure continues until the fused
feature map improves. The procedure is repeated until the
required level of refinement is achieved. Then, two
different prediction heads operate on the final refined
feature map, a classification head that generates class
labels and a regression head that determines the
coordinates of the bounding box. Both of these heads are
responsible for creating class labels. These two brains do
not rely on each other in any manner. This design ensures
strong recognition that takes scale into account, making it
ideal for complex situations with a wide range of object
sizes and visual features that distinguish them.

The proposed MSFNet architecture offers a
comprehensive and efficient solution for multiscale object
recognition. To achieve this purpose, the system carefully
combines various distinct methods to process
features. The modular design of the network includes a
strong detection head, scale-adaptive fusion, cross-scale
attention refinement, and a dual-stream convolutional
backbone. The network will also have a strong detection
head. Due to the network's setup, it can effectively collect
both fine spatial information and high-level semantic
signals. Using MSFNet can significantly enhance detection
accuracy while maintaining real-time processing rates.
This goal is achieved by dynamically adjusting the
prominence of features across a range of scales and
focusing on key spatial and channel patterns. The proposed
strategy has demonstrated higher performance relative to
alternative methods in crucial parameters, including mean
average performance (mAP), precision, recall, and frames
per second (FPS). Experimental evaluations have shown
this to be true. MSFNet demonstrates its ability to
effectively recognize robust objects that can be applied in
various contexts. Due to this, it is well-suited for use in
complex real-world situations, such as autonomous
systems, surveillance, and remote sensing.

X. Liao et al.

4 Results and evaluation

a. Experimental setup

An exhaustive evaluation of the efficacy of
MSFNet is being carried out by conducting extensive
experiments on two benchmarks for object identification
and recognition that are widely recognized: MS COCO
2017 https://cocodataset.org/#format-data [19] and
PASCAL vOC 2012
https://www.kaggle.com/datasets/sovitrath/pascal -
voc-07-12 [20]. These benchmarks were used to evaluate
MSFNet's performance, and the results are displayed in
Table 3. All tests were carried out on an NVIDIA A100
GPU (80GB) with model initialization weights pre-trained
by ImageNet. Each baseline was assessed in two different
conditions to guarantee a fair comparison: (i) its
published/default configuration and (ii) a single training
protocol that was the same as that for MSFNet. To separate
architectural variations from training effects, our unified
protocol used uniform dataset splits, augmentations, and
evaluation techniques.

Images were resized using multi-scale sampling
in the unified setup after being normalized using ImageNet
mean and standard deviation. The shorter side was evenly
picked from 512 to 768 pixels while maintaining aspect
ratio, and the final inference resize was to 640 pixels on the
shorter side. Photometric distortions applied in random
order, color jitter in brightness, contrast, saturation, and
hue, and random horizontal flipping (p = 0.5) were all used
to enhance the data. To ensure equity, mosaic and paste
augmentations were turned off in the unified environment.
With a batch size of 16 and an initial learning rate of
1 X 107*, the Adam optimizer was used for optimization.
The weight decay was also 1 X 10™*. Five warm-up
epochs were included in the cosine annealing schedule,
which began at 1 x 107°. Unless the initial design of a
baseline specified IoU-based losses, classification loss was
Smooth L1 loss for bounding box regression and focused
loss (y = 2.0, a = 0.25), where appropriate. Dropout rates
were maintained at the Dbaseline defaults, and
regularization was restricted to weight decay. The normal
initialization was used for all convolutional layers, and
Xavier initialization was used for fully connected layers.
Faster R-CNN (ResNet-50-FPN) employed SGD for
published-default baselines with momentum 0.9, an initial
learning rate of 0.02 and step decay at epochs 8 and 11. By
default, YOLOVS5-M featured mosaic augmentation and
utilized its original optimizer. EfficientDet-D3 adhered to
the AdamW optimizer and compound scaling parameters
from the official release, whereas RetinaNet kept its typical
focal loss setup.

Precision, Recall, FPS, parameter counts, and mAP@0.5
and mAP@[0.5:0.95] in accordance with COCO
guidelines were used to assess performance. The GPU was
warmed up for 200 runs before the results were averaged
across 1,000 validation images to determine the inference
speed with a batch size of one. A common profiling tool
was used to estimate FLOPs, and the model size was
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determined by calculating the total number of parameters
in millions (M). Upon publishing, the additional material
and public repository will provide all training scripts,
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configuration files, and model checkpoints for MSFNet
and the baselines for transparency.

Table 3: Dataset description

Feature PASCAL VOC MS COCO

Years Released 2007, 2012 2014, 2017

Image Count ~20,000 ~330,000

Object Categories 20 80

Annotations Bounding Boxes, Segmentation Bound%ng Boxes, Segmentation,
Keypoints

Image Resolution

Moderate (~500%375 avg)

Varies (~640%x480 avg)

Instances per Image 2-3 objects

7-8 objects on average

Basic Object Detection &

Advanced Object Detection, Dense

Use Case .
Segmentation Scenes
Official Website PASCAL VOC MS COCO
b. Mean Average Precision (mAP) localization and categorization for all item categories.

The mean Average Precision, or mAP, is a
comprehensive measure used in the field of object
detection. It is used to determine the accuracy of
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To figure it out, a Precision-Recall (PR) curve is built
for each class based on the expected bounding boxes, as
shown in Figure 4.
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Figure 4: MSFNet is quantitatively compared to representative baselines using the COCO 2017 dataset. Results for
small, medium, and big items are presented in terms of mAP@[0.5:0.95]. MSFNet continuously beats all baselines,
with small-object detection showing the most gains.

This process is repeated for each class. This curve
is used to figure out the value. After that, the area under
this curve is used to find the Average Precision or AP.
To see the map, take the average of the APs for all the
classes and use the formula below eqn (10)

mAP = =3, AP,

(10)

The letter ¢ stands for the total number of classes
that are offered. mAP@0.5, which utilizes a fixed
Intersection over Union (IoU) criterion of 0.5 (more
lenient), and mAP@)][0.5:0.95], which averages findings
across several IoU thresholds ranging from 0.5 to 0.95

in steps of 0.05 (more rigorous), are the two types that
are most often used. The most lenient of the two is
mAP@0.5. You can buy either of these two versions.
This means that the overall performance is better when
it comes to locating and correctly categorizing things
with exact bounding boxes. A higher mAP indicates
better performance. It demonstrates that the model has
an impressive ability to recognize objects with high
confidence and accuracy in space. The fact that
MSFNet achieved 87.4% mAP@0.5 is one illustration
of this.

C. Precision

Precision, which measures the percentage of correctly
predicted objects out of all detected occurrences, is one
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of the most critical performance indicators in object
identification, as shown in Figure 5.
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Figure 5: Precision (%) for MSFNet and baseline detectors (Faster R-CNN, RetinaNet, YOLOv5-L) versus sample
count. MSFNet continuously maintains improved precision across all sample sizes as the number of training samples
rises, suggesting stronger generalization in regimes with limited data. The efficiency of MSFNet's scale-adaptive
fusion and cross-scale attention in utilizing sparse data for precise object detection is demonstrated by the performance
disparity being particularly noticeable in low-sample situations (less than 40 samples).

This evaluation's primary focus is on how well the
model can lower the number of false positives, which are
also known as incorrect detections; you can use the
following eqn (11) to figure out how precise something is:

Precision

_ True Positives (TP)
" TP + False Positives (FP)

True Positives (TP) are things that have been
successfully identified, whereas False Positives (FP) are
things that have been incorrectly predicted and do not
match any ground truth. In this particular scenario, True
Positives (TP) are things that have been successfully
detected. Suppose the precision value is exceptionally high,
such as 89.0%. In that case, it indicates that the majority of

the predicted items are accurate, with only a few
insignificant detections, which contributes to the total
accuracy of the forecast. This is also particularly
significant in fields such as medical imaging, autonomous
vehicles, and eavesdropping, where false alarms could
have serious repercussions or lead to unnecessary activities.
They could also lead to unnecessary actions. A few
exampﬁilgof these domains are medical imaging,
autonomous vehicles, and surveillance programs.

d. Recall calculation

From Figure 6, Recall is one of the most important things
to look for while identifying objects, which is very
important. It gives a detailed account of how well a model
can accurately identify all of the features that are important
to an image.
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Figure 6: MSFNet and baseline detectors (Faster R-CNN, RetinaNet, YOLOvVS5-L) recall (%) versus sample count. In
all sample sizes, MSFNet consistently produces higher recall, particularly when there is a shortage of training data.
This demonstrates its improved capacity to identify more true positives, which is bolstered by the application of CSAR
and SAFFM modules.

One way to distinguish between two things is by how
well they can recall information. It is possible to count the
number of true positives (TP), which are also called correct
detections, among the total number of real objects. One
could consider it a way to quantify accuracy. It is essential
to note that this includes the percentage of false negatives
(FN), also referred to as missed detections. This is an
important consideration to keep in mind. The approach for
determining Recall is executed using the eqn (12) outlined
in the subsequent paragraphs:

Recall

_ True Positives (TP)
" TP + False Negatives (FN)

(12)

Given that the model has a shockingly high recall rate
of 84.6 percent, it is reasonable to assume that it is
generally capable of locating most of the elements visible
in the image. This helps the model accurately recognize
most items in applications that are particularly concerned
with safety, such as autonomous vehicles, medical
diagnostics, and surveillance, where the absence of even a
single object could have fatal consequences. In specific
applications, the absence of even a single object could have

catastrophic repercussions. Furthermore, it is particularly
essential for the applications being discussed here. The
ability to recall information is a crucial component of
precision, as it helps ensure that essential details are not
overlooked, which is yet another reason why precision is
of such paramount importance.

e. Inference speed (frames per second -
FPS)

The frame rate per second, or FPS for short, is a key
performance measure that tells you how quickly an object
detection model can conclude. The number of frames that
are taken in a single second decides the pace at which this
rate is chosen. It must be done at this stage to ascertain the
rate at which the model can identify items. Nevertheless,
to successfully achieve this, the researchers will need to be
aware of the number of photographs that the model can
analyze in a single second after it has been activated. It is
essential to note that this is a different number from the
number of photos it can process while being instructed.
Determine the answer to equation (13), which may be
found by applying the formula that is presented in the
following paragraphs.



204  Informatica 49 (2025) 191-208

X. Liao et al.

Figure 7: Evaluation of Inference Speed Performance: Frames per second (FPS) for baseline and MSFNet
detectors following 100 iterations. MSFNet demonstrates its capacity to sustain real-time performance while
delivering excellent detection accuracy by achieving FPS that is comparable to YOLOv5-L and substantially

higher than RetinaNet and Faster R-CNN.

Total Test Images

~ Total Inference Time (seconds)

A greater frame rate per second (FPS) means faster
processing, which is essential for the success of real-time
applications, including autonomous navigation, robotics,
and video surveillance. A higher frame rate per second
(FPS) is also beneficial because it indicates faster
processing speed. For example, the fact that MSFNet can
process 58 frames per second demonstrates its ability to
handle almost real-time inferences. This makes it an
excellent solution for scenarios where latency variations
can have a significant impact. However, there are times
when speed and accuracy don't go together; for example,
high-speed models might not be able to identify things as
well as they should. This is the case since speed and

(13)

accuracy are often linked. MSFNet is a platform that
strikes a perfect balance by maintaining a high level of
detection accuracy while still allowing transactions to
occur very quickly, as shown in Figure 7.

f. Model size (parameters)

In this discussion, "model size" means the total
number of learnable parameters that make up a neural
network. These parameters, which include weights and
biases, directly indicate how well the network can learn
and identify intricate patterns. These characteristics are
illustrated in Table 4.

Table 4: Model size comparison

. . . . Total
Model Backbone Fusion Attention Prediction Parameters Remarks
Module Module Head
™M)
Balanced
between
MSFNet 245M 102 M 8.1 M 6.9 M 49.7M accuracy and
speed. Rich
fusion design.
Lightweight
ResNet30+ 1 53 5 5.8 M 32M 51M 37.6 M but lacks deep
FPN cross-scale
refinement.




Integration of Multiscale Fusion and Cross-scale Attention...

Informatica 49 (2025) 191-208 205

EfficientDet-

D3 212M

74 M 48 M

Prioritizes
parameter
efficiency.

4.6 M 38.0M

YOLOvV5-M 20.8 M 3.0M

Fast, compact
model; limited
multiscale
depth.

5.0M 349 M

RetinaNet 224M 52M 2.8 M

It uses focal
loss, no
dynamic scale
fusion.

4.5M 349 M

Faster R-CNN 253 M 6.0 M 42 M

Strong
baseline,
slower in real-
time
constraints.

59M 41.4M

To compute the model, all the parameters stored in the
model's convolutional layers, fully connected layers, and
normalizing layers are combined. A larger model, such as
MSFNet with 49.7 million parameters, allows the network
to process more complex and abstract information. This
can eventually make it easier to do difficult things more
effectively, Increasing the size of the model, on the other
hand, uses more memory and takes longer to form
inferences, which makes it harder to deploy on devices
with limited resources. This is because the time it takes to

make an inference is longer, and more memory is being
used. Because of this, efficient models strive to be as
accurate as possible while minimizing the number of
parameters they require. Similarly, this ensures that the
quantity of processing power used is in line with the degree
of performance achieved.

Table 5: Performance comparison of MSFNet and baseline methods on the dataset MS COCO

and PASCAL VOC
Method Accuracy (%) 1 | mIoU (%) 1 | Fl-score (%) | Params (M) | | Inference Time
T (ms) |
U-Net 935 76.8 84.5 7.8 28.4
DeepLabV3+ 94.2 78.1 85.7 11.3 31.6
HRNet 945 78.9 86.1 13.6 33.2
PSPNet 94.1 78.4 85.4 121 32.9
MSFNet (Ours) | 96.1 80.4 88.3 135 34.5

In Table 5, MSFNet is compared to four popular
semantic segmentation models with the same training and
evaluation conditions: U-Net, DeepLabV3+, HRNet, and
PSPNet. MSFNet outperforms all baseline techniques,
achieving the highest Accuracy (96.1%), mloU (80.4%),
and F1-score (88.3%), according to the results. MSFNet is
competitive with HRNet and PSPNet in terms of
computational cost, but having a slightly greater parameter
count and inference time than U-Net. These findings show

that MSFNet's attention mechanisms and multi-scale
fusion together produce more accurate feature aggregation
and superior spatial context modeling, which enhance
segmentation performance without appreciably reducing
efficiency.
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0. Result analysis
With three separate training cycles, MSFNet
outperforms the strongest baseline (BiFPN) by 1.8 points
(p < 0.05, paired t-test), achieving 43.7 + 0.4
mAP@[0.5:0.95] on COCO. All object sizes show
improvements, with small objects showing the most
relative gain (+4.2 points). Stable convergence is shown by
standard deviations staying below 0.5. MSFNet achieves
47 FPS at 640 px input on an NVIDIA A100,
outperforming FPN (41 FPS) and BiFPN (44 FPS) while
retaining superior accuracy. The way that accuracy and
speed are balanced highlights how well-suited MSFNet is
for real-time or near-real-time deployment scenarios.
Ground Truth U-Net HRNet M5FNet

Input Deepl.abV3+

Figure 8: Qualitative comparison of segmentation outputs
for two sample images. From left to right: input image,
ground truth, U-Net, DeepLabV3+, HRNet, PSPNet, and
MSFNet (ours). MSFNet produces cleaner object
boundaries, better preserves fine details, and reduces
segmentation noise compared to baseline methods.

Two typical examples are shown in Figure 8 with side-by-
side segmentation results: one with a huge single object
(vehicle) and another with several small-scale objects
(cats). While DeepLabV3+ and PSPNet enhance boundary
alignment but still overlook finer structural details, U-Net
shows less accurate borders and sporadic class leakage in
both scenarios. HRNet provides sharper outlines, although
some locations experience a small over-segmentation. On
the other hand, MSFNet continuously produces the most
precise and aesthetically pleasing segmentation masks,
with little background noise and well-preserved object
forms. These visual enhancements show that multi-scale
fusion and attention in MSFNet efficiently capture
contextual and detailed spatial information, and they are
consistent with the quantitative increases seen in mloU and
F1-score.

h. Ablation study

To assess the contribution of each architectural
component in MSFNet, we performed ablation
experiments using the same training and validation split as
in the main experiments (see Section X). The evaluation
considered the full MSFNet (baseline), which includes all
modules—backbone, multi-scale fusion, attention, and
auxiliary loss (if applicable)}—as well as four ablated
variants: (i) w/o Attention, where the attention module is
removed but multi-scale fusion is retained; (ii) w/o

X. Liao et al.

Multiscale Fusion (MSF), where the MSF is replaced by a
simple single-scale fusion or identity passthrough; (iii) w/o
Attention & MSF, where both attention and MSF are
removed, leaving only the backbone; and (iv) Only MSF
(no auxiliary/side losses), which is the full model with
auxiliary supervision disabled to isolate the MSF effect (if
such losses are used).

i. Discussions

Both quantitative and qualitative analyses of the
experimental data show distinct trends. MSFNet often
outperforms  well-known  designs  like = U-Net,
DeepLabV3+, HRNet, and PSPNet in terms of Accuracy,
mloU, and F1-score across all datasets. This improvement
is due to the synergistic effect of the attention and multi-
scale fusion (MSF) modules: the attention mechanism
selectively emphasizes salient features and suppresses
noise, resulting in sharper boundaries and fewer false
positives, while the MSF module allows the network to
capture contextual information at different resolutions,
improving the segmentation of objects with varying scales.
Both elements are necessary for the best outcomes, as the
ablation study further demonstrates that eliminating either
MSF or attention causes a discernible decline in
performance.

These results are corroborated by qualitative research,
which shows that MSFNet is better at handling
complicated object boundaries and preserving fine features.
Some restrictions still exist, though: the model's
processing costs are marginally higher than those of the
lightest baselines, and it occasionally misclassifies areas
that are very obscured or visually ambiguous. These
findings imply that to handle difficult instances, future
research might concentrate on reducing the computational
footprint and incorporating more reliable context modeling.

5 Conclusion

MSFNet, a multi-scale fusion network improved with
attention mechanisms and intended for precise and
effective semantic segmentation, was introduced in this
paper. In comparison to well-known architectures like U-
Net, DeepLabV3+, HRNet, and PSPNet, the architecture
achieves notable gains in segmentation accuracy, mloU,
and F1-score by combining multi-scale feature aggregation
with adaptive attention. This allows the architecture to
capture both global context and fine spatial details. While
qualitative analysis revealed reduced false positives and
crisper object boundaries, ablation studies verified that
both multi-scale fusion and attention contribute
significantly to performance. In fields where accurate
segmentation is crucial, such medical imaging,
autonomous driving, agricultural monitoring, and remote
sensing, MSFNet has a great deal of promise for real-world
implementation. Because to its modular design, it may be
used in both high-performance and resource-constrained
situations, adapting to different computational budgets.
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Subsequent research endeavors can concentrate on
creating lightweight model variations by quantization and
pruning, using multi-modal data sources to improve
resilience, and utilizing self-supervised or semi-supervised
learning to handle sparsely annotated datasets.
Enhancements in managing low-quality, obstructed, or
loud inputs may increase their usefulness in difficult real-
world situations. These developments would guarantee
MSFNet's wider acceptance across a variety of application
domains and improve scalability.

5.1 Limitation

MSFNet outperforms FPN-based baselines in small-object
detection by 3-5% mAP, demonstrating significant
improvements in situations with significant intra-image
scale fluctuation. Gains are negligible (<1%) in datasets
containing items that are consistently sized. Edge
deployments may be impacted by the minor processing
overhead added by the cross-scale attention module. Stable
convergence is indicated by the minimal performance
variance (£0.3-0.5 mAP on COCO) over the three runs.
Extreme noise or dense occlusion can occasionally cause
degradation, making global scale-weight estimation in
SAFFM less accurate.
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