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For path planning in intelligent navigation, traditional navigation maps currently fail to meet the 

requirements of autonomous navigation and optimal path search in terms of three-dimensional 

environmental features and accuracy. Therefore, the study combined multiple sensors of LIDAR and 

depth camera to construct a three-dimensional simulation environment map model, and the optimized 

A* algorithm used to improve path planning. The cost proportion factor and improved heuristic 

function were used to optimize the A* algorithm. Through experimental comparison before and after 

optimization, the shortest path and time of the A* algorithm in the 8×8 grid map before optimization 

were 12.89 and 0.56s, respectively. It had a shortest path and time of 28.76 and 0.28s in a grid map of 

16×16, respectively. The improved A* algorithm had an optimal path and time of 12.26 and 0.34s on 

an 8×8 grid map, and a shortest path and time of 26.34 and 0.28s on a 16×16 grid map. These 

experiments confirm that the improved A* algorithm improves the search range and efficiency of path 

planning. This demonstrates its superiority for intelligent navigation path planning and provides 

technical references for environmental map construction and optimal path planning. 

Povzetek: Prispevek predstavi izboljšan algoritem A* za inteligentno načrtovanje poti. S kombinacijo 

več senzorjev, kot sta LIDAR in globinska kamera, je bil zgrajen tridimenzionalni model 

simulacijskega okolja. Optimizacija algoritma vključuje uporabo faktorja stroškovne sorazmernosti in 

izboljšano hevristično funkcijo, kar povečuje obseg iskanja in učinkovitost načrtovanja poti. 

Eksperimenti so potrdili, da izboljšani algoritem A* doseže krajše poti in hitrejši čas izračuna v 

primerjavi s standardnim algoritmom.

1 Introduction 

With the rapid development of artificial intelligence and 

network technologies, intelligent robots have been widely 

used in the industry. They have achieved autonomous 

navigation, positioning, and recognition functions in 

indoor environments [1-3]. In intelligent transportation, 

the autonomous navigation of intelligent robots has 

gradually penetrated into the construction of map models 

and three-dimensional spatial Path Planning (PP) in daily 

life. The most critical technology for intelligent robots to 

complete autonomous navigation tasks lies in path search 

and optimal planning capabilities [4-5]. PP includes 

spatial positioning, map construction, motion control, and 

sensor operation. Among them, motion control 

technology has achieved many results in indoor 

intelligent robots and provided great convenience for the 

production and life of people [6]. Sensors play an 

important role in the autonomous navigation function of 

intelligent robots. A single-sensor is usually unable to 

meet the diverse and complex spatial environment 

perception. In current research, multi-sensor fusion can 

improve the accuracy of environmental data, thereby 

improving environmental information [7]. In addition, PP 

is usually a node calculation from the starting point to the 

endpoint. The A* algorithm, genetic algorithm, and ant 

colony algorithm provide many obstacles avoidance 

measures and shortest distance search for PP. However,  

 

there are still issues such as low computational efficiency 

and incomplete path search. Based on this, the study 

combines two-dimensional LIDAR and depth camera to 

construct a simulated spatial environment map model. 

The Manhattan function and cost scaling factor are 

utilized to optimize the A* algorithm, thereby 

demonstrating the advantages of the improved A* 

algorithm in intelligent navigation PP. 

The study is conducted in five parts. Firstly, the 

results of the present study are elaborated. Secondly, 

multi-sensor fusion and improved A* algorithm are used 

for model construction and optimization. The following is 

a comparison of the PP experiments before and after the 

optimization of algorithm. The fourth part is a discussion 

of the results. The last part is a summary of the entire 

study. 

2 Related works 

The key technologies of intelligent robots in motion 

control, object detection and tracking, and autonomous 

navigation are constantly being developed and improved. 

Environmental perception, map modeling, and PP 

algorithms are the research directions of intelligent robots 

in autonomous navigation. The PP algorithm needs to 

comprehensively perceive the characteristics of the 

surrounding environment to achieve the optimal path 

search in all directions. PP and sensor perception have 
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been intensively studied by many researchers in recent 

years. Durakli et al. proposed using grid maps to model 

the environment for the mobile robots PP, and then 

simplifying the planning path using traditional algorithms 

and Bessel curves to improve the effectiveness of PP [8]. 

Wang et al. proposed to improve the A* algorithm using 

an artificial potential field and optimize the turning point 

of the greedy algorithm to improve the smoothness of the 

robot's PP and tracking problem [9]. In addition, the 

design of the PP algorithm added the autonomous 

obstacle avoidance function of the robot combined with 

its mobility performance. Hossain et al. proposed the use 

of reactive local PP algorithm for the local PP of 

autonomous mobile robots. And they combined the 

dynamic window method and the following gap method 

to improve obstacle avoidance ability, thereby 

demonstrating the efficient performance of the robot 

algorithm [10]. Li et al. proposed the use of forward 

search optimization algorithms to shorten the planning 

path for the search optimization and planning problem of 

robot global paths. Then they used a hybrid PP method 

based on sub-objectives to smooth the path and improve 

the obstacle avoidance ability of the robot's movement, 

thereby meeting the requirements for safe movement of 

the robot [11]. Ding et al. proposed the use of a social 

adaptive PP framework for the adaptive PP of mobile 

robots. And they combined non-homotopy path penalty 

strategies and fast exploration of random numbers to 

improve the computational efficiency of path generation, 

thus proving the superiority of the algorithm [12]. Yang 

et al. proposed using A* algorithm and adaptive arc 

optimization strategy for mobile robot PP and utilizing 

node jump search to reduce computational complexity, 

thereby improving path search efficiency and movement 

smoothness [13]. 

For the study of robot path capability in different 

fields or applications, model construction is carried out 

by combining algorithm design and attitude estimation to 

meet the PP needs of different aspects. Xu et al. proposed 

using an adaptive optimal fast exploration random 

number to improve the algorithm of parallel robot PP to 

generate obstacle avoidance paths in complex 

environments. This demonstrated the high efficiency and 

smoothness of the improved adaptive optimal fast 

exploration random number algorithm in robot PP [14]. 

Fan et al. proposed an image edge detection algorithm 

based on three-dimensional features for the panoramic 

vision recognition path control problem of intelligent 

robots. The visual recognition was utilized to construct 

three-dimensional images, thereby improving the 

automatic PP and control technology of robots. It 

indicated that this algorithm was superior to the hidden 

Markov algorithm and also met the obstacle avoidance 

requirements of intelligent robots [15]. Sergiyenko et al. 

proposed the use of three-dimensional optical sensor data 

transmission algorithms for robot group navigation and 

visual sensor problems. Automated three-dimensional 

metrology was combined to optimize the database and 

improve the PP capability of robots [16]. Yue et al. 

proposed using a multi-sensor Monte Carlo positioning 

algorithm for attitude estimation in navigation planning 

of mobile robots. And the A* algorithm was improved 

with a cost function to reduce running time and improve 

the smoothness of the mobile path [17]. Yu et al. 

proposed a heuristic fast exploration random number 

algorithm based on cylinders for the underwater robots 

PP. The direct greedy sampling method was combined to 

improve the search efficiency of the optimal solution, 

thereby improving the efficiency and feasibility of 

underwater robots PP [18]. The relevant research work 

summarized and compared, as shown in Table 1. 

Table 1: Summary of comparison of related works 

Reference Method Result 

[8] 

Grid maps are used to model the environment, and 

traditional algorithms and Bezier curves are used to 

streamline the PP. 

Improved the PP ability of 

mobile robots. 

[9] 
Artificial potential field improvement A* algorithm, 

greedy algorithm optimization turning point. 

Improved the smoothness of 

PP for hexapod robots. 

[10] 
Reactive local PP algorithms, dynamic window 

methods, and following gap methods. 

Improved obstacle avoidance 

ability of autonomous mobile 

robots. 

[11] 
Forward search optimization algorithm, a hybrid PP 

method based on sub-objectives. 

Improved the obstacle 

avoidance ability of the robot 

and met its safe movement 

requirements. 

[12] 

Social adaptive PP framework, non-homotopy path 

penalty strategy, and fast exploration of random 

numbers. 

Improved the computational 

efficiency of path generation. 

[13] 
A* algorithm, adaptive arc optimization strategy, and 

node jump. 

Improved the path search 

efficiency and movement 

smoothness of the robot. 

[14] Improved adaptive optimal fast exploration random Improved the obstacle 
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number algorithm. avoidance ability of robots in 

complex environments. 

[15] 

Image edge detection algorithm based on 

three-dimensional features and visual recognition to 

construct three-dimensional images. 

Improved automatic PP and 

control technology for 

intelligent robots. 

[16] 

Three-dimensional optical sensor data transmission 

algorithm, automated three-dimensional metrology 

optimization database. 

Improved the ability of robot 

PP. 

[17] 
Multi-sensor Monte Carlo localization algorithm and 

cost function improvement A* algorithm. 

Improved the smoothness and 

operational efficiency of the 

mobile path. 

[18] 

Heuristic fast exploration of random number 

algorithms based on cylinders and direct greedy 

sampling method. 

Improved the PP ability of 

underwater robots. 

 

From Table 1, researchers have conducted model 

construction and algorithmic studies on intelligent robots 

in different domains. The development results have been 

achieved in motion trajectory and obstacle avoidance, 

providing feasible solutions for PP and navigation 

problems in practical applications. However, there is a 

lack of exploration and fusion of the overall map 

environment. Therefore, LiDAR and depth camera are 

combined for multi-sensor fusion to construct a 

simulation environment map. Then, the Manhattan 

function and cost scaling factor are used to optimize the 

A* algorithm to improve the perception of the map 

environment, thereby increasing the obstacle avoidance 

ability of the algorithm and improving the ability of 

intelligent navigation and PP. 

In summary, PP techniques are increasingly 

demanding in terms of intelligence and accuracy in recent 

research directions and application fields. The study fully 

utilizes the fusion of sensors to achieve simulation 

perception of map environments, thereby providing a 

technical foundation for intelligent robots to plan paths, 

navigate and avoid obstacles. However, the A* algorithm 

plays an important role in PP technology, and it is 

optimized using the Manhattan function and cost scaling 

factor to meet the skill requirements of intelligent robot 

navigation obstacle avoidance and PP. 

3 Construction of path planning 

system based on improved A* 

algorithm 

Intelligent navigation systems are constructed based on 

the multi-dimensional map model, usually using two 

types of sensors: LIDAR and depth camera to detect the 

spatial environment. As a result, the precise 

environmental data for map model construction can be 

provided. The autonomous navigation function is a key 

test for building map models. PP is used to perceive and 

actively avoid obstacles in the environmental space, 

thereby achieving a fast and convenient map PP scheme 

and improving PP efficiency. 

3.1 Construction of environmental maps for 

multi-sensor information fusion 

Due to the complexity of the environmental space, 

two-dimensional LIDAR is used in this research to 

accurately measure the distance of environmental targets 

and achieve intelligent navigation system technology. 

Depth cameras can obtain more data and algorithms in  

 

rich environments, thereby improving the simulation 

environment of navigation maps. The ranging tool for the 

two-dimensional LIDAR is the RPLIDAR-A1 Shanghai 

Silan Technology 360° LIDAR, which combines the 

triangulation method for real-time ranging of the spatial 

environment, as shown in Figure 1. 
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Figure 1: Schematic diagram of LIDAR ranging for space 

targets 

 

In Figure 1, the combination of LIDAR and 

triangulation may affect the angle, distance, and position 

of the camera and target, resulting in a triangle in their 

positions. The target object also forms a similar triangle 

with the camera and auxiliary points under the reflection 

of LIDAR. Therefore, the spatial coordinates and position 

information of the target object under LIDAR can be 
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computed. The distance between the LIDAR and the 

target object is represented by equation (1). 
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In equation (1), D  represents the distance between 

the LIDAR and the target object. F  is the focal length 

of the camera. j  is the distance between the LIDAR 

and the camera. The distance between the target point 

reflected by laser at one point of the camera and the 

auxiliary point of the camera is i .   represents the 

angle at which the laser is emitted from the LIDAR 

device and the target object. Because the LIDAR and 

camera are on the same horizontal plane, C  is the 

vertical distance between the target object and the 

LIDAR or camera, and 
F j

C
i


= . Therefore, the range 

technology of LIDAR for space targets has practicality, 

providing high accuracy and real-time positioning for 

environmental measurement. However, LIDAR may 

suffer from issues such as partial information loss and 

distorted scanning data when horizontally obtaining 

object information, leading to measurement data errors. 

The color information of the objects can be captured by 

scanning the space objects using depth cameras. The 

positioning technology of visual sensors can be measured 

and imaged in Figure 2. 

 

Reference plane

Infrared laser 

emitter

Screen

Horizontal field 

of view 45°

Vertical field 

of view 58°

Image plane
Speckle offset

A

B

C

DE

FG

h

b  

Figure 2: Schematic diagram of depth camera positioning and triangulation 

 

In Figure 2, the depth value of the target object is 

obtained by stimulating the positions of the infrared 

emitter and camera, as well as the speckle pixel offset in 

the imaging plane when the depth camera measures the 

distance of occlusion in actual space. Then, the 

corresponding three-dimensional distance and its position 

are measured in the spatial environment. Two sets of 

similar triangles are formed with the infrared camera lens 

and occlusion as the center, represented by equation (2). 
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In equation (2), p  represents the offset distance 

between points G and F on the image plane. F  refers to 

the focal length of the camera. h  is the vertical distance 

between the camera and the plane. C  represents the 

depth value of the measured target. The depth value of 

the target object can be calculated using equation (3). 
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In equation (3), C  represents the depth value of 

the measured target. p  is the offset distance between 

points G and F on the imaging plane. The data collected 

by the depth camera are converted into LIDAR data 

format to build an intelligent navigation map, and then a 

simulation environment map is constructed. For data 

conversion, it is necessary to convert the two-dimensional 

pixels of the depth map into three-dimensional spatial 

coordinate points. The coordinate relationship between 

the two is represented by equation (4) using the principle 

of small hole image and the transformation matrix. 
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In equation (4), ( ),u v  is a two-dimensional pixel 

coordinate point. ( ), ,x y z  is a three-dimensional 

coordinate point of the same point. N  represents the 

inner parameter matrix. R  and T  are the rotation 
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matrix and the translation matrix, respectively. dx  and 

dy  are the row and column distances of pixels, 

respectively, in millimeters. Based on the horizontal and 

vertical field of view of the depth camera, key extraction 

is performed on the depth image to maintain an 

appropriate size. Furthermore, the angle in the depth 

camera is calculated using equation (5). 
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            (5) 

In equation (5),   refers to the angle between a 

point and its projection point on the x-axis of the 

three-dimensional coordinate system and the line 

connecting the coordinate origin. If this angle is projected 

onto the LIDAR data, the index value of the point in the 

laser data is represented by equation (6). 
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In equation (6), s  represents the index value of 

LIDAR data  laser S . ( ),   is the set radar angle. 

n  is the number of laser beams. The distance 

corresponding to the laser data is the distance from the 

projection point to the optical center of camera, 

represented by equation (7). 

  2 2l laser s x z= = +       (7) 

In equation (7), l  is the vertical distance from the 

projection point to the camera. Finally, the shortest 

distance value and the two-dimensional plane laser point 

cloud collection data are calculated based on the laser 

data, represented by equation (8). 
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In equation (8), i  and j  represent the row and 

column of pixel ( ), p , respectively. 
a

jp  is the 

minimum value in column j , which is converted to the 

corresponding number a  of the LIDAR point cloud. 

Finally, the sensors of LIDAR and depth camera are 

combined to construct an environmental map model, 

which deepens the perception of spatial environment and 

intelligent navigation information in Figure 3. 
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Figure 3: Construction process diagram of environment map for multi-sensor fusion 

 

In Figure 3, the depth camera and LIDAR can fully 

collect spatial environmental information to increase the 

environmental perception of the map. The odometer 

information can accurately locate the map navigation. 

The precise construction of intelligent navigation maps 

can be promoted by combining three-dimensional spatial 

display. Therefore, the fusion of sensors can add 

information and feature perception to the 

three-dimensional spatial environment, thereby providing 

comprehensive information supplementation for the 

construction of map models [19-20]. 

3.2 Optimization of A* Algorithm for 

Environmental Map Path Planning 

PP utilizes a comprehensive environmental map model 

and combines optimal algorithms to achieve efficient and  

 

 

 

 

efficient map positioning and PP, thereby promoting the 

development of intelligent navigation technology. In the 

study, intelligent robots are used for autonomous 
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planning of environmental maps, and the PP algorithm is 

selected and improved. It mainly includes the grid 

method, artificial potential field method, genetic 

algorithm, and neural network algorithm based on map 

environmental information and technological level. The 

grid method converts the information of the map 

environment into network units, which contains binary 

information of obstacle areas and free areas. Figure 4 

shows the process of the specific construction. 
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Figure 4: Schematic diagram of path planning grid 

method process 

 

In Figure 4, the grid method divides the obstacle 

area and the free area into binary information, combined 

with neighborhood labeling and function calculation. The 

minimum value of the function is used as the starting 

point for each step and gradually moves to the position of 

the target endpoint. The grid method is usually used for 

map identification using rectangular coordinate systems 

and numbering to distinguish path areas combined with 

the construction steps of environmental map information. 

The number method involves arranging the squares of a 

raster map in order of numbering from left to right and 

from top to bottom. Equation (9) is a representation of 

serial numbers in conjunction with a rectangular 

coordinate system. 
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In equation (9), m  and n  are the rows and 

columns of the raster map, respectively. Mod  and int  

represent taking remainder and taking integer, 

respectively. The information of the raster map is further 

path encoded using equation (10). 
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In equation (10), map  represents the grid map, and 

 0 /1a aMap map map= = . a  is an integer. When the 

evaluation is 1, ( ),x y  is a free grid, which is the 

passable path. When the value is 0, the grid ( ),x y  

represents an obstructing grid, which is an impassable 

path. Finally, combined with a multi-sensor map model, 

the path information is transformed into raster map 

information to clarify the area through which the path 

passes, thereby achieving the intelligent navigation. The 

PP algorithm, also known as the A* algorithm, is used in 

map environments. The Dijkstra shortest path algorithm 

and Breadth First Search (BFS) algorithm are combined. 

This not only considers the shortest distance of the 

obstacle path, but also integrates the distance between the 

moving position and the target, thereby achieving the 

optimal implementation of PP. Therefore, the formula for 

the A* algorithm is represented by equation (11). 

 

( ) ( ) ( )f n g n h n= +      (11) 

In equation (11), ( )f n  represents the global proxy 

value of the current mobile node. ( )g n  is the actual 

proxy value from the starting point to the position of the 

mobile node. ( )h n  is the predicted value from the 

moving node to the target endpoint. The feature 

information related to the environmental map is used as a 

heuristic function and applied to the proxy value of the 

PP. The Manhattan distance function is chosen as the 

heuristic function, represented by equation (12). 

Manhattan Distance x Endx y Endy= − + − (12) 

In equation (12), Manhattan Distance  is the sum 

of absolute values from the starting point to the target 

endpoint. ( ),x y  is the starting point coordinate. 

( ),Endx Endy  is the coordinate of the target endpoint. 

The shortest distance between the starting point and the 

destination endpoint in the map environment is the 

Euclidean distance, represented by equation (13). 

( ) ( )
2 2

Euclidean distance x Endx y Endy= − + −  (13) 

In equation (13), Euclidean distance  represents 
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the shortest straight-line distance, which is the Euclidean 

distance. The Manhattan distance function selected for 

research can reduce the computational steps for PP, 

thereby simplifying the number of steps in node motion. 

Finally, the Manhattan function formula is applied to the 

A* algorithm, and Figure 5 shows its specific process. 
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Figure 4: Schematic diagram of the A* algorithm for Manhattan distance calculation 

 

In Figure 5, the Manhattan distance calculation can 

simplify the planned path while reducing the search 

nodes. The starting point in the grid map is set in the list, 

and the minimum value is determined. Then, the moving 

node and the distance between this node and the target 

node are set. The proxy value is updated based on the 

information of neighboring nodes, and the nodes in the 

list are processed sequentially until the list is empty. 

Finally, the optimal result for an effective path is 

obtained. Therefore, the A* algorithm has real-time and 

accurate PP for intelligent maps and provides algorithm 

support for transportation fields such as intelligent 

navigation and autonomous driving. The map 

environmental information and features are becoming 

more refined with the complex changes in road traffic, 

requiring more efficient algorithms to achieve real-time 

updates of navigation systems. In the study, cost 

proportion factors and improved functions are introduced 

to optimize the A* algorithm to improve the PP 

efficiency. The cost proportion factor is represented by 

equation (14). 
*

* d

d
 =          (14) 

In equation (14), d  represents the distance 

between the moving node and the target endpoint. d   is 

the distance between the starting point and the ending 

point.   is the distribution parameter of obstacles, often 

taken as 0.5 or 0.7 based on the distribution type of 

obstacles. Therefore, the cost proportion factor is 

introduced into the A* algorithm, represented by equation 

(15). 

( ) ( ) ( ) ( )* *1f n g n h n = −  +   (15) 

In equation (15), ( )f n  represents the global proxy 

value of the current mobile node. ( )g n  is the actual 

proxy value from the starting point to the position of the 

mobile node. ( )h n  is the predicted value from the 

moving node to the target endpoint, deepening the 

connection with obstacle density. The improvement of 

the algorithm lies in the optimization of its weights, 

which in turn facilitates the planning of the optimal path. 

Therefore, it not only accurately locates obstacles in a 

multi-sensor fusion environment map, but also reduces 

the expansion coefficient to ensure the feasibility of the 

PP intelligent navigation system, thereby improving the 

accuracy of the optimal PP. 

4 Experimental analysis of intelligent 

navigation for environmental maps 

using path planning optimization 

algorithms 

A simulation environment map model was constructed 

based on multi-sensor fusion of LIDAR and depth camera. 

Afterwards, the PP algorithm was applied to the 

constructed environmental map in the research. The PP 

algorithm was optimized by combining heuristic 

functions such as Manhattan function and cost scaling 

factor. Finally, a path search was performed on the A* 

algorithm based on the node cost to compare its 

optimized PP performance. Windows 10 system and grid 

maps of 8×8 and 16×16 was selected to set obstacle areas 
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in the environmental map. Firstly, the A* algorithm 

formula was introduced into path search in Figure 6. 
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Figure 6: Schematic diagram of A* algorithm path search 

 

In Figure 6, the path from the starting point to the 

destination endpoint was determined based on the global 

cost value of neighboring nodes around its node. The 

minimum value was chosen as the next moving node, and 

the process continues until the destination endpoint was 

reached. The order of each minimum node path was the 

optimal path. Simulation experiments were conducted on 

the PP of the environmental map by introducing the 

Manhattan function in Figure 7.

(a) Accessible Manhattan 

Distance Planning Results

(b) Manhattan Distance 

Planning Results with Obstacles

 

Figure 7: Path planning results for Manhattan distance 

 
In Figure 7, the Manhattan function provided a 

smooth path and a concise search node for environmental 

maps with obstacles, resulting in faster real-time updates 

for intelligent navigation and optimal PP. Finally, the 

optimized A* algorithm was applied to two grid maps of 

different specifications, and path search experiments were 

conducted on different numbers of obstacle areas in 

Figure 8. 
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Figure 8: Path planning results of grid maps of different specifications and their obstacles 

 



Improved A* Algorithm for Intelligent Navigation Path Planning… Informatica 48 (2024) 181–194 189 

In Figure 8, when the starting and ending points 

were set as a diagonal, the diagonal at that point should 

be the shortest distance. However, the obstacles and their 

areas could affect the selection of the shortest path in 

practical environments, and the A* algorithm could affect 

the computational efficiency of path search. In different 

maps, the node calculation of A* algorithm could be  

 

increased and the planning efficiency could be reduced 

by expanding the range of path search in Table 2. 

 

Table 2: Comparison of path planning results for grid maps of different specifications 

Grid map and its 

obstacles 

8×8, <20 

obstacles 
8×8,>20 obstacles 

16×16, <60 

obstacles 

16×16,>60 

obstacles 

Optimal path 

length 
12.38 13.04 28.52 30.26 

Total search 

length 
32 38 64 68 

Total length of 

Open list 
16 32 43 48 

Total length of 

Close list 
14 12 28 26 

Run time(s) 0.19s 0.26s 0.31s 0.46s 

 

From Table 2, as the area of the map and obstacles 

increased, the length of the optimal path chosen 

continuously increased, resulting in values of 12.38, 

13.04, 28.52, and 30.26, respectively. In addition, the 

running time of path search gradually increased, to 0.19s, 

0.26s, 0.31s, and 0.46s, respectively, indicating that the 

A* algorithm could not adapt to updating complex and 

diverse environmental information and features.  

 

 

Therefore, the improvement of the A* algorithm has 

become the main research direction. The improved A* 

algorithm reduced computation time and improved PP 

efficiency by introducing a cost proportion factor and 

combining it with a multi-sensor environment model and 

increasing the nodes. Afterwards, the multi-sensor 

environmental map model was compared with the A* 

algorithm and the improved A* algorithm in terms of PP 

in Figure 9. 

 

(a) Path Planning of Multi 

Sensor and A * Algorithm

(b) Multi sensor and improved A * 

algorithm for path planning

 

Figure 9: Comparison results of path planning between multi-sensor and A* algorithm 

 
In Figure 9 (a), the PP length of the multi-sensor and 

A* algorithm was longer, while in Figure 9 (b), the PP 

length of the multi-sensor and improved A* algorithm 

approached the diagonal. The comparison showed that  

 

the optimization of A* algorithm had a higher PP 

efficiency for complex maps. Table 3 shows the specific 

comparison results. 
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Table 3: Path planning results of multiple sensors and different A* algorithms 

Algorithm 
Single sensor + A* 

algorithm 

Multi sensor + A* 

algorithm 

Multi sensor + 

optimized A* algorithm 

Traverse total nodes 68 72 93 

Total length of Open 

list 
51 46 54 

Total length of Close 

list 
22 28 32 

Length 32.24 32.06 28.54 

Run time(s) 0.74s 0.61s 0.32s 

 

From Table 3, the PP results of the A* algorithm 

with multiple sensors and optimization were good, with a 

path length of 28.54 and a planning time of 0.32s, 

respectively. This proved that the A* algorithm with cost 

scaling factor had the best PP effect on multi-sensor 

environmental maps. Afterwards, the A* algorithm and  

 

the optimized A* algorithm were improved on the 

Manhattan function based on A*, so a PP comparison 

was made between the two in Figure 10. The grid map of 

8×8 is represented by A, where the number represents the 

number of obstacles, while B represents the grid map of 

16×16. 
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(a) Experimental results of path planning for A * 

algorithm

(b) Experimental results of optimizing A * algorithm 

for path planning

 

Figure 10: Comparison results of path planning experiments using different A* algorithms 

 

Figure 10 (a) shows the PP results of the A* 

algorithm in multi-sensor environment maps of different 

specifications. The PP effect of the 8×8 grid map was 

lower than that of the 16×16 grid map. As obstacles 

increased, the shortest path length of the 8×8 grid map 

was 12.89, but the time was 0.56s and 0.57s, respectively. 

In the 16×16 grid map, the increase of obstacles reduced 

the shortest path length, which was 30.54 and 28.76, 

respectively, and the running time was 0.31s and 0.28s, 

respectively. In Figure 10 (b), the changes and 

comparisons between the two raster maps were consistent 

with those before optimization, but there had been some 

improvements for changes of the same specification. In a 

16×16 grid map, the shortest paths were 27.64 and 26.34, 

respectively, which were lower than the results before 

algorithm optimization. The running times of grid maps 

with 8×8 and 16×16 was 0.34s, 0.57s, 0.29s, and 0.28s, 

respectively, which were lower than the algorithm results 

before optimization, proving the superiority of the 

optimized A* algorithm for PP. An 8×8 grid map was 

used to compare the results of the two to visually 

demonstrate the PP capabilities of the improved A* 

algorithm and the standard A* algorithm, as shown in 

Figure 11. 
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(a) Standard A * algorithm(b) Improved A * algorithm

 

Figure 11: Schematic diagram of path planning for standard A* algorithm and improved A* algorithm 

 

From Figure 11, the path length of the standard A* 

algorithm was longer than the planned length of the 

improved A* algorithm, which proved the effectiveness 

of the improved A* algorithm in PP and met the 

requirements of intelligent navigation. In addition, for the 

execution efficiency of the algorithm, the relationship 

transformation of the nodes with the shortest path was 

needed to study, and the time and space complexity were 

used to represent the changes in the storage structure of 

the algorithm, as shown in Table 4. 

 

Table 4: Comparison results of time space complexity of 

algorithms 

Algorithm Time complexity 
Spatial 

complexity 

Standard 

A*algorithm 
O (n2) Ω (n2) 

Improved 

A*algorithm 
O ((m+n)log) Ω (n+m) 

 

According to Table 4, when calculating the shortest 

path in the map environment, it was transformed into a 

graphical structure based on the relationship between grid 

boundaries and nodes. Corresponding storage structures 

were obtained in different algorithm structures to ensure 

the computational efficiency of PP for a network graph 

with n nodes and m arcs. The improved A* algorithm had 

a superior storage structure and higher execution 

efficiency. The reduction of spatial and temporal 

complexity not only avoided the waste of storage space, 

but also improved the computational efficiency of the 

algorithm, thereby meeting the real-time and accurate PP 

ability of intelligent navigation. The fixed spatial 

environments should be detected and constructed in 

intelligent simulation map environments. However, 

robots needed more advanced and real-time technology to 

handle obstacle avoidance strategies that occur in 

dynamic environments for intelligent obstacle avoidance 

capabilities. Therefore, local planning tests were 

conducted on the obstacle avoidance strategy of 

intelligent robots in dynamic environments, as shown in 

Figure 12. 

 

(a) Time t1 (b) Time t2

Fixed obstacles Moving obstacles

 
Figure 12: Path planning results in dynamic environment 

 

From Figure 12 (a), at time t1, the intelligent robot 

blocked the moving obstacle and adjusted the optimal 

route based on path search. Figure 12 (b) shows the 

activity of moving obstacles at time t2, which 

continuously changes and adjusts the robot's PP. 

Meanwhile, it ensured the real-time and effectiveness of 

the optimal PP. When a dynamic environment or obstacle 

appeared, the PP of intelligent robots needed to meet the 

real-time update of the map environment and adjust the 

optimal path in a timely manner. Therefore, when the 

improved A* algorithm improved the GIS map planning 

program, it not only updated the changes in the map 
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environment in real-time, but also provided real-time 

feedback on road congestion, so that users could re-plan 

their routes. 

5 Discussion 

Various algorithms and techniques have been used by 

domestic and foreign researchers to smooth paths and 

improve computational efficiency in the research of 

intelligent navigation robots in different fields. However, 

there is still a lack of in-depth integration in the 

optimization of A* algorithm functions and the 

simulation perception and construction of map 

environments. As a result, there is a lack of technical 

skills in the adaptive adjustment steps of the robot to 

navigate the environment. However, the fusion of 

different sensors was used to meet the environment 

simulation and real-time perception of the space map, 

which provided a technical basis for the robot to actively 

avoid obstacles. In addition, the Manhattan function and 

cost proportion factor were also used to optimize the A* 

algorithm, further improving the PP ability of intelligent 

robots and the efficiency of intelligent perception of the 

environment and obstacle avoidance. 

The PP of automatic guided vehicles in logistics 

factories was combined with the improved A* algorithm 

in response to the practical application of the improved 

A* algorithm. The efficiency of its path search was 

effectively improved. In the global PP of unmanned ships, 

the improved A* algorithm not only expanded the search 

neighborhood of nodes, but also improved the 

smoothness of path turning points and navigation security. 

The improved A* algorithm for searching the shortest 

path of high-rise roads improved the operational 

efficiency and retrieval accuracy on the basis of layering 

urban roads. Finally, the improved A* algorithm was 

combined with a mixed data structure to smooth the 

trajectory in the application of aircraft penetration 

trajectory planning, thereby making the generated 

trajectory flyable. Therefore, the optimization strategies 

and application value of A* algorithm will be 

continuously explored in different fields of production 

and life. 

6 Conclusion 

To achieve the best PP for intelligent navigation maps, 

the study fused two sensors, LIDAR and depth camera, to 

construct an intelligent environmental map. The 

Manhattan function and cost scaling factor were utilized 

to optimize the A* algorithm, and PP experiments were 

conducted on different specifications of raster maps. 

These results confirmed that the optimal path length 

selected by the A* algorithm before optimization 

gradually increased and was 12.38, 13.04, 28.52, and 

30.26, respectively, with the area expansion of map and 

obstacle. Its running time was 0.19s, 0.26s, 0.31s, and 

0.46s, respectively. Therefore, the optimal planning path 

for optimizing A* algorithm and multi-sensor 

environmental map system was 28.54 after introducing 

the cost proportion factor, with a time of 0.32s. The 

optimal PP for an 8×8 grid map was 12.26 with a time of 

0.34s after improving the Manhattan function, while the 

optimal path length for a 16×16 grid map was 26.34 with 

a minimum time of 0.28s. Therefore, the optimized A* 

algorithm had the best PP capability in intelligent 

navigation with multi-sensor environmental maps. 

However, the research still lacks data on PP in simulation 

experimental environments, as well as in-depth 

exploration in multidimensional and complex 

environmental maps. Therefore, further thinking and 

improvement are needed in future research. 

The positioning, navigation, and PP of intelligent 

robots are involved in different fields according to the 

summary of relevant works. Therefore, the research 

directions of autonomous vehicle, teleoperation robots 

and underwater environment route planning will continue 

to deepen with the development of science and 

technology in the future. More sophisticated and perfect 

technological progress will be made in complex 

environments and multidimensional spaces. 
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