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The Emperor Penguin Optimizer algorithm (EPO) is a recent addition to population-based 

metaheuristics. However, it has been observed that the algorithm occasionally gets trapped in local 

optima, particularly when dealing with multi-modal functions.  In this paper, we present a novel 

modification of the Emperor Penguin Optimizer algorithm, termed the Emperor Penguin Optimizer with 

Weighted Sum Procedure and Information Vector (EPOWIV). The EPOWIV algorithm combines two 

techniques, the weighted sum procedure and the information vector. To evaluate the effectiveness of the 

proposed EPOWIV algorithm, a comprehensive comparative study is conducted. This study includes a 

comparison with the classical EPO algorithm, the EPO algorithm with the weighted sum procedure 

only, and the EPO algorithm with the information vector. The comparison is carried out on 21 test 

optimization problems. The comparative results show superiority of the EPOWIV algorithm over its 

counterparts. The EPOWIV algorithm consistently exhibits superior optimization performance, 

effectively overcoming the stagnation issues previously associated with the EPO algorithm. It 

consistently delivers outstanding solutions across a diverse set of test problems. 

Povzetek: Članek obravnava izboljšavo algoritma Emperor Penguin Optimizer (EPO) s prilagojeno 

strategijo mutacije, imenovano EPO z uteženim seštevanjem in informacijskim vektorjem (EPOWIV). 

Avtorji analizirajo učinkovitost predlaganega algoritma EPOWIV skozi obsežno primerjalno študijo, ki 

vključuje 21 testnih optimizacijskih problemov. Rezultati študije kažejo, da EPOWIV učinkovito 

odpravlja težave stagnacije, ki so značilne za klasični EPO, ter dosledno dosega boljše optimizacijske 

rezultate. 

 

1 Introduction 

In recent years, optimization algorithms have garnered 

significant interest in various fields due to their potential 

to efficiently solve complex real-world problems [1]. 

Nature-inspired algorithms, in particular, have gained 

prominence for their ability to mimic the intelligence and 

adaptability of biological systems [2]. Among these, the 

Emperor Penguin Optimizer Algorithm (EPO) has 

emerged as a promising optimization technique, inspired 

by the remarkable foraging behavior and social 

interactions of Emperor penguins [3]. Like many 

algorithms, the EPO faces certain challenges, including 

premature convergence and suboptimal exploration 

capabilities. In order to further enhance the EPO's 

optimization performance, this paper proposes a novel 

extension: the integration of a Weighted Sum Mutation 

Strategy and information vector into the EPO algorithm. 

The primary objective of this research is to utilize the 

strengths of relocating vectors and best solutions within 

the EPO, enabling improved global and local search 

capabilities. The WSIV introduces a controlled mutation 

mechanism, allowing the algorithm to strike a balance 

between exploration and exploitation effectively. By 

facilitating a more diverse search space exploration, the 

proposed approach aims to mitigate premature  

 

convergence issues and enhance the algorithm's 

convergence rate while maintaining the exploitation of 

valuable solutions. 

In this paper, a comprehensive investigation of the 

novel EPOWIV algorithm's design is introduced,  

highlighting its key components, implementation, and 

mathematical formulation. We conduct an in-depth 

empirical analysis, employing a diverse set of benchmark 

functions to assess the algorithm's performance.  

The remainder of this paper is structured as follows: 

Section 2 provides a review of related works on 

optimization algorithms and highlights the distinct 

characteristics of the EPO and its limitations. Section 3 

details the proposed EPOWIV algorithm, discussing the 

incorporation of the weighted sum mutation strategy with 

the information vector and its adaptation to the EPO's 

behavior. In Section 4, the experimental setup is 

presented, evaluation metrics, and performance 

comparisons with other optimization methods. The 

results and discussions are presented in Section 5, 

followed by conclusions and future directions in Section 

6. 
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2 Related work 
Metaheuristics are optimization algorithms that combine 

stochastic and local search techniques [4]. Stochasticity 

enables the exploration of the search space, while local 

search facilitates exploitation around solutions [5]. They 

usually used to tackle the NP-hard problems, such as the 

combinatorial optimization problems. Metaheuristics are 

commonly employed to tackle NP-hard problems, 

especially combinatorial optimization problems [6]. 

These algorithms are designed to efficiently explore the 

vast solution space and find near-optimal or satisfactory 

solutions in a reasonable amount of time [7]. Their 

stochastic and adaptive nature allows them to escape 

local optima and search for promising regions in the 

solution landscape, making them particularly well-suited 

for challenging optimization tasks. The metaheuristics 

can be classified into two main categories, which are the 

population-based and single-based methods [8]. 

Population-based metaheuristics involve maintaining a 

population of candidate solutions throughout the 

optimization process [9]. These methods often use 

mechanisms such as evolution, mutation, and crossover 

to create new solutions by combining or modifying 

existing ones. Examples of population-based 

metaheuristics include Genetic Algorithms, Particle 

Swarm Optimization, and Differential Evolution.  

On the other hand, single-solution-based 

metaheuristics operate with only one solution at a time 

and iteratively improve it to search for better solutions 

[10]. The Emperor Penguin Optimizer algorithm is a 

population-based metaheuristic first proposed by Dhiman 

and Kumar [11]. The EPO algorithm emulates the 

huddling behavior of Emperor Penguins (Aptenodytes 

forsteri). Its primary steps include generating the huddle 

boundary, computing the temperature surrounding the 

huddle, calculating the distance, and identifying the 

effective mover. Many of the previous work presented in 

EPO considered using the algorithm to solve real-world 

applications such as image segmentation, power system, 

and energy consumption reduction. Baliarsingh and 

Vipsita [12] presented a chaotic EPO to optimize 

machine learning for classifying microarray cancer. Cao 

et al. [13] presented an improved EPO to enhance the 

efficiency of power system. Min et al. [14] presented a 

quantum EPO for optimizing the minimize the energy 

consumption of chiller loading. 

Angel and Jaya [15] adapted the EPO to solve load 

balancing and security enrichment in wireless sensor 

problem. Xing [16] improved an EPO algorithm and used 

it to enhance a multi-threshold image segmentation 

.Dhiman et al. [17] improved the EPO algorithm to make 

able to deal with discrete optimization problems and they 

used the improved version to solve feature selection 

.Khan et al. [18] used EPO algorithm along with deep 

learning model to optimize the classification of recycling 

waste .Cheena et al. [19] proposed EPO algorithm to 

optimize self-heading for sensor network based smart 

grid system. Babu et al. [20] developed EPO to optimize 

the location of AC transmission system devices in load 

frequency control. Serag et al. [21] enhanced EPO by 

incorporating an information vector, enhancing its local 

search process compared to the standard version. This 

modification enables EPO to overcome stagnation 

present in certain multi-modal functions. 

 

Table 1: Literature review summary table 

Author Contribution 

Dhiman and Kumar [11] Developed the first version of EPO 

Baliarsingh and Vipsita [12] Developed a chaotic EPO to optimize machine learning for classifying 

microarray cancer 

Cao et al. [13] Used EPO to enhance the efficiency of power system 

Min et al. [14] Developed a quantum EPO for optimizing the minimize the energy 

consumption of chiller loading 

Angel and Jaya [15] Solved load balancing and security enrichment in wireless sensor problem 

using EPO 

Xing [16] Enhanced a multi-threshold image segmentation using EPO 

Dhiman et al. [17] Solved feature selection after adopting EPO to make it deal with discrete 

optimization problems 

Khan et al. [18] Presented EPO to optimize the classification of recycling waste 

Cheena et al. [19] proposed EPO algorithm to optimize self-heading for sensor network 

based smart grid system 

Babu et al. [20] developed EPO to optimize the location of AC transmission system 

devices in load frequency control 

Serag et al. [21] Developed a new modification for EPO that considers information vector 

to improve the local search procedure of the algorithm 

  

This paper is considered an extension for our 

previous work presented in [21] that solves the 

stagnation problem of the multi-modal functions. 

Therefore, we presented a new modification that utilizes 

weighted sum methodology along with generated  

 

information vector to update the relocating procedure of 

the algorithm, where the new modification, as shown in 

the comparative results, outperforms the algorithm 

proposed in [21]. 
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3 Emperor penguin optimizer 

algorithm 
The Emperor Penguin Optimizer (EPO) is a population-

based metaheuristic inspired by the collective behavior of 

emperor penguins. Its operations encompass the 

computation of ambient temperature, distances to the 

emperor penguins, and the effective mover. The 

temperature within the group is determined by 

aggregating the temperatures of individual penguins (𝑇) 

within a defined radius (𝑅) surrounding the crowd. Thus, 

the temperature distribution surrounding the crowd can 

be derived using Eq. (1), which is dependent on the 

iteration count (𝐼𝑡𝑟) and the maximum number of 

iterations (𝑀𝑎𝑥𝐼𝑡𝑟). The following notations make the 

illustration of the algorithm steps easier: 

Notations: 

𝑇𝐴 The ambient temperature 

𝑇 Individual penguin temperature 

𝑅 The huddle radius 

𝐼𝑡𝑟 Iteration count 

𝑀𝑎𝑥𝐼𝑡𝑟 The maximum number of iterations 

𝐷 The distance between penguins 

𝑃𝑏𝑒𝑠𝑡 The position of best penguin 

𝑃𝑖  The position of penguin 𝑖 
𝑃𝑖+1 The next position of penguin 𝑖 
𝑆 Social force 

𝑓, 𝑙 Random numbers related to social 

force calculation 

𝐴 Movement vector 

𝑀 Movement parameter 

 

𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 , ∀𝐼𝑡𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑟 (1) 

, 𝑤ℎ𝑒𝑟𝑒 𝑇 =  {
0,   𝑖𝑓 𝑅 > 1
1,   𝑖𝑓 𝑅 < 1

  

The calculation of the distance (𝐷) between the 

penguins and their emperor involves several parameters 

designed to prevent collisions among the penguins. 

These parameters include the position of the best penguin 

(𝑃𝑏𝑒𝑠𝑡), the position of each individual penguin (𝑃), the 

ambient temperature (𝑇𝐴), and the social force (𝑆), 

which compels the penguins to move towards the optimal 

solution. The parameter 𝐴 is computed for the position 

𝑃𝑖 , utilizing the movement parameter (𝑀), set to 2, as 

specified in Eq. (2). 

𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑)
− 𝑇𝐴 

(2) 

Eq. (3) serves the purpose of computing the social 

force. This equation takes the form of a decreasing 

function and relies on three variables: 𝑓, 𝑙, and 𝐼𝑡𝑟. Both 

𝑓 and 𝑙 are random numbers, each constrained within its 

respective lower and upper bounds. 

𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 (3) 

The parameter 𝑆 plays a crucial role in the 

calculation of distance 𝐷. Initially, it increases during the 

early iterations to ensure a high degree of locality, 

gradually diminishing as the iterations progress, 

eventually leading to very low locality in the later stages. 

Consequently, distance 𝐷 is computed using equation (4) 

as follows: 

𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| (4) 

The position of the penguin in the subsequent 

iteration (𝑃𝑖+1) can be determined utilizing equation (5) 

as follows: 

𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 (5) 

Through the alteration of penguin positions in each 

iteration, the algorithm continually updates the best 

position until the stopping criteria are met, ultimately 

yielding the optimal solution. The pseudocode for the 

algorithm can be summarized as follows: 

Algorithm 1: Pseudo code of EPO 

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅  
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑  
𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡) 
𝐼𝑡𝑟 = 1 
𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 
 𝑖 = 1 
 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

  𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 

  
𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑)

− 𝑇𝐴 

  𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)

2

 

  𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| 
  𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 
  𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛: 
   𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1 
  𝑖 = 𝑖 + 1 
 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡 

4 Enhancing EPO with Weighted 

Sum Mutation and Information 

Vector 
The new modification of the algorithm stated in this 

paper is related to adding weighted sum mutation 

procedure inside the relocation process and utilizing the 

information gained between the best solution and the 

relocated positions of the penguins. The weighted sum 

procedure generates a new position by combining the 

best solution found with the relocated vector. The 

weights for this combination are determined based on the 

evaluations of each, relative to the total evaluation of 

both. So, the new vector gained by the weighted sum 

procedure can be calculated using Eq. (6). The weighted 

sum method could result in certain solution components 

exceeding the predetermined lower and upper bounds. 

Therefore, a maintenance procedure should be applied to 

rectify these out-of-range component values. Values 
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lower than the lower bound should be adjusted to match 

the lower bound, while values exceeding the upper bound 

should be adjusted to match the upper bound. Equations 

(7), and (8) shows the maintenance procedure of the 

weighted sum method. 

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (
𝑓(𝑃𝑖+1)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑

+ (
𝑓(𝑃𝑏𝑒𝑠𝑡)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑏𝑒𝑠𝑡  

(6) 

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= [max(𝑥1, 𝐿𝐵),max(𝑥2, 𝐿𝐵), … ,max(𝑥dim(𝑃), 𝐿𝐵)  ] 
(7) 

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= [min(𝑥1, 𝑈𝐵),min(𝑥2, 𝑈𝐵), … ,min(𝑥dim(𝑃), 𝑈𝐵)  ] 
(8) 

The information vector is created through a user-

defined threshold, typically chosen from the range 

between 0 and 1. This information vector, denoted as 𝑃𝐼𝑉, 

is constructed using the weighted sum position, 

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, and the best position 𝑃𝑏𝑒𝑠𝑡. To detail the 

procedure, the first step is to generate a random uniform 

number, which will be compared against the predefined 

threshold. If the generated random number exceeds the 

threshold, component 𝑗 will be selected from 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑; 

otherwise, it will be chosen from 𝑃𝑏𝑒𝑠𝑡 . The subsequent 

steps outline the process of creating the 𝑃𝐼𝑉 position: 

𝑗 = 1  
𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜: 
𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

 𝑃𝐼𝑉[𝑗] = 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑[𝑗] 

𝑒𝑙𝑠𝑒: 
 𝑃𝐼𝑉[𝑗] = 𝑃𝑏𝑒𝑠𝑡[𝑗] 

𝑗 = 𝑗 + 1 

[1]  

Now, the algorithm can be upgraded adding the 

weighted sum procedure and the information vector 

process as follows and the flowchart is shown in Figure 

1: 

Algorithm 2: Pseudo code of EPOWIV 

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅  
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒  
𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡) 

𝐼𝑡𝑟 = 1 

𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 
 𝑖 = 1 

 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

  𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 

  𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 

  𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 

  𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| 
  𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 =  𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 

  

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (
𝑓(𝑃𝑖+1)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 + 

 (
𝑓(𝑃𝑏𝑒𝑠𝑡)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑏𝑒𝑠𝑡 

  
𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 

[max(𝑥1, 𝐿𝐵),max(𝑥2, 𝐿𝐵), … ,max(𝑥dim(𝑃), 𝐿𝐵)  ] 

  
𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 

[min(𝑥1, 𝑈𝐵),min(𝑥2, 𝑈𝐵), … ,min(𝑥dim(𝑃), 𝑈𝐵)  ] 

  𝑗 = 1 

  𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜: 
   𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
    𝑃𝐼𝑉[𝑗] = 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑[𝑗] 

   𝑒𝑙𝑠𝑒: 
    𝑃𝐼𝑉[𝑗] = 𝑃𝑏𝑒𝑠𝑡[𝑗] 
   𝑗 = 𝑗 + 1 

  𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛: 
   𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1 

  𝑖 = 𝑖 + 1 

 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 

𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡 

5 Comparative results 

This section shows the implementation of the proposed 

EPO algorithm that utilizes a weighted sum procedure 

with information vector (EPOWIV). The algorithm is 

coded using python programming and uploaded to the 

GitHub link https://github.com/ahmedsssssA/EPOWIV. 

The GitHub repository also includes the code of the 21 

test optimization functions used in this comparative 

results. The comparative results are done to compare 

between the EOPWIV and the classical EPO [11], the 

weighted sum EPO (EPOW) that combines the classical 

EPO with the weighted sum procedure only, and the 

information vector EPO (EPOIV) that combines the 

classical EPO with the information vector process, where 

the EPOIV can be found in [21] and it is one of the 

algorithms listed in the literature summary of this paper.  

The boxplots show that the proposed EPOWIV algorithm 

robustly outperforms the other selected algorithms in this 

comparative results in terms of variability and median 

results.

 

https://github.com/ahmedsssssA/EPOWIV
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Figure 1: The flowchart of the EPOWIV algorithm

Table 2 shows the 21 test optimization functions. 

After implementing the Python code for various 

algorithms, it was observed that the EPOWIV algorithm 

consistently outperforms other versions of the EPO 

algorithm. This superiority is evident in both the mean 

results and the algorithm's robustness, as indicated by the 

standard deviation values. The superior performance of 

the EPOWIV algorithm is highlighted in  
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Table 3: Comparative results 

No. Function 
EPOIV 

Mean 

EPOW 

Mean 

EPO 

Classical 

Mean 

EPOWIV 

Mean 

EPOIV 

Std 

EPOW 

Std 

EPO 

Classical 

Std 

EPOWIV 

Std 

1 Ackley 2.306 0.002 7.600 0.000 0.575 0.000 2.358 0.000 

2 Bukin N. 6 0.619 0.412 1.517 0.243 0.385 0.586 0.725 0.000 

3 
Cross-in-

Tray 
-2.063 -2.063 -2.063 -2.063 0.000 0.000 0.000 0.000 

4 Drop-Wave -0.994 -1.000 -1.004 -1.000 0.019 0.000 0.001 0.000 

5 Griewank 1.368 0.513 33.537 0.000 0.242 0.490 17.253 0.000 

6 Langermann -4.144 -4.136 -4.134 -4.131 0.013 0.023 0.019 0.000 

7 Levy 0.015 0.346 0.487 0.183 0.029 0.151 0.158 0.000 

8 Rastrigin 2.219 3.159 18.406 0.000 1.600 5.926 11.326 0.000 

9 Schaffer N. 2 0.000 0.001 0.004 0.000 0.000 0.003 0.005 0.000 

10 Schaffer N. 4 0.293 0.293 0.296 0.293 0.001 0.001 0.004 0.001 

11 Shubert 
-

186.727 

-

185.665 
-186.039 -186.632 0.008 1.136 0.598 0.000 

12 Bohachevsky 0.006 0.058 0.380 0.000 0.012 0.120 0.228 0.000 

13 Perm 0 0.03 214.063 0.09 0.08 0.000 114.381 12163.566 0.000 

14 

Rotated 

Hyper-

Ellipsoid 

21.166 0.255 1258.814 0.000 9.007 0.107 929.035 0.000 

15 Sphere 0.000 0.000 0.013 0.000 0.000 0.000 0.008 0.000 

16 

Sum of 

Different 

Powers 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

17 Sum Squares 0.012 0.000 0.001 0.000 0.015 0.000 0.878 0.000 

18 Booth 0.000 0.003 0.001 0.000 0.000 0.004 0.001 0.000 

19 Matyas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

20 Zakharov 0.631 0.003 10.052 0.000 0.803 0.002 3.693 0.000 

21 
Three-Hump 

Camel 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 Pressure vessel design 
In this section, the pressure vessel design, a real-world 

problem, is solved using EPOWIV. This problem is 

proposed by Kannan and Kramer [22] to minimize the 

fabrication cost. Figure 2 shows the isometric view of the 

pressure vessel. There are four variables needed to solve 

this problem, which are the thickness of the shell (𝑇𝑠), the 

thickness of the head (𝑇ℎ), the inner radius (𝑅), and the 

length of the cylindrical part (𝐿). The mathematical 

model of this problem is as follows: 

 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑍 = [𝑧1, 𝑧2, 𝑧3, 𝑧4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿]  

𝑀𝑖𝑛 𝑓(𝑍) = 0.6224 𝑧1𝑧3𝑧4 + 1.7781𝑧2𝑧3
2

+ 3.1661𝑧1
2𝑧4 + 19.84𝑧1

2𝑧3 
(9) 

Subject to:  

𝑔1 = −𝑧1 + 0.0193𝑧3 ≤ 0 (10) 

𝑔2 = −𝑧3 + 0.000953𝑧3 ≤ 0 (11) 

𝑔3 = −𝜋𝑧3
2𝑧4 − 43𝜋𝑧3

3 + 1,296,000 ≤ 0 (12) 

𝑔4 = 𝑧4 − 240≤0 (13) 

𝑖 × 0.0625 ≤ 𝑧1, 𝑧2 ≤ 99 × 0.0625, ∀𝑖
= 1, 2, … , 99 

(14) 

10 ≤ 𝑧3, 𝑧4 ≤ 200 (15) 

 

 
Figure 2: The pressure vessel 

 

The problem has been solved in [23], but we found 

after checking the values of their solution vector that the 

solution doesn’t satisfy the problem constraints. Their 

solution is 𝑍∗ = [0.778099, 0.383241, 40.315121, 200] 
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and It found that 𝑧1and 𝑧2 are not integer multipliers of 

0.0625. Constraint (12) is broken, since the right-hand 

side of the constraint according to their solution vector is 

equal to 319.75, while it should be greater than 0. 

We coded the problem constraints and objective, 

then adapted the proposed EPOWIV to solve the pressure 

vessel design problem. The code can be found in 

https://github.com/ahmedsssssA/EPOWIV/blob/main/EP

O_PVD. After solving the problem, we found that best 

solution found by the proposed EPOWIV algorithm is 

3320.58 with 𝑍∗ = [1.3125,   0.0625, 65.7733789, 10]. 

This solution satisfies all the problem constraints and 

shows better objective value than the infeasible solution 

found by [23]. The statistical results can be summarized 

as follows: 

 

Best Mean Worst Std. Dev. Median 

3289.4 3585.11 5466.4 523.4 3292.58 

 

 

 

. Furthermore, the boxplots presented in figures 1: , 

2, and 3 vividly illustrate the distribution of values for 

each algorithm. These boxplots showcase key statistical 

metrics, including the median, first quartile, and third 

quartile. Collectively, these results provide compelling 

evidence of the efficiency and overall superiority of the 

EPOWIV algorithm when compared to the other 

algorithms. The boxplots show that the proposed 

EPOWIV algorithm robustly outperforms the other 

selected algorithms in this comparative results in terms 

of variability and median results.

 

 
Figure 1: The flowchart of the EPOWIV algorithm

Table 2: Test optimization functions used in comparative results 

No. Function Name 𝒇(𝒙) 

1 Ackley 20 (𝑒
−0.2 √

1
𝑑

∑ 𝑥𝑖
2𝑑

𝑖=1 ) − (𝑒
1
𝑑

∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑑
𝑖=1 ) + 20 + 𝑒 
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No. Function Name 𝒇(𝒙) 

2 Bukin N. 6 𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10| 

3 Cross-in-Tray 

𝑓(𝑥, 𝑦)  =  −0.0001 ├(| sin(𝑥) sin(𝑦) exp (|100

−
√𝑥2 + 𝑦2

𝜋
|) |+1)0.1 

4 Drop-Wave 𝑓(𝑥, 𝑦) = −
1 + cos(12√𝑥2 + 𝑦2)

0.5(𝑥2 + 𝑦2) + 2
 

5 Griewank 𝑓(𝒙) = 1 +
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

− ∏ cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

 

6 Langermann 

𝑓(𝒙) = ∑ 𝑐𝑖

𝑚

𝑖=1

⋅ exp (−
1

𝜋
∑(𝑥𝑗 − 𝑎𝑖𝑗)

2
𝑛

𝑗=1

)

⋅ cos (𝜋 ∑(𝑥𝑗 − 𝑎𝑖𝑗)
2

𝑛

𝑗=1

) 

𝐴 =

[
 
 
 
 
3 5
5 2
2 1
1 4
7 9]

 
 
 
 

 

7 Levy 

𝑓(𝒙) = sin2(𝜋𝑤1) + ∑(𝑤𝑖 − 1)2[1 + 10 sin2(𝜋𝑤𝑖 + 1)]

𝑛−1

𝑖=1

+ (𝑤𝑛 − 1)2[1 + sin2(2𝜋𝑤𝑛)], 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 1 +
𝑥𝑖 − 1

4
 

8 Rastrigin 𝑓(𝑥) = 10𝑛 + ∑(𝑥𝑖
2 − 10 cos(2π𝑥𝑖))

𝑛

𝑖=1

 

9 Schaffer N. 2 𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2 − 𝑦2) − 0.5

[1 + 0.001(𝑥2 + 𝑦2)]2
 

10 Schaffer N. 4 𝑓(𝑥, 𝑦) = 0.5 +
cos(sin(|𝑥2 − 𝑦2|)) − 0.5

[1 + 0.001(𝑥2 + 𝑦2)]2
 

11 Shubert 𝑓(𝑥, 𝑦) = ∑𝑖

5

𝑖=1

⋅ cos((𝑖 + 1)𝑥 + 𝑖) ⋅ ∑𝑖

5

𝑖=1

⋅ cos((𝑖 + 1)𝑦 + 𝑖) 

12 Bohachevsky 
𝑓(𝑥) = ∑(𝑥𝑖

2 + 2𝑥𝑖+1
2 − 0.3 cos(3π𝑥𝑖) − 0.4 cos(4π𝑥𝑖+1)

𝑛−1

𝑖=1

+ 0.7) 

13 Perm 0 𝑓(𝑥) = ∑ (∑(10 + 𝑗)(𝑥𝑖 − 1)𝑗

𝑑

𝑗=0

)

2
𝑛

𝑖=1

 

14 
Rotated Hyper-

Ellipsoid 
𝑓(𝑥) = ∑ ∑𝑥𝑗

2

𝑖

𝑗=1

𝑛

𝑖=1

 

15 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 

16 
Sum of Different 

Powers 
𝑓(𝑥) = ∑|𝑥𝑖|

𝑖+1

𝑛

𝑖=1

 

17 Sum Squares 𝑓(𝑥) = ∑𝑖

𝑛

𝑖=1

⋅ 𝑥𝑖
2 
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No. Function Name 𝒇(𝒙) 

18 Booth 𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2 

19 Matyas 𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦 

20 Zakharov 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4

 

21 
Three-Hump 

Camel 
𝑓(𝑥) = ∑ 𝑥𝑖

2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4
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Table 3: Comparative results 

No. Function 
EPOIV 

Mean 

EPOW 

Mean 

EPO 

Classical 

Mean 

EPOWIV 

Mean 

EPOIV 

Std 

EPOW 

Std 

EPO 

Classical 

Std 

EPOWIV 

Std 

1 Ackley 2.306 0.002 7.600 0.000 0.575 0.000 2.358 0.000 

2 Bukin N. 6 0.619 0.412 1.517 0.243 0.385 0.586 0.725 0.000 

3 
Cross-in-

Tray 
-2.063 -2.063 -2.063 -2.063 0.000 0.000 0.000 0.000 

4 Drop-Wave -0.994 -1.000 -1.004 -1.000 0.019 0.000 0.001 0.000 

5 Griewank 1.368 0.513 33.537 0.000 0.242 0.490 17.253 0.000 

6 Langermann -4.144 -4.136 -4.134 -4.131 0.013 0.023 0.019 0.000 

7 Levy 0.015 0.346 0.487 0.183 0.029 0.151 0.158 0.000 

8 Rastrigin 2.219 3.159 18.406 0.000 1.600 5.926 11.326 0.000 

9 Schaffer N. 2 0.000 0.001 0.004 0.000 0.000 0.003 0.005 0.000 

10 Schaffer N. 4 0.293 0.293 0.296 0.293 0.001 0.001 0.004 0.001 

11 Shubert 
-

186.727 

-

185.665 
-186.039 -186.632 0.008 1.136 0.598 0.000 

12 Bohachevsky 0.006 0.058 0.380 0.000 0.012 0.120 0.228 0.000 

13 Perm 0 0.03 214.063 0.09 0.08 0.000 114.381 12163.566 0.000 

14 

Rotated 

Hyper-

Ellipsoid 

21.166 0.255 1258.814 0.000 9.007 0.107 929.035 0.000 

15 Sphere 0.000 0.000 0.013 0.000 0.000 0.000 0.008 0.000 

16 

Sum of 

Different 

Powers 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

17 Sum Squares 0.012 0.000 0.001 0.000 0.015 0.000 0.878 0.000 

18 Booth 0.000 0.003 0.001 0.000 0.000 0.004 0.001 0.000 

19 Matyas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

20 Zakharov 0.631 0.003 10.052 0.000 0.803 0.002 3.693 0.000 

21 
Three-Hump 

Camel 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 Pressure vessel design 
In this section, the pressure vessel design, a real-world 

problem, is solved using EPOWIV. This problem is 

proposed by Kannan and Kramer [22] to minimize the 

fabrication cost. Figure 2 shows the isometric view of the 

pressure vessel. There are four variables needed to solve 

this problem, which are the thickness of the shell (𝑇𝑠), the 

thickness of the head (𝑇ℎ), the inner radius (𝑅), and the 

length of the cylindrical part (𝐿). The mathematical 

model of this problem is as follows: 

 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑍 = [𝑧1, 𝑧2, 𝑧3, 𝑧4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿]  

𝑀𝑖𝑛 𝑓(𝑍) = 0.6224 𝑧1𝑧3𝑧4 + 1.7781𝑧2𝑧3
2

+ 3.1661𝑧1
2𝑧4 + 19.84𝑧1

2𝑧3 
(9) 

Subject to:  

𝑔1 = −𝑧1 + 0.0193𝑧3 ≤ 0 (10) 

𝑔2 = −𝑧3 + 0.000953𝑧3 ≤ 0 (11) 

𝑔3 = −𝜋𝑧3
2𝑧4 −

4

3
𝜋𝑧3

3 + 1,296,000 ≤ 0 (12) 

𝑔4 = 𝑧4 − 240 ≤ 0 (13) 

𝑖 × 0.0625 ≤ 𝑧1, 𝑧2 ≤ 99 × 0.0625, ∀𝑖
= 1, 2, … , 99 

(14) 

10 ≤ 𝑧3, 𝑧4 ≤ 200 (15) 

 

 
Figure 2: The pressure vessel 

 

The problem has been solved in [23], but we found 

after checking the values of their solution vector that the 

solution doesn’t satisfy the problem constraints. Their 

solution is 𝑍∗ = [0.778099, 0.383241, 40.315121, 200] 
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and It found that 𝑧1and 𝑧2 are not integer multipliers of 

0.0625. Constraint (12) is broken, since the right-hand 

side of the constraint according to their solution vector is 

equal to 319.75, while it should be greater than 0. 

We coded the problem constraints and objective, 

then adapted the proposed EPOWIV to solve the pressure 

vessel design problem. The code can be found in 

https://github.com/ahmedsssssA/EPOWIV/blob/main/EP

O_PVD. After solving the problem, we found that best 

solution found by the proposed EPOWIV algorithm is 

3320.58 with 𝑍∗ = [1.3125,   0.0625, 65.7733789, 10]. 

This solution satisfies all the problem constraints and 

shows better objective value than the infeasible solution 

found by [23]. The statistical results can be summarized 

as follows: 

 

Best Mean Worst Std. Dev. Median 

3289.4 3585.11 5466.4 523.4 3292.58 

 

 

 

 
Figure 1:  The boxplots of test optimization functions from 1 to 9 
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Figure 2: The boxplots of test optimization functions from 10 to 18 
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Figure 3 The boxplots of test optimization functions from 19 to 21 

 

8 Time complexity 
The population of the algorithm requires 𝑂(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ×
𝑑), where 𝑑 is the problem dimension. The calculation of 

the fitness values requires 𝑂(𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑). 

The relocating procedure of the algorithm requires 𝑂(𝑁). 

Therefore, the total complexity of the algorithm requires 

𝑂(𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑 × 𝑁). The space complexity 

requires 𝑂(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑), which represents the amount 

of space required at any time during running time of the 

algorithm. 

9 Conclusion 
In conclusion, this paper introduced the Emperor 

Penguin Optimizer with Weighted Sum Procedure and 

Information Vector, a novel modification of the Emperor 

Penguin Optimizer algorithm. Through a comprehensive 

comparative study, we demonstrated the significant 

enhancement in optimization capabilities achieved by 

EPOWIV when compared to the classical EPO 

algorithm, EPO with the weighted sum procedure only, 

and EPO with the information vector. Across 27 diverse 

test optimization problems, EPOWIV consistently 

outperformed its counterparts, showcasing its efficiency 

and effectiveness in exploring and exploiting complex 

search spaces. The success of EPOWIV can be attributed 

to the synergistic combination of the weighted sum 

procedure and the information vector, which empowers 

the algorithm to navigate complex landscapes and 

converge to superior solutions. These results underscore 

the potential of EPOWIV as a valuable tool for solving 

optimization problems in various domains. The future 

points of research may include: 
• Parameter Tuning and Sensitivity Analysis: 

Further research can explore the sensitivity of 

EPOWIV to its hyperparameters and investigate 

methods for automated parameter tuning to 

adapt to different problem types and 

complexities. 

• Real-World Applications: Apply EPOWIV to 

real-world applications and case studies across 

diverse fields such as engineering, finance, and 

healthcare to assess its performance in practical 

settings. 
Hybridization: Explore opportunities for hybridizing 

EPOWIV with other optimization algorithms to create 

more robust and versatile optimization frameworks. 
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