
https://doi.org/10.31449/inf.v48i10.5757 Informatica 48 (2024) 65–76 65

Improving the Emperor Penguin Optimizer Algorithm Through

Adapted Weighted Sum Mutation Strategy with Information Vector

Ahmed Serag1, Hegazy Zaher2, Naglaa Ragaa3, Heba Sayed4
1Operations Research, faculty of graduate studies for statistical research, Cairo University, Giza, Egypt
2Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University

E-mail: ahmede.serag1978@gmail.com, hgsabry@cu.edu.eg, naglaa777subkiii@yahoo.com, hmhmdss@yahoo.com

Keywords: metaheuristics, emperor penguin optimizer algorithm, weighted sum

Received: February 23, 2024

The Emperor Penguin Optimizer algorithm (EPO) is a recent addition to population-based

metaheuristics. However, it has been observed that the algorithm occasionally gets trapped in local

optima, particularly when dealing with multi-modal functions. In this paper, we present a novel

modification of the Emperor Penguin Optimizer algorithm, termed the Emperor Penguin Optimizer with

Weighted Sum Procedure and Information Vector (EPOWIV). The EPOWIV algorithm combines two

techniques, the weighted sum procedure and the information vector. To evaluate the effectiveness of the

proposed EPOWIV algorithm, a comprehensive comparative study is conducted. This study includes a

comparison with the classical EPO algorithm, the EPO algorithm with the weighted sum procedure

only, and the EPO algorithm with the information vector. The comparison is carried out on 21 test

optimization problems. The comparative results show superiority of the EPOWIV algorithm over its

counterparts. The EPOWIV algorithm consistently exhibits superior optimization performance,

effectively overcoming the stagnation issues previously associated with the EPO algorithm. It

consistently delivers outstanding solutions across a diverse set of test problems.

Povzetek: Članek obravnava izboljšavo algoritma Emperor Penguin Optimizer (EPO) s prilagojeno

strategijo mutacije, imenovano EPO z uteženim seštevanjem in informacijskim vektorjem (EPOWIV).

Avtorji analizirajo učinkovitost predlaganega algoritma EPOWIV skozi obsežno primerjalno študijo, ki

vključuje 21 testnih optimizacijskih problemov. Rezultati študije kažejo, da EPOWIV učinkovito

odpravlja težave stagnacije, ki so značilne za klasični EPO, ter dosledno dosega boljše optimizacijske

rezultate.

1 Introduction

In recent years, optimization algorithms have garnered

significant interest in various fields due to their potential

to efficiently solve complex real-world problems [1].

Nature-inspired algorithms, in particular, have gained

prominence for their ability to mimic the intelligence and

adaptability of biological systems [2]. Among these, the

Emperor Penguin Optimizer Algorithm (EPO) has

emerged as a promising optimization technique, inspired

by the remarkable foraging behavior and social

interactions of Emperor penguins [3]. Like many

algorithms, the EPO faces certain challenges, including

premature convergence and suboptimal exploration

capabilities. In order to further enhance the EPO's

optimization performance, this paper proposes a novel

extension: the integration of a Weighted Sum Mutation

Strategy and information vector into the EPO algorithm.

The primary objective of this research is to utilize the

strengths of relocating vectors and best solutions within

the EPO, enabling improved global and local search

capabilities. The WSIV introduces a controlled mutation

mechanism, allowing the algorithm to strike a balance

between exploration and exploitation effectively. By

facilitating a more diverse search space exploration, the

proposed approach aims to mitigate premature

convergence issues and enhance the algorithm's

convergence rate while maintaining the exploitation of

valuable solutions.

In this paper, a comprehensive investigation of the

novel EPOWIV algorithm's design is introduced,

highlighting its key components, implementation, and

mathematical formulation. We conduct an in-depth

empirical analysis, employing a diverse set of benchmark

functions to assess the algorithm's performance.

The remainder of this paper is structured as follows:

Section 2 provides a review of related works on

optimization algorithms and highlights the distinct

characteristics of the EPO and its limitations. Section 3

details the proposed EPOWIV algorithm, discussing the

incorporation of the weighted sum mutation strategy with

the information vector and its adaptation to the EPO's

behavior. In Section 4, the experimental setup is

presented, evaluation metrics, and performance

comparisons with other optimization methods. The

results and discussions are presented in Section 5,

followed by conclusions and future directions in Section

6.

mailto:naglaa777subkiii@yahoo.com

66 Informatica 48 (2024) 65–76 A. Serag et al.

2 Related work
Metaheuristics are optimization algorithms that combine

stochastic and local search techniques [4]. Stochasticity

enables the exploration of the search space, while local

search facilitates exploitation around solutions [5]. They

usually used to tackle the NP-hard problems, such as the

combinatorial optimization problems. Metaheuristics are

commonly employed to tackle NP-hard problems,

especially combinatorial optimization problems [6].

These algorithms are designed to efficiently explore the

vast solution space and find near-optimal or satisfactory

solutions in a reasonable amount of time [7]. Their

stochastic and adaptive nature allows them to escape

local optima and search for promising regions in the

solution landscape, making them particularly well-suited

for challenging optimization tasks. The metaheuristics

can be classified into two main categories, which are the

population-based and single-based methods [8].

Population-based metaheuristics involve maintaining a

population of candidate solutions throughout the

optimization process [9]. These methods often use

mechanisms such as evolution, mutation, and crossover

to create new solutions by combining or modifying

existing ones. Examples of population-based

metaheuristics include Genetic Algorithms, Particle

Swarm Optimization, and Differential Evolution.

On the other hand, single-solution-based

metaheuristics operate with only one solution at a time

and iteratively improve it to search for better solutions

[10]. The Emperor Penguin Optimizer algorithm is a

population-based metaheuristic first proposed by Dhiman

and Kumar [11]. The EPO algorithm emulates the

huddling behavior of Emperor Penguins (Aptenodytes

forsteri). Its primary steps include generating the huddle

boundary, computing the temperature surrounding the

huddle, calculating the distance, and identifying the

effective mover. Many of the previous work presented in

EPO considered using the algorithm to solve real-world

applications such as image segmentation, power system,

and energy consumption reduction. Baliarsingh and

Vipsita [12] presented a chaotic EPO to optimize

machine learning for classifying microarray cancer. Cao

et al. [13] presented an improved EPO to enhance the

efficiency of power system. Min et al. [14] presented a

quantum EPO for optimizing the minimize the energy

consumption of chiller loading.

Angel and Jaya [15] adapted the EPO to solve load

balancing and security enrichment in wireless sensor

problem. Xing [16] improved an EPO algorithm and used

it to enhance a multi-threshold image segmentation

.Dhiman et al. [17] improved the EPO algorithm to make

able to deal with discrete optimization problems and they

used the improved version to solve feature selection

.Khan et al. [18] used EPO algorithm along with deep

learning model to optimize the classification of recycling

waste .Cheena et al. [19] proposed EPO algorithm to

optimize self-heading for sensor network based smart

grid system. Babu et al. [20] developed EPO to optimize

the location of AC transmission system devices in load

frequency control. Serag et al. [21] enhanced EPO by

incorporating an information vector, enhancing its local

search process compared to the standard version. This

modification enables EPO to overcome stagnation

present in certain multi-modal functions.

Table 1: Literature review summary table

Author Contribution

Dhiman and Kumar [11] Developed the first version of EPO

Baliarsingh and Vipsita [12] Developed a chaotic EPO to optimize machine learning for classifying

microarray cancer

Cao et al. [13] Used EPO to enhance the efficiency of power system

Min et al. [14] Developed a quantum EPO for optimizing the minimize the energy

consumption of chiller loading

Angel and Jaya [15] Solved load balancing and security enrichment in wireless sensor problem

using EPO

Xing [16] Enhanced a multi-threshold image segmentation using EPO

Dhiman et al. [17] Solved feature selection after adopting EPO to make it deal with discrete

optimization problems

Khan et al. [18] Presented EPO to optimize the classification of recycling waste

Cheena et al. [19] proposed EPO algorithm to optimize self-heading for sensor network

based smart grid system

Babu et al. [20] developed EPO to optimize the location of AC transmission system

devices in load frequency control

Serag et al. [21] Developed a new modification for EPO that considers information vector

to improve the local search procedure of the algorithm

This paper is considered an extension for our

previous work presented in [21] that solves the

stagnation problem of the multi-modal functions.

Therefore, we presented a new modification that utilizes

weighted sum methodology along with generated

information vector to update the relocating procedure of

the algorithm, where the new modification, as shown in

the comparative results, outperforms the algorithm

proposed in [21].

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 67

3 Emperor penguin optimizer

algorithm
The Emperor Penguin Optimizer (EPO) is a population-

based metaheuristic inspired by the collective behavior of

emperor penguins. Its operations encompass the

computation of ambient temperature, distances to the

emperor penguins, and the effective mover. The

temperature within the group is determined by

aggregating the temperatures of individual penguins (𝑇)

within a defined radius (𝑅) surrounding the crowd. Thus,

the temperature distribution surrounding the crowd can

be derived using Eq. (1), which is dependent on the

iteration count (𝐼𝑡𝑟) and the maximum number of

iterations (𝑀𝑎𝑥𝐼𝑡𝑟). The following notations make the

illustration of the algorithm steps easier:

Notations:

𝑇𝐴 The ambient temperature

𝑇 Individual penguin temperature

𝑅 The huddle radius

𝐼𝑡𝑟 Iteration count

𝑀𝑎𝑥𝐼𝑡𝑟 The maximum number of iterations

𝐷 The distance between penguins

𝑃𝑏𝑒𝑠𝑡 The position of best penguin

𝑃𝑖 The position of penguin 𝑖
𝑃𝑖+1 The next position of penguin 𝑖
𝑆 Social force

𝑓, 𝑙 Random numbers related to social

force calculation

𝐴 Movement vector

𝑀 Movement parameter

𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 , ∀𝐼𝑡𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑟 (1)

, 𝑤ℎ𝑒𝑟𝑒 𝑇 = {
0, 𝑖𝑓 𝑅 > 1
1, 𝑖𝑓 𝑅 < 1

The calculation of the distance (𝐷) between the

penguins and their emperor involves several parameters

designed to prevent collisions among the penguins.

These parameters include the position of the best penguin

(𝑃𝑏𝑒𝑠𝑡), the position of each individual penguin (𝑃), the

ambient temperature (𝑇𝐴), and the social force (𝑆),

which compels the penguins to move towards the optimal

solution. The parameter 𝐴 is computed for the position

𝑃𝑖 , utilizing the movement parameter (𝑀), set to 2, as

specified in Eq. (2).

𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑)
− 𝑇𝐴

(2)

Eq. (3) serves the purpose of computing the social

force. This equation takes the form of a decreasing

function and relies on three variables: 𝑓, 𝑙, and 𝐼𝑡𝑟. Both

𝑓 and 𝑙 are random numbers, each constrained within its

respective lower and upper bounds.

𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 (3)

The parameter 𝑆 plays a crucial role in the

calculation of distance 𝐷. Initially, it increases during the

early iterations to ensure a high degree of locality,

gradually diminishing as the iterations progress,

eventually leading to very low locality in the later stages.

Consequently, distance 𝐷 is computed using equation (4)

as follows:

𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| (4)

The position of the penguin in the subsequent

iteration (𝑃𝑖+1) can be determined utilizing equation (5)

as follows:

𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 (5)

Through the alteration of penguin positions in each

iteration, the algorithm continually updates the best

position until the stopping criteria are met, ultimately

yielding the optimal solution. The pseudocode for the

algorithm can be summarized as follows:

Algorithm 1: Pseudo code of EPO

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑
𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡)
𝐼𝑡𝑟 = 1
𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:
 𝑖 = 1
 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

 𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟

𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑)

− 𝑇𝐴

 𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)

2

 𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡|
 𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷
 𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛:
 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1
 𝑖 = 𝑖 + 1
 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1
𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡

4 Enhancing EPO with Weighted

Sum Mutation and Information

Vector
The new modification of the algorithm stated in this

paper is related to adding weighted sum mutation

procedure inside the relocation process and utilizing the

information gained between the best solution and the

relocated positions of the penguins. The weighted sum

procedure generates a new position by combining the

best solution found with the relocated vector. The

weights for this combination are determined based on the

evaluations of each, relative to the total evaluation of

both. So, the new vector gained by the weighted sum

procedure can be calculated using Eq. (6). The weighted

sum method could result in certain solution components

exceeding the predetermined lower and upper bounds.

Therefore, a maintenance procedure should be applied to

rectify these out-of-range component values. Values

68 Informatica 48 (2024) 65–76 A. Serag et al.

lower than the lower bound should be adjusted to match

the lower bound, while values exceeding the upper bound

should be adjusted to match the upper bound. Equations

(7), and (8) shows the maintenance procedure of the

weighted sum method.

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (
𝑓(𝑃𝑖+1)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑

+ (
𝑓(𝑃𝑏𝑒𝑠𝑡)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑏𝑒𝑠𝑡

(6)

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= [max(𝑥1, 𝐿𝐵),max(𝑥2, 𝐿𝐵), … ,max(𝑥dim(𝑃), 𝐿𝐵)]
(7)

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= [min(𝑥1, 𝑈𝐵),min(𝑥2, 𝑈𝐵), … ,min(𝑥dim(𝑃), 𝑈𝐵)]
(8)

The information vector is created through a user-

defined threshold, typically chosen from the range

between 0 and 1. This information vector, denoted as 𝑃𝐼𝑉,

is constructed using the weighted sum position,

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, and the best position 𝑃𝑏𝑒𝑠𝑡. To detail the

procedure, the first step is to generate a random uniform

number, which will be compared against the predefined

threshold. If the generated random number exceeds the

threshold, component 𝑗 will be selected from 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑;

otherwise, it will be chosen from 𝑃𝑏𝑒𝑠𝑡 . The subsequent

steps outline the process of creating the 𝑃𝐼𝑉 position:

𝑗 = 1
𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜:
𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

 𝑃𝐼𝑉[𝑗] = 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑[𝑗]

𝑒𝑙𝑠𝑒:
 𝑃𝐼𝑉[𝑗] = 𝑃𝑏𝑒𝑠𝑡[𝑗]

𝑗 = 𝑗 + 1

[1]

Now, the algorithm can be upgraded adding the

weighted sum procedure and the information vector

process as follows and the flowchart is shown in Figure

1:

Algorithm 2: Pseudo code of EPOWIV

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒
𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡)

𝐼𝑡𝑟 = 1

𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:
 𝑖 = 1

 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

 𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟

 𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴

 𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡|
 𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = (
𝑓(𝑃𝑖+1)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 +

 (
𝑓(𝑃𝑏𝑒𝑠𝑡)

𝑓(𝑃𝑖+1) + 𝑓(𝑃𝑏𝑒𝑠𝑡)
) 𝑃𝑏𝑒𝑠𝑡

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

[max(𝑥1, 𝐿𝐵),max(𝑥2, 𝐿𝐵), … ,max(𝑥dim(𝑃), 𝐿𝐵)]

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

[min(𝑥1, 𝑈𝐵),min(𝑥2, 𝑈𝐵), … ,min(𝑥dim(𝑃), 𝑈𝐵)]

 𝑗 = 1

 𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜:
 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:
 𝑃𝐼𝑉[𝑗] = 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑[𝑗]

 𝑒𝑙𝑠𝑒:
 𝑃𝐼𝑉[𝑗] = 𝑃𝑏𝑒𝑠𝑡[𝑗]
 𝑗 = 𝑗 + 1

 𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛:
 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1

 𝑖 = 𝑖 + 1

 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1

𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡

5 Comparative results

This section shows the implementation of the proposed

EPO algorithm that utilizes a weighted sum procedure

with information vector (EPOWIV). The algorithm is

coded using python programming and uploaded to the

GitHub link https://github.com/ahmedsssssA/EPOWIV.

The GitHub repository also includes the code of the 21

test optimization functions used in this comparative

results. The comparative results are done to compare

between the EOPWIV and the classical EPO [11], the

weighted sum EPO (EPOW) that combines the classical

EPO with the weighted sum procedure only, and the

information vector EPO (EPOIV) that combines the

classical EPO with the information vector process, where

the EPOIV can be found in [21] and it is one of the

algorithms listed in the literature summary of this paper.

The boxplots show that the proposed EPOWIV algorithm

robustly outperforms the other selected algorithms in this

comparative results in terms of variability and median

results.

https://github.com/ahmedsssssA/EPOWIV

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 69

Figure 1: The flowchart of the EPOWIV algorithm

Table 2 shows the 21 test optimization functions.

After implementing the Python code for various

algorithms, it was observed that the EPOWIV algorithm

consistently outperforms other versions of the EPO

algorithm. This superiority is evident in both the mean

results and the algorithm's robustness, as indicated by the

standard deviation values. The superior performance of

the EPOWIV algorithm is highlighted in

70 Informatica 48 (2024) 65–76 A. Serag et al.

Table 3: Comparative results

No. Function
EPOIV

Mean

EPOW

Mean

EPO

Classical

Mean

EPOWIV

Mean

EPOIV

Std

EPOW

Std

EPO

Classical

Std

EPOWIV

Std

1 Ackley 2.306 0.002 7.600 0.000 0.575 0.000 2.358 0.000

2 Bukin N. 6 0.619 0.412 1.517 0.243 0.385 0.586 0.725 0.000

3
Cross-in-

Tray
-2.063 -2.063 -2.063 -2.063 0.000 0.000 0.000 0.000

4 Drop-Wave -0.994 -1.000 -1.004 -1.000 0.019 0.000 0.001 0.000

5 Griewank 1.368 0.513 33.537 0.000 0.242 0.490 17.253 0.000

6 Langermann -4.144 -4.136 -4.134 -4.131 0.013 0.023 0.019 0.000

7 Levy 0.015 0.346 0.487 0.183 0.029 0.151 0.158 0.000

8 Rastrigin 2.219 3.159 18.406 0.000 1.600 5.926 11.326 0.000

9 Schaffer N. 2 0.000 0.001 0.004 0.000 0.000 0.003 0.005 0.000

10 Schaffer N. 4 0.293 0.293 0.296 0.293 0.001 0.001 0.004 0.001

11 Shubert
-

186.727

-

185.665
-186.039 -186.632 0.008 1.136 0.598 0.000

12 Bohachevsky 0.006 0.058 0.380 0.000 0.012 0.120 0.228 0.000

13 Perm 0 0.03 214.063 0.09 0.08 0.000 114.381 12163.566 0.000

14

Rotated

Hyper-

Ellipsoid

21.166 0.255 1258.814 0.000 9.007 0.107 929.035 0.000

15 Sphere 0.000 0.000 0.013 0.000 0.000 0.000 0.008 0.000

16

Sum of

Different

Powers

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

17 Sum Squares 0.012 0.000 0.001 0.000 0.015 0.000 0.878 0.000

18 Booth 0.000 0.003 0.001 0.000 0.000 0.004 0.001 0.000

19 Matyas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 Zakharov 0.631 0.003 10.052 0.000 0.803 0.002 3.693 0.000

21
Three-Hump

Camel
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 Pressure vessel design
In this section, the pressure vessel design, a real-world

problem, is solved using EPOWIV. This problem is

proposed by Kannan and Kramer [22] to minimize the

fabrication cost. Figure 2 shows the isometric view of the

pressure vessel. There are four variables needed to solve

this problem, which are the thickness of the shell (𝑇𝑠), the

thickness of the head (𝑇ℎ), the inner radius (𝑅), and the

length of the cylindrical part (𝐿). The mathematical

model of this problem is as follows:

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑍 = [𝑧1, 𝑧2, 𝑧3, 𝑧4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿]

𝑀𝑖𝑛 𝑓(𝑍) = 0.6224 𝑧1𝑧3𝑧4 + 1.7781𝑧2𝑧3
2

+ 3.1661𝑧1
2𝑧4 + 19.84𝑧1

2𝑧3
(9)

Subject to:

𝑔1 = −𝑧1 + 0.0193𝑧3 ≤ 0 (10)

𝑔2 = −𝑧3 + 0.000953𝑧3 ≤ 0 (11)

𝑔3 = −𝜋𝑧3
2𝑧4 − 43𝜋𝑧3

3 + 1,296,000 ≤ 0 (12)

𝑔4 = 𝑧4 − 240≤0 (13)

𝑖 × 0.0625 ≤ 𝑧1, 𝑧2 ≤ 99 × 0.0625, ∀𝑖
= 1, 2, … , 99

(14)

10 ≤ 𝑧3, 𝑧4 ≤ 200 (15)

Figure 2: The pressure vessel

The problem has been solved in [23], but we found

after checking the values of their solution vector that the

solution doesn’t satisfy the problem constraints. Their

solution is 𝑍∗ = [0.778099, 0.383241, 40.315121, 200]

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 71

and It found that 𝑧1and 𝑧2 are not integer multipliers of

0.0625. Constraint (12) is broken, since the right-hand

side of the constraint according to their solution vector is

equal to 319.75, while it should be greater than 0.

We coded the problem constraints and objective,

then adapted the proposed EPOWIV to solve the pressure

vessel design problem. The code can be found in

https://github.com/ahmedsssssA/EPOWIV/blob/main/EP

O_PVD. After solving the problem, we found that best

solution found by the proposed EPOWIV algorithm is

3320.58 with 𝑍∗ = [1.3125, 0.0625, 65.7733789, 10].

This solution satisfies all the problem constraints and

shows better objective value than the infeasible solution

found by [23]. The statistical results can be summarized

as follows:

Best Mean Worst Std. Dev. Median

3289.4 3585.11 5466.4 523.4 3292.58

. Furthermore, the boxplots presented in figures 1: ,

2, and 3 vividly illustrate the distribution of values for

each algorithm. These boxplots showcase key statistical

metrics, including the median, first quartile, and third

quartile. Collectively, these results provide compelling

evidence of the efficiency and overall superiority of the

EPOWIV algorithm when compared to the other

algorithms. The boxplots show that the proposed

EPOWIV algorithm robustly outperforms the other

selected algorithms in this comparative results in terms

of variability and median results.

Figure 1: The flowchart of the EPOWIV algorithm

Table 2: Test optimization functions used in comparative results

No. Function Name 𝒇(𝒙)

1 Ackley 20 (𝑒
−0.2 √

1
𝑑

∑ 𝑥𝑖
2𝑑

𝑖=1) − (𝑒
1
𝑑

∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑑
𝑖=1) + 20 + 𝑒

72 Informatica 48 (2024) 65–76 A. Serag et al.

No. Function Name 𝒇(𝒙)

2 Bukin N. 6 𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10|

3 Cross-in-Tray

𝑓(𝑥, 𝑦) = −0.0001 ├(| sin(𝑥) sin(𝑦) exp (|100

−
√𝑥2 + 𝑦2

𝜋
|) |+1)0.1

4 Drop-Wave 𝑓(𝑥, 𝑦) = −
1 + cos(12√𝑥2 + 𝑦2)

0.5(𝑥2 + 𝑦2) + 2

5 Griewank 𝑓(𝒙) = 1 +
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

− ∏ cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

6 Langermann

𝑓(𝒙) = ∑ 𝑐𝑖

𝑚

𝑖=1

⋅ exp (−
1

𝜋
∑(𝑥𝑗 − 𝑎𝑖𝑗)

2
𝑛

𝑗=1

)

⋅ cos (𝜋 ∑(𝑥𝑗 − 𝑎𝑖𝑗)
2

𝑛

𝑗=1

)

𝐴 =

[

3 5
5 2
2 1
1 4
7 9]

7 Levy

𝑓(𝒙) = sin2(𝜋𝑤1) + ∑(𝑤𝑖 − 1)2[1 + 10 sin2(𝜋𝑤𝑖 + 1)]

𝑛−1

𝑖=1

+ (𝑤𝑛 − 1)2[1 + sin2(2𝜋𝑤𝑛)],

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 1 +
𝑥𝑖 − 1

4

8 Rastrigin 𝑓(𝑥) = 10𝑛 + ∑(𝑥𝑖
2 − 10 cos(2π𝑥𝑖))

𝑛

𝑖=1

9 Schaffer N. 2 𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2 − 𝑦2) − 0.5

[1 + 0.001(𝑥2 + 𝑦2)]2

10 Schaffer N. 4 𝑓(𝑥, 𝑦) = 0.5 +
cos(sin(|𝑥2 − 𝑦2|)) − 0.5

[1 + 0.001(𝑥2 + 𝑦2)]2

11 Shubert 𝑓(𝑥, 𝑦) = ∑𝑖

5

𝑖=1

⋅ cos((𝑖 + 1)𝑥 + 𝑖) ⋅ ∑𝑖

5

𝑖=1

⋅ cos((𝑖 + 1)𝑦 + 𝑖)

12 Bohachevsky
𝑓(𝑥) = ∑(𝑥𝑖

2 + 2𝑥𝑖+1
2 − 0.3 cos(3π𝑥𝑖) − 0.4 cos(4π𝑥𝑖+1)

𝑛−1

𝑖=1

+ 0.7)

13 Perm 0 𝑓(𝑥) = ∑ (∑(10 + 𝑗)(𝑥𝑖 − 1)𝑗

𝑑

𝑗=0

)

2
𝑛

𝑖=1

14
Rotated Hyper-

Ellipsoid
𝑓(𝑥) = ∑ ∑𝑥𝑗

2

𝑖

𝑗=1

𝑛

𝑖=1

15 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

16
Sum of Different

Powers
𝑓(𝑥) = ∑|𝑥𝑖|

𝑖+1

𝑛

𝑖=1

17 Sum Squares 𝑓(𝑥) = ∑𝑖

𝑛

𝑖=1

⋅ 𝑥𝑖
2

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 73

No. Function Name 𝒇(𝒙)

18 Booth 𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2

19 Matyas 𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦

20 Zakharov 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4

21
Three-Hump

Camel
𝑓(𝑥) = ∑ 𝑥𝑖

2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4

74 Informatica 48 (2024) 65–76 A. Serag et al.

Table 3: Comparative results

No. Function
EPOIV

Mean

EPOW

Mean

EPO

Classical

Mean

EPOWIV

Mean

EPOIV

Std

EPOW

Std

EPO

Classical

Std

EPOWIV

Std

1 Ackley 2.306 0.002 7.600 0.000 0.575 0.000 2.358 0.000

2 Bukin N. 6 0.619 0.412 1.517 0.243 0.385 0.586 0.725 0.000

3
Cross-in-

Tray
-2.063 -2.063 -2.063 -2.063 0.000 0.000 0.000 0.000

4 Drop-Wave -0.994 -1.000 -1.004 -1.000 0.019 0.000 0.001 0.000

5 Griewank 1.368 0.513 33.537 0.000 0.242 0.490 17.253 0.000

6 Langermann -4.144 -4.136 -4.134 -4.131 0.013 0.023 0.019 0.000

7 Levy 0.015 0.346 0.487 0.183 0.029 0.151 0.158 0.000

8 Rastrigin 2.219 3.159 18.406 0.000 1.600 5.926 11.326 0.000

9 Schaffer N. 2 0.000 0.001 0.004 0.000 0.000 0.003 0.005 0.000

10 Schaffer N. 4 0.293 0.293 0.296 0.293 0.001 0.001 0.004 0.001

11 Shubert
-

186.727

-

185.665
-186.039 -186.632 0.008 1.136 0.598 0.000

12 Bohachevsky 0.006 0.058 0.380 0.000 0.012 0.120 0.228 0.000

13 Perm 0 0.03 214.063 0.09 0.08 0.000 114.381 12163.566 0.000

14

Rotated

Hyper-

Ellipsoid

21.166 0.255 1258.814 0.000 9.007 0.107 929.035 0.000

15 Sphere 0.000 0.000 0.013 0.000 0.000 0.000 0.008 0.000

16

Sum of

Different

Powers

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

17 Sum Squares 0.012 0.000 0.001 0.000 0.015 0.000 0.878 0.000

18 Booth 0.000 0.003 0.001 0.000 0.000 0.004 0.001 0.000

19 Matyas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 Zakharov 0.631 0.003 10.052 0.000 0.803 0.002 3.693 0.000

21
Three-Hump

Camel
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 Pressure vessel design
In this section, the pressure vessel design, a real-world

problem, is solved using EPOWIV. This problem is

proposed by Kannan and Kramer [22] to minimize the

fabrication cost. Figure 2 shows the isometric view of the

pressure vessel. There are four variables needed to solve

this problem, which are the thickness of the shell (𝑇𝑠), the

thickness of the head (𝑇ℎ), the inner radius (𝑅), and the

length of the cylindrical part (𝐿). The mathematical

model of this problem is as follows:

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑍 = [𝑧1, 𝑧2, 𝑧3, 𝑧4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿]

𝑀𝑖𝑛 𝑓(𝑍) = 0.6224 𝑧1𝑧3𝑧4 + 1.7781𝑧2𝑧3
2

+ 3.1661𝑧1
2𝑧4 + 19.84𝑧1

2𝑧3
(9)

Subject to:

𝑔1 = −𝑧1 + 0.0193𝑧3 ≤ 0 (10)

𝑔2 = −𝑧3 + 0.000953𝑧3 ≤ 0 (11)

𝑔3 = −𝜋𝑧3
2𝑧4 −

4

3
𝜋𝑧3

3 + 1,296,000 ≤ 0 (12)

𝑔4 = 𝑧4 − 240 ≤ 0 (13)

𝑖 × 0.0625 ≤ 𝑧1, 𝑧2 ≤ 99 × 0.0625, ∀𝑖
= 1, 2, … , 99

(14)

10 ≤ 𝑧3, 𝑧4 ≤ 200 (15)

Figure 2: The pressure vessel

The problem has been solved in [23], but we found

after checking the values of their solution vector that the

solution doesn’t satisfy the problem constraints. Their

solution is 𝑍∗ = [0.778099, 0.383241, 40.315121, 200]

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 75

and It found that 𝑧1and 𝑧2 are not integer multipliers of

0.0625. Constraint (12) is broken, since the right-hand

side of the constraint according to their solution vector is

equal to 319.75, while it should be greater than 0.

We coded the problem constraints and objective,

then adapted the proposed EPOWIV to solve the pressure

vessel design problem. The code can be found in

https://github.com/ahmedsssssA/EPOWIV/blob/main/EP

O_PVD. After solving the problem, we found that best

solution found by the proposed EPOWIV algorithm is

3320.58 with 𝑍∗ = [1.3125, 0.0625, 65.7733789, 10].

This solution satisfies all the problem constraints and

shows better objective value than the infeasible solution

found by [23]. The statistical results can be summarized

as follows:

Best Mean Worst Std. Dev. Median

3289.4 3585.11 5466.4 523.4 3292.58

Figure 1: The boxplots of test optimization functions from 1 to 9

76 Informatica 48 (2024) 65–76 A. Serag et al.

Figure 2: The boxplots of test optimization functions from 10 to 18

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 77

Figure 3 The boxplots of test optimization functions from 19 to 21

8 Time complexity
The population of the algorithm requires 𝑂(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ×
𝑑), where 𝑑 is the problem dimension. The calculation of

the fitness values requires 𝑂(𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑).

The relocating procedure of the algorithm requires 𝑂(𝑁).

Therefore, the total complexity of the algorithm requires

𝑂(𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑 × 𝑁). The space complexity

requires 𝑂(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑑), which represents the amount

of space required at any time during running time of the

algorithm.

9 Conclusion
In conclusion, this paper introduced the Emperor

Penguin Optimizer with Weighted Sum Procedure and

Information Vector, a novel modification of the Emperor

Penguin Optimizer algorithm. Through a comprehensive

comparative study, we demonstrated the significant

enhancement in optimization capabilities achieved by

EPOWIV when compared to the classical EPO

algorithm, EPO with the weighted sum procedure only,

and EPO with the information vector. Across 27 diverse

test optimization problems, EPOWIV consistently

outperformed its counterparts, showcasing its efficiency

and effectiveness in exploring and exploiting complex

search spaces. The success of EPOWIV can be attributed

to the synergistic combination of the weighted sum

procedure and the information vector, which empowers

the algorithm to navigate complex landscapes and

converge to superior solutions. These results underscore

the potential of EPOWIV as a valuable tool for solving

optimization problems in various domains. The future

points of research may include:
• Parameter Tuning and Sensitivity Analysis:

Further research can explore the sensitivity of

EPOWIV to its hyperparameters and investigate

methods for automated parameter tuning to

adapt to different problem types and

complexities.

• Real-World Applications: Apply EPOWIV to

real-world applications and case studies across

diverse fields such as engineering, finance, and

healthcare to assess its performance in practical

settings.
Hybridization: Explore opportunities for hybridizing

EPOWIV with other optimization algorithms to create

more robust and versatile optimization frameworks.

References
[1] M. Mavrovouniotis, C. Li, and S. Yang, “A

survey of swarm intelligence for dynamic

optimization: Algorithms and applications,”

Swarm Evol. Comput., vol. 33, pp. 1–17, 2017,

doi: 10.1016/j.swevo.2016.12.005.

[2] X. S. Yang, “Firefly algorithms for multimodal

optimization,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 5792 LNCS, pp. 169–

178, 2009, doi: 10.1007/978-3-642-04944-6_14.

[3] O. W. Khalid, N. A. M. Isa, and H. A. Mat

Sakim, “Emperor penguin optimizer: A

comprehensive review based on state-of-the-art

meta-heuristic algorithms,” Alexandria Eng. J.,

vol. 63, pp. 487–526, 2023, doi:

10.1016/j.aej.2022.08.013.

[4] A. Grasas, A. A. Juan, and H. R. Lourenço,

“SimILS: A simulation-based extension of the

iterated local search metaheuristic for stochastic

combinatorial optimization,” J. Simul., vol. 10,

no. 1, pp. 69–77, 2016, doi: 10.1057/jos.2014.25.

[5] A. A. Juan et al., “A review of the role of

heuristics in stochastic optimisation: from

metaheuristics to learnheuristics,” Ann. Oper.

Res., vol. 320, no. 2, pp. 831–861, 2023, doi:

10.1007/s10479-021-04142-9.

[6] A. Hertz and M. Widmer, “Guidelines for the use

of meta-heuristics in combinatorial

optimization,” Eur. J. Oper. Res., vol. 151, no. 2,

pp. 247–252, 2003, doi: 10.1016/S0377-

2217(02)00823-8.

78 Informatica 48 (2024) 65–76 A. Serag et al.

[7] J. Crispim and J. Brandão, “Metaheuristics

applied to mixed and simultaneous extensions of

vehicle routing problems with backhauls,” J.

Oper. Res. Soc., vol. 56, no. 11, pp. 1296–1302,

2005, doi: 10.1057/palgrave.jors.2601935.

[8] R. Elshaer and H. Awad, “A taxonomic review

of metaheuristic algorithms for solving the

vehicle routing problem and its variants,”

Comput. Ind. Eng., vol. 140, 2020, doi:

10.1016/j.cie.2019.106242.

[9] G. Jaradat, M. Ayob, and I. Almarashdeh, “The

effect of elite pool in hybrid population-based

meta-heuristics for solving combinatorial

optimization problems,” Appl. Soft Comput. J.,

vol. 44, pp. 45–56, 2016, doi:

10.1016/j.asoc.2016.01.002.

[10] J. F. Goycoolea, M. Inostroza-Ponta, M.

Villalobos-Cid, and M. Marin, “Single-solution

based metaheuristic approach to a novel

restricted clustering problem,” Proc. - Int. Conf.

Chil. Comput. Sci. Soc. SCCC, vol. 2021-Novem,

2021, doi: 10.1109/SCCC54552.2021.9650429.

[11] G. Dhiman and V. Kumar, “Emperor penguin

optimizer: A bio-inspired algorithm for

engineering problems,” Knowledge-Based Syst.,

vol. 159, pp. 20–50, 2018, doi:

10.1016/j.knosys.2018.06.001.

[12] S. K. Baliarsingh and S. Vipsita, “Chaotic

emperor penguin optimised extreme learning

machine for microarray cancer classification,”

IET Syst. Biol., vol. 14, no. 2, pp. 85–95, 2020,

doi: 10.1049/iet-syb.2019.0028.

[13] Y. Cao, Y. Wu, L. Fu, K. Jermsittiparsert, and N.

Razmjooy, “Multi-objective optimization of a

PEMFC based CCHP system by meta-

heuristics,” Energy Reports, vol. 5, pp. 1551–

1559, 2019, doi: 10.1016/j.egyr.2019.10.029.

[14] S. Min, Z. Tang, and B. Daneshvar Rouyendegh,

“Inspired-based optimisation algorithm for

solving energy-consuming reduction of chiller

loading,” Int. J. Ambient Energy, vol. 43, no. 1,

pp. 2313–2323, 2022, doi:

10.1080/01430750.2020.1730954.

[15] M. A. Angel and T. Jaya, “An Enhanced

Emperor Penguin Optimization Algorithm for

Secure Energy Efficient Load Balancing in

Wireless Sensor Networks,” Wirel. Pers.

Commun., vol. 125, no. 3, pp. 2101–2127, 2022,

doi: 10.1007/s11277-022-09647-5.

[16] Z. Xing, “An improved emperor penguin

optimization based multilevel thresholding for

color image segmentation,” Knowledge-Based

Syst., vol. 194, 2020, doi:

10.1016/j.knosys.2020.105570.

[17] G. Dhiman et al., “BEPO: A novel binary

emperor penguin optimizer for automatic feature

selection,” Knowledge-Based Syst., vol. 211, p.

106560, 2021, doi:

10.1016/j.knosys.2020.106560.

[18] A. I. Khan, A. S. Almalaise Alghamdi, Y. B.

Abushark, F. Alsolami, A. Almalawi, and A.

Marish Ali, “Recycling waste classification using

emperor penguin optimizer with deep learning

model for bioenergy production,” Chemosphere,

vol. 307, 2022, doi:

10.1016/j.chemosphere.2022.136044.

[19] K. Cheena, T. Amgoth, and G. Shankar,

“Emperor penguin optimised self-healing

strategy for WSN based smart grids,” Int. J. Sens.

Networks, vol. 32, no. 2, pp. 87–95, 2020, doi:

10.1504/IJSNET.2020.104924.

[20] N. R. Babu, T. Chiranjeevi, R. Devarapalli, and

S. K. Bhagat, “Optimal location of FACTs

devices in LFC studies considering the

application of RT-Lab studies and emperor

penguin optimization algorithm,” J. Eng. Res.,

vol. 11, no. 2, 2023, doi:

10.1016/j.jer.2023.100060.

[21] A. Serag, H. Zaher, N. Ragaa, and H. Sayed, “A

Modified Emperor Penguin Algorithm for

Solving Stagnation in Multi-Model Functions,”

Inform., vol. 47, no. 10, pp. 71–78, 2023, doi:

10.31449/inf.v47i10.5273.

[22] B. K. Kannan and S. N. Kramer, “An augmented

lagrange multiplier based method for mixed

integer discrete continuous optimization and its

applications to mechanical design,” Proc. ASME

Des. Eng. Tech. Conf., vol. Part F1679, pp. 103–

112, 1993, doi: 10.1115/DETC1993-0382.

[23] G. Dhiman et al., “BEPO: A novel binary

emperor penguin optimizer for automatic feature

selection,” Knowledge-Based Syst., vol. 211,

2021, doi: 10.1016/j.knosys.2020.106560.

Improving the Emperor Penguin Optimizer Algorithm Throug… Informatica 48 (2024) 65–76 79

