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Software-Defined Networking (SDN) updates network flexibility by decoupling the data plane from 

control planes, employing a logically centralized yet physically distributed multi-controller architecture. 

The optimal placement of controllers and their quantity presents a significant challenge known as the 

Controller Placement Problem (CPP). This study addresses the optimization of average propagation 

delay between controllers and switches, introducing an enhancement version of well-known K-Means 

algorithm for network partitioning and controller placement, called an Advanced K-Means algorithm. 

The proposed algorithm strategically minimizes the average propagation delay by situating controllers in 

optimal nodes within each sub-network. Evaluation through simulations on the Internet OS3E topology 

demonstrates the algorithm's efficacy, showcasing a 22%, 11%, 7%, and 3% reduction in average 

propagation delay compared to DBCP, POCO, CNPA, and HDIDS, respectively. These results establish 

the proposed algorithm as a competitive solution, emphasizing its capacity to achieve comparable or 

superior performance in mitigating latency between controllers and switches when compared to existing 

algorithms. 

Povzetek: Ta študija izboljšuje optimizacijo latence med krmilniki SDN in stikali z uvedbo naprednega 

algoritma K-Means za učinkovito reševanje problema postavitve krmilnikov.

 

1 Introduction 
Nowadays, a massive amount of data leads to cause 

network traffic and inflexible mobility in future mobile 

networks [1]. SDN has emerged as a transformative 

paradigm in the field of networking, updating the way 

networks are designed, managed, and operated. At the 

heart of SDN lies the centralized control plane, governed 

by SDN controllers that apply a new authority over 

network devices. The strategic placement of these 

controllers is a critical aspect of SDN architecture, 

influencing the efficiency, responsiveness, and overall 

performance of the network. The controller has an 

important role in managing tasks such as routing through 

the maintenance of switch forwarding tables, while 

switches in data plane primarily handle packet forwarding 

functions. When a new routing path is needed at the data 

plane layer, switches need to coordinate with their 

designated controller for guidance on routing decisions. In 

the expansion of SDN networks, employing multiple 

controllers becomes necessary to overcome bottlenecks 

encountered with a single physical controller, as 

illustrated in Figure 1. A solitary centralized controller 

struggles to meet high demands of flow processing, 

particularly when incoming packets lack matches in the 

existing flow entries at the switch [2].  

 

 

 

 

Additionally, a singular controller faces limitations in 

scalability, resilience, security, and other aspects [3]. 

Hence, a multi-controller environment becomes urgent for 

effectively managing large-scale SDN networks. The 

placement of SDN controllers plays a crucial role in 

shaping the dynamics of communication within the 

network. Controllers acts as the orchestrators, overseeing 

and directing the flow of data packets, and their strategic 

positioning has a profound impact on factors such as 

latency, load balancing, and resource utilization. The 

complexity of modern networks, characterized by diverse 

topologies and dynamic traffic patterns, necessitates 

careful consideration in determining optimal controller 

locations. 

One of the primary challenges in SDN deployment is the 

Controller Placement Problem (CPP), a complex issue that 

demands thoughtful analysis and innovative solutions. 

The objective of CPP is to determine the optimal number 

and locations of controllers in a network, striking a 

delicate balance between minimizing latency, ensuring 

load distribution, and maximizing the utilization of 

network resources. Addressing the CPP is essential for 

realizing the full potential of SDN, as improper controller 

placement can lead to issues such as long response times, 

and inefficient resource utilization. 
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Figure 1: Single controller structure. 

To optimize the controller placement problem in 

terms of controller to switch average propagation latency, 

a development of K-means algorithm is introduced, called 

Advanced K-means algorithm, to enhance the network 

partitioning process and distribute the controllers in 

optimal places to avoid the high latency between the 

controllers and the switches they are managing. The 

proposed algorithm aims strategically position the 

controllers, minimizing the average propagation delays 

and enhancing the responsiveness of the network. In terms 

of performance evaluation, we compare our proposed 

algorithm to some of existing literatures, benchmarking 

our work against state-of-the-art algorithms. Through this 

rigorous evaluation, we seek to contribute valuable 

insights into the realm of SDN controller placement, 

offering a novel approach that addresses the complex 

details of latency optimization in dynamic network 

environments. 

2 Related works 
Determining the optimal placement of SDN controller is a 

significant challenge for network administrator and 

designer because the location of the controller affects the 

network’s ability to manage the traffic efficiently, 

especially when the network is large and complex. The 

first work addressed the controller placement problem was 

done by Heller et al.[2] in which the authors adopted a 

mathematical model that is used for facility location 

problem and used it for CPP. As the controller manages 

several switches and may has a global view of the whole 

topology [4]. Therefore, to locate appropriate positions for 

the controllers, it is necessary to partition the network into 

several clusters that are well-suited [5]. However, 

clustering the network will bring some tradeoff between 

several network metrics such as network delay and load 

balancing [5], [6]. Mamushiane et al [7] asked a question 

about how many controllers are needed and where should 

they go given an SDN topology. They proposed three 

algorithms to address the controller placement problem, 

namely, Silhouette Analysis, Gap Statistic, and Partition 

Around Medoids (PAM), but first they mentioned only the 

metric of latency. However, their algorithms are accurate 

but are exhaustive and don’t work well in the presence of 

time constraints. In [8] and [9], the same authors proposed 

two different algorithms, High Degree with Independent 

Dominating Set (HDIDS) and Connected Dominating Set 

(CDS). However, in both works, the controllers are 

positioned in nodes with maximum connection degree, 

and they didn’t take into consideration the controllers’ 

loads and its effect on latency. A mathematical model in 

[10] was mapped into CPP and considered only the 

controller latency, but the authors didn’t mention the 

effect of this model on the controller loads. Several 

research efforts [11], [12] used clustering algorithms to 

discuss and solve the controller placement problem. In 

clustering approach, the whole network is divided into 

several subnetworks, each subnetwork is controlled by 

one single controller. Lange et al. [13] proposed a Pareto-

based Optimal COntroller placement algorithm (POCO) 

for CPP based one optimizing multi-objectives 

simultaneously, but it consumes excessive time to select 

the optimal controller locations. Wang et al. [14] designed 

a Clustering-based Network Partition Algorithm (CNPA) 

with the aim of minimizing delay between controllers and 

switches. However, it has been noted that CNPA often 

converges to local optimal solutions, potentially limiting 

its effectiveness. Many criteria should be addressed during 

the controller placement process. Network delay and load 

balancing are the most important parameters that should 

be taken into consideration during the network 

partitioning and finding the controller location. However, 

the propagation delay done in some research is not clearly 

defined. The authors in [15] defined the reliability of the 

network by estimating the control path loss percentage 

using a defined metric. However, they assumed that the 

switches could connect to the nearest controller but they 

didn’t consider the controller’s load as a factor. The well-

known method called 𝐾 -center is used in [2], [16] for 

controller placement, but the Euclidean distance is used to 

define the delay which is not suitable and accurate to be 

used in a real network topology. Moreover, the approaches 

begin by randomly initializing the centers. In each 

iteration, they assign switches to new centers until there 

are no further changes in the clusters. However, this 

method does not ensure the minimum propagation delay. 

For instance, in [14], it was noted that the delay may 

increase with the introduction of a new center, compared 

to the previous cluster. Density-based clustering 

techniques are widely used in data mining on various 

fields. DBSCAN is one of the most popular density-based 

clustering algorithms, characterized by its ability to 

discover clusters with different shapes and sizes, and to 

separate noise and outliers [17].  In [18], the authors 

proposed a Density Based Controller Placement DBCP for 

SDN. A virtual network embedding problem for SDN has 

been presented in [19] and its assignment to real physical 

resources depends on minimizing the delay between the 

controller and the switch in the virtual network. In [20], 

the placement of controllers in IoT based on SDN was 

examined using a sub-modularity approach that relied on 

a heuristic method. However, the authors did not 
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investigate E2E latency and did not demonstrate the 

results on actual internet topologies. An iterative 

algorithm was introduced in [21] as a solution to CPP. 

However, its impracticality for large-scale network 

topologies arises from its heavy reliance on manually 

assigned weights. Table 1. collates key findings from 

referenced research, focusing on their methodologies, 

strengths, and limitations. 

 

Table 1: Literature works and limitations. 

Related Works Methodology Strengths Limitations 

[2] Standard K-means Minimize latency and 

consideration of diverse 

network topologies. 

Using Euclidean 

distance is not accurate 

for network topology 

partitioning. 

[7] Silhouette Analysis,  

Gap Statistic, and 

Partition Around 

Medoids (PAM) 

 

These techniques are 

well-suited for 

analyzing complex 

network topologies. 

- They didn’t mention 

metrics such as load 

balancing. 

- They are exhaustive 

and don’t work well in 

the presence of time 

constraints. 

[8], [9] High Degree with 

Independent 

Dominating Set 

(HDIDS) and 

Connected Dominating 

Set (CDS) 

Select controllers based 

on their connection 

degrees and minimizing 

the average response 

time between each 

controller and its 

forwarding nodes. 

Focusing only on 

latency and node 

degrees without taking 

controller load into 

consideration. 

[10] Hierarchical clustering 

technique 

Decreasing the number 

of controllers using 

merging function. 

Other metrics such as 

load balancing are not 

considered. 

[12] Pareto Integrated Tabu 

Search (PITS) 

Addressing both the 

controllers’ number and 

locations. 

The identification of 

articulation points to 

calculate the 

controllers’ number 

may not adequately 

account for dynamic 

network behaviors. 

[15] Greedy-SA algorithm Defining the reliability 

of the network by 

estimating the control 

path loss percentage. 

They assumed that the 

switches could connect 

to the nearest 

controller, but they 

didn’t consider the 

controller’s load as a 

factor. 

[16] Capacitated K-center Reduce the number of 

required controllers, 

reduce the load of the 

maximum-load 

controller. 

They focus only on 

controllers’ load 

without mentioning 

latency. 

[13] Pareto-based Optimal 

COntroller placement 

algorithm (POCO) 

Optimizing multi-

objectives 

simultaneously. 

it consumes excessive 

time to select the 

optimal controller 

locations. 

[14] Clustering-based 

Network Partition 

Algorithm CNPA 

Decrease the maximum 

end-to-end latency 

between controllers and 

It tends to fall into 

local optimal 

solutions, potentially 
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their associated 

switches. 

limiting its 

effectiveness. 

[18] Density Based 

Controller Placement 

DBCP 

It provides the fast 

response with minimum 

iterations. 

This work is only 

scalability-aware 

without focusing on 

controller load. 

[20] Submodularity 

optimization approach 

Address different 

aspects of the controller 

placement problem in a 

distributed network. 

The authors did not 

investigate E2E 

latency and did not 

demonstrate the results 

on actual Internet 

topologies. 

[21] A minimum 

eccentricity-based 

controller deployment 

algorithm 

Achieve the tradeoff 

between network 

response time and the 

cost of controllers. 

Its impracticality for 

large-scale network 

topologies arises from 

its heavy reliance on 

manually assigned 

weights. 

3 Problem formulation and system 

model 

3.1 Problem formulation 

In SDN networks, communication latency includes 

queuing, transmission, propagation, and processing 

delays. When considering large network topologies such 

as WAN, our focus lies primarily on propagation latency 

due to several reasons. First, in unobstructed networks, 

queuing latency becomes negligible. Second, with 

advancements and development in SDN switches, they 

can achieve a throughput with 100 Gbps [22], [23], [24], 

so the transmission latency across long distances in SDN-

based backbone networks is minimal. Moreover, 

processing latency, influenced by controller performance, 

is typically not a concern in large networks such as WAN 

scenarios, because most controllers operate below their 

maximum capacity [25]. Therefore, propagation latency 

emerges as the dominant factor in WAN latency. 

3.2 System model 

The network topology is illustrated as a graph 𝐺 = (𝑉, 𝐸), 

where G is an undirected graph, 𝑉  is the set of nodes 

composing the graph 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁}  as 𝑁  is the 

number of nodes in the topology and 𝑣𝑖   indicates the  

𝑖𝑡ℎ node (network device) so 1 ≤ 𝑖 ≤ 𝑁 . 𝐸  is the set of 

edges or links between the nodes and 𝐸𝑖𝑗  is the link 

connecting 𝑣𝑖  with 𝑣𝑗 . We define a binary variable α𝑖𝑗  

indicates if there is a direct connection between 𝑣𝑖  and 𝑣𝑗 

so the two nodes are adjacent nodes. If they are adjacent 

to each other’s (i.e., there is a direct connection between  

 

 

 

 

them) then α𝑖𝑗 = 1 , otherwise, α𝑖𝑗 = 0 . Thus, 𝐸 =

{𝐸𝑖𝑗  | α𝑖𝑗 = 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁}  will be the set of physical 

links connecting two switches 𝑣𝑖 and 𝑣𝑗. 

 

α𝑖𝑗 = {
1,             𝑣𝑖 and 𝑣𝑗  are adjacent nodes

0,          otherwise                                   
  (1) 

 

We denote 𝐾 as the number of clusters or subnetworks in 

the topology. That means there is 𝐾 controllers placed in 

the network, and we define a set 𝐶  contains the 

controllers, so 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑖  | 𝑖 = 1,2, . . , 𝐾} . In the 

whole network, each subnetwork can be denoted as 𝑆𝐷𝑁𝑖  

which represents the 𝑖𝑡ℎ  subnetwork of the whole 

topology and it is composed of a set of switches and a 

controller 𝐶𝑖  that controls these switches. The multiple 

subnetworks in the whole network should follow the 

following requirements: 

 

𝑆𝐷𝑁𝑖 ∩ 𝑆𝐷𝑁𝑗 = 𝜙,     ∀ 𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗            (2) 

⋃ 𝑆𝐷𝑁𝑖 = 𝑉𝐾
𝑖=1             (3) 

 

Equation (2) indicates that each switch in the network can 

be controlled by one and only one controller. Equation (3) 

indicates that the sum of all subnetworks should form the 

whole network so the multiple clusters will cover all the 

switches in the network. 

We define two binary variables 𝑥𝑖𝑗  and 𝑦𝑖𝑗 as constrains 

for the network. The former variable indicates if the switch 

𝑣𝑖 is controller by the controller 𝐶𝑗 or not, while the latter 

variable indicates that the controller 𝐶𝑗 must be placed in 

a node 𝑣𝑖. 

𝑥𝑖𝑗 = {
1,
0,

 if the switch 𝑣𝑖 is controlld by the controller 𝐶𝑗 

Otherwise
      () 
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𝑦𝑖𝑗 = {
1,
0,

        if the controller 𝐶𝑗 is placed in the node 𝑣𝑖

Otherwise
       (5) 

 

The shortest path distance between each switch 

𝑣𝑖  and its controller 𝐶𝑗 is defined as 𝑑𝑖𝑗 , and as the main 

goal in CPP is to decrease the average propagation delay 

between controllers and switches, this decreasing can be 

formulated as: 

 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑗∈𝐶𝑖∈𝑉 𝑥𝑖𝑗                                                   (6) 

All the previous variables and indicators are subject 

to the following constraints: 

 

𝑥𝑖𝑗 ∈ 0,1, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶                                     (7) 

𝑦𝑖𝑗 ∈ 0,1, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶                                     (8) 

∑ 𝑥𝑖𝑗𝑗∈𝐶 = 1, ∀𝑖 ∈ 𝑉                                             (9) 

∑ 𝑦𝑖𝑗𝑗∈𝐶 ≤ 1, ∀𝑖 ∈ 𝑉                                              (10) 

∑ ∑ 𝑦𝑖𝑗 = 𝐾𝑗∈𝐶 ,   𝑖∈𝑉 ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶                   (11) 

𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 , ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶                                   (12) 
 

Constraint (7) and constraint (8) indicate the variables 

𝑥𝑖𝑗  and 𝑦𝑖𝑗  as binary variables. Constraint (9) ensures that 

each switch is controlled by one and only one controller. 

Constraint (10) makes sure that each controller can only be 

placed at a switch location and no more than one controller 

can be placed at the same node at the same time. Constraint 

(11) ensure that there are 𝐾  controllers deployed in the 

network, and constraint (12) makes sure that the switch is 

controlled by a deployed controller (i.e., the switch can’t 

be controlled by a controller if the controller is not placed 

in a node). 

The controller should be an adjacent to more than one 

switch, and not separated from switches. In other words, 

the controller should be placed in a location with more 

than one connection. If the controller is located in a node 

with only one connection, it can be a single point of 

failure. For this reason, we will use the node degree 

parameter. The node degree 𝐷𝑖  by definition is the number 

of connections that it has to other nodes in the network. 

So, placing the controller at a node with a degree of 1 is 

not a practical solution and it may affect the behavior of 

the network in the future and can cause problems in term 

of reliability. For that reason, we firstly define a node 

average degree 𝜌 s follows: 

             𝜌 = 𝑟𝑜𝑢𝑛𝑑(
∑ 𝐷𝑖

𝑁
𝑖=1

𝑁
)   () 

then, during the controller’s selection process, it should be 
assured to place the controller in a node that follow the 
condition: 

             𝐷𝑖 ≥ 𝜌, ∀𝑖 ∈ 𝐶                  () 

The average propagation delay between controllers and 
switches is defined as follows: 

         𝐿(𝐶𝑗) = ∑ 𝑑𝑖𝑗𝑖∈𝑉 𝑥𝑖𝑗                              (15) 

                 𝐿𝑎𝑣𝑔(𝐾) =
∑ 𝐿(𝐶𝑗)𝑗∈𝐶

𝑁−𝐾
                                     () 

Equation (15) calculates the propagation latency for 
each cluster, and then using equation (16) the average 
propagation latency for the whole network is calculated. 

On that basis, the description of symbols is listed and 
summarized in Table 2. 

Table 2: List of Notations 

Notation Description 

α𝑖𝑗  The binary variable that indicates 

if there is a direct connection 

between 𝑣𝑖 and 𝑣𝑗 

𝑆𝐷𝑁𝑖  The subnetwork which contains 

switches controlled by 𝐶𝑖 

𝑑𝑖𝑗  The shortest path distance between 

each switch 𝑣𝑖  and its controller 𝐶𝑗 

𝑥𝑖𝑗  The binary variable indicates if the 

switch 𝑣𝑖  is controller by the 

controller 𝐶𝑗 or not 

𝑦𝑖𝑗  The binary variable indicates that 

the controller 𝐶𝑗 must be placed in 

a node 𝑣𝑖 

𝐷𝑖  The node degree that reflects the 

number of connections that is has 

to other nodes in the network 

𝜌 The node average degree 

𝐿(𝐶𝑗) The average propagation latency 

in the cluster 𝑗 

𝐿𝑎𝑣𝑔  The average propagation latency 

in the whole network 

𝐵(𝐶𝑗) The controller load that reflects the 

number of switches the controller 

manages 

β The maximum difference between 

the loads of each two controllers 

𝐵𝐼 The balance index for the network 

4 Methodology 
In partitioning tasks, K-means is frequently used and 

known to be effective and fast [26], [27]. In our research, 

we developed an enhanced version of K-means called 

Advanced K-means, specifically for network partitioning. 

Our focus was on reducing the average delay between 

controllers and switches. We refer to the initial controller 

placements as 'centers', and after running the algorithm, 

they become 'centroids'. 

First, let’s delve into the standard K-means algorithm 

used for clustering networks. This approach contains the 

following key steps: 

1. K points from the dataset are selected randomly as 

the centers for K clusters, ensuring each cluster has 

one and only one center. 

2. Each data point is assigned to its nearest cluster 

based on Euclidean distance to the cluster center. 

3. The centers of each cluster are updated. 
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4. Repeating step 2 and 3 until there are no changes in 

cluster centers. 

However, when applied to network topology 

partitioning, standard K-means faces several limitations. 

Firstly, choosing random centers does not guarantee 

minimum propagation latency between nodes and their 

centroids. Secondly, the algorithm doesn’t ensure that 

updated centroids will be chosen from the actual nodes in 

the topology, which is crucial for establishing a real 

connection between the centroid and nodes in the cluster, 

as K-means selects the mean between two nodes. Thirdly, 

utilizing Euclidean distance does not guarantee the 

physical existence of the link between the centroid and the 

node. 

To address challenges, we introduced an advanced 

version of K-means, detailed in Algorithm 1, aimed to 

overcome the limitations of the standard K-means 

approach. The key steps in our algorithm involve 

initializing the centers, distributing nodes to clusters, and 

updating the centroids. Unlike standard K-means, our 

algorithm avoids randomly initializing of the centers, 

opting for a more effective method proposed in previous 

study [28]. This method not only reduce computational 

complexity but also ensure better convergence to a local 

minimum, making the process more efficient. 

Algorithm 1 Selecting the First Initial Center 

Input:  𝐺 = (𝑉, 𝐸), 𝑁 

1: for each 𝑖 ∈ 𝑉 do 

2:𝐷𝑖 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆𝑤𝑖𝑡𝑐ℎ𝑖  𝐷𝑒𝑔𝑟𝑒𝑒; 
3: end for; 

4:𝜌 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑁, 𝐷𝑖); 
5: first cluster = Calculate the first initial cluster center (𝐷𝑖 , 𝜌, 𝐺); 
Output first cluster centroid 

 

Algorithm 2 Network Partitioning 

Input:  𝐺 = (𝑉, 𝐸), 𝑁, 𝐾, 𝜌, 𝛽, 𝑓𝑖𝑟𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 

1: 𝐶 = 𝜙; 

2: select first initial center in Algorithm 1 as 𝐶1; 

3: compute distance 𝑑𝑖𝑗 matrix for the nodes in 

the graph; 

4: 𝑗 = 2; 

5: while 𝑗 ≤ 𝐾 do 

6: for each 𝑖 ∈ 𝑉 do 

 𝐶𝑗 = select the next initial cluster center (𝑖, 𝐶𝑗−1, 𝐺); 

7: end for; 

8: distribute switches between clusters; 

9: calculate the sum of the shortest path distances to every node  

in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and update the cluster center to be the node that has the 

minimum sum; 

10: repeat 8 and 9 until the centers are not 

updated anymore; 

11: 𝐶+= 𝐶𝑗; 

12: 𝑗+= 1;  

13: end while 

14: Calculate 𝑆𝐷𝑁𝑗 ,     ∀𝑗 ∈ 𝐶 

The Advanced K-means algorithm involves several 

key steps. Firstly, the degree of each switch in the network 

is calculated, followed by determining the average node 

degree using Equation (13). Subsequently, the switch with 

the highest degree is selected, and the condition outlined 

in (14) is applied, as detailed in Algorithm 1. In cases 

where multiple nodes share the same degree, the node with 

the minimum sum of shortest path distances to all other 

nodes is chosen. Then, the remaining clusters are formed, 

and nodes are allocated based on their proximity to the 

cluster centers, as specified in Algorithm 2.  

More specifically, nodes with a high degree centrality 

are pivotal in network communication and connectivity. 

By selecting initial centers based on the maximum node 

degree, we prioritize nodes that are highly connected 

within the network. These nodes are likely to have 

significant influence and control over neighboring nodes, 

making them strategic choices for controller placement. 

Placing controllers at high-degree nodes can help optimize 

network performance by ensuring efficient 

communication and management of network traffic. In 

addition, the sum of shortest path distances from a node to 

all other nodes in the network provides insights into its 

centrality and importance in network communication. 

Nodes with lower sums of shortest path distances are more 

centrally located within the network and have shorter 

paths to reach other nodes. By selecting initial centers 

based on nodes with the minimum sum of shortest path 

distances, we prioritize locations that are centrally located 

and well-connected to other nodes. 

Incorporating these criteria into the selection of initial 

centers ensures that controllers are strategically positioned 

to optimize network performance and minimize 

propagation delay. By leveraging nodes with high degree 

centrality and minimal distances to other nodes, our 

algorithm can effectively distribute controllers across the 

network, enhancing the overall resilience, efficiency, and 

responsiveness of SDN deployments. 

Algorithm 2's clustering process optimizes average 

propagation latency. Initially, we select the switch farthest 

from the previously chosen center as the next initial center. 

Nodes are then assigned to centers based on their 

minimum distance to the centroids. Within each cluster, 

we compute the sum of distances for every node, including 

the center, and choose the node with the smallest sum as 

the new centroid. Nodes are then redistributed according 

to the updated list of centroids, repeating this process until 

the list stabilizes under the condition outlined in (14). 

We choose a real network topology from Internet 

Topology Zoo [29] which is a store of network data 

created from the information that are published publicly 

by network operators and it is the most accurate large-

scale collection of network topologies available. The 

topology we choose is Internet 2 OS3E [30]. We chose to 

utilize the Internet2 OS3E topology for several reasons. 

Firstly, the Internet2 OS3E topology mirrors real-world 

network infrastructures utilized by research and education 

institutions. Its utilization ensures that our study reflects 

practical network scenarios. Secondly, the complexity of 

the Internet2 OS3E topology enables us to assess our 
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algorithm's scalability and effectiveness in managing 

large-scale networks with varied communication 

requirements. Additionally, the availability of publicly 

accessible data associated with the Internet2 OS3E 

topology promotes in our research endeavors. Moreover, 

the Internet2 OS3E topology enjoys widespread 

recognition and adoption as a benchmark in the 

networking research community. Leveraging this standard 

topology facilitates direct comparisons with other studies 

and algorithms, streamlining benchmarking efforts and 

enhancing the evaluation of our proposed approach. In 

summary, the selection of the Internet2 OS3E topology 

underscores our commitment to conducting rigorous, 

credible, and relevant research in the field of network 

optimization and management. OS3E topology has 34 

nodes and 41 edges. We will set the optimal controller 

number as 5 for this topology which will be explained in 

Subsection 4.1. 

The nodes average degree is calculated according to 

Equation (13) and the nodes’ degrees are listed in Table 3. 

below. As a result, there are 4 nodes has the same 

maximum degree equals to 4 which are 𝑉11, 𝑉22, 𝑉28, and 

𝑉33 . The switch 𝑉11  will be selected as the first initial 

center because it has the minimum sum of shortest path 

distance to all other nodes in the network 262.88 compared 

to 345, 401.2, and 525.5 for the other 3 nodes respectively. 

Table 3: Nodes degrees calculation for OS3E 
Nodes Switch name 𝑫𝒊 Nodes Switch name 𝑫𝒊 

1 Boston 2 18 Kansas 3 
2 New York 2 19 Memphis 2 

3 Philadelphia 2 20 Jackson 2 

4 Washington 3 21 Baton-Rouge 2 
5 Ashburn 2 22 Houston 4 

6 Pittsburg 2 23 Dallas 2 

7 Clevland 3 24 Denver 3 
8 Buffalo 2 25 Albuquerque 2 

9 Raleigh 2 26 El paso 3 

10 Indianapolis 2 27 Tucson 2 
11 Chicago 4 28 Salt Lake 4 

12 Louisville 2 29 Los Angeles 3 

13 Nashville 3 30 Sunnyvale 3 
14 Atalanta 3 31 Missoula 2 

15 Jacksonville 3 32 Portland 2 

16 Miami 1 33 Seattle 4 
17 Minneapolis 2 34 Vancouver 1 

 

4.1 Evaluation of K 

Choosing the optimal number of controllers for the 

network is not well solved problem, and the question 

“How many controllers the network needs?” is still under 

discussion since the controller placement problem was 

first introduced in [2]. Some studies suggest to use the 

least number of controllers depending on their limitations, 

such as controller load capacity, network latency and 

standards of reliability. In general, it’s hard to define the 

optimal number of controllers as the controller placement 

problem is defined as a multi-objective combinatorial 

optimization problem (MOCO) [13]. Speaking generally, 

placing more controllers in the network will definitely 

improve the performance and data processing, but at the 

same time it will cost more and may affect another 

network criteria. However, placing a minimum number of 

controllers as an efficient number and improve the 

performance at the same time is the best solution for the 

controller placement problem [2]. The best answer for the 

question “How many controllers should we deploy?” 

depends on the network administrator goals. The average 

propagation latency is 𝐿𝑎𝑣𝑔(1) = 7.7 , and to reduce this 

value to the half, 4-5 controllers are needed as 𝐿𝑎𝑣𝑔(4) =

4.1  and 𝐿𝑎𝑣𝑔(5) = 3 . In Figure 2., concerning OS3E 

topology, the correlation between the number of 

controllers deployed in the topology and the cost-benefit 

ratio, characterized as (𝐿𝑎𝑣𝑔(1) 𝐿𝑎𝑣𝑔(𝐾))/𝐾⁄ , is 

illustrated. A cost-benefit ratio approaching 1.0 indicates 

a better performance. It’s evident that there is an inflection 

point observed when the number of controllers reaches 5. 

More precisely, as the number of controllers transitions 

from 4 to 5, there is a notable 11% increase in the 

associated cost-benefit ratio. However, with a further 

increase in the number of controllers, the cost-benefit ratio 

subsequently decreases. In summary, the overall trend of 

the cost-benefit ratio shows a decreasing pattern with 

minor fluctuations, which are influenced by the 

complexities of the network topology. This implies that 

deploying 5 controllers achieves a higher cost/benefit ratio 

for reducing average propagation latency compared to 

deploying 4 controllers. However, the general line of the 

cost-benefit ratio for average propagation latency 

gradually diminishes as the number of placed controllers 

increases. Notably, when 𝐾 > 1, each indicator remains 

below 1, and an increase in the number of controllers 

reveals a diminishing effect on the cost-benefit ratio 

shown especially when the controller number increases 

from 4 to 6. 

 
Figure 2: Relationship between cost/benefit ratio and the 

number of applied controllers in OS3E. 

In [2], the experimental findings affirm that with the 

rise in the number of controllers, there is a discernible 

diminishing trend in the cost-benefit. Within the scope of 

this work, we adhere to the selection of the smallest 

number of clusters based on distinct network structures. 

This choice aligns not only with the intricacies of the 

network topology but also guarantees that the chosen 
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number of controllers attains a superior cost-benefit. As a 

conclusion, even with evaluation of 𝐾 , choosing an 

appropriate controller number is a multi-object problem. 

While some network administrators prefer to deploy more 

controllers to achieve less latency, others can accept a high 

latency to avoid the increasing cost of deploying large 

number of controllers. 

4.2 Latency-aware 

The strategic placement of controllers in a software-

defined network (SDN) plays a critical role in determining 

network performance, specifically regarding latency. 

Latency, the delay in data transmission between source 

and destination, is a critical metric influencing to overall 

efficiency and responsiveness of network operations. The 

location and distribution of controllers within an SDN 

infrastructure significantly impact how efficiently routing 

decisions are made and how swiftly these decisions are 

communicated to network devices. 

Essentially, the closeness of controllers to network 

components like switches and routers significantly 

impacts the latency encountered by data packets during 

their journey across the network. A well-designed strategy 

for placing controllers aims to minimize latency by 

strategically locating them to efficiently manage routing 

requests. Conversely, poor controller placement can cause 

unnecessary delays, resulting in higher latency and 

reduced network performance. Understanding the 

complex interplay between controller placement and 

latency is crucial for producing SDN architectures that 

meet the needs of modern, dynamic networks. Efficient 

controller placement not only decreases latency but also 

improves the network's responsiveness, scalability, and 

ability to adapt to shifting traffic patterns. 

In our investigation, we systematically evaluate the 

impact of controller placement strategies on network 

latency by comparing the average latency under two 

different scenarios: the first involves randomly selecting 

controller centers, and the second entails the application 

of Advanced K-means algorithm. The comparison is 

conducted in the context of a ratio, specifically the average 

latency divided by the optimal latency, as the number of 

controllers (K) varies from 1 to 6. The utilization of 

random centers serves as a baseline, allowing us to detect 

the efficacy of the Advanced K-means algorithm in 

optimizing controller placement. In the methodology of 

this experiment, and for accuracy, we employ a 

randomized approach for selecting controller centers, 

repeating this process 10 times for each value of K. 

subsequently, we calculate the average latency across 

these 10 randomized selections. This randomized average 

latency is then utilized as a comparative metric against the 

optimal average latency that is determined by considering 

the Advanced K-means algorithm. The resulting ratio 

offers a comprehensive measure of how well the 

randomized controller placement performs relative to an 

optimal configuration. Figure 3. shows that if we simply 

choose random centers to place the controllers, the 

average latency is between 1.3x and 1.5x larger than the 

optimal solution when 𝐾 ≤ 3, while it rises to be between 

1.5x and 1.68x larger than the optimal solution when 𝐾 >
3. The increase in latency underscores the need for more 

advanced placement algorithms beyond random selection. 

This calls for the exploration of advanced techniques to 

improve the efficiency of deploying controllers in SDN. 

 
Figure 3: Ratio of random centers selection vs. optimal. 

5 Performance evaluation 
In order to substantiate the efficacy of our proposed 

algorithm, we conduct a performance evaluation of the 

Advanced K-means. First, we compare our proposed 

approach with four solutions: POCO, CNPA, HDIDS, and 

DBCP using Internet OS3E topology in terms average 

propagation delay between controllers and their switches. 

Moreover, the maximum number of controller load (i.e., 

the maximum number of switches the controller manages) 

is evaluated compared to DPCB, POCO and CNPA. The 

simulation is conducted on Windows 11 PC with Intel 

Core i5-12500H 2.50 GHz processor and 16.0 GB RAM. 

The simulation platform for this work is MATLAB 

R2018a. 

5.1 Performance in average propagation 

latency 

To assess the efficacy of the Advanced K-means 

algorithm in reducing average propagation latency, we 

implement our proposed algorithm on the Internet OS3E 

topology. Utilizing the optimal number of controllers, set 

at 5, we conduct a comparative analysis of average 

propagation latency between controllers and their 

associated switches. This comparison involves Advanced 

K-means, as well as benchmarking against POCO, CNPA, 

HDIDS and DBCP algorithms. Figure 4. shows the 

comparison results of the average propagation latency of 

each algorithm. In evaluating the performance of our 

proposed algorithm in the context of SDN controller 

placement, we observed an average propagation latency of 

3.00 ms, surpassing other prominent algorithms in the 

field. POCO exhibited a latency of 3.37 ms, with our 

algorithm achieving a 11% reduction. Compared to 

CNPA, HDIDS and DBCP, our algorithm achieved 

reduces the average propagation latency by 7, 3 and 22% 
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respectively. This is because Advanced K-means uses the 

minimum shortest path distance during the updating 

controllers’ list in each sub-network. While DBCP and 

CNPA deploy a controller in each cluster in the network, 

they neglect the consideration of the node degree during 

network partitioning and focus more on centers’ density. 

Additionally, POCO exhibits suboptimal performance, 

primarily attributed to an imbalance condition where the 

latency between controllers is excessively emphasized, 

and unlike POCO, Advanced K-means doesn’t distribute 

the controllers near to each other’s to decrease the latency 

among controllers which may increase the latency 

between the switches and their controllers. The closest 

algorithm to ours in terms of average latency is HDIDS, 

because they both use the degree of the node as a 

parameter for being selected as a center but HDIDS 

doesn’t take into consideration the distance between that 

node and the previous center. As a result, Advanced K-

means outperform POCO, HDIDS, CNPA and DBCP on 

reducing the average propagation delay between the nodes 

and centers. 

 
Figure 4: Comparison of average latency on OS3E 

topology with other algorithms. 

5.2 Controller load evaluation 

The placement of controllers in inappropriate locations is 

recognized to result in the occurrence of controller 

overload, characterized by extended response times and 

insufficient processing capacity. Additionally, such 

improper placement leads to the under-utilization of 

network resources. To evaluate the controller load among 

different algorithms we compare the maximum number of 

nodes connected to a single controller in each strategy that 

are DBCP, POCO, CNPA and Advances K-means with an 

increasing number of controllers. 

The results in Figure 5. illustrates the maximum 

controller load for different algorithms as the number of 

controllers increases from 2 to 6. It is evident that, at 𝐾 =
2 , all algorithms exhibit relatively high maximum 

controller loads, with DBCP, CNPA and POCO reaching 

a load of 22, while Advances K-means has a slightly 

higher load of 25. As the number of controllers increases, 

our algorithm exhibits enhanced performance, 

manifesting in a diminishing gap compared to other 

algorithms. Notably, it surpasses POCO and DBCP, 

achieving parity with CNPA when the controller number 

reaches 5. Furthermore, our algorithm demonstrates a 

reduced load in comparison to DBCP, while maintaining 

load equivalence with POCO and CNPA. These findings 

underscore the achieving competitive performance with 

other algorithms even if it focuses on reducing the average 

latency between controller and switches as it achieves 

comparable or superior results compared to existing 

algorithms. It can be explained as our algorithm selects the 

centroids far from each other, so the load can be 

distributed among the controllers as balanced as possible. 

 
Figure 5: Maximum controller load comparison with 

different approaches in OS3E. 

6 Discussion 
In this section, we have conducted an in-depth analysis to 

clarify the key differences and contributions of our 

proposed algorithm, and we also discuss some potential 

limitations that may affect our algorithms’ applicability.  

6.1 Comparative analysis 

In this subsection, we analyze why some disparities exist 

between our results and those of state-of-the-art (SOTA) 

solutions. One of the key factors contributing to the 

disparities between our results and those of SOTA 

solutions is the inherent differences in the methodologies 

and algorithms employed. While our study focuses on the 

Advanced K-Means algorithm for controller placement 

optimization in SDN networks, SOTA solutions may 

utilize alternative algorithms, heuristics, or optimization 

techniques. These differences in approach can lead to 

variations in performance metrics, such as average 

propagation latency, controller load distribution, and 

scalability. 

Additionally, disparities may arise due to variations in 

experimental setups, including network topologies, traffic 

patterns, and simulation parameters. Our study utilizes the 

Internet2 OS3E topology for evaluation, which may differ 

from the topologies used in SOTA solutions. Variations in 

network characteristics and configurations can influence 
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the performance of algorithms and impact the 

comparability of results. 

Furthermore, disparities may stem from differences in 

the evaluation criteria and metrics employed across 

studies. While our study focuses on optimizing average 

propagation latency and controller load distribution, 

SOTA solutions may prioritize other performance metrics 

or objectives, such as fault tolerance, reliability, or energy 

efficiency. Variations in evaluation criteria can lead to 

divergent results and interpretations, highlighting the 

importance of considering a comprehensive set of metrics 

when assessing algorithm performance. 

 Unlike previous approaches that primarily focus on 

clustering based on factors such as density or random 

initialization, the key aspect of our algorithm is its 

utilization of node degree and shortest path distance 

metrics for selecting optimal controller locations and 

partitioning the network into sub-networks. By 

prioritizing nodes with high degrees and minimizing the 

sum of shortest path distances to all other nodes, our 

algorithm effectively minimizes propagation latency and 

ensures efficient resource utilization. In addition, this 

controller placement strategy, which relies on node degree 

and shortest path metrics, facilitates the reasonable 

distribution of workload among controllers. By leveraging 

these metrics and ensuring that initial centroids are 

positioned sufficiently apart from each other, our 

algorithm aims to identify central and well-connected 

nodes in the network as well as enhances the effectiveness 

of traffic load balancing, thereby mitigating congestion 

and bottlenecks more effectively. Placing controllers at 

these strategic locations can rise the overall efficiency and 

effectiveness of network management, as controllers 

positioned closer to high-degree nodes can do a greater 

control over network traffic and communication. Thus, we 

acknowledge that certain disparities may arise between 

our results and those of existing solutions due to various 

factors, including differences in algorithmic approaches. 

Our algorithm incorporates several enhancements, such as 

considering node degree and shortest path distance during 

network partitioning, which may contribute to its superior 

performance compared to previous approaches. This 

unique approach to controller placement may have 

influenced the observed results compared to related works 

that employ different placement strategies or algorithms. 

6.2 Potential Limitations 

While the Advanced K-Means algorithm demonstrates 

promising performance in optimizing controller 

placement in SDN networks, we acknowledge that 

scalability could be a potential limitation, particularly in 

large-scale network deployments. As with any clustering 

algorithm, the computational complexity of Advanced K-

Means may increase with the size and complexity of the 

network topology. In scenarios where the number of 

switches and controllers is large, the algorithm may 

encounter challenges in terms of computational resources 

and execution time. To mitigate scalability issues, future 

research could explore optimization techniques or 

parallelization strategies to enhance the efficiency of the 

algorithm and enable its applicability to larger network 

deployments. Another consideration is the adaptability of 

the Advanced K-Means algorithm to diverse network 

topologies. While our evaluation on real network 

topologies from the Internet Topology Zoo demonstrates 

promising results, it is essential to recognize that the 

algorithm's performance may vary depending on the 

specific characteristics of the network. Certain network 

topologies, such as highly dense or sparse networks, may 

pose challenges for the algorithm in terms of achieving 

optimal controller placement and minimizing propagation 

latency. It is important to consider any underlying 

assumptions that may limit the applicability of the 

Advanced K-Means algorithm. For instance, the algorithm 

assumes that network topology information, including 

node degree and shortest path distances, is accurately 

available for analysis and computation. Additionally, the 

algorithm may implicitly assume homogeneous network 

conditions and uniform traffic patterns, which may not 

always hold true in real-world deployments. In 

conclusion, while the Advanced K-Means algorithm 

presents a promising approach to controller placement 

optimization in SDN networks, we acknowledge the need 

for further exploration of its limitations and considerations 

for scalability, adaptability, and underlying assumptions. 

By addressing these concerns, we aim to enhance the 

robustness and applicability of the algorithm in different 

real-world network deployments. 

7 Conclusion and future works 
In this work, we discuss the SDN controller placement 

problem by optimizing the average propagation latency 

and the number of controllers required for the network. An 

advanced K-means algorithm is proposed and applied to 

reduce the average delay between the controllers and 

switches. Firstly, the number of controllers required for 

the network is discussed and calculated in terms of the 

cost-benefit ratio. Secondly, the first initial controller is 

selected based on the node degree to ensure not to choose 

a controller with a degree of one. After selecting the first 

initial center, the next center is chosen based on the largest 

distance to the previous selected center to ensure the well-

distribution of the switches to the selected controllers. 

Then, the switches are distributed among the controllers 

based on the minimum shortest path distance between the 

switch and each controller. The sum of the shortest path 

distances to every node in the cluster is calculated and the 

node with a minimum sum will be chosen as a new center 

for the cluster and the cluster center is updated. We repeat 

this process until the required number of controllers is 

placed. For performance evaluation, a simulation is 

conducted using a topology of Internet OS3E from 

Topology Zoo as it is a well-known and the most used 

topology for controller placement problem. The 

simulation results verify that our algorithm reduce the 

average propagation delay between the controllers and 

their assigned switches by 22, 11, 7 and 3% compared to 

DBCP, POCO, CNPA and HDIDS respectively. For the 

load balancing, we compare the maximum controller load 

for different algorithms as the number of controllers 
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increases from 2 to 6. For small number of controllers, our 

algorithm has a slightly higher load of 25 switches, and as 

the number of controllers increases, it exhibits enhanced 

performance, manifesting in a diminishing gap compared 

to other algorithms. Notably, it surpasses POCO and 

DBCP, achieving parity with CNPA when the controller 

number reaches 5. These findings underscore the 

achieving competitive performance with other algorithms 

even if it focuses on reducing the average latency between 

controller and switches as it achieves comparable or 

superior results compared to existing algorithms. 

In future works, other metrics such as resilience, 

reliability and energy saving can be addressed so the 

controller placement decision can be more accurate. 
Firstly, regarding resilience, future research could focus 

on developing algorithms and strategies to improve the 

robustness of SDN networks against failures and attacks. 

This may involve designing fault-tolerant controller 

placement algorithms that can dynamically adapt to 

network changes and disruptions while ensuring 

continuous service availability. Secondly, in terms of 

reliability, there is a need to investigate methods for 

enhancing the reliability of controller communication and 

coordination in distributed SDN environments. This could 

involve exploring redundant communication paths, load 

balancing techniques, and fault detection mechanisms to 

minimize the impact of controller failures on network 

operations. Lastly, with respect to energy saving, future 

research efforts could explore energy-efficient controller 

placement strategies and network management 

techniques. This may include optimizing the allocation of 

resources, reducing idle energy consumption, and 

leveraging energy-aware scheduling algorithms to 

minimize energy usage while maintaining network 

performance. By addressing these future directions, we 

aim to contribute to the development of more resilient, 

reliable, and energy efficient SDN networks. These efforts 

not only advance the state-of-the-art in network 

management but also have the potential to yield 

significant benefits in terms of cost savings, 

environmental sustainability, and overall network 

performance. 
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