
https://doi.org/10.31449/inf.v48i8.5846 Informatica 48 (2024) 165–176 165

Optimizing SDN Controller to Switch Latency for Controller

Placement Problem

Firas Zobary

School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China.

Email: firas_zobary@hotmail.com

Keywords: SDN, clustering, controller placement, latency

Received: March 6, 2024

Software-Defined Networking (SDN) updates network flexibility by decoupling the data plane from

control planes, employing a logically centralized yet physically distributed multi-controller architecture.

The optimal placement of controllers and their quantity presents a significant challenge known as the

Controller Placement Problem (CPP). This study addresses the optimization of average propagation

delay between controllers and switches, introducing an enhancement version of well-known K-Means

algorithm for network partitioning and controller placement, called an Advanced K-Means algorithm.

The proposed algorithm strategically minimizes the average propagation delay by situating controllers in

optimal nodes within each sub-network. Evaluation through simulations on the Internet OS3E topology

demonstrates the algorithm's efficacy, showcasing a 22%, 11%, 7%, and 3% reduction in average

propagation delay compared to DBCP, POCO, CNPA, and HDIDS, respectively. These results establish

the proposed algorithm as a competitive solution, emphasizing its capacity to achieve comparable or

superior performance in mitigating latency between controllers and switches when compared to existing

algorithms.

Povzetek: Ta študija izboljšuje optimizacijo latence med krmilniki SDN in stikali z uvedbo naprednega

algoritma K-Means za učinkovito reševanje problema postavitve krmilnikov.

1 Introduction
Nowadays, a massive amount of data leads to cause

network traffic and inflexible mobility in future mobile

networks [1]. SDN has emerged as a transformative

paradigm in the field of networking, updating the way

networks are designed, managed, and operated. At the

heart of SDN lies the centralized control plane, governed

by SDN controllers that apply a new authority over

network devices. The strategic placement of these

controllers is a critical aspect of SDN architecture,

influencing the efficiency, responsiveness, and overall

performance of the network. The controller has an

important role in managing tasks such as routing through

the maintenance of switch forwarding tables, while

switches in data plane primarily handle packet forwarding

functions. When a new routing path is needed at the data

plane layer, switches need to coordinate with their

designated controller for guidance on routing decisions. In

the expansion of SDN networks, employing multiple

controllers becomes necessary to overcome bottlenecks

encountered with a single physical controller, as

illustrated in Figure 1. A solitary centralized controller

struggles to meet high demands of flow processing,

particularly when incoming packets lack matches in the

existing flow entries at the switch [2].

Additionally, a singular controller faces limitations in

scalability, resilience, security, and other aspects [3].

Hence, a multi-controller environment becomes urgent for

effectively managing large-scale SDN networks. The

placement of SDN controllers plays a crucial role in

shaping the dynamics of communication within the

network. Controllers acts as the orchestrators, overseeing

and directing the flow of data packets, and their strategic

positioning has a profound impact on factors such as

latency, load balancing, and resource utilization. The

complexity of modern networks, characterized by diverse

topologies and dynamic traffic patterns, necessitates

careful consideration in determining optimal controller

locations.

One of the primary challenges in SDN deployment is the

Controller Placement Problem (CPP), a complex issue that

demands thoughtful analysis and innovative solutions.

The objective of CPP is to determine the optimal number

and locations of controllers in a network, striking a

delicate balance between minimizing latency, ensuring

load distribution, and maximizing the utilization of

network resources. Addressing the CPP is essential for

realizing the full potential of SDN, as improper controller

placement can lead to issues such as long response times,

and inefficient resource utilization.

mailto:firas_zobary@hotmail.com

166 Informatica 48 (2024) 165–176 F. Zobary

Figure 1: Single controller structure.

To optimize the controller placement problem in

terms of controller to switch average propagation latency,

a development of K-means algorithm is introduced, called

Advanced K-means algorithm, to enhance the network

partitioning process and distribute the controllers in

optimal places to avoid the high latency between the

controllers and the switches they are managing. The

proposed algorithm aims strategically position the

controllers, minimizing the average propagation delays

and enhancing the responsiveness of the network. In terms

of performance evaluation, we compare our proposed

algorithm to some of existing literatures, benchmarking

our work against state-of-the-art algorithms. Through this

rigorous evaluation, we seek to contribute valuable

insights into the realm of SDN controller placement,

offering a novel approach that addresses the complex

details of latency optimization in dynamic network

environments.

2 Related works
Determining the optimal placement of SDN controller is a

significant challenge for network administrator and

designer because the location of the controller affects the

network’s ability to manage the traffic efficiently,

especially when the network is large and complex. The

first work addressed the controller placement problem was

done by Heller et al.[2] in which the authors adopted a

mathematical model that is used for facility location

problem and used it for CPP. As the controller manages

several switches and may has a global view of the whole

topology [4]. Therefore, to locate appropriate positions for

the controllers, it is necessary to partition the network into

several clusters that are well-suited [5]. However,

clustering the network will bring some tradeoff between

several network metrics such as network delay and load

balancing [5], [6]. Mamushiane et al [7] asked a question

about how many controllers are needed and where should

they go given an SDN topology. They proposed three

algorithms to address the controller placement problem,

namely, Silhouette Analysis, Gap Statistic, and Partition

Around Medoids (PAM), but first they mentioned only the

metric of latency. However, their algorithms are accurate

but are exhaustive and don’t work well in the presence of

time constraints. In [8] and [9], the same authors proposed

two different algorithms, High Degree with Independent

Dominating Set (HDIDS) and Connected Dominating Set

(CDS). However, in both works, the controllers are

positioned in nodes with maximum connection degree,

and they didn’t take into consideration the controllers’

loads and its effect on latency. A mathematical model in

[10] was mapped into CPP and considered only the

controller latency, but the authors didn’t mention the

effect of this model on the controller loads. Several

research efforts [11], [12] used clustering algorithms to

discuss and solve the controller placement problem. In

clustering approach, the whole network is divided into

several subnetworks, each subnetwork is controlled by

one single controller. Lange et al. [13] proposed a Pareto-

based Optimal COntroller placement algorithm (POCO)

for CPP based one optimizing multi-objectives

simultaneously, but it consumes excessive time to select

the optimal controller locations. Wang et al. [14] designed

a Clustering-based Network Partition Algorithm (CNPA)

with the aim of minimizing delay between controllers and

switches. However, it has been noted that CNPA often

converges to local optimal solutions, potentially limiting

its effectiveness. Many criteria should be addressed during

the controller placement process. Network delay and load

balancing are the most important parameters that should

be taken into consideration during the network

partitioning and finding the controller location. However,

the propagation delay done in some research is not clearly

defined. The authors in [15] defined the reliability of the

network by estimating the control path loss percentage

using a defined metric. However, they assumed that the

switches could connect to the nearest controller but they

didn’t consider the controller’s load as a factor. The well-

known method called 𝐾 -center is used in [2], [16] for

controller placement, but the Euclidean distance is used to

define the delay which is not suitable and accurate to be

used in a real network topology. Moreover, the approaches

begin by randomly initializing the centers. In each

iteration, they assign switches to new centers until there

are no further changes in the clusters. However, this

method does not ensure the minimum propagation delay.

For instance, in [14], it was noted that the delay may

increase with the introduction of a new center, compared

to the previous cluster. Density-based clustering

techniques are widely used in data mining on various

fields. DBSCAN is one of the most popular density-based

clustering algorithms, characterized by its ability to

discover clusters with different shapes and sizes, and to

separate noise and outliers [17]. In [18], the authors

proposed a Density Based Controller Placement DBCP for

SDN. A virtual network embedding problem for SDN has

been presented in [19] and its assignment to real physical

resources depends on minimizing the delay between the

controller and the switch in the virtual network. In [20],

the placement of controllers in IoT based on SDN was

examined using a sub-modularity approach that relied on

a heuristic method. However, the authors did not

Optimizing SDN Controller to Switch Latency for Controller… Informatica 48 (2024) 165–176 167

investigate E2E latency and did not demonstrate the

results on actual internet topologies. An iterative

algorithm was introduced in [21] as a solution to CPP.

However, its impracticality for large-scale network

topologies arises from its heavy reliance on manually

assigned weights. Table 1. collates key findings from

referenced research, focusing on their methodologies,

strengths, and limitations.

Table 1: Literature works and limitations.

Related Works Methodology Strengths Limitations

[2] Standard K-means Minimize latency and

consideration of diverse

network topologies.

Using Euclidean

distance is not accurate

for network topology

partitioning.

[7] Silhouette Analysis,

Gap Statistic, and

Partition Around

Medoids (PAM)

These techniques are

well-suited for

analyzing complex

network topologies.

- They didn’t mention

metrics such as load

balancing.

- They are exhaustive

and don’t work well in

the presence of time

constraints.

[8], [9] High Degree with

Independent

Dominating Set

(HDIDS) and

Connected Dominating

Set (CDS)

Select controllers based

on their connection

degrees and minimizing

the average response

time between each

controller and its

forwarding nodes.

Focusing only on

latency and node

degrees without taking

controller load into

consideration.

[10] Hierarchical clustering

technique

Decreasing the number

of controllers using

merging function.

Other metrics such as

load balancing are not

considered.

[12] Pareto Integrated Tabu

Search (PITS)

Addressing both the

controllers’ number and

locations.

The identification of

articulation points to

calculate the

controllers’ number

may not adequately

account for dynamic

network behaviors.

[15] Greedy-SA algorithm Defining the reliability

of the network by

estimating the control

path loss percentage.

They assumed that the

switches could connect

to the nearest

controller, but they

didn’t consider the

controller’s load as a

factor.

[16] Capacitated K-center Reduce the number of

required controllers,

reduce the load of the

maximum-load

controller.

They focus only on

controllers’ load

without mentioning

latency.

[13] Pareto-based Optimal

COntroller placement

algorithm (POCO)

Optimizing multi-

objectives

simultaneously.

it consumes excessive

time to select the

optimal controller

locations.

[14] Clustering-based

Network Partition

Algorithm CNPA

Decrease the maximum

end-to-end latency

between controllers and

It tends to fall into

local optimal

solutions, potentially

168 Informatica 48 (2024) 165–176 F. Zobary

their associated

switches.

limiting its

effectiveness.

[18] Density Based

Controller Placement

DBCP

It provides the fast

response with minimum

iterations.

This work is only

scalability-aware

without focusing on

controller load.

[20] Submodularity

optimization approach

Address different

aspects of the controller

placement problem in a

distributed network.

The authors did not

investigate E2E

latency and did not

demonstrate the results

on actual Internet

topologies.

[21] A minimum

eccentricity-based

controller deployment

algorithm

Achieve the tradeoff

between network

response time and the

cost of controllers.

Its impracticality for

large-scale network

topologies arises from

its heavy reliance on

manually assigned

weights.

3 Problem formulation and system

model

3.1 Problem formulation

In SDN networks, communication latency includes

queuing, transmission, propagation, and processing

delays. When considering large network topologies such

as WAN, our focus lies primarily on propagation latency

due to several reasons. First, in unobstructed networks,

queuing latency becomes negligible. Second, with

advancements and development in SDN switches, they

can achieve a throughput with 100 Gbps [22], [23], [24],

so the transmission latency across long distances in SDN-

based backbone networks is minimal. Moreover,

processing latency, influenced by controller performance,

is typically not a concern in large networks such as WAN

scenarios, because most controllers operate below their

maximum capacity [25]. Therefore, propagation latency

emerges as the dominant factor in WAN latency.

3.2 System model

The network topology is illustrated as a graph 𝐺 = (𝑉, 𝐸),

where G is an undirected graph, 𝑉 is the set of nodes

composing the graph 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} as 𝑁 is the

number of nodes in the topology and 𝑣𝑖 indicates the

𝑖𝑡ℎ node (network device) so 1 ≤ 𝑖 ≤ 𝑁 . 𝐸 is the set of

edges or links between the nodes and 𝐸𝑖𝑗 is the link

connecting 𝑣𝑖 with 𝑣𝑗 . We define a binary variable α𝑖𝑗

indicates if there is a direct connection between 𝑣𝑖 and 𝑣𝑗

so the two nodes are adjacent nodes. If they are adjacent

to each other’s (i.e., there is a direct connection between

them) then α𝑖𝑗 = 1 , otherwise, α𝑖𝑗 = 0 . Thus, 𝐸 =

{𝐸𝑖𝑗 | α𝑖𝑗 = 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁} will be the set of physical

links connecting two switches 𝑣𝑖 and 𝑣𝑗.

α𝑖𝑗 = {
1, 𝑣𝑖 and 𝑣𝑗 are adjacent nodes

0, otherwise
 (1)

We denote 𝐾 as the number of clusters or subnetworks in

the topology. That means there is 𝐾 controllers placed in

the network, and we define a set 𝐶 contains the

controllers, so 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑖 | 𝑖 = 1,2, . . , 𝐾} . In the

whole network, each subnetwork can be denoted as 𝑆𝐷𝑁𝑖

which represents the 𝑖𝑡ℎ subnetwork of the whole

topology and it is composed of a set of switches and a

controller 𝐶𝑖 that controls these switches. The multiple

subnetworks in the whole network should follow the

following requirements:

𝑆𝐷𝑁𝑖 ∩ 𝑆𝐷𝑁𝑗 = 𝜙, ∀ 𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 (2)

⋃ 𝑆𝐷𝑁𝑖 = 𝑉𝐾
𝑖=1 (3)

Equation (2) indicates that each switch in the network can

be controlled by one and only one controller. Equation (3)

indicates that the sum of all subnetworks should form the

whole network so the multiple clusters will cover all the

switches in the network.

We define two binary variables 𝑥𝑖𝑗 and 𝑦𝑖𝑗 as constrains

for the network. The former variable indicates if the switch

𝑣𝑖 is controller by the controller 𝐶𝑗 or not, while the latter

variable indicates that the controller 𝐶𝑗 must be placed in

a node 𝑣𝑖.

𝑥𝑖𝑗 = {
1,
0,

 if the switch 𝑣𝑖 is controlld by the controller 𝐶𝑗

Otherwise
 ()

Optimizing SDN Controller to Switch Latency for Controller… Informatica 48 (2024) 165–176 169

𝑦𝑖𝑗 = {
1,
0,

 if the controller 𝐶𝑗 is placed in the node 𝑣𝑖

Otherwise
 (5)

The shortest path distance between each switch

𝑣𝑖 and its controller 𝐶𝑗 is defined as 𝑑𝑖𝑗 , and as the main

goal in CPP is to decrease the average propagation delay

between controllers and switches, this decreasing can be

formulated as:

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑗∈𝐶𝑖∈𝑉 𝑥𝑖𝑗 (6)

All the previous variables and indicators are subject

to the following constraints:

𝑥𝑖𝑗 ∈ 0,1, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶 (7)

𝑦𝑖𝑗 ∈ 0,1, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶 (8)

∑ 𝑥𝑖𝑗𝑗∈𝐶 = 1, ∀𝑖 ∈ 𝑉 (9)

∑ 𝑦𝑖𝑗𝑗∈𝐶 ≤ 1, ∀𝑖 ∈ 𝑉 (10)

∑ ∑ 𝑦𝑖𝑗 = 𝐾𝑗∈𝐶 , 𝑖∈𝑉 ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶 (11)

𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 , ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝐶 (12)

Constraint (7) and constraint (8) indicate the variables

𝑥𝑖𝑗 and 𝑦𝑖𝑗 as binary variables. Constraint (9) ensures that

each switch is controlled by one and only one controller.

Constraint (10) makes sure that each controller can only be

placed at a switch location and no more than one controller

can be placed at the same node at the same time. Constraint

(11) ensure that there are 𝐾 controllers deployed in the

network, and constraint (12) makes sure that the switch is

controlled by a deployed controller (i.e., the switch can’t

be controlled by a controller if the controller is not placed

in a node).

The controller should be an adjacent to more than one

switch, and not separated from switches. In other words,

the controller should be placed in a location with more

than one connection. If the controller is located in a node

with only one connection, it can be a single point of

failure. For this reason, we will use the node degree

parameter. The node degree 𝐷𝑖 by definition is the number

of connections that it has to other nodes in the network.

So, placing the controller at a node with a degree of 1 is

not a practical solution and it may affect the behavior of

the network in the future and can cause problems in term

of reliability. For that reason, we firstly define a node

average degree 𝜌 s follows:

 𝜌 = 𝑟𝑜𝑢𝑛𝑑(
∑ 𝐷𝑖

𝑁
𝑖=1

𝑁
) ()

then, during the controller’s selection process, it should be
assured to place the controller in a node that follow the
condition:

 𝐷𝑖 ≥ 𝜌, ∀𝑖 ∈ 𝐶 ()

The average propagation delay between controllers and
switches is defined as follows:

 𝐿(𝐶𝑗) = ∑ 𝑑𝑖𝑗𝑖∈𝑉 𝑥𝑖𝑗 (15)

 𝐿𝑎𝑣𝑔(𝐾) =
∑ 𝐿(𝐶𝑗)𝑗∈𝐶

𝑁−𝐾
 ()

Equation (15) calculates the propagation latency for
each cluster, and then using equation (16) the average
propagation latency for the whole network is calculated.

On that basis, the description of symbols is listed and
summarized in Table 2.

Table 2: List of Notations

Notation Description

α𝑖𝑗 The binary variable that indicates

if there is a direct connection

between 𝑣𝑖 and 𝑣𝑗

𝑆𝐷𝑁𝑖 The subnetwork which contains

switches controlled by 𝐶𝑖

𝑑𝑖𝑗 The shortest path distance between

each switch 𝑣𝑖 and its controller 𝐶𝑗

𝑥𝑖𝑗 The binary variable indicates if the

switch 𝑣𝑖 is controller by the

controller 𝐶𝑗 or not

𝑦𝑖𝑗 The binary variable indicates that

the controller 𝐶𝑗 must be placed in

a node 𝑣𝑖

𝐷𝑖 The node degree that reflects the

number of connections that is has

to other nodes in the network

𝜌 The node average degree

𝐿(𝐶𝑗) The average propagation latency

in the cluster 𝑗

𝐿𝑎𝑣𝑔 The average propagation latency

in the whole network

𝐵(𝐶𝑗) The controller load that reflects the

number of switches the controller

manages

β The maximum difference between

the loads of each two controllers

𝐵𝐼 The balance index for the network

4 Methodology
In partitioning tasks, K-means is frequently used and

known to be effective and fast [26], [27]. In our research,

we developed an enhanced version of K-means called

Advanced K-means, specifically for network partitioning.

Our focus was on reducing the average delay between

controllers and switches. We refer to the initial controller

placements as 'centers', and after running the algorithm,

they become 'centroids'.

First, let’s delve into the standard K-means algorithm

used for clustering networks. This approach contains the

following key steps:

1. K points from the dataset are selected randomly as

the centers for K clusters, ensuring each cluster has

one and only one center.

2. Each data point is assigned to its nearest cluster

based on Euclidean distance to the cluster center.

3. The centers of each cluster are updated.

170 Informatica 48 (2024) 165–176 F. Zobary

4. Repeating step 2 and 3 until there are no changes in

cluster centers.

However, when applied to network topology

partitioning, standard K-means faces several limitations.

Firstly, choosing random centers does not guarantee

minimum propagation latency between nodes and their

centroids. Secondly, the algorithm doesn’t ensure that

updated centroids will be chosen from the actual nodes in

the topology, which is crucial for establishing a real

connection between the centroid and nodes in the cluster,

as K-means selects the mean between two nodes. Thirdly,

utilizing Euclidean distance does not guarantee the

physical existence of the link between the centroid and the

node.

To address challenges, we introduced an advanced

version of K-means, detailed in Algorithm 1, aimed to

overcome the limitations of the standard K-means

approach. The key steps in our algorithm involve

initializing the centers, distributing nodes to clusters, and

updating the centroids. Unlike standard K-means, our

algorithm avoids randomly initializing of the centers,

opting for a more effective method proposed in previous

study [28]. This method not only reduce computational

complexity but also ensure better convergence to a local

minimum, making the process more efficient.

Algorithm 1 Selecting the First Initial Center

Input: 𝐺 = (𝑉, 𝐸), 𝑁

1: for each 𝑖 ∈ 𝑉 do

2:𝐷𝑖 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆𝑤𝑖𝑡𝑐ℎ𝑖 𝐷𝑒𝑔𝑟𝑒𝑒;
3: end for;

4:𝜌 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑁, 𝐷𝑖);
5: first cluster = Calculate the first initial cluster center (𝐷𝑖 , 𝜌, 𝐺);
Output first cluster centroid

Algorithm 2 Network Partitioning

Input: 𝐺 = (𝑉, 𝐸), 𝑁, 𝐾, 𝜌, 𝛽, 𝑓𝑖𝑟𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟

1: 𝐶 = 𝜙;

2: select first initial center in Algorithm 1 as 𝐶1;

3: compute distance 𝑑𝑖𝑗 matrix for the nodes in

the graph;

4: 𝑗 = 2;

5: while 𝑗 ≤ 𝐾 do

6: for each 𝑖 ∈ 𝑉 do

 𝐶𝑗 = select the next initial cluster center (𝑖, 𝐶𝑗−1, 𝐺);

7: end for;

8: distribute switches between clusters;

9: calculate the sum of the shortest path distances to every node

in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and update the cluster center to be the node that has the

minimum sum;

10: repeat 8 and 9 until the centers are not

updated anymore;

11: 𝐶+= 𝐶𝑗;

12: 𝑗+= 1;

13: end while

14: Calculate 𝑆𝐷𝑁𝑗 , ∀𝑗 ∈ 𝐶

The Advanced K-means algorithm involves several

key steps. Firstly, the degree of each switch in the network

is calculated, followed by determining the average node

degree using Equation (13). Subsequently, the switch with

the highest degree is selected, and the condition outlined

in (14) is applied, as detailed in Algorithm 1. In cases

where multiple nodes share the same degree, the node with

the minimum sum of shortest path distances to all other

nodes is chosen. Then, the remaining clusters are formed,

and nodes are allocated based on their proximity to the

cluster centers, as specified in Algorithm 2.

More specifically, nodes with a high degree centrality

are pivotal in network communication and connectivity.

By selecting initial centers based on the maximum node

degree, we prioritize nodes that are highly connected

within the network. These nodes are likely to have

significant influence and control over neighboring nodes,

making them strategic choices for controller placement.

Placing controllers at high-degree nodes can help optimize

network performance by ensuring efficient

communication and management of network traffic. In

addition, the sum of shortest path distances from a node to

all other nodes in the network provides insights into its

centrality and importance in network communication.

Nodes with lower sums of shortest path distances are more

centrally located within the network and have shorter

paths to reach other nodes. By selecting initial centers

based on nodes with the minimum sum of shortest path

distances, we prioritize locations that are centrally located

and well-connected to other nodes.

Incorporating these criteria into the selection of initial

centers ensures that controllers are strategically positioned

to optimize network performance and minimize

propagation delay. By leveraging nodes with high degree

centrality and minimal distances to other nodes, our

algorithm can effectively distribute controllers across the

network, enhancing the overall resilience, efficiency, and

responsiveness of SDN deployments.

Algorithm 2's clustering process optimizes average

propagation latency. Initially, we select the switch farthest

from the previously chosen center as the next initial center.

Nodes are then assigned to centers based on their

minimum distance to the centroids. Within each cluster,

we compute the sum of distances for every node, including

the center, and choose the node with the smallest sum as

the new centroid. Nodes are then redistributed according

to the updated list of centroids, repeating this process until

the list stabilizes under the condition outlined in (14).

We choose a real network topology from Internet

Topology Zoo [29] which is a store of network data

created from the information that are published publicly

by network operators and it is the most accurate large-

scale collection of network topologies available. The

topology we choose is Internet 2 OS3E [30]. We chose to

utilize the Internet2 OS3E topology for several reasons.

Firstly, the Internet2 OS3E topology mirrors real-world

network infrastructures utilized by research and education

institutions. Its utilization ensures that our study reflects

practical network scenarios. Secondly, the complexity of

the Internet2 OS3E topology enables us to assess our

Optimizing SDN Controller to Switch Latency for Controller… Informatica 48 (2024) 165–176 171

algorithm's scalability and effectiveness in managing

large-scale networks with varied communication

requirements. Additionally, the availability of publicly

accessible data associated with the Internet2 OS3E

topology promotes in our research endeavors. Moreover,

the Internet2 OS3E topology enjoys widespread

recognition and adoption as a benchmark in the

networking research community. Leveraging this standard

topology facilitates direct comparisons with other studies

and algorithms, streamlining benchmarking efforts and

enhancing the evaluation of our proposed approach. In

summary, the selection of the Internet2 OS3E topology

underscores our commitment to conducting rigorous,

credible, and relevant research in the field of network

optimization and management. OS3E topology has 34

nodes and 41 edges. We will set the optimal controller

number as 5 for this topology which will be explained in

Subsection 4.1.

The nodes average degree is calculated according to

Equation (13) and the nodes’ degrees are listed in Table 3.

below. As a result, there are 4 nodes has the same

maximum degree equals to 4 which are 𝑉11, 𝑉22, 𝑉28, and

𝑉33 . The switch 𝑉11 will be selected as the first initial

center because it has the minimum sum of shortest path

distance to all other nodes in the network 262.88 compared

to 345, 401.2, and 525.5 for the other 3 nodes respectively.

Table 3: Nodes degrees calculation for OS3E
Nodes Switch name 𝑫𝒊 Nodes Switch name 𝑫𝒊

1 Boston 2 18 Kansas 3
2 New York 2 19 Memphis 2

3 Philadelphia 2 20 Jackson 2

4 Washington 3 21 Baton-Rouge 2
5 Ashburn 2 22 Houston 4

6 Pittsburg 2 23 Dallas 2

7 Clevland 3 24 Denver 3
8 Buffalo 2 25 Albuquerque 2

9 Raleigh 2 26 El paso 3

10 Indianapolis 2 27 Tucson 2
11 Chicago 4 28 Salt Lake 4

12 Louisville 2 29 Los Angeles 3

13 Nashville 3 30 Sunnyvale 3
14 Atalanta 3 31 Missoula 2

15 Jacksonville 3 32 Portland 2

16 Miami 1 33 Seattle 4
17 Minneapolis 2 34 Vancouver 1

4.1 Evaluation of K

Choosing the optimal number of controllers for the

network is not well solved problem, and the question

“How many controllers the network needs?” is still under

discussion since the controller placement problem was

first introduced in [2]. Some studies suggest to use the

least number of controllers depending on their limitations,

such as controller load capacity, network latency and

standards of reliability. In general, it’s hard to define the

optimal number of controllers as the controller placement

problem is defined as a multi-objective combinatorial

optimization problem (MOCO) [13]. Speaking generally,

placing more controllers in the network will definitely

improve the performance and data processing, but at the

same time it will cost more and may affect another

network criteria. However, placing a minimum number of

controllers as an efficient number and improve the

performance at the same time is the best solution for the

controller placement problem [2]. The best answer for the

question “How many controllers should we deploy?”

depends on the network administrator goals. The average

propagation latency is 𝐿𝑎𝑣𝑔(1) = 7.7 , and to reduce this

value to the half, 4-5 controllers are needed as 𝐿𝑎𝑣𝑔(4) =

4.1 and 𝐿𝑎𝑣𝑔(5) = 3 . In Figure 2., concerning OS3E

topology, the correlation between the number of

controllers deployed in the topology and the cost-benefit

ratio, characterized as (𝐿𝑎𝑣𝑔(1) 𝐿𝑎𝑣𝑔(𝐾))/𝐾⁄ , is

illustrated. A cost-benefit ratio approaching 1.0 indicates

a better performance. It’s evident that there is an inflection

point observed when the number of controllers reaches 5.

More precisely, as the number of controllers transitions

from 4 to 5, there is a notable 11% increase in the

associated cost-benefit ratio. However, with a further

increase in the number of controllers, the cost-benefit ratio

subsequently decreases. In summary, the overall trend of

the cost-benefit ratio shows a decreasing pattern with

minor fluctuations, which are influenced by the

complexities of the network topology. This implies that

deploying 5 controllers achieves a higher cost/benefit ratio

for reducing average propagation latency compared to

deploying 4 controllers. However, the general line of the

cost-benefit ratio for average propagation latency

gradually diminishes as the number of placed controllers

increases. Notably, when 𝐾 > 1, each indicator remains

below 1, and an increase in the number of controllers

reveals a diminishing effect on the cost-benefit ratio

shown especially when the controller number increases

from 4 to 6.

Figure 2: Relationship between cost/benefit ratio and the

number of applied controllers in OS3E.

In [2], the experimental findings affirm that with the

rise in the number of controllers, there is a discernible

diminishing trend in the cost-benefit. Within the scope of

this work, we adhere to the selection of the smallest

number of clusters based on distinct network structures.

This choice aligns not only with the intricacies of the

network topology but also guarantees that the chosen

172 Informatica 48 (2024) 165–176 F. Zobary

number of controllers attains a superior cost-benefit. As a

conclusion, even with evaluation of 𝐾 , choosing an

appropriate controller number is a multi-object problem.

While some network administrators prefer to deploy more

controllers to achieve less latency, others can accept a high

latency to avoid the increasing cost of deploying large

number of controllers.

4.2 Latency-aware

The strategic placement of controllers in a software-

defined network (SDN) plays a critical role in determining

network performance, specifically regarding latency.

Latency, the delay in data transmission between source

and destination, is a critical metric influencing to overall

efficiency and responsiveness of network operations. The

location and distribution of controllers within an SDN

infrastructure significantly impact how efficiently routing

decisions are made and how swiftly these decisions are

communicated to network devices.

Essentially, the closeness of controllers to network

components like switches and routers significantly

impacts the latency encountered by data packets during

their journey across the network. A well-designed strategy

for placing controllers aims to minimize latency by

strategically locating them to efficiently manage routing

requests. Conversely, poor controller placement can cause

unnecessary delays, resulting in higher latency and

reduced network performance. Understanding the

complex interplay between controller placement and

latency is crucial for producing SDN architectures that

meet the needs of modern, dynamic networks. Efficient

controller placement not only decreases latency but also

improves the network's responsiveness, scalability, and

ability to adapt to shifting traffic patterns.

In our investigation, we systematically evaluate the

impact of controller placement strategies on network

latency by comparing the average latency under two

different scenarios: the first involves randomly selecting

controller centers, and the second entails the application

of Advanced K-means algorithm. The comparison is

conducted in the context of a ratio, specifically the average

latency divided by the optimal latency, as the number of

controllers (K) varies from 1 to 6. The utilization of

random centers serves as a baseline, allowing us to detect

the efficacy of the Advanced K-means algorithm in

optimizing controller placement. In the methodology of

this experiment, and for accuracy, we employ a

randomized approach for selecting controller centers,

repeating this process 10 times for each value of K.

subsequently, we calculate the average latency across

these 10 randomized selections. This randomized average

latency is then utilized as a comparative metric against the

optimal average latency that is determined by considering

the Advanced K-means algorithm. The resulting ratio

offers a comprehensive measure of how well the

randomized controller placement performs relative to an

optimal configuration. Figure 3. shows that if we simply

choose random centers to place the controllers, the

average latency is between 1.3x and 1.5x larger than the

optimal solution when 𝐾 ≤ 3, while it rises to be between

1.5x and 1.68x larger than the optimal solution when 𝐾 >
3. The increase in latency underscores the need for more

advanced placement algorithms beyond random selection.

This calls for the exploration of advanced techniques to

improve the efficiency of deploying controllers in SDN.

Figure 3: Ratio of random centers selection vs. optimal.

5 Performance evaluation
In order to substantiate the efficacy of our proposed

algorithm, we conduct a performance evaluation of the

Advanced K-means. First, we compare our proposed

approach with four solutions: POCO, CNPA, HDIDS, and

DBCP using Internet OS3E topology in terms average

propagation delay between controllers and their switches.

Moreover, the maximum number of controller load (i.e.,

the maximum number of switches the controller manages)

is evaluated compared to DPCB, POCO and CNPA. The

simulation is conducted on Windows 11 PC with Intel

Core i5-12500H 2.50 GHz processor and 16.0 GB RAM.

The simulation platform for this work is MATLAB

R2018a.

5.1 Performance in average propagation

latency

To assess the efficacy of the Advanced K-means

algorithm in reducing average propagation latency, we

implement our proposed algorithm on the Internet OS3E

topology. Utilizing the optimal number of controllers, set

at 5, we conduct a comparative analysis of average

propagation latency between controllers and their

associated switches. This comparison involves Advanced

K-means, as well as benchmarking against POCO, CNPA,

HDIDS and DBCP algorithms. Figure 4. shows the

comparison results of the average propagation latency of

each algorithm. In evaluating the performance of our

proposed algorithm in the context of SDN controller

placement, we observed an average propagation latency of

3.00 ms, surpassing other prominent algorithms in the

field. POCO exhibited a latency of 3.37 ms, with our

algorithm achieving a 11% reduction. Compared to

CNPA, HDIDS and DBCP, our algorithm achieved

reduces the average propagation latency by 7, 3 and 22%

Optimizing SDN Controller to Switch Latency for Controller… Informatica 48 (2024) 165–176 173

respectively. This is because Advanced K-means uses the

minimum shortest path distance during the updating

controllers’ list in each sub-network. While DBCP and

CNPA deploy a controller in each cluster in the network,

they neglect the consideration of the node degree during

network partitioning and focus more on centers’ density.

Additionally, POCO exhibits suboptimal performance,

primarily attributed to an imbalance condition where the

latency between controllers is excessively emphasized,

and unlike POCO, Advanced K-means doesn’t distribute

the controllers near to each other’s to decrease the latency

among controllers which may increase the latency

between the switches and their controllers. The closest

algorithm to ours in terms of average latency is HDIDS,

because they both use the degree of the node as a

parameter for being selected as a center but HDIDS

doesn’t take into consideration the distance between that

node and the previous center. As a result, Advanced K-

means outperform POCO, HDIDS, CNPA and DBCP on

reducing the average propagation delay between the nodes

and centers.

Figure 4: Comparison of average latency on OS3E

topology with other algorithms.

5.2 Controller load evaluation

The placement of controllers in inappropriate locations is

recognized to result in the occurrence of controller

overload, characterized by extended response times and

insufficient processing capacity. Additionally, such

improper placement leads to the under-utilization of

network resources. To evaluate the controller load among

different algorithms we compare the maximum number of

nodes connected to a single controller in each strategy that

are DBCP, POCO, CNPA and Advances K-means with an

increasing number of controllers.

The results in Figure 5. illustrates the maximum

controller load for different algorithms as the number of

controllers increases from 2 to 6. It is evident that, at 𝐾 =
2 , all algorithms exhibit relatively high maximum

controller loads, with DBCP, CNPA and POCO reaching

a load of 22, while Advances K-means has a slightly

higher load of 25. As the number of controllers increases,

our algorithm exhibits enhanced performance,

manifesting in a diminishing gap compared to other

algorithms. Notably, it surpasses POCO and DBCP,

achieving parity with CNPA when the controller number

reaches 5. Furthermore, our algorithm demonstrates a

reduced load in comparison to DBCP, while maintaining

load equivalence with POCO and CNPA. These findings

underscore the achieving competitive performance with

other algorithms even if it focuses on reducing the average

latency between controller and switches as it achieves

comparable or superior results compared to existing

algorithms. It can be explained as our algorithm selects the

centroids far from each other, so the load can be

distributed among the controllers as balanced as possible.

Figure 5: Maximum controller load comparison with

different approaches in OS3E.

6 Discussion
In this section, we have conducted an in-depth analysis to

clarify the key differences and contributions of our

proposed algorithm, and we also discuss some potential

limitations that may affect our algorithms’ applicability.

6.1 Comparative analysis

In this subsection, we analyze why some disparities exist

between our results and those of state-of-the-art (SOTA)

solutions. One of the key factors contributing to the

disparities between our results and those of SOTA

solutions is the inherent differences in the methodologies

and algorithms employed. While our study focuses on the

Advanced K-Means algorithm for controller placement

optimization in SDN networks, SOTA solutions may

utilize alternative algorithms, heuristics, or optimization

techniques. These differences in approach can lead to

variations in performance metrics, such as average

propagation latency, controller load distribution, and

scalability.

Additionally, disparities may arise due to variations in

experimental setups, including network topologies, traffic

patterns, and simulation parameters. Our study utilizes the

Internet2 OS3E topology for evaluation, which may differ

from the topologies used in SOTA solutions. Variations in

network characteristics and configurations can influence

174 Informatica 48 (2024) 165–176 F. Zobary

the performance of algorithms and impact the

comparability of results.

Furthermore, disparities may stem from differences in

the evaluation criteria and metrics employed across

studies. While our study focuses on optimizing average

propagation latency and controller load distribution,

SOTA solutions may prioritize other performance metrics

or objectives, such as fault tolerance, reliability, or energy

efficiency. Variations in evaluation criteria can lead to

divergent results and interpretations, highlighting the

importance of considering a comprehensive set of metrics

when assessing algorithm performance.

 Unlike previous approaches that primarily focus on

clustering based on factors such as density or random

initialization, the key aspect of our algorithm is its

utilization of node degree and shortest path distance

metrics for selecting optimal controller locations and

partitioning the network into sub-networks. By

prioritizing nodes with high degrees and minimizing the

sum of shortest path distances to all other nodes, our

algorithm effectively minimizes propagation latency and

ensures efficient resource utilization. In addition, this

controller placement strategy, which relies on node degree

and shortest path metrics, facilitates the reasonable

distribution of workload among controllers. By leveraging

these metrics and ensuring that initial centroids are

positioned sufficiently apart from each other, our

algorithm aims to identify central and well-connected

nodes in the network as well as enhances the effectiveness

of traffic load balancing, thereby mitigating congestion

and bottlenecks more effectively. Placing controllers at

these strategic locations can rise the overall efficiency and

effectiveness of network management, as controllers

positioned closer to high-degree nodes can do a greater

control over network traffic and communication. Thus, we

acknowledge that certain disparities may arise between

our results and those of existing solutions due to various

factors, including differences in algorithmic approaches.

Our algorithm incorporates several enhancements, such as

considering node degree and shortest path distance during

network partitioning, which may contribute to its superior

performance compared to previous approaches. This

unique approach to controller placement may have

influenced the observed results compared to related works

that employ different placement strategies or algorithms.

6.2 Potential Limitations

While the Advanced K-Means algorithm demonstrates

promising performance in optimizing controller

placement in SDN networks, we acknowledge that

scalability could be a potential limitation, particularly in

large-scale network deployments. As with any clustering

algorithm, the computational complexity of Advanced K-

Means may increase with the size and complexity of the

network topology. In scenarios where the number of

switches and controllers is large, the algorithm may

encounter challenges in terms of computational resources

and execution time. To mitigate scalability issues, future

research could explore optimization techniques or

parallelization strategies to enhance the efficiency of the

algorithm and enable its applicability to larger network

deployments. Another consideration is the adaptability of

the Advanced K-Means algorithm to diverse network

topologies. While our evaluation on real network

topologies from the Internet Topology Zoo demonstrates

promising results, it is essential to recognize that the

algorithm's performance may vary depending on the

specific characteristics of the network. Certain network

topologies, such as highly dense or sparse networks, may

pose challenges for the algorithm in terms of achieving

optimal controller placement and minimizing propagation

latency. It is important to consider any underlying

assumptions that may limit the applicability of the

Advanced K-Means algorithm. For instance, the algorithm

assumes that network topology information, including

node degree and shortest path distances, is accurately

available for analysis and computation. Additionally, the

algorithm may implicitly assume homogeneous network

conditions and uniform traffic patterns, which may not

always hold true in real-world deployments. In

conclusion, while the Advanced K-Means algorithm

presents a promising approach to controller placement

optimization in SDN networks, we acknowledge the need

for further exploration of its limitations and considerations

for scalability, adaptability, and underlying assumptions.

By addressing these concerns, we aim to enhance the

robustness and applicability of the algorithm in different

real-world network deployments.

7 Conclusion and future works
In this work, we discuss the SDN controller placement

problem by optimizing the average propagation latency

and the number of controllers required for the network. An

advanced K-means algorithm is proposed and applied to

reduce the average delay between the controllers and

switches. Firstly, the number of controllers required for

the network is discussed and calculated in terms of the

cost-benefit ratio. Secondly, the first initial controller is

selected based on the node degree to ensure not to choose

a controller with a degree of one. After selecting the first

initial center, the next center is chosen based on the largest

distance to the previous selected center to ensure the well-

distribution of the switches to the selected controllers.

Then, the switches are distributed among the controllers

based on the minimum shortest path distance between the

switch and each controller. The sum of the shortest path

distances to every node in the cluster is calculated and the

node with a minimum sum will be chosen as a new center

for the cluster and the cluster center is updated. We repeat

this process until the required number of controllers is

placed. For performance evaluation, a simulation is

conducted using a topology of Internet OS3E from

Topology Zoo as it is a well-known and the most used

topology for controller placement problem. The

simulation results verify that our algorithm reduce the

average propagation delay between the controllers and

their assigned switches by 22, 11, 7 and 3% compared to

DBCP, POCO, CNPA and HDIDS respectively. For the

load balancing, we compare the maximum controller load

for different algorithms as the number of controllers

Optimizing SDN Controller to Switch Latency for Controller… Informatica 48 (2024) 165–176 175

increases from 2 to 6. For small number of controllers, our

algorithm has a slightly higher load of 25 switches, and as

the number of controllers increases, it exhibits enhanced

performance, manifesting in a diminishing gap compared

to other algorithms. Notably, it surpasses POCO and

DBCP, achieving parity with CNPA when the controller

number reaches 5. These findings underscore the

achieving competitive performance with other algorithms

even if it focuses on reducing the average latency between

controller and switches as it achieves comparable or

superior results compared to existing algorithms.

In future works, other metrics such as resilience,

reliability and energy saving can be addressed so the

controller placement decision can be more accurate.
Firstly, regarding resilience, future research could focus

on developing algorithms and strategies to improve the

robustness of SDN networks against failures and attacks.

This may involve designing fault-tolerant controller

placement algorithms that can dynamically adapt to

network changes and disruptions while ensuring

continuous service availability. Secondly, in terms of

reliability, there is a need to investigate methods for

enhancing the reliability of controller communication and

coordination in distributed SDN environments. This could

involve exploring redundant communication paths, load

balancing techniques, and fault detection mechanisms to

minimize the impact of controller failures on network

operations. Lastly, with respect to energy saving, future

research efforts could explore energy-efficient controller

placement strategies and network management

techniques. This may include optimizing the allocation of

resources, reducing idle energy consumption, and

leveraging energy-aware scheduling algorithms to

minimize energy usage while maintaining network

performance. By addressing these future directions, we

aim to contribute to the development of more resilient,

reliable, and energy efficient SDN networks. These efforts

not only advance the state-of-the-art in network

management but also have the potential to yield

significant benefits in terms of cost savings,

environmental sustainability, and overall network

performance.

References
[1] A. Sureshkumar and D. Surendran, “Novel group

mobility model for software defined future mobile

networks,” Informatica, vol. 46, no. 4, 2022.
[2] B. Heller, R. Sherwood, and N. McKeown, “The

controller placement problem,” ACM SIGCOMM

Computer Communication Review, vol. 42, no. 4,

pp. 473–478, 2012.

[3] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali,

“On scalability of software-defined networking,”

IEEE Communications Magazine, vol. 51, no. 2,

pp. 136–141, 2013.

[4] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan,

“Capacity-aware and delay-guaranteed resilient

controller placement for software-defined

WANs,” IEEE Transactions on Network and

Service Management, vol. 15, no. 3, pp. 991–

1005, 2018.

[5] A. K. Singh and S. Srivastava, “A survey and

classification of controller placement problem in

SDN,” International Journal of Network

Management, vol. 28, no. 3, p. e2018, 2018.

[6] Y.-W. Ma, J.-L. Chen, Y.-H. Tsai, K.-H. Cheng,

and W.-C. Hung, “Load-balancing multiple

controllers mechanism for software-defined

networking,” Wirel Pers Commun, vol. 94, pp.

3549–3574, 2017.

[7] L. Mamushiane, J. Mwangama, and A. A. Lysko,

“Given a SDN Topology, How Many Controllers

are Needed and Where Should They Go?,” in

2018 IEEE Conference on Network Function

Virtualization and Software Defined Networks

(NFV-SDN), IEEE, 2018, pp. 1–6.

[8] A. Alowa and T. Fevens, “Towards minimum

inter-controller delay time in software defined

networking,” Procedia Comput Sci, vol. 175, pp.

395–402, 2020.

[9] A. Alowa and T. Fevens, “Combined degree-

based with independent dominating set approach

for controller placement problem in software

defined networks,” in 2019 22nd Conference on

Innovation in Clouds, Internet and Networks and

Workshops (ICIN), IEEE, 2019, pp. 269–276.

[10] J.-M. Sanner, Y. Hadjadj-Aoufi, M. Ouzzif, and

G. Rubino, “Hierarchical clustering for an

efficient controllers’ placement in software

defined networks,” in 2016 Global Information

Infrastructure and Networking Symposium (GIIS),

IEEE, 2016, pp. 1–7.

[11] A. Shirmarz and A. Ghaffari, “Taxonomy of

controller placement problem (CPP) optimization

in Software Defined Network (SDN): a survey,” J

Ambient Intell Humaniz Comput, vol. 12, no. 12,

pp. 10473–10498, 2021.

[12] G. Ramya and R. Manoharan, “Enhanced optimal

placements of multi-controllers in SDN,” J

Ambient Intell Humaniz Comput, vol. 12, pp.

8187–8204, 2021.

[13] S. Lange et al., “Heuristic approaches to the

controller placement problem in large scale SDN

networks,” IEEE Transactions on Network and

Service Management, vol. 12, no. 1, pp. 4–17,

2015.

[14] G. Wang, Y. Zhao, J. Huang, and Y. Wu, “An

effective approach to controller placement in

software defined wide area networks,” IEEE

Transactions on Network and Service

Management, vol. 15, no. 1, pp. 344–355, 2017.

[15] K. S. Sahoo, B. Sahoo, R. Dash, and N. Jena,

“Optimal controller selection in software defined

network using a greedy-SA algorithm,” in 2016

3rd International Conference on Computing for

Sustainable Global Development (INDIACom),

IEEE, 2016, pp. 2342–2346.

[16] G. Yao, J. Bi, Y. Li, and L. Guo, “On the

capacitated controller placement problem in

software defined networks,” IEEE

176 Informatica 48 (2024) 165–176 F. Zobary

communications letters, vol. 18, no. 8, pp. 1339–

1342, 2014.

[17] A. Bouchemal and M. T. Kimour, “Multi-Density

Datasets Clustering Using K-Nearest Neighbors

and Chebyshev’s Inequality,” Informatica, vol.

47, no. 8, 2023.

https://doi.org/10.31449/inf.v47i8.4719

[18] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li,

“Density cluster based approach for controller

placement problem in large-scale software

defined networkings,” Computer Networks, vol.

112, pp. 24–35, 2017.

[19] A. A. Nasiri and F. Derakhshan, “Assignment of

virtual networks to substrate network for software

defined networks,” International Journal of

Cloud Applications and Computing (IJCAC), vol.

8, no. 4, pp. 29–48, 2018.

[20] A. K. Tran, M. J. Piran, and C. Pham, “SDN

controller placement in IoT networks: An

optimized submodularity-based approach,”

Sensors, vol. 19, no. 24, p. 5474, 2019.

[21] R. Chai, X. Yang, C. Du, and Q. Chen, “Network

cost optimization-based capacitated controller

deployment for SDN,” Computer Networks, vol.

197, p. 108326, 2021.

[22] “NoviSwitch - SDN Programmable Network

Switch - OpenFlow Switch | NoviFlow.”

Accessed: Nov. 08, 2023. [Online]. Available:

https://noviflow.com/noviswitch/

[23] “Home - Corsa Security.” Accessed: Nov. 08,

2023. [Online]. Available:

https://www.corsa.com/

[24] “Resource & Documentation Center.” Accessed:

Nov. 08, 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/resour

ces-documentation/developer.html

[25] A. Jalili, M. Keshtgari, and R. Akbari, “Optimal

controller placement in large scale software

defined networks based on modified NSGA-II,”

Applied Intelligence, vol. 48, no. 9, pp. 2809–

2823, Sep. 2018, doi: 10.1007/S10489-017-1119-

5/TABLES/2.

[26] C. Cristian López et al., “Parallelization of the

Algorithm K-means Applied in Image

Segmentation,” Article in International Journal of

Computer Applications, vol. 88, no. 17, 2014, doi:

10.5120/15441-4051.

[27] H. Al-Mohair, J. Saleh, S. S.-A. S. Computing,

and undefined 2015, “Hybrid human skin

detection using neural network and k-means

clustering technique,” Elsevier, Accessed: Nov.

09, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii

/S1568494615002732

[28] I. Katsavounidis, C. C. J. Kuo, and Z. Zhang, “A

New Initialization Technique for Generalized

Lloyd Iteration,” IEEE Signal Process Lett, vol. 1,

no. 10, pp. 144–146, 1994, doi:

10.1109/97.329844.

[29] “Internet Topology Zoo.” Accessed: Nov. 10,

2023. [Online]. Available: https://www.topology-

zoo.org/

[30] “Internet 2 OS3E.” Accessed: Aug. 12, 2023.

[Online]. Available: https://internet2.edu/

https://doi.org/10.31449/inf.v47i8.4719

