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As an important part of modern urban traffic management, intelligent transportation system aims to 

improve road safety, optimize traffic flow and reduce traffic congestion. In this study, an intelligent 

traffic pedestrian detection model combining YOLOv4 and improved time cycle neural network is 

proposed. The model is based on YOLOv4-tiny algorithm to detect human key points of pedestrians, 

and introduces convolutional attention module to improve the detection accuracy of the model. After 

that, a pedestrian intention recognition model is established by using long term memory network and 

Openpose technology. Based on the key point information detected by YOLOv4-tiny, the intention 

recognition model determines the pedestrian crossing motive. The experimental results show that the 

detection accuracy of pedestrian intention detection model combined with pedestrian position and 

human key point information is 77.8%, and the frame rate is 18FPS. When the research design model 

is used to detect the key points and position information of human body, its average confidence is 

about 90%, showing high stability and accuracy. The experimental results prove that the intelligent 

traffic pedestrian detection system designed in this study can meet the real-time and accuracy 

requirements of vehicle-mounted systems for pedestrian detection, and can accurately capture 

pedestrian intention. 

Povzetek: Študija uvaja inteligenten sistem za zaznavanje pešcev v prometu, ki združuje YOLOv4 

algoritem in izboljšani LSTM.

1 Introduction 

As an important component of modern urban traffic 

management, intelligent transportation systems aim to 

improve road safety and reduce traffic congestion [1]. In 

this field, pedestrian detection technology is one of the 

core issues, which is of great significance for preventing 

traffic accidents and improving road use efficiency. As 

deep learning technologies develops, pedestrian detection 

methods using these technologies have become a research 

hotspot. You Only Look Once version 4 (YOLOv4) is an 

advanced real-time object detection framework widely 

used in various scenarios due to its high efficiency and 

accuracy. However, in complex traffic environments such 

as changing lighting conditions, occlusion, and 

pedestrians from different angles, YOLOv4 still faces 

challenges in pedestrian detection [2, 3]. In addition, 

traditional pedestrian detection methods often overlook 

the analysis of time series data, which is particularly 

important in dynamic traffic environments. Long 

Short-Term Memory (LSTM) is effective for processing 

time series data. By improving LSTM, it is possible to 

better capture the dynamic features of pedestrians in time 

series, thereby improving the accuracy and robustness of 

detection. However, effectively integrating LSTM with 

YOLOv4 to adapt to pedestrian detection in intelligent 

transportation systems is still a research area worth 

exploring. In view of this, the study proposes an 

intelligent traffic pedestrian detection model that 

integrates YOLOv4 and improved LSTM. This model 

aims to utilize the efficient detection capability of 

YOLOv4 and improve the time series analysis capability 

of LSTM to enhance pedestrian detection performance in 

complex traffic environments. The research will focus on 

the design, optimization, and experimental verification of 

the model, aiming to address the limitations of existing 

pedestrian detection methods in intelligent transportation 

systems. The research aims to provide a more accurate 

and robust solution for pedestrian detection in intelligent 

transportation systems, thereby improving road safety and 

traffic efficiency. 

The research is divided into four parts. The first part 

introduces the intelligent traffic pedestrian detection 

system, LSTM and YOLOv4. The second part proposes 

pedestrian detection key points and intention recognition 

models based on YOLOv4 and LSTM. The third part is to 

test and analyze model performance. The fourth part 

summarizes and discusses the above content. 

2 Related works 

Pedestrian detection is an important task of autonomous 

driving, and many scholars conducted research on it. 

Wang et al. designed a three ResNet block using a central 

network detection model. Three ResNet block was 
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proposed for network semantic information extraction. 

Experimental results showed an excellent accuracy and 

detection speed [4]. Tang et al. proposed a novel 

fine-tuning model for unsupervised pedestrian detection 

that did not require the use of source and target data. It 

applied multi-expert learning algorithms and integrated 

bounding boxes to improve accuracy. The experimental 

results showed that this method effectively improved 

detection accuracy under unsupervised settings [5]. 

Panigrahi and Raju introduced a novel feature extraction 

method for pedestrian detection, outperforming existing 

pre-trained CNNs with higher accuracy [6]. The YOLO 

series has been extensively studied by many scholars. 

Yan et al. used YOLOv5 to address low accuracy and 

slow speed in traditional coal gangue identification. 

Results showed that detection accuracy using the 

YOLOv5.1 model reached 98.34% [7]. Jia et al. 

presented a YOLOv5-based approach for motorcycle 

driver helmet detection. By incorporating soft-NMS 

forYOLOv5 detector fusion, they achieved impressive 

results in the experiment, including 97.7% mAP, 92.7% 

F1-score, and 63 frames per second (FPS). These 

outcomes surpassed those of other methods [8]. 

The LSTM algorithm has been applied in many fields. 

Nemani et al. studied the deep learning in predicting 

bearings’ remaining life, determined the bearing fault 

threshold based on ISO standards, and proposed a 

two-stage LSTM model for extracting fault feature 

signals of bearings. Gaussian layers were embedded in 

the LSTM model for parameter optimization. Results 

showed a good accuracy in predicting bearing life [9]. 

Chen et al. proposed a novel algorithm by integrating 

spatio-temporal attention mechanism with ConvLSTM 

for fake face detection improvement. The excellent 

performance results showed that this algorithm performed 

better than existing algorithms [10]. To address the 

challenges of transparency and interpretability in machine 

learning algorithms, Kaadoud et al. understood the results 

from simple clues and rules, and used internal state 

clustering algorithms in LSTM models to study the 

hidden states of spatial knowledge extraction. They 

established and validated automatic sequences extracted 

on the basic syntax. The experimental results showed that 

the sequences extracted on the original syntax had high 

recognition rates [11]. 

In conclusion, while numerous algorithms can optimize 

dataset and feature extraction to enhance pedestrian 

detection system accuracy, there remains a scarcity of 

systems that combine high-speed computing power with 

lightweight embedded device characteristics. These two 

have strong potential application value in vehicle 

detection. 

The summary of the relevant work of the existing 

research is shown in Table 1. 

 

 

Table 1: Summary of relevant work 

Document 

serial 

number 

Method Key features Dataset used Accuracy FPS Remarks 

[4] 
Central network 

detection model 

Pedestrian key 

point 

information 

Caltech and 

ETH 
89.74% 

18F

PS 
- 

[5] 

Pedestrian 

detection based on 

unsupervised 

adaptive framework 

Pedestrian 

position point 

BIWI walking 

pedestrian’s 

dataset 

92.47% 
22F

PS 
- 

[6] 

SVM and 

multi-layer feature 

fusion 

Shape, color, 

and texture 

features 

DukeMTMC-r

eID 
93.15% 

17F

PS 
- 

[7] Improved YOLOv5 Spectral feature HDA 98.34% - - 

[8] Improved YOLOv5 
Driver helmet 

feature 
TWHD 97.7% 

63F

PS 
- 

[9] 
Two-stage LSTM 

model 

Fault signature 

signal 

FEMTO 

bearing data 

set 

88.47% 
22F

PS 
- 

[10] 

Based on temporal 

attention and 

ConvLSTM 

Spatio-temporal 

characteristics 
LFW 71.58% - - 

[11] 

Clustering 

algorithm and 

LSTM 

Spatio-temporal 

series feature 
ETH 75.93% 

11F

PS 
- 
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According to Table 1, although the above studies 

achieved remarkable results in pedestrian detection, 

bearing life prediction and prosthetic face detection, there 

were still some challenges and areas to be improved. 

Especially in real-time and embedded system applications, 

most methods, while highly accurate, often sacrifice 

computing speed or are difficult to deploy on lightweight 

devices. Therefore, the future research should pay more 

attention to how to improve the real-time and 

embeddability of the system while ensuring the accuracy. 

 

3 Intelligent traffic pedestrian 

detection algorithm combining 

YOLOv4 and Improved LSTM 
In intelligent driving systems, pedestrian detection plays 

a crucial role, and its basic function is pedestrians 

presence identification and their specific positions 

determination, laying the foundation for further 

pedestrian intention analysis. Aiming at the challenges of 

pedestrian detection in autonomous driving environments, 

such as occlusion, lighting changes, scale differences, and 

noise, a fusion method of pedestrian detection and human 

key point detection is proposed to improve detection 

accuracy and satisfy vehicle systems. On the basis of 

pedestrian detection, research also proposed a traffic 

pedestrian crossing intention recognition based on LSTM, 

providing a more solid guarantee for the safety of 

intelligent driving. 

 

3.1 Design of pedestrian and key point 

detection based on YOLOv4 
In order to deeply analyze the movement trend and 

crossing intention of pedestrians, the research focus has 

been extended to human key point detection, aiming to 

improve pedestrian intention recognition accuracy by 

analyzing the changes in human posture. The study 

adopted an improved lightweight YOLOv4-tiny 

algorithm suitable for vehicle use as the baseline network 

for the model. The YOLOv4-tiny algorithm is an efficient 

lightweight object detection model that is simplified 

based on the YOLOv4 algorithm, aiming to reduce 

computational resource requirements while maintaining 

detection performance as much as possible. This 

algorithm inherits the design concept of the YOLO series 

model, which is "You Only Look Once", and achieves 

target detection and classification through forward 

propagation of a single convolutional neural network. 

YOLOv4-tiny optimizes the speed and size of the model 

by simplifying the network structure and parameters, 

making it more suitable for deployment in resource 

constrained environments, such as mobile devices or in 

vehicle systems [12, 13]. YOLOv4-tiny is structured 

which is shown in Figure 1. 
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Figure 1: YOLOv4-tiny structure 

 

As shown in Figure 1, the structure of YOLOv4-tiny 

algorithm is mainly composed of input layer, backbone 

network, feature pyramid network, detection header and 

output layer. Firstly, the input layer is responsible for 

processing the input image and transforming suitably for 

network processing. In this section, images are uniformly 

adjusted to a fixed size and normalized to prepare for 

subsequent feature extraction. Secondly, the backbone 

network is the core to extract image features. 

YOLOv4-tiny uses a reduced version of CSPDarknet53 

as the feature extractor in this section, learning the 

abstract representation of images through deep 

convolution and residual connections. CSPDarknet53 

uses LeakyReLU as the activation function, as calculated 

in equation (1). 
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In order to adapt to lightweight design, the network’s 

depth and width are reduced to lessen computational 
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burden. Subsequently, Feature Pyramid Networks (FPN) 

and Path Aggregation Networks (PANet) are used to 

construct advanced semantic features and enhance the 

fusion of features at different scales. This section 

effectively integrates feature maps of different resolutions 

through upsampling and downsampling strategies, 

enhancing small targets detection. The detection head is 

the decision-making part of the algorithm, which uses a 

series of convolutional layers to predict bounding boxes, 

target categories, and confidence. YOLOv4-tiny 

simplifies the design of the detection head, reduces 

convolutional layers, and uses an anchor box mechanism 

for prediction accuracy improvement. Finally, the output 

layer converts the predicted results of the detection head 

into the final detection output. This information is then 

used in Non-maximum Suppression (NMS) to remove 

overlapping detections and preserve the best prediction 

results. However, the YOLOv4-tiny algorithm is limited 

by its embedded design, simplified feature extraction 

operations, and low detection accuracy. To improve its 

detection accuracy, research is being conducted to 

integrate the Convolutional Block Attention Module 

(CBAM) to improve the feature weight allocation ability 

of YOLOv4-tiny on feature maps, in order to solve small 

target missed detection due to local occlusion and natural 

background confusion. Figure 2 shows the CBAM 

structure. 
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Figure 2: CBAM structure 

 

In Figure 2, CBAM combines Spatial Attention (SA) and 

Channel Attention (CA) mechanisms to improve the 

performance of convolutional neural networks. CBAM 

can adaptively assign different attention weights to 

different network parts, thereby helping the network 

better capture and utilize important information of input 

features. Through this approach, CBAM helps improve 

CNN in image classification and object detection. 

CBAM’s front module is CA, and this part is calculated 

in equation (2). 

 
( ) ( ( ( ))

( ( )))

cM F MLP AvgPool F

MLP MaxPool F

=

+
 (2) 

As shown in equation (2), F  represents the input 

feature map; MLP  represents the shared fully 

connected layer; AvgPool  and MaxPool  represent 

average and maximum pooling, respectively. The CBAM 

front-end processes the input feature layer and performs 

global AvgPool  and MaxPool . These processing 

results are merged after being processed by MLP , and 

then the Sigmoid function calculates channel weights, 

which are then multiplied with the input features. 

  7 7( ) ( ( ( ); ( ) ))SM F f AvgPool F MaxPool F =

 (3) 

In equation (3), 7 7f   represents the convolution kernel 

size. The CA superimposes the maximum and average 

values of the features passed through the front on the 

feature channel, and then performs convolution 

operations. The sigmoid function is used to calculate the 

weights and multiply them with the input layer features. 

The study chose the Openpose algorithm to extract 

human key points from images for pedestrian pose 

estimation. Openpose was proposed by researchers from 

Carnegie Mellon University in 2017. This algorithm 

detects human keypoints in images through convolutional 

neural networks and uses Part Associated Fields (PAFs) 

to identify spatial relationships of body parts, effectively 

distinguishing multiple poses. The Openpose algorithm 

can detect joint nodes in human posture, and its key point 

mapping table is shown in Table 2. 
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Table 2: Key point mapping 

Serial number Name of key points Serial number Name of key points 

0 Noses 9 Left Knee 

1 Neck 10 Left Ankle 

2 Left Shoulder 11 Right Buttock 

4 Left Elbow 12 Right Knee 

5 Left Wrist 13 Right Ankle 

6 Right Shoulder 14 Left Eye 

7 Right Elbow 15 Right Eye 

8 Right Wrist 16 Left Ear 

 

Openpose uses a bottom-up approach to estimate 

real-time pose of multiple people in the image, and 

effectively identifies and associates key points of various 

parts of the human body through Part Affinity Fields 

(PAFs) technology. This method avoids failures caused 

by missed detection boxes and improves detection speed 

and robustness. The algorithm uses a greedy strategy to 

globally optimize key points, ensuring the accuracy of the 

results even with a slight increase in computational 

complexity, without being significantly affected by the 

increase in people in the image. Openpose network is 

structured in Figure 3. 
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Figure 3: Openpose network structure 

 

As shown in Figure 3, Openpose network is mainly 

composed of convolutional neural network and PAFs to 

achieve feature extraction and connection direction 

prediction respectively. These two parts alternate in a 

multi-stage convolutional network, gradually refining the 

prediction results, ensuring accurate positioning of key 

points and correct association of various body parts. 

Firstly, the input image is passed through Openpose to 

generate a feature map F . Then, the feature map is 

input into two branch convolutional networks to generate 

a detection confidence map 
1 1( )S F= , as well as a 

partial affinity field 
1 1( )L F= . The calculation 

expression for the detection confidence map is shown in 

equation (4). 

 
1 1( , , ), 2t t t tS F S L t − −=      (4) 

In equation (4), t  represents the iteration stage or 

number of iterations, and some affinity field calculations 

can be found in equation (5). 

 
1 1( , , ), 2t t t tL F S L t − −=       (5) 

To gradually optimize the network prediction accuracy 

for body key points and their corresponding PAFs, at the 

end of each stage, the network refines the body part 

recognition of the first branch and PAFs map of the 

second branch by applying two specialized loss functions. 

These two loss functions are optimized for the outputs of 

both branches. The first branch loss function is shown in 

equation (6). 

 
2

*

2 2

( ) ( ) ( )
J

t t

s j j

j P

f W p S p S p
=

= • −   (6) 

In equation (6), j  and J  represent key points; 
*( )jS p  

represents their true confidence map; ( )t

jS p  is their 

predicted confidence map; ( )W p  represents the binary 

mask at the image p , and the second branch loss 

function is shown in equation (7). 
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2

*

2 2

( ) ( ) ( )
C

t t

L j j

c P

f W p L p L p
=

= • −  (7) 

In equation (7), 
* ( )jL p  represents the actual PAFs; 

( )t

jL p  represents the predicted PAFs; c  and C  

represent the types of connection site. The overall loss 

function is shown in equation (8). 

 ( )
1

T
t t

S L

t

f f f
=

= +      (8) 

In equation (8), pixel’s value on the confidence map 

represents the probability value that the point is a key 

point. The true value modeling of the confidence map is 

shown in equation (9). 

 

2

,* 2

, 2
exp( )

j k

j k

p x
S



−
= −      (9) 

In equation (9), 
*

,j kS  represents the confidence level of 
j  corresponding to pedestrian k ; ,j kx  represents the 

true coordinates of the key point, and the maximum value 

is used in the calculation of 
* ( )jS p . The calculation 

expression is shown in equation (10). 

 
* *

,( ) max ( )j j k
k

S p S p=    (10) 

3.2 Intelligent traffic pedestrian crossing 

intention recognition based on LSTM 
The study adopts an improved LSTM network combined 

with Openpose technology, based on pedestrian position 

and key point information, to train a model to capture the 

intrinsic patterns of pedestrian intentions, aiming to 

achieve more accurate and reliable recognition of 

pedestrian crossing intentions. LSTM is an advanced 

recursive neural network that can learn and predict 

long-term dependencies in time series data. In 1997, it 

was first proposed by Hochreiter and Schmidhuber that 

LSTM effectively avoids the gradient vanishing problem 

of traditional RNNs by cleverly gating the information 

flow in long sequence data. The core of LSTM is unit 

state, which, in conjunction with input, forget, and output 

gates, can maintain and transmit critical state information 

between time steps. These gates control the storage, 

updating, and output of information, endowing LSTM 

networks with the ability of long-term and short-term 

memory, enabling them to perform well in complex 

sequence learning tasks such as language modeling and 

time series analysis. The LSTM structural units are 

shown in Figure 4. 
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Figure 4: LSTM structural units 

 

As shown in Figure 4, the LSTM structural unit consists 

of a forgetting gate, an input gate, an output gate, and a 

memory unit. Forgetting gate tf  determines the 

forgotten data using the current input tx  and the 

previous state output 1th − . The input gate ti  also 

determines the information entering the neural unit 

through the valve based on tx  and 1th − . Memory unit 

tC  is simultaneously affected by the previous memory 

unit 1tC − , input gate, and forgetting gate. The calculation 

expression for the input gate is shown in equation (11). 

  1( , )t i t t ii W h x b −=  +    (11) 

As shown in equation (11), iW , fW , oW , tW , tU , 

oU , fU
iU  are weight matrices, and ib , fb , cb  and 

ob  are deviation vectors. The expression for updating 

cell status is shown in equation (12). 

 1 * `t t t t tC f C i C−=  +    (12) 

In equation (12), variable t̀C  is the value output by the 

activation function. The calculation expression for the 

output gate is shown in equation (13). 

 1( , )t o t t oo W h x b −= +    (13) 

In equation (13),   is the sigmoid activation function, 

and th  is calculated in equation (14). 

 *tanh( )t t th o C=       (14) 

Equation (14) calculates the new value of the output gate 

and the final output results tanh  and  , both of 

which are activation functions, by memorizing the new 

state of the cells. This can linearize the linear output 

results in the neural network and enable it to simulate 

nonlinear functions. In order to address the issue of 

reduced influence of early input information caused by 

the extension of time series in LSTM models for 

pedestrian crossing intention recognition tasks, a 
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multi-head attention mechanism is introduced in the study. 

This mechanism enhances the capture and utilization of 

early important signals by parallelizing information 

processing and endowing the model with the ability to 

consider the entire time series information more evenly at 

each time step, ensuring that the influence of key 

information in model prediction is maintained. Through 

this method, the model can more accurately identify the 

pedestrian's intention to cross the street, improving the 

overall recognition performance. The structure of the 

LSTM model optimized by combining multi-head 

attention mechanism is shown in Figure 5. 
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Figure 5: Optimized LSTM model structure based on multi-head attention mechanism 

 

As shown in Figure 5, pedestrian position and keypoint 

data are first transformed into vector sequences through 

the embedding layer, and then processed through the 

LSTM layer to obtain high-level features. These features 

are transformed into matrices, input into a multi-head 

attention layer, and processed through a Softmax 

classifier to output the final result. 

4 Performance testing of intelligent 

traffic pedestrian detection 

algorithm integrating YOLOv4 

and improved LSTM 
A mixed dataset containing 2000 pedestrian images was 

constructed, combining VOC2007 and JAAD pedestrian 

datasets. In this dataset, 80% images were trained, 10% 

for testing, and 10% for validation to assess model's 

generalization ability and accuracy. The experiment used 

PyTorch as a deep learning framework. During the 

training process, all images were uniformly adjusted to a 

size of 416×416 pixels, and input batch size to 16. The 

training strategy included using label smoothing 

techniques to reduce overfitting. The training process was 

divided into two stages: the first 50 epochs used 

preheating training method, with a 0.001 learning rate for 

parameters optimization. Subsequently, using cosine 

annealing strategy, the learning rate was gradually 

reduced to 0.0001 to refine the learning process. The 

experiment was done on a high-performance computing 

cluster equipped with NVIDIA Tesla V100 Gpus with 

32GB of RAM and eight CPU cores per node. To make 

full use of computing resources, the experiment adopted a 

distributed training strategy, and divided the dataset into 

multiple batches through PyTorch's data parallel module 

and processed them in parallel on multiple Gpus. In terms 

of the segmentation of training and test datasets, the 

research first randomly shuffled the original data set, and 

then divided the data into training sets, test sets and 

verification sets according to the ratio of 80%, 10% and 

10%. After training, the loss function curve was obtained 

to locate the loss curve. The classification and confidence 

loss curves are shown in Figure 6. 
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Figure 6: Loss curve 

 

Figure 6 illustrates the training process of the model, 

which exhibited a typical pattern with a consistent 

downward trend. The loss experienced rapid decline in 

the initial 20 epochs and then stabilized around the 100th 

epoch. The final localization loss converged at 

approximately 0.017, classification loss remained steady 

at around 0.00117, and confidence loss stabilized at 

around 0.028. Comparative experiments were conducted 

using four models: Fast-RCNN, YOLOv4, YOLOv3 tiny, 

and YOLOv4-tiny. All models were compared under the 

same hardware conditions and the same dataset was used. 

The experimental results were evaluated using average 

precision (AP) and FPS as performance metrics. AP was 

used to measure the accuracy of model detection, while 

FPS reflected the speed at which the model processes 

images. Through these indicators, the performance of 

different models in pedestrian detection tasks was 

comprehensively evaluated. The comparative 

experimental results are shown in Figure 7. 
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Figure 7: Comparison of experimental results 



Intelligent Traffic Pedestrian Detection by Integrating YOLOv4… Informatica 48 (2024) 109–122 117 

 

The study compared YOLOv4, YOLOv4-tiny, and 

improved models on the test dataset. Although YOLOv4 

had the highest AP value of 87.09%, its FPS was 

significantly lower than other models and was not 

suitable for in vehicle systems. In contrast, the enhanced 

YOLOv4-tiny model demonstrated a 2.3% increase in AP, 

despite a slight decrease in FPS. However, it successfully 

met the real-time detection requirements and 

demonstrated its compatibility with embedded systems in 

vehicles. In Figure 8, a comparison was made between 

YOLOv4-tiny and the enhanced algorithm in terms of 

actual detection performance. 
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(a) YOLOv4-tiny algorithm detection results

(b) Detection result graph of the improved YOLOv4-tiny algorithm

 

Figure 8: Comparison of experimental results 

 

As shown in Figure 8, in the detection result graph of 

improved YOLOv4-tiny algorithm, it successfully 

detected nearby pedestrians and provided high confidence, 

but there were still challenges in detecting distant 

pedestrians. The improved model exhibited better 

detection ability under occlusion conditions, detecting 

pedestrians partially occluded in the distance in the image. 

However, there were still situations where the improved 

algorithm could not detect pedestrians who were too far 

away or not fully entered the screen. This indicated that 

although the improved algorithm outperformed the 

original version in specific situations, further 

improvement in detection robustness was still needed in 

certain extreme cases. The study integrated the JAAD and 

PIE datasets as the test set, with a total of 1257 videos 

labeled as pedestrian crossing or not crossing. According 

to the video content, 80% was trained, 10% was validated, 

and 10% was tested. The video format was adjusted to 30 

FPS, with a size of 500×375. To improve efficiency, 20 

frames of pedestrian behavior sequences were cropped 

and extracted every 60 frames from the behavior video. 

Pedestrian information was extracted using YOLOv4-tiny 

and Openpose, and then input into an improved LSTM 

network for training. The comparison results of model 

recognition ability are shown in Figure 9. 

 



118   Informatica 48 (2024) 109–122                                                                   J. Chen 

0.65

0.70

0.75

0.80
Accuracy

Precision

Recall

F1-Score

0 10 20 30

RNN

LSTM

Improved LSTM

SVM

Softmax classification
FPS

Arithmetic

F
u
n
ct

io
n
 v

al
u
e

FPS(frames per second)

A
ri

th
m

et
ic

(a) Comparison of accuracy and recall results (b) FPS comparison results

RNN
Softmax 

classification
LSTM

Improved 

LSTM
SVM

 Figure 9 

Figure 9: Comparison results of model recognition ability 

 

The performance comparison of the proposed model with 

other classification methods in the study is shown in 

Figure 9. The results demonstrate that the enhanced 

LSTM model, coupled with a multi-head attention 

mechanism, achieved an accuracy of 77.8% and 

maintained a processing speed of 18 FPS. Compared to 

the basic LSTM model, the improved LSTM improved 

accuracy by about 2.5 percentage points. Although FPS 

slightly decreased, the impact of this change on real-time 

processing capability was minimal. Compared with RNN, 

SVM, and Softmax classifiers, the improved LSTM 

significantly improved accuracy while maintaining 

similar processing speed, verifying its effectiveness in 

real-time pedestrian crossing intention recognition. The 

study conducted a classification test on pedestrian 

crossing intention for all videos in the dataset and 

recorded experimental data to visually demonstrate the 

classification effect. The results are shown in Figure 10. 
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Figure 10: Classification effect 

 

Figure 10 shows the classification effect before and after 

introducing multi-head attention mechanism. These 

matrices revealed the model performance in 

distinguishing whether pedestrians crossed the street or 

not, showing that the improved LSTM enhanced 

classification ability in both cases, especially in 

identifying non-crossing intentions of pedestrians with 

greater accuracy. The study considered both pedestrian 

position and key point information as inputs to the intent 

recognition model and evaluated the contribution of these 

two types of information to the model performance in 

Table 3. 
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Table 3: Model performance evaluation 

Pedestrian location Key points of the human body Accuracy FPS 

Yes NO 0.532 76 

NO Yes 0.726 20 

Yes Yes 0.778 18 

 

As shown in Table 3, when only pedestrian position 

information was used, the model accuracy was 53.2% and 

the processing speed reached 76 FPS. When relying 

solely on human keypoint information, the accuracy 

significantly improved to 72.6%, but the processing speed 

decreased to 20 FPS. When combining pedestrian 

position and human key point information, the model 

achieved the highest accuracy of 78.8%, although the 

processing speed slightly decreased to 18 FPS at this time. 

This indicated that combining these two types of 

information was crucial for improving the accuracy of 

intent recognition, even at the expense of some 

processing speed. 

To fully verify the superiority of the designed model, the 

significance test was carried out. The YOLOv4-tiny 

algorithm before and after the improvement was 

compared with the LSTM before and after the 

improvement, as well as the pedestrian intention 

recognition model. The specific results are shown in 

Table 4. 

 

 
Table 4: Results of significance test 

Model/Algorithm 

AP (%) 

t P Before 

improvement 

After 

improvement 

YOLOv4-tiny 84.79 87.09 2.89 <0.01 

LSTM 75.31 77.84 2.13 <0.05 

Pedestrian intention 

recognition model 
70.02 78.25 3.67 <0.01 

 

In Table 4, after significance test, it was observed that 

both YOLOv4-tiny algorithm and LSTM model showed 

statistically significant performance improvement after 

improvement. The AP value of YOLOv4-tiny was 

increased from 84.79% to 87.09%, the t-value was 2.89, 

and the P-value was less than 0.01, indicating that the 

improved model achieved significant performance 

improvement in pedestrian detection tasks. After the 

improvement of the LSTM model, the accuracy rate was 

increased from 75.3% to 77.8%, the t-value was 2.13, and 

the P-value was less than 0.05, which also showed 

statistical significance. When both the pedestrian position 

and the key point information of human body were used 

as input, the performance of the intention recognition 

model was improved more significantly. The accuracy 

rate increased from 70.02% to 78.25%, the t-value was 

3.67, and the P-value was less than 0.001, which fully 

proved that the combination of these two kinds of 

information had a very important impact on improving 

the accuracy of pedestrian crossing intention recognition. 

To evaluate the performance of the research design model 

(Model 1) more comprehensively, recall rate, precision 

and F1-score were introduced as evaluation indexes. The 

comparison methods included the traffic pedestrian 

detection model in literature [14] (model 2), the traffic 

pedestrian detection model in literature [15] (model 3), 

and the traffic pedestrian detection model in literature [16] 

(model 4). The comparison results are shown in Table 5. 

 

 
Table 5: Comparison of model performance evaluation indexes 

Model Recall (%) Precision (%) F1-score (%) 

Model 1 83.54 82.23 82.80 

Model 2 78.12 80.29 79.21 

Model 3 76.52 79.78 78.10 

Model 4 79.24 77.87 78.46 

 

From Table 5, compared with the models in the existing 

literature, the model designed in this paper showed higher 

performance in terms of recall rate, precision and 

F1-score. Among them, the recall rate reached 83.5%, 

which meant that the model could accurately capture 

most of the real intention of pedestrians when 

recognizing the intention of pedestrians crossing the 

street. The accuracy of the model was 82.2%, which 

indicated that the model had high precision in 

recognizing the intention of crossing the street. The 

F1-score of 82.8% was the harmonic average of recall 

rate and precision, which further proved the excellent 

performance of the model in balancing recall rate and 

precision. 
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5 Conclusion 

As an important component of modern urban traffic 

management, intelligent transportation systems aim to 

improve road safety and reduce traffic congestion. This 

research proposed an intelligent traffic pedestrian 

detection model that integrated YOLOv4 and improved 

LSTM. Based on the performance test results, the model's 

final positioning loss converged at approximately 0.017, 

while the classification and confidence losses stabilized at 

around 0.00117 and 0.028, respectively. Although the 

enhanced YOLOv4-tiny model displayed a slight 

decrease in FPS, it still fulfilled the real-time detection 

requirements and proved suitable for embedded systems 

in vehicles, with an increase of 2.3% in AP. The 

improved model exhibited better detection ability under 

occlusion conditions, detecting pedestrians partially 

occluded in the distance in the image. The improved 

LSTM model combined with multi-head attention 

mechanism achieved an accuracy of 77.8% and 

maintained a processing speed of 18 FPS. Compared to 

the basic LSTM model, the improved LSTM improved 

accuracy by about 2.5 percentage points. Although FPS 

slightly decreased, the impact of this change on real-time 

processing capability was minimal. The improved LSTM 

enhanced its classification ability in both scenarios, 

especially in identifying pedestrian non-crossing 

intentions with greater accuracy. When only using 

pedestrian position information, the accuracy was 53.2%, 

and the processing speed reached 76 FPS. When relying 

solely on human keypoint information, the accuracy 

significantly improved to 72.6%, but the processing speed 

decreased to 20 FPS. When combining pedestrian 

position and human key point information simultaneously, 

the model achieved the highest accuracy of 78.8%. 

Although the processing speed slightly decreased to 18 

FPS, it indicated that the key points of human actions 

played a decisive role in identifying pedestrian crossing 

intentions, while position information effectively 

enhanced the accuracy of the model and was a powerful 

supplement to key point information. The experimental 

results proved that the intelligent traffic pedestrian 

detection system designed in the study met the real-time 

and accuracy requirements of vehicle mounted systems 

for pedestrian detection and optimized the accurate 

capture of pedestrian intentions. However, there are still 

some shortcomings in the research. Although there have 

been improvements in pedestrian crossing intention 

recognition compared to existing models, challenges still 

exist in practical applications. The focus of the research is 

on optimizing the detection network and extracting 

pedestrian features in depth. Future work can expand the 

dataset to include more pedestrian postures and special 

population categories for model's generalization ability. 

Its input also needs to be rich, considering the integration 

of features such as vehicle speed and pedestrian relative 

distance to cope with the situation of high-speed vehicles. 

In addition, optimization of model structure and 

parameter selection, such as pruning the Openpose 

network model, may further improve the balance between 

running speed and detection accuracy. 

6 Discussion 

In the field of intelligent transportation, pedestrian 

detection and intention recognition have always been the 

focus and difficulty of research. The intelligent traffic 

pedestrian detection model proposed in this study, which 

combines YOLOv4 and improved LSTM, has achieved 

remarkable results in terms of real-time and accuracy. In 

the course of the experimental analysis, it was found that 

the accuracy of the model designed in the study was 

significantly improved compared with the model using 

only traditional machine learning algorithms such as 

SVM and Softmax classifier. This is mainly due to the 

ability of deep learning algorithms to learn complex data 

features, especially the advantages of LSTM in 

processing time series data. In addition, the performance 

of LSTM in recognizing pedestrian's intention to cross 

the street was further improved by introducing multi-head 

attention mechanism. Compared with some models using 

more complex network structures, such as those based on 

3D convolutional networks, the model designed in the 

study had certain advantages in terms of processing speed 

and hardware requirements. This is because YOLOv4 and 

LSTM networks are relatively simple and easy to 

implement in on-board embedded systems. In the aspect 

of pedestrian crossing intention recognition, the accuracy 

of the model can be significantly improved by combining 

pedestrian location and human key point information. 

This finding provides a new direction for future research 

on how to more effectively integrate multi-source 

information to improve the performance of the model. 

The optimization and extension of the model can be 

carried out from the following aspects: First, by 

increasing the number and diversity of data sets, the 

generalization ability of the model is improved. The 

second is to further improve the running speed and 

detection accuracy of the model by improving the 

network structure and parameter selection. The third is to 

consider introducing more characteristic information, 

such as speed, relative distance of pedestrians, etc., to 

cope with the situation of high-speed vehicles. 
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