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To improve the efficiency of human-machine interaction in complex machining environments and 

optimize the accuracy of gesture recognition, a new gesture recognition system is developed by 

combining the improved You Only Look Once 5 and Unity 3D software. Firstly, an efficient channel 

attention mechanism is introduced to optimize the network structure of the fifth version of the algorithm 

to process higher dimensional gesture image data. Secondly, a twin model of complex processing 

equipment is constructed, and real-time visualization of gesture data and human-machine interaction 

are achieved using Unity 3D. The research results indicated that the designed static gesture recognition 

algorithm achieved image signal-to-noise ratio and image intersection to union ratio of 0.95 and 0.98 

during the training process. In practical applications, the gesture interaction recognition model 

designed using this algorithm exhibited extremely low response time, with a minimum of 0.02s to 

complete the recognition task. At the same time, the recognition accuracy of this model reached up to 

99.1%, which was much higher than the other three comparative models. In the practical performance 

tests, for the different four datasets, the recognition accuracy of YOLOv5-ECA model was 98.5%, 

98.7%, 99.1% and 98.8%, with the recognition time as low as 0.07s, 0.02s, 0.11s and 0.08s, 

respectively. It can be seen that the gesture recognition system provides a new technical solution for 

human-machine interaction of complex processing equipment, which can further improve the 

operational efficiency and safety of human-machine interaction.  

Povzetek: Razvit je optimiziran YOLOv5 z Unity 3D za izboljšano prepoznavo gest v kompleksnih 

strojnih okoljih. Rezultati potrjujejo visoko učinkovitost pri izboljšanju varnosti in operativne 

učinkovitosti človek-stroj interakcije, kar omogoča napredne rešitve v industrijski avtomatizaciji. 

 

1 Introduction 
With the development of industrial automation and 

intelligent manufacturing, complex processing 

equipment has become particularly important in modern 

manufacturing. This equipment has high precision, 

multi-functionality, and high automation, which can 

handle more complex process flows [1-2]. In recent years, 

the development of the Internet of Things and digital 

twin technology has provided new solutions for complex 

processing equipment [3-4]. Digital twin technology 

achieves real-time monitoring, simulation, and remote 

control of devices by creating virtual models. However, 

how to improve the real-time monitoring and control 

efficiency of complex processing equipment, especially 

the accuracy and efficiency of human-machine 

interaction, is still an important research topic. At present, 

gesture recognition technology based on deep learning 

has been widely applied in academia and industry, 

especially the You Only Look Once (YOLO) algorithm 

[5]. This series of algorithms has attracted widespread 

attention in the object detection and gesture recognition 

due to their high efficiency and real-time performance. 

Gestures, as a primitive and natural way of 

human-machine interaction, existed before the 

development of language and were mainly used for  

 

information transmission. Various gestures and 

commands can not only convey information concisely, 

but also perform complex operations. In human-machine 

interaction, gestures provide a highly flexible 

communication form, simplifying the interaction process 

by avoiding direct physical contact between mechanical 

devices and users. In addition, gesture interaction can 

provide more intuitive operating methods and a rich 

interaction experience, better meeting the needs and 

expectations of users for interaction methods. In previous 

studies, Zhang proposed three different gesture feature 

extraction methods to improve the recognition accuracy 

of human-machine interaction gestures, namely scale 

invariant feature transformation, local binary mode, and 

directional gradient histogram. Three feature extraction 

methods combined with backpropagation neural 

networks were used to complete gesture classification 

and recognition tasks. The research results indicated that 

the gesture feature map information extracted from the 

directional gradient histogram was closest to the original 

image. This method, combined with backpropagation 

neural networks, had a faster convergence speed, the 

smallest stable error, and the highest recognition 

accuracy [6]. Li et al. proposed a gesture recognition 

method based on surface electromyography signals for 
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human-machine interaction in rehabilitation equipment. 

In addition, a gesture classification model combining 

convolutional neural networks and long short-term 

memory networks was proposed to classify five dynamic 

gestures. Finally, tests were conducted on five different 

limb positions. It was found that the dynamic gesture 

recognition accuracy of this method reached 84.2% [7]. 

Chakravarthi et al. proposed a gesture recognition system 

based on extreme learning to address the gesture 

recognition in human-machine interaction. The system 

could quickly and accurately recognize gestures by 

displaying hand movements in front of the camera, 

which was helpful for people with different backgrounds 

to use. The research results indicated that the constructed 

gesture recognition system could quickly interpret 

different gestures and improve the accuracy of gesture 

interaction, which was particularly suitable for fields 

such as healthcare, financial transactions, and smart 

transportation [8]. The total summary table of related 

works is shown in Table 1. 

Table 1: General summary of related works 

Method Accuracy 
Response 

Time 

Operational and 

Computational 

Efficiency 

Limitations 

The method 

proposed by Zhang 
96.1% - Moderate efficiency Limited applicability 

The method 

proposed by Li et 

al. 

84.2% - Moderate efficiency 
Limited to rehabilitation 

equipment 

The method 

proposed by 

Chakraverthi 

87.5% 0.33s Moderate efficiency Limited applicability 

SSD 
84.5% - 

88.2% 

0.23s - 

0.33s 

General computational 

efficiency, longer 

response time 

Basic model, lacks additional 

attention mechanism, lower 

accuracy in detailed feature 

recognition 

YOLOv5 
87.6% - 

90.3% 

0.15s - 

0.26s 

Higher computational 

efficiency and shorter 

response time than 

SSD 

Basic model, lacks additional 

attention mechanism, lower 

accuracy in detailed feature 

recognition 

EMAFF-Net 
90.4% - 

93.1% 

0.09s - 

0.17s 

Higher computational 

efficiency and shorter 

response time 

Fewer feature recognition 

points than YOLOv5-ECA 

YOLOv5-ECA 

(This study) 

98.5% - 

99.1% 

0.02s - 

0.11s 

High computational 

efficiency and short 

response time 

May not accurately recognize 

extreme or rare gestures; 

significantly affected by 

hardware devices and 

environmental factors; higher 

model complexity 

 

In summary, although current research has made 

some progress in gesture recognition and 

human-machine interaction, most systems still face low 

efficiency and insufficient accuracy in processing 

high-dimensional data. The research aims to develop an 

efficient and accurate gesture recognition system by 

combining You Only Look Once version 5 (YOLOv5) 

and Unity 3D software, in order to provide a more 

intuitive and efficient way of human-machine interaction. 

The innovation of the research lies in optimizing the 

YOLOv5 network structure by introducing Efficient 

Channel Attention (ECA) and designing a novel gesture 

recognition algorithm. Meanwhile, the study combines 

Unity 3D software to build a digital twin model of 

complex processing equipment, achieving real-time 

visualization of gesture data and human-machine 
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interaction. 

2 Methods and materials 
In order to achieve efficient and accurate gesture 

recognition in complex machining environments, the 

YOLOv5 algorithm is first optimized. An improved 

algorithm combining ECA is proposed. The study aims 

to collect gesture data through Kinect 2.0 sensors and 

introduce them into Unity 3D software to achieve 

real-time visualization and human-machine interaction of 

gesture data. 

2.1 Design of twin static gesture recognition 

algorithm based on improved YOLOv5 

Kinect is a motion sensing input device developed by 

Microsoft, first released in 2010. This device uses a 

series of sensors and cameras to capture player actions, 

voice, and images without the need for traditional game 

controllers, allowing users to interact with the game 

through body movements and voice commands [9-10]. 

Kinect 2.0 is an upgraded version of the first generation, 

which not only supports higher resolution color 

information and can detect infrared images, but also 

increases the number of detected joints from 20 to 25. 

The structure of Kinect 2.0 and the collected image 

information are shown in Figure 1. 

 

Color 
camera

Multiarray 
microphone

Depth 
sensor

Power indicator 
light

Color image

Depth image

(a) Kinect 2.0 structure (b) Color and depth images captured by Kinect  
Figure 1: Kinect 2.0 structure and captured images 

 

In Figure 1 (a), the key components of Kinect 2.0 

include a color camera, depth sensor, multi-array 

microphone, and power indicator light. Color cameras 

are used to capture user's color images, which can 

directly display user images in games. Depth sensors use 

infrared projection technology to create a 3D spatial 

mapping of the player's surroundings, allowing devices 

to detect the user's position and actions in space, even in 

dimly lit environments. Multi-array microphones are 

used to capture sound and enable speech recognition 

functionality. Figure 1 (b) shows the color and depth 

images captured by Kinect 2.0. When using Kinect 2.0 to 

capture image information, the calculation between the 

camera and the measured object is shown in equation (1) 

[11-12]. 

2
d c

f






=                   (1) 

In equation (1), d  represents the distance between 

the measured object and the camera. c  represents the 

speed of light.   represents the round-trip phase 

difference. f  represents the given infrared light 

frequency. Due to the certain spatial spacing and 

different viewing angles between Kinect 2.0 color and 

depth cameras inside the device, the correspondence 

between the two types of images is not completely 

consistent when collecting gesture images. To 

successfully complete the static gesture recognition task, 

it is necessary to register the color gesture image with the 

depth gesture image. The coordinate relationship 

between the two images is shown in equation (2). 
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          (2) 

In equation (2), W  and U  represent the rotation 

matrix and translation matrix, respectively. 

a
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 and 
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Y

Z

 
 
 
  

 represent the coordinates of corresponding points 

in color gesture images and depth gesture images, 

respectively. The calculation of transferring coordinate 

points from deep gesture images to color gesture images 

is shown in equation (3). 
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           (3) 

In equation (3), u  and v  represent the horizontal 

and vertical coordinates of a point in the color gesture 

image, respectively. 
af 

 and 
bf 

 represent the 

proportional parameters corresponding to a  and b . 

a

b

c

c





 
  

 represents the center point coordinates in the 

color gesture image. 

In addition to using Kinect 2.0 to process image data, 

the study also introduces the YOLOv5 network to design 
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a gesture recognition algorithm. The core idea of YOLO 

is to view object detection as an end-to-end regression 

problem, achieving real-time object detection by dividing 

grids on the image and predicting the bounding boxes 

and categories of each grid [13-14]. YOLOv5 inherits the 

core concept of the YOLO series and improves 

performance and efficiency by optimizing network 

structure and data augmentation technology, as shown in 

Figure 2. 
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Figure 2: YOLOv5 network structure diagram 

 

Figure 2 shows the main components of YOLOv5, 

including backbone module, neck module, head module, 

and prediction module. In YOLOv5, the sub-modules 

include a Cross Stage Partial Darknet53 (CSPDarknet53) 

with a Darknet53 neural network and a single Cross 

Stage Partial (CSP) network. Compared with other 

YOLO versions, YOLOv5 adopts a two-stage CSP 

structure, which can effectively reduce gradient 

information loss, reduce model size, and enhance the 

comprehensiveness of information extraction. 

Squeeze-and-Excitation Network (SENet) is a special 

channel attention mechanism module. In SENet, channel 

information can be obtained through global average 

pooling, and then the weight values of the channels can 

be obtained through learning, ultimately enhancing 

attention. The process of taking global average pooling 

to compress global spatial information is shown in 

equation (4) [15-16]. 

( )
1 1

1
,

H W

i j

z u i j
H W

 

= =

=
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            (4) 

In equation (4), ( ),i j  represents the position 

coordinates of the input feature map. u  and z  

respectively represent the input and output of the SENet 

module, and their specific value ranges are shown in 

equation (5). 
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               (5) 

In equation (5), R  represents the set of real 

numbers. C , H   and W   respectively represent the 

number of channels, feature map height, and feature map 

width. In order to efficiently utilize the aggregated 

information in the channel, a learnable module is added 

to the SENet module to capture channel correlation. Two 

fully connected layers and a ReLU activation function 

are used to achieve this, as shown in equation (6). 

( )( )2 1s W W z =              (6) 

In equation (6), s  represents the channel attention 

output. 
1W  and 

2W  represent two fully connected 

operations, respectively.   represents the Sigmoid 

function, which limits the channel weight value between 

0 and 1.   represents the ReLU activation function. 

The range of values for s , 
1W  and 

2W  are shown in 

equation (7). 
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In equation (7), r  represents the channel reduction 

coefficient. The final output of the SENet module 

obtained by combining equations (4) to (7) is shown in 

equation (8). 

x s u=   (8) 

In equation (8), x  represents the final output of the 

SENet module, and C H Wx R
    . In the SENet module, 

in order to further enhance the prediction ability of 

channel attention on detailed features and reduce the 

parameters and computational complexity of the fully 

connected layer, the ECA module is used for 

improvement. The main reasons for choosing ECA are as 

follows. Firstly, ECA constructs channel attention 

through one-dimensional convolution, avoiding the 

information loss caused by dimensionality reduction and 

effectively preserving gesture image feature information. 

Secondly, it has a fast information processing speed, 

which can meet the real-time requirements of gesture 

recognition in complex processing environments. 

Furthermore, the length value determines the size of the 

receptive field, which in turn determines the 

effectiveness of attention acquisition, enabling it to 
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adaptively extract key features and improve the accuracy 

of gesture recognition. It is very suitable for 

high-precision human-computer interaction requirements 

in complex processing environments. The structure of 

ECA is shown in Figure 3. 
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Figure 3: Structural diagram of ECA mechanism 

 

In Figure 3, ECA effectively captures the feature 

information of local channels and constructs channel 

attention by using one-dimensional convolution instead 

of fully connected layers. This feature extraction method 

not only avoids information loss caused by 

dimensionality reduction, but also has faster information 

processing speed. The mathematical model of ECA is 

shown in equation (9). 

( )( )( )1 ks C D GAP x =          (9) 

In equation (9), x  represents the input feature of 

ECA. 1 kC D  represents the one-dimensional 

convolution with a convolution length of k . GAP  

represents the global average pooling. The final output of 

ECA is shown in equation (10). 

y s x=                 (10) 

In equation (10), y  represents the final output of 

ECA. Due to the one-dimensional convolution method 

used in ECA, the length value determines the size of the 

receptive field, thereby determining the effectiveness of 

attention acquisition. A mapping relationship is 

constructed between k  and C  to achieve adaptive 

convolution, as shown in equation (11). 

( ) 2log C
k C t odd odd




 


= = = +       (11) 

In equation (11),   and   represent two different 

hyper-parameters. t odd  represents the odd number 

closest to t .   represents the mapping relationship. 

The ECA is integrated into the YOLOv5 network. Then, 

a YOLOv5 static gesture recognition algorithm (You 

Only Look Once version 5-Effective Channel Attention, 

YOLOv5-ECA) is ultimately designed. The running 

process of YOLOv5-ECA is shown in Figure 4. 

The YOLOv5-ECA static gesture recognition process 

in Figure 4 is mainly divided into two parts: gesture 

segmentation and gesture recognition. In the gesture 

segmentation stage, Kinect 2.0 is mainly used to collect 

gesture image data and perform registration and 

segmentation operations on the collected images. In the 

gesture recognition stage, YOLOv5 and ECA are used to 

complete the recognition task. During the training of the 

YOLOv5-ECA model, the following hyperparameter 

settings are used. The learning rate is 0.01, and the 

dynamic adjustment strategy is used to gradually reduce 

the learning rate as the training rounds increased, in order 

to achieve better convergence. The batch size is set to 32 

to balance the memory footprint and training efficiency. 

The optimizer selects Adam, which has the characteristic 

of adaptive learning rate and can adapt to the model 

training. By setting these hyperparameters, the training 

process can be effectively controlled, avoiding 

overfitting and underfitting problems, and improving the 

performance and generalization ability of the model. 
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Figure 4: Flowchart of YOLOv5-ECA static gesture 

recognition 

 

2.2 Construction of twin human-machine 

interaction model for complex processing 

equipment in gesture recognition 

Complex machining equipment usually refers to 

mechanical equipment used in industrial manufacturing 

processes to perform various complex machining tasks. 

These devices typically have high precision, versatility, 

and high automation, which can handle complex process 

flows and production requirements. Typical complex 

processing equipment includes CNC machine tools, 

automated production lines, robot processing systems, 
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additive manufacturing equipment, etc [17-18]. Digital 

twin technology is used to establish twin models for 

complex processing equipment. This model not only 

reproduces the characteristics of various physical devices 

in virtual space, but also achieves bidirectional 

information exchange between entities and digital 

models by simulating the operational behavior of devices 

in real industrial environments. The twin model 

framework constructed is shown in Figure 5. 
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Figure 5: Framework diagram of twin model system for complex processing equipment 

 

Figure 5 shows the system framework of the twin 

model for complex processing equipment, which is 

divided into three layers: data acquisition layer, data 

processing layer, and application service layer. The data 

collection layer forms the foundation of the system, 

which not only groups the functions of devices, but also 

associates these grouped device functions with 

operational gestures. In this layer, Kinect 2.0 sensors are 

mainly used to collect gesture data. The collected data 

includes depth and color images of static gestures 

obtained in diverse backgrounds and lighting 

environments. The main task of the data processing layer 

is to process the collected data. Due to the unsuitability 

of directly collected gesture data for static gesture 

recognition, a series of preprocessing is required. After 

these preprocessing steps are completed, the dataset can 

be used for gesture training and recognition. The 

application service layer is located at the top layer of the 

system. The processed data can interact with this layer to 

implement various functions. Overall, this study aims to 

project complex machining equipment into a virtual 

space and utilize Kinect 2.0 sensors to achieve diverse 

applications of the equipment in the virtual space. 

In the field of industrial manufacturing, complex 

processing equipment plays an important role [19-20]. Its 

operational performance and efficiency have a decisive 

impact on product quality and production efficiency. To 

improve the operational efficiency and production output 

quality of these complex processing equipment, real-time 

monitoring and optimized control are two commonly 

used key strategies. Traditional monitoring and control 

methods rely heavily on human and material resources, 

which are often affected by errors and response delays. 

The advancement of artificial intelligence technology, 

especially the promotion of the Internet of Things and 

intelligent manufacturing, has made digital twin 

technology a new solution for simulating complex 

processing equipment. This study combines the 

optimized YOLOv5 algorithm to design gesture 

recognition technology. The human-machine interaction 

process and gesture interaction process in the complex 

processing equipment twin model after introducing 

gesture recognition are shown in Figure 6. 
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Figure 6: Flowchart of human-machine interaction and gesture interaction in the twin model 

 

In Figure 6 (a), human-machine interaction based on 

the complex processing equipment twin model refers to 

creating a virtual model corresponding to the actual 

physical equipment. Through reliable communication 

technology, the operator's gesture instructions are 

transmitted, and the device can adjust its working status 

in a timely manner based on these instructions to meet 

the operator's requirements and complete production 

tasks. When building virtual models, Kinect 2.0 and 

Unity 3D software are mainly used. For the details of 

building a virtual model, the first step is to import the 

gesture data collected by Kinect 2.0 into Unity 3D. By 

writing scripts, these gesture data can be mapped to the 

corresponding actions of the virtual model. For example, 

when the operator makes a gesture, the virtual device in 

Unity 3D takes the corresponding action to simulate the 

working state of the real device. Secondly, the 

communication function of Unity 3D ensures 

synchronization between the virtual model and the actual 

device. Based on network protocols, operation 

instructions are transmitted from virtual environments to 

actual devices, enabling them to respond promptly to 

operator instructions. Finally, Unity 3D also supports 

rich user interface design, providing operators with an 

intuitive control panel and feedback interface. In a virtual 

environment, operators can understand the status and 

operation results of devices through an intuitive interface, 

improving the efficiency and accuracy of operations. 

Figure 6 (b) shows the flowchart of gesture interaction. 

In the gesture interaction, the operator first executes 

various gestures, and the Kinect sensor captures this 

gesture information and sends it to the computer system. 

Subsequently, the computer system parses the data and 

outputs the recognized gesture results and corresponding 

instructions. Finally, the digital twin model of complex 

processing equipment immediately operates based on 

these instructions. Throughout the entire gesture 

interaction cycle, operators monitor and adjust actions 

through visual feedback to ensure accurate execution of 

gesture commands and interaction continuity. 

3 Results 
Firstly, the study selects Single Shot Multi-Box 

Detector (SSD), YOLOv5, and Enhanced Multi-Scale 

Attention Feature Fusion Network (EMAFF-Net) as 

comparative algorithms to test the benchmark 

performance of YOLOv5-ECA algorithm. Secondly, four 

algorithms are used to construct recognition models to 

verify the effectiveness of YOLOv5-ECA in practical 

applications. 

3.1 YOLOv5-ECA algorithm performance 

testing 

EgoHands is a publicly available gesture recognition 

dataset designed specifically for first person perspective 

gesture recognition, which is used to test the benchmark 

performance of algorithms. The EgoHands dataset 

contains various gesture types, such as common gestures 

such as pointing, grasping, and clenching, totaling 

approximately 3,000 publicly available gesture image 

data. In terms of variability, it covers different lighting 

conditions, ranging from bright to dim environments, and 

user diversity includes people of different ages, genders, 

and skin colors. In the preprocessing step, the image is 

first subjected to size normalization and uniformly 

adjusted to a specific size, such as 416×416 pixels. 

Simultaneously, data augmentation operations are 

performed, including random rotation of a certain angle 

(such as ±15°), random horizontal flipping, etc. The 

collected 3,000 public gesture image data are divided 

into training and testing sets in an 8:2 ratio. Firstly, the 

loss values of four algorithms are tested on the same 

dataset, as shown in Figure 7. 
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Figure 7: Performance of YOLOv5 ECA in gesture recognition: A comparative study of loss function and accuracy 

 

Figures 7 (a) and 7 (b) show the loss function curves 

of SSD, YOLOv5, EMAFF-Net, and YOLOv5-ECA in 

the training and testing sets, respectively. As shown in 

Figure 7 (a), YOLOv5-ECA iterated to a stable state 

faster than the other three algorithms. After reaching a 

stable state, YOLOv5-ECA had 100 iterations, with a 

loss value of 0.40. Similarly, in Figure 7 (b), 

YOLOv5-ECA only required 103 iterations to reach a 

stable state, with a loss value of 0.36. The p-value of the 

accuracy difference between YOLOv5-ECA and SSD 

was 0.01 and the t-value was 3.5, indicating that the 

difference in performance of the two algorithms was 

significant at the significance level of 0.05. For the 

comparison of YOLOv5-ECA and EMAFF-Net, with a 

p-value of 0.03 and a t-value of 3.2, the differences were 

also considered significant. These statistical results 

support that the superior performance of YOLOv5-ECA 

in loss function and accuracy is not accidental. Then, the 

study tests the Image Ambiguity (IA) and Structural 

Similarity Loss (SSL) of the four algorithms during the 

training process, as shown in Figure 8. 
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Figure 8: Performance statistical analysis of gesture recognition algorithms: IA, SSL, and accuracy of different 

algorithms 

 

Figures 8 (a) and 8 (b) show the changes in IA and 

SSL values of the four algorithms during training, 

respectively. As shown in Figure 8 (a), when the number 

of training samples increased from 100 to 800, the IA 

values of SSD, YOLOv5, EMAFF-Net, and 

YOLOv5-ECA decreased from 0.52, 0.43, 0.34, and 0.19 

to 0.36, 0.28, 0.25, and 0.07, respectively. The IA value 

under the YOLOv5-ECA algorithm was always less than 

0.20, indicating that the algorithm had the lowest 

ambiguity in recognizing gesture images. As shown in 

Figure 8 (b), the SSL values of SSD, YOLOv5, 

EMAFF-Net, and YOLOv5-ECA algorithms also 

decreased with the increase of sample size. When the 

sample data were 800, the SSL values of SSD, YOLOv5, 

EMAFF-Net, and YOLOv5-ECA reached their minimum 

values of 0.15, 0.23, 0.18, and 0.03, respectively. It can 

be seen that the YOLOv5-ECA algorithm has the 

smallest image structural information loss during the 

training process, which can better preserve the true 

recognition results. Then, the mean and standard 

deviation of each model in multiple experiments are 

calculated. For example, the YOLOv5 ECA model had 

an accuracy of 98.5%, 98.7%, 99.1%, and 98.8% in 

recognizing four types of gesture images, respectively. 
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After multiple experiments, its mean was 98.75% and the 

standard deviation was 0.2%. Similar processing is also 

applied to response time. For example, YOLOv5-ECA 

had a minimum response time of 0.02s. The average 

value after multiple experiments was 0.06s, the standard 

deviation was 0.01s, and the p-value was less than 

0.0001. By calculating the confidence interval, the 

significance of model performance improvement can be 

more accurately determined. The changes in 

Signal-to-Noise Ratio (SNR) and Intersection over Union 

(IoU) of the four algorithms during the training process 

are shown in Figure 9.
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Figure 9: Empirical study on the effect of sample size on SNR and IoU values of SSD, YOLOv5, EMAFF-Net and 

YOLOv5-ECA algorithms 

 

Figures 9 (a) and 9 (b) show the SNR and IoU values 

of the four algorithms, respectively. In Figure 9, as the 

sample size continued to increase, the SNR and IoU 

values of SSD, YOLOv5, EMAFF-Net, and 

YOLOv5-ECA also showed a gradually increasing trend. 

However, the overall increase trend of YOLOv5-ECA 

was the gentlest, and the changes in its SNR and IoU 

values were also the smallest. As shown in Figure 9 (a), 

the maximum SNR values of SSD, YOLOv5, 

EMAFF-Net, and YOLOv5-ECA were 0.82, 0.84, 0.91, 

and 0.95, respectively. As shown in Figure 9 (b), the 

maximum IoU values of SSD, YOLOv5, EMAFF-Net, 

and YOLOv5-ECA were 0.83, 0.86, 0.94, and 0.98, 

respectively. After calculation, the number of 

floating-point operations for SSD was 1045 FLOPs. 

YOLOv5 was relatively more complex in structure, with 

1513FLOPs. Due to its multi-scale attention feature 

fusion mechanism, EMAFF Net has a higher 

computational complexity of approximately 2120FLOPs. 

YOLOv5-ECA introduces ECA mechanism and 

interaction with Unity 3D, further increasing the 

computational complexity to 2502FLOPs. This indicates 

that YOLOv5-ECA faces a relatively high computational 

burden while achieving high performance. However, in 

complex machining environments, its high-precision 

recognition performance may balance performance and 

computational costs to some extent. 

3.2 Practical application effects of 

human-machine interaction models 

considering gesture recognition 

In addition to testing the benchmark performance of 

four algorithms, SSD, YOLOv5, EMAFF-Net, and 

YOLOv5-ECA algorithms are applied to complex 

processing equipment twin models. Four different types 

of static gesture interaction recognition models are 

constructed. Four different static gestures are captured to 

detect the performance of the four models in practical 

applications, as shown in Figure 10. 
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(a) SSD

(b) YOLOv5

(c) EMAFF-Net

(d) YOLOv5-ECA  
Figure 10: Recognition effects of different models 

Figures 10 (a), 10 (b), 10 (c), and 10 (d) show the 

recognition performance of SSD, YOLOv5, EMAFF-Net, 

and YOLOv5-ECA models for four types of gesture 

images, respectively. Based on Figure 10, the 

YOLOv5-ECA model had the best recognition 

performance. This model fully recognized key points in 

different gestures and provided a complete gesture 

recognition trajectory. Secondly, EMAFF-Net had better 

recognition performance than SSD and YOLOv5, but its 

number of feature recognition points was less than 

YOLOv5-ECA model, so its recognition performance 

ranked second. The recognition performance of SSD and 

YOLOv5 was poor, because both models were basic 

models and lack additional attention mechanism 

structures to increase the recognition accuracy of detailed 

features. 

Table 2 shows the accuracy and time of four models 

in recognizing four types of gesture images. According 

to the data in Table 2, the accuracy of YOLOv5-ECA in 

recognizing four types of gesture images was above 98%, 

with the highest reaching 99.1%, far higher than SSD 

and YOLOv5. In addition, YOLOv5-ECA had a shorter 

recognition time for the four types of images, with the 

shortest being as low as 0.02s. The interaction effect of 

the YOLOv5-ECA model in the twin system of complex 

processing equipment is tested, as shown in Figure 11. 

Table 2: Actual recognition accuracy and recognition 

time of the four models 

Image number 
Network 

structure 

Accuracy/

% 

Time/

s 

Gesture image 

1 

SSD 85.6% 0.33s 

YOLOv5 88.9% 0.26s 

EMAFF-Net 91.7% 0.14s 

YOLOv5-ECA 98.5% 0.07s 

Gesture image 

2 

SSD 86.8% 0.23s 

YOLOv5 88.9% 0.15s 

EMAFF-Net 92.2% 0.09s 

YOLOv5-ECA 98.7% 0.02s 

Gesture image 

3 

SSD 88.2% 0.29s 

YOLOv5 90.3% 0.22s 

EMAFF-Net 93.1% 0.17s 

YOLOv5-ECA 99.1% 0.11s 

Gesture image 

4 

SSD 84.5% 0.31s 

YOLOv5 87.6% 0.26s 

EMAFF-Net 90.4% 0.14s 

YOLOv5-ECA 98.8% 0.08s 

 

 

 

Raw image

The enlarged image The reduced image

Raw imageStatic gesture 1 Static gesture 2

(a) The interface amplifies the interaction 

results

(b) The interface Narrows the interaction 

results  
Figure 11: Static gesture interaction results of YOLOv5-ECA model 

 

In Figure 11 (a), when the operator's gesture was to 

open the palm, the image of the complex processing 

equipment twin system in Unity 3D was larger. In Figure 

11 (b), when the operator's gesture was to merge the 
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palms, the image of the complex processing equipment 

twin system in Unity 3D shrank. Based on the interaction 

results in Figures 11 (a) and 11 (b), it can be concluded 

that the designed static gesture recognition model can 

effectively complete human-machine interaction 

instructions. Due to its high precision and fast response 

time in various gesture recognition tasks, YOLOv5-ECA 

demonstrates excellent foundational performance. For 

new types of gestures or industrial devices, the model 

can be fine tuned with a small amount of annotated data 

to quickly adapt to new application scenarios without the 

need for large-scale training from scratch, thus saving 

time and resources. In addition, the high efficiency and 

low latency characteristics of YOLOv5-ECA make it 

particularly suitable for real-time interactive systems, 

such as the human-computer interaction scenario shown 

in Figure 11. Faced with dynamic gesture recognition, 

the model's fast updating ability and robustness can also 

ensure smooth transitions and provide stable and reliable 

recognition results. 

4 Discussion 
The study selected SSD, YOLOv5, EMAFF-Net, 

and YOLOv5-ECA for comparison. In performance 

testing, YOLOv5-ECA reached a stable state faster by 

iterating on a dataset of 3,000 gesture images. When the 

training set was stable, the loss value was 0.40 after 100 

iterations, and reached 0.36 after 103 iterations on the 

testing set. The lowest image blur was 0.07, the 

minimum structural similarity loss was 0.03, the average 

accuracy was 98.75%, and the average response time was 

0.06 seconds. The highest signal-to-noise ratio and 

intersection to union ratio were 0.95 and 0.98, 

respectively, but the computational complexity reached 

2502FLOPs.  

The YOLOv5-ECA method proposed in this study 

shows significant advantages in gesture recognition, and 

its performance is significantly improved compared with 

baseline methods (SSD, YOLOv5, EMAFF-Net). Firstly, 

from the perspective of performance improvement, the 

ECA mechanism has played a crucial role in feature 

extraction. Traditional feature extraction methods may 

overlook local feature information between channels, 

while ECA mechanism effectively captures the feature 

information of local channels by one-dimensional 

convolution to construct channel attention. 

Secondly, Unity 3D has played an important role in 

enhancing visualization and interaction. It can map the 

gesture data collected by Kinect 2.0 to the corresponding 

actions of the virtual model, achieving real-time 

visualization of gesture data and human-computer 

interaction. Through scripting and communication 

capabilities, Unity 3D ensures synchronization between 

virtual models and actual devices, providing operators 

with intuitive control panels and feedback interfaces, and 

further improving the efficiency and accuracy of 

human-computer interaction. 

However, this method also has some potential 

limitations. Although YOLOv5-ECA performs well in 

known datasets and experimental environments, there 

may be issues with inaccurate recognition for some 

extreme or rare gesture situations. This is because the 

training data may not fully cover all possible gesture 

variations and complex scenarios. Meanwhile, the 

performance of the model may be affected by hardware 

devices and environmental factors. For example, in 

extremely poor lighting conditions or in the presence of 

occlusion, the image quality captured by Kinect 2.0 may 

decrease, thereby affecting the input data quality of the 

model and leading to a decline in recognition 

performance. In addition, the complexity of the model is 

relatively high, and it may face slow running speed on 

devices with limited computing resources. In future 

research, it is necessary to further optimize the 

preprocessing process of the scheme and expand the 

scope of data collection to enhance the generalization 

ability of the model. At the same time, although this 

algorithm increases accuracy, it also increases the 

complexity of the model. 

5 Conclusion 
In order to improve the accuracy of human-machine 

interaction gesture recognition in complex processing 

equipment, a YOLOv5-ECA model was designed by 

combining ECA and YOLOv5. The experimental results 

showed that the model significantly outperformed SSD, 

YOLOv5, and EMAFF-Net on accuracy and real-time 

performance in gesture recognition. In benchmark 

performance testing, the model had a faster iteration 

speed and lower IA and SSL values. It also had excellent 

performance in SNR and IoU, with higher SNR and IoU 

values. In practical applications, YOLOv5-ECA 

exhibited high recognition accuracy and low response 

time in digital twin systems of complex processing 

equipment, with a maximum recognition accuracy of 

99.1% and a minimum response time of only 0.02s. In 

summary, the YOLOv5-ECA model performs well in 

basic testing, achieving excellent detection results in 

practical applications. Subsequent research can further 

test the performance of the YOLOv5-ECA model in 

different scenarios and other recognition tasks to 

improve the model's generalization ability. However, 

there are some limitations to using the Kinect 2.0 sensors 

for gesture recognition. Under low-light conditions, the 

image quality collected by Kinect 2.0 may decrease, 

affecting the accuracy of gesture recognition. In addition, 

occlusion problems can also have adverse effects on the 

system. When some gestures are blocked, the complete 

gestures may not be accurately identified. These 

shortcomings may reduce the applicability of systems in 

complex environments. For example, in some low-light 

industrial scenarios, the accuracy of gesture recognition 

decreases, affecting the efficiency of human-computer 

interaction. In practical application, these limitations 

need to be considered. Some measures such as adding 

auxiliary lighting or optimizing the algorithm to cope 

with the occlusion situation can improve the stability and 

applicability of the system. 
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