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Recently, the solution for recognizing and understanding an object based on visuals is to integrate the 

adaptation function (continuous machine-driven process) into the system update function involving humans 

(continuous human-driven process). However, this has created a gap between the adaptation function and 

the system. This situation requires understanding the system viewed as a dynamic composition of the learning 

process. This research introduced a self-learning model in the form of an adaptive kernel equipped with the 

SpinalNet architecture, and the goal of this study is to increase the Convolutional Neural Network (CNN) 

accuracy. The model consisted of a domain model, contextual knowledge, and adaptive learner developed 

based on the CNN with SpinalNet. The combination of Adaptive Kernel and SpiralNet in this CNN has a 

significant impact, allowing the model to adjust the selection of subsequent kernels based on the optimal input 

from the previous kernel. Moreover, this combination results in lower memory usage during training. The 

evaluation results show that our proposed model provides better classification accuracy than the SpiralNet 

model without the Adaptive Kernel. Furthermore, in terms of inference speed, our model outperforms 

SpiralNet, as evidenced by the use of fewer parameters.  

     Povzetek: Prilagodljiv model samoučenja, ki temelji na jedru, izboljša prepoznavanje vzorcev v sistemih za 

vid, integracijo CNN s SpinalNet za izboljšanje natančnosti klasifikacije, optimizacijo izbire jedra in 

zmanjšanje uporabe pomnilnika med usposabljanjem.

1 Introduction 
Computer (system) vision is a field of artificial 

intelligence that trains computer machines to interpret and 

understand (recognize) the visual world through deep 

learning models. The goal is that the machine can 

accurately identify and classify real-world objects and 

then react to what it sees. At present, the recognition and 

reaction capabilities of a system will be associated with 

the complexity of a highly dynamic, unpredictable, and 

uncertain environment [1]. In addition, the involvement of 

various elements of the real world interacting with the 

system will require the adaptability of the system. This 

ability will determine the success or failure of a system in 

recognizing and acting on what is occurring in its 

environmental context [2]. In fact, [3] states that the need 

to develop a system has entered the wave of learning from 

experience, namely the deployment of machine learning 

techniques. It functions to support various system 

functions to create an adaptive system, including a system 

capable of operating under conditions of uncertainty. 

Also, it can guarantee that its main property will function 

optimally. Therefore, a vision system for the current world 

requires a pattern recognition model possessing 

adaptability and a reliable optimization level. 

Adaptability in a system aims at realizing the behavior of 

adapting a system built based on special requirements [4]. 

This situation, among others, requires a system to 

recognize changes in its application domain. Additionally, 

it can change itself to produce alternative behaviors [5].  

 

Further, [3] in his latest review of long-term challenges 

that could trigger a new wave of scrutiny in the field of 

self-adaptation, raises an interesting question, namely the 

extent to which to develop systems to handle conditions 

that were not (fully) anticipated at the time the system was 

cultivated. Researchers have proposed various approaches 

to fostering adaptability in a system based on their 

respective problem domains. As a result, currently, neither 

a definition nor a specification for a system's adaptability 

has been widely agreed upon [6]. Besides, this applies to 

the specification of adaptability in vision systems. As an 

example, there is a need for deep meta-learning applied to 

image recognition problems  [7]. This problem can be 

resolved by understanding the system viewed as a 

dynamic composition of the learning process, namely how 

to enhance the system with self-learning abilities [3]. 

The perspective of growing adaptability is grounded in the 

self-learning model. The idea is to overcome the gap 

existing in the traditional perspective. In particular, there 

is a need to integrate the adaptation function (continuous 

machine-driven process) into the system update function 

involving humans (continuous human-driven process). 

Consequently, the system can only run for a short cycle 

since it has to wait for updates to deploy. Researchers 

generally develop adaptability for pattern recognition in 

vision systems by expanding various features to 

complement machine learning's ability to recognize visual 

cues. Some approaches or techniques can be used. 

Generally, they can be categorized into three categories, 

namely feature-based, template-matching, and image-
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based [8]. Image-based techniques are one of the concerns 

in this study because they can utilize all parts of an image. 

As a result, the detection process does not depend on the 

characteristics of an image or not focus on matching small 

parts of the image, becoming the model [9], [10]. It is 

expected that our research can be more flexible in 

developing a generic model to capture and recognize 

objects holistically with an optimal level of accuracy with 

self-learning capabilities. 

The existing main problem related to the application of 

machine learning for vision systems is to determine the 

most optimal algorithm. In addition, the researchers have 

conducted miscellaneous empirical investigations on 

various existing algorithms. One of them is a neural 

network. Nowadays, neural networks have become a 

method in machine learning with great success, including 

in object detection research [11] which initially had 

difficulties in its development. With various extensions of 

existing neural network-based methods, the development 

process has become easier [12]. One of them is the 

utilization of a deep neural network. It is a neural network 

architecture delving image data. In the context of a vision 

system, object detection is performed by training a 

computer to interpret and understand the visual world 

through a deep learning model. Hence, the machine can 

accurately identify and classify objects and react to what 

it screens. Therefore, the vision system requires a pattern 

recognition model to reach a reliable level of optimization 

and adaptation. 

There are myriad neural network algorithms. One of the 

developments (types) is the Convolutional Neural 

Network (hereafter, CNN) algorithm. CNN is a variation 

of Multilayer Perceptron (hereafter, MLP) designed to 

process two-dimensional data. On the one hand, MLP is 

not suitable for use in the case of image classification since 

it does not store special information from image data and 

considers each pixel as an independent feature, resulting 

in poor results [13]. On the other hand, CNN is also a type 

of deep neural network designed to process two-

dimensional data with a high network depth and is widely 

applied to image data [14]. Based on research [15], CNN 

has shortcomings in terms of the old model training 

process. Therefore, there has been a plethora of studies 

developing the CNN algorithm to get results or 

performance, especially regarding the level of accuracy so 

that it gets better. One of the developments in the use of 

optimization algorithms. Several optimization algorithms 

are included in the minibatch-based adaptive algorithm or 

algorithms included in the gradient descent optimization 

algorithm. 

These works allow us to extend the self-learning model 

based on neural network theory. A neural network, as a 

fundamental primitive, can provide flexibility in designing 

an architecture that focuses on adaptability. However, its 

impact on computational complexity should also be noted. 

Furthermore, various existing research results mainly 

accentuated the level of accuracy in the pattern recognition 

process. Only a tiny proportion pays attention to the 

adaptability of the learning process. One of the reasons for 

this is the lack of a good representation for meta-learning 

[7]. This study introduced a self-learning model for pattern 

recognition in the vision system by bringing up the 

adaptability function in the learning process. The model 

consisted of an optimized CNN algorithm employing an 

adaptive kernel. Thus, CNN can adapt to the model 

parameters in the learning process. The rest of this study 

consists of the second part discussing relevant studies, the 

third part describing the proposed model, and the fourth 

part eliciting the application of the model. In particular, it 

consists of experiments and a discussion of the evaluation 

results.  Finally, the fifth part concludes all the work 

results and discusses future job opportunities. The rest of 

this study consists of the second part discussing relevant 

studies, the third part describing the proposed model and 

the fourth part eliciting the application of the model. In 

particular, it consists of experiments and a discussion of 

the evaluation results.  Finally, the fifth part concludes all 

the work results and discusses future job opportunities. 

2 Related work 
There have been various empirical results relevant to 

machine learning for pattern recognition needs in vision 

systems. [16] compared the results of applying various 

optimization algorithms in deep learning, namely CNN, 

with three different CNN architectures. This study 

deployed two machine learning models, namely 

supervised and unsupervised learning. There were ten 

algorithms compared in this study, including the 

minibatch-based adaptive algorithm or algorithms 

included in the gradient descent optimization algorithm, 

namely the Stochastic Gradient Descent (SGD) algorithm, 

SGD-Momentum, SGD-Nesterov, AdaGrad, AdaDelta, 

RMSProp, Adaptive Momentum, AdaMax, Nadam, and 

AMSGrad. Four datasets were utilized: MNIST, CIFAR-

10, LFW, and Kaggle Flowers. One of the results of this 

study was that the Adaptive Momentum optimization 

algorithm worked optimally. In other words, it reached the 

highest level of accuracy when applied to the first and 

third CNN architectures with the dataset applied as LFW. 

Besides, [17] also compared the performance of CNN. 

The results indicated that the Adaptive Momentum 

optimization algorithm had the highest level of accuracy. 

This study applied the Adaptive Momentum algorithm to 

three different CNN architectures, namely ShallowNet, 

LeNet, and AlexNet. The results reported that the best way 

to increase the accuracy of photosynthetic pigment 

prediction on plant digital images was to deploy the 

adaptive momentum algorithm combined with the LeNet 

architecture.  

Currently, the use of CNN architecture has reached a 

higher level by adding an adaptive scheme to the training 

process. The research in [18] introduced an adaptive 

learning rate rule in CNN training by integrating the Egret 

Swarm Optimization Algorithm (ESOA) and quadratic 

interpolation (QIESOA) to improve prediction accuracy. 

Adapting the learning rate improved CNN's weaknesses in 

multi-domain image classification tasks, achieving the 

highest accuracy of 97.15% on the test dataset. Luo and 

Hu [19] developed Adaptive Attention ResNet (AA-

ResNet), which addresses overfitting and training errors in 

CNNs with deeper networks. Feature extraction became a 
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primary focus of their research, using residual modules 

and adaptive attention to enhance feature representation. 

The developed model demonstrated high performance on 

the Cifar-10, Caltech-101, and Caltech-256 datasets. The 

research by Jiang et al. [20] discussed the role of activation 

functions in Convolutional Neural Networks (CNNs). It 

introduced the Adaptive Offset Activation Function 

(AOAF) as a solution to improve image classification 

accuracy. AOAF is a new parametric activation function 

that connects negative and positive values by adding an 

adaptive parameter (the average of the input feature 

tensor) [20]. The results showed that AOAF significantly 

improved accuracy, especially on datasets with high 

feature complexity. Wu and Pan [21] introduced an 

adaptive modular convolutional neural network (CNN) 

model design to improve efficiency and accuracy in image 

recognition tasks. Through a gate unit based on attention 

mechanisms, the model adaptively selects the optimal 

network structure based on learning. The results showed 

high accuracy on three Kaggle datasets (Cats-vs.-Dogs, 

10-Monkey Species, Birds-400). The research by Guo et 

al. [22] focused on developing an Adaptive Pooling 

Network (APN) based on memristor arrays to improve the 

performance and resilience of CNNs in managing 

information loss during pooling. The results demonstrated 

that APN enhanced CNN performance in terms of both 

accuracy and robustness on the MNIST and CAPTCHA 

datasets. To clarify the research results and identify gaps 

in the state-of-the-art concerning adaptability in vision 

systems, especially CNNs, we have summarized the 

findings in a table, as shown in Table 1.  

 

Table 1: State-of-the-art 

Research Proposed 

Method 

Problem Contribution Result Weakness 

Wei dkk. [18] CNN + QIESOA Slow 

convergence of 

traditional CNNs 

Adaptive 

learning rate 

update with 

ESOA and 

Quadratic 

Interpolation. 

91.25% (Cifar-

10), 88.66% 

(EMNIST), 

95.87% 

(EuroSAT), 

88.66% 

(Fashion-

MNIST), 

97.15% 

(RiceImage). 

Adaptation to 

datasets with 

high dynamics or 

specialized 

domains has not 

been discussed. 

Luo dan Hu [19] AA-ResNet Overfitting due 

to network 

depth. 

Adaptive 

attention, 

multitask loss 

function. 

92.43% (Cifar-

10), 69.61% 

(Caltech-101), 

52.29% 

(Caltech-256). 

Adaptation to 

large-scale 

datasets or new 

domains has not 

been tested. 

Jiang dkk. [20] AOAF Low 

performance of 

the ReLU 

function. 

Using negative 

values in feature 

extraction. 

Accuracy 

increased by 

4.8% compared 

to ReLU 

Not tested on 

datasets with 

high noise or 

different 

distributions. 

Wu dan Pan [21] Adaptive 

Modular CNN 

Model 

Overfitting, 

large parameters. 

Parallel modules 

and submodules, 

adaptive 

reduction of 

FLOPs. 

99.3% (Cats-vs-

Dogs), 99.26% 

(10-Monkey 

Species), 

99.13% (Birds-

400) 

Not evaluated on 

datasets with 

noise or extreme 

variations. 

Guo dkk. [22] APN 

(Memristor-

based) 

Information loss 

in CNN pooling. 

Adaptive pooling 

without 

backpropagation. 

99.3% (MNIST), 

92.6% 

(CAPTCHA). 

Difficult to adapt 

to systems 

without 

memristors and 

large datasets. 

 

Self-learning capabilities for vision systems have also 

been developed [7] by proposing a framework consisting 

of three main modules: the concept generator, meta-

learners, and concept discriminators. This framework 

integrated the representational power of deep learning into 

meta-learning. The results substantially improved vanilla 

meta-learning, demonstrated in various few-shot image 

recognition problems. Other researchers, including [23], 

employed a new structure and concept called SpinalNet. 

SpinalNet is an amalgamation of DNN and Gradual Input 

implementations. This study highlighted the shortcomings 

of DNNs related to computational intensity due to the size 

of the input network. Therefore, this study applied gradual 

input, which was the concept of input gradually, to reduce 

the burden of the calculation process. The results of this 
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study indicated that SpinalNet was able to increase the 

accuracy of the usual DNN. 

We had studied the model's adaptability before, starting 

with integrating the self-adaptation approach into 

requirements modeling [24]. As an illustration, we 

introduced a self-adaptation approach embedded into the 

primitive system requirements specification. Furthermore, 

in the study [25], we added a contextual-requirements 

approach to the adaptation pattern of the primitive system 

requirements. The goal was to capture the relevant context 

attributes so that the adaptive behavior of the system 

would match the prevailing context. In another study [1], 

we developed a pattern of adaptation to deal with the 

variability of system services. In this case, our primitive 

system requirements map to the various service levels of 

the system. In this study [2], we introduced the adaptation 

requirements for the adaptive systems (ARAS) 

framework, extending the system modeling language with 

control loop patterns and the context inheritance 

hierarchies. Technically, both were mapped into a graph 

network (Bayesian Network). We have defined several 

formalizations for adaptability in a graph. However, the 

results specific to the requirements of the vision system 

have not been attained. More recently, in the paper [26], 

[27], we merely attempted to apply the adaptability of this 

graph network to the needs of the Internet of Things (IoT) 

network system. 

We captured research opportunities Based on the related 

job descriptions and studies conducted previously. In this 

case, the study can be performed to improve (to enhance) 

the adaptability of the learning process in pattern 

recognition for vision systems. One example is the 

expansion of the CNN model development. More 

technically, the addition of the SpinalNet architecture to 

the CNN model that we have developed can have the 

opportunity to increase the adaptability and optimization 

of the learning process. Meanwhile, based on studies in 

related studies, it was explained that CNN fit image data. 

It has even been widely applied to image data [8]. 

Consequently, image-based techniques were also our 

concern when formulating the needs of this research. 

Additionally, [7], contended that there is a lack of a good 

representation for meta-learning, where this meta-learning 

will learn the learning algorithm (meta-learner) of many 

related tasks. These statements and facts have motivated 

us to develop a new model with self-learning capabilities 

for pattern recognition in vision systems. 

3 Proposed method 
The perspective used in developing this proposed model 

was inspired by [3]. In this sense, [3] notes that the 

challenge in the long-term triggering a new wave of 

research in the field of self-adaptation is to understand the 

system as a dynamic composition of the learning process. 

The idea is to enhance a system with self-learning 

capabilities. To illustrate, a system allows it to learn from 

the variety of data it collects and autonomously develops 

its learning process under changing and unpredictable 

conditions. In the context of the vision system, the work 

of [7] applied this perspective by proposing deep meta-

learning. Further, they also demonstrated its usefulness in 

image recognition problems. This work was extremely 

inspiring for us to propose a new model of self-learning 

capability for vision systems. Our model consists of three 

main components, namely the domain model, contextual 

knowledge, and adaptive learner as presented in Figure 1: 

a. Domain model is a domain modeling in the form of a 

graph network structure to capture high-level visual 

signal representations. 

b. Contextual knowledge represents the relevant context 

attributes in the model domain according to the current 

dynamic visual cue context. 

c. Adaptive learner consists of utility (utility function) 

and learner (learner function) functions that carry out 

learning and recognize visual cues representations 

based on the prevailing context. 

 

 
 

Figure 1: Self-learning model for pattern recognition in 

the vision system 

 

Domain model 

In a previous study [1], [2], we defined every element in 

the model domain indicating a dependency relationship. 

Furthermore, the model was regarded as a dynamic 

property in nature to be monitored based on certain 

parameter values. In this study, we developed it to specific 

representations for monitoring and capturing high-level 

visual cues. More specifically, the model deployed the 

SpinalNet structure developed by [23] taking inspiration 

from the human somatosensory system as presented in 

Figure 2. Following the way of how the human spinal 

network works, Spinal Net utilized gradual input (Gradual 

Input). All the layers contained in the model contributed 

to the main output of X in the same way that reflexes 

worked. Next, the modular input was sent to the main 

output of X. It was similar to how the brain works. 
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Figure 2: SpinalNet model from (Adapted from [25]) 

 

In a model like the one illustrated in figure 3, the first layer 

utilized a simple linear function and obtained only the sum 

of weight w from x1-x5. The second layer of the model 

gained the total weight w of x6-x10 as one input and the 

result of layer 1 as the other input. Briefly stated, the 

definition can be formulated as follows: 

 

a. For each layer 𝑥𝑖 ∈  {𝑥1, 𝑥2, . . . , 𝑥𝑛} will contribute 

to the main output layer X. 

b. For each input 𝑁𝑖 ∈  {𝑁1, 𝑁2, . . . , 𝑁𝑛} can be 

modularized into each of its 𝑥𝑖 layers and become 

inputs for 𝑥𝑖+1. layers. 

 

 
Figure 3: Simplified SpinalNet as a single hidden layer 

from (Adapted from [23]) 

 

Contextual Knowledge 

Contextual knowledge is a representation of dynamic 

properties in the model domain [2]. It refers to the 

abstraction of domain properties relevant to the expected 

system behavior. Also, it covers the specific context in 

which this expected behavior applies [28], [29], [30]. In 

this investigation, contextual knowledge was specified for 

the needs of context attributes related to visual cues in the 

model domain. The attribute applied as contextual 

knowledge in this research was the kernel dimension. It 

was intended to determine the size of the matrix to perform 

convolution and input shift. The kernel on convolution is 

formulated as follows: 

 

a. 𝐹(𝑥) ∗ 𝐹(𝑦) is the dimension of the kernel matrix. 

b. 𝑁(𝑥) ∗ 𝑁(𝑦) is the dimension of the input matrix. 

c. The output dimension of the convolution is 𝑁(𝑥) −
𝐹(𝑥) + 1 ∗  𝑁(𝑦) − 𝐹(𝑦) + 1. 

d. Convoluting the kernel 𝑄𝑢,𝑣 with the activation 

function tanh will result in weight 𝐾𝑢,𝑣. 

 

Adaptive learner 

The adaptive learner is a module that can automatically 

serve adjustments due to changing and growing needs. 

The main purpose of this module is to model the system 

dynamically. In particular, the module learned to 

recognize every need existing in the model domain and 

contextual knowledge on a run-time basis. The main 

problem to be handled was related to variables with 

varying, different, and flexible properties. This module 

indicated two functions, namely the utility function in the 

form of a function to sort or define alternative varieties 

according to their use for individual visual cues, and the 

learner function to carry out learning and introduction to 

obtain the most optimal results. The new kernel function 

was obtained through the result of the convolution of each 

input convolution Q(u,v) as in the following equation: 

 

𝜎𝑢,𝑣 =  ∑ ∑ 𝑄(𝑢,𝑣)𝑖,𝑗
𝑥𝑖,𝑗

𝑁−1

𝑗=0

𝑁−1

𝑖=0

   . . (1) 

 

The new kernel K(u,v) can then be deployed to perform 

convolution on the input image to produce S. 

Subsequently, it was applied as the output kernel as in the 

following calculation: 

 

𝑆 = ∑ 𝑥𝑢,𝑣𝐾 (∑ 𝑄𝑢,𝑣𝑖,𝑗
𝑥𝑖,𝑗

𝑖,𝑗

)

𝑢,𝑣

. . (2) 

 

𝑓 = tanh(S) ..(3) 

 

4 Experiment 
This section describes the evaluation of our proposed 

model for recognizing visual cue patterns, particularly 

handwriting patterns. In this experiment, we deployed 

MNIST datasets sourced from the research of LeCun, et. 

al. [31]. These datasets refer to a collection of handwritten 

images of numbers 0-9 consisting of 60,000 training data 

and 10,000 test data. The images were black and white. 

Each image was 28x28 pixels. The use of the MNIST 

dataset on the CNN method was performed by Saqib, et. 

al. [32]. The study succeeded in building a model 

recognizing and classifying handwritten figure images. 

The experimental results showed that the CNN model 

attained the highest classification of accuracy for a certain 

number of hidden layer neurons. Another scrutiny was 

conducted by Anwar, et. al. [33] Involving the MNIST 

dataset as the classification object of CNN. In addition to 

using MNIST, we also applied other datasets such as 

KMNIST, QMNIST, Fashion-MNIST, and EMNIST to 

strengthen the validation of the model we have developed. 
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Preparation of model application 

The network architecture structure developed in this 

experiment was inspired by the SpinalNet architectural 

model by carrying out several expansions, namely 

combining it with the Convolutional Neural Network 

architecture through an adaptive kernel on the convolution 

layer. The experimental mechanism was applied to the 

MNIST dataset with several models. As an example, the 

conventional CNN model commonly used covers the 

CNN model combined with the Adaptive Kernel, the 

SpinalNet model, and the model developed by the authors. 

Contextual knowledge elicitation was conducted to 

identify the relevant context attributes in the model 

domain related to the dynamic context of visual cues. This 

provides dynamic parameter updates during training on 

the adaptive kernel. The adaptive kernel parameters are 

iteratively updated during the backpropagation process. 

The kernel adapts by minimizing the cross-entropy loss 

through the gradient descent algorithm. The utility 

function calculates the optimal kernel value based on the 

contextual knowledge that has been learned. This 

mechanism allows the kernel to dynamically shift its focus 

and optimize the most relevant features for visual signals. 

Unlike non-adaptive kernels, which rely on static 

parameters, adaptive kernels dynamically adjust their 

parameters during training. For instance, after each 

convolution operation, the kernel dimensions are updated 

to optimize weight alignment in subsequent layers. This 

flexibility results in higher accuracy and efficiency, as 

demonstrated in our model. Figure 4 shows the distinction 

between the adaptive and non-adaptive kernel processes to 

clarify the differences. 

In this experiment, we identified the data collected from 

the results of pre-processing and preparation for the 

application of the model as contextual knowledge, namely 

the kernel that can change according to the determined 

input. 

 

Pattern recognition implementation and operation 

Our proposed model applied three main parts, namely the 

Adaptive Kernel, Convolutional Layer, and Full 

Connected Layer as shown in figure 5. First, the Adaptive 

Kernel was a Convolutional Layer involving an adaptive 

system in its kernel parameters. The determination of the 

kernel was based on the optimal input of the previously 

applied convolution. Second, the Convolutional Layer, 

both Adaptive Kernel and Convolutional Layer applied 

Maxpooling and Relu as activating functions. By applying 

the Spinal Layer to the Full Connected Layer section, the 

input parameters were smaller. As a result, memory usage 

can be kept to a minimum in learning the model. Third, 

Spinal Layer divided the input into several parts and then 

processed it with a linear function. In our model, the input 

was divided into two equal sizes and was processed 

linearly in six layers. In the final stage of the full 

connected layer, a linear function was utilized to combine 

the applied Spinal Layers. The utilized Spinal Net 

structure is shown in Figure 6. 

 

 
Figure 4: Differences between adaptive kernel approaches compared to non-adaptive methods. 

 

 

 

 
Figure 5. Self-learning model architecture 

 

 
Figure 6: SpinalNet architecture in full-connected 

layer 

 

More specifically, the implementation of the integration 

between the adaptive kernel and SpinalNet is shown in 

Figure 7, which illustrates the workflow of the proposed 

model. 

The model designed in Figure 7 processes a 28x28 

grayscale input image through a series of steps, starting 

from the dynamic kernel to the fully connected layer. In 
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the dynamic kernel, the kernel weights are adaptively 

adjusted during training, resulting in 25 feature maps 

(28x28x25). This output is then passed to the dynamic 

layer, where the results from multiple kernels are 

combined, and the channels are reduced to 6 (28x28x6). 

Next, the Conv2D Layer extracts deeper features, 

followed by the MaxPooling Layer for downsampling, 

producing an output of 12x12x20. A Dropout Layer is 

applied to prevent overfitting without altering the data 

dimensions. The data is then flattened through the Flatten 

Layer into a 1D vector (500 elements), which is processed 

progressively by the SpinalNet Layers by splitting the 

vector into six segments and generating a combined 

representation with a total of 1500 elements. Finally, the 

Fully Connected Layer processes this representation into 

logits for 10 classes to generate probabilities, determining 

the final class prediction. Combining the Adaptive Kernel, 

Convolutional Layer, and SpinalNet ensures 

computational efficiency and model adaptability in 

handling visual data. 

 

 
Figure 7: Purposed method framework 

 

 

The integration results between SpinalNet and the 

Adaptive Kernel were trained using various datasets for 

classification tasks. This experiment has two training 

scenarios: one where the model is trained with the 

additional VGG-5 network [34] and another where the 

model is trained without that additional network. The 

model with the added VGG-5 was trained for 100 epochs, 

using a batch size of 128 and a learning rate 5×10-3. In 

contrast to the hyperparameters used in the first scenario, 

the model without the VGG-5 addition was trained for 

eight epochs, using a batch size of 128 and a learning rate 

of 1×10-2. The difference in hyperparameter usage was 

made to adjust to the needs of each model being trained to 

maximize the potential of the training results. 

Additionally, both training scenarios were optimized 

using Stochastic Gradient Descent (SGD) with the same 

momentum value 0.9. 

These hyperparameters were determined based on the 

results of a systematic evaluation of several 

hyperparameter choices using a grid search approach. The 

evaluation was based on validation accuracy across 

various configurations while also monitoring the stability 

of the loss function and the efficiency of the number of  

 

 

 

parameters in the model. The evaluation results for each 

hyperparameter choice are shown in Tables 1 and 2. 
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Table 1: Hyperparameter testing for the proposed 

model with the added VGG-5 

Hyperparameter Range Optimal Value 

Learning Rate [0.001, 0.005, 

0.01] 

0.005 

Batch Size 
[32, 64, 128] 

128 

Hidden Layer in 

SpinalNet 

[64, 128, 256] 128 

Neuron per Layer 

in SpinalNet 

[64, 128, 256] 128 

Momentum [0.5, 0.7, 0.9] 0.9 

 

Table 2: Hyperparameter testing for the proposed 

model without VGG-5 

Hyperparameter Range Optimal Value 

Learning Rate [0.001, 0.005, 

0.01] 

0.01 

Batch Size 
[32, 64, 128] 

128 

Hidden Layer in 

SpinalNet 

[4, 6, 8] 8 

Neuron per Layer 

in SpinalNet 

[125. 250, 500] 250 

Momentum [0.5, 0.7, 0.9] 0.9 

 

From the tests in Table 1, the optimal configuration for the 

proposed model with the added VGG-5 was obtained, 

which included a learning rate of 0.005, a batch size of 

128, 128 hidden layers in SpinalNet, 128 neurons per 

layer, and a momentum value of 0.9 for SGD. Meanwhile, 

the optimal performance for the proposed model without 

the VGG-5 addition was achieved with a learning rate of 

0.01, a batch size of 128, 8 hidden layers in SpinalNet, 250 

neurons per layer, and a momentum value of 0.9. This 

configuration provided the highest validation accuracy, 

maintained a stable loss curve throughout training, and 

showed a balance between performance and 

computational efficiency. 

Before the training process, we performed data 

preprocessing on all datasets used. In this process, we 

applied the same steps to all datasets, which included 

converting the images to tensors and normalizing the 

values. In the tensor conversion process, the pixel values 

of the images were changed from the original range (0 to 

255) to the range [0.0, 1.0] by dividing each pixel value 

by 255. Afterward, the converted pixel values underwent 

normalization using the Z-Score normalization method. 

After passing through this data preprocessing stage, the 

model training process is expected to be faster and more 

stable, accelerating convergence and reducing imbalance. 

 

Model evaluation and comparison 

To validate the proposed model, we compared this 

research model with the original SpinalNet model. The 

comparison included accuracy, the number of parameters 

used, and the inference speed of the model on each test 

dataset used. Tables 3 and 4 compare the evaluation results 

between our model and SpinalNet. 

 

Table 3: Comparison of Adaptive-SpinalNet and 

SpinalNet with the added VGG-5. 

Dataset 

Adaptive-SpinalNet SpinalNet [23] 

Accuracy Inference 

Time  

Accuracy Inference 

Time 

MNIST 99.78% 5.21s 99.72% 5.33s 

KMNIST 99.24% 5.25s 99.15% 6.12s 

QMNIST 99.54% 16.77s 99.68% 16.92s 

Fashion-

MNIS 

95.21% 5.70s 94.68% 6.43s 

EMNIST 

(Digits) 

99.74% 12.57s 99.82% `13.03s 

EMNIST 

(Letters) 

94.69% 8.68s 95.88% 9.17s 

 

 

 

 

 

Table 3 highlights the comparison between VGG-5 + 

Adaptive-SpinalNet and VGG-5 + SpinalNet regarding 

accuracy and inference time. It is evident that the inference 

speed of our model consistently outperforms across all 

datasets. Similarly, the Adaptive-SpinalNet model 

demonstrates a speed advantage compared to the original 

SpinalNet model. The adaptive kernel dynamically adjusts 

weights based on the input it receives, enabling a focus on 

the most relevant features for the classification task and 

thereby reducing processing time for less significant 

information. Additionally, parameter efficiency is 

achieved by minimizing redundancy in kernel weights. 

This results in optimal representation without excess 

parameters that could slow the inference process. The 

comparison of parameter reduction is illustrated in Figure 

8. 

 

Table 4: Comparison Between Adaptive-SpinalNet and 

SpinalNet 

Dataset 

Adaptive-SpinalNet SpinalNet [23] 

Accuracy Inference 

Time  

Accuracy Inference 

Time 

MNIST 98.93% 3.42s 98.48% 3.61s 

KMNIST 92.52% 3.81s 88.25% 4.08s 

QMNIST 98.47% 12.85s 98.07% 13.03s 

Fashion-

MNIS 

87.92% 3.54s 86.61% 3.90s 

EMNIST 

(Digits) 

99.35% 9.09s 99.16% 9.29s 

EMNIST 

(Letters) 

91.43% 5.24 90.23% 5.97s 

 

In addition to its positive impact on parameter reduction, 

the SpinalNet architecture combined with Adaptive 

Kernel generally enhances accuracy across all datasets. 

This is particularly evident in Table 4, demonstrating that 

directly applying Adaptive Kernel to SpinalNet improves 

the model's accuracy on all test datasets. This indicates 

that our model, tested on various datasets (including 

MNIST, Fashion MNIST, KMNIST, and EMNIST), can 

generalize across different data distributions. 

Experimental results reveal that the Adaptive-SpinalNet 
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model consistently achieves competitive performance, 

even on datasets with significantly different visual 

patterns from MNIST. This highlights the model's ability 

to adapt to diverse data distributions. This adaptability is 

further reinforced by the Dynamic Kernel mechanism, 

which dynamically adjusts kernel weights based on input 

patterns during inference. This allows the model to capture 

relevant features under varying data conditions. 

Furthermore, the SpinalNet architecture processes feature 

independent segments, offering additional flexibility in 

handling shifts in data distribution. 

Furthermore, to provide stronger validation, we compared 

the model's performance with related studies using the 

same dataset benchmarks. This comparison is presented in 

Table 5.  

 

 

 

 
(a) 

 
(b) 

 

Figure 8: Comparison of the number of parameters between Adaptive-SpinalNet and SpinalNet: (a) with VGG-5, 

(b) without VGG-5 

 

Table 5: Comparison of Adaptive-SpinalNet with related studies 

Model Accuracy Number of 

Parameters MNIST KMNIST QMNIST Fashion MNIST 

SpinalNet [23] 98.48% 88.25% 98.07% 86.61% 16K 

VGG-5 + 

SpinalNet [23] 
99.72% 99.15% 99.68% 94.68% 3.6M 

CNN + QIESOA 

[18] 
- - - 97.15% Not Mentioned 

APN 

(Memristor-

based) [22] 

99.3% - - - Not Mentioned 

R-ExplaiNet26-

64 [35] 
99.70% 98.66% - 93.03% 0.89M 

Improved 

Efficient 

Capsnet [36] 

- 98.43% - - 0.58M 
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PMM [37] 97.38% - - 88.58% 

4.9K (MNIST), 

16.7K (Fashion 

MNIST) 

ConvPMM [37] 99.10% - - 90.94% 

0.13M 

(MNIST), 

0.28M (Fashion 

MNIST) 

Adaptive-

SpinalNet 
98.93% 92.52% 98.47% 87.92% 15.9K 

VGG-5 + 

Adaptive-

SpinalNet  

99.78% 99.24% 99.54% 95.21% 1.1M 

 

 

Table 5 demonstrates that the VGG-5 + Adaptive-

SpinalNet model outperforms all other models in terms of 

accuracy on the MNIST and KMNIST datasets. Although 

its accuracy on the QMNIST and Fashion MNIST datasets 

remains slightly below the VGG-5 SpinalNet and CNN + 

QIESOA models, the differences are insignificant, 

indicating that our model performs well in handling data 

variability. The Adaptive-SpinalNet model has the fewest 

parameters compared to other models, except for the 

PMM model on the MNIST dataset. This proves the 

effectiveness of the Adaptive Kernel in reducing 

computational complexity in the SpinalNet model with 

minimal accuracy trade-offs. This performance is 

achieved through the Dynamic Kernel, which dynamically 

adjusts weights to extract relevant features, while 

SpinalNet processes features in independent segments to 

enhance flexibility and computational efficiency. With a 

low parameter count, Adaptive-SpinalNet demonstrates 

strong generalization across various datasets, making it 

suitable for real-world applications involving diverse data. 

In addition to the appropriate selection of 

hyperparameters, the performance achieved by Adaptive-

SpinalNet is also attributed to the optimal sizing of the 

Dynamic Kernel. The kernel size significantly affects the 

model's adaptability. To clarify this, Table 6 presents the 

model's performance trained on the MNIST dataset using 

different Dynamic Kernel sizes. 

 

Table 6: Comparison of adaptive-spinalnet model 

performance on the MNIST dataset based on kernel size 
Ukuran 

Kernel 

Recall Precision F1-Score Accuracy 

(3x3) 98.91% 98.91% 98.91% 98.91% 

(5x5) 98.93% 98.93% 98.93% 98.93% 

(7x7) 98.80% 98.80% 98.80% 98.80% 

(9x9) 98.38% 98.38% 98.38% 98.38% 

 

The results in Table 6 show a performance improvement 

when the kernel size is increased from (3x3) to (5x5). This 

suggests that enlarging the kernel size in the Dynamic 

Kernel can enhance performance. However, when the 

kernel size is further increased to (9x9), performance 

decreases. A larger Dynamic Kernel does not necessarily 

guarantee an improvement in model performance, as a 

very large kernel tends to aggregate information over a 

larger area, potentially overlooking important small or 

local patterns. In addition to this finding, another 

interesting observation from the comparison in Table 6 is 

the consistency between precision, recall, F1-Score, and 

accuracy. Identical values for precision, recall, and F1-

score indicate that our model works effectively, achieves 

an optimal balance, and handles class distribution well. 

This demonstrates that our model performs well on the 

MNIST dataset. 

 

 

 

 

Another option that can be used as an adaptation method 

for the SpinalNet model is Reinforcement Learning (RL)-

-based adaptivity, which can be used to select or adjust 

kernels based on feedback from the environment to 

optimize performance. While this method may have the 

potential to adjust kernels based on experience, 

weaknesses such as computational overhead, dependence 

on reward design, and stability issues make it less ideal for 

high-efficiency real-time applications. The performance 

comparison between the Adaptive Kernel and RL methods 

in Table 7 demonstrates this. 

 

Table 7: Performance comparison of adaptive kernel and 

rl methods on the spinalnet model using the MNIST 

dataset 

Method Epoch 
Acc 

(%) 

Inference 

Time (s) 

Domain 

Shift 

Acc (%) 

Adaptive 

Kernel 
5 97.85 3.42 88.97 

Reinforcement 

Learning-

Based 

Adaptivity 

5 96.67 5.65 85.74 

 

The comparison results in Table 7 show that the Adaptive 

Kernel method has a significant advantage over the 

Reinforcement Learning-based Adaptivity approach in 

terms of accuracy, inference time efficiency, and handling 

domain shift. Both methods were tested with five training 

epochs, with the Adaptive Kernel method achieving an 

accuracy of 97.85%, higher than the RL-based method, 

which only reached 96.67%. Furthermore, the inference 

time of the Adaptive Kernel is much faster, at 3.42 

seconds, compared to 5.65 seconds for the RL method. 
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This indicates that the Adaptive Kernel method is more 

efficient for real-time applications than the RL-based 

adaptivity method. To further test the adaptability, we 

performed data augmentation for domain shift, which 

included random image rotation of up to 30°, brightness 

variation, and contrast changes. The evaluation results 

showed that the Adaptive Kernel's adaptation to domain 

shift was also superior, with an accuracy of 88.97% 

compared to 85.74% for the RL-based method. These 

results confirm that the direct adaptation mechanism of the 

Adaptive Kernel is more effective and efficient than the 

RL-based exploration, making it more suitable for 

adaptive vision systems that require high performance and 

resilience to data distribution changes. Another advantage 

is shown in the loss values generated at each epoch. 

Although the Adaptive Kernel method has a higher loss 

value than the RL-based adaptivity method in the first 

epoch, in subsequent epochs, the loss values for the 

proposed method consistently stay lower than those of the 

RL method. The comparison of loss values is shown in 

Figure 9. 

 

 

 
(a) 

 
(b) 

Figure 9: Comparison of Loss Values Between Adaptive Kernel and RL-based Adaptivity. (a) Original MNIST 

Test Data, (b) Augmented MNIST Test Data 
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Threats to validity 

a. Pre-Liminaries validity 

Validity in the preliminaries stage is measured by 

looking at the problem domain, which is understood as 

the clarity of data rows, datasets, and pre-processing. 

The transformation from non-linear to linearly 

separable transforms the data to a higher level by 

adding features using kernel functions. The raw data 

consists of various variants of the MNIST dataset, 

including MNIST itself, KMNIST, QMNIST, and 

Fashion-MNIST. Data identification is carried out to 

ensure that the pre-processing process in the model 

preparation stage is carried out correctly. This is a 

preparation stage for implementing the model as 

contextual knowledge. The data used is not too large. 

This was done to see how the model could be used with 

a limited amount of data but with high accuracy. 

 

b. Fitting validity 

In the evaluation of our research, the process of 

determining the model is carried out using cross-

validation and a confusion matrix. Validation is done 

by estimating the error and how our model can 

accommodate the unseen data. K-fold cross-validation 

is used to reduce parts that cause underfitting. By 

reducing training data, it is possible to lose trends in 

the data set, increasing the error caused by bias. The 

validation used is cross-validation, which generalizes 

the independent/unseen data set.At the validation 

stage, our learning self-learning model ensures that 

each process is carried out with attention to the 

evaluation of metrics, how to handle overfitting, and 

processes to reduce bias. 

c. Bias validity 

Measurement of the accuracy of each model is 

optimized by optimization of Stochastic Gradient 

Descent (SGD) and Cross Entropy Loss. To eliminate 

the habit of estimating gradients, SGD is required to 

reduce the cost of each iteration. The computing cost 

of each iteration will run linearly from O(n) to O(1). In 

determining the SGD variable, the learning rate affects 

the resolution of the conflicting goal by reducing the 

learning rate dynamically as optimization progresses. 

Cross entropy is determined to define the loss function 

in optimization. This is done by minimizing the cross 

entropy. Defining cross entropy indirectly proves the 

equivalence of the relationship between objects. Done 

as long as the entropy data is constant.. 

 

5 Conclusion dan further studies 
This study introduces a self-learning model for pattern 

recognition in vision systems. The model is developed 

through a self-adaptation approach where the system is 

regarded as a dynamic composition of the learning 

process. The goal is to enhance the system with self-

learning capabilities, enable it to learn from collected 

visual data and develop its learning process 

autonomously. Our model encompasses three main 

components, namely (a) domain model to capture high-

level representations of visual cues, (b) contextual 

knowledge representing context attributes relevant to the 

current dynamic context of visual cues, and (c) adaptive 

learner performing learning and recognizing visual cue 

representations based on the prevailing context. This 

model is prepared with a formulation combining the 

adaptive kernel method on the CNN architecture and the 

utilization of SpinalNet in the fully connected layer of the 

CNN. 

The validity of the proposed model was evaluated using 

cross-validation with several testing schemes. In addition 

to the evaluation results compared with the original 

SpinalNet model, we also validated the model by 

comparing its performance through evaluations with 

methods used in related studies, varying kernel sizes, and 

comparisons with other adaptation methods. The 

evaluation results indicate that the proposed model 

performs very well regarding accuracy and computational 

complexity. The results of this work pave the way for 

future studies. In other words, future studies can include 

developing and expanding our proposed model for other 

domain needs (e.g., audio recognition, machine 

translation, and so on). 
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