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The rapid spread of the pandemic of the coronavirus disease 2019 (COVID-19) has caused enormous
problems and many deaths. Therefore, it is essential to construct epidemiological models for forecasting
and prevention. The main objective of this study is to develop a novel model F (x), treating the cumulative
number of deaths due to COVID-19 using two approaches: the logistic sigmoidal function and an artificial
neural network. In addition, to estimate models for the death rate F ′(x). The research is longitudinal.
Data were downloaded from Johns Hopkins University for four countries. It is shown that the logistic
function is efficient within the basic sigmoidal functions, and a new variant of the function is obtained
and used. The contribution of this work is the model that can be used on data that are not necessarily
epidemiological and with any function, where, as x approaches positive and negative infinity, the function
tends to a constant value. Also, the method of its construction and the calculation of high-order derivatives
allow for the development of a practical model, as well as justification of the term “Wave(s)”. The turning
points (i.e., the place where the concavity changes) are also obtained and confirmed. Finally, they were
applied to real-world datasets. The sigmoidal models yielded better fits than previous works with Pearson
correlation coefficients of 0.99992 in Italy, 0.99993 in Brazil, 0.99992 in Switzerland, and 0.99991 in Peru;
on the other hand, the Neural Networks reported root mean square errors of 0.0252, 0.0176, 0.0226, and
0.0132, respectively. The models are representative and predictive; they are helpful to understand the
pandemic and improve future public health responses.

Povzetek: Prispevek predstavi novo sigmoidalno in nevronsko mrežno modeliranje COVID-19 smrti v štirih
državah s ciljem natančnega napovedovanja in razumevanja epidemičnih valov.

1 Introduction

The coronavirus disease 2019 (COVID-19) is highly conta-
gious disease that has caused a high number of deaths and
continues to damage the economy and society, to name just
a few of its impacts. On October 4, 2024, the Heads of
the International Monetary Fund (IMF), the World Bank
Group (WBG), and the World Health Organization (WHO)
have agreed on broad principles for cooperation on pan-
demic preparedness (https://www.imf.org; accessed on 7
October 2024). The development and study of epidemio-
logical models can be essential to prevent, predict, or mit-
igate future epidemics or pandemics. They are also nec-
essary for decision-making, for example, allowing public
health institutions to take reliable measures to preserve peo-
ple’s lives [1, 2]. In addition, comparison between countries
is considered essential for the control of COVID-19 [3].
In this study, four countries were selected for the pur-

poses of modeling, comparison, and research, namely,
Italy, Brazil, Switzerland, and Peru, for which COVID-
19 has resulted in a total of 188,322, 333,188, 14,210,
and 219,539 deaths, respectively, according to the accu-
mulated death time-series of Johns Hopkins University
(https://coronavirus.jhu.edu; accessed on 1 January 2024),

without considering the deaths registered after the end of
the pandemic. The number of deaths and mortality rates
vary between countries and, in this work, we demonstrate
that they follow a strict sigmoidal behavior typical of epi-
demics or pandemics.
Due to the definition of its formula f(x) = a · e−eb−c·x

(i.e., double exponential), the Gompertz model requires
more elementary operations than the most basic sigmoidal
functions. Therefore, this research demonstrated that the
logistic function is efficient within the basic sigmoidal
functions. Given the logistic function’s structure and func-
tionality, we recommend its use in future work.
In addition, a new variant of the logistic function was

adapted and obtained, which was called the logistic2 func-
tion or simply the logistic function g(x) = H

1+2A−Bx , which
does not lose any of the original function’s properties or
qualities. Furthermore, both functions are equivalent.
One of the significant contributions of this work is the

model and its construction method. Each function g(x)i
corresponds to wave i. It has the following characteristics
or advantages: It does not require any form of integration
or union of functions, does not need preliminary work, and
it does not require the addition of a dummy variable to the
data (or to the function) as in previous works [4, 5]. Mainly

https://www.imf.org/en/News/Articles/2024/10/04/pr24346-imf-wbg-who-step-up-cooperation-on-pandemic-preparedness
https://coronavirus.jhu.edu
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Table 1: Main differences in relation to the key publication

In this work In Key publication
Estimating any horizontal turning point as a preliminary
procedure to obtain F (x) is unnecessary.

Calculating the horizontal turning points is necessary.

The logistic sigmoidal function was used. The Boltzmann sigmoidal function was used.
A model F was obtained, whose elements are extended
to functions that are not necessarily sigmoidal, with
limx→−∞ h(x) = L and limx→∞ h(x) = R, where L
and R are constants. Finally, it was demonstrated with
mathematical induction. It was applied to four case
studies, where the Peruvian model is:

F (x) = 85.94
1+26.07−0.048∗x + 114.1

1+215.96−0.041∗x +
13.22

1+244.35−0.063∗x + 3.4
1+273.16−0.082∗x + 3.33

1+246.8−0.045∗x

The Peruvian model is:
F (x, q) = (2−q)(3−q)(4−q)(5−q)

24

{
88.05

1+e
(128.95−x)

30.88

}
−

(1−q)(3−q)(4−q)(5−q)
6

{
113.13

1+e
(390.65−x)

34.36

+ 86.49

}
+

(1−q)(2−q)(4−q)(5−q)
4

{
14.18

1+e
(698.06−x)

26.51

+ 199.34

}
−

(1−q)(2−q)(3−q)(5−q)
6

{
3.61

1+e
(898.54−x)

17.99

+ 213.37

}
+

(1−q)(2−q)(3−q)(4−q)
24

{
2.84

1+e
(1039.82−x)

25.42

+ 216.95

}
ρ = 0.999905 (the largest). The vertical turning points
and higher-order derivatives were calculated.

ρ = 0.999. The vertical turning points and higher-order
derivatives were not calculated.

for this reason and the previous ones, it is more efficient:

F (x) =

n∑
i=1

Hi

1 + 2Ai−Bix

Where F (x) is the expected cumulative number of
deaths, x is the number of days since the first case, n is
the number of waves, 1 ≤ i ≤ n, Hi is the height of the
wave i, Ai and Bi are constants related to the pandemic.
The main objective of this study is to develop a novel

and efficient model F (x), treating the cumulative number
of deaths due to COVID-19 since the pandemic began as a
variable, using the logistic function. Furthermore, artificial
neural networks (ANNs) are used, which constitute an al-
ternative method, as machine learning has shown powerful
results for studying COVID-19 [6, 7, 8].
The first derivative is calculated to explain the death rate

and the magnitude of the COVID-19 waves, where even its
graph represents the considered characteristics. In this way,
justification is provided for the denomination of COVID-
19 “waves.” Next, the second derivative is used to calcu-
late the vertical turning points (i.e., the point where the sig-
moidal function changes from concave upward to concave
downward). At this point, only one last issue remains: the
second derivative can report false turning points. There-
fore, the turning points are confirmed using the third deriva-
tive. Using high-order derivatives—specifically, the first
three—allows for an elegant and irrefutable mathematical
analysis of any model. Then, the proposed model is applied
to four representative countries, yielding novel results.
The differences between the ANN and sigmoidal models

were minimal. The ANN’s disadvantage is the calculation
time.
This paper is structured as follows: Section 2 describes

related works, Section 3 presents the materials and meth-
ods, and describes the used data. Section 4 demonstrates

the results, including those related to the ANN model, the
coupled model, high-order derivatives, and the case study,
while Section 5 discusses the findings and previous work.
Finally, the conclusion is presented in Section 6.

2 Related works
Concerning key publications: While one study has focused
on the Peruvian case, it was limited to calculating a function
with the Gompertz model and did not apply ANNs. It was
carried out with incomplete data as it was conducted dur-
ing the pandemic period [4]. There is also a study in which
F (x) was calculated using the Boltzmann sigmoidal func-
tion for a case study (Peru), which was correlated with the
social isolation measures in Peru (qualitative variable) [5];
Table ?? illustrates the main differences.
Regarding ANN, several works have used artificial neu-

ral networks for prediction. Research has been carried out
in India on the Multilayer perceptron [9]. In the United
States and India, various artificial neural networks have
been used with data on confirmed infections and deaths
from COVID-19, of which the convolutional LSTM stood
out, which had greater precision and a lower error [10]. In
Brazil, a long short-term memory (LSTM) model has been
used [11]. Additionally, in China and other countries, it has
been concluded that ANNs are adequate to predict global
infections and deaths due to COVID-19 [12]. Finally, there
is a study in Turkey [13] and in Ada County (Idaho) [14].
A total of six studies were included. The studies were pub-
lished between 2020 and 2024. Table 2 summarizes the key
characteristics of the included studies, detailing the year,
countries with metrics (i.e., Pearson correlation coefficient
or MSE), key findings, and limitations.
There have not beenmany related studies on using the lo-

gistic sigmoidal function to analyze pandemics. One study
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Table 2: Summarizes the six studies included in the review (ANN). It shows the authors, publication year, countries -
metrics, key findings, and limitations.

Author Year Countries and metrics Key findings and limitations
Sujath, R.
et al. [9]

2020 Pearson correlation:
ρIndia ≈ 0.968 confirmed
deaths

Feedforward artificial neural network (FANN). They
worked with preliminary data (two months).

Shastri,
Sourabh et
al. [10]

2020 It does not present correla-
tion coefficients. They use
MeanAbsolute Percentage Er-
ror (MAPE) for India and
USA

Long short-term memory. They worked with preliminary
data (approximately four months) and presented a compar-
ative study of the two countries’ results (India and USA).

Fernandes,
Filipe et
al. [11]

2022 Pearson correlation:
ρBrazil ≈ 0.9826, R2 =
0.9656 for confirmed deaths

Long short-term memory (LSTM) and others. A study was
conducted for the State of Santa Catarina, Brazil. Prelimi-
nary data was used.

Namasudra,
Suyel et
al. [12]

2023 Pearson correlation:
ρIndia ≈ 0.99914 (Overall
performance of death cases)

Nonlinear Autoregressive (NAR) Neural Network Time Se-
ries (NAR-NNTS) and others. The study was conducted in
India. Preliminary data was used (January 2020 to August
2020).

Özen,
Figen et
al. [13]

2024 Pearson correlation:
ρTurkey ≈ 0.9917, R2 =
0.9834 (daily deaths)

Random forest regression and machine learning models
(i.e., LSTM and ARIMA). The data starts on March 11,
2020 and ends on June 1, 2022 (they do not cover until the
end of the pandemic). The study was conducted in Turkey.

Kanchan,
Swarna et
al. [14]

2024 Pearson correlation:
ρAda County = 0.669 (pre-
dicted daily deaths)

ANN model. The data cover June 7, 2021, to July 1, 2022
(they do not cover until the end of the pandemic). The study
was conducted for the city of Boise (Ada County), the cap-
ital of Idaho.

used the extended logistic function in this context [15];
however, the authors did not compare it with an ANN,
and did not calculate derivatives or turning points. Simi-
larly, in Mexico, the Gompertz function was used [16], and
in Brazil and other countries, the Boltzmann function was
used [17]. A total of five studies were included detailing
each method’s performance metrics. The studies were pub-
lished between 2021 and 2024. Table ?? summarizes the
key characteristics of the included studies.

3 Materials and methods

3.1 Dataset
The database of the total number of deaths used in the cur-
rent study is publicly available (open access) from the Coro-
navirus Disease Data Repository of Johns Hopkins Univer-
sity (https://github.com/CSSEGISandData/COVID-19; ac-
cessed on 1 January 2024). Complete data for different
countries are also available [18].
No data preprocessing was necessary, as there were no

missing or outlier data; only the data from the countries un-
der study were selected. Normalization (using the mean
and standard deviation) was applied for the artificial neural
networks.
The study would be trivial with data from the first days

of the pandemic. For example, in Peru and most countries,

during the first 20 days, the curve barely begins to grow
and can be fitted to an exponential or even linear model. In
contrast, a model is required for the complete dataset (from
the beginning to the end of the pandemic). Moreover, mod-
eling a single wave can be relatively easy [19].
In this work, no function integration method is re-

quired [4], and a program is used to process and estimate
F .

3.2 The sigmoidal logistic function
The sigmoidal logistic function can be applied to a time-
series [20]. It has different applications, such as repre-
senting epidemic curves. It is represented by the following
function:

g (x) =
H

1 + eA−Bx
, (1)

Where x is the number of days since the first case, g(x)
is the expected cumulative number of deaths, H is the
height of the wave, A and B are constants related to the
pandemic, and e is a mathematical constant (i.e., an irra-
tional and transcendental number approximately equal to
2.718281828459045).
In this work, a new version of the logistic function is

used, which we call the logistic2 function or, simply, the
logistic function:

https://github.com/CSSEGISandData/COVID-19
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Table 3: Summarizes the five studies included in the review (sigmoidal functions). It shows the authors, publication year,
countries - metrics, key findings, and limitations.

Author Year Metrics Key findings and limitations
Abolmaali,
Saina et
al. [15]

2021 MSE: US=678.7, India
= 631.3, Brazil=731.0,
and Russia = 1501.1

Logistic regression and other models were used. They worked with
preliminary data (approximately one year). No correlation coeffi-
cients were provided. Finally, the model is simple (a single sigmoidal
function).

Conde, R.
et al. [16]

2021 Pearson correlation:
ρMexico ≈ 0.9998

The Gompertz sigmoidal function was used. Preliminary data (one
wage or six months) was used during the pandemic. The model is
simple and for a single wave.

Vilca,
Oliver et
al. [4]

2023 Pearson correlation co-
efficient:
ρPeru = 0.9577994

The Gompertz sigmoidal function was used. It requires inserting a
dummy variable q into the model and the database. Data available at
that time (up to the third wave) was used. The models:

F (x, q) =
∑n

w=1

(∏w−1
i=1 (i−q)

∏n
j=w+1(j−q)

(n−w)!(−1)w−1(w−1)!
·Aw · e−eBw−Cw·x

)
F (x, q) =

∑n
w=1

(
2w−1&q
2w−1 ·Aw · e−eBw−Cw·x

)
WhereAw,Bw, and

Cw are constants related to the pandemic.
El Aferni,
Ahmed et
al. [17]

2023 ρUnited Kingdom ≈
0.99912
ρZambia ≈ 0.9991
ρBrazil ≈ 0.9995
ρSouth Africa ≈
0.999925

The sigmoid Boltzmann model was found to be effective in fitting
the cumulative number of COVID-19. With data covering up to the
fourth wave. The model is:
F (x) = Imin + Imax

∑n
i=1

(
Pi

1+10(Ai−x)Bi

)
, where Pi, Ai, Bi, Imin

and Imax are constants related to the pandemic.

Vilca,
Oliver et
al. [5]

2024 Pearson correlation co-
efficient:
ρPeru = 0.999

The Boltzmann sigmoidal function was used. Performed with com-
plete data. It requires the insertion of a dummy variable q in the model
and the database. The models:
F (x, q) =

∑n
w=1

(∏w−1
i=1 (i−q)

∏n
j=w+1(j−q)

(n−w)!(−1)w−1(w−1)!
Iw

1+e
(Zw−x)

Dw

)
F (x, q) =

∑n
w=1

(
2w−1&q
2w−1

Iw

1+e
(Zw−x)

Dw

)
where Iw, Zw and Dw are

constants related to the pandemic.
Note: F (x) and F (x, q) are the expected cumulative number of deaths, x is the number of days since
the first case, and n is the number of waves.

g (x) =
H

1 + 2A−Bx
, (2)

where A and B are new pandemic-related constants. In-
stead of the irrational number e (which cannot be expressed
as a fraction m/n, where m,n ∈ Z), we use the natural
number 2 as, in computing, we can efficiently calculate 2k
if k ∈ N.
The high-order derivatives were calculated by hand and

checked using Octave Software (version 9.1.0). This ap-
proach improved the factorization and presentation of the
functions

3.3 Software and hardware
For all models, the same computer, operating system, and
programming language were used:

1. HP 11th Generation Intel(R) Core™ i7-1165G7 2.8
GHz computer. RAM 16 GB.

2. Windows 11 Pro Operating System.

3. The R programming language (version 4.4.1 - free
software environment for statistical computing and
graphics), and the integrated development environ-
ment (IDE) RStudio Desktop (2024.09.0+375 “Cran-
berry Hibiscus” release).

The algorithm for the logistic model has the following
procedures:

1. Load libraries (data structures, nonlinear regression,
metrics, graphs, and neural networks).

2. Select country and language.

3. Load data.

4. Estimate the model (providing starting values).

5. Show goodness-of-fit reports (ρ, MAE, RMSE, and p-
values).
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6. Export the model F (x), the first derivative F ′(x), and
the second derivative F ′′(x).

7. Generate the graph (configuring color, size, resolution,
and output file, among others).

3.4 Parameter initialization

Parameters of the Logistic Sigmoidal Model: Non-linear
regression with numerical algorithms may require initial-
ization parameters. In this case, estimated values were pro-
vided. For instance, the approximate height of the sig-
moidal function,H , can be obtained by observing the scat-
ter plot (observed data).
Parameters of the ANN Model: The Long Short-Term

Memory (LSTM) model was used, considering previous
works [10, 11, 13]. It is designed to effectively process
and retain information over multiple steps. A single hid-
den layer is sufficient to simplify the LSTM architecture.
The number of epochs was chosen experimentally (i.e.,

500), increasing until an acceptable fit was achieved. Sim-
ilarly, the ADAM optimizer performed slightly better than
RMSProp. The input layer contains one neuron since there
is one input (the cumulative number of deaths). Likewise,
the output layer contains one neuron as it is a regressor.
For the number of neurons in the hidden layer, the follow-
ing formula was used: N = Ns

α(Ni+No)
, where Ni repre-

sents the number of input neurons,No the number of output
neurons, Ns the number of samples in the training dataset,
and α is a scaling factor typically between 2 and 10. With
Ni = 1,  No = 1, Ns = 1100 and α = 2.75, the number
of neurons is N = 200.

3.5 Statistical analyses

For model comparison, three metrics were used. For a sam-
ple of n observations yi (i = 1, 2, · · · , n), and n corre-
sponding model predictions ŷi, where ȳ is the mean of the
y-values and ¯̂y is the mean of the ŷ-values.
The Pearson product-moment correlation coefficient or

Pearson correlation coefficient (ρ for short) is a measure of
linear dependence and its direction between two quantita-
tive variables. If there is a positive correlation, when one
variable changes, the other variable changes in the same
direction; if there is no correlation (zero), there is no rela-
tionship between the variables; and, if there is a negative
correlation, the opposite of the positive correlation occurs:
ρ =

∑
(yi−ȳ)(ŷi−¯̂y)√∑

(yi−ȳ)2
∑

(ŷi−¯̂y)2

The root mean square error (RMSE) is the standard de-
viation of the residuals. Residuals represent the differences
between the values that a model predicts and those that are
observed: RMSE =

√
1
n

∑n
i=1 (yi − ŷi)

2.
The Mean Absolute Error (MAE) calculates the average

absolute difference between predicted and actual values:
MAE = 1

n

∑n
i=1 |yi − ŷi|.

The metrics are complementary and widely used; while ρ
measures the strength and direction of the relationship be-
tween two datasets, RMSE and MAE measure the differ-
ence between them.
A significance test was performed for the Pearson corre-

lation coefficients, and the F-test was used for the sigmoidal
models. Concretely, statistics were used to model, analyze,
interpret, and present the results.

3.6 Research design

This research is longitudinal, retrospective, and correla-
tional.
This research poses the following question: Do the mod-

els fit the cumulative number of deaths? Then, for each
model and each country, the hypotheses are:
The logistic sigmoidal model fits the cumulative number

of deaths. The F-test is used (at a significance level of 0.01).
The performance scores were used for the ANN. The cor-

relation hypothesis states that a positive and significant cor-
relation exists between the ANN and the accumulated num-
ber of deaths (at a significance level of 0.01).

4 Results

This study considers a new model and a simple way to cou-
ple sigmoidal functions.

4.1 Case studies

Four countries were intentionally selected; simple random
sampling was not used: Italy (Southern and Western Eu-
rope), Brazil (South America), the Swiss Confederation
(west-central Europe), and Peru (South America).
Table 4 presents specific data for each country (2020):

Population, number of deaths, start and end dates of
the pandemic (number of days), and the death per-
centage in relation to the population of each country
( Deaths
Population · 100). The population data were down-
loaded from “Population Pyramids of the World”
(https://www.populationpyramid.net; accessed on 1
September 2024).
Day one corresponds to the first death. The pandemic

began in February 2020 in Italy and in March in Brazil,
Switzerland, and Peru. It lasted until 9 March 2023, specif-
ically 1113 days in Italy, 1088 days in Brazil, and 1099 days
in Switzerland and Peru.
From Table 4, it can be seen that the country with a con-

siderably higher percentage of deaths, according to the total
number of inhabitants, was Peru (0.66%), followed by Italy
(0.32%), and ending in a tie betweenBrazil and Switzerland
(0.16%).
These countries differ in location, population, and num-

ber of deaths from COVID-19.
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Table 4: Data for each country (2020): Population, number of deaths, start and end dates of the pandemic (number of
days), and the death percentage in relation to the population of each country.

Country Population Number of
deaths

Start and end date of the pandemic (number of days) Percentage
of deaths

Italy 59,500,579 188,322 From 21 February 2020 to 9 March 2023 (1113 days) 0.32 %
Brazil 213,196,304 333,188 From 17 March 2020 to 9 March 2023 (1088 days) 0.16 %
Switzerland 8,638,613 14,210 From 06 March 2020 to 9 March 2023 (1099 days) 0.16 %
Peru 33,304,756 219,539 From 06 March 2020 to 9 March 2023 (1099 days) 0.66 %

Table 5: Artificial neural networks adjustment measures.

Country Pearson Cor-
relation ρ

Coefficient of
Determina-
tion

RMSE MAE p-value for ρ Confidence in-
terval for ρ

Running
time
(min)

Italy 0.999715 0.999431 0.0252 0.0162 < 2.2 · 10−16 0.9997 , 0.9997 16.698
Brazil 0.999862 0.999724 0.0176 0.013 < 2.2 · 10−16 0.9998 , 0.9999 16.239
Switzerland 0.999805 0.99961 0.0226 0.0132 < 2.2 · 10−16 0.9998 , 0.9998 16.467
Peru 0.99994 0.999879 0.0132 0.0095 < 2.2 · 10−16 0.9999 , 0.9999 16.43
Average 0.999831 0.999661 0.0196 0.013 < 2.2 · 10−16 16.458
Std. Dev. 9.4e-05 0.000189 0.0053 0.0028 < 2.2 · 10−16 0.188

4.2 Artificial neural networks
In machine learning, a neural network (NN), also called an
artificial neural network (ANN), is a model composed of
connected units or nodes called neurons [21]. NNs, learn
by example, the ANN is set up during a learning process
to perform specific tasks, such as identifying patterns and
categorizing information [22].
Long short-term memory (LSTM) is a type of recurrent

neural network (RNN) architecture designed to address the
limitations of traditional RNNs, especially when it comes
to learning long-term dependencies. The main innovation
of LSTM is the use of gating mechanisms to control the
flow of information through the network. This allows the
LSTM to maintain and update its internal state over long
periods [23, 24].
R provides libraries and frameworks that simplify the

process of building and training neural networks, including
LSTM networks. The Keras library provides a high-level
interface for building and training neural networks. To the
authors’ knowledge, Python has been used in most previous
works.
The LSTM was used with the following characteristics:

three layers (1 input neuron, 200 neurons in the hidden
layer, and one output neuron), the “adam” optimizer, loss
= “mae”, epochs = 500, and batch_size = 1 (see section 3.4
for more details).
Table 5 presents the ANN model’s goodness-of-fit re-

sults by country, as well as the averages and standard de-
viations. On the one hand, the average RMSE and MAE
of the ANNs were quite acceptable (0.0196 and 0.013, re-
spectively, on scaled data; see columns four and five). On
the other hand, the Pearson correlation coefficients (ρ) were
quite good: Those for Italy, Brazil, Switzerland, and Peru
were 0.999715, 0.999862, 0.999805, and 0.99994, respec-

tively (usually varying with each execution).
Moreover, the correlations are statistically significant in

the four countries (the p-values are below the significance
level of 0.01). In R, p-value < 2.2e − 16 means that
the p-value is less than 2.2 · 10−16 (scientific notation for
0.00000000000000022). The confidence intervals are pre-
sented in column seven.
The correlations (ρ) for the ANN did not differ much be-

cause ANNs adapt well to data. However, sigmoidal logis-
tic models require the data to follow a pattern.
For some countries, the data fit better; however, all coun-

tries fit pretty well.
The coefficients of determination (third column) indicate

that the models obtained are explained or determined by the
differences in the days.
In column eight of Table 5, the average empirical execu-

tion time per country (measured in minutes) is presented.
An experiment consists of measuring the initial time, esti-
mating the model, obtaining the final time, and calculating
the difference (the Sys.time() function from R was used).
The experiment was repeated forty times [25] in each coun-
try, and the average was recorded to avoid bias. The aver-
age time is 16.698 minutes in Italy, 16.239 in Brazil, 16.467
in Switzerland, and 16.43 in Peru.
Finally, the source code for the artificial neural networks

is presented in Appendix B.

4.3 Calculating the number of operations of
sigmoidal functions.

The execution time of a sigmoidal function depends on the
type and number of operations. In general, the order of the
execution time of the operations, from smallest to largest, is
as follows: (1) addition or subtraction, (2) multiplication or
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Table 6: Number of operations in sigmoidal functions

Sigmoidal function Number of
power opera-
tions

Number of
division oper-
ations

Number of
multiplication
operations

Number of addi-
tion or subtrac-
tion operations

Gompertz function:
g(x) = A · e−eB−D·x

2 0 2 1

Hyperbolic tangent function:
g(x) = tanh(x) = U − H

1+e2(x−A)

1 1 1 3

Boltzmann function:
g(x) = H

1+e(C−x)/D

1 2 0 2

Logistic function:
g(x) = H

1+eA−Bx

1 1 1 2

division, and (3) exponentiation with a real number in the
exponent; that is, addition/subtraction is calculated faster
than the other two, and multiplication/division is generally
faster than exponentiation.
Then, for evaluation, the following functions are consid-

ered: those based on the Gompertz function (representing
the double exponential functions), based on the hyperbolic
tangent function (representing the extended functions of the
logistic function), the Boltzmann function, and the logistic
function. The number of operations was calculated, as de-
tailed in Table 6.
Moreover, the execution times were calculated based on

the results from Table 6:

TGo = M log(B −Dx) +Mlog(eB−Dx) + 2M + S

THp = M log(2(x−A)) +D +M + 3S

TBz = M log((C − x)/D) + 2D + 2S

TLg = M log(A−Bx) +D +M + 2S

Where the execution times for the basic operations are as
follows: Exponentiation (ab) requires log bmultiplications,
division isD, multiplication isM , and addition/subtraction
is S.
The Gompertz function was found to be the least suit-

able, as it has two exponential operations, two multiplica-
tion operations, and one subtraction operation. Meanwhile,
the hyperbolic tangent function has an additional subtrac-
tion operation in relation to the logistic function. The Boltz-
mann function has two divisions (generally, in computing,
the division operation costs more than multiplication). Fi-
nally, the logistic function was selected because it has the
simplest operations and in the minimum quantity, consider-
ing the set of basic sigmoidal functions. It could barely be
equaled by some extended sigmoidal functions and, there-
fore, it was considered efficient.

4.4 Coupled models or functions

It has the following characteristics or advantages: First, it
does not require any form of integration or union of func-
tions, and second, it does not need to add a dummy vari-

able to the data or to the function as in previous publica-
tions [4, 5].

Theorem 1. The coupled model (or coupled function) with
n sigmoidal logistic functions is:

F (x) =

n∑
i=1

Hi

1 + 2Ai−Bix
(3)

Where F (x) is the expected cumulative number of deaths,
x is the number of days since the first case, n is the number
of waves (1 ≤ i ≤ n), Hi is the height of the wave i, and
Ai and Bi are constants related to the pandemic.
Furthermore, x0 < x1 < x2 < · · · < xn are consecu-

tive real numbers that determine the intervals of the logis-
tic functions. The function g(x)i is defined on the interval
x ∈ [xi−1, xi]; ∀x > xi, g(x)i tends toHi, and ∀x < xi−1,
g(x)i tends to 0 (limits of the sigmoidal logistic function).
Therefore limx→−∞ F (x) = 0 and limx→∞ F (x) =∑i
k=1 Hk.

Proof. Let x0 < x1 < x2 < · · · < xn be consecutive real
numbers determining the intervals of logistic functions. In
general, the function g(x)i is defined on the interval x ∈
[xi−1, xi] (the i-th “wave”); ∀x > xi, g(x)i tends to Hi,
and ∀x < xi−1, g(x)i tends to 0 (right and left limits of the
sigmoidal function).
Proof by mathematical induction: Base case F (x) with

two functions; if x < x0, then F (x) ≈ 0 (the left-hand
limits are zero); if x ∈ [x0, x1], then F (x) ≈ g(x)1; if
x ∈ [x1, x2], then F (x) ≈ g(x)1 + g(x)2 ≈ H1 + g(x)2,
and if x > x2, then F (x) ≈ H1 +H2.
Induction hypothesis:
E(x) ≈

∑i−1
k=1

(
Ek

1+2Ak−Bkx

)
, ∀x ∈ [x0, xi−1] where

limx→−∞ E(x) = 0 and limx→∞ E(x) =
∑i−1

k=1 Hk

Inductive step: By definition of F (x),
F (x) ≈ E(x) + g(x)i, ∀x ∈ [x0, xi]

F (x) ≈
∑i−1

k=1

(
Hk

1+2Ak−Bkx

)
+ g(x)i, ∀x ∈ [x0, xi]

F (x) ≈
∑i

k=1

(
Hk

1+2Ak−Bkx

)
, ∀x ∈ [x0, xi].

Right limit: F (x) ≈
∑i

k=1 Hk, ∀x > xi, by induction hy-
pothesis limx→∞ E(x) =

∑i−1
k=1 Hk and limx→∞ g(x)i =
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Hi.
Left limit: F (x) ≈ 0, ∀x < x0, by induction hypothesis
limx→−∞ E(x) = 0 and limx→−∞ g(x)i = 0;
Finally, F (x) is defined by the equation (3).

Corollary 4.1. Given theorem (1), considering that the sig-
moidal logistic functions are bijective, and let F (x), let
x0 < x1 < x2 < · · · < xn be consecutive real num-
bers determining the intervals of logistic functions [x0, x1],
[x1, x2], ... , [xn−1, xn]. Then, the respective ordinates
[y0, y1], [y1, y2], ... , [yn−1, yn] are consecutive, and non-
overlapping.

The construction of F (x) extends to other functions
h(x), the only condition is that the limits of h(x) as x tends
to ±∞ are constant.

Theorem 2. The coupled model with n functions, each
with constant limits as x tends to ±∞, is:

F (x) = h(x)1 + h(x)2 + · · ·+ h(x)n, (4)

Where limx→−∞ h(x) = L, limx→∞ h(x) = R, andL and
R are constants.
Therefore limx→−∞ F (x) = K1, limx→∞ F (x) = K2,

andK1 andK2 are constants.

The proof is similar to Theorem 1. If two or more func-
tions with total or partial intersection of their intervals, that
is, they are defined in the same interval, they are added.
Figure 1 shows the coupling of four functions: Gom-

pertz, Logistic, algebraic, and wave function. Only the first
two are properly sigmoidal, the third is an algebraic func-
tion with sigmoidal behavior, and the last is the wave func-
tion. It is possible to include different functions that meet
the conditions explained, for example, the normal distribu-
tion function.
The function y = F (x) is described by equation (5):

y = 2 · e−e2−x︸ ︷︷ ︸
Gompertz f.

+
2

1 + e10−x︸ ︷︷ ︸
Sigmoidal f.

+
(x− 20)√

1 + (x− 20)2︸ ︷︷ ︸
Algebraic function

− 4e−
(x−30)2

4 sin

(
x− 30

4

)
︸ ︷︷ ︸

Wave function

+1 (5)

The wave function satisfies the requirement of Theorem
2. Proof: By definition −1 ≤ sin(x) ≤ 1, it follows that,
− 1

ex2 ≤ sin(x)

ex2 ≤ 1
ex2 . Since the limits of both functions

are equal, limx→∞ − 1
ex2 = limx→∞

1
ex2 = 0, it follows

that limx→∞ e−x2

sin (x) = 0 (squeeze theorem), and in
the same way we can obtain limx→−∞ e−x2

sin (x) = 0.
The code to graph F (x) in R is:

y = function(x){
2*e^( -e^(2-x) ) + 2/( 1+e^( 10-x ) ) +
(x-20)/sqrt( 1+(x-20)^2 ) -
4*e^(-(x-30)^2/4)*sin((x-30)/4) + 1

}
plot(y, 0, 37, col="green")

4.5 The model for COVID-19
First, an efficient sigmoidal function had to be selected.
Subsequently, a model for COVID-19 was developed.
The fundamental element of the model is the logistic sig-

moidal function, equation (20). Specifically, the model
F (x) is a summation of ordered logistic functions, start-
ing with the function g(x)1 for the first wave, g(x)2 for the
second wave, and so on up to g(x)n for the last wave. Then,
themodel for COVID-19 is a coupledmodel with sigmoidal
functions specified in theorem (1), and is given by equation
(6):

F (x) = g(x)1 + g(x)2 + · · ·+ g(x)n (6)

4.6 Empirical execution time
In this section, the time required to estimate the model pa-
rameters in each country is calculated.
The experiment was repeated forty times in each coun-

try [25], and the average was recorded to avoid bias. Table
7 presents the results; in the case of Italy, the time is higher
due to the presence of six waves (one more than the other
countries). Subsequently, the mathematical model reported
low times.

Table 7: Execution time (in seconds) to calculate the pa-
rameters of a logistic model by country

Country Running time (in seconds)
Italy 0.2968650
Brazil 0.1491925
Switzerland 0.1799175
Peru 0.1215575

4.7 Application of the logistic function to
COVID-19

The logistic function F (x) is a set of functions, which are
ordered sequentially and do not overlap. Each function cor-
responds to a wave of COVID-19.
Figure 2 represents the cumulative number of deaths

from COVID-19. The dataset (observed data) is repre-
sented in gray, and the logistic function F (x) in blue, and
the turning points in red. The observed data are very close
to the curve. Remark: While the sigmoidal shape of the
later waves cannot be distinguished due to the scale (thou-
sands on the ordinate axis), it is visible if these (one or two)
waves are plotted exclusively.
In all cases, the first two or three waves were relatively

larger and lasted longer (their length on the x-axis is the
duration in days); in addition, they had a greater number
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F(x) = 2 ⋅ e
−e2−x

+
2

1 + e10−x
+

(x − 20)

1 + (x − 20)2
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4 sin



x − 30

4
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y

Legend

Coupled function

Figure 1: The coupled function F (x) is made up of four functions: Gompertz, Logistic, algebraic, and wave. Only the first
two are properly sigmoidal, the third is an algebraic function with sigmoidal behavior, and the last is the wave function.

Table 8: Logistic sigmoidal function adjustment measures

Country Pearson
Correlation
ρ

Coefficient of
Determina-
tion

RMSE MAE p-value for ρ Confidence
interval for ρ

Italy 0.9999230 0.999846 0.7164719 0.5779384 < 2.2 · 10−16 0.9999150 , 1
Brazil 0.9999283 0.9998566 3.013632 1.99136 < 2.2 · 10−16 0.9999208 , 1
Switzerland 0.9999178 0.9998356 0.061266 0.04001958 < 2.2 · 10−16 0.9999092 , 1
Peru 0.9999050 0.99981 1.022324 0.6213603 < 2.2 · 10−16 0.9998951 , 1
Average 0.9999185 0.9998371 1.203423 0.80767 < 2.2 · 10−16

Std. Dev. 0.00001 0.00002 1.271652 0.832245 < 2.2 · 10−16

of victims (represented by the height on the ordinate axis).
Meanwhile, subsequent waves were considerably shorter in
duration and had fewer victims. In each country, the last
wave ends almost flat (the slope tends to zero); under these
circumstances, the pandemic ended. The second wave in
Brazil was the largest (it can be observed that it led to more
than 400,000 deaths).
The Pearson product-moment correlation coefficients (ρ)

were greater than 0.9999 (see the second column in Ta-
ble 8), indicating very strong positive associations; that
is, a high degree of association between the observed data
and the function. Moreover, the correlations are statisti-
cally significant in the four countries. The p-values (<
2.2 · 10−16) are below the significance level of 0.01, and
the confidence intervals are presented in column seven.
Brazil and Italy received the best adjustment, while Peru

received the worst, but the differences were minimal.
The coefficients of determination (third column) indicate

that the models obtained are explained or determined by the
differences in the days.
The RMSE is 0.72 in Italy, 3.01 in Brazil, 0.06 in

Switzerland, and 1.02 in Peru, and the MAE is 0.58, 1.99,
0.04, and 0.62, respectively. The metrics indicate a low av-
erage distance between the model’s predicted and dataset

values.
F-test: The regression model is statistically significant in

the four countries; therefore, the regression model’s utility
permits the calculation of various estimates and predictions
(with p-value= 2.2×10−16, less than the significance level
of 0.01).
Equations (7), (8), (9), and (10) represent the functions

F (x):

F (x)︸ ︷︷ ︸
Italy

=
34.6

1 + 25.77−0.116∗x +
45.22

1 + 225.1−0.087∗x +

49.77

1 + 218.45−0.047∗x +
35.74

1 + 232.57−0.046∗x +

12.9

1 + 243.62−0.049∗x +
10.51

1 + 258.91−0.057∗x (7)
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(a) Case: Italy with six waves.

0

200

400

600

0 100 200 300 400 500 600 700 800 900 1000 1100

Number of days since the first case − Brazil

N
u

m
b

e
r 

o
f 

d
e

a
th

s
 (

in
 t

h
o

u
s
a

n
d

s
)

Legend

Logistic function

Observed data

Turning points

(b) Case: Brazil with five waves.
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(c) Case: Switzerland with five waves.
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(d) Case: Peru with five waves.

Figure 2: Logistic function of the cumulative number of deaths from COVID-19 (in thousands) by day. The observed data
are represented in gray, the logistic function F (x) in blue, and the turning points in red.
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F (x)︸ ︷︷ ︸
Brazil

=
152.06

1 + 25.62−0.045∗x +
464.04

1 + 211.9−0.029∗x +

48.72

1 + 251.47−0.074∗x +

21.45

1 + 256.44−0.066∗x +

14.2

1 + 250.35−0.049∗x (8)

F (x)︸ ︷︷ ︸
Swit-
zerland

=
1.77

1 + 26.49−0.192∗x +
7.51

1 + 222.68−0.082∗x +

1.5

1 + 214.71−0.041∗x +

3.1

1 + 224.01−0.036∗x +

0.36

1 + 233.8−0.035∗x (9)

F (x)︸ ︷︷ ︸
Peru

=
85.94

1 + 26.07−0.048∗x +
114.1

1 + 215.96−0.041∗x +

13.22

1 + 244.35−0.063∗x +
3.4

1 + 273.16−0.082∗x +

3.33

1 + 246.8−0.045∗x (10)

4.8 First derivative
The first derivative of the logistic function g(x) or equation
(20) is given in equation (11):

g′ (x) =
BH ln (2) 2A−B x

(1 + 2A−B x)
2 , (11)

Where x is the number of days since the first case, g′(x) is
the death rate of the cumulative number of deaths,H is the
height of the wave, A and B are the pandemic constants,
and ln is the natural logarithm of base e; that is, ln(x) =
loge(x).
The first derivative is helpful as it represents the speed of

spread. It is also used to calculate the second derivative.

4.9 Second derivative
Calculating the second derivative is necessary to obtain the
turning point
The equation (12) is the second derivative of the logistic

function g(x); that is, the derivative of the equation (11):

g′′ (x) = −
B2 H ln (2)2 2A−Bx

(
1− 2A−Bx

)
(1 + 2A−Bx)

3 , (12)

where x is the number of days since the first, g′′(x) is the
second derivative (also called the acceleration) of the cu-
mulative number of deaths, H is the height of the wave,
and A and B are the pandemic constants.

4.10 Third derivative

The third derivative F ′′′ (x) is:

B3 H ln (2)3 2A−Bx
(
1− 4 · 2A−Bx + 22 (A−Bx)

)
(1 + 2A−Bx)

4 , (13)

Where x is the number of days since the first case, the third
derivative g′′′(x) is the rate of change of acceleration over
time (also known as jerk, it is aptly named because a large
jerk means a sudden change in acceleration, which causes
an abrupt movement), and H is the height of the wave. Fi-
nally, A and B are the pandemic constants.

4.11 Turning point

A point c on a curve y = g(x) is called a turning point (or
inflection point) if g is continuous and the curve changes
from concave to convex (or vice versa) at c.
To obtain the turning point, it is first necessary to find

the stationary point of g′(x); that is, to solve the following
equation g′′(x) = 0. Then, the solution is given by x0 = A

B

and y0 = H
2 .

Finally, g′′′(x0) is evaluated F ′′′(x0) = −0.0416B3 H .
The result is different from zero (with B ̸= 0 and H ̸=
0), which indicates that (AB , H

2 ) is a turning point; more
calculation details can be found in Appendix A.4.

4.12 Meaning of the turning point

The turning or inflection points are important because they
represent moments when the trend of the observed variable
changes (mathematically, this is the point where it changes
from concave up to concave down). In the context of the
pandemic, they indicate a change in the spread of the virus,
which can have direct implications for public health poli-
cies and governmental interventions. For example, they
could be associated with easing mitigation measures (quar-
antines or social distancing) or healthcare capacity.

4.13 Applying high-order derivatives

We continued by deriving the functions F (x). The results
are equations (14), (15), (16), and (17), which represent the
first derivatives for Italy, Brazil, Switzerland, and Peru, re-
spectively, using equation (11).
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F ′(x)︸ ︷︷ ︸
Italy

=
2.79 · 25.77−0.116∗x

(1 + 25.77−0.116∗x)2
+

2.71 · 225.1−0.087∗x

(1 + 225.1−0.087∗x)2

+
1.63 · 218.45−0.047∗x

(1 + 218.45−0.047∗x)2
(14)

+
1.13 · 232.57−0.046∗x

(1 + 232.57−0.046∗x)2

+
0.44 · 243.62−0.049∗x

(1 + 243.62−0.049∗x)2

+
0.41 · 258.91−0.057∗x

(1 + 258.91−0.057∗x)2

F ′(x)︸ ︷︷ ︸
Brazil

=
4.76 · 25.62−0.045∗x

(1 + 25.62−0.045∗x)2
+

9.44 · 211.9−0.029∗x

(1 + 211.9−0.029∗x)2

+
2.48 · 251.47−0.074∗x

(1 + 251.47−0.074∗x)2
+ (15)

0.98 · 256.44−0.066∗x

(1 + 256.44−0.066∗x)2
+

0.49 · 250.35−0.049∗x

(1 + 250.35−0.049∗x)2

F ′(x)︸ ︷︷ ︸
Swit-
zerland

=
0.24 · 26.49−0.192∗x

(1 + 26.49−0.192∗x)2
+

0.43 · 222.68−0.082∗x

(1 + 222.68−0.082∗x)2

+
0.04 · 214.71−0.041∗x

(1 + 214.71−0.041∗x)2
+ (16)

0.08 · 224.01−0.036∗x

(1 + 224.01−0.036∗x)2
+

0.01 · 233.8−0.035∗x

(1 + 233.8−0.035∗x)2

F ′(x)︸ ︷︷ ︸
Peru

=
2.87 · 26.07−0.048∗x

(1 + 26.07−0.048∗x)2
+

3.24 · 215.96−0.041∗x

(1 + 215.96−0.041∗x)2

+
0.58 · 244.35−0.063∗x

(1 + 244.35−0.063∗x)2
+ (17)

0.19 · 273.16−0.082∗x

(1 + 273.16−0.082∗x)2
+

0.1 · 246.8−0.045∗x

(1 + 246.8−0.045∗x)2

The equation (12) was used to calculate the second
derivative of the function F (x).
Finally, the turning points are detailed in Table 9.

4.14 Interpretation
The first derivative of the function F (x) allows us to de-
scribe the behavior of the rate or speed of the number of
deaths. It provides an elegant and analytically based justi-
fication for the term “wave.”
Figure 3 shows the graphs of the first F (x) derivatives

for each country as blue curves. The turning points of func-
tion F (x) are projected onto F ′(x) and displayed with red
dashed lines. For comparison between waves or countries,
both axes have the same scale.

Definition 4.1 (x). The value of the abscissa x is the num-
ber of days elapsed since the first case or cases. Then, the
range (i.e., the number of days from an initial value xi to
another final value xj , with xi ≤ xj) is the duration or
the number of days (xj − xi + 1). In a complete wave,
the range is its duration in days. The definition extends to
higher-order derivatives and their respective graphs.

Definition 4.2 (F ′(x)). The value of the ordinate F ′(x)
is the death rate or the change of deaths at x (i.e., on the
day x, if x ∈ N). It is also the velocity of the cumulative
number of deaths, indicates the rate at which the number of
deaths changes with respect to days. Moreover, if this value
is higher than that on another day, it can be immediately
understood as indicating higher lethality.

Definition 4.3 (F ′′(x)). The value of the ordinate F ′′(x)
is the change in death rate at x. It is also the acceleration of
the cumulative number of deaths at x (i.e., on the day x, if
x ∈ N). The second derivative, with respect to days, gives
the acceleration, which describes how the velocity of “the
cumulative number of deaths” changes over days.

The first waves in Italy and Switzerland reached a lower
death rate and shorter duration, which may be for differ-
ent reasons, including strict social isolation measures and
population differences. In Peru and Brazil, it lasted more
than 200 days and had fatality rates below and above one,
respectively. Using the proposed model, it was possible to
characterize the waves of COVID-19, and it is expected that
it can be extended to other countries (which also present
similar patterns, according to our pilot study).
Figure 4 represents the graphs of the second derivative

of F (x) (for Italy and Brazil only) as blue curves, where
the turning points of function F(x) are projected onto F’(x)
and displayed with red dashed lines. It can be understood
as the acceleration of the cumulative number of deaths due
to COVID-19.
Finally, a function F (x) is concave upward in the inter-

vals where its first derivative increases, that is, when the
second derivative is positive. Similarly, F(x) is concave
downward in the intervals where the second derivative is
negative. The second derivatives F ′′(x) are given by equa-
tions (18), and (19).
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Table 9: Turning points by country

Wave Brazil Italy Switzerland Peru
1 124.38 49.65 33.87 126.08
2 405.60 290.09 277.20 389.42
3 699.89 391.13 358.53 699.39
4 854.16 715.31 676.27 892.89
5 1018.16 887.93 964.09 1037.25
6 1034.91

F ′′(x)︸ ︷︷ ︸
Italy

=
0.22 · 25.77−0.116∗x(1− 25.77−0.116∗x)

(1 + 25.77−0.116∗x)3
(18)

+
0.16 · 225.1−0.087∗x(1− 225.1−0.087∗x)

(1 + 225.1−0.087∗x)3

+
0.05 · 218.45−0.047∗x(1− 218.45−0.047∗x)

(1 + 218.45−0.047∗x)3

+
0.04 · 232.57−0.046∗x(1− 232.57−0.046∗x)

(1 + 232.57−0.046∗x)3

+
0.01 · 243.62−0.049∗x(1− 243.62−0.049∗x)

(1 + 243.62−0.049∗x)3

+
0.02 · 258.91−0.057∗x(1− 258.91−0.057∗x)

(1 + 258.91−0.057∗x)3

F ′′(x)︸ ︷︷ ︸
Brazil

=
0.15 · 25.62−0.045∗x(1− 25.62−0.045∗x)

(1 + 25.62−0.045∗x)3
(19)

+
0.19 · 211.9−0.029∗x(1− 211.9−0.029∗x)

(1 + 211.9−0.029∗x)3

+
0.13 · 251.47−0.074∗x(1− 251.47−0.074∗x)

(1 + 251.47−0.074∗x)3

+
0.05 · 256.44−0.066∗x(1− 256.44−0.066∗x)

(1 + 256.44−0.066∗x)3

+
0.02 · 250.35−0.049∗x(1− 250.35−0.049∗x)

(1 + 250.35−0.049∗x)3

5 Discussion
The calculation time of a sigmoid function g(x), depends
on the number and type of operations required (in comput-
ing, exponentiation is more expensive than multiplication/-
division, and these, in turn, are more expensive than addi-
tion/subtraction). The logistic sigmoidal function requires
one exponentiation operation, one multiplication, one di-
vision, and two additions/subtractions. Other functions re-
quire an equal or greater number of operations and/or have
more costly operations:

– TheBoltzmann function has the same number and type
of operations (one exponentiation, two divisions, and
two additions/subtractions). If division costs more

than multiplication, the model would be disadvan-
taged.

– The hyperbolic tangent function requires six opera-
tions (one additional subtraction operation).

– The Gompertz function requires five operations (one
additional exponentiation operation).

Theminimumnumber of operations required is five, with
at most one exponentiation operation and two multiplica-
tion/division operations. Thus, the logistic function is ef-
ficient in relation to the set of functions (explained in Ta-
ble 6).
The coupled mode F (x) consists of a summation of lo-

gistic functions. It is defined by equation (3): F (x) =∑n
i=1

Hi

1+2Ai−Bix
, and has no added elements, although pre-

vious works do contain them (described in Table ??):

– The first work by Vilca Oliver et
al. [4] presents models F (x, q) =∑n

w=1

(∏w−1
i=1 (i−q)

∏n
j=w+1(j−q)

(n−w)!(−1)w−1(w−1)!
·Aw · e−eBw−Cw·x

)
and F (x, q) =

∑n
w=1

(
2w−1&q
2w−1 ·Aw · e−eBw−Cw·x

)
which include an additional variable, q, among other
details.

– The model by El Aferni, Ahmed et al. [17] F (x) =

Imin + Imax

∑n
i=1

(
Pi

1+10(Ai−x)Bi

)
includes two ad-

ditional components (Imin and Imax).

– In the second work by Vilca
Oliver et al. [5], en F (x, q) =∑n

w=1

(∏w−1
i=1 (i−q)

∏n
j=w+1(j−q)

(n−w)!(−1)w−1(w−1)!
Iw

1+e
(Zw−x)

Dw

)
y

F (x, q) =
∑n

w=1

(
2w−1&q
2w−1

Iw

1+e
(Zw−x)

Dw

)
contain

additional elements such as the variable q and others.

Thus, the presented model has a more straightforward
structure than its predecessors
On the other hand, the average Pearson correlation co-

efficient for the logistic sigmoidal models is ρLogistic =
0.99992, and the standard deviation is 0.00001, which ex-
plains that they statistically approximate each other.
The coefficients are higher than those in previous works

(sigmoidal mathematical models presented in Table ??, par-
ticularly in Peru and Brazil). They are also slightly higher
than those for models with ANNs (ρANNs = 0.99991).
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(a) Case: Italy has six waves.
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(b) Case: Brazil has five waves, the first and second, with high mortality rates.
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(c) Case: Switzerland has five waves and low death rates.
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(d) Case: Peru has five waves.

Figure 3: Death rate (F ′(x), first derivative of the COVID-19 logistic function of cumulative COVID-19 deaths) in blue,
and the vertical projection of the turning points on F ′(x) (red dashed line).

Similarly, the Pearson correlation coefficients of the
ANN models are greater than or equal to those in previous
ANN works (exposed in Table 2).

Regarding the empirical execution time, the sigmoidal
model and the ANN are different concepts (mathematical
model vs. deep learning). The former requires fewer opera-
tions, while the latter includes a more complex architecture

(i.e., layers, neurons, and matrix products). Therefore, it
is understandable that the sigmoidal models are faster (less
than a third of a second; see Table 7).
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(a) Case: Italy with six waves.
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(b) Case: Brazil with five waves.

Figure 4: Death acceleration (F ′′(x), second derivative of the logistic function of cumulative COVID-19 deaths) in blue,
and the projections of the turning points on F ′′(x) as red vertical dashed lines (Italy and Brazil).

6 Conclusion

In almost all countries, particularly in the study countries
(i.e., Italy, Brazil, Switzerland, and Peru), the COVID-19
waves presented a sigmoidal behavior. Therefore, the pro-
posedmodel obtained high Pearson correlation coefficients.
The logistic function is efficient, as analyzed by the type

and quantity of operations. A new version of the logistic
function g(x) was obtained and used, without adding oper-
ations.
The main contribution of this work is the COVID-19

model that can be used on data that are not necessarily epi-
demiological and with any function h(x) with constant left
and right asymptotes (that is, limx→−∞ h(x) = L, and
limx→∞ h(x) = R, where L and R are constants, proven
by mathematical induction).
The first three derivatives of the sigmoidal logistic func-

tion were calculated, allowing for a precise and elegant
analysis. Moreover, the turning points (i.e., the point at
which the concavity of the function changes) were obtained.
The derivatives allowed the waves of COVID-19 to be de-
scribed, analyzed, and compared, as well as providing jus-
tification for the well-known term “waves.”
Highly representative and expressive sigmoidal logis-

tic functions were obtained, which stand out for their ef-
ficiency in running time, far surpassing that of the tested
artificial neural network. The function obtained a good fit,
as the waves presented sigmoidal behavior which is typical
of epidemics.
The ANN can adapt to any curve without the requirement

that it presents a specific pattern. Therefore, such a model
would be preferable if atypical behaviors were present in
the observed data but at the expense of additional time.
Also, it is suitable for large data sets and high dimensional-
ity in the input variables.
Finally, neither model is better, and both have advantages

and disadvantages. Both are good for modeling epidemics,
mainly when the data follow a sigmoidal pattern.
Four real cases were studied, and models and method-

ologies were developed. Therefore, the procedures can be
applied in other countries and to different datasets beyond
COVID-19. Finally, they may be helpful for forecasting
and modeling in the case of future pandemics or other prac-
tical implications.
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A Appendix
The logistic sigmoidal function:

g (x) =
H

1 + 2A−Bx
(20)

For derivatives the following abbreviated notation is
used:

g′(x) =
d
dx

[g(x)] = [g(x)]
′

A.1 First derivative
The first derivative is given in the equation (21):

g′ (x) = H ·
[

1
1+2A−Bx

]′
, pull out constant factors

g′ (x) = −H · [1+2A−Bx]
′

(1+2A−Bx)2
, apply the reciprocal rule

g′ (x) = −
H

(
ln (2) · 2A−Bx · [A−Bx]

′
+ 0

)
(1 + 2A−Bx)

2

g′ (x) =
BH ln (2) 2A−B x

(1 + 2A−B x)
2 (21)
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A.2 Second derivative
The equation (22) is the second derivative of the logistic
function g(x):

g′′ (x) = BH ln (2)

[
2A−B x

(1 + 2A−B x)
2

]′

,

pull out constant factors

g′′ (x) = BH ln (2) ·[
[2A−Bx]

′
(1+2A−Bx)

2−2A−Bx
[
(1+2A−Bx)

2
]′

((1+2A−B x)2)
2

]′

,

apply the quotient rule

g′′ (x) = −B2 H ln(2)2 2A−Bx (1−2A−Bx)
(1+2A−Bx)3

(22)

A.3 Third derivative
The third derivative g′′′ (x) is:

BH ln (2)

[
−
B2 H ln (2)2 2A−Bx

(
1− 2A−Bx

)
(1 + 2A−Bx)

3

]′

,

pull out constant factors

Applying the quotient rule and simplifications as in the
second derivative:

B3 H ln (2)3 2A−Bx
(
1− 4 · 2A−Bx + 22 (A−Bx)

)
(1 + 2A−Bx)

4 (23)

The same results were obtained using the GNU Octave
software (version 9.1.0) with the following code:

Listing 1: Octave code for derivatives
pkg load symbolic;
syms x;
syms A;
syms B;
syms H;
Fx = H./(1+2^(A-B.*x));

fprintf("First␣derivative\n");
d1 = diff(Fx,x);
r1 = simplify(factor(d1))
disp(d1);

fprintf("Second␣derivative:\n");
d2 = diff(d1,x);
r2 = simplify(factor(d2));
disp(r2);

fprintf("Third␣derivative\n");
d3 = diff(d2,x);
r3 = simplify(factor(d3));
disp(r3);

A.4 Turning point
A stationary point of a function is a point where the deriva-
tive of a function is equal to zero. The slope of the graph of
the function is zero. They are called stationary points be-
cause they are points where the function is neither increas-
ing nor decreasing.
A point c on a curve y = g(x) is called a turning point

if g is continuous and the curve changes from concave to
convex (or vice versa) at c [26, 27].
According to the Method of Higher Derivatives (differ-

ential calculus), to obtain the turning point, it is first nec-
essary to find the stationary point of g′(x); that is, to solve
the following equation:

g′′(x) = 0,

or

−
B2 H ln (2)2 2A−Bx

(
1− 2A−Bx

)
(1 + 2A−Bx)

3 = 0 (24)

The solution to the equation (24) is given by x0 = A
B and

y0 = H
2 .

Finally, g′′′(x0) is evaluated as follows:

F ′′′(x0) = −B3 H ln (2)3

8
,

F ′′′(x0) = −0.0416B3 H. (25)

The result is different from zero (with B ̸= 0 and
H ̸= 0), which indicates that (AB , H

2 ) is a turning point.
It should be highlighted that, according to the method of
Higher Derivatives, if F ′′(x0) = 0 holds, then x0 must be
substituted into the third derivative. Then, if F ′′′(x0) ̸= 0
holds, then it is a turning point. The method is explained
and demonstrated in mathematics books [28].

B Appendix

Listing 2: ANN source code
library(tensorflow)
library(keras)
library(ggplot2)
library(devtools)
library(timetk)
library(mlbench)
library(dplyr)
library(magrittr)
library(gridExtra)
library(Metrics) # rmse, mae

Pais <- 3
CountryEn <- c("Brazil","Italy"

,"Peru","Switzerland")
File = CountryEn[Pais];
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f2<-paste("Covid19",File,".csv",sep="")
mydata<-read.csv(f2,header=TRUE

,stringsAsFactors=FALSE
,sep=",")

x <- mydata$x;
y <- mydata$y;
max_x <- max(x)
max_y <- max(y)
x_dias<-scale(x,center=mean(x)

,scale=sd(x))
ym <- mean(y)
ys <- sd(y)
y_train_arr <- (y-ym)/ys
lstm_model <- list()
lstm_model <-

keras_model_sequential() %>%
layer_lstm(units=200

,return_sequences=TRUE
,input_shape=c(1,1)) %>%

layer_dense(units = 1)

lstm_model %>%
compile(loss='mae'

,optimizer='adam'
,metrics=list('mae'))

start.time <- Sys.time()
lstm_model %>% fit(

x = x_dias, y = y_train_arr,
batch_size = 1,
validation_split = 0.05,
epochs = 500

)
end.time <- Sys.time();
time <- round(end.time - start.time ,7);
print(time)

fitted0<- lstm_model %>%
predict(x_dias,batch_size=1,verbose=0)

fitted <- fitted0*ys + ym
fitted <- round(fitted)

plot(x,y,col="grey",pch=2
,xlim=c(0,max_x),ylim=c(0,max_y))

par(new=TRUE)
plot(x,fitted,type="l",col="blue",lwd=5

,ylab="",main="",xlab=""
,xlim=c(0,max_x),ylim=c(0,max_y))

rc <- cor.test(fitted,y);
print(rc);
rc$estimate[[1]]
rc$estimate[[1]]^2
rc$conf.int[1]
rc$conf.int[2]
rmse(fitted0,y_train_arr)
mae(fitted0,y_train_arr)
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