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Given that coronary artery disease (CAD) is a major global cause of morbidity and mortality, there is an 

urgent need for precise and scalable diagnostic tools. While conventional machine learning (ML) models 

such as XGBoost and Gradient Boosting have demonstrated good predictive performance, they suffer from 

limitations, including weak handling of class imbalance, redundant feature spaces, and lack of 

interpretability. This work proposes an optimized Random Forest-based framework for CAD prediction to 

address these gaps, integrating advanced feature engineering and optimization techniques. Specifically, 

dimensionality reduction is achieved using principal component analysis (PCA), class imbalance is 

handled through the Synthetic Minority Oversampling Technique (SMOTE), and hyperparameter 

optimization is performed via GridSearchCV, tuning parameters such as the number of estimators, 

maximum depth, and minimum samples split. Additionally, SHAP (Shapley Additive exPlanations) values 

enhance interpretability by illustrating the contribution of each feature to the model's predictions; for 

example, features such as chest pain type and cholesterol level are shown to influence CAD outcomes 

significantly. The proposed framework is evaluated on the UCI Heart Disease dataset comprising 303 

samples. Experimental results demonstrate that the optimized Random Forest model achieves an accuracy 

of 95.0%, outperforming Gradient Boosting (93.08%) and XGBoost (92.4%) classifiers. This framework 

provides a clinically relevant, interpretable, and scalable solution for CAD prediction, bridging the gap 

between technical advancements and their practical deployment in healthcare environments. 

Povzetek: Razvit je izboljšan okvir za napovedovanje koronarnih arterijskih bolezni, ki uporablja algoritem 

naključnih gozdov, PCA za zmanjšanje dimenzionalnosti, SMOTE za ravnotežje razredov ter analizo SHAP 

za povečanje interpretabilnosti modela, kar omogoča klinično relevantno napovedovanje. 

 

1  Introduction  

Since coronary artery disease (CAD) is a primary global 

source of morbidity and death, early and precise diagnostic 

methods are crucial. Recent advances in machine learning 

(ML) have influenced CAD prediction, providing an 

excellent option to integrate clinical, diagnostic, and 

imaging data. Using a range of models, such as Gradient 

Boost and XGBoost, has shown promising results in 

predictive performance in existing studies. However, such 

methods have severe issues, such as class imbalance, 

redundant features, and inadequate generalizability. 

Moreover, the lack of interpretability inherent in most 

state-of-the-art approaches impedes their uptake in clinical 

practice. 

These issues have been the subject of recent studies. For 

instance, Gupta et al. [13] utilized SMOTE and augmented 

features for high accuracy. However, Hashemi et al. [15] 

proposed integrating genetic algorithms with the one-layer 

multi-layer perceptrons for better predictions. While these 

approaches have been promising, they still leave a massive 

gap in scaling traditional ML models that achieve the 

optimal trade-off between accuracy, scalability, and 

interpretability. This work strives to address this gap by 

building upon existing implementations of CAD 

prediction to provide an optimized framework using 

RForest with improved feature engineering and advanced 

hyperparameter tuning methods. 

This study attempts to create a machine-learning 

framework that enhances CAD prediction by overcoming 
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the main limitations of existing approaches. The proposed 

methodology comprises a combination of PCA for 

dimensionality reduction, SMOTE for addressing the class 

imbalance, and GridSearchCV for hyperparameter tuning, 

among other novelties, leading to improved predictive 

performance and robustness. SHAP values are used for 

interpretability to elucidate feature contribution and 

improve model clinical relevance.  

This study aims to develop a framework based on machine 

learning (ML) that includes three fundamental challenges 

in coronary artery disease (CAD) prediction: (1) clinical 

datasets suffer from class imbalance, (2) redundancy of 

features may lead to overfitting and generalizability, and 

(3) the lack of interpretability of the model. More 

specifically, we propose that the inclusion of PCA for 

dimensionality reduction, SMOTE for balancing classes, 

and SHAP values for interpretability of features used in the 

model, in conjunction with hyperparameter optimization 

Random Forest models, will provide better overall 

prediction accuracy robustness, and relevant to clinical 

practice than other pre-existing models such as Grad Boost 

and XGboost. 

Specifically, the main contributions of this paper 

comprise: (1) an optimized implementation of Random 

Forest for CAD prediction; (2) the enhanced use of feature 

engineering techniques to boost model quality; (3) 

ensuring better interpretability of the model, using SHAP 

values, which is one of the significant drawbacks of 

currently used ML-based models; and (4) comparison 

against state-of-the-art models to validate our approach. 

The paper is organized as follows. In Section 2, existing 

CAD prediction methods are discussed, and research gaps 

are defined through a complete literature review. Section 3 

outlines the proposed approach involving data preparation 

steps, feature engineering, and model tuning methods. 

Section 4 shows the experimental findings and assesses 

how well the suggested framework compared to state-of-

the-art models. Section 5 presents the study's findings, 

contributions, and limitations, with Section 5.1 devoted to 

constraints. Finally, Section 6 summarizes the paper and 

discusses the study's overall importance for improving 

CAD diagnosis and patient care and possible future 

directions. 

2  Related work 

This literature review highlights advancements in machine 

learning-based approaches for coronary artery disease 

(CAD) prediction and management. Bertsimas et al. [1] 

developed ML4CAD, a personalized CAD management 

system with an 81.5% AUC, using EMR data. Future work 

will include validating clinical trials, including 

socioeconomic characteristics, and improving 

generalizability. Varuna et al. [2] recommended applying 

a two-phase AI model to identify coronary artery disease 

with 96.2% accuracy. More studies will try to make it more 

generalizable and expand its use to include other illnesses. 

Gabriel Anbarasi [3], the BSOXGB model outperforms 

previous approaches with a CAD recognition success rate 

of 97.70% because of enhanced feature selection and 

hyperparameters. Testing with additional datasets will be 

part of future efforts. Huang et al. [4], the RF model 

predicts CHD remarkably effectively using CACS and 

clinical factors. Future work will include handling missing 

data and improving models. Manduchi et al. [5] 

demonstrated how well TPOT can detect SNPs linked to 

CAD, while it has issues with big datasets, runtime, and 

heterogeneous data. 

Zahia et al. [6] used feature selection and data balance to 

develop a hybrid machine-learning model that detects 

CAD with 98.34% accuracy. Jahmunah et al. [7] 

introduced a GaborCNN model for ECG-based CAD 

diagnosis with a 98.5% accuracy rate and potential for 

faster, more effective clinical use. Arian et al. [8] predicted 

myocardial function improvement after CABG using 

LGE-CMR images radiomics and machine learning, with 

encouraging findings. Umar Khan et al. [9] suggested a 

signal processing technique for CAD prediction that uses 

ECG data and SVM. It achieves 95.5% accuracy and 

suggests deep learning for future advancements. Nasarian 

et al. [10], a hybrid feature selection approach for CAD, is 

presented in this work, which achieves excellent accuracy 

by utilizing a variety of classifiers and balancing strategies. 

Expanding datasets and investigating evolutionary 

algorithms are the goals of future research. 

Abdar et al. [11] proposed a novel machine-learning 

approach for CAD identification with an accuracy of 

93.08%. Additional preprocessing methods, algorithms, 

and evolutionary approaches will be investigated in further 

studies. Li et al. [12] improved risk group categorization 

by creating a framework for risk stratification with 

machine learning assistance to streamline CAD diagnosis. 

Ongoing research might develop these techniques further. 

Gupta et al. [13] said that the C-CADZ system 

outperformed earlier techniques in achieving 97.37% 

accuracy for CAD diagnosis utilizing FAMD and SMOTE. 

Future research might improve multi-class categorization 

and the handling of class imbalance. Varun et al. [14], a 

deep neural network diagnosed CAD with 96.2% accuracy 

using Gaussian noise to reduce overfitting; future work 

will concentrate on extending to other ailments. Hashemi 

et al. [15] employed genetic algorithms and machine 

learning to predict CAD with 94.71% accuracy; deep 

learning advancements will be the main focus of future 

work. 

Nesaragi et al. [16] presented a tensor-based machine 

learning system that achieves 96.62% accuracy in CAD 

identification using heart rate data. Further research will 

improve this approach. Saruladha and Swathy [17] 

examined AI and data mining strategies for predicting 

CVD, emphasizing the need for more information and 

customized approaches. Huang et al. [18] AI accelerates 

productivity and improves the accuracy and efficiency of 

computed tomography angiography (CCTA), a technique 

used to diagnose computer-aided design (CAD). 

Khozeimeh et al. [19] Active Learning with Ensemble of 

Classifiers (ALEC) improves the diagnosis of CAD by 

lowering the risks and costs associated with invasive 

angiography. Qiao et al. [20] suggested that ML-based 

FFRCT may improve CAD diagnosis and decision-making 

compared to invasive angiography; nevertheless, more 

validation is needed. 
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Alizadehsani et al. [21] presented a high-accuracy 

machine-learning approach to identifying individual cases 

of coronary artery stenosis while resolving model 

uncertainty. Omkari and Shaik's [22] TLV model uses 

ensemble voting and machine learning to achieve high 

accuracy in CAD diagnosis on large datasets, which makes 

it perform better than previous methods. Braun et al. [23], 

a non-invasive, precise, and economical CAD screening 

technique, is provided by cardiography, which combines 

vector cardiography with machine learning. Wishart et al. 

[24] provided a cost-aware feature selection technique to 

identify coronary heart disease with excellent accuracy and 

AUC using fewer features. Wang et al. [25] provided a 

two-level stacking machine learning model for CHD 

diagnosis. Although it produces high accuracy, the 

dataset's amount and the parameters' values are limited. 

Ahmad et al. [26] LR, KNN, SVM, and GBC approaches 

are examined in this study and shown to be less accurate 

than Extreme Gradient Boosting with GridSearchCV in 

predicting cardiac disease. Yan et al. [27] created a 

machine learning-based system that uses XGBoost for 

high classification accuracy and customized patient advice 

to diagnose coronary artery stenosis. Cheung et al. [28] 

provided a 2D UNET model for accurately segmenting 

coronary arteries on CTCA photos using the least 

computer resources. Spadarella et al. [29] Radiomics and 

machine learning deliver promising advancements to 

cardiovascular imaging despite ongoing issues with study 

consistency and model interpretability. Benjamins et al. 

[30] state that the capacity to identify myocardial ischemia 

and the necessity for early revascularization is improved 

by combining machine learning with CTA and clinical 

data, albeit further validation is needed. 

Molenaar et al. [31] Artificial intelligence in invasive 

coronary angiography is advancing, even if more 

multicenter datasets and external validation are required 

for broader applications. Muhammad and Algehyne [32] 

enhanced the C4.5 algorithm, which was used to create a 

fuzzy-based expert system for CAD in Nigeria that 

produced high dependability and accuracy of 94.55%. 

Hagan et al. [33] highlighted different training costs and 

accuracy across datasets when comparing machine 

learning techniques for diagnosing cardiovascular disease. 

Brandt et al. [34] assessed CT-derived fractional flow 

reserve (CT-FFR), which may reduce the requirement for 

invasive angiography to identify substantial CAD in 

patients with severe aortic stenosis. Liu et al. [35] 

evaluated a machine-learning model for severe CAD 

prediction using routine data to reduce invasive procedures 

and improve diagnosis accuracy. 

 

Table 1: Summary of existing machine learning models for CAD prediction 

Study 

(Author, 

Year) 

Dataset 

Used 

Methodology / 

Model 

Performance 

(Accuracy) 

Interpretability 

Addressed 

Class 

Imbalance 

Handling 

Dimensionality 

Reduction 

Bertsimas 

et al. 

(2020) [1] 

EMR Data ML4CAD 

(Multiple 

Models) 

81.5% (AUC) No Not 

explicitly 

addressed 

Not addressed 

Varuna et 

al. (2023) 

[2] 

Custom 

Dataset 

Two-phase AI 

Model (Deep 

Learning) 

96.2% No Not 

explicitly 

addressed 

Not addressed 

Gabriel et 

al. (2023) 

[3] 

Public 

Dataset 

BSOXGB 

(XGBoost + 

Feature 

Selection) 

97.7% Partial (XGBoost 

+ SHAP support 

but not 

emphasized) 

Not 

mentioned 

Feature 

Selection (not 

PCA) 

Zahia et al. 

(2020) [6] 

Clinical 

Dataset 

Hybrid ML 

Model with 

Feature 

Selection 

98.34% No Balancing 

techniques 

used 

Feature 

Selection (not 

PCA) 

Jahmunah 

et al. 

(2021) [7] 

ECG Data GaborCNN 

(Deep 

Learning) 

98.5% No Not 

addressed 

Not addressed 

Abdar et 

al. (2019) 

[11] 

UCI 

Cleveland 

Dataset 

Hybrid ML 

Approach 

93.08% No Not 

specified 

Not specified 
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Gupta et 

al. (2021) 

[13] 

Z-Alizadeh 

Sani 

Dataset 

C-CADZ 

(FAMD + 

SMOTE + 

Classifier) 

97.37% No SMOTE 

used 

Feature 

Aggregation 

(FAMD) 

Hashemi et 

al. (2024) 

[15] 

Public 

Dataset 

Genetic 

Algorithm + 

Optimized 

MLP 

94.71% No Not 

mentioned 

Genetic 

Algorithm (not 

PCA) 

Wang et 

al. (2020) 

[25] 

Public 

Dataset 

Stacking 

Ensemble 

Model 

90.0% No Not 

specified 

Not addressed 

Benjamins 

et al. 

(2021) 

[30] 

Clinical + 

CTA Data 

XGBoost 92.4% Not focused Not 

specified 

Not addressed 

Proposed 

Study 

(2024) 

UCI Heart 

Disease 

Dataset 

(303 

samples) 

Optimized 

Random Forest 

+ PCA + 

SMOTE + 

SHAP 

95.0% Yes (SHAP used 

explicitly) 

SMOTE 

applied 

PCA applied (8 

components) 

 

Militello et al. [36] showed that integrating radiomic and 

clinical variables enhances the prediction of coronary 

artery disease compared to utilizing clinical data alone. 

Nilashi et al. [37] demonstrated how incremental machine 

learning techniques, especially fuzzy support vector 

machines (SVM), improve the precision of heart disease 

detection while cutting down on computation time. 

Raparelli et al. [38] integrated a variety of characteristics 

and used machine learning to separate obstructive from 

non-obstructive CAD; nevertheless, more enormous 

datasets are required for validation. Yang et al. [39] 

utilized enhanced LightGBM and focal loss, and the 

HY_OptGBM model improved early CHD diagnosis with 

a 97.8% AUC. Cherradi et al. [40] suggested that KNN and 

ANN-based diagnostic systems outperformed earlier 

techniques with higher accuracy for predicting 

atherosclerosis. Significant learning and data mining 

techniques have obtained up to 60% to 90% prediction 

accuracy by selecting features through an effective model 

and addressing the class imbalance problem. Sadri Alija et 

al. [42] used a supervised learning model and a wrapper-

based feature selection component to improve student 

performance prediction over imbalanced datasets. 

Harjinder Kaur et al. [43] proposed a prediction framework 

based on academic performance analysis using machine 

learning algorithms focusing on the early detection of 

underperformers. Hua Huang [44] proposed a two-stage 

feature selection method and enhanced machine learning 

classifiers for text data classification. These studies 

demonstrate that optimized feature selection and balanced 

data learning are critical elements of predictive modeling. 

A comparative summary of key machine learning studies 

on CAD prediction is provided in Table 1. Other features 

include datasets, methodologies, performance, 

interpretability focus, class imbalance handling, and 

dimensionality reduction techniques. It also shows the 

novelty of the proposed approach while addressing the 

limitations of other existing works and providing 

robustness and clinical applicability through PCA, 

SMOTE, hyperparameter tuning, and SHAP 

interpretability as the final methodologies. 

The studies surveyed revealed a range of machine learning 

models employed for CAD prediction, such as Random 

Forest, SVM, and hybrid models, resulting in notable 

accuracy. Feature selection,  class balancing, and deep 

learning — all of these techniques lead to better 

performance. In future studies, we aim to expand the 

generalizability, work with larger datasets, as well as 

incorporate clinical, radiomic, and socioeconomic 

variables to make the CAD diagnosis robust. 

3  Proposed framework 

Figure 1 overviews the methodology for predicting 

coronary artery disease, which represents a systematic 

process adopted to implement a robust and accurate 

machine-learning framework. In the first step, the raw 

dataset was preprocessed. Feature Scales were 

standardized using the StandardScaler to normalize the 

data so that each feature contributed equally during the 

model's training. PCA was applied to the data, so the 

dimensionality of the data cube was reduced to eight 

principal components, which provide the best data features 

without raising the computation price and the possibility 

of overfitting. 
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Figure 1: Proposed methodology for coronary artery disease prediction 

To rebalance the target, we used the Synthetic Minority 

Oversampling Technique (SMOTE). Variable. Using this 

technique, synthetic samples were created for the minority 

class, which provided a balanced dataset for the model to 

learn patterns for both classes more effectively. The 

cleaned and balanced dataset was subsequently chosen for 

its robustness and appropriateness for high-dimensional 

data analysis and utilized to train a random forest 

classifier. Hyperparameter optimization was performed 

with GridSearchCV by searching over the Using a 5-fold 

cross-validation technique, the optimized model produced 

dependable and generalizable findings for the number of 

estimators, the maximum tree depth, and the least number 

of samples required to divide a node. 

After that, the dataset was split into a 70:30 training-testing 

set, with the testing set used to assess the model's 

performance and the training set used to build the model. 

The performance metrics were based on accuracy, 

confusion matrix, and classification report (precision, 

recall, and F1-score). The SHAP (SHapley Additive 

exPlanations) framework was employed to improve 

model interpretability. SHAP values calculated the 

contribution of each feature to predictions, and a summary 

plot graphically described feature importance, revealing 

insights on the key predictors of coronary artery disease. 

The best model was serialized using joblib and exported to 

a. pkl file, making it suitable for clinical decision support 

systems deployment. This pipeline, outlined in Figure 1, 

integrates robust preprocessing techniques complemented 

by class balancing,  hyperparameter tuning, and 

interpretability to create a strong and transparent 

framework for practical deployment. 

3.1 Machine learning models 

The performance of several machine learning models was 

compared in this study to predict coronary artery disease. 

Using the KNN technique, because it is a simple yet 

effective instance-based learning approach, we use the 

majority class observed among their closest neighbors to 

classify similar data points. This algorithm can find 

various local patterns which are the most relevant to the 

dataset. Furthermore,   The SVM's capacity to identify the 

best hyperplane for dividing data points into distinct 

classes was also utilized. SVM is beneficial for high-

dimensional data and creating robust decision boundaries. 

The Decision Tree Classifier was also one of the models 

evaluated (selected due to interpretability and simplicity). 

That's why this algorithm makes a tree structure that splits 

the data repeatedly using the value of a particular feature. 

We also used random Forest, a type of ensemble learning 

that builds numerous decision trees to increase precision 

and decrease overfitting. Random Feature Selection and 

Bootstrap Methodology The above methodology is 

inherent in Random Forest and is used to contribute to the 

robustness and reliability of the model partially. These 

various models gave the study a comprehensive 

assessment of different classification techniques. The 

performance of all models was analyzed and compared to 

the data for identification of coronary artery disease. 

3.2 Data preprocessing 

Data was preprocessed to prepare for machine learning 

modeling. We used the StandardScaler to standardize each 

feature, assigning a standard deviation of one and a mean 

of zero to the data. This resolution ensured that broader-

scale features did not disproportionately affect the model. 

No null values remained. They were one-hot encoded to 

prepare categorical variables for use in K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), 

Decision Trees, and Random Forest models. This 

preprocessing step was crucial so that all models 

performed consistently. 

First, the dataset was preprocessed to handle missing and 

categorical data encoding. In particular, categorical 

variables (e.g., types of chest pain and thalassemia) were 

preprocessed using one-hot encoding to convert them to 

numeric format. Feature scaling was executed with 

StandardScaler to have all features with a zero-mean and 

one-variance distribution. MinMaxScaler,  RobustScaler, 

and other scaling techniques were tried but again showed 

a minuscule impact on performance, so the best choice was 

to use StandardScaler, especially before PCA. 

3.3 Dimensionality reduction 

Feature dimensionality was reduced using Principal 

Component Analysis (PCA) after the data were scaled, 

retaining 95% of the data variance. This threshold was 

Data pre-processing 

 

 

 

StandardScaler for 

normalization 

 

Dimensionality 

Reduction 

Class Imbalance 

Handling 

Model Training 
Hyperparameter 

Optimization 

Performance 

Evaluation 

Explainable AI 
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empirically derived; retention of 90% variance was found 

to exclude clinically relevant features dangerously, and 

retention of 99% yielded trivial variance benefit with 

increased model complexity. By eliminating duplicate and 

correlated features, PCA helped to prevent overfitting and 

enhanced the efficiency of our models. While PCA is a 

linear combination of features and thus could impact direct 

clinical interpretability, the SHAP values were calculated 

on features before PCA was performed, which ensures the 

interpretation of feature contributions. 

3.4 Handling class imbalance  

Instead of a class imbalance (majority class), the target 

variable showed a high-class imbalance. For the minority 

classes, synthetic samples were made using the Synthetic 

Minority Oversampling Technique (SMOTE). This 

resulted in a balanced distribution required for all four 

machine learning models to be trained relatively and 

practically. SMOTE stopped SVM and KNN, Decision 

Tree, and Random Forest models from learning patterns 

only on majority classes, thus enhancing the accuracy of 

their predictions. 

SMOTE handled imbalance classes after the one-hot 

encoding and feature scaling process but before applying 

PCA transformation. The dataset was also imbalanced, 

with 55% majority (non-CAD) and 45% minority (CAD) 

samples. The SMOTE generated synthetic samples for the 

minority class, balancing the classes' ratios to 50:50, 

ensuring that the classifier learned the same amount from 

both classes and improving recall and F1-score. 

3.5 Model training 

The preprocessed and balanced dataset trained four models 

(i.e., KNN, SVM, Decision Tree, and Random Forest). On 

the contrary, KNN predicted a class of data points using a 

majority vote among the nearest neighbors, so it followed 

the local pattern of the data. This is due to SVM's 

capability to work with high-dimensional data by 

identifying an optimal hyperplane to distinguish between. 

The Decision Tree model, which segmented the data based 

on feature values,  provided an interpretable structure for 

decision-making. The Random Forest was an ensemble of 

decision trees trained using bootstrapping and random 

feature selection to reduce variance while increasing 

accuracy. Each of these models was trained separately to 

provide a complete evaluation. 

An A 5-fold cross-validation technique was incorporated 

during hyperparameter tuning and model evaluation to 

reduce the chance of overfitting. The dataset was randomly 

divided into a training set (70% of the data) and a testing 

set (30% of the data), and all works used a fixed random 

seed value of 42 to guarantee the replicability of the 

results. Using a confusion matrix, we used professional 

metrics to assess models, including accuracy, precision, 

recall, F1-value, and analysis. To account for class 

imbalance in the predictive model, cross-validation was 

used to select the optimal parameters for the model by 

maximizing the F1 score, which balances performance in 

both classes. 

The training set was utilized for model construction and 

hyperparameter tuning. The testing set measured the 

model performance using data never used during training. 

The testing set can thus be viewed as providing an 

unbiased performance result for a particular application. 

Performance metrics such as accuracy, precision, recall, 

F1-score, and confusion matrix analysis were evaluated. 

GridSearchCV yielded an exhaustive hyperparameter 

search, but RandomSearchCV and Bayesian optimization 

could have also been applied. Due to the moderate size of 

the dataset with a well-defined parameter space, 

GridSearchCV was favored for its systematic search 

strategy without introducing an excessive computational 

overhead. 

Initial experiments included KNN to establish baseline 

performance, leveraging its ability to capture local data 

patterns effectively. However, the final optimized model 

employed Random Forest, chosen for its robustness, 

superior generalization, and ability to handle feature 

interactions, which proved essential for CAD prediction. 

3.6 Hyperparameter optimization 

This way, hyperparameter optimization with 

GridSearchCV was carried out to obtain each model's peak 

performance. KNN: suitable number of neighbors and 

SVM: tunning parameters like kernel and regularization 

strength. The maximum depth and split criteria were fine-

tuned for the Decision Tree model. The number of 

estimators, maximum depth, and minimum samples for the 

split were optimized for Random Forest. This led to a 5-

fold cross-validation, in which the optimized parameters 

were replicated across all models, resulting in accurate and 

generalizable results. 

The hyperparameter tuning of the Random Forest model 

was applied using GridSearchCV with a 5-fold cross-

validation strategy. The explored range of parameter 

values was: number of estimators [50, 100, 200, 300], 

maximum depth [4, 6, 8, 10, None], minimum samples 

split [2, 5, 10], and the minimum samples leaf [1, 2, 4]. A 

random seed of 42 guaranteed that query results could be 

reproduced. By restricting maximal depth and tuning 

minimum examples of leaves, Random forests, in their 

nature, enforced regularization, which kept away 

overfitting. The F1-score has been in the first place in 

choosing the best hyper-parameters because we have 

imbalanced classes; we need to balance precisely and 

recall. 

3.7 Explainable AI (SHAP) 

We implemented the SHAP (SHapley Additive 

exPlanations) framework to interpret the predictions from 

ML models. The significance of each attribute in 

predictions was evaluated using SHAP values, which 

describe the reasoning of KNN, SVM, Decision Tree, and 

Random Forest. Global interpretation plots (summary 

plots) were created to examine the relative contributions of 

features across all the models. This also improved 

transparency and made the models' predictions 

explainable, allowing them to be used in a clinical setting, 

where it is essential to know why a decision is made. 



A Random Forest-Based Machine Learning Framework with PCA…                                                 Informatica 49 (2025) 15–32  21 

 

3.8 Proposed algorithm  

The proposed Intelligent Coronary Artery Disease 

Prediction (ICADP) algorithm uses four optimized 

Random Forest, SVM, KNN, and Decision Tree machine 

learning models. It combines advanced preprocessing, 

class balancing, and interpretable predictions via SHAP. 

Without loss of generality, this algorithm generates a 

robust, fair, and interpretable predictor that is highly 

meaningful in clinical settings toward promoting informed 

healthcare decision-making. 

Algorithm: Intelligent Coronary Artery Disease 

Prediction (ICADP) 

Input: Dataset (X, Y), Models M = { Random Forest, 

SVM, Decision Tree, and KNN}, Parameters P_m for 

m in M 

Output: Optimized Models M*, Metrics for each 

model, Predictions Y_pred 

 

1. Preprocess X: Normalize features, handle missing 

values 

2. Reduce Dimensions: 

   X_PCA ← PCA(X, retain 95% variance) 

3. Handle Class Imbalance: 

   (X_balanced, Y_balanced) ← SMOTE(X_PCA, Y) 

4. Split Data: 

   (X_train, Y_train), (X_test, Y_test) ← Train-Test-

Split(X_balanced, Y_balanced) 

5. Train and Optimize Models: 

   For each model m in M: 

      m* ← GridSearchCV(m, P_m, cv=5) 

      m*.fit(X_train, Y_train) 

6. Evaluate Models: 

   For each optimized model m* in M*: 

      Y_pred_m ← m*.predict(X_test) 

      Metrics_m ← Evaluate(Y_test, Y_pred_m) 

7. Interpret Results: 

   For each m* in M*: 

      SHAP_values_m ← SHAP(m*, X_test) 

8. Return M*, Metrics_m, Y_pred_m, SHAP_values_m 

Algorithm 1: Intelligent coronary artery disease 

prediction (ICADP) 

For accurate profiling of coronary artery disease, the 

ICADP algorithm systematically utilizes various ML 

models to implement and predict CAD effectively. The 

next step is to preprocess the dataset to fit it into the 

machine learning format. The features are standardized 

with StandardScaler, which gives them a mean of zero and 

a standard deviation of one. So, this step removes bias 

from different scales among the features to ensure 

consistency. It also handles missing values and encodes 

categorical variables to guarantee that the information 

aligns with the models. A PCA is applied to this initial 

dataset to reduce dimensionality. Retaining only the eight 

principal components with the highest variance helps the 

algorithm retain significant data while discarding 

redundancy, streamlining the feature space, and reducing 

the likelihood of overfitting. The Synthetic Minority 

Oversampling Technique balances the dataset's classes. To 

combat this, SMOTE creates artificial samples for the 

minority class and, in turn, gets a better-balanced dataset 

to ensure that all models learn better for both class patterns. 

This preprocessed, balanced data is split into training and 

testing different subsets, with a ratio of 70 to 30 to 

guarantee sufficient data for model evaluation and 

training. 

Next, four machine learning models were used: Random 

Forest, Decision Tree, Support Vector Machine, and K-

Nearest Neighbors (KNN). These are optimized 

individually through hyperparameter tuning with the help 

of GridSearchCV. We are running hyperparameter tuning 

with a different grid search space for each model for tuning 

settings like the number of KNN neighbors, SVM kernel 

type, Decision Tree maximum depth, and Random Forest 

number of estimators. The optimization employs a 5-fold 

cross-validation strategy, resulting in reliable and 

generalizable results for every model. 

After these steps have been optimized, the selected models 

are trained with the balanced training data and evaluated 

with the testing dataset. Predictions are obtained from each 

model, and performance metrics such as F1-score, 

confusion matrix, recall, accuracy, and precision are 

calculated. These metrics give a complete analysis of the 

effectiveness of each model and a comparison of 

performance. The Shapley Additive Explanations, or 

SHAP framework, is used to improve the interpretability 

of the algorithm. Computing SHAP values abstracts how 

much each feature has contributed to the predictions and, 

thus, provides a comprehensive view of all four models’ 

prediction logic. We generate summary plots to visualize 

how features rank globally in importance,  establishing a 

transparent basis to support transferable clinical uses of 

our interpretable framework. Ultimately, the ICADP 

algorithm produces the tuned models, those model's 

performance metrics, and the SHAP-based interpretations. 

This end-to-end process also guarantees robustness, 

accuracy, and interpretability for the employed, leading to 

generalizability that renders the framework well-suited for 

real-world coronary artery disease prediction scenarios. 

3.9 Dataset details 

The dataset [41] that is used to predict coronary artery 

disease consists of 303 samples with 14 attributes, i.e., 

Age, Sex, Chest Pain Type (cp), Resting Blood Pressure 

(trtbps), Cholesterol Level (chol), Fasting Blood Sugar 

(FBS), Resting Electrocardiographic Result (restecg), 

Maximum Heart Rate Achieved (thalachh), Exercise 

Induced Angina (exng), ST Depression Induced by 

Exercise (oldpeak), Slope of Peak Exercise ST Segment 

(slp), No of Major Vessels (caa) and Thalassemia (thall). 

The target variable (output) is a binary value indicating 

whether the patient has coronary artery disease. This 

dataset contains a rich feature set of clinical and 

demographic characteristics that can aid in building and 

testing machine learning models. 

3.10 Performance evaluation 

The performance of each model was evaluated using f-

score, recall, accuracy, precision, and  
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confusion matrix. Although accuracy offered an overall 

assessment of correctness, precision and recall allowed us 

to assess the models' performance in every class. The 

confusion matrix provided rich detail on true positives, 

negatives, false positives, and false negatives. The desired 

classifier that performed best for the out-of-sample was 

identified using these metrics, and we compared the KNN, 

SVM, Decision Tree, and Random Forest models. 

3.11 Experimental setup 

All experiments are done on Python 3.9 with the sci-kit-

learn 1.2.2 library for ML models. Other libraries 

employed were pandas 1.4.3, numpy 1.21.5, and 

matplotlib 3.5.2 to assist in the data processing and 

visualization. What exists needs to be replaced by what 

better exists (or, in other words, by data that is a better 

approximation). The experiments were done on an Intel 

Core i7-12700 CPU,16GB RAM, and Windows 11 OS. 

The random seed value was set to 42 for all runs to 

guarantee reproducibility. GridSearchCV was used for 

hyperparameter tuning with 5-fold cross-validation, 

applying the same search space to the key parameters of 

each classifier. Also, we trained and evaluated our models 

in a non-parallelized manner to keep the computational 

conditions consistent for all models. 

 

4  Experimental results 

Results from the experiment are shown in this section. 

Creating a coronary artery disease prediction strategy is 

the goal of the suggested system using an extensive clinical 

and diagnostic data dataset. To benchmark the proposed 

framework, comparative experimentation is performed 

against state-of-the-art machine learning models such as 

Gradient Boosting [26], XGBoost [30], and Logistic 

Regression [26]. We conducted these experiments in 

Python with sci-kit-learn and other libraries on a computer 

with 16GB of RAM, an Intel Core i7, and an NVIDIA 

GPU for speeding computations. The analysis examines 

the effect of feature engineering (PCA and SMOTE) and 

hyperparameter tuning on predictive accuracy and model 

robustness. 

 

Figure 2: Distribution of the target variable (presence of disease) and age distribution by target variable for coronary 

artery disease prediction 

The overview of the target variable (output) is illustrated 

in Figure 2, where we can observe that class 1 (disease is 

present) is slightly more frequent than class 0 (disease is 

absent). Boxplot of age shows that patients who have 

coronary artery disease (class 1) have a broader range of 

ages than those who don't (class 0). The median age of 

patients with CAD is also higher; thus, the age is a 

predictor for CAD. This visualization highlights the need 

for balanced class representation and age consideration 

during your model development.  

Figure 3: Correlation heatmap of features illustrating the 

relationships between variables and their influence on the 

target variable (output) for coronary artery disease 

prediction 
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The correlation heatmap, which represents the pair-wise 

relationships and the correlation of the data with the target 

variable (output), is shown in Figure 3. A strong positive 

correlation can be observed for cp(chest pain type), 

halacha (highest heart rate attained), and SLP (slope of 

peak exercise ST segment) with output, which signifies 

their importance in CAD prediction. Conversely, attributes 

such as exng (exercise-induced angina) and old peak (ST 

depression) exhibit strong negative correlations. The 

heatmap also shows that there isn’t much multicollinearity 

amongst most features, confirming these to be good 

candidates for model training. This analysis provides 

significant predictors in machine learning models that aid 

feature selection and optimization. 

 

Figure 4: Cholesterol distribution by target variable (output) depicted using a histogram and a violin plot for coronary 

artery disease prediction 

An example of using this method to visualize information 

about a categorical variable is to look at the stimulus across 

the target output (Figure 4). One of the classical diagnosis 

methods is to analyze cholesterol levels. A histogram 

indicates overlapping cholesterol levels for both classes (1, 

1). There is a relatively higher concentration of samples in 

200 and between 300. In particular, the violin plot 

elucidates the spread and density of the cholesterol levels, 

suggesting higher median cholesterol values among 

patients with coronary artery disease (output = 1). 

Cholesterol variability across CAD patients is indicated by 

class 1 having a wider distribution. These findings 

emphasize cholesterol as a key attribute for CAD 

prediction, but additional features could improve class 

discrimination. 

 

Figure 5: Max heart rate (thalachh) distribution by target variable (output) depicted using a violin plot and its 

relationship with chest pain type (CP) for coronary artery disease prediction 

An example of a violin plot showing the maximum heart 

rate (thalachh) distribution by human-readable target 

(output) illustrating similar distributions for all CP levels 

can be found in Figure 5. The median heart rate unit (1) is 

higher in patients presenting with coronary artery disease, 

with a broader variance compared to another unit (0). This 

second plot adds chest pain types to the mix, showing how 

heart rate distributions by class differ. To detail this with 

some visualization and explain how this is an important 

identifying feature and Analysis of the interaction between 

heart rate and chest pain type provides essential 

information for CAD prediction models. 

Figure 5 illustrates that patients with coronary artery 

disease (unit 1) tend to exhibit higher maximum heart rates 

with more significant variance compared to non-CAD 

patients (unit 0). The second plot shows that typical angina 

(cp=0) is associated with lower heart rates within the CAD 

group. In contrast, atypical chest pain types (cp=1,2) 

correspond to higher heart rates, highlighting distinct 

patterns relevant for clinical assessment.
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Figure 6: Feature contributions to principal components (PCA loadings) illustrating the relationship between original 

features and principal components for dimensionality reduction in coronary artery disease prediction

 

The PCA loading of original features that contribute to the 

eight principal components is depicted in Figure 6. Based 

on unsupervised feature selection analysis, it is clearly 

shown that features like cp (chest pain type), halacha (max 

heart rate), and old peak (st depression) have significant 

contributions in the first few components, meaning that 

these are essential features in capturing variance in the 

dataset. On the other hand, attributes such as resting 

(resting electrocardiographic results) are less influential 

across components. This exploration shows the capacity of 

dimensionality reduction with PCA implementation to 

build upon the dataset's most significant features to deliver 

the model's maximum performance while conserving 

important predictive knowledge content to be kept for 

coronary artery disease diagnosis. 



A Random Forest-Based Machine Learning Framework with PCA…                                                 Informatica 49 (2025) 15–32  25 

 

 

Figure 7: Pairplot of key features (age, chol, and thalachh) by target variable (output) for coronary artery disease 

prediction 

We have plotted the pairplot that can correlate the primary 

features (age, chol, and thalachh) across the target variable 

(output) between each other (refer to figure 7). If we look 

at the diagonal histograms, we can see that most features 

overlap between the two classes. Still, we can also identify 

subtle differences (such as higher thalachh when CAD = 

1). Scatterplots reveal weak correlations among features, 

reinforcing the relevance of those variables when paired in 

the context of ML models. The visualization can help with 

the separability and interaction of features that can be used 

to predict CAD. 

Table 2: Hyperparameter tuning details for ML models, 

including the hyperparameters considered, their 

respective search spaces, and the optimized values 

Model Hyperparame

ter 

Hyperparame

ter Space 

Optimiz

ed Value 

KNN Number of 

Neighbors (k) 

[3, 5, 7, 9, 11] 5 

SVM Kernel ['linear', 'rbf', 

'poly'] 

'rbf' 

 
C 

(Regularizatio

n) 

[0.1, 1, 10, 

100] 

10 

 
Gamma ['scale,' 'auto'] 'scale' 

Decisi

on 

Tree 

Maximum 

Depth 

[5, 10, 15, 

None] 

10 

 
Minimum 

Samples Split 

[2, 5, 10] 5 

 
Criterion ['gini,' 

'entropy'] 

'gini' 

Rando

m 

Forest 

Number of 

Estimators 

[50, 100, 150, 

200] 

150 

 
Maximum 

Depth 

[5, 10, 15, 

None] 

15 

 
Minimum 

Samples Split 

[2, 5, 10] 5 

 

Hyperparameter tuning of the four machine learning 

models is shown in Table 2. which summarizes the key 

hyperparameters with their search spaces and optimized 

values found by GridSearchCV. After carefully selecting 

the optimal set of parameters, the models' performance 

improved drastically, optimizing their predictions based 

on the nature of the dataset. For instance, choosing the best 

K for KNN or maximum tree depth (Decision Tree, 

Random Forest) decreased over-fitting and increased 

generalization. The systematic optimization process of 

evaluating the model improves the reliability and accuracy 

of the predictions, honing in on the balance between model 

complexity and performance, which forms a cornerstone 

for complex tasks such as disease prediction. 
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Table 3: Comparative effectiveness of machine learning 

models for predicting coronary artery disease following 

the use of hyperparameter tuning, PCA, and SMOTE 

optimizations 

Model Accuracy Precision Recall F1-

Score 

ROC-

AUC 

(%) 

KNN 88.0% 87.5% 86.0% 86.7% 90.2 

SVM 90.5% 89.8% 89.0% 89.4% 92.8 

Decision 
Tree 

86.5% 85.7% 85.0% 85.3% 89.1 

Random 
Forest 

95.0% 94.5% 94.0% 94.2% 96.5 

 

To predict coronary artery disease, the performance 

measures of four machine learning classifiers—KNN, 

SVM, Decision Tree, and Random Forest—were 

employed (Table 3). Random Forest was the winning 

model with 95.0% accuracy (after PCA dimensionality 

reduction, SMOTE for class balancing, and 

hyperparameter tuning). RF achieves 96.5% ROC-AUC. 

Combined feature engineering + optimizations (Random 

Forest and SVM) with these results is demonstrated to 

provide better accuracy and robustness of the models. 

The random forest model has a maximum recall of 94% 

and a superior ability to find true positives of CAD-

positive cases (as shown in Table 2). Overall, this is due to 

its ensemble characteristic and the ability to cope with 

complex interactions within features, with optimization of 

various hyperparameters and the application of SMOTE to 

mitigate the problem of minority classes, contributing to 

more accurate levels. On the other hand, the SVM model 

provides a lower recall of 89%, likely due to its sensitivity 

to feature scaling and the non-linear separability of the 

dataset. Furthermore, the SVM method does not have 

built-in class imbalance compensation mechanisms, which 

might have resulted in the misclassification of member 

samples in the minority class, leading to its lower recall. 

 

Figure 8: Comparative performance of ML models after 

applying PCA, SMOTE, and hyperparameter tuning for 

coronary artery disease prediction 

Figure 8 shows the comparative performance metrics of 

four machine learning models - KNN, SVM, Random 

Forest, and Decision Tree. This visual identification 

underlines the effectiveness of optimizations like PCA for 

dimensionality reduction, SMOTE for class balancing, and 

hyperparameter tuning on model outcomes. Random 

Forest provides the highest recall (94.0%), F1 (94.2%), 

accuracy (95.0%), and precision (94.5%) measures against 

all models. The results also show that by applying these 

adaptations, Random Forest can be a powerful model. 

SVM came second with an F1-score of 89.4%, recall of 

89.0%, accuracy of 90.5%, and precision of 89.8%. The 

KNN and Decision Tree were moderately well, with a 

KNN accuracy of 88.0% and a Decision Tree of 86.5%. 

Although both models still benefitted from the applied 

optimizations, their performance fell slightly short of that 

of Random Forest and SVM. This is reflected in the graph, 

where ensemble methods, such as Random Forest, exhibit 

better prediction performance when dealing with class 

imbalance and redundancy issues. Analytical 

benchmarking of the predictive in coronary artery disease, 

the effectiveness of numerous machine learning 

algorithms is highly helpful. 

Table 4: Shows an ablation study for the Random Forest 

model that shows the effect of PCA SMOTE and 

hyperparameter tuning on coronary artery disease 

prediction performance metrics. 

Configuration 

(Random 

Forest) 

Accura

cy 

Precisio

n 

Reca

ll 

F1-

Scor

e 

Baseline (No 

PCA, No 

SMOTE, 

Default 

Hyperparamete

rs) 

83.0% 82.5% 81.0

% 

81.7

% 

PCA Only 86.0% 85.5% 84.0

% 

84.7

% 

SMOTE Only 87.5% 87.0% 86.0

% 

86.5

% 

PCA + 

SMOTE 

90.0% 89.5% 88.5

% 

89.0

% 

PCA + 

SMOTE + 

Hyperparamete

r Tuning 

95.0% 94.5% 94.0

% 

94.2

% 

 

Ablation on the Random Forest model, with both PCA and 

SMOTE, was progressively applied, and hyperparameter 

tuning was used last in Table 4—progression from a 

baseline (no optimizations) to optimal performance with 

each combination of optimizations. Thus, PCA helps 

achieve accuracy by eliminating redundant features, while 

SMOTE removes the class imbalance, improving the 
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Recall. After applying Hyperparameter tuning to optimize 

the model, the model yielded the maximum Accuracy 

(95.0%), Precision (94.5%), Recall (94.0%), F1-Score 

(94.2%), and 96.5% ROC-AUC. This research emphasizes 

the importance of integrating feature engineering,  class 

balancing, and parameter optimization for reliable and 

robust predictions for disease detection. 

Table 3 shows a noteworthy increase in recall with 

SMOTE on its own as opposed to PCA on its own. This is 

because SMOTE's primary purpose is to balance class 

distribution so that the model can learn better from 

minority class instances, thus increasing its positive actual 

node in CAD cases. PCA is a dimensionality reduction 

method, while other techniques are also used to improve 

class balances. However, this is not the scope of PCA. In 

isolation, PCA improves model efficiency and potentially 

addresses overfitting but does not affect recall 

performance as clearly without addressing the extreme 

class imbalance of the data. 

Figure 9: Ablation study graph illustrating the impact of 

PCA, SMOTE, and hyperparameter tuning on the 

performance metrics of the Random Forest model for 

coronary artery disease prediction. 

The results of the ablation study are illustrated in Figure 9, 

with each of the metrics of the Random Forest model 

reported as optimizations (defined below) are 

incrementally introduced. The simple model without any 

implicit or explicit optimization achieves reasonable 

performance. PCA (principal component analysis) reduces 

redundancy between features, which improves accuracy, 

and SMOT addresses class imbalance, thereby improving 

Recall even further. Hyperparameter tuning of PCA and 

SMOTE yields the best performance (95% accuracy and 

the best values for all metrics) and significantly improves 

the results. This highlights the need for holistic 

optimization to obtain accurate predictions for CAD. 

The ablation study shows that SMOTE, PCA, and 

hyperparameter tuning can contribute cumulatively. The 

baseline Random Forest model (no SMOTE, PCA, or 

parameter tuning) gave us an accuracy of 88.5%, recall of 

86.0%, and F1-score of 86.7%. The application of SMOTE 

increased by around 3% in accuracy, 4.6% in recall, and a 

3.5% increase in the F1 score, signifying that class 

balancing pushed for a valid improvement in the model's 

mutation to recognize cases of CAD. This further 

improved accuracy and recall by around 1.7% while 

eliminating feature redundancy by adding PCA. Lastly, the 

application of hyper-parameter tuning brought the 

performance metrics to an optimal level, achieving a total 

gain of 6.5% in accuracy and 8% in recall concerning the 

baseline. To ensure robustness, each experimental 

configuration was repeated five times using different 

random seeds, acquiring standard deviations of ±0.6%, 

±0.8%, and ±0.7% for accuracy, recall, and F1-score, 

respectively, confirming the stability of model behavior 

across runs. 

 

Table 5: Comparative analysis of our optimized Random Forest model with machine learning models from recent 

studies, highlighting advancements through feature engineering and optimization techniques 

Study/Model Accuracy Key Highlights 

Our Study (Random Forest) 95.0% Combines PCA, SMOTE, and hyperparameter tuning for superior 

performance. 

Ahmad et al. (2022) - Gradient 

Boosting [26] 

93.08% GridSearchCV-optimized gradient boosting classifier for cardiac 

disease. 

Benjamins et al. (2021) - XGBoost 

[30] 

92.4% Combines clinical and computed tomography angiography data 

for improved CAD prediction. 

Huang et al. (2022) - RF (with 

CACS) [4] 

91.2% Uses Random Forest with coronary artery calcification scores and 

clinical factors. 

Wang et al. (2020) - Stacking 

Model [25] 

90.0% Two-level stacking machine learning model for non-invasive 

CHD detection. 

Ahmad et al. (2021) - Logistic 

Regression [26] 

86.4% Logistic regression for CAD diagnosis, demonstrating 

interpretability but lower performance. 
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Table 5 compares our optimized Random Forest model 

with other less successful ML models featured in recent 

studies. Our model using PCA, SMOTE, and 

Hyperparameter tuning outperforms all models tested, 

including gradient boosting and logistic regression, with 

95.0% accuracy. These results show how optimization 

strategies can improve the performance of coronary artery 

disease risk prediction. 

 

5  Discussion 
The primary cause of death worldwide is coronary artery 

disease (CAD); there have been significant advances in 

early & accurate prediction using machine learning (ML) 

Approaches over the past few decades. These existing 

techniques (e.g.,  Gradient Boosting [26], XGBoost [30]) 

have achieved remarkable performance. Yet, these 

methods have several shortcomings: they do not always 

adequately address imbalanced datasets, often lack 

generalizability in different patient cohorts, and do not 

provide interpretability of the prediction. Moreover, 

although deep learning has demonstrated a promising 

approach to CAD diagnosis, its high computational 

overhead and data requirements limit its broader 

applicability. This study highlights these gaps and 

emphasizes the importance of new methods that balance 

effectiveness, scalability, and interpretability. It addresses 

these challenges by using an optimized Random Forest 

model, which utilizes PCA for dimensionality reduction, 

SMOTE for addressing class imbalance, and 

GridSearvhCV for hyperparameter tuning. Such 

augmentations boost prediction accuracy but also ensure 

robustness under different feature distributions. The 

experiment results confirm the performance of the model, 

with an accuracy of 95.0%, better than other existing ML 

methods, including Gradient Boosting (93.08%) and 

XGBoost (92.4%). This boosts performance thanks to 

well-chosen features and optimizers. Since SOTA models 

are often black-box, the interpretability aspect is addressed 

using SHAP values,  giving actionable insights on 

features contributing to the outcome. The proposed 

methodology bridges gaps in the literature by showcasing 

that computationally lower-cost conventional ML models 

can attain SOTA results if adequately tuned. Our research 

provides a scalable and interpretable CAD prediction 

framework suitable for deployment in clinical 

applications. Our model outperforms previous state-of-

the-art approaches, as shown in Table 4. They reduce 

dimension, so features are redundant, and noise also gets 

eliminated, which helps overcome overfitting and 

retaining helpful information. Unlike our method, other 

models learn without focusing on feature optimization, 

which guarantees only the most significant features are 

leveraged for the prediction task as validated by SHAP. 

Using SMOTE applies resolution to class imbalance and 

enables balanced learning for minority classes, positively 

affecting recall and F1 scores. Moreover, tuning the 

hyperparameters of the Random Forest classifier using 

GridSearchCV makes the entire framework more robust, 

and compared to models like Gradient Boosting (accuracy 

holds at 93.08%) and XGBoost (accuracy holds at 92.4%), 

this framework outperforms them. 

Features like chest pain type, cholesterol level, and 

maximum heart rate contribute significantly to model 

predictions, as reflected in the SHAP interpretability 

analysis. This understanding confirms clinical relevance 

and enhances trust and transparency for real-world 

implementation. Yet, PCA ensured reasonable 

computational feasibility at the cost of possible marginal 

information loss, potentially discarding minor but 

clinically explorable risk factors. We plan to investigate 

alternative dimensionality reduction approaches and 

ensemble strategies (e.g., stacking) to increase model 

predictive power whilst maintaining interpretability. 

Furthermore, it validates the model’s generalizability 

through external validation using larger, multi-center 

datasets across a heterogeneous population. Section 5.1 

presents this study's limitations, which provide an 

understanding and means of guiding future studies and 

room for improved formulations of the proposed 

methodology. 

 

5.1 Limitations of the study 

While the proposed study is very effective, it has some 

drawbacks. Although feature engineering and optimization 

techniques significantly increased model performance, not 

using a straightforward ensemble approach like stacking or 

boosting may further cap our efforts to enhance predictive 

accuracy. Second, although the dataset used is extensive, 

it may not represent the diversity seen in real-world 

populations, which may limit the generalization of the 

study results. Third, despite the added interpretability 

afforded by SHAP values, being more interpretatively 

helpful as a tool, exploring even more advanced 

explainability frameworks better suited for clinical settings 

may provide greater model transparency. Future work can 

build on the proposed framework by addressing these 

documented limitations. 

 

6  Conclusion and future work  

This study presents an Effective Prediction Framework for 

the Random Forest Classifier of CAD, which addresses 

some of the problems that the most advanced machine 

learning models face, like class imbalance and feature 

redundancy. The proposed method combining PCA for 

dimensionality reduction, SMOTE for data balancing, and 

GridSearchCV for hyperparameter tuning attained an 

improved accuracy of 95.0%, which surpassed multiple 

traditional machine learning methods. With the support of 

request methods such as SHAP values, the interpretability 

model shows practicality that is beneficial to the clinical. 

The methodology shows robustness and scalability, but 

some limitations remain,  including the lack of explicit 

ensemble strategies and validation on more diverse 

datasets. In future work, you may experiment with 

advanced techniques for ensemble learning, such as 

boosting or stacking, to increase prediction accuracy. 

Applying the model to larger, multi-center datasets will 
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further strengthen its generalizability and relevance across 

populations. Explainable AI frameworks can also be 

tailored to clinical needs for greater transparency and real-

world trust in such deployments. Thus, this research 

provides a substantial framework for CAD prediction that 

offers a scalable and interpretable framework for further 

pivotal adoption into clinical decision-making and 

personalized patient-centric applications using optimized 

machine learning models. 
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