
Volume 29 Number 2 June 2005

Special Issue:
Ant Colonies and Multi-Agent Systems

Guest Editors:
Nadia Nedjah
Luiza de Macedo Mourelle

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.
Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/
Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič
Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagić (USA)
Anders Ardo (Sweden)
Vladimir Bajić (South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Janez Grad (Slovenia)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Karl H. Pribram (USA)
Luc De Raedt (Germany)
Dejan Raković (Serbia and Montenegro)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (USA)

 Informatica 29 (2005) 123–123 123

Introduction
Instead of designing complex and centralized
systems, researchers rather prefer to work with
many small and autonomous agents. The agents
mimic the ant’s behavior within an ant colony. Each
one acting on the simplest of rules, these
many agents can solve very complex problems
known as hard problems. Generally, such multi-
agent systems are used as search and optimization
tools.
 This special issue of the Informatica -
International Journal of Computing and Informatics
is focused on ant colonies and multi-agent systems.
It includes seven contributions that describe new
methods and experiences for multi-agent
implementations of aspects of artificial life, ant
colony and swarm intelligence.
 The first paper is entitled “Investigating
Strategic Inertia Using OrgSwarm” and was
proposed by Anthony Brabazon, Arlindo Silva,
Tiago Ferra de Sousa, Michael O'Neill, Robin
Matthews and Ernesto Costa. The study describes a
novel simulation model, called OrgSwarm, of the
process of strategic adaptation. In this paper,
strategic adaptation is conceptualized as a process
of adaptation or search, on a landscape of strategic
possibilities, by a population of profit-seeking
organizations.

The second paper is entitled “Towards
Improving Clustering Ants: An Adaptive Ant
Clustering Algorithm” and was proposed by André
L. Vizine, Leandro N. de Castro, Eduardo R.
Hruschka, Ricardo R. Gudwin. The paper
introduces and discusses both a progressive vision
scheme and pheromone heuristics for the standard
ant-clustering algorithm, together with a cooling
schedule that improves its convergence properties.
The proposed algorithm is evaluated in a number of
well-known benchmark data sets, as well as in a
real-world bioinformatics dataset.
 The third paper is entitled “Efficient Pre-
Processing for Large Window-Based Modular
Exponentiation Using Ant Colony” and was
proposed by Nadia Nedjah and Luiza de Macedo
Mourelle. The paper exploits the ant colony strategy
to finding an optimal addition sequence that allows
one to perform the pre-computations in window-
based methods with a minimal number of modular
multiplications and hence, improves the efficiency
of modular exponentiation.
 The forth paper is entitled “Max Min Ant
System and Capacitated p-Medians: Extensions and
Improved Solutions” and was proposed by Fabrício
Olivetti de França, Fernando J. Von Zuben,

Leandro Nunes de Castro. The work introduces a
modified MAX MIN Ant System (MMAS)
designed to solve the Capacitated p-Medians
Problem (CPMP). It presents the most relevant steps
towards the implementation of an MMAS to solve
the CPMP, including some improvements on the
original MMAS algorithm, such as the use of a
density model in the information heuristics and a
local search adapted from the un-capacitated p-
medians problem.

The fifth paper is entitled “Application of Ant-
based Template Matching for Web Documents
Categorization” and was proposed by Siok Lan Ong,
Weng Kin Lai, Tracy S. Y. Tai, Choo Hau Ooi and
Kok Meng Hoe. The paper examines the direct
implementation of a template based on a Gaussian
Probability Surface to supervise these homogeneous
multi-agents to form clusters within a specified
dropping zone.

The sixth paper is entitled “Efficient and
Scalable Communication in Autonomous
Networking using Bio-inspired Mechanisms – An
Overview” and was proposed by Falko Dressler. In
this paper, the author demonstrates the possibilities
which evolve by the application of cell biology for
computer networking. With the focus on
autonomous networking, the combination with
methodologies known from swarm intelligence is
evaluated. The author shows the capabilities of this
combination and derive destinations and goals for
self-organization in communication networks
showing a more efficient and scalable behavior.

The seventh paper is entitled “Model Checking
Multi-Agent Systems” and was proposed by
Mustapha Bourahla and Mohamed Benmohamed.
In this paper, the authors show how a well known
and effective verification technique, model
checking, can be generalized to deal with multi-
agent systems. The paper explores a particular type
of multi-agent system, in which each agent is
viewed as having the three mental attitudes of
belief, desire and intention.

Nadia Nedjah and Luiza de Macedo Mourelle

124 Informatica 29 (2005) 123–123 Introduction

Informatica 29 (2005) 125–141 125

Investigating Strategic Inertia Using OrgSwarm

Anthony Brabazon, Arlindo Silva, Tiago Ferra de Sousa, Michael O’Neill, Robin Matthews, Ernesto Costa
University College Dublin, Ireland.
anthony.brabazon@ucd.ie

Escola Superior de Tecnologia, Instituto Politecnico de Castelo Branco,Portugal.
arlindo@est.ipcb.pt

University of Limerick, Ireland.
michael.oneill@ul.ie

Kingston University, London.
r.matthews@kingston.ac.uk

Centro de Informatica e Sistemas da Universidade de Coimbra, Portugal.
ernesto@dei.uc.pt

Keywords: Particle swarm, Organizational adaptation, OrgSwarm

Received: July 26, 2004

This study describes a novel simulation model (OrgSwarm) of the process of strategic adaptation. Strate-
gic adaptation is conceptualized as a process of adaptation (search), on a landscape of strategic possibilities,
by a population of profit-seeking organizations. Unfortunately, the characteristics that make organizations
coherent and viable such as organizational structure and shared organizational culture, also create strate-
gic inertia, potentially limiting the ability of organizations to adapt. This study examines the impact of
strategic inertia on the adaptive potential of organizations. The simulation results suggest that a degree
of strategic inertia can assist rather than hamper adaptive efforts in static and slowly changing strategic
environments.

Povzetek: Predstavljen je OrgSwarm, nov model procesa strateškega prilagajanja.

1 Introduction

There are parallels between biological and social systems.
In both, individuals within a larger population are attempt-
ing to appropriate scarce resources, or to earn a living, in
a dynamic environment. Entities in these systems typically
alter their ‘strategies’ over time in an attempt to improve
their success. In an organizational setting, a strategy con-
sists of a choice of what activities the organization will per-
form, and choices as to how these activities will be per-
formed [36]. These choices define the strategic configu-
ration of the organization. Recent work by [28] and [38]
has recognized that strategic configurations consist of in-
terlinked individual elements (decisions), and have applied
general models of interconnected systems such as Kauff-
man’s NK model to examine the implications of this for
processes of organizational adaptation.

Following a long-established metaphor of adaptation as
search [46], strategic adaptation is considered in this study
as an attempt to uncover peaks on a high-dimensional
strategic landscape. Some strategic configurations produce
high profits, others produce poor results. The search for
good strategic configurations is difficult due to the vast
(combinatorial) number of configurations, uncertainty as to
the nature of topology of the strategic landscape faced by

an organization, and changes in the topology of this land-
scape over time. Despite these uncertainties, the search
process for good strategies is not blind. Decision-makers
receive feedback on the success of their current and his-
toric strategies, and can assess the payoffs received by the
strategies of their competitors [26]. Hence, certain areas of
the strategic landscape are illuminated.

Organizations do not exist in isolation, but interact with,
and receive feedback from, their environment. Their ef-
forts at strategic adaption are guided by social as well as
individual learning. Good ideas discovered by one organi-
zation disseminate over time. One model combining both
individual and social learning which has attracted signifi-
cant interest in recent years is that of Particle Swarm Op-
timization (PSO) [21], [25]. Particle swarm research has
been concentrated in two broad areas, the application and
study of PSO as an optimizing tool, and the application of
PSO as a model of social and cultural adaptation. This pa-
per adopts the second of these perspectives, and adapts the
canonical PSO to create a plausible model of the process of
strategic adaptation.

Although the particle swarm model has been applied to a
variety of problems in the fields of engineering [1], chem-
istry [34], medicine and psychology [25], as yet it has not
been applied to the domain of organizational science. This

126 Informatica 29 (2005) 125–141 Brabazon et al.

paper introduces the model to this domain, and utilizes it
to examine the impact of differing degrees of strategic in-
ertia on the adaptive capabilities of a population of organi-
zations.

1.1 Structure of paper
This contribution is organized as follows. Section 2 pro-
vides a short discussion of prior literature in the domain
of strategic adaptation in order to provide a number of
perspectives on strategic inertia. Section 3 incorporates
an introduction to the canonical Particle Swarm algorithm
(PSA),1 followed by a description of the simulation model
in Section 4. Section 5 outlines the results of the simula-
tions and finally, conclusions and future work are discussed
in Section 6.

2 Strategic Adaptation
Strategic adaptation and strategic inertia are closely linked.
If strategic adaptation is problematic, inertia is a possible
cause. A substantial literature has emerged on strategic
adaptation. This, along with its implications for strategic
inertia, is outlined below.

Two polar views exist concerning the ability of organiza-
tions to adapt their strategic configuration. Adaptationists
or advocates of strategic choice [35], [40], [31], broadly
consider that managers or dominant coalitions in organiza-
tions scan the environment for current and future opportu-
nities and threats, formulate strategic responses and adjust
organizational activities and structure appropriately [10].
Therefore, strategic direction and organizational form are
determined by managers, and market selection processes
act to maintain organizations which are good adaptors. Un-
der this perspective, an organization’s fate is largely in its
own hands, and hence strategic inertia is considered to rep-
resent a challenge rather than a roadblock to strategic adap-
tation efforts. The adaptationist argument presupposes that
organizations are capable of adapting at least as fast as
their environment changes [31], [30]. If firms are incapable
of responding to environmental changes in a similar time-
scale, adaptation (or learning) processes will not enhance
organizational survival [13]. The current practitioner inter-
est in ‘change management’ [16] exemplifies the belief that
even substantial strategic adaptation is possible.

In contrast, the population ecology school [12] pro-
poses an alternative view on organizational-environment
relations. This school of thought allows that organizations
have some ability to adapt to environmental change and
notes that ‘leaders of organizations do formulate strate-
gies and organizations do adapt to environmental contin-
gencies’ [12] (p. 930). However, it is argued that the abil-
ity of firms to accurately and consistently adapt in a world

1The term PSA is used in place of PSO (Particle Swarm Optimization)
in the remainder of this paper, as the object of the paper is not to develop
a tool for optimizing, but to apply the swarm metaphor as a model of
organizational adaptation.

of high uncertainty, where connections between means and
ends are unclear is doubtful [13], [9]. Although selection
processes select the most fit organizations in a given envi-
ronment for continued survival, population ecologists con-
tend that an organization’s fitness primarily arises because
of good initial strategic choices, or luck, rather than reflect-
ing post-founding adaptation [2]. Advocates of the popula-
tion ecology school suggest that the ability of organizations
to adapt is highly constrained because of their inherent iner-
tia. This inertia stems from two sources, imprinting forces,
and as a consequence of market selection forces.

2.1 Imprinting Forces

Imprinting forces [4] combine to define and solidify the
strategic configuration of a newly formed organization.
These forces include the dominant initial strategy pursued
by the organization, the skills / prior experience of the man-
agement team, and the distribution of decision-making in-
fluence in the organization at time of founding [4]. These
forces influence the initial choice of organizational strat-
egy. As consensus concerning the strategy emerges, it is
imprinted on the organization through resource allocation
decisions [42]. The imprinting leads to inertia by creating
sunk costs, internal political constraints, and a rigid orga-
nizational structure. Over time this inertia intensifies due
to the formation of an organizational history which creates
barriers to industry exit, and legitimacy issues if adapta-
tion is suggested [12]. The resulting inertia serves to cir-
cumscribe the organization’s ability to adapt its strategy
in the future. The initial imprinting determines the basin
of attraction in which the organization is located on the
strategic landscape. Imprinting also occurs as relationships
are built up with suppliers and customers [43]. The cre-
ation of a web of these relationships can serve to constrain
the range of strategic alternatives in the future, as strategic
moves which dramatically disrupt the web are less likely to
be considered.

2.2 Market-Selection Forces

The discussion of strategic inertia was extended by [13]
who posited that inertia is also created as a natural conse-
quence of the market-selection process, claiming that ‘se-
lection processes tend to favor organizations whose struc-
tures are difficult to change.’ (p. 149). The basis of this
claim is that organizations which can produce a good or ser-
vice reliably (consistently of a minimum quality standard)
are favored for trading purposes by other organizations,
and therefore by market selection processes. The routines
required to produce a product or service reliably, tend to
lead to structural inertia, as the construction of routines to
achieve this leads to an increase in the complexity of the
patterns of links between organizational subunits [13] &
[27]. Building on this point, it can be posited that more
efficient organizations are likely to exhibit inertia. As or-
ganizations seek better environment-structure congruence,

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 127

their systems become increasingly specialized and inter-
linked, making changes to their activities become costly
and difficult. Structural inertia is rooted in the size, com-
plexity and interdependence of the firm’s structures, sys-
tems, procedures and processes [45]. Theoretical support
for these assertions, that increasing organizational com-
plexity can make adaptation difficult, is found in [19] and
[38], as the heightened degree of interconnections between
activities within the firm will increase the ‘ruggedness’ of
the strategic landscape faced by an organization.

The arguments that organizations are subject to strate-
gic inertia also finds resonance in the literature concerning
organizational learning and organizational memory. The
preference of organizations to continue to pursue activi-
ties similar to those undertaken in the past has been widely
noted [14], [32], as has the cumulative nature of organiza-
tional learning [33].

In summary, strategic inertia can arise from a variety of
sources, and the general consensus in organizational litera-
ture is that its existence poses clear difficulties for strategic
adaptation by organizations.

3 Particle Swarm Algorithm

This section provides an introduction to the Particle Swarm
algorithm (PSA). A full description of this algorithm and
the cultural model which inspired it is provided in [25].
A Swarm can be defined as ‘... a population of interact-
ing elements that is able to optimize some global objective
through collaborative search of a space.’ [25](p. xxvii).
The nature of the interacting elements (particles) depends
on the problem domain, in this study they represent orga-
nizations. These particles move (fly) in an n-dimensional
search space, in an attempt to uncover ever-better solutions
to the problem of interest.

Each of the particles has two associated properties, a
current position and a velocity. Each particle also has a
memory of the best location in the search space that it has
found so far (pbest), and knows the location of the best lo-
cation found to date by all the particles in the population
(gbest). At each step of the algorithm, particles are dis-
placed from their current position by applying a velocity
vector to them. The size and direction of this velocity is
influenced by the velocity in the previous iteration of the
algorithm (simulates momentum), and the current location
of a particle relative to its pbest and gbest. Therefore, at
each step, the size and direction of each particle’s move is
a function of its own history (experience), and the social
influence of its peer group. A number of variants of the
PSA exist. The following paragraphs provide a description
of the basic continuous version described by [25]. The al-
gorithm is initially described narratively. This is followed
by a description of the particle position-update equations.

3.1 The Algorithm
i. Initialize each particle in the population by randomly

selecting values for its location and velocity vectors

ii. Calculate the fitness value of each particle. If the cur-
rent fitness value for a particle is greater than the best
fitness value found for the particle so far, then revise
pbest

iii. Determine the location of the particle with the highest
fitness and revise gbest if necessary

iv. For each particle, calculate its velocity according to
equation (1)

v. Update the location of each particle

vi. Repeat steps ii - v until stopping criteria are met

Each particle i has an associated current position in the
search space xi, a current velocity vi, and a personal best
position in the search space yi. During each iteration of
the algorithm, the location and velocity of each particle is
updated using equations (1) - (5).

To provide intuition on the workings of the algorithm,
see figure 1. Each particle i has an associated current posi-
tion in search space x(t) = (xi1(t), . . . , xin(t)) at time t, a
current velocity of v(t) = (vi1(t), . . . , vin(t)), and a pbest
position of yi(t) = (yi1(t), . . . , yin(t)). The position of
the particle at time t+1 is a determined by x(t)+v(t+1),
and v(t + 1) is obtained by a stochastic blending of v(t),
an acceleration towards gbest (vgbest) and an acceleration
towards pbest (vpbest).

Assuming a function f is to be maximized, that the
swarm consists of m particles, and that r1, r2 are drawn
from a uniform distribution in the range (0,1), the velocity
update for particle i is as follows:

vi(t+1)=Wvi(t)+c1r1(yi−xi(t))+c2r2(ŷ−xi(t)) (1)

where ŷ is the location of the global-best solution found by
all the particles.2 In every iteration of the algorithm, each
particle’s velocity is stochastically accelerated towards its
previous best position and towards a neighborhood (global)
best position. The weight-coefficients c1 and c2 control the
relative impact of pbest and gbest locations on the velocity
of a particle. The parameters r1 and r2 ensure that the algo-
rithm is stochastic. A practical effect of the random coeffi-
cients r1 and r2, is that neither the individual nor the social
learning terms are always dominant. Sometimes one or the
other will dominate [25]. Although the velocity update has
a stochastic component, the search process is not random.
It is guided by the memory of past ‘good’ solutions cor-
responding to a psychological tendency for individuals to
repeat strategies which have worked for them in the past

2A variant on the basic algorithm is to use a local rather than a global
version of gbest. In the local version, gbest is set independently for each
particle, based on the best point found thus far within a neighborhood of
that particle’s current location.

128 Informatica 29 (2005) 125–141 Brabazon et al.

V(t)

V(t+1)

x(t+1) Actual
global

optimum

X

Y

x(t) Vpbest

Vgbest

Figure 1: A representation of the particle position-update process.

[22], and by the global best solution found by all particles
thus far. W represents a momentum coefficient which con-
trols the impact of a particle’s prior-period velocity on its
current velocity. Each component of a velocity vector vi is
restricted to a range [−vmax, vmax] to ensure that individ-
ual particles do not leave the search space. The implemen-
tation of a vmax parameter can also be interpreted as sim-
ulating the incremental nature of most learning processes
[22]. The value of vmax is usually chosen to be k ∗ xmax,
where 0 < k < 1. Once the velocity update for particle i
is determined, its position is updated and pbest is updated
if necessary.

xi(t+1)=xi(t)+vi(t+1) (2)

yi(t+1)=yi(t) if, f(xi(t))≤f(yi(t)), (3)

yi(t+1)=xi(t) if, f(xi(t))>f(yi(t)) (4)

After all m particles have been updated, a check is made to
determine whether gbest needs to be updated.

ŷ∈(y0,y1,...,ym)|f(ŷ)= max (f(y0),f(y1),...,f(ym)) (5)

3.1.1 PSA vs the Genetic Algorithm

It is noted that the PSA bears similarity to other
biologically-inspired optimizing algorithms. Like the Ge-
netic Algorithm (GA), it is a population-based algorithm,
is typically initialized with a population (swarm) of ran-
dom solutions, and search proceeds by updating these so-
lution each generation (iteration). Unlike the GA, the move
(update) operators are not direct analogs of the genetic op-
erators of mutation and crossover,3 there is no explicit se-

3It can be argued that the velocity vector update does bear similarity
to a recombination operator, being impacted by the location of pbest and
gbest [21].

lection process, and potential solutions are referred to as
particles rather than as chromosomes.

The communication (information-sharing) mechanism
of the PSA also differs from that of the GA. In the GA, the
communication is between two solutions, in the PSA, the
communication is between the current solution, its pbest
and the gbest. Hence, candidate solutions can ‘see’ the
global best solution found by all particles thus far. The
movement of each particle through the search space is in-
fluenced by their own previous experience (history) and a
wish to move towards the global, best position found thus
far by other particles [39].

3.2 The PSA and Social Learning
Despite its simplicity, the PSA is capable of capturing a sur-
prising level of complexity, as individual particles are capa-
ble of both individual and social learning. In social settings,
individuals are not ‘...isolated information-processing enti-
ties ...’ [25] (p. xv), but also learn from the experiences
of their peers. Social behavior helps individuals to adapt to
their environment, as it ensures that they obtain access to
more information than that captured by their own senses.
Learning in social species is therefore distributed and par-
allel.

Communication (interactions) between agents (individu-
als) in a social system may be direct or indirect. An exam-
ple of the former could arise when two organizations trade
with one another. Examples of the latter include:

i. the observation of the success (or otherwise) of a strat-
egy being pursued by another organization, and

ii. stigmergy which arises when an organization modifies
the environment, which in turn causes an alteration of
the actions of another organization at a later time.

The first of these indirect learning mechanisms is included
in the canonical PSA, the second can be included through
an adaption of the basic model.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 129

The mechanisms of the basic Particle Swarm model bear
prima facie similarities to those of the domain of interest,
organizational adaptation. It embeds concepts of a popula-
tion of entities which are capable of individual and social
learning. However, the model requires modification be-
fore it can employed as a plausible model of organizational
adaptation. These modifications, along with a definition of
the strategic landscape used in this study are discussed in
the next section.

4 OrgSwarm Model

This section describes the simulation model (OrgSwarm)
employed in this study [7], [8]. The model can be classed
as a multi-agent system (MAS). MASs focus attention on
collective intelligence, and the emergence of behaviors
through the interactions between the agents. MAS usually
contain a world (environment), agents, relations between
the entities, a set of activities that the agents can perform,
and changes to the environment as a result of these activi-
ties [44]. The key components of the simulation model, the
landscape generator (environment), and the adaption of the
basic Particle Swarm algorithm to incorporate the activities
and interactions of the agents (organizations) are described
next.

4.1 Strategic Landscape

In this study, the strategic landscape is defined using the
NK model [18], [19]. Application of the NK model to de-
fine a strategic landscape is not atypical and has support
from existing literature in organizational science [28],[38],
[15], and related work on technological innovation [29],
[20], [41], [37]. The NK model considers the behavior of
systems which are comprised of a configuration (string) of
N individual elements. Each of these elements are in turn
interconnected to K other of the N elements (K<N). In a
general description of such systems, each of the N elements
can assume a finite number of states. If the number of states
for each element is constant (S), the space of all possible
configurations has N dimensions, and contains a total of∏N

i=1 Si possible configurations.
In Kauffman’s operationalization of this general frame-

work [19], the number of states for each element is re-
stricted to two (0 or 1). Therefore the configuration of N
elements can be represented as a binary string. The param-
eter K, determines the degree of fitness interconnectedness
of each of the N elements and can vary in value from 0
to N-1. In one limiting case where K=0, the contribution
of each of the N elements to the overall fitness value (or
worth) of the configuration are independent of each other.
As K increases, this mapping becomes more complex, un-
til at the upper limit when K=N-1, the fitness contribution
of any of the N elements depends both on its own state,
and the simultaneous states of all the other N-1 elements,
describing a fully-connected graph.

If we let si represent the state of an individual element
i, the contribution of this element (fi) to the overall fitness
(F) of the entire configuration is given by fi(si) when K=0.
When K>0, the contribution of an individual element to
overall fitness, depends both on its state, and the states of K
other elements to which it is linked (fi(si : si1, ..., sik)). A
random fitness function (U(0,1)) is adopted, and the over-
all fitness of each configuration is calculated as the aver-
age of the fitness values of each of its individual elements.
Therefore, if the fitness values of the individual elements
are f1, ..., fN , overall fitness (F) is:

F=
PN

i=1 fi
N (6)

Altering the value of K effects the ruggedness of the de-
scribed landscape, and consequently impacts on the diffi-
culty of search on this landscape [18], [19]. The strength
of the NK model in the context of this study is that by tun-
ing the value of K it can be used to generate strategic land-
scapes (graphs) of differing degrees of local-fitness correla-
tion (ruggedness). The strategy of an organization is char-
acterized as consisting of N attributes [28]. Each of these
attributes represents a strategic decision or policy choice,
that an organization faces. Hence, a specific strategic con-
figuration s, is represented as a vector s1, ..., sN where
each attribute can assume a value of 0 or 1 [38]. The vec-
tor of attributes represents an entire organizational form,
hence it embeds a choice of markets, products, method of
competing in a chosen market, and method of internally
structuring the organization [38]. Good consistent sets of
strategic decisions (configurations), correspond to peaks on
the strategic landscape.

The definition of an organization as a vector of strate-
gic attributes finds resonance in the work of Porter [35],
[36], where organizations are conceptualized as a series of
activities forming a value-chain.4 The choice of what ac-
tivities to perform, and subsequent decisions as to how to
perform these activities, defines the strategy of the organi-
zation. The individual attributes of an organization’s strat-
egy interact. For example, the value of an efficient manu-
facturing process is enhanced when combined with a high-
quality sales force. Differing values for K correspond to
varying degrees of payoff-interaction among elements of
the organization’s strategy [38]. As K increases, the diffi-
culty of the task facing strategic decision makers is mag-
nified. Local-search attempts to improve an organization’s
position on the strategic landscape become ensnared in a
web of conflicting constraints.

It is acknowledged that there are limitations to using the
NK model as a strategic landscape generator. The model
produces a finite graph and presupposes the existence of a
strategy space, albeit one which may be poorly understood
by strategists. This implies that it is inappropriate to apply
the NK model to examine very long run adaptive processes,
where organizational fitness is not clearly bounded, and

4This activity-based conceptualization has spread beyond studies of
strategy to encompass new methods of costing products/services [17].

130 Informatica 29 (2005) 125–141 Brabazon et al.

where the dimensionality of the strategy space itself could
change. It is also noted that the NK model assumes a con-
stant value of K for all elements. In reality, the value of K
is likely to differ for varying elements of a strategy vector.
In the work of [37], a distinction is drawn between generic
activities which are likely to have an optimal configuration
for many firms, for example, the possession of an account-
ing system. Generic activities (or ‘table-stakes’), whilst im-
portant for the successful operation of the firm, are usually
not strongly interconnected with the non-generic activities
of the firm [37]. In contrast, the firm-specific element of
strategy are typically highly interconnected, as they embed
choices involving trade-offs between alternative strategic
configurations [36], [37]. Hence, the NK landscape can be
considered to represent these non-generic, interconnected,
elements of the strategy vector, rendering the assumption
of a constant value of K more plausible.

4.2 The Algorithm
Five characteristics of the problem domain which impact
on the design of a simulation model are:

i. the environment is dynamic,

ii. organizations are prone to strategic inertia,

iii. organizations do not knowingly select poorer strate-
gies than the one they already have (election opera-
tor),

iv. organizations make errorful ex-ante assessments of fit-
ness, and

v. organizations co-evolve.

Each of these factors is embedded in our simulation model.
In this study we report results which consider the first three
of these factors. Future work will extend this to incorporate
the latter two. We note that this model bears passing resem-
blance to the eleMentals model of [24], which combined a
swarm algorithm and an NK landscape, to investigate the
development of culture and intelligence in a population of
hypothetical beings called eleMentals. However, the strate-
gic model developed in this study is differentiated from the
eleMental model, not just on grounds of application do-
main, but because of the inclusion of an inertia operator,
and also by the investigation of both static and dynamic
environments.

4.2.1 Dynamic environment

Organizations do not compete in a static environment.
Rather they can individually and collectively alter their en-
vironment. The environment may also be altered as a result
of exogenous events. The second of these factors is im-
plemented in this study by allowing the landscape itself to
be respecified. During the course of a simulation run, the
strategic landscape can be stochastically subject to minor

or major respecification, mimicking a regime change, such
as the emergence of a new technology, or a change in cus-
tomer preferences. These respecifications simulate a dy-
namic environment, and a change in the environment may
at least partially negate the value of past learning (adap-
tation) by organizations.5 Minor respecifications are sim-
ulated by altering the fitness values associated with one
of the N dimensions in the NK model, whereas in major
changes, the fitness of the entire NK landscape is redefined.
The probability that a minor or major respecification occurs
is controlled by the modeler.

4.2.2 Inertia

Organizations do not have complete freedom to alter their
current strategy. Their adaptive processes are subject to
conservatism arising from inertia. Inertia springs from the
organization’s culture, history, and the mental models of its
management [4]. In the simulation strategic inertia is mim-
icked by implementing a ‘strategic anchor’. The degree of
inertia can be varied in the simulations from zero to high. In
the latter case, the organization is highly constrained from
altering its strategic stance. By allowing the weight of this
anchor to vary, adaptation processes corresponding to dif-
ferent industries, each with different levels of inertia, can
be simulated. Inertia could be incorporated into the PSA
in a variety of ways. We have chosen to incorporate it into
the velocity update equation, so that the velocity and direc-
tion of the particle at each iteration is also a function of the
location of its ‘strategic anchor’. Therefore for the simula-
tions, equation 1 is altered by adding an additional inertia
term

vi(t+1)=vi(t)+R1(yi−xi(t))+R2(ŷ−xi(t)+R3(ai−xi(t)) (7)

where ai represents the value of the anchor on dimension i
(a full description of the other terms such as R1 is provided
in the pseudo-code below). This anchor can be fixed at the
initial position of the particle at the start of the algorithm,
or it can be allowed to ‘drag’, thereby being responsive to
the recent adaptive history of the particle. Both the weight
attached to the anchor parameter (relative to those attached
to pbest and gbest), and in the case of a dragging anchor,
the number of periods over which the anchor can drag, can
be altered by the modeler.

It is noted that the concept of inertia developed in this
paper is not limited to organizations, but is plausibly a gen-
eral feature of social systems. Hence, the extension of the
social swarm model to incorporate inertia may prove useful
beyond this study.

4.2.3 Election operator

Real-world organizations do not usually intentionally move
to poorer strategies. Hence, an election operator is im-

5As noted by [11] (p. xxvii), ‘the very processes and values that con-
stitute an organization’s capabilities in one context, define its disabilities
in another.’.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 131

plemented, whereby position updates which would worsen
an organization’s strategic fitness are discarded. In these
cases, an organization remains at its current location. One
economic interpretation of the election operator, is that
strategists carry out a mental simulation or thought exper-
iment. If the expected fitness of the proposed strategy ap-
pears unattractive, the ‘bad idea’ is discarded [6], [25]. The
simulation therefore incorporates a ‘rachet’ operator op-
tion, which if turned on, ensures that an organization only
updates (alters) its strategy if the new strategy being con-
sidered is better than its current strategy. By permitting
strategists to conduct thought experiment during each iter-
ation of the algorithm, strategists are given a look-ahead
capability. They can direct their adaptive efforts to the area
of the strategic landscape which offer potential.

4.2.4 Outline of algorithm

A number of further modifications to the basic PSA are
required. As the strategic landscape is defined using a bi-
nary representation, the canonical PSA described above is
adapted for the binary case using the BinPSO version of the
algorithm [23]. The binary version of the PSA is inspired
by the idea that an agent’s probability of making a binary
decision (yes/no, true/false) is a function of both personal
and social factors Eq. 8.

P (xi(t+1)=1)=f(xi(t),vi(t),pbest,gbest,anchor) (8)

The vector vi is now interpreted as organization i’s predis-
position to set each of the n binary strategic choices that
they face to one. The higher the value of vj

i for an indi-
vidual decision j, the more likely that organization i will
choose to set decision j = 1, with lower values of vj

i fa-
voring the choice of decision j = 0.

In order to model the tendency of organizations to re-
peat historically good strategies, values for each dimension
of xi, which match those of pbest, should become more
probable in the future, and the Prob(xj

i = 1) should be
adjusted towards pbestji on each dimension j. Adding the
difference between pbestji and xj

i for organization i to vj
i

will move the probability thresholds towards 1.0, if the dis-
tance is positive (pbestji = 1 and xj

i = 0). If the differ-
ence between pbestji and xj

i for organization i is negative
(pbestii

j = 0), and xj
i = 1, adding the difference to vj

i

will move it towards 0.0. The difference in each case is
weighted by a random number drawn from U(0,1).6

In order to ensure that the vector vi(t + 1) is mapped
into (0,1), a sigmoid transformation is performed on each
element j of vi(t + 1) (Eq. 9), and each element of
Sig(vi(t)) is mapped to either 0 or 1 by comparing it with
a vector of random numbers probi(t + 1) drawn from
U(0, 1) (Eq. 10) .

6Similarly, each organization has a tendency to match the values for
each dimension of xi to those of gbest, and its anchor. Therefore, the
resulting value of vj

i (t + 1), is influenced by vj
i (t), and the position of

gbest, pbest, and anchor.

Sig(v
j
i
(t+1))= 1

1+exp(−v
j
i
(t+1))

(9)

prob
j
i
(t+1)<Sig(v

j
i
(t+1)) then x

j
i
(t+1)=1; else x

j
i
(t+1)=0 (10)

The pseudo-code for the algorithm is as follows:

For each dimension n
v[n]=v[n]+R1*(g[n]-x[n])+R2*(p[n]-x[n])+R3*(a[n]-x[n])
If(v[n]>Max) v[n]=Vmax
If(v[n]<-Vmax) v[n]=-Vmax
If(Pr<S(v[n]))t[n]=1
Else t[n]=0

UpdateAnchor(a) //if iteratively update anchor
//option is selected

R1, R2 and R3 are random weights drawn from a uniform
distribution ranging from 0 to R1max, R2max and R3max

respectively, and they weight the importance attached to
the gbest, pbest and anchor in each iteration of the algo-
rithm. R1max, R2max and R3max are constrained to sum
up to 4.0. x is the particle’s actual position, g is the global
best position, p each particle’s personal best position and a
is the position of the particle’s anchor. Vmax is set to 4.0.
Pr is a probability value drawn from a uniform distribu-
tion ranging from 0 to 1, and S is the sigmoid function:
S(x) = 1

1+exp(−x) , which squashes v into a 0 to 1 range.
t is a temporary record which is used in order to imple-
ment conditional moving. If the new strategy is accepted,
t is copied into x, otherwise t is discarded and x remains
unchanged.

5 Results
This section provides the results from our simulation study.
As the adaptive process is stochastic, and as the initial-
ization of the position and velocity for each organization
is random, each simulation run describes a single sample-
path through time. There are many possible sample-paths,
so the results of the simulations are averaged over multiple
(30) runs in an attempt to uncover prevalent characteristics
of the sample paths which the system can give rise to. All
simulations were run for 5,000 iterations, and all reported
fitnesses are the average population fitnesses, and average
environment best fitnesses, across 30 separate simulation
runs. On each of the simulation runs, the NK landscape is
specified anew, and the positions and velocities of particles
are randomly initialized at the start of each run. A popu-
lation of 20 particles is employed, with a neighborhood of
size 18. The choice of a high value for the neighborhood,
relative to the size of the population, arises from the obser-
vation that real-world organizations know the profitability
of their competitors.

Tables (1, 2 and 3) provide the results for each of four-
teen distinct PSA variants, at the end of 5,000 iterations,
across a number of static and dynamic NK landscape sce-
narios. In each scenario, the same series of simulations
are undertaken. Initially, a basic PSA is employed, with-
out an anchor or a rachet (conditional move) operator. This

132 Informatica 29 (2005) 125–141 Brabazon et al.

simulates a population of organizations searching a strate-
gic landscape, where the population has no strategic iner-
tia, and where organizations do not utilize a rachet operator
in deciding whether to alter their position on the strategic
landscape.

The basic PSA is then supplemented by a series of strate-
gic anchor formulations, ranging from an anchor which
does not change position during the simulation (initial an-
chor) to one which can adapt after a time-lag (moving an-
chor). Two lag periods are examined, a 20 and a 50 iter-
ation lag. Differing weights can be attached to the iner-
tia term in the velocity equation, ranging from 0 (inertia
is turned off) to a maximum of 4. To determine whether
the weight factor has a critical impact on the results, re-
sults are reported for weight values of both 1 and 3. Next,
to isolate the effect of the rachet, the conditional move op-
erator is implemented, and inertia is turned off. Finally,
to ascertain the dual effect of both rachet and inertia when
they are combined, the inertia simulations outlined above
are repeated with the rachet operator turned on.

Real world strategy vectors consist of a large array of
strategic decisions. A value of N=96 was chosen in defin-
ing the landscapes in this simulation. It is noted that there
is no unique value of N that could have been selected, but
the selection of very large values are not feasible due to
computational limitations. However, a binary string of 96
bits provides 296, or approximately 1028, distinct choices
of strategy. It is also noted that we would expect the di-
mensionality of the strategy vector to exceed the number
of organizations in the population, hence the size of the
population is kept below 96, and a value of 20 is chosen.
A series of landscapes of differing K values (0,4 and 10),
representing differing degrees of fitness inter-connectivity,
were used in the simulations.

5.1 Static Landscape
Table 1 and figures 2 and 3, provide the results for a static
NK landscape.7 Examining these results suggests that the
basic PSA, without inertia or rachet operators, performs
poorly, even on a static landscape. The average of the aver-
age batch populational fitnesses obtained after 5,000 itera-
tions is not better than random search (the expected value
of a random point on the landscape is 0.50), suggesting
that unfettered adaptive efforts, based on communication
between organizations (gbest), and a memory of good past
strategies (pbest) is not sufficient to achieve high levels of
populational fitness. When a series of anchor mechanisms
simulating strategic inertia are added to the basic PSA, the
results are not qualitatively altered from those of the basic
PSA. This suggests that communication and inertia alone,
are not sufficient for the attainment of high levels of popu-
lational strategic fitness.

7These simulations were also undertaken with a neighborhood size of
four, to determine whether the results were sensitive to neighborhood size.
No significant differences in the results between the two neighborhood
sizes was noted. As a result, the remaining simulations were run with a
neighborhood of size 18.

When a rachet operator is added to the basic PSA, a
significant improvement in both average populational, and
average environment best fitness is obtained across land-
scapes of all K values, suggesting that the simple decision
heuristic of only abandon a current strategy for a better
one can lead to notable increases in populational fitness.
Finally, the results of a series of combination anchor and
rachet mechanisms are reported. Virtually all of these com-
binations lead to significantly (at the 5% level) enhanced
levels of populational fitness (against the rachet-only PSA),
suggesting that inertia can be beneficial, when combined
with a rachet mechanism. Examining the combined rachet
and anchor results in more detail, the best results are ob-
tained when the anchor is not fixed at the initial location
of each particle on the landscape, but when it is allowed to
‘drag’ or adapt, over time. It is also noted that the results
are not qualitatively sensitive to the weight value (1 or 3).

5.2 Dynamic Landscape
The real world is rarely static, and changes in the environ-
ment can trigger adaptive behavior by agents in a system
[3]. In this simulation, the landscape can change at a va-
riety of time scales, and the size of the relocation ‘jump’
of the optimum position on the landscape can vary. There-
fore, the environment can be changed with varying tem-
poral, and spatial severity [3]. Two specific scenarios are
examined. Table 2 and figures 4 and 5, provides the results
for the case where a single dimension of the NK landscape
is respecified in each iteration of the algorithm with a prob-
ability of P=0.00025. Table 3 and figures 6 and 7, provides
the results for the case where the entire NK landscape is re-
specified with the same probability. When the landscape is
wholly or partially respecified, the benefits of past strategic
learning by organizations is eroded.

Qualitatively, the results in both scenarios are similar to
those obtained on the static landscape. The basic PSA, even
if supplemented by an anchor mechanism, does not per-
form any better than random search. Supplementing the
basic PSA with the rachet mechanism leads to a signif-
icant improvement in populational fitness, with a further
improvement in fitness occurring when the rachet is com-
bined with an anchor. In the latter case, an adaptive or drag-
ging anchor gives better results than a fixed anchor, but the
results between differing forms of dragging anchor do not
show a clear dominance for any particular form. As for the
static landscape case, the results for the combined rachet /
anchor, are relatively insensitive to the weight value (1 or
3).

6 Conclusions
The objective of this study has been to examine the im-
pact of strategic inertia on the dynamic adaptation of a
population of organizations. A novel synthesis of a strate-
gic landscape defined using the NK model, and a Particle
Swarm metaphor to model the adaption of organizations

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 133

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 2: Plot of the mean average fitness on the static landscape where k=0.

on this landscape, is used to construct a simulation model.
Adoption of the swarm metaphor allows the incorporation
of both social and individual learning mechanisms, and
the basic algorithm can be easily adapted to include other
search heuristics such as election and inertia.

The results suggest that a degree of strategic inertia, in
the presence of an election operator, can assist rather than
hamper the adaptive efforts of populations of organiza-
tions in static and slowly changing strategic environments.
The results also provide an interesting perspective on the
claim by [13] that inertia may be a consequence of market-
selection processes. The results indicate that there may be
good reasons, from a populational perspective, for market
selection processes to encourage populations of organiza-
tions which exhibit a degree of inertia. Despite the claim
for the importance of social learning in populations, the re-

sults suggest that social learning alone is of limited benefit,
unless supported by an election mechanism.

In the construction of any simulation model, aspects of
the real-world system of interest must be omitted. In this
study, we omit the cost of making a strategic adjustment,8

and we omit an explicit birth-death process for the popula-
tion of organizations.9 We note that the effect of the gbest,
pbest and inertia anchors, is to pin each organization on
the landscape. To the extent that the entire collection of
organizations have converged to a relatively small region
of the landscape, they may find it impossible to migrate

8Although we note that incorporating such costs would likely enhance
the value of inertia.

9It could be argued that although there is no explicit selection pro-
cess, the effect of including a gbest term in the model is to incorporate an
implicit form of selection, in that organizations with poor strategies are
drawn towards the location of gbest, mimicking a selection process.

134 Informatica 29 (2005) 125–141 Brabazon et al.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=4

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=10

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 3: Plot of the mean average fitness on the static landscape where k=4 (left), and where k=10 (right).

to a new high-fitness region of the landscape if that region
moves far away from their current location. In real-world
environments, this is compensated for by the birth of new
organizations.

This study describes the OrgSwarm simulator, and re-
ports the results of initial simulations using this model. Fu-
ture work will extend the range of strategic scenarios, and
parameter settings considered. In particular we intend to
examine the process of strategic adaptation when strate-
gists make errorful assessments of the fitness of proposed
strategies. We also intend to incorporate a co-evolutionary
aspect into the model (mimicking direct competition be-
tween organizations), wherein the fitness of a strategy is
partially determined by the number of organizations which
are pursing similar strategies.

References

[1] Abido, M. (2002). Optimal power flow using par-
ticle swarm optimization, Electrical power & En-
ergy Systems, 24:563-571.

[2] Barnett, W. and Hansen, M. (1996). The Red
Queen in Organizational Evolution, Strategic
Management Journal, 17:139-157.

[3] Blackwell, T. (2003). Swarms in Dynamic Envi-
ronments, in Proceedings of GECCO 2003, Lec-
ture Notes in Computer Science (2723), Springer-
Verlag, Berlin, pp. 1-12.

[4] Boeker, W. (1989). Strategic Change: The Effects
of Founding and History, Academy of Manage-
ment Journal, 32(3):489-515.

[5] Bonabeau, E., Dorigo, M. and Theraulaz, G.
(1999). Swarm Intelligence: From natural to ar-
tificial systems, Oxford: Oxford University Press.

[6] Birchenhall, C. (1995). Modular Technical
Change and Genetic Algorithms, Computational
Economics, 8:233-253.

[7] Brabazon, A., Silva, A., Ferra de Sousa, T.,
O’Neill, M. and Matthews, R. (2004). A Parti-
cle Swarm Model of Organizational Adaptation,
in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2004), Lecture
Notes in Computer Science (3102), Deb et. al.
Eds., Seattle, USA, June 26-30, 2004, 1:12-23,
Berlin: Springer-Verlag.

[8] Brabazon, A., Silva, A., Ferra de Sousa, T.,
O’Neill, M. and Matthews, R. (2004). Investi-
gating Organizational Strategic Inertia Using a
Particle Swarm Model, in Proceedings of the
2004 IEEE Congress on Evolutionary Computa-
tion, 1:652-659, IEEE Press: New Jersey.

[9] Carroll, G. and Hannan, T. (1995). Organizations
in Industry: strategy, structure and selection, New
York: Oxford University Press.

[10] Child, J. (1972). Organizational Structure, Envi-
ronment and Performance: The Role of Strategic
Choice, Sociology, 6:2-22.

[11] Christensen, C. (1997). The Innovator’s Dilemma,
(HarperBusiness Essentials, 2003 edition), New
York: HarperBusiness Essentials.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 135

[12] Hannan, M. and Freeman, J. (1977). The Popula-
tional Ecology of Organizations, American Jour-
nal of Sociology, 82(5): 929-964.

[13] Hannan, M. and Freeman, J. (1984). Structural In-
ertia and Organizational Change, American Soci-
ological Review, 49:149-164.

[14] Helfat, C. (1994). Evolutionary Trajectories in
Petroleum Firm R&D, Management Science,
40(12):1720-1747.

[15] Gavetti, G. and Levinthal, D. (2000). Look-
ing Forward and Looking Backward: Cognitive
and Experiential Search, Administrative Science
Quarterly, 45:113- 137.

[16] Hammer, M. and Champy, J. (2001). Reengineer-
ing the corporation (revised edition): A manifesto
for business revolution, HarperBusiness: New
York.

[17] Kaplan, R. and Cooper, R. (1998). Cost and effect:
Using integrated cost systems to drive profitabil-
ity and performance, Boston, Massachusetts: Har-
vard Business School Press.

[18] Kauffman, S. and Levin, S. (1987). Towards a
General Theory of Adaptive Walks on Rugged
Landscapes, Journal of Theoretical Biology,
128:11-45.

[19] Kauffman, S. (1993). The Origins of Order, Ox-
ford,England: Oxford University Press.

[20] Kauffman, S., Lobo, J. and MacReady, W. (1998).
Optimal Search on a Technology Landscape,
Santa Fe Institute Working Paper 98-10-091.

[21] Kennedy, J. and Eberhart, R. (1995). Particle
swarm optimization, Proceedings of the IEEE In-
ternational Conference on Neural Networks, De-
cember 1995, pp. 1942-1948.

[22] Kennedy, J. (1997). The particle swarm: Social
adaptation of knowledge, in Proceedings of the In-
ternational Conference on Evolutionary Compu-
tation, pp. 303-308, Piscataway, New Jersey:IEEE
Press.

[23] Kennedy, J. and Eberhart, R. (1997). A discrete bi-
nary version of the particle swarm algorithm, Pro-
ceedings of the Conference on Systems, Man and
Cybernetics, pp. 4104-4109, Piscataway, New Jer-
sey: IEEE Press.

[24] Kennedy, J. (1999). Minds and Cultures: Particle
Swam Implications for Beings in Sociocognitive
Space, Adaptive Behavior, 7(3/4):269-288.

[25] Kennedy, J., Eberhart, R. and Shi, Y. (2001).
Swarm Intelligence, San Mateo, California: Mor-
gan Kauffman.

[26] Kitts, B., Edvinsson, L. and Beding, T. (2001).
Intellectual capital: from intangible assets to fit-
ness landscapes, Expert Systems with Applica-
tions, 20:35-50.

[27] Levinthal, D. (1991). Random Walks and Organ-
isational Mortality, Administrative Science Quar-
terly, 36:397-420.

[28] Levinthal, D. (1997). Adaptation on Rugged
Landscapes, Management Science, 43(7):934-
950.

[29] Lobo, J. and MacReady, W. (1999). Landscapes:
A Natural Extension of Search Theory, Santa Fe
Institute Working Paper 99-05-037.

[30] Makadok, R. and Walker, G. (1996). Search and
Selection in the Money Market Fund Industry,
Strategic Management Journal, 17:39-54.

[31] March, J. (1981). Footnotes to Organizational
Change, Administrative Science Quarterly,
26:563-577.

[32] March, J. (1991). Exploration and Exploitation
in Organisational Learning, Organization Science,
2(1):71-87 .

[33] Nelson, R. and Winter, S. (1982). An Evolutionary
Theory of Economic Change, Cambridge, Mas-
sachusetts, Harvard University Press.

[34] Ourique, C., Biscaia, E. and Pinto, J. (2002). The
use of particale swarm optimization for dynami-
cal analysis in chemical processes, Computers and
Chemical Engineering, 26:1783-1793.

[35] Porter, M. (1985). Competitive Advantage: Cre-
ating and Sustaining Superior Performance, New
York, The Free Press.

[36] Porter, M. (1996). What is Strategy?, Harvard
Business Review, Nov-Dec, 61-78.

[37] Porter, M. and Siggelkow, N. (2001). Contextu-
ality within Activity Systems,Harvard Business
School Working Paper Series, No. 01-053, 2001.

[38] Rivkin, J. (2000). Imitation of Complex Strate-
gies, Management Science, 46(6):824-844.

[39] Silva, A., Neves, A. and Costa, E. (2002). An em-
pirical comparision of particle swarm and preda-
tor prey optimisation, in Lecture Notes in Artificial
Intelligence (2464) - Proceedings of AICS 2002,
edited by M. O’Neill, R.F.E. Sutcliffe, C. Ryan,
M. Eaton, N.J.L. Griffith Springer-Verlag, Berlin,
pp. 103-110.

[40] Simon, H. (1993). Strategy and Organiza-
tional Evolution, Strategic Management Journal,
14:131-142.

136 Informatica 29 (2005) 125–141 Brabazon et al.

[41] Strumsky, D. and Lobo, J. (2002). If it isn’t bro-
ken, don’t fix it: Extremal search on a technology
landscape, Santa Fe Institute Working Paper 03-
02-003.

[42] Stuart, T. and Podolny, J. (1996). Local Search
and the Evolution of Technological Capabilities,
Strategic Management Journal, 17:21-38.

[43] Sull, D. (1999). Why Good Companies Go Bad,
Harvard Business Review, 77(4):42-52.

[44] Tanev, I. and Shimohara, K. (2003). On Role of
Implicit Interaction and Explicit Communications
in Emergence of Social Behaviour in Continuous
Predators-Prey Pursuit Problem, in Proceedings
of GECCO 2003, Lecture Notes in Computer Sci-
ence (2723), Springer-Verlag, Berlin, pp. 74-85.

[45] Tushman, M. and O’Reilly, C. (1996). Ambidex-
trous Organizations: Managing Evolutionary and
Revolutionary Change, California Management
Review, 38(4):8-30.

[46] Wright, S. (1932). The roles of mutation, inbreed-
ing, crossbreeding and selection in evolution, Pro-
ceedings of the Sixth International Congress on
Genetics, 1:356-366.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 137

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4641 (0.5457) 0.5002 (0.6000) 0.4991 (0.6143)
Initial Anchor, w=1 0.4699 (0.5484) 0.4921 (0.5967) 0.4956 (0.6102)
Initial Anchor, w=3 0.4943 (0.5591) 0.4994 (0.5979) 0.4991 (0.6103)
Mov. Anchor (50,1) 0.4688 (0.5500) 0.4960 (0.6003) 0.4983 (0.6145)
Mov. Anchor (50,3) 0.4750 (0.5631) 0.4962 (0.6122) 0.5003 (0.6215)
Mov. Anchor (20,1) 0.4644 (0.5475) 0.4986 (0.6018) 0.5001 (0.6120)
Mov. Anchor (20,3) 0.4677 (0.5492) 0.4994 (0.6156) 0.4994 (0.6229)

Rachet PSA 0.5756 (0.6021) 0.6896 (0.7143) 0.6789 (0.7035)
R-Initial Anchor, w=1 0.6067 (0.6416) 0.6991 (0.7261) 0.6884 (0.7167)
R-Initial Anchor, w=3 0.5993 (0.6361) 0.6910 (0.7213) 0.6844 (0.7099)
R-Mov. Anchor (50,1) 0.6659 (0.6659) 0.7213 (0.7456) 0.6990 (0.7256)
R-Mov. Anchor (50,3) 0.6586 (0.6601) 0.7211 (0.7469) 0.6992 (0.7270)
R-Mov. Anchor (20,1) 0.6692 (0.6695) 0.7211 (0.7441) 0.6976 (0.7243)
R-Mov. Anchor (20,3) 0.6612 (0.6627) 0.7228 (0.7462) 0.6984 (0.7251)

Table 1: Average (environment best) fitnesses after 5,000 iterations, static landscape.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4667 (0.5245) 0.4987 (0.5915) 0.4955 (0.6065)
Initial Anchor, w=1 0.4658 (0.5293) 0.4908 (0.5840) 0.4957 (0.6038)
Initial Anchor, w=3 0.4922 (0.5513) 0.4992 (0.5953) 0.5001 (0.60852)
Mov. Anchor (50,1) 0.4614 (0.5200) 0.4975 (0.5927) 0.5008 (0.6044)
Mov. Anchor (50,3) 0.4691 (0.5400) 0.4975 (0.6040) 0.4987 (0.6174)
Mov. Anchor (20,1) 0.4686 (0.5315) 0.5010 (0.6002) 0.4958 (0.6099)
Mov. Anchor (20,3) 0.4661(0.5434) 0.4964(0.6084) 0.4988 (0.6137)

Rachet PSA 0.5783 (0.6056) 0.6859 (0.7096) 0.6808 (0.7066)
R-Initial Anchor, w=1 0.6207 (0.6553) 0.6994 (0.7330) 0.6895 (0.7142)
R-Initial Anchor, w=3 0.5927 (0.6239) 0.6900 (0.7182) 0.6850 (0.7140)
R-Mov. Anchor (50,1) 0.6676 (0.6688) 0.7187 (0.7438) 0.6987 (0.7241)
R-Mov. Anchor (50,3) 0.6696 (0.6696) 0.7203 (0.7462) 0.6989 (0.7264)
R-Mov. Anchor (20,1) 0.6689 (0.6694) 0.7193 (0.7426) 0.6974 (0.7251)
R-Mov. Anchor (20,3) 0.6594 (0.6622) 0.7221 (0.7450) 0.6987 (0.7280)

Table 2: Average (environment best) fitnesses after 5,000 iterations, 1 dimension respecified periodically.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4761 (0.5428) 0.4886 (0.5891) 0.4961 (0.6019)
Initial Anchor, w=1 0.4819 (0.5524) 0.4883 (0.5822) 0.4982 (0.6075)
Initial Anchor, w=3 0.5021 (0.5623) 0.4967 (0.5931) 0.4998 (0.6047)
Mov. Anchor (50,1) 0.4705 (0.5450) 0.4894 (0.5863) 0.4974 (0.6008)
Mov. Anchor (50,3) 0.4800 (0.5612) 0.4966 (0.6053) 0.5010 (0.6187)
Mov. Anchor (20,1) 0.4757 (0.5520) 0.4926 (0.5867) 0.4985 (0.6097)
Mov. Anchor (20,3) 0.4824 (0.5632) 0.4986 (0.6041) 0.5004 (0.6163)

Rachet PSA 0.5877 (0.6131) 0.6802 (0.7092) 0.6754 (0.7015)
R-Initial Anchor, w=1 0.6187 (0.6508) 0.6874 (0.7180) 0.6764 (0.7070)
R-Initial Anchor, w=3 0.6075 (0.6377) 0.6841 (0.7130) 0.6738 (0.7017)
R-Mov. Anchor (50,1) 0.6517 (0.6561) 0.7134 (0.7387) 0.6840 (0.7141)
R-Mov. Anchor (50,3) 0.6597 (0.6637) 0.7049 (0.7304) 0.6925 (0.7225)
R-Mov. Anchor (20,1) 0.6575 (0.6593) 0.7152 (0.7419) 0.6819 (0.7094)
R-Mov. Anchor (20,3) 0.6689 (0.6700) 0.7158 (0.7429) 0.6860 (0.7147)

Table 3: Average (environment best)fitnesses after 5,000 iterations, entire landscape respecified periodically.

138 Informatica 29 (2005) 125–141 Brabazon et al.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

 0.485

 0.49

 0.495

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 4: Plot of the mean average fitness on the dynamic landscape (one dimension of the landscape is respecified
periodically) where k=0.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 139

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=4

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=10

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 5: Plot of the mean average fitness on the dynamic landscape (one dimension of the landscape is respecified
periodically) where k=4 (left), and where k=10 (right).

140 Informatica 29 (2005) 125–141 Brabazon et al.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

 0.485

 0.49

 0.495

 0.5

 0.505

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=0

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 6: Plot of the mean average fitness on the dynamic landscape (entire landscape respecified periodically) where
k=0.

INVESTIGATING STRATEGIC INERTIA USING ORGSWARM Informatica 29 (2005) 125–141 141

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=4

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Me
an

 A
ve

ra
ge

 F
itn

es
s (

30
 R

un
s)

Iteration

Strategic Inertia using Particle Swarm k=10

Basic PSA
Anchor (1)
Anchor (3)

Mov. Anchor (50,1)
Mov. Anchor (50,3)
Mov. Anchor (20,1)
Mov. Anchor (20,3)

Ratchet PSA
R-Anchor (1)
R-Anchor (3)

R-Mov. Anchor (50,1)
R-Mov. Anchor (50,3)
R-Mov. Anchor (20,1)
R-Mov. Anchor (20,3)

Figure 7: Plot of the mean average fitness on the dynamic landscape (entire landscape respecified periodically) where k=4
(left), and where k=10 (right).

142 Informatica 29 (2005) 125–141 Brabazon et al.

 Informatica 29 (2005) 143–154 143

Towards Improving Clustering Ants:
An Adaptive Ant Clustering Algorithm
André L. Vizine1,2, Leandro N. de Castro1,2, Eduardo R. Hruschka1, Ricardo R. Gudwin2

1Catholic University of Santos (UniSantos)
R. Carvalho de Mendonça, 144, 11070-906, Santos/SP, Brasil
{vizine,lnunes,erh}@unisantos.br

2State University of Campinas (Unicamp)
DCA–FEEC–UNICAMP, Cx. Postal 6101, 13083-852, Campinas /SP, Brazil.
gudwin@dca.fee.unicamp.br

Keywords: Ant clustering algorithm, Data clustering, Visual data mining

Received: July 15, 2004

Among the many bio-inspired techniques, ant-based clustering algorithms have received special atten-
tion from the community over the past few years for two main reasons. First, they are particularly suit-
able to perform exploratory data analysis and, second, they still require much investigation to improve
performance, stability, convergence, and other key features that would make such algorithms mature
tools for diverse applications. Under this perspective, this paper proposes both a progressive vision
scheme and pheromone heuristics for the standard ant-clustering algorithm, together with a cooling
schedule that improves its convergence properties. The proposed algorithm is evaluated in a number of
well-known benchmark data sets, as well as in a real-world bioinformatics dataset. The achieved results
are compared to those obtained by the standard ant clustering algorithm, showing that significant im-
provements are obtained by means of the proposed modifications. As an additional contribution, this
work also provides a brief review of ant-based clustering algorithms.
Povzetek: Članek opisuje izboljšan algoritem grupiranja na osnovi pristopa kolonij mravelj.

1 Introduction
Over the past few years, several different types of bio-
logically inspired algorithms have been proposed in the
literature (Paton, 1994; de Castro & Von Zuben, 2004).
Among these, some have obtained special attention from
the scientific community, such as those based on swarm
systems (Bonabeau et al., 1999; Kennedy et al., 2001),
which are inspired by the social behavior of living organ-
isms. This relatively new field of investigation has origi-
nated different types of algorithms for the solution of
complex problems in many different domains. Under this
perspective, the problems usually tackled involve search,
optimization, and data analysis tasks. The main reasons
by which swarm based approaches are useful for solving
such problems are (Bonabeau et al., 1999; Kennedy et
al., 2001): (i) they require little information about the
problem at hand (e.g. in clustering problems a data set to
be grouped); and (ii) they usually can perform both broad
and parallel searches over the space of potential solutions
by means of a population (swarm) of candidate solutions.

Despite the broad usefulness of current bio-inspired
algorithms, most of them can be further improved,
mainly to enhance performance and applicability. In this
sense, this work focuses on ant-based clustering algo-

rithms, whose main underlying concepts are based on the
way real ants clean their nests and organize dead bodies
in their colonies. Considering a more practical computa-
tional perspective, these algorithms are basically de-
signed by considering the concept of a 2D grid where
objects (data) are laid at random and then automatically
organized. A set of ant-like agents is allowed to move
throughout the grid, picking up and dropping objects
(data) based on their similarity degree within a certain
neighborhood.

One difficulty in applying ant-clustering algorithms
to solve complex problems comes from the fact that, in
most cases, they generate a number of clusters that is
much larger than the natural number of clusters. Fur-
thermore, these algorithms usually do not stabilize in a
particular clustering solution; that is, they constantly
construct and deconstruct clusters during the iterative
procedure of adaptation. In order to overcome the afore-
mentioned difficulties and, consequently, improve the
quality of the results obtained, we propose an Adaptive
Ant-Clustering Algorithm (A2CA), which is more robust
in terms of the number of clusters found and tends to
converge into good solutions while the clustering process

144 Informatica 29 (2005) 143–154 A.L. Vizine et al.

evolves. To achieve these goals, three main modifica-
tions are introduced in the standard ant-clustering algo-
rithm proposed by Lumer and Faieta (1994): (i) a cooling
schedule for the parameter that controls the probability of
ants picking up objects from the grid; (ii) a progressive
vision field that allows ants to ‘see’ over a wider area;
and (iii) the use of a pheromone function added to the
grid as a way to promote reinforcement for the dropping
of objects at more dense regions of the grid. These modi-
fications favor an adaptive clustering process, in the
sense that the proposed algorithm tends to converge to
stable clusters. In addition to the contributions to the al-
gorithm itself, this paper also brings a brief historical
review of ant-based clustering algorithms, emphasizing
their main features when compared with the standard ant-
clustering algorithm proposed by Lumer and Faieta
(1994).

The paper is organized as follows. Section 2 provides
a brief review of the standard ant-clustering algorithm
(Lumer & Faieta, 1994), which, for the sake of brevity, is
referred to as SACA in this work. In Section 3, we pre-
sent our proposed algorithm (A2CA), which, in Section 4
is experimentally compared to the SACA in three syn-
thetic and one real-world dataset. Section 5 provides a
brief survey of related works, whereas Section 6 con-
cludes the paper and points out some avenues for future
work.

2 Standard Ant Clustering Algo-
rithm: SACA

The Standard Ant Clustering Algorithm (SACA), intro-
duced by Lumer and Faieta (1994), assumes that ants
perform random walks on a two-dimensional grid on
which objects (data) are laid down at random. Independ-
ently of the dimension of the input data, each datum is
randomly projected onto a cell of the grid. A grid cell (or
patch) is thus responsible for hosting the index of a spe-
cific input pattern, indicating the relative position of the
datum in the two-dimensional grid. The general idea is to
have items, which are similar in their original N-
dimensional space, in neighboring regions of the grid. In
other words, data indices that are neighbors in the grid
indicate patterns that are similar in their original space of
attributes. In this context, it is assumed that each site or
cell on the grid can be occupied by at most one object,
and one of the two following situations may occur:
(i) one ant holds an object i and evaluates the probability
of dropping it in its current position; (ii) an ant is
unloaded and evaluates the probability of picking up an
object. At each discrete time step, an ant is selected at
random and can either pick up or drop an object at its
current location.

The probability of picking up an object increases with
low-density neighborhoods and decreases with high simi-
larity among objects in the surrounding area. The prob-
ability of dropping an object, by contrast, increases with
high densities of similar objects in the neighborhood.
More specifically, assume that d(i,j) is the Euclidean
distance between objects i and j in their N-dimensional
space. The density dependent function for object i, at a

particular grid location, is defined by the following ex-
pression:

⎪⎩

⎪
⎨
⎧ >−

= ∑
otherwise. 0

 0)(if)α/),(1(1
)(2 j

ifjid
sif , (1)

where s2 is the number of cells in the surrounding area of
i, and α is a constant that scales the dissimilarities among
objects. The maximum value for f(i) is obtained if, and
only if, all the sites in the neighborhood are occupied by
equal objects. Assuming the density dependent function
presented in Eq. (1), the probability of picking up and
dropping an object i is given by Eqs. (2) and (3), respec-
tively:

2

)(
)(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ifk
k

iP
p

p
pick

, (2)

⎩
⎨
⎧ <

=
.otherwise 1

;)(if)(2
)(d

drop

kifif
iP , (3)

where the parameters kp and kd are threshold constants
equal to 0.1 and 0.15, respectively. Note that f(i) ∈ [0,1].
Thus, if f(i) << kp, then Ppick ≈ 1, leading to high prob-
abilities of picking up objects in low density regions.
Similarly, Ppick ≈ 0 if f(i) >> kp, meaning that objects are
unlikely to be removed from dense regions. In the case of
Pdrop, it is also possible to observe that if f(i) << kd,
Pdrop ≈ 0, whereas if f(i) ≥ kd the ant drops the object.

Whenever a loaded ant decides to drop the object it is
carrying, it looks for the first empty cell in its vicinity in
which to do so (its current position can be already occu-
pied by another object). A time step finishes with the
selected ant moving to one of its four adjacent nodes,
each direction of motion being equally likely.

3 Adaptive Ant Clustering Algo-
rithm: A2CA

The Adaptive Ant Clustering Algorithm (A2CA) was
developed by taking further inspiration from biological
systems. In particular, A2CA was inspired by the fact that
termites, while building their nests, deposit pheromone
on soil pellets and this serves as a reinforcement signal to
other termites placing more pellets on the same region of
the space (Camazine et al., 2001). Another biological
observation taken into account while developing A2CA
was the fact that ants can sense not only its immediate
neighborhood environment, but a broader range that may
vary from ant to ant and with time. Therefore, A2CA has
two main modifications in relation to SACA: (i) a pro-
gressive vision scheme, and (ii) the inclusion of phero-
mone on the grid cells. In addition, we adopt a cooling
schedule for the parameter that drives the picking prob-
ability (kp).

3.1 Cooling Schedule for kp
In addition to the modifications that led to the develop-
ment of A2CA, one simple modification was previously
introduced in SACA so as to improve its convergence

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 145

properties (Vizine et al., 2005) and it is also adopted in
our proposed approach (A2CA). In a nutshell, a cooling
schedule for the parameter that drives the picking prob-
ability kp – Eq. (2) – is employed. The adopted scheme is
simple: after one cycle (10,000 ant steps) has passed, the
value of the parameter kp starts being geometrically de-
creased, at each cycle, until it reaches a minimal allowed
value, kpmin, which corresponds to the stopping criterion
for the algorithm. In the current implementation, kp is
cooled based on a geometric scheme presented in Eq. (4).
It is important to emphasize that the SACA implementa-
tion used in this work also incorporates this extra feature,
leading to the so-called SACA*. By doing so, more suit-
able and fair comparisons can be performed, in the sense
that SACA* will also tend to converge to better cluster-
ing solutions.

kp ← kp×0.98,
kpmin = 0.001.

(4)

3.2 Progressive Vision
In SACA, the value of the density function, f(i), given by
Eq. (1), depends on the vision field, s2, of each ant. The
definition of a fixed value for s2 may sometimes cause
inappropriate behaviors, because a fixed perceptual area
does not allow distinguishing between clusters of differ-
ent sizes. A small area of vision implies a small percep-
tion of the cluster at a global level. Thus, small clusters
and large clusters are all the same in this sense, for the
agent only perceives a limited area of the environment.
In some problems, the use of a too restrictive perception
field may be limiting, whereas a too broad vision may
cause undesirable merging of groups. On the one hand,
even if a cluster is perfectly homogeneous (with identical
elements) and sufficiently large, there still exists a small
probability that an agent picks up a datum from the clus-
ter and drops it somewhere else. On the other hand, a
large vision field may be inefficient in the initial itera-
tions, when the data elements are scattered at random on
the grid, because analyzing a broad area may imply in
analyzing a large number of small clusters simultane-
ously.

In order to overcome this difficulty, a progressive vi-
sion scheme was proposed for SACA as follows
(Sherafat et al., 2004a). When an ant perceives a ‘big’
cluster, it increments its perception field (si

2) up to a
maximal size. Now, si

2 is a specific parameter for each
ant that will be dynamically and independently updated
while running the algorithm. The question that remains
is: ‘How can an ant agent detect the size of a cluster so as
to control the size of its vision field?’

We tackled this problem by using the density depend-
ent function f(i) as a control parameter. There is a rela-
tionship between the size of a cluster and its density de-
pendent function: the average value of f(i) increases as
the clustering proceeds, and this happens because larger
clusters tend to be formed. When f(i) achieves a value
greater than a pre-specified threshold θ, the parameter s2
is incremented by ns units until it reaches its maximum
value.

If f(i) > θ and s2 ≤ s2
max,

then s2 ← s2 + ns.
(5)

where s2
max = 7 × 7 and θ = 0.6 in our implementation.

3.3 Pheromone Heuristics
In order to perform data clustering, the SACA takes into
account the relative distance among all objects within the
vision field of the ant. A problem with this approach is
that it does not account for the work in progress at a
global level. One form of overcoming this difficulty was
proposed by Sherafat et al. (2004a,b). The method is
based on the introduction of a local variable φ(i) associ-
ated with each bi-dimensional position, i, on the grid,
such that the quantity of pheromone in that exact position
becomes a function of the presence or absence of an ob-
ject at i. Inspired by the way termites use pheromone to
build their nests, the artificial agents in the modified ant
clustering algorithm will add some pheromone to the
objects they carry and this pheromone will be transferred
to the grid when an object is deposited. During each it-
eration, the artificial pheromone φ(i) at each cell of the
grid evaporates at a fixed rate.

Sherafat et al. (2004a,b) introduced a pheromone
function, Phe(φmax,φmin,P,φ(i)), given by Eq. (6), that in-
fluences the probability of picking up and dropping off
objects from and on the grid. The proposed pheromone
function varies linearly with the pheromone level at each
grid position, φ(i), and depends on a number of user-
defined parameters, such as the φmax and φmin values of
pheromone perceived by the agent, and the maximal in-
fluence of pheromone allowed, P.

P
.P.

)i(P.(.)Phe
minmax

max

minmax
+

−
−

−
=

φφ
φ

φ
φφ

22 ,
(6)

To accommodate the addition of pheromone on the grid,
some variations on the picking and dropping probability
functions of SACA were proposed in (Sherafat et al.,
2004a,b), as described in Eqs. (7) and (8), respectively:

2

maxmin)(
)))(,,,(1()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−=

ifk
k

iPPheiP
p

p
pick φφφ . (7)

2

maxmin)(
)()))(,,,(1()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

×+=
ifk

ifiPPheiP
d

drop φφφ . (8)

where φmax represents the current largest amount of
pheromone perceived by this agent; φmin corresponds to
the current smallest amount of pheromone perceived by
this agent; P is the maximum influence of the pheromone
in changing the probability of picking and dropping data
elements; and φ(i) is the quantity of pheromone in the
current position i.

Note that in Eq. (8) the dropping probability origi-
nally derived from the model of Deneubourg et al. (1991)
was employed. Basically, this choice was made because
the algorithm presented superior performance when us-
ing the function proposed by Deneubourg et al. (1991) –
given by Eq. (9) - instead of Eq. (3) for the dropping
probability. This was also the case for SACA. Therefore,

146 Informatica 29 (2005) 143–154 A.L. Vizine et al.

we also adopt this strategy in our present work, namely
the dropping probability is an inverse function of a pa-
rameter kd:

2

)(
)()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
ifk

ifiP
d

drop
. (9)

Based on the sensitivity analysis described in Sherafat et
al. (2004a,b) and on some preliminary experiments, we
realized that setting the parameters φmax, φmin and P may
become a difficult task depending on the problem at
hand. In order to reduce the number of user-defined pa-
rameters and to improve even further the performance of
the algorithm, we propose to substitute Eqs. (7) and (8)
by the following equations:

2

)()()(
1)(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ifk
k

iif
iP

p

p
pick φ

. (10)

2

)(
)()()()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
ifk

ifiifiP
d

drop φ . (11)

where f(i) is the density dependent function, φ(i) is the
quantity of pheromone in the current position i, and kp
and kd are the picking and dropping probability constants,
respectively. Note that, in this new proposal, the only
new parameter introduced in relation to SACA is the
pheromone level at each position of the grid.

According to Eq. (10), the probability that an ant
picks up an item from the grid is inversely proportional
to the amount of pheromone at that position and also to
the density of objects around i. This equation thus ac-
counts for the pheromone reinforcement signal in regions
of the space filled with similar objects. If the region is
filled with dissimilar objects, however, the incorporation
of f(i) multiplying φ(i) counterbalances the effects of
eventual high pheromone concentrations. By the same
token, Eq. (11) states that regions with high concentra-
tion levels of pheromone are attractive for the deposition
of more objects of similar type.

It is important to observe that a region with a high
quantity of pheromone tends to be either a recently con-
structed cluster or a cluster under construction. The
pheromone is a variable of the discrete grid environment,
i.e. each grid position i has an independent variable φ(i)
for which pheromone evaporation and diffusion proce-
dures are implemented. The rate at which pheromone
evaporates is preset, as defined in Eq. (12). Each grid
position i also has a connection to its neighbors that
causes a percentage of φ(i) to be diffused to them. This is
performed in such a way that the pheromone percentage
for the two closer neighbors in all directions decays
geometrically in the reason of 1/2, whereas for the third
closer neighbors in all directions it is set equal to zero. In
our implementation, the maximum amount of added
pheromone φ(i) is equal to 0.01. The proposed approach
increases the probability of deconstruction of relatively
small clusters and increases the probability of dropping
data elements in denser clusters. This is directly influ-
enced by the similarity between the data and the cluster.

This proposal then becomes a sort of density-based clus-
tering procedure (Everitt et al., 2001).

φ(i) ← φ(i) × 0.99. (12)

4 Performance Evaluation
In order to assess the performance of the adaptive ant-
clustering algorithm (A2CA) in comparison with the stan-
dard algorithm with cooling and dropping probability
given by Eq. (9), named here SACA*, both algorithms
were applied to a number of synthetic data sets and to
one real-world bioinformatics data set. The parameters
used to run the algorithms were based on the sensitivity
analysis performed in Sherafat et al. (2004a) and on
some preliminary experiments performed here. The
benchmarks used for evaluation and the respective adap-
tation parameters for the algorithms are summarized be-
low. Further details are provided in each dedicated sec-
tion. Parameters θ = 0.6, kp = 0.20, kd = 0.05 are assumed
default and were chosen for all experiments.
• 4Gauss: 100 objects divided into 4 clusters (classes).

nants = 10, grid = 25×25, and α = 0.35.
• Ruspini data: 75 objects divided into 4 classes.

nants = 10, grid = 25×25, and α = 0.35.
• ANIMALS data set: 16 objects with 13 attributes

(the number of classes varies based on the grouping
performed). nants = 1, grid = 15×15, and α = 2.10.

• Yeast galactose data: 205 objects divided into 4
classes. nants = 10, grid = 35×35, and α = 1.05.

Note that the parameters used to run the algorithms are
almost the same for all data sets; the only ones that
change are α, the grid size, and the number of ants nants.
As one grid cell is used to accommodate one object, the
grid is increased in size in proportion to the size of the
input data set. The parameter α, by contrast, weighs the
influence of the distance measure in determining the
clusters. Its value was linearly varied using a factor 0.35
for the employed data sets. In the ANIMALS data set, a
single ant was used because the number of objects is very
small, only 16.

4.1 Four Gaussian Distributions
The first data set used to illustrate the performance of the
algorithm was a modified version of the well-known four
classes data set proposed by Lumer and Faieta (1994) to
study the standard ant-clustering algorithm. The data set
used here corresponds to four distributions of 25 data
points each, defined by Gaussian probability density
functions with various means µ and fixed standard devia-
tion σ = 1.5, G(µ,σ), as follows (Figure 1):

A = [x ∝ G(0,1.5), y ∝ G(0,1.5)];
B = [x ∝ G(0,1.5), y ∝ G(8,1.5)];
C = [x ∝ G(8,1.5), y ∝ G(0,1.5)];
D = [x ∝ G(8,1.5), y ∝ G(8,1.5)].

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 147

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Gaussian distributions: input data set.

Figure 2(a) depicts some simulation results for the stan-
dard ant-clustering algorithm with the geometric cooling

schedule for kp described previously (SACA*). The pic-
tures correspond to the output grid of two different simu-
lations generated by the ants after convergence, in this
case after 273,000 ant steps (27.3 cycles). Each input
datum is numbered from 0 to 99, where the first 25 (from
0 to 24) belong to the first cluster, and so on. Note that,
accordingly with what was previously discussed by
Lumer and Faieta (1994), the standard ant-clustering
algorithm (SACA), though capable of correctly cluster-
ing the data, generates a large number of sub-clusters in
most cases. In our experiments, we observed that, even
with the use of a cooling procedure (i.e., SACA*), this
characteristic tends to be maintained. Figure 2(b) shows
some results for A2CA. It can be noted that the adaptive
algorithm generates a much smaller number of sub-
clusters; in most cases, only four or five groups of data
are generated.

0

C1 C1

C1

C2

C2

C3

C3

C2

C4

0

C1

C4

C4

C3

C3

C3 C2

C4

C4

C4

(a-1) (a-2)

 0 C1

C4

C3

C2

0

C1

C2

C4

C3

C3

(b-1) (b-2)
Figure 2: Two different results for the standard ant-clustering algorithm SACA* (a) and A2CA (b).

148 Informatica 29 (2005) 143–154 A.L. Vizine et al.

Figure 3(a) and (b) show, respectively, the evolution of
the average pheromone level on the grid and the average
vision of all ants for the simulations depicted in Figure
2(b-1). In Figure 4(a) we reproduce Figure 2(b-1), for
convenience, and contrast the final distribution of objects
onto the grid with the 3D (Figure 4(b)) and 2D (Figure
4(c)) views of the pheromone distribution on the grid
after convergence. It is easy to observe the higher con-
centration of pheromone in regions of the grid with large
data density. It can also be noted from these pictures that
the average pheromone level on the grid and vision field
of the ants tend to stabilize after a number of iterations.
In the particular case of vision, all ants converge to a
vision field of dimension 7 × 7.

0 5 10 15 20 25 30

1

1.1

1.2

1.3

1.4

1.5

Cycles

φ a
v(i

)

(a)

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5

0 5 10 15 20 25 30
Cycles

V
is

io
n a

v

 (b)

Figure 3: Evolution of the average pheromone level on the grid
(a), and the average vision field of the ants (b) for the experi-
ment depicted in Figure 2(b-1).

 0 C1

C2

C3 C4

(a)

(b)

 (c)

Figure 4: Objects and pheromone distribution on the grid after
convergence. (a) Final distribution of objects on the grid after
convergence (Figure 2(b-1)). Three-dimensional perspective (b)
and two-dimensional perspective (c) of the pheromone distribu-
tion on the grid after convergence.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 149

4.2 Animals Data Set
This section compares the performance of A2CA with
SACA* when applied to the ANIMALS data set. This
high-dimensional data set was originally proposed by
Ritter and Kohonen (1989) to verify the capability of a
self-organizing map creating a topographic map of the
input data based on a symbol set. The data set is com-
posed of 16 input vectors, each representing an animal

with the binary feature attributes as shown in Table 1. A
value of 1 in this table corresponds to the presence of an
attribute, whilst a value of 0 corresponds to the lack of
this attribute. The authors suggested that the interesting-
ness of this data set lies in the fact that the relationship
between the different symbols may not be directly de-
tectable from their encoding, thus not presuming any
metric relations even when the symbols represent similar
items.

Table 1: Animal data set with their names and binary attributes (after Ritter & Kohonen, 1989).

0.
 D

ov
e

1.
 H

en

2.
 D

uc
k

3.
 G

oo
se

4.

 O
w

l
5.

 H
aw

k
6.

 E
ag

le

7.
 F

ox

8.
 D

og

9.
 W

ol
f

10
. C

at

11
. T

ig
er

12

. L
io

n
13

. H
or

se

14
. Z

eb
ra

15

. C
ow

Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
Medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

Is

Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Two legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Four legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

Has

Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Likes to

Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 describes the results found by both algorithms
when applied to the ANIMALS data set. It can be ob-
served that A2CA consistently determined two groups of
data, one corresponding to the birds and another referring
to the mammals. In most cases SACA* presented the
same results as A2CA, but it sometimes separated the
mammals into two groups that apparently do not make
much sense. For instance, in run 5, SACA* mixed Lion

(12) with Horse (13) and Zebra (14). In (Haykin, 1999 –
p. 476), a self-organizing map for the ANIMALS data set
is presented with three main groups: birds, peaceful
mammals and hunters. However, the partition of the out-
put map could also have been made so as to distinguish
only two different groups, as the results presented by
SACA* and A2CA.

Table 2: Groups found by SACA* and A2CA for the ANIMALS data set.

 SACA* A2CA
Run Nc Groups Nc Groups

1 2 (0-6) (7-15) 2 (0-6) (7-15)
2 2 (0-6) (7-15) 2 (0-6) (7-15)
3 2 (0-6) (7-15) 2 (0-6) (7-15)
4 3 (0-6) (10) (7-9,11-15) 2 (0-6) (7-15)
5 3 (0,6) (7-11,15) (12-14) 2 (0-6) (7-15)
6 2 (0-6) (7-15) 2 (0-6) (7-15)
7 3 (0-6) (7-12,15) (13,14) 2 (0-6) (7-15)
8 2 (0-6) (7-15) 2 (0-6) (7-15)
9 2 (0-6) (7-15) 2 (0-6) (7-15)

10 2 (0-6) (7-15) 2 (0-6) (7-15)
Av. ± std 2.3 ± 0.48 2 ± 0

4.3 Ruspini Data
The Ruspini data is a well-known dataset commonly
used to benchmark clustering algorithms (Kaufman &

Rousseeuw, 1990). It is formed by 75 objects grouped
into four clusters, as depicted in Figure 5. Let nc be the
number of clusters found and Pmc the percentage of mis-
classification. Table 3 summarizes the performance of
both algorithms when applied to the Ruspini data. The

150 Informatica 29 (2005) 143–154 A.L. Vizine et al.

results presented are the average ± standard deviation
taken during 10 runs of each algorithm. Similarly to the
results presented in the previous experiments, A2CA con-
sistently found the correct number of clusters with no
classification errors.

0 20 40 60 80 100 120
0

20
40
60
80

100
120
140
160

Figure 5: Ruspini data.

Table 3: Performance evaluation for the standard ant clustering
algorithm with cooling (SACA*) and the adaptive ant cluster-
ing algorithm (A2CA).

SACA* A2CA

nc Pmc (%) nc Pmc (%)

Ruspini 7.4 ± 1.46 1.5 ± 2.72 4.0 ± 0.0 0 ± 0.0

4.4 Yeast Galactose Data
The last data used for evaluation is the yeast galactose
data set (Yeung et al., 2003). This is a real-world bioin-
formatics dataset composed of 20 experiments (attrib-
utes) – nine single-gene deletions and one wild-type ex-
periment with galactose and raffinose, nine deletions and
one wild-type without galactose and raffinose. Similarly
to Yeung et al. (2003), we used a subset of 205 genes
(objects), whose expression patterns reflect four func-
tional categories (clusters) formed by 83, 15, 93 and 14
genes (objects). The dataset used in the simulations re-
ported here take into account four repeated measure-
ments, what may yield more accurate and more stable
clusters (Yeung et al., 2003). To cluster data with re-
peated measurements, the average expression levels over
all repeated measurements for each gene and each ex-
periment were taken.

For this data set, the standard algorithm (SACA*)
demonstrated to be incapable of correctly grouping the
data in most simulations. The proposed algorithm, how-
ever, was capable of appropriately grouping the data in
all runs, but with varying numbers of clusters being
found each time the algorithm was run. Over 10 runs,
A2CA presented the following results: nc = 6.9 ± 1.0 and
Pmc = 3.17% ± 0.93%. Figure 6 depicts one solution for
the A2CA applied to the yeast data set. This figure also
depicts the clusters found (within dashed lines) and the
objects incorrectly grouped (within solid lines).

0

C 3

C 1
C 1

C 2

C 4

Figure 6: One grid solution for A2CA when applied to the yeast galactose data.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 151

5 Ant Clustering Algorithms: A
Brief Survey

Several clustering methods based on ant behavior have
been proposed in the literature, showing the increasing
importance of this subject. This section provides a brief
description of these methods, following a chronological
order.

In 1991, Deneubourg et al. (1991) introduced a model
in which simple ants were able to sort into piles objects
initially strewn randomly across a plane. These ants have
a sorting behavior based on local rules, i.e. possessing
only local perceptual capabilities. Gutowitz (1993) called
these agents basic ants, which have: (i) a finite memory,
which is a register of length n that records the presence
or absence of objects at the ant’s previous n locations;
(ii) an object-manipulation capacity; (iii) a function that
gives the probability to manipulate an object proportion-
ally to the values in memory and a random variable; and
(iv) the capability to execute Brownian motion. Besides,
as previously observed in the Deneubourg’s model, two
objects can only be either identical or different. Obvi-
ously, this same idea can be easily extended to deal with
other distance metrics such as the well-known Euclidean
norm.

Although the basic ants have only local perceptual
capabilities, they are able to promote global order. The
mechanism underlying this phenomenon was carefully
investigated by Gutowitz (1993). He proposed the com-
plexity-seeking ants, which are variants of the basic ants
proposed by Deneubourg et al. (1991). The complexity-
seeking ants are allowed to see local complexity and tend
to perform actions in regions of highest local complexity.
The neighborhood complexity is the number of faces that
separate cells of different types, containing or not an ob-
ject. In this sense, all-empty or all-occupied neighbor-
hoods have zero complexity (low entropy), whereas
checkerboard patterns have complexity equals to 12 (as-
suming a 9-cell neighborhood). Thus, complexity-
seeking ants can calculate the complexity of their local
environment and are able to accomplish their task more
efficiently than the basic ants, mainly because they tend
to manipulate objects in regions of high complexity; that
is, at intermediate density regions, where the entropy is
high.

As previously addressed in Section 2, Lumer and
Faieta (1994) introduced a method for structuring com-
plex datasets into clusters. The proposed method is in-
spired by the model of Deneubourg et al. (1991), in
which ant-like agents move at random on a 2-
dimensional grid, where objects are scattered at random.
Inspired by the biological phenomenon of dead body
clustering, the ants do not communicate with each other
and can only perceive their surrounding local environ-
ment. In this context, each ant-like agent can either pick
up an object from the grid or drop it onto the grid. The
probability of picking up an object decreases with both
the density of other objects and the similarity with other
objects within a given neighborhood. By contrast, the
probability of dropping an object increases with the simi-

larity and the density of objects within a local region.
Although the work in (Deneubourg et al., 1991) is re-
stricted to environments made of either identical objects
or two distinct types of objects, Lumer and Faieta (1994)
generalized this model to work with objects that differ
along a continuous similarity measure. This led to the
algorithm that we have called SACA in our work.

Monmarché et al. (1999) combined the stochastic and
exploratory principles of clustering ants with the deter-
ministic and heuristic principles of the popular k-means
algorithm in order to improve the convergence of the ant-
based clustering algorithm. The proposed hybrid method
is called AntClass and is based on the work of Lumer and
Faieta (1994). The AntClass algorithm allows an ant to
drop more than one object in the same cell, forming
heaps of objects. It involves four main steps: (i) ant-
based clustering; (ii) k-means algorithm using the initial
partition provided by ants; (iii) ant-based clustering on
heaps of objects previously found; (iv) k-means algo-
rithm once more. Another important contribution of the
AntClass algorithm is that it also makes use of hierarchi-
cal clustering, implemented by allowing ants to carry an
entire heap of objects.

Ramos and Merelo (2002) developed an ant cluster-
ing system called ACLUSTER, which was employed for
textual document clustering. The authors proposed the
use of bio-inspired spatial transition probabilities, avoid-
ing randomly moving agents, which may explore non-
interesting regions. In this sense, ants do not move ran-
domly like in SACA, but according to transition prob-
abilities that depend on the spatial distribution of phero-
mone across the environment. If a particular cluster dis-
appears, the pheromone tends to evaporate from that lo-
cation. This approach is interesting, because pheromone
represents the swarm memory and all ants can benefit
from it. In other words, the ants share a common mem-
ory. Another important difference in relation to the
SACA refers to the use of combinations of two inde-
pendent response threshold functions; each associated
with different environmental factors, namely, the number
of objects in the neighborhood and their similarity. The
ACLUSTER algorithm was also employed into a digital
image retrieval problem, and further details about a case
study within a granite database can be found in (Ramos
et al., 2002). In a later work, Abraham and Ramos (2003)
applied the ACLUSTER to discover Web usage patterns
and thereafter a genetic programming approach to ana-
lyze the visitor trends.

Handl and Meyer (2002) employed ant-based cluster-
ing as the core of a visual document retrieval system for
worldwide web searches in which the basic goal is to
classify online documents by contents’ similarity. The
authors adopted an idea of short-term memory and em-
ployed ants with different speeds, also allowing them to
jump. In addition, they introduced an adaptive scaling
strategy, as well as some further modifications to achieve
reliable results and to improve efficiency. The proposed
method starts with a very fine distinction between data
elements and reduces it only if necessary; that is, if after
a pre-defined number of steps only few dropping or pick-
ing up occur. The authors also adopted a stagnation con-

152 Informatica 29 (2005) 143–154 A.L. Vizine et al.

trol similar to the one described in Monmarché et al.
(1999), in which after a pre-defined number of unsuc-
cessful dropping attempts an ant drops its load regardless
of the neighborhood’s similarity. Finally, Handl and
Meyer (2002) used eager ants, which take objects imme-
diately after dropping their loads.

Labroche et al. (2002) proposed a clustering algo-
rithm, called ANTCLUST, based on a modeling of the
chemical recognition system of ants. This system allows
the construction of a colonial odor used for determining
the ants’ nest membership, such that ants can discrimi-
nate between nest mates and intruders. In the ANT-
CLUST, each object is assigned to an artificial ant and
represents part of the ant’s odor. At the beginning of the
clustering process, ants are under the influence of any
nest and consequently have no label (representative of
the nest). Then, random meetings between ants are simu-
lated and labels are updated according to behavioral
rules, which take into account the similarity among data.
These labels evolve over time until each ant has found its
best nest, providing a partition of the objects.

Kanade and Hall (2003) combined the ant based clus-
tering algorithm proposed by Monmarché et al. (1999)
with the classical Fuzzy C-Means algorithm (FCM)
(Bezdek, 1981). The ant based clustering algorithm is
employed to initially create raw clusters, which are then
refined by the FCM algorithm. In this sense, the corre-
sponding centroids of each initial cluster are taken as
initial prototypes for the FCM. Then, each object is as-
signed to its best matching fuzzy cluster, i.e. the cluster it
has the highest membership to. These new clusters can
be moved and merged by the ants. Finally, the obtained
clusters are also refined by the FCM.

Handl et al. (2003) proposed a scheme that enables an
unbiased interpretation of the clustering solutions ob-
tained by ant based clustering algorithms. The authors
argue that although many of the results obtained by ant
algorithms look promising, there is a lack of knowledge
about the actual performance of such algorithms, i.e. in
general, the evaluation of the results has been performed
by means of visual observation. In order to overcome this
limitation, they propose a technique that allows convert-
ing the implicit clusters found by an ant algorithm into an
explicit data partitioning. The proposed technique is
based on the application of an agglomerative hierarchical
clustering method to the positions of the data items on
the grid. Taking into consideration the developed
method, the results achieved by the ant-based clustering
algorithm proposed by Handl and Meyer (2002) are
compared, using both synthetic and real datasets, with
those obtained by two classical algorithms (k-means and
agglomerative average link), showing that the ant-based
algorithm performs well when compared with them.

6 Conclusions and Future Work
The ant-clustering algorithm is a self-organizing multi-
agent system typically used for clustering unlabelled
datasets. Its goal is to project the original data into a bi-
dimensional output grid and position those items that are
similar to each other in their original space of attributes

in neighbor regions of the output grid. By doing this, the
algorithm is capable of grouping together items that are
similar to each other and presenting the result of this
grouping process on a bi-dimensional display (2D grid)
that can be easily inspected visually helping the user to
deal with the overload of information. The advantage of
visual data exploration is that the user is directly in-
volved in the data mining process (Keim, 2002). This
results in a device suitable for exploratory data analysis
even when the input data set lies in a high-dimensional
space.

This paper provided a number of contributions to the
field in two main frontlines. First, several modifications
were introduced in the standard ant-clustering algorithm
so as to enhance its performance and convergence prop-
erties. In particular, we proposed a cooling schedule for
the parameter that controls the rate of picking up objects
from the grid. This guarantees that the algorithm always
stabilizes after a number of iteration steps. Furthermore,
we developed the ideas of progressive vision (Sherafat et
al., 2004a) and proposed a new form of implementing the
pheromone heuristics on the grid in such a way that
groups of data reinforce the attraction to those regions of
the grid that contain data. The second contribution of this
article was the presentation of a review from the litera-
ture citing and briefly describing most works and appli-
cations of ant clustering algorithms to date. The proposed
adaptive algorithm, named A2CA, was applied to a num-
ber of benchmark data sets and to a real world bioinfor-
matics data set. The obtained results were compared to
the standard ant clustering algorithm with cooling sched-
ule and modified dropping probability, and stress the
benefits of the modifications introduced in the proposed
algorithm. Most importantly, A2CA demonstrated a good
robustness in terms of finding the correct number of clus-
ters in the data set, low variations of the results in terms
of number of clusters found, and always stabilized after a
fixed number of iterations automatically defined by the
algorithm.

Despite the encouraging results presented here, there
are still several avenues for investigation that deserve to
be pursued. For instance, an automatic form of segment-
ing the output grid and counting the number of clusters
found after convergence can be proposed; the algorithm
can be transformed into a supervised algorithm, that is,
information about a set of known classes of data can be
used to aid the definition of the final configuration of the
grid; a hierarchical analysis of the input data can be pro-
posed by systematically varying some of the user-defined
parameters; the use of heaps of objects instead of a one-
object-one-grid-position scheme used here can be per-
formed (though we believe that the addition of phero-
mone to the grid may compensate for the effect of allow-
ing heaps of objects to be formed); the use of local search
procedures (e.g., k-means) to fine tune the clusters found
by the ants; and a sensitivity analysis in relation to the
user-defined parameters can be performed.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 153

Acknowledgement
The authors thank UniSantos, CNPq and FAPESP for the
financial support.

References
[1] Abraham, A., Ramos, V. (2003). Web Usage Mining

Using Artificial Ant Colony Clustering and Genetic
Programming. Proc. of the Congress on Evolution-
ary Computation (CEC 2003), Canberra, pp. 1384-
1391, IEEE Press.

[2] Bezdek, J.C., (1981). Pattern Recognition with
Fuzzy Objective Function Algorithm, Plenum Press.

[3] Bonabeau, E., Dorigo, M. and Théraulaz, G. (1999).
Swarm Intelligence from Natural to Artificial Sys-
tems: Oxford University Press.

[4] Camazine, S., Deneubourg, J.-L., Franks, N. R.,
Sneyd, J., Theraulaz, G. and Bonabeau, E. (2001).
Self-Organization in Biological Systems: Princeton
University Press.

[5] de Castro, L. N. & Von Zuben, F. J. (2004), Recent
Developments in Biologically Inspired Computing,
Idea Group Inc.

[6] Deneubourg, J. -L., Goss, S., Sendova-Franks, N.,
A., Detrain, C. and Chrétien, L. (1991). The Dynam-
ics of Collective Sorting: Robot-Like Ant and Ant-
Like Robot. In J. A. Meyer and S. W. Wilson (eds.).
Simulation of Adaptive Behavior: From Animals to
Animats: MIT Press/Bradford Books, 356-365.

[7] Everitt, B.S., Landau, S., Leese, M., (2001). Cluster
Analysis: Arnold Publishers, London.

[8] Gutowitz, H. (1993). Complexity-Seeking Ants.
Proceedings of the Third European Conference on
Artificial Life.

[9] Handl, J., Knowles, J., Dorigo, M. (2003). On the
performance of ant-based clustering. Proc. of the 3rd
International Conference on Hybrid Intelligent Sys-
tems, Design and Application of Hybrid Intelligent
Systems, pp. 204-213, IOS Press.

[10] Handl, J., Meyer, B. (2002). Improved Ant-Based
Clustering and Sorting in a Document Retrieval In-
terface. In J.J. Merelo, J.L.F. Villacañas, H.G.
Beyer, P. Adamis Eds.: Proceedings of the PPSN
VII – 7th Int. Conf. on Parallel Problem Solving from
Nature, Granada, Spain, Lecture Notes in Computer
Science 2439, pp. 913-923, Springer-Verlag, Berlin.

[11] Kanade, P., Hall, L.O. (2003). Fuzzy ants as a clus-
tering concept. Proc. of the 22nd International Con-
ference of the North American Fuzzy Information
Processing Society (NAFIPS), pp. 227-232.

[12] Kaufman, L., Rousseeuw, P.J. (1990), Finding
Groups in Data – An Introduction to Cluster Analy-
sis, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons Inc.

[13] Keim, D.A. (2002), Information Visualization and
Visual Data Mining: IEEE Transactions on Visuali-

zation and Computer Graphics, vol. 7, n.1, pp. 100-
107.

[14] Kennedy, J., Eberhart, R. and Shi. Y. (2001). Swarm
Intelligence: Morgan Kaufmann Publishers.

[15] Labroche, N., Monmarché, N., Venturini, G. (2002).
A new clustering algorithm based on the chemical
recognition system of ants. Proc. of the 15th Euro-
pean Conference on Artificial Intelligence, France,
pp. 345-349, IOS Press.

[16] Lumer, E.D. and Faieta, B. (1994). Diversity and
Adaptation in Populations of Clustering Ants. Pro-
ceedings of the Third International Conference On
the Simulation of Adaptive Behavior: From Animals
to Animats 3: MIT Press, 499-508.

[17] Monmarché, N., Slimane, M., Venturini, G., (1999).
On Improving Clustering in Numerical Databases
with Artificial Ants. Advances in Artificial Life, D.
Floreano, J.D. Nicoud, and F. Mondala Eds., Lecture
Notes in Computer Science 1674, pp. 626-635,
Springer-Verlag, Berlin.

[18] Paton, R. (Ed.) (1994). Computing with Biological
Metaphors: Chapman & Hall.

[19] Ramos, V., Merelo, J.J.. (2002). Self-Organized
Stigmergic Document Maps: Environment as a
Mechanism for Context Learning. In E. Alba, F.
Herrera, J.J. Merelo et al. Eds., AEB´2002, First
Spanish Conference on Evolutionary and Bio-
Inspired Algorithms, 284-293, Spain.

[20] Ramos, V., Muge, F., Pina, P. (2002). Self-
Organized Data and Image Retrieval as a Conse-
quence of Inter-Dynamic Synergistic Relationships
in Artificial Ant Colonies. In J. Ruiz-del-Solar, A.
Abrahan and M. Köppen Eds., Soft-Computing Sys-
tems - Design, Management and Applications, Fron-
tiers in Artificial Intelligence and Applications: IOS
Press, v. 87, 500-509, Amsterdam.

[21] Ritter, H. & Kohonen, T. (1989). Self-Organizing
Semantic Maps. Biol. Cybern., 61, pp. 241-254.

[22] Sherafat, V., de Castro, L. N. & Hruschka, E. R.
(2004a). TermitAnt: An Ant Clustering Algorithm
Improved by Ideas from Termite Colonies. In Proc.
of ICONIP 2004, Special Session on Ant Colony
and Multi-Agent Systems, Lecture Notes in Com-
puter Science, v. 3316, pp. 1088-1093.

[23] Sherafat, V., de Castro, L. N. & Hruschka, E. R.
(2004b). The Influence of Pheromone and Adaptive
Vision on the Standard Ant Clustering Algorithm.
In: L. N. de Castro and F. J. Von Zuben, Recent De-
velopments in Biologically Inspired Computing,
Chapter IX, pp. 207-234. Idea Group Inc.

[24] Vizine, A. L., de Castro, L. N., Gudwin, R. R.
(2005). Text Document Classification using Swarm
Intelligence. In Proc. of KIMAS 2005, CD ROM.

[25] Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.
(2003), Clustering gene-expression data with re-
peated measurements, Genome Biology, v.4, issue 5,
article R34.

154 Informatica 29 (2005) 143–154 A.L. Vizine et al.

Informatica 29 (2005) 155–161 155

Efficient Pre-Processing for Large Window-Based Modular Exponentiation
Using Ant Colony

Nadia Nedjah
Department of Electronics Engineering and Telecommunications,
Faculty of Engineering, State University of Rio de Janeiro, Brazil
nadia@eng.uerj.br

Luiza de Macedo Mourelle
Department of Systems Engineering and Computation,
Faculty of Engineering, State University of Rio de Janeiro, Brazil
ldmm@eng.uerj.br

Keywords: ant colony, addition chain, cryptosystem, modular exponentiation

Received: September 30, 2004

Modular exponentiation is the main operation to RSA-based public-key cryptosystems. It is performed
using successive modular multiplications. This operation is time consuming for large operands, which is
always the case in cryptography. For software or hardware fast cryptosystems, one needs thus reducing
the total number of modular multiplications required. Existing methods attempt to reduce this number by
partitioning the exponent in constant or variable size windows. However, these window-based methods
require some pre-computations, which themselves consist of modular exponentiations. It is clear that pre-
processing needs to be performed efficiently also. In this paper, we exploit the ant colony strategy to
finding an optimal addition sequence that allows one to perform the pre-computations in window-based
methods with a minimal number of modular multiplications. Hence we improve the efficiency of modular
exponentiation. We compare the yielded addition sequences with those obtained using Brun’s algorithm.

Povzetek: Metoda kolonij mravelj je uporabljena za kriptografske probleme.

1 Introduction

Public-key cryptographic systems (such as the RSA en-
cryption scheme [6], [12]) often involve raising large el-
ements of some groups fields (such as GF(2n) or elliptic
curves [9]) to large powers. The performance and practi-
cality of such cryptosystems is primarily determined by the
implementation efficiency of the modular exponentiation.
As the operands (the plain text of a message or the cipher
(possibly a partially ciphered) are usually large (i.e. 1024
bits or more), and in order to improve time requirements of
the encryption/decryption operations, it is essential to at-
tempt to minimise the number of modular multiplications
performed.

A simple procedure to compute C = TE mod M based
on the paper-and-pencil method is described in Algorithm
1. This method requires E-1 modular multiplications. It
computes all powers of T : T → T 2 → . . . → TE−1

→ TE .

Algorithm 1. simpleExponentiation(T,M,E)
1. C := T ;
2. for i := 1 to E − 1 do C := (C × T) mod M ;
3. return C;
end algorithm.

The computation of exponentiations using Algorithm 1
is very inefficient. The problem of yielding the power of a
number using a minimal number of multiplications is NP -
hard [5], [10]. There are several efficient algorithms that
perform exponentiation with a nearly minimal number of
modular multiplications, such that the window-based meth-
ods. However, these methods need some pre-computations
that if not performed efficiently can deteriorate the al-
gorithm overall performance. The pre-computations are
themselves an ensemble of exponentiations and so it is also
NP -hard to perform them optimally. In this paper, we con-
centrate on this problem and engineer a new way to do the
necessary pre-computations very efficiently. We do so us-
ing the ant colony methodology. We compare our results
with those obtained using the Brun’s algorithm [1].

Ant systems [2-1] are distributed multi-agent systems [3-
1] that simulate real ant colony. Each agent behaves as an
ant within its colony. Despite the fact that ants have very
bad vision, they always are capable to find the shortest path
from their nest to wherever the food is. To do so, ants de-
posit a trail of a chemical substance called pheromone on
the path they use to reach the food. On intersection points,
ants tend to choose a path with high amount of pheromone.
Clearly, the ants that travel through the shorter path are ca-

156 Informatica 29 (2005) 155–161 N. Nedjah et al.

pable to return quicker and so the pheromone deposited on
that path increases relatively faster than that deposited on
much longer alternative paths. Consequently, all the ants of
the colony end using the shorter way.

In this paper, we exploit the ant colony methodology to
obtain an optimal solution to AS-chain minimisation NP-
complete problem. In order to clearly report the research
work performed, we subdivide the rest of this paper into
five important sections. In Section 2, we present the win-
dow methods; In Section 3, we present the concepts of ad-
dition chains and sequence and they can be used to improve
the pre-computations of the window methods; In Section
4, we give an overview on ant colony concepts; In Section
5, we explain how these concepts can be used to compute
a minimal addition chain to perform efficiently necessary
pre-computations in the window methods. In Section 6, we
present some useful results.

2 Window-Based Methods
Generally speaking, the window methods for exponentia-
tion [5] may be thought of as a three major step procedure:

1. partitioning in k-bits windows the binary representa-
tion of the exponent E;

2. pre-computing the powers in each window one by one;

3. iterating the squaring of the partial result k times to
shift it over, and then multiplying it by the power in
the next window when if window is not 0.

There are several partitioning strategies. The window
size may be constant or variable. For the m-ary methods,
the window size is constant and the windows are next to
each other. On the other hand, for the sliding window meth-
ods the window size may be of variable length. It is clear
that zero-windows, i.e. those that contain only zeros, do not
introduce any extra computation. So a good strategy for
the sliding window methods is one that attempts to max-
imise the number of zero-windows. The details of m-ary
methods are exposed in Section 2.1 while those related to
sliding constant-size window methods are given in Section
2.2. In Section 2.3, we introduce the adaptive variable-size
window methods.

2.1 M -ary Methods
The m-ary methods [3] scans the digits of E form the less
significant to the most significant digit and groups them
into partitions of equal length log2 m, where m is a power
of two. Note that 1-ary methods coincides with the square-
and- multiply well-known binary exponentiation method.

In general, the exponent E is partitioned into p parti-
tions, each one containing l = log2 m successive digits.
The ordered set of the partition of E will be denoted by
P(E). If the last partition has less digits than log2 m, then
the exponent is expanded to the left with at most log2m−1

zeros. The m-ary algorithm is described in Algorithm 2,
wherein Vi denotes the decimal value of partition Pi.

Algorithm 2. m-aryMethod(T,M,E)
1. Partition E into p l-digits partitions;
2. for i := 2 to m Compute T i mod M ;
3. C := TVp mod M ;
4. for i := p− 2 downto 0
5. C := C2l mod M ;
6. if Vi 6= 0 then C := C× mod M ;
7. return C;
end algorithm.

2.2 Sliding Window Methods

For the sliding window methods the window size may
be of variable length and hence the partitioning may
be performed so that the number of zero-windows is as
large as possible, thus reducing the number of modular
multiplication necessary in the squaring and multiplication
phases. Furthermore, as all possible partitions have to start
(i.e. in the right side) with digit 1, the pre-processing step
needs to be performed for odd values only. The sliding
method algorithm is presented in Algorithm 3, wherein
d denotes the number of digits in the largest possible
partition and Li the length of partition Pi.

Algorithm 3. slidingWindowMethod(T, M, E)
1. Partition E using the given strategy;
2. for i := 2 to 2d − 1 step 2 do
3. Compute T i mod M ;
4. C := TVp−1 mod M ;
5. for i := p− 2 downto 0 do
6. C := CLi mod M ;
7. if Vi 6= 0 then C := C × TVi mod M ;
8. return C;
end algorithm.

In adaptive methods [7] the computation depends on the
input data, such as the exponent E. M -ary methods and
window methods pre-compute powers of all possible parti-
tions, not taking into account that the partitions of the ac-
tual exponent may or may not include all possible parti-
tions. Thus, the number of modular multiplications in the
pre-processing step can be reduced if partitions of E do not
contain all possible ones.

Let ℘(E) be the list of partitions obtained from the bi-
nary representation of E. Assume that the list of partition
is non-redundant and ordered according to the ascending
decimal value of the partitions contained in the expansion
of E. Recall that Vi and Li are the decimal value and the
number of digits of partition Pi. The generic algorithm for
describing the computation of TE mod M using the win-
dow methods is given in Algorithm 4.

In Algorithm 2 and Algorithm 3, it is clear how to
perform the pre-computation indicated in lines 2–3. For
instance, let E = 1011001101111000. The pre-processing

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 157

step of the 4-ary method needs 14 modular multiplica-
tions (T → T × T = T 2 → T × T 2 = T 3 → →
T × T 14 = T 15) and that of the maximum 4-digit sliding
window method needs only 8 modular multiplications
(T → T × T = T 2 → T × T 2 = T 3 → T 3 × T 2 =
T 5 → T 5 × T 2 = T 7 → → T 13 × T 2 = T 15).
However the adaptive 4-ary method would partition
the exponent as E = 1011‖0011‖0111‖1000 and
hence needs to pre-compute the powers T 3, T 7, T 8

and T 11 while the method maximum 4-digit slid-
ing window method would partition the exponent as
E = 1‖0‖11‖00‖11‖0‖1111‖000 and therefore needs to
pre-compute the powers T 3 and T 15. The pre-computation
of the powers needed by the adaptive 4-digit sliding win-
dow method may be done using 6 modular multiplications
T → T × T = T 2 → T × T 2 = T 3 → T 2 × T 2 = T 4 →
T 3 × T 4 = T 7 → T 7 × T = T 8 → T 8 × T 3 = T 11

while the pre-computation of those powers neces-
sary to apply the adaptive sliding window may
be accomplished using 5 modular multiplications
T → T × T = T 2 → T × T 2 = T 3 → T 2 × T 3 = T 5 →
T 5 × T 5 = T 10 → T 5 × T 10 = T 15. Note that Algorithm
4 does not suggest how to compute the powers (lines 2–3)
needed to use the adaptive window methods. Finding the
best way to compute them is a NP -hard problem [4], [7].

Algorithm 4. AdaptiveWindowMethod(T, M, E)
1. Partition E using the given strategy;
2. for each partition Pi ∈ ℘ do
3. Compute TVi mod M ;
4. C := TVp−1 mod M ;
5. for i := p− 2 downto 0 do
6. C := CLi mod M ;
7. if Vi 6= 0 then C := C × TVi mod M ;
8. return C;
end algorithm.

3 Addition Chains and Sequences

An addition chain of length l for an positive integer N is a
list of positive integers (E1, E2, . . . , El) such that E1 = 1,
El = N and Ek = Ei + Ej , 0 ≤ i ≤ j < k ≤ l. Finding
a minimal addition chain for a given positive integer is an
NP -hard problem. It is clear that a short addition chain
for exponent E gives a fast algorithm to compute TE mod
M as we have if Ek = Ei + Ej then TEk = TEi × TEj .
The adaptive window methods described earlier use a near
optimal addition chain to compute TE mod M . However
these methods do not prescribe how to perform the pre-
processing step (Line 3 of Algorithm 4). In the following
we show how to perform this step with minimal number of
modular multiplications.

3.1 Addition sequences
There is a generalisation of the concept of addition chains,
which can be used to formalise the problem of finding a
minimal sequence of powers that should be computed in
the pre-processing step of the adaptive window method.

An addition sequence for the list of positive integers
V1, V2, . . ., Vp such that V1 < V2 < . . . < Vp is an ad-
dition chain for integer Vp that includes all the integers
V1, V2, . . . , Vp. The length of an addition sequence is the
numbers of integers that constitute the chain. An addition
sequence for a list of positive integers V1, V2, . . . , Vp will
be denoted by ξ(V1, V2, . . . , Vp).

Hence, to optimise the number of modular required mul-
tiplications in the pre-processing step of the adaptive win-
dow methods for computing TE mod M , we need to find
an addition sequence of minimal length (or simply minimal
addition sequence) for the values of the partitions included
in the non-redundant ordered list ℘(E). This is an NP -
hard problem and we use genetic algorithm to solve it. Our
method showed to be very effective for large window size.
General principles of genetic algorithms are explained in
the next section.

3.2 Brun’s algorithm
Now we describe briefly, Brun’s algorithm [1] to compute
addition sequences. The algorithm is a generalisation of
the continued fraction algorithm [1]. Assume that we need
to compute the addition sequence ξ(V1, V2, . . . , Vp). Let
Q = b Vp

Vp−1
c and let χ(Q) be the addition chain for Q us-

ing the binary method (i.e. that used in Algorithm 2 with l =
1). Let R = Vp−Q×Vp−1. By induction we can construct
an addition sequence ξ(V1, V2, . . . , R, . . . , Vp−1), then ob-
tain:

ξ(S) = ξ(V1, V2, . . . , R, . . . , Vp−1)∪
Vp−1 × χ(Q) \ {1} ∪ {Vp},

S = V1, V2, . . . , Vp

(1)

4 Ant Systems and Algorithms
Ant systems can be viewed as multi-agent systems [3] that
use a shared memory through which they communicate and
a local memory to bookkeep the locally reached problem
solution. Fig. 1. depicts the overall structure of an system,
wherein Ai and LMi represent the ith. agent of the ant sys-
tem and its local memory respectively. Mainly, the shared
memory (SM) holds the pheromone information while the
local memory LMi keeps the solution (possibly partial)
that agent Ai reached so far.

The behaviour of an artificial ant colony is summarised
in Algorithm 5, wherein N, C, SM are the number of
artificial ant that form the colony, the characteristics of
the expected solution and the shared memory used by the
artificial ants to store pheromone information respectively.

158 Informatica 29 (2005) 155–161 N. Nedjah et al.

Figure 1: Multi-agent system architecture

The first step consists of activating N distinct artificial
ants that should work in simultaneously. Every time an ant
conclude its search, the shared memory is updated with
an amount of pheromone, which should be proportional
to the quality of the reached solution. This called global
pheromone update. When the solution yield by an ant’s
work is suitable (i.e. fits characteristics C) then all the
active ants are stopped. Otherwise, the process is iterated
until an adequate solution is encountered.

Algorithm 5. ArtificialAntColony(N,C)
1. Initialise SM with initial pheromone;
2. do
3. for i := 1 to N
4. Start ArtificialAnt(Ai, LMi);
5. Active := Active ∪ {Ai};
6. do
7. Update SM (pheromone evaporation);
8. when an ant (say Ai) halts do
9. Active := Active \ {Ai};
10. Φ := Pheromone(LMi);
11. Update SM (global pheromone Φ);
12. S := ExtractSolution(LMi);
13. until Fitness(S) = C or Active = ∅;
14. while Active 6= ∅ do
15. Stop ant Ai | Ai ∈ Active;
16. Active := Active \ {Ai};
17. until Fitness(S) = C;
18. return S;
end.

The behaviour of an artificial ant is described in
Algorithm 6, wherein Ai and LMi represent the ant
identifier and the ant local memory, in which it stores
the solution computed so far. First, the ant computes the
probabilities that it uses to select the next state to move
to. The computation depends on the solution built so far,
the problem constraints as well as some heuristics [2], [6].

Thereafter, the ant updates the solution stored in its local
memory, deposits some local pheromone into the shared
memory then moves to the chosen state. This process is
iterated until complete problem solution is yielded.

Algorithm 6. ArtificialAnt(Ai, LMi)
1. Initialise LMi;
2. do
3. P := TransitionProbabilities(LMi);
4. NextState := StateDecision(LMi, P);
5. Update LMi;
6. Update SM with local pheromone;
7. CurrentState := NextState);
8. until CurrentState := TargetState;
9. Halt Ai;
end.

5 Chain Sequence Minimisation
Using Ant System

In this section, we concentrate on the specialisation of the
ant system of Algorithm 4 and Algorithm 5 to the addi-
tion sequence minimisation problem. For this purpose,
we describe how the shared and local memories are repre-
sented. We then detail the function that yields the solution
(possibly partial) characteristics. Thereafter, we define the
amount of pheromone to be deposited with respect to the
solution obtained so far. Finally, we show how to compute
the necessary probabilities and make the adequate decision
towards a shorter addition sequence for the considered the
sequence (V1, V2, . . . , Vp).

5.1 The Ant System Shared Memory

The ant system shared memory is a two-dimension array.
If the last exponent in the sequence is Vp then the array
should Vp rows. The number of columns depends on the
row. It can be computed as in Eq. 2, wherein NCi denotes
the number of columns in row i.

NCi =

2i−1 − i + 1 if 2i−1 < Vp

1 if i = Vp

Vp − i + 3 otherwise

(2)

An entry SMi,j of the shared memory holds the pheromone
deposited by ants that used exponent i+j as the i th. mem-
ber in the built addition sequence. Note that 1 ≤ i ≤ Vp

and for row i, 0 ≤ j ≤ NCi. Fig. 2 gives an example
of the shared memory for exponent 17. In this example,
a table entry is set to show the exponent corresponding to
it. The exponent Ei,j corresponding to entry SMi,j should
be obtainable from exponents of previous rows. Eq. 3 for-
malises such a requirement.

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 159

Figure 2: Example of shared memory content for Vp = 17

Ei,j = Ek1,l1 + Ek2,k2 | 1 ≤ k1, k2 < i,
0 ≤ l1, l2 ≤ j,
k1 = k2 ⇐⇒ l1 = l2

(3)

Note that, in Fig. 2, the exponents in the shaded entries
are not valid exponents as for instance exponent 7 of row
4 can is not obtainable from the sum of two previous dif-
ferent stages, as described in Eq. 3. The computational
process that allows us to avoid these exponents is of very
high cost. In order to avoid using these few exponents,
we will penalise those ants that use them and hopefully,
the solutions built by the ants will be almost all valid ad-
dition chains. Furthermore, note that for a valid solution
need also to contain all the exponents of the sequence i.e.,
V1, V2, . . . , Vp−1, Vp.

5.2 The Ant Local Memory
In an ant system, each ant is endowed a local memory that
allows it to store the solution or the part of it that was built
so far. This local memory is divided into two parts: the
first part represents the (partial) addition sequence found
by the ant so far and consists of a one-dimension array of
Vp entries; the second part holds the characteristic of the
solution. It represents the solution fitness i.e., its length.
The details of how to compute the fitness of a possibly par-
tial addition sequence are given in the next section. Fig.
3 shows six different examples of an ant local memory for
sequence (5, 7, 11). Fig. 3(a) represents addition sequence
(1, 2, 4, 5, 7, 11), which is a valid and complete solution of
fitness 5. Fig. 3(b) depicts addition sequence (1, 2, 3, 5, 7,
10, 11), which is also a valid and complete solution but of
fitness 6. Fig. 3(c) represents partial addition sequence (1,
2, 4, 5), which is a valid and but incomplete solution as it
does not include exponent 7 and 11 and the last exponent

5 1 2 4 5 7 11 0 0 0 0 0 (a)

6 1 2 3 5 7 10 11 0 0 0 0 (b)

8.8 1 2 4 5 0 0 0 0 0 0 0 (c)

15 1 2 4 5 10 11 0 0 0 0 0
(d)

15 1 2 3 5 7 11 0 0 0 0 0 (e)

25 1 2 5 10 11 0 0 0 0 0 0 (f)

Figure 3: Example of an ant local memory

is smaller than both 7 and 11. The corresponding fitness is
8.8. Fig. 3(d) consists of non-valid addition sequence (1, 2,
4, 5, 10, 11) as 7 is not included. The corresponding fitness
is 15. Fig. 3(e) represents also non-valid addition sequence
(1, 2, 3, 5, 7, 11) as 11 is not a sum two previous exponents
in the sequence. Its fitness is also 15. Finally, Fig. 3(f) rep-
resents also non-valid addition sequence (1, 2, 5, 10, 11)
as 5 is not a sum two previous and mandatory exponent 7
is not in the addition sequence. exponents in the sequence.
Its fitness is also 25. In next section, we explain how the
fitness of a solution is computed.

5.3 Addition Sequence Characteristics
The fitness evaluation of an addition sequence is performed
with respect to three aspects: (a) how much it adheres
to the definition (see Section 3), i.e. how many of its
members cannot be obtained summing up two previous
members of the sequence; (b) how far the it is reduced,
i.e. what is the length of the chain; (c) how many of
the mandatory exponents do not appear in the sequence.
Eq. 4 shows how to compute the fitness f of solution
α = (E1, E2, . . . , En, 0, . . . , 0) regarding mandatory ex-
ponents σ = V1, V2, . . . , Vp.

f(S,A) = Vp×(n−1)
En

+ ψ × (η1 + η2)

σ = V1, V2, . . . , Vp

α = V1, V2, . . . , Vp

(4)

wherein ψ is a penalty, η1 represents the number of Ei,
3 ≤ i ≤ n in the addition sequence that verify the predicate
below:

∀j, k | 1 ≤ j, k < i,Ei 6= Ej + Ek (5)

and η2 represents the number of mandatory exponents Vi,
1 ≤ i ≤ p that verify the predicate below:

Vi ≤ En =⇒ ∀j | 1 ≤ j ≤ n,Ej 6= Vi (6)

For a valid complete addition sequence, the fitness co-
incides with its length, which is the number of multiplica-

160 Informatica 29 (2005) 155–161 N. Nedjah et al.

tions that are required to compute the exponentiation us-
ing the sequence. For a valid but incomplete addition se-
quence, the fitness consists of its relative length. It takes
into account the distance between last mandatory exponent
Vp and the last exponent in the partial addition sequence.
Furthermore, for every mandatory exponent that is smaller
than the last member of the sequence which is not part of
it, a penalty is added to the sequence fitness. Note that
valid incomplete sequences may have the same fitness of
some other valid and complete ones. For instance, addi-
tion sequence (1, 2, 3, 6, 8) and (1, 2, 3, 6) for exponent
mandatory exponents (3, 6, 8) have the same fitness 4.

For an invalid addition sequences, a penalty, which
should be larger than Vp, is introduced into the fitness value
for each exponent for which one cannot find two (may be
equal) members of the sequence whose sum is equal to the
exponent in question or two distinct previous members of
the chain whose difference is equal to the considered ex-
ponent. Furthermore, a penalty is added to the fitness of a
addition sequence whenever the a mandatory exponent is
not part of it. The penalty used in the examples of Fig. 3 is
10.

5.4 Pheromone Trail and State Transition
Function

There are three situations wherein the pheromone trail is
updated: (a) when an ant chooses to use exponent F = i+j
as the ith. member in its solution, the shared memory cell
SMi,j is incremented with a constant value of pheromone
∆φ, as in the first assignment of Eq. 7; (b) when an
ant halts because it reached a complete solution, say α =
(E1, E2, . . . , En) for mandatory exponent sequence σ, all
the shared memory cells SMi,j such that i+j = Ei are in-
cremented with pheromone value of 1/F itness(σ, α), as
in the second Eq. 7. Note that the better is the reached
solution, the higher is the amount of pheromone deposited
in the shared memory cells that correspond to the addition
sequence members. (iii) The pheromone deposited should
evaporate. Periodically, the pheromone amount stored in
SMi,j is decremented in an exponential manner [6] as in
the third assignment of Eq. 7.

SMi,j := SMi,j + ∆φ, whenever Ei = i + j

SMi,j := SMi,j + 1/f(σ, α),∀i, j | i + j = Ei

SMi,j := (1− ρ)SMi,j | ρ ∈ (0, 1], periodically

(7)

An ant, say A that has constructed partial addition se-
quence (E1, E2, . . . , Ei, 0, . . . , 0) for exponent sequence
(V1, V2, . . . , Vp), is said to be in step i. In step i + 1, it
may choose exponent Ei+1 Ei + 1, Ei + 2, . . ., 2Ei, if
2Ei ≤ Vp. That is, ant A may choose one of the ex-
ponents that are associated with the shared memory cells
SMi+1,Ei−i, SMi+1,Ei−i+1, . . ., SMi+1,2Ei−i−1. Oth-
erwise (i.e. if 2Ei > Vp), it may only select from

Figure 4: Comparison of the average length of the addition
chains

exponents Ei + 1, Ei + 2, . . ., E + 2. In this case,
ant A may choose one of the exponent associated with
SMi+1,Ei−i, SMi+1,Ei−i+1, . . . , SMi+1,E−i+1. Further-
more, ant A chooses the new exponent Ei+1 with the prob-
ability expressed through Eq. 8 below.

Pi,j =

SMi+1,j

2Ei−i−1
max

k=Ei−i
SMi+1,k

if 2Ei ≤ E &

j ∈ [Ei − i, 2Ei − i− 1]

SMi+1,j

E−i−1
max

k=Ei−i
SMi+1,k

if 2Ei > E &

j ∈ [Ei − i, E − i− 1]

0 otherwise
(8)

6 Performance Comparison

The ant system described in Algorithm 5 and Algorithm 6
was implemented using Java as a multi-threaded ant sys-
tem. Each ant was simulated by a thread that implements
the artificial ant computation of Algorithm 4. A Pentium
IV-HTTM of a operation frequency of 1GH and RAM size
of 2GB was used to run the ant system and obtain the per-
formance results.

We compared the performance of m-ary methods, the
Brun’s algorithm, genetic algorithms and ant system-based
methods. The obtained addition chains are given in Table
1.

The average lengths of the addition sequences for dif-
ferent exponent sequences obtained using these methods
are given in Table 2. The exponent size is that of its bi-
nary representation (i.e. number of bits). The ant system-
based method always outperforms all the others, including
the genetic algorithm-based method [7]. The chart of Fig.
4 shows the relation between the average length of the ob-
tained addition sequences.

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 161

Table 1: The addition sequences yield for ξ(5, 9, 23),
ξ(9, 27, 55) and ξ(5, 7, 95) respectively

Method Addition sequence #×
5-ary (1,2,3,. . .,30,31) 30
5-window (1,2,3,5,7,9,11,. . .,31) 16
Brun’s (1,2,4,5,9,18,23) 6
GAs (1,2,4,5,9,18,23) 6
Ant system (1,2,4,5,9,14,23) 6
6-ary (1,2,3,. . .,. . .,63) 62
6-window (1,2,3,5,7,. . .,63) 31
Brun’s (1,2,3,6,9,18,27,54,55) 8
GAs (1,2,4,8,9,18,27,28,55) 8
Ant system (1,2,4,5,9,18,27,54,55) 8
7-ary (1,2,3,4,5,6,7,. . .,95) 94
7-window (1,2,3,5,7,. . .,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9
7-ary (1,2,3,4,5,6,7,. . .,95) 94
7-window (1,2,3,5,7,. . .,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9

Table 2: Average length of addition sequence for Brun’s
algorithm (BA), genetic algorithms (GA) and ant system
(AS)

|Vp| BA GA AS

32 41 42 45
64 84 85 86
128 169 170 168
256 340 341 331
512 681 682 658
1024 1364 1365 1313

7 Conclusion
In this paper we applied the methodology of ant colony to
the addition chain minimisation problem. Namely, we de-
scribed how the shared and local memories are represented.
We detailed the function that computes the solution fitness.
We defined the amount of pheromone to be deposited with
respect to the solution obtained by an ant. We showed how
to compute the necessary probabilities and make the ade-
quate decision towards a good addition chain for the con-
sidered exponent.

Furthermore, we implemented the ant system described
using multi-threading (each ant of the system was imple-
mented by a thread). We compared the results obtained by
the ant system to those of m-ary methods (binary, quater-
nary and octal methods). Taking advantage of the a previ-
ous work on evolving minimal addition chains with genetic
algorithm, we also compared the obtained results to those
obtained by the genetic algorithm. The ant system always
finds a shorter addition chain and gain increases with the
size of the exponents.

References
[1] Rivest, R., Shamir, A. and Adleman, L., A method

for Obtaining Digital Signature and Public-Key Cryp-
tosystems, Communications of the ACM, 21:120-126,
1978.

[2] Dorigo, M. and Gambardella, L.M., Ant Colony:
a Cooperative Learning Approach to the Travelling
Salesman Problem, IEEE Transaction on Evolutionary
Computation, Vol. 1, No. 1, pp. 53-66, 1997.

[3] Feber, J., Multi-Agent Systems: an Introduction to
Distributed Artificial Intelligence, Addison-Wesley,
1995.

[4] Downing, P. Leong B. and Sthi, R., Computing Se-
quences with Addition Chains, SIAM Journal on Com-
puting, vol. 10, No. 3, pp. 638-646, 1981.

[5] Nedjah, N., Mourelle, L.M., Efficient Parallel Modular
Exponentiation Algorithm, Second International Con-
ference on Information systems, ADVIS’2002, Izmir,
Turkey, Lecture Notes in Computer Science, Springer-
Verlag, vol. 2457, pp. 405-414, 2002.

[6] Stutzle, T. and Dorigo, M., ACO Algorithms for the
Travelling Salesman Problems, Evolutionary Algo-
rithms in Engineering and Computer Science, John-
Wiley & Sons, 1999.

[7] Nedjah, N. and Mourelle, L.M., Minimal addition-
subtraction chains using genetic algorithms, Proceed-
ings of the Second International Conference on Infor-
mation Systems, Izmir, Turkey, Lecture Notes in Com-
puter Science, Springer-Verlag, vol. 2457, pp. 303-313,
2002.

162 Informatica 29 (2005) 155–161 N. Nedjah et al.

 Informatica 29 (2005) 163–171 163

Max Min Ant System and Capacitated p-Medians: Extensions and
Improved Solutions
Fabrício Olivetti de França and Fernando J. Von Zuben
LBiC/DCA/FEEC
State University of Campinas (Unicamp)
PO Box 6101, 13083-852 – Campinas/SP, Brazil

Leandro Nunes de Castro
Research and Graduate Program on Informatics
Catholic University of Santos (UniSantos)
R. Dr. Carvalho de Mendonça, 144
11070-906, Santos/SP, Brazil

Keywords: Ant colony optimization, Capacitated p-medians, Clustering problems

Received: September 24, 2004

This work introduces a modified MAX MIN Ant System (MMAS) designed to solve the Capacitated p-
Medians Problem (CPMP). It presents the most relevant steps towards the implementation of an MMAS
to solve the CPMP, including some improvements on the original MMAS algorithm, such as the use of a
density model in the information heuristics and a local search adapted from the uncapacitated p-
medians problem. Extensions of a recently proposed updating rule for the pheromone level, aiming at
improving the MMAS ability to deal with large-scale instances, are also presented and discussed. Some
simulations are performed using instances available from the literature, and well-known heuristics are
employed for benchmarking.
Povzetek: Predstavljene so izboljšave algoritma MAX MIN na osnovi kolonij mravelj za reševanje
problema CPMP.

1 Introduction
The capacitated p-medians problem (CPMP), also known
as capacitated clustering problem, is a combinatorial
programming task that can be described as follows: given
a graph with n vertices (clients), find p centers (medians)
and assign the other vertices to them minimizing the total
distance covered, limited to a capacity restriction. This
problem is a special case of the “capacitated plant loca-
tion problem with single source constraints” and many
other combinatorial problems as pointed in Osman and
Christofides [1]. As such, the CPMP was proved to be
NP-complete in Garey and Johnson [2]. Its practical use
varies from industrial and commercial planning to every
clustering related problem, like data mining, pattern rec-
ognition, vehicle routing and many others.

Ant Systems (AS) were first proposed in Dorigo [3]
as an attempt to use the ant foraging behavior as a source
of inspiration for the development of new search and
optimization techniques. By using the pheromone trail as
a reinforcement signal for the choice of which path to
follow, ants tend to find “minimal” routes from the nest
to the food source. The system is based on the fact that
ants, while foraging, deposit a chemical substance,
known as pheromone, on the path they use to go from the
food source to the nest. The standard system was later
extended in Dorigo and Di Caro [4], giving rise to the so-
called Max Min Ant System (MMAS). The main purpose
of the max-min version is to improve the search capabil-
ity of the standard algorithm by combining exploitation
with exploration of the search space, and by imposing

bounds to the pheromone level, thus helping to avoid
stagnation.

This paper is an extension of the work initiated in de
França et al. [5], with additional contributions: a thor-
ough analysis and explanation of the proposed operators,
and a broader set of experiments. Essentially, the innova-
tive aspects of the approach are twofold: (i) adaptation of
the MMAS algorithm to deal with a problem not previ-
ously conceived by means of an ant-based formalism;
and (ii) proposition of several modifications to the
MMAS algorithm so as to improve its performance when
dealing with large instances of combinatorial optimiza-
tion problems. In practical terms, the ant system will
incorporate a local search procedure for the CPMP, a
new updating rule for the pheromone level, and a stagna-
tion control mechanism.

The paper is organized as follows. Section 2 provides
a mathematical formulation of the CPMP problem and
the General Assignment Problem (GAP) that results
when the medians are already specified. In Section 3, the
basic Ant System algorithm together with its Max Min
version, MMAS, are reviewed. Section 4 emphasizes the
contributions of this work. It describes the proposed en-
hancements of MMAS, leading to the improved MMAS,
called here IMMAS, and how to apply ant-based algo-
rithms to the capacitated p-medians problem. The pro-
posed algorithm is evaluated in Section 5, and its per-
formance is compared with that of other works from the
literature. The paper is concluded in Section 6 with a
discussion about the formal and methodological contri-

164 Informatica 29 (2005) 163–171 F.O. de França et al.

butions and a description of several avenues for further
investigation.

2 Mathematical Formulation of the
Capacitated p-Medians Problem

This section provides a mathematical formulation of the
capacitated p-medians problem as a constrained optimi-
zation problem: the total distance from the medians to
the clients has to be minimized, constrained by the de-
mands of clients and capacities of medians.

On a complete graph, given n nodes with predefined
capacities and demands, the goal is to choose p nodes
(p < n) as capacitated medians and to attribute each one
of the remaining (n − p) nodes, denoted clients, to one of
the chosen medians, so that the capacity of each median
is not violated by the cumulated demand, and the sum of
the distances from each client to the corresponding me-
dian is minimal. Every node is a candidate to become a
median, and the solution will consider demand and ca-
pacity of medians, and only demand of clients.

Defining an n × n matrix X, with components
xij ∈ {0,1}, i,j = 1,...,n, and an n-dimensional vector y,
with components yj ∈ {0,1}, j = 1,...,n, the following
associations are imposed:

⎩
⎨
⎧

=
otherwise ,0

median toallocated is node if ,1 ji
xij

⎩
⎨
⎧

=
otherwise ,0

median a is node if ,1 j
y j

The CPMP formulation as an integer-programming prob-
lem can, thus, be given as follows:

∑∑
= =

≡
n

i

n

j
ijijyy

xdf
1 1,,

min)(min
XX

X . (1)

subject to,

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=≤

=

=≤

==

∑

∑

∑

=

=

=

1such that for ,.

,...,2,1,,

,...,1,1

1

1

1

jj

n

i
iij

n

j
j

jij

n

i
ij

yjcax

py

njiyx

njx

 (2)

where:

n = number of nodes in the graph
ai = demand of node i
cj = capacity of median j
dij = distance between nodes i and j
p = number of medians to be allocated

After all p medians are chosen, the CPMP becomes a

Generalized Assignment Problem (GAP); that is, given a

set of medians, allocate a set of clients to those medians
so as to minimize Eq. (3):

∑∑
= =

n

i

p

j
ijij xd

1 1
min

X
. (3)

where dij is the cost of allocating client i to median j, n is
the number of nodes, and p is the number of medians,
subject to the capacity of the respective medians and
client demands:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==∈

=≤⋅

==

∑

∑

=

=

pjmix

pjcax

pjx

ij

j

n

i
iij

p

i
ij

,..,1;,..,1},1,0{

,...,1,

,,...,1,1

1

1

(4)

where ai is the demand of client i, and cj is the capacity
of median j.

3 Ant System and Max-Min Ant Sys-
tem

The ant system (AS) [3] was the first ant-based algorithm
applied to solve combinatorial optimization problems.
More than one decade after it was introduced, several
different versions, improvements and applications have
been presented (c.f. Dorigo and Di Caro [4], Dorigo and
Stützle [6], de Castro and Von Zuben [7]). This section
briefly reviews the original proposal together with one of
its most popular variants, the Max Min Ant System
(MMAS).

3.1 Ant System
The basic AS [3] is conceptually simple, as described in
Algorithm 1.

 Function AS()

While it < max_it do,
 For each ant do,

 build_solution();
 update_pheromone();

 Endfor
Endwhile

 End
Algorithm 1: Pseudocode for the basic ant system (AS).

In Algorithm 1, procedure build_solution() builds a solution
to a problem based on a pheromone trail and on optional
information heuristics. Each ant k traverses one node per
iteration step t and, at each edge, the local information
about its pheromone level, τij, is used by the ant such that
it can probabilistically decide the next node to move to,
according to the following rule:

MAX MIN ANT SYSTEM AND CAPACITATED... Informatica 29 (2005) 163–171 165

⎪
⎩

⎪
⎨

⎧
∈

= ∑ ∈

otherwise0

 if
)]([τ

)]([τ
)(

k

Jj ij

ij
k
ij

Jj
t

t
tp k ,

(5)

where τij(t) is the pheromone level of edge (i,j), and Jk is
the list of nodes yet to be visited by ant k.

While traversing an edge (i,j), ant k deposits some
pheromone on it – procedure update_pheromone() – and the
pheromone level of edge (i,j) is updated according to
Eq. (6).

τij ← ρ.τij + ∆τij, (6)

where ρ ∈ (0,1] is the pheromone decay rate, and ∆τij is
the increment in the pheromone level. In minimization
problems, the pheromone increment is given by

,
otherwise,0

S),(if,)(
1

⎪⎩

⎪
⎨
⎧ ∈

=τ∆
jiSfij (7)

where S is the solution used to update the trail, and f(S) is
a function that reflects the quality of a solution, i.e., the
lower the value the better the quality assuming a minimi-
zation problem is being solved.

In our proposal, the pheromone is represented as a vec-
tor, instead of as a bi-dimensional matrix as in the classi-
cal AS. This is because the algorithm to be described
here works by assigning pheromone to vertices and not
to edges, as will be further discussed in Section 4.

3.2 Max Min Ant System (MMAS)
An important improvement to the Ant System, called
Max Min Ant System (MMAS), was introduced in
Stützle and Hoos [8]. In this implementation, the phero-
mone trail is updated only on the global best and/or local
best solutions, instead of on solutions created by every
ant. This promotes a better exploitation of the search
space, as it favors the solutions in the neighborhood of
the global and local bests. Another improvement is the
inclusion of upper and lower bounds to the pheromone
level (τmax and τmin), thus helping to avoid stagnation.
Initially all trail is set to the upper bound in order to fa-
vor exploration. As defined in Stützle and Hoos [8], and
in Stützle and Dorigo [9], the upper bound is usually
chosen to be the maximum value the pheromone can
reach at the final iterations. Following from Eq. (6), the
maximum value at a given iteration t is:

0
1

.1.)(τρ+ρ=τ ∑
=

− t
t

j opt

jt
i F

t . (8)

where Fopt is the optimal solution, ρ is the pheromone
decay rate, and τ0 is the initial pheromone value. As
ρ < 1, when t tends to infinity, the pheromone value is
limited to

optF
1

1
1

max ⋅
ρ−

=τ . (9)

The problem with Eq. (9) is that the optimal solution
Fopt is usually unknown. To circumvent this difficulty,
Fbest; that is, the fitness of the best solution found so far,
is used in place of Fopt, as an approximation.

The lower bound is calculated so as to give a τmax/τmin
ratio equal to 2n (twice the set of candidates to medians),
so it is set to τmin = τmax/2n. On the one hand, this ratio
must not be too high, because the probability of selecting
a path with low pheromone level would become too
small. On the other hand, if the ratio is too low, the prob-
ability of selecting a path with high pheromone level
would be very close to the probability of selecting a path
with low pheromone level.

4 MMAS Applied to the Capacitated
p-Medians Problem

This section describes the general methodology used to
apply the proposed modified Max Min Ant System to the
CPMP [5]. In particular, it is described how the solutions
are built by the algorithm, the use of a density-based in-
formation heuristics, a local search procedure, a new
updating rule for the ant system, and a stagnation control
mechanism.

4.1 Building Solutions
The construction of each solution to the CPMP using
MMAS is made as follows. Using the probabilistic equa-
tion, Eq. (5), each ant sequentially chooses a set of p
nodes to become medians among the n candidate nodes.
Note that the pheromone level in our proposal is attrib-
uted to nodes and not edges. After the definition of the p
nodes that will play the role of medians, each one of the
remaining n − p nodes has to be allocated to precisely
one median, giving rise to the Generalized Assignment
Problem (GAP) described in Section 2.

The resulting GAP will not be solved using ant system.
Instead, a constructive heuristic to allocate clients to me-
dians will be adopted. The method used here was pro-
posed by Osman and Christofides [1] and works as sum-
marized in Algorithm 2.

Function [x] = GAP(clients[],medians[],n,p)
 ordered_clients = sort_clients();
 For i = 1 to n do,
 ordered_medians = sort_medians(ordered_clients[i]);
 For j = 1 to p do,
 If (capacity(ordered_medians[j]) –
 demand(ordered_clients[i])) >= 0,
 x[ordered_clients[i]][ordered_medians[j]]=1;
 Endif
 Endfor
 Endfor
 End

Algorithm 2: Constructive heuristics to allocate clients to
medians.

Function sort_clients() generates a list with all the n clients
in increasing order of distance to their corresponding
nearest median. Then, the algorithm loops sequentially

166 Informatica 29 (2005) 163–171 F.O. de França et al.

through this list calling sort_medians() to each client, which
generates a list with all the p medians in increasing order
of distance to the current client. Given the ordered list of
medians, the current client will be allocated to the first
available median, i.e., the one for which the difference
between median capacity and client demand is greater or
equal to zero. The result is the matrix xij described in
Section 2.

After these steps the solution is evaluated by means of
Eq. (1). Then, one iteration of local search is performed
as described in Section 4.3. This procedure is then re-
peated for each ant. For stagnation control, if the algo-
rithm does not improve the solution for 30% (defined
empirically) of the number of total iterations, all phero-
mone trails are restarted.

4.2 Information Heuristic (η)
In order to improve the solutions found by the construc-
tive phase of the ant algorithm, an information heuristic
which contains the quality of choosing each node as part
of the solution is used. For this heuristic, some greedy
information concerning the problem is often adopted,
such as the distance among the current node to the others
in traveling salesperson problems as shown in Dorigo
[3], Dorigo and Di Caro [4], and Dorigo and Stützle [6].
Thus, Eq. (5) becomes Eq. (10):

,

otherwise0

 if
][η.)]([τ

][η.)]([τ
)(

⎪
⎩

⎪
⎨

⎧
∈

= ∑ ∈
βα

βα
k

Jl ll

ii
k
i

Ji
t

t
tp k

(10)

The parameters α and β are user-defined and control
the relative weight of trail intensity τi(t) and information
heuristic ηi.

In the case of CPMP, the information heuristic pro-
posed here is a density model for this problem based on
Ahmadi and Osman [10]. The idea is to calculate an op-
timistic density of a cluster if a given node was to be
chosen as the median. The computation follows Algo-
rithm 3.

Function [η] = density()
 For i = 1 to n do,

 ordered_nodes = sort_nodes(i);
 [all_nodes, sum_distance] = allocate(i,ordered_nodes);

 ;
cesum_distan

all_nodes
=ηi

 Endfor
 End

Algorithm 3: Calculating the density of a cluster.

Function sort_nodes() sorts all nodes based on their dis-
tance to node i; and function allocate() assigns each node
in ordered_nodes to i, until its capacity is reached, return-
ing two outputs: (i) all_nodes: the number of allocated
nodes; and (ii) sum_distance: the summation of the dis-
tance between each allocated node and node i. Although
this is a reasonable measure of the potential of a node as
a candidate to become a median, it does not always im-

ply the most appropriate scenario. Given that information
heuristic provides just an approximated indication of the
best candidates to become medians, parameters α and β
are set so as to emphasize pheromone instead of the heu-
ristic information, as will be observed in the experiments
described in Section 5. This is opposed to the approach
usually adopted for tackling the TSP problem, in which
the best results found are given more importance.

4.3 A Local Search Procedure for the
CPMP

The local search heuristic is a first improvement ap-
proach for the MMAS algorithm. Basically it consists of
changing a client into a median and this median into a
client seeking an improvement of the objective function.

To define the search neighborhood, an approach based
on the uncapacitated p-medians problem proposed in
Resend and Werneck [11], and in Teitz and Bart [12]
was adopted. This approach consists of an optimistic
function to calculate a profit, P, obtained by changing a
client into a median and determining which median to
remove in this case. Initially, two vectors d1 and d2, con-
taining the first and second closest median to each client,
are calculated. Then, the profit associated with each pos-
sible interchange between a client and a median obeys
the following equation:

()

(),)()),(),(min(

)],()([,0max),(

)(:
12

)(:
1

1

1

∑

∑

=

≠

−

−−=

r

r

fudu
i

fudu
iri

udfudud

fududffP

(11)

where M is the set of medians, fi ∉ M and fr ∈ M is ap-
plied, fi is the node chosen to enter the solution as a me-
dian, fr is the node chosen to leave it, d1(u) is the distance
of node u to its nearest median, d2(u) is the distance of
node u to its second nearest median, and d(x1,x2) is the
Euclidean distance between x1 and x2.

Figure 1 provides a general overview of the local
search procedure. The larger circles represent candidates
to medians, and the smaller ones represent the clients.

fi

fr

Figure 1: Overview of the local search procedure. Solid lines
connect clients to medians, fi is the candidate to enter the solu-
tion as a median, and fr is the median that will leave the solu-
tion.

MAX MIN ANT SYSTEM AND CAPACITATED... Informatica 29 (2005) 163–171 167

The first term of the right hand side of Eq. (11), detailed
in Figure 2, refers to all clients that do not belong to the
median candidate to leave the solution, and takes into
account two possibilities: (i) the new median is nearer to
the client than its previous nearest median; or (ii) the new
median is farther to the client than its previous nearest
median. When the former holds, allocating this client to
the new median will reduce the total value of the objec-
tive function, increasing the profit in proportion to
d1(u) − d(u,fi). Otherwise, no change occurs.

0

0
fi

fr

d1−d(fi)

d1−d(fi)

Figure 2: First term of the right hand side of Eq. (11). Clients
not allocated to fr that will profit from the insertion of fi. Solid
lines connect each client to a median, dotted lines represent the
new connections, fi is the candidate to enter the solution as a
median, and fr is the median that will leave the solution.

In the second term of the right hand side of Eq. (11),
those clients that will lose their nearest median and will
be allocated to a new one are taken into account (Figure
3). There are also two possibilities in this case: (i) the
nearest median becomes the new median; or (ii) the cli-
ent is allocated to its second nearest median. In the first
case, the difference on the profit will be d(u,fi) − d1(u),
and can make the total distance larger or smaller. In the
second case, the profit function will have a decrease pro-
portional to d2(u) – d1(u).

 d2−d1

 d2−d1

0

0

fi

fr

d(fi)−d1

d(fi)−d1

d1−d(fi)

Figure 3: Second term of the right hand side of Eq. (11). Cli-
ents allocated to fr that will profit or not from the exit of fr.
Solid lines connect each client to a median, dotted lines repre-
sent the new connections, fi is the candidate to enter the solu-
tion as a median, and fr is the median that will leave the solu-
tion.

After this procedure has finished, two similar First Im-
provement Local Search procedures are performed, but

regarding the clients instead of medians. The first one
(Figure 4(a)) consists of interchanging two clients of
different medians whenever it is profitable, and after that,
recalculating the medians taking the best point inside
each cluster. The second type (Figure 4(b)) is the same as
the previous one, but two clients of one median are inter-
changed with one client from another.

(a)

(b)

Figure 4: First Improvement Local Search procedures. (a) One
movement of 1-interchange GAP local search. One client of the
first cluster interchanges with a client from the other one (dot-
ted lines). (b) One movement of 2-interchange GAP local
search. One client of the first cluster interchanges with two
clients from the other one (dotted lines).

A number greater than 2 for the λ-interchange algorithm
is computationally expensive and will hardly represent
significant benefits to the final results, because 1- and 2-
interchange, when tried several times, can eventually
perform the job of a λ-interchange for higher values of λ.

4.4 A New Updating Rule for AS
A well-known problem with the AS is that of scaling the
objective function to update the pheromone trail. If not
appropriately done, the performance of the algorithm
tends to be unsatisfactory for large instances of the prob-
lem. To propose a suitable updating rule, a framework
for the AS that can also be applied to its variants like
MMAS was introduced in Blum et al. [13] and Blum and
Dorigo [14]. The main idea is to normalize the bounds of
the pheromone trails in the range [0,1], and consequently
normalize the quality function of a solution, f(⋅). The
updating rule thus becomes:

τi = τi + ρ(∆τi − τi). (12)

with

⎪
⎩

⎪
⎨

⎧
∈

=τ∆ ∑
otherwise ,0

 if,
)(

1
)(

1

best

j
Sjf

Sf

i

Sibest

. (13)

for each node i, where Sbest is the best solution found and
Sj is the solution found by ant j. In this case, τi, ∀i, is
initially set to 0.5 in order to equal the chances in both
directions.

168 Informatica 29 (2005) 163–171 F.O. de França et al.

4.5 Adaptation to the CPMP
To apply the MMAS to the capacitated p-medians prob-
lem using the new updating rule, some modifications had
to be introduced to take full advantage of all the problem
information available. First, τmin and τmax were set to
0.001 and 0.999, respectively, and the pheromone trail
was initialized to 0.5.

It can be noticed from Eq. (12) that in order to have a
positive increase in the pheromone level it is necessary
that τι < ∆τι, and, as the solutions obtained per iteration
have a value near the best so far, Eq. (13) will hardly
produce a value greater than 0.5, so there is a bound
lower than τmax imposed by ∆τι.

For this reason it is proposed a new updating rule, pre-
sented in Eq. (14), where a simpler calculation taking
into account just the two solutions used to update the
pheromone is made, giving a better quality function.

⎪⎩

⎪
⎨
⎧ ∈

−
−

−
=τ∆

otherwise0

},{1 bestbest
bestworst

bestbest

i
lgi

ll
gl

. (14)

where gbest, lbest, and lworst are the global best, local best
and local worst solutions, respectively. In Eq. (14),
whenever the local best is better than the global one, the
pheromone is updated proportionally to the difference
between them. Otherwise, the complementary value is
taken; thus, the closer the local best from the global best,
the closer ∆τι becomes to one. Note that the global best
information is updated after this process, so Eq. (14) can
result in a range [0,2], meaning that whenever a new best
solution is found, the vertices with low pheromone val-
ues are set to a value near or equal to τmax and those
which are already with a high value will be equal to τmax.

4.6 Pheromone Stagnation Control
A stagnation control mechanism for the algorithm is pro-
posed so that it is restarted every time it stagnates. For
this problem, it is intuitive that when the pheromone trail
converges, p points (number of medians) will be at the
upper bound, τmax, and the remaining will be at the lower
bound, τmin. Thus, every time the sum of all pheromone
follows Eq. (15), the algorithm is said to have stagnated
and is thus restarted:

() minmax τ⋅−+τ⋅=τ∑ pnp
i

i . (15)

5 Performance Evaluation
To evaluate the performance of the modified algorithm,
several CPMP instances from the literature were tested.
For each instance of a given set, it was made the calcula-
tion of the relative percentage deviation from the best
known solution: RPD = 100 × (SMMAS − Sbest)/Sbest and
then the average was taken, where SMMAS is the best solu-
tion found by MMAS and Sbest the best solution known
for each instance.

The first experiment was performed to assess the influ-
ence of the information heuristics on the MMAS. Simple
experiments were run on the classic instances of Osman
[1] and Lorena [15]. Table 1 presents some results found
with two sets of parameters α and β to illustrate the im-
portance of the heuristic information. 500 iterations of
the improved MMAS (IMMAS) were run with the fol-
lowing parameters: α = 1, β = 0 (only pheromone and no
heuristic information), and α = 3, β = 1 (with heuristics
but privileging pheromone). As can be seen from Table
1, the heuristic information successfully improves the
results found by the Ant System (i.e. only using phero-
mone information).

Table 1: Average relative percentage deviation from the best
known solution to the Osman and Lorena sets. Influence of the
information heuristics. Negative results mean that a solution
better than the best solution found so far was found

 α = 1, β = 0 α = 3, β = 1
Osman Average (%) 0.081203 0.064181
Lorena Average (%) 0.090277 −0.11838

To illustrate the performance of the two different phero-
mone updating rules studied, some experiments were
performed with the IMMAS algorithm applied to the
same instance sets as above for 500 iterations. As can be
seen from Tables 2 and 3, on harder instances (i.e. larger
number of clients and medians to search and harder GAP
instances generated from each p-median solution) Eq.
(14) gives better results than Eq. (13). On easier ones,
they both give the same results.

Table 2: Comparison between the two pheromone updating
rules in 500 iterations on the first instance set. The first group
of columns corresponds to the first 10 instances of Osman [1]
and the second group represents the last 10 instances. The best
results are presented in bold. “∆τ” represents the solution ob-
tained using Eq. (13) while “new ∆τ” represents the solution
obtained using Eq. (14). “n” represents the number of clients
and “p” represents the number of medians for each instance.

 ∆τ new ∆τ ∆τ new ∆τ

Osman Sol. Sol. Sol. Sol.
713 713 1008 1007
740 740 966 966
751 751 1026 1026
651 651 983 983
664 664 1091 1091
778 778 955 955
787 787 1034 1034
820 820 1043 1043
715 715 1032 1032

n=50
p=5

 831 831

n=100
p=10

1007 1005

MAX MIN ANT SYSTEM AND CAPACITATED... Informatica 29 (2005) 163–171 169

Table 3: Comparison between the two pheromone updating
rules in 500 iterations on the second instance set. The best re-
sults are presented in bold.

 ∆τ new ∆τ ∆τ new ∆τ

Lorena Sol. Sol. Sol. Sol.

n=100
p=10 17377 17352 n=300

p=30 41228 40790

n=200
p=15 33254 33254 n=402

p=30 63966 62400

n=300
p=25 45279 45279 n=402

p=40 53909 52857

In the next experiments, comparisons were performed
between MMAS and IMMAS. For each algorithm, 10
trials of 2,000 iterations were run on an Athlon XP +
2000, 1.67GHz, 512 MB RAM running Slackware 9.l,
compiled with gcc 3.2, not optimized at compilation.

Table 4 presents the set of problems first introduced
in Osman and Christofides [1] and broadly studied in
the CPMP literature. The data sets are available at the
OR-Library (http://www.brunel.ac.uk/depts/ma/research/
jeb/info.html), a repository of test data sets for a variety
of Operations Research (OR) problems.

The results were compared with those presented in
Osman and Christofides [1], referred to as HSS.OC,

which is an implementation of a hybrid involving Simu-
lated Annealing and Tabu Search. As can be observed
from this table, the IMMAS algorithm performed better
than the MMAS alone and is competitive when com-
pared to the HSS.OC algorithm. It must also be noticed
that the variance of the solutions found was 0%, meaning
that the same results were found for all 10 trials, indicat-
ing the robustness of the algorithm.

Table 5 shows the set of problems created by Lorena
in [15], where geographical information about a large
city in Brazil was obtained, thus creating a more
realistic and complex scenario. In this particular
problem, the IMMAS presents a superior performance
when compared with the simple MMAS algorithm.
Furthermore, IMMAS was capable of finding better
solutions than the best solutions known to date. It is
also important to observe that the most noticeable diffe-
rences in performance are on the larger instances, thus
suggesting that the proposed modifications help to over-
come one important difficulty of Ant Systems, associated
with problems containing a large dataset.

6 Discussion and Future Trends
This paper presented the application and further im-
provements of an ant-colony optimization algorithm to
the capacitated p-medians problems (CPMP). In particu-
lar, it described one form of applying the Max Min Ant

Table 4: MMAS, IMMAS and HSS.OC results for Osman’s set of instances, the “Best” column is the best known solution
found so far, “Sol.” is the solution obtained by each algorithm, “%” is the average relative percentage deviation from best and
“Time” is the execution time in seconds, results in boldface are the best found by comparing the algorithms.

 MMAS IMMAS HSS.OC

Osman Best Sol. % Time(s) Sol. % Time(s) Sol. %
713 713 0.00 31.93 713 0.00 28.22 713 0.00
740 740 0.00 33.52 740 0.00 30.11 740 0.00
751 751 0.00 45.59 751 0.00 37.83 751 0.00
651 651 0.00 47.51 651 0.00 32.73 651 0.00
664 664 0.00 40.24 664 0.00 31.98 664 0.00
778 778 0.00 39.88 778 0.00 33.37 778 0.00
787 787 0.00 44.00 787 0.00 34.19 787 0.00
820 822 0.24 56.31 820 0.00 36.95 820 0.00
715 715 0.00 44.05 715 0.00 33.64 715 0.00

n=50
p=5

829 831 0.24 49.12 829 0.00 40.12 829 0.00

1006 1008 0.20 316.03 1007 0.09 158.34 1006 0.00
966 966 0.00 180.66 966 0.00 156.33 966 0.00

1026 1026 0.00 180.56 1026 0.00 168.29 1026 0.00
982 985 0.30 152.64 982 0.00 194.13 985 0.31

1091 1092 0.09 118.62 1091 0.00 154.32 1091 0.00
954 955 0.10 120.84 955 0.10 186.21 954 0.00

1034 1034 0.00 150.60 1034 0.00 162.23 1039 0.48
1043 1043 0.00 142.65 1043 0.00 167.21 1045 0.19
1031 1033 0.19 118.23 1032 0.09 164.43 1031 0.00

n=100
p=10

1005 1009 0.40 178.15 1005 0.00 214.39 1005 0.00

 Avg. 0.088 0.014 0.049

170 Informatica 29 (2005) 163–171 F.O. de França et al.

System (MMAS) to the CPMP problem that includes a
local search heuristics, and combines the MMAS with a
new updating rule and a recent framework from the lit-
erature in order to improve the performance of the algo-
rithm, mainly when large instances are considered. It is
an extension of a previous work by the authors [5].

With the extensions proposed here, based on the
framework presented in Blum et al. [13] and Blum and
Dorigo [14], the results obtained showed that the modi-
fied algorithm is competitive and sometimes better than
other heuristics found in the literature when applied to
the same problem instances. It could also be noted that,
over ten trials, the variance in the behavior of the modi-
fied algorithm was very small, sometimes zero, for the
smaller instances.

Despite the quality of the results already achieved,
there are some important aspects that deserve further
investigation. For instance, even though the density func-
tion gives information about promising medians, it is
only accurate on the choice of the first points, because, as
a point is chosen, the density surface of the search space
changes accordingly. So, recalculating this value for all
the candidates not yet chosen could improve the quality
of the results obtained, but with the drawback of a high
computational cost. Furthermore, it must also be investi-
gated an adaptive distribution of the importance factors
given for the pheromone and information heuristic (α
and β) so as to try to improve the performance of the
algorithm. This happens because, initially, the algorithm
has no information about the pheromone trail. Thus, a
higher importance should be given to η during the first
iterations, and after a number of iteration steps the
pheromone trail can give better information than η, so it
must have a higher importance as well. Finally, a better
GAP local search, or even a constructive heuristics, can

be implemented to further improve the assignment of
clients to medians.

Acknowledgements
The authors thank CAPES, FAPESP and CNPq for the
financial support, and the reviewers for their relevant
comments and suggestions.

References
[1] OSMAN, I. H.; CHRISTOFIDES, N., Capacitated

Clustering Problems by Hybrid Simulated Annealing
and Tabu Search. Pergamon Press, England, 1994,
Int. Trans. Opl. Res. v. 1, n. 3, pp. 317-336, 1994.

[2] GAREY, M.R. & JOHNSON, D. S., Computers and
Intractability: A Guide to the Theory of NP-
Completeness. San Francisco: Freeman. 1979.

[3] DORIGO M. Optimization, Learning and Natural
Algorithms. Ph.D.Thesis, Politecnico di Milano, It-
aly, in Italian, 1992.

[4] DORIGO, M. & DI CARO, G. The Ant Colony Op-
timization Meta-Heuristic. In D. Corne, M. Dorigo
and F. Glover (Eds.), New Ideas in Optimization.
McGraw Hill, London, UK, Chapter 2, pp. 11-32.
1999.

[5] DE FRANÇA, F. O., VON ZUBEN, F. J., DE CAS-
TRO, L. N. Definition of Capacited p-Medians by a
Modified Max Min Ant System with Local Search
In: ICONIP - 2004 11th International Conference on
Neural Information Processing - SPECIAL SES-
SION ON ANT COLONY AND MULTI-AGENT
SYSTEMS, 2004, Calcutta. Lecture Notes in Com-
puter Science. v. 3316. pp. 1094 – 1100, 2004.

[6] DORIGO, M. & STÜTZLE, T. The Ant Colony
Optimization Metaheuristic: Algorithms, Applica-
tions, and Advances. In F. Glover and G. A. Ko-

Table 5: MMAS and IMMAS for Lorena set of instances, the “Best” column is the best known solution found so far, results in
bold are the best found among the algorithms, and “Time” is the execution time in seconds, for IMMAS the column “Sol.”
holds the average result in 10 trials and standard deviation in parentheses, and the “Best” column represents the best solution
found along these trials.

 MMAS IMMAS

Lorena Best Sol. % Time Sol. Best % Time
n=100
p=10

17288 17288 0.00 295.95 17264.6
(17.08) 17252 −0.21 253.77

n=200
p=15

33395 33254 −0.42 540.96 33203.7
(12.98) 33187 −0.62 1428.10

n=300
p=25

45364 45251 −0.25 8109.64 45279.1
(32.15) 45245 −0.26 1742.26

n=300
p=30

40635 40638 0.01 7818.13 40662.5
(116.54) 40521 −0.28 2127.22

n=402
p=30

62000 62423 0.68 12701.24 62280,75
(187,24)

62020 0.03 1407.44

n=402
p=40

52641 52649 0.02 10500.15 52627.5
(108.82)

52492 −0.28 1484.44

Avg. 0.006 −0.271

MAX MIN ANT SYSTEM AND CAPACITATED... Informatica 29 (2005) 163–171 171

chenberger, Handbook of Metaheuristics, Kluwer
Academic Press, Chapter 9, pp. 251-286. 2003.

[7] DE CASTRO, L. N. & VON ZUBEN, F. J. (eds.)
Recent Developments in Biologically Inspired Com-
puting, Idea Group Inc. 2004.

[8] STÜTZLE, T. & HOOS, H.H. The MAX-MIN ant
system and local search for the traveling salesman
problem. In T. Bäck, Z. Michalewicz, and X. Yao,
editors, Proceedings of the IEEE International Con-
ference on Evolutionary Computation (ICEC'97),
IEEE Press, Piscataway, NJ, USA, pp. 309-314,
1997.

[9] STÜTZLE T. & DORIGO M. ACO algorithms for
the Quadratic Assignment Problem. In D. Corne, M.
Dorigo, and F. Glover, editors, New Ideas in
Optimization, pp. 33-50. McGraw-Hill, 1999.

[10] AHMADI, S. & OSMAN, I.H., Density based
problem space search for the capacitated clustering
problem. Annals for Operational Research, 2004 (in
press).

[11] RESENDE, G.C.M. & WERNECK, F. R. On
the implementation of a swap-based local search
procedure for the p-median problem. Proceedings of
the Fifth Workshop on Algorithm Engineering and
Experiments (ALENEX'03), Richard E. Ladner
(Ed.), SIAM, Philadelphia, pp. 119-127, 2003.

[12] TEITZ, M. B.; BART, P., Heuristic Methods for
Estimating the Generalized Vertex Median of a
Weighted Graph. Operation Research, 16(5):955-
961, 1968.

[13] BLUM, C., ROLI, A. & DORIGO, M. HC-
ACO: The hyper-cube framework for Ant Colony
Optimization. In Proceedings of MIC'2001 - Meta-
heuristics International Conference, v. 2, Porto, Por-
tugal, pp. 399-403, 2001.

[14] BLUM, C. & DORIGO, M., The Hyper-Cube
Framework for Ant Colony Optimization. IEEE
Transactions on Systems, Man and Cybernetics, Part
B, 34(2): 1161-1172, 2004.

[15] LORENA, L.A.N. & SENNE, E.L.F. Local
Search Heuristics for Capacitated P-Median Prob-
lems, Networks and Spatial Economics 3, pp. 407-
419, 2003.

172 Informatica 29 (2005) 163–171 F.O. de França et al.

 Informatica 29 (2005) 173–181 173

Application of Ant-based Template Matching for Web Documents
Categorization
Siok Lan Ong , Weng Kin Lai, Tracy S. Y. Tai and Kok Meng Hoe
MIMOS, Technology Park Malaysia,
57000 Kuala Lumpur, Malaysia.

Choo Hau Ooi
University of Malaya,
50603 Kuala Lumpur, Malaysia

Keywords: Swarm intelligence, Ant colony optimization, Data clustering, Document clustering

Received: February 18, 2005

The self-organization behavior exhibited by ants may be modeled to solve real world clustering
problems. The general idea of artificial ants walking around in search space to pick up, or drop an item
based upon some probability measure has been examined to cluster a large number of World Wide Web
(WWW) documents. However, this idea is extended with the direct application of template matching with
a Gaussian Probability Surface (GPS) to constrain the formation of the clusters in pre-defined areas of
workspace with these multi-agents in this paper. Some comparisons between the clustering performance
of supervised ants using GPS against the typical ants clustering algorithm are shown. Their
performance are evaluated on the same dataset consisting of a collection of multi-class web documents.
Finally, the paper concludes with some recommendations for further investigation.
Povzetek: Tehnike kolonij mravelj so bile uporabljene za kategorizacijo internetnih dokumentov.

1 Introduction
Social insects make up 2% of all species of living
organisms that live in this world [2], with ants forming
by far the largest group - 50% of these social insects are
ants. Within the ant colonies, there is specialization in
the tasks that need to be performed. Many of these
simple but yet important tasks are very similar to some of
the real world problems for humans. For example, the
foraging behavior of ants has shown to be a useful
computing paradigm for solving discrete optimization
problems [3]. Similarly, the self-organizing behavior of
ants may be used to model intelligent applications such
as clustering. This paper will focus on the task
performed by the specialized worker ants that include
nest and cemetery maintenance through clustering, and
model it to cluster the fast growing sources of online text
documents in particular.

Similar to any typical document clustering task, web
documents clustering may generally be seen as dividing
the set of documents into homogeneous groups with the
main purpose that documents within each cluster should
be similar to one another while those which are from
different clusters should be dissimilar [4]. Even though
this sounds simple enough, unfortunately, the sheer size
of the World Wide Web makes it difficult to manually
categorize the documents. In order to automate the
process, different well-established clustering approaches
have been widely applied to effectively organize the
documents based on the above principle in terms of

processing time, quality of clustering and spatial
distribution. The straightforward model which ants move
randomly in space to pick up and deposit items on the
basis of local information has also been explored to
cluster such web documents [1]. However, it has also
been observed that some species of ants combine these
self-organisation activities with template mechanisms
[5]. A template is a kind of tool used by the insects to
guide them perform their activities better. For example,
in the context of nest building, the shape of the nest may
be predefined by templates. The insects will then just
build their nest along the markers on such a blueprint.

This paper examines the direct implementation of a
template based on a Gaussian Probability Surface (GPS)
to supervise these homogeneous multi-agents to form
clusters within a specified dropping zone. In addition, the
results will also be compared with those obtained
through unsupervised multi-agents clustering. Basically,
the main idea is building on the concept of “self-
organisation along a template”, whereby a template
mechanism is combined with the self-organisation
mechanism. More specifically, it involves mapping each
pixel in the workspace layer to a similar pixel in another
surface within the same relative spatial location.
Combining the underlying self-organizing mechanisms
of the algorithm with templates allows all the items be
deposited in some particular regions of space [6].

This paper is organized as follows. In section 2, the
key issues of document representation are introduced.
This is followed by a description of some theoretical
aspects of homogeneous multi-agents in ant colonies in

174 Informatica 29 (2005) 173–181 S.L. Ong et al.

section 3. The supervised form of this computing
paradigm, involving GPS is explained in greater details
in section 4. The experimental set-up and the results
obtained are shown in sections 5 and 6 respectively.
Finally, some conclusions as well as areas for further
investigation are discussed in section 7.

2 Web Document Representation
The clustering process of documents, in this case, web
pages, involves implementing suitable clustering
techniques to group together documents that have similar
characteristics. However, before the similar documents
can be grouped together, an important process is to
identify and extract all the relevant features of each
document, so that each document is now represented in a
form that the clustering algorithm can process. The
feature extraction of a document basically involves
finding the representation of the word vector or set of
descriptors that best describe it. Concise representations
are usually derived from the contents of more complex
object. In the case of textual objects i.e. documents
(more specifically, web pages), words taken directly
from the document but augmented with weights to form a
bag-of-words representation while disregarding the
linguistic context variation at the morphological,
syntactical, and semantically levels of natural
language[8].

2.1 Automated Text Processing
Automated text processing is the process of producing
document representations or “bags of words” (also
known as index terms) automatically. Conventionally,
text processing which follows a standard procedure, may
be divided into 4 major text operations [8]. This will be
described further in the next few sections.

2.1.1 Lexical Analysis
This is generally defined as the process of converting a
stream of characters (the text of the documents) into a
stream of words (the candidate words to be adopted as
index terms and it involves more than "linear analysis"
or "scanning" of spaces between the words as word
separators. The stream of characters making up the text
is read one at a time and grouped into lexemes (lexemes
are minimal lexical unit of a text). However, there are
four particular cases that need to be considered with care,
viz.

• Digits
• Hypens
• Punctuation marks
• Letters

Many of these characters, especially hypens, digits, and
punctuation marks are removed from any further
consideration, as shown in figure 1(a) and (b). Once the
text have been processed, these lexemes will be fed into
another stage for further processing, in this case, to
eliminate the stopwords.

The Requests for Comments (RFC) document series is a set of

technical and organizational notes about the Internet (originally the
ARPANET), beginning in 1969. Memos in the RFC series discuss
many aspects of computer networking, including protocols,
procedures, programs, and concepts, as well as meeting notes,
opinions, and sometimes humor. For more information on the
history of the RFC series, see "30 years of RFCs".

(a) The original text

The Requests for Comments RFC document series is a set of
technical and organizational notes about the Internet originally the
ARPANET beginning in Memos in the RFC series discuss many
aspects of computer networking including protocols procedures
programs and concepts as well as meeting notes opinions and
sometimes humor For more information on the history of the RFC
series see years of RFCs

(b) Lexemes
Figure 1: Lexical Analysis

2.1.2 Stopwords Elimination
Stopwords are very commonly used words, and in the
English language these would be articles, pronouns,
adjectives, adverbs and prepositions which have been
known to make poor index terms. They are usually
removed from further consideration as index terms when
identified in a document. The process of stopwords
elimination is illustrated in figure 2 with a part of Dr.
Martin Luther King Jr.’s well-known “I Have a Dream”
speech that he delivered in Washington D.C. on August
28, 1963.

I have a dream that one day this nation will rise up and live
out the true meaning of its creed: We hold these truths to be
self-evident: that all men are created equal. I have a dream
that one day on the red hills of Georgia the sons of former
slaves and the sons of former slave owners will be able to sit
down together at a table of brotherhood. I have a dream that
one day even the state of Mississippi, a desert state,
sweltering with the heat of injustice and oppression, will be
transformed into an oasis of freedom and justice. I have a
dream that my four children will one day live in a nation
where they will not be judged by the color of their skin but
by the content of their character. I have a dream today.

Total Word Count : 143
(a) The original text

dream day nation rise live true meaning creed: hold truths
self-evident: created equal. dream day red hills Georgia
sons former slaves sons former slave owners able sit table
brotherhood. dream day Mississippi, desert state,
sweltering heat injustice oppression, transformed oasis
freedom justice. dream children day live nation judged color
skin content character. dream today

Total Word Count : 54
(b) With stopwords removed

Figure 2: Process of Stopwords Elimination

Notice that there is now a significant reduction in the

number of words amounting to about 62.2% of the total
initial amount after the stopwords elimination process.

APPLICATION OF ANT-BASED TEMPLATE... Informatica 29 (2005) 173–181 175

Closer examination at the first sentence of the address
shown here will clearly reveal that common words like I,
have, a, that, one, this, will, up, and, out, the, of, and its,
have been eliminated as stopwords.

2.1.3 Stemming
The objective of stemming [8] is to remove affixes (i.e.
prefixes and suffixes) so as to reduce the total size of the
index terms. This is normally done with ways of finding
morphological variants of terms in documents.
Examples of the stemmed index terms are shown in
Table 1 below.

Table 1: Example of the stemming process on several

terms

Original Term After stemming
possibilities possibl
Possible possibl
possibility possibl
Possibly possibli
Software Softwar
Software softwar

2.1.4 Indexing
This is the final process of text processing where the
index terms are extracted to identify the important
features for each document. Feature extraction of a
document involves finding the optimal representation of
the word vector or set of descriptors that best describe
the salient features of the documents.

There are several ways to shortlist the index terms
from a document. In this paper, the index terms were
selected by using one of the most commonly used
weighting approach known as tf.idf (term frequency
inverse document frequency):

⎟
⎠
⎞

⎜
⎝
⎛×=

i
ijij

n
Nfw log

(1)

where ijw is the weight of word i in document j, ijf be
the frequency of word i in the document j, N the number
of documents in the collection, and ni the total number of
times word i occurs in the whole collection.

3 Ant Colony Models
The ability of insects such as ants living in a colony has
fascinated many in the scientific community and this has
led to more detailed studies on the collective behavior of
these creatures. Even though these insects may be small
in size and live by simple rules, but yet they are able to
survive well within their colony. Scientists have recently
found that this behavior could be borrowed to solve
complex tasks such as text mining, networking etc.
Deneubourg et al. had developed this concept further by
modeling the ant’s action in organizing their nests for
data classification. Assuming each of these multi-agents
carries one item at a time and there is only one item type,

the probabilistic functions, Pp and Pd that model such
behaviour are shown below, i.e.:

Picking up probability,
2

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
fk

k
Pp

 (2)

Dropping probability,
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
fk

fPd (3)

where f denotes the fraction of similar items in the
neighbourhood of the agent, while k1 and k2 are threshold
constants. When f →1, it means that there are many
similar items in the neighbourhood, indicating that there
is a high possibility that the multi-agent will put down
the item it is carrying, as Pd will be high too. Similarly,
the agent is not likely to pick up the item when Pp is low.
This will happen when most of the items in the
neighbourhood are dissimilar, as indicated by f →0.
Essentially, there is a high possibility of picking up items
which are isolated and transporting them to another
region where there are now more of its kind in the
neighbourhood. The possibility of dropping the item will
be low when Pd. → 0.

Lumer & Faieta (LF) [9] had reformulated
Deneubourg et al.’s [10] model to include a distance
function, d between data objects for the purpose of
exploratory data analysis. The binary distance between
objects i and j, d(oi, oj), is assigned 1 for dissimilar
objects and 0 for similar objects. Essentially this binary
distance measure is the Hamming distance [11] between
two objects. The fraction of items in the neighbourhood,
f in equation (2) and (3) is replaced with the local

density function, f(oi) which measures the average
similarity of object i with all the other objects j in its
neighbourhood, N. Given a constant, α, and the cells in a
neighbourhood N(c), f(oi) may be defined as:

∑ ∈ ⎥
⎦

⎤
⎢
⎣

⎡
−=

)(2

),(
1

)(
1)(

cNo
ji

i
j

ood

cN
of

α
 if f > 0

Otherwise, 0)(=iof (4)

α is a factor that defines the scale of dissimilarity that
will influence when two items should or should not be
placed together in the same neighbourhood. For
exxample, if α is large, it will only marginalise the
differences between the items, leading to the formation
of clusters composed enitrely of items which should not
be grouped together in the same cluster.

4 Supervised Ant Colony Models
with Gaussian Probability Surface
(GPS)

In several species of ants, the worker ants are known to
perform corpse aggregation and brood sorting where the
clusters formed is at arbitrary locations [12]. However,

176 Informatica 29 (2005) 173–181 S.L. Ong et al.

there are other species, like the Acantholepsis custodiens
ants that are known to perform self-organization which
are constrained by templates [5]. A template is a pattern
that is used to construct another pattern. In the case of
some species of the ants which are found in Nature, they
utilize the information related to the temperature and
humidity gradients in their surroundings to build their
nests to spatially distribute their brood [5]. This concept
of self-organizing with templates has been used by
Dorigo & Theraulaz for data analysis and graph
partitioning [6].

With such mechanisms, the result is that the final
structures would closely follow the configuration defined
by the templates. However, this is only useful in
applications where the numbers of clusters are known
beforehand. The template we have used here, in the form
of a Gaussian Probability Surface (GPS) guides the
multi-agents to form clusters within a toroidal working
space.

(a) Example of a toroidal surface

(b) A 30×30 toroidal workspace expanded into two-
dimensions

Figure 3: Toroidal Workspace

Hence, all the cells that are lying at the perimeter of this
workspace will be adjacent to each other. For example,
the cells in column 1 of a 30 × 30 workspace will have
neighbours in columns 2 and 30, as shown in figure 3
above. Similarly, the cells in the top row a, will have
row b and row ad as their neighbours.

The GPS equation, P(x,y) is shown in equation 5
below.

P(x,y) = Pmax

() ()

δσ +
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
−n

i

yyxx ii

e
1

2

2
0

2
0

 (5)

where, 1),(0 ≤≤ yxP ,and,

Pmax maximum value of probability, 10 max ≤≤ P

δ offset value.
σ 2 constant defined by user that also determines the

steepness of the Gaussian probability surfaces.
x0i, y0i Coordinates of the centre of each dropping

zone(i.e. the peak of the humps).
x, y Coordinates on any single point in the

workspace.
i number of humps, 1 ≤ n ≤ 5.

(a) One hump

(b) Four humps

Key :

Figure 4: The Gaussian Probability Surface (GPS)
superimposed onto the toroidal working space. The
colour bar indicates the probability of the surface for
various colours.

The probability surface is two dimensional and isotropic
(circular symmetry). Figure 4 shows an example of the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
a
b
c
d
e
f
g
h
i
j

k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

aa
ab
ac
ad

APPLICATION OF ANT-BASED TEMPLATE... Informatica 29 (2005) 173–181 177

GPS model with one and four humps superimposed onto
the toroidal workspace. Both the x- and y- axes represent
the location within this toroidal workspace. As the
height of the probability surface increases, the
probability of dropping the document by the multi-agents
is higher. Hence, more similar documents are expected to
be clustered in the area underneath the probability
“shadow” as defined by each hump. Essentially, this will
enhance the quality of clustering by having clusters with
similar document types in the specified dropping zone
instead of forming in non-deterministic region of the
workspace.

(a) The plot of the probability values for each of the

3 points monitored.

(b) The location of the 3 locations monitored.

Figure 5: The probability values of 3 locations for
various offsets.

Figure 5(a) shows the probability values with different
values of the offset δ. It may be seen that the probability
for depositing an item increases linearly with an increase
in the offset (δ) values. The probability is close to 1 at
the peak of the humps and there was only a slight
increase for any increments of the offset δ. However,
there is a significant change in the probability for points
at the lower portion of the surface for different values of
the offset. In addition, the dropping probability
distribution in the regions between the contour lines does
not vary much for higher offsets. This implies that there

are actually more space for the multi-agents to unload the
documents for higher offsets.

The multi-agents can only move one step in any
direction at each time unit from its existing location to an
unoccupied adjacent cell. Only a single agent and/or a
single item is allowed to occupy any one cell at a time.
An agent occupying any cell, c on the clustering space
immediately perceives a neighbourhood of 8 adjacent
cells i.e. N(c) = 8. This is illustrated in figure 6 below.

Figure 6: The neighbourhood of any one location in the
workspace.

The decision of an unladen agent to either pick up or
ignore an item oi at cell c is dictated by a probability Pp
that is based on a local density function, g(oi). This local
density function determines the similarity between oi and
other items oj, where j ∈ N(c). If an agent laden with
item oi lands on an empty cell c, it will calculate a
probability Pd based on the same function g(oi) and
decides whether to drop oi or keep on carrying it. Unlike
f (see Eq. 4) which uses a distance measure and an
additional parameter α, the function g(oi) uses a
similarity measure which may be defined as follows:

∑=
jo jii ooS

cN
og),(

)(
1)((6)

where S (oi,oj) is a measure of the similarity between
objects oi and oj.

To model the inherent similarity within documents,
one measure that is often employed in information
retrieval is the cosine measure, where,

∑∑
∑

==

=

×

×
=

m

k kj
n

k ki

r

k kjki
ji

ff

ff
docdocS

1
2

,1
2

,

1 ,,
cos

)()(

)(
),((7)

r is the number of common terms in doci and docj, n and
m represent the total number of terms in doci and docj
respectively. fa,b is the frequency of term b in doca. A
useful property of the cosine measure Scos is that it is
invariant to large skews in the weights of document
vectors, but sensitive to common concepts within
documents.

To guide the multi-agents to drop the documents
onto a specified dropping zone within the two
dimensional workspace, the concept of a Gaussian
Probability Distribution surface overlaid on to this work

178 Informatica 29 (2005) 173–181 S.L. Ong et al.

space was used. This model requires large samples and
repeated measurements with random errors distributed
according to the Gaussian probability[13].

5 Experimental Set-Up
The 80 web pages used in the experiment came from four
different categories—Business, Computer, Health and
Science that were randomly retrieved from the Google
web directory. These were then pre-processed to extract a
representative set of features. The main purpose of this
feature extraction process is to identify a set of most
descriptive words of a document. This resulted in a
collection of 17,776 distinct words. To reduce memory
requirements during clustering, the collection was
represented by a sparse matrix with three elements per
row: (i) a unique web page identifier, (ii) a unique word
identifier, and (iii) the frequency value of each word
within the web page. This is illustrated in Figure 7
below. Hence, only the most descriptive words will be
represented here, with each word assigned a unique ID
and its associated frequency within the page.

<page ID>, <wordID>, <wordFreq>
<page ID>, <wordID>, <wordFreq>
<page ID>, <wordID>, <wordFreq>
<page ID>, <wordID>, <wordFreq>
…

(a) : Input representation

357,1,1
463,5,5
179,2379,1
355,2379,3 …

(b): An example

Figure 7 : Input representation of the web documents

One of the inherent challenges of representing these
documents with a set of keywords involves the optimal
selection of these words for the set of features. Using all
the 17,776 words will no doubt leave all the documents
represented, but the sheer size of the set of words will
incur a very heavy computation overhead. Even then,
many of these words do not occur across many of the
documents. It is rare to have all the words in the list to
occur throughout the whole set of documents. This is
illustrated in figure 8 with a sub-set of 2 documents from
each of the 4 categories for 20 words. The Y-axis
represents the frequencies of the words for each web
document. Even though this figure shows only 2
documents from each category it clearly illustrates the
occurrences of the words and their frequencies for each
document.

Figure 8: 3D representation of the feature coverage for 8
documents.

Intuitively, it would be good to remove all those features
(words) that have very low occurrences across the
documents in the set. Good candidates for such a
removal would be those that occur in all the documents
in any one class of similar documents. In addition, the
words which have been extracted for these text
documents, were augmented with the appropriate
weights, while disregarding the linguistic context
variation at the morphological, syntactical, and semantic
levels of natural language. The extracted word-weight
vectors are usually of high dimensions. A total of 6,976
distinctive words were found in this collection of web
documents investigated here

Next, the classification of the dataset described in the
previous paragraph above using supervised and
unsupervised multi-agents within a 30x30 toroidal grid
and 15 homogeneous agents with threshold constants, k1
= 0.01 and k2 = 0.15 was investigated.

Both the supervised and unsupervised approaches
were set to run at a maximum of iterations, tmax of
140,000. As there are four document categories in this
experiment, a similar number of humps were pre-defined
at the start of the supervised approach.

6 Results and Discussion
This section depicts the experimental results of
supervised and unsupervised multi-agents clustering with
the parameters setting as described in the previous
section.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

S1
S2

S3
S4

S5
S6

S7
S8

0

2

4

6

8

Word
Frequency

Words

Documents

APPLICATION OF ANT-BASED TEMPLATE... Informatica 29 (2005) 173–181 179

Figure 9(a): The random distribution of the web

documents
Key :
o – Business ∇ - Computer + - Health * - Science

Figure 9(b): Clusters of documents formed at t =

140,000.
Key :
o – Business ∇ - Computer + - Health * - Science

Figure 9(a) shows how the web documents were initially
scattered on the two dimensional workspace at time t=0.
After 140,000 iterations, four clusters of mixed classes of
documents were formed. The quality of the results were
evaluated through the measures of purity and entropy.
Table 2 below shows the purity (measures the similarity)
and entropy (which measures the distribution of various
(actual) categories of documents within a cluster) values
of the clusters [14]. A high value of purity suggests
that the cluster is a pure subset of the dominant class.
Similarly, an entropy value of 0 means the cluster is
comprised entirely of one class. On the other hand, an
entropy with a value of 1 would strongly indicate that the
cluster itself is a mixture of items without any distinctive
or dominant class. The overall entropy value is the
weighted sum of the individual values for each cluster
which takes into account the size of each cluster formed.
The same applies for the overall purity value.

Table 2: The purity and entropy values for different
clusters of documents and the overall result.
Cluster Entropy Purity Majority Class
A 0.9297 0.4000 Health
B 0.4732 0.7857 Business
C 0.5337 0.6923 Computer
D 0.0000 1.0000 Science
Overall 0.5181 0.5375 -

Figure 10 : Graphical representation of the differences in
the size of the clusters formed.

(a): The random distribution of the web documents on the
workspace at t =0.

 (b): Four clusters with each containing a majority of

different classes were formed at t = 80,000.
Figure 11: Key : o – Business ∇ - Computer

 + - Health * - Science
Figure 11(a) shows the initial placement of the
documents which were scattered on the workspace with
the contour plots of the GPS superimposed upon it. After
80,000 iteration it was obvious that the multi-agents had
sorted the documents into four different clusters. Most
of the documents in the contour regions were closely
placed near to the centre of each cluster. In addition,
there were only nine documents found scattered at the
base of the probability surfaces (indicated by the areas
outside the contours). The purity and entropy values
obtained from this approach are depicted in Table 3
below:

A B, C D

180 Informatica 29 (2005) 173–181 S.L. Ong et al.

Table 3: The purity and entropy values for different

clusters of documents and the overall result
Cluster Entropy Purity Majority Class

A 0.8229 0.4706 Health
B 0.7960 0.5625 Business
C 0.8390 0.5263 Computer
D 0.7050 0.5715 Science

Overall 0.3954 0.5000 -

Figure 12 : Graphical representation of the differences in
the size of the 4 major clusters formed.

In comparison, although both approaches produce
clusters which have nearly similar purity values, however
the entropy for the supervised approach using the GPS
was approximately 20% better when compared to
the unsupervised approach. Moreover, it was also found
that it was difficult to identify the clusters if GPS had not
been used. In other words, the spatial distribution
between clusters was uneven without GPS. Conversely,
if GPS was adopted, the clusters in the contour areas
could be easily identified as the spaces between the
clusters were more distinctive. In addition, the clusters
formed by the GPS were neat and more tightly coupled
whereas those without GPS were loose as shown in
figure 11(b) and 9(b) respectively. A graphical
representation of the difference in the size of the cluster
formed is shown in figures 10 & 12. These depict the
differences in the size of the clusters formed. Both
graphical representations were drawn on the same scale.
Clearly, there is also a greater uniformity in the size of
the clusters generated when the clusters were formed
with GPS.

In terms of the stability of the clusters, with GPS, the
multi-agents were able to move most documents into the
cluster itself and seldom went beyond the specified
regions. Any document could be easily moved around the
workspace when the agents were fully unsupervised.
Hence, it is suggested that the GPS was actually guiding
the multi-agents to cluster the documents while
constraining the size of clusters in certain regions. More
importantly, there was also an improvement in
processing time required. With the supervised approach,
the clusters were formed at 80,000 iterations, as
compared with 140,000 for the unsupervised approach.
This would be very useful for the retrieval and access of
high dimension web documents.

7 Concluding Remarks and Future
Directions

In this paper, the findings of an extended study on using
a multi-agent system based on the collective behavior of
social insects i.e. ants, to cluster web documents
retrieved from a popular search engine were presented.
Unlike earlier work, the concept of a direct application of
the concept of a Gaussian Probability Surface (GPS) to

constraint the formation of the clusters in pre-defined
areas in the workspace was introduced. The experimental
results showed that the proposed multi-agent system was
able to induce clusters with better characteristics than
those obtained without this probability surface, even
though these results may only be marginally better
Visually it may also be obvious that the clusters are
better formed than those obtained when there is no GPS.
In figure 9(b) one can clearly identify two smaller
clusters. This is illustrated in figure 13 below.

Figure 13: 6 clusters of documents formed with the
unsupervised approach

Essentially, unlike the GPS-driven clustering approach,
without specifying the exact number of clusters to be
formed, the unsupervised approach has formed a total of
4 large clusters and two smaller ones. The results
obtained, although not on par with the classification
ability of human experts, do demonstrate the potential
and effectiveness of ant-like multi-agent systems in
handling complex and high-dimension data clusters.

In conclusion, the new approach to organize web
documents with the Gaussian probability surface have
shown some interesting and improved results. It has also
been noticed that the offsets do have a profound effect on
the quality of the clusters formed as well as the speed of
convergence of the multi-agent system. Obviously, if the
offset of the GPS is high, the multi-agents would have a
higher freedom to drop the web documents that they may
be carrying, over a wider area. A low offset has the
opposite effect. Hence, it would be interesting to explore
how a non-stationary offset can produce better clusters in
the future. Future investigations should also focus on a
larger perceivable time-dependent neighbourhood for
agents and a better formulation of a stopping criterion
based on homogeneity and spatial distribution of clusters.
Lastly, future research efforts should also look at
developing a deterministic initial distribution of data
points on the workspace which may improve the
clustering results.

Acknowledgements
The authors would like to thank C.C. Loy for his help in
generating the contour graphs. W.K. Lai, Tracy S.Y. Tai
and K.M. Hoe gratefully acknowledges the research grant

A B D C

APPLICATION OF ANT-BASED TEMPLATE... Informatica 29 (2005) 173–181 181

provided by the Malaysian Ministry of Science,
Technology & Innovation under grant 04-01-04-005 EA
001 that have in part resulted in this article.

References
[1] Hoe K. M., Lai W.K., & Tracy Tai, “Homogeneous

Ants for Web Document Similarity Modeling and
Categorization”, Proceedings of the Third
International Workshop on Ant Algorithms, pp 256 –
261, September 12th – 14th, 2002, Brussels, Belgium.

[2] M.Dorigo, Artificial Life: “The Swarm Intelligence
Approach”, Tutorial TDI, Congress on Evolutionary
Computing, Washington, DC. (1999).

[3] Engelbrecht, A.P., “Computational Intelligence: An
Introduction”, John Wiley & Sons Ltd (2002), ISBN:
0-470-84870-7.

[4] J.Handl, J.Knowles and M.Dorigo, “Ant Based
Clustering: a comparative study of it’s relative
performance with respect to k-means, average link
and ld-som”, http://wwwcip.informatik.uni-
erlangen.de/~sijuhand/TR-IRIDIA-2003-24.pdf,
March 24th 2004.

[5] Bonabeau, E., Dorigo, M., and Theraulaz, G.,
“Swarm Intelligence: From Natural to Artificial
Systems”, University Press, Oxford (1999), pp 184.

[6] Bonabeau, E., Dorigo, M., and Theraulaz, G.,
“Swarm Intelligence: From Natural to Artificial
Systems”, University Press, Oxford (1999), pp 199.

[7] Baeza-Yates, R.. and Ribeiro-Yates, B., “Modern
Information Retrieval”, ACM, NY (1999).

[8] M. F. Porter, “An Algorithm for Suffix Stripping", in
Program, Vol. 14 (3) (1980), pp. 130-137.

[9] Lumer, E.D. and Faieta, B., “Diversity and
Adaptation in Populations of Clustering Ants”, Int.
Conf. Simulation of Adaptive Behavior: Fr. Animals
to Animats. MIT, MA (1994).

[10] Deneubourg, J. L., Goss, S., Franks, N.R.,
Sendova-Franks, A., Detrain, C., and Chretien, L.,
“The Dynamics of Collective Sorting: Robot-like
Ants and Ant-like Robots”, Int. Conf. Simulation of
Adaptive Behaviour: Fr. Animals to Animats. MIT,
MA (1990).

[11] Definition of Hamming Distance, National
Institute of Standards & Technology, Available at
http://www.nist.gov/dads/HTML/hammingdist.html,
25/1/2005.

[12] Bonabeau, E., Dorigo, M., and Theraulaz, G.,
“Swarm Intelligence: From Natural to Artificial
Systems”, University Press, Oxford (1999), pp 149.

[13] Department of Physic and Astronomy, “Physics
and Astronomy: The Gaussian Distribution”,
http://physics.valpo.edu/courses/p310/ch2.3_gaussia
n/, March 24th 2004.

[14] Steinbach, M., Karypis, G., and Kumar, V., “A
Comparison of Document Clustering Techniques”,
KDD Workshop on Text Mining (2000).

182 Informatica 29 (2005) 173–181 S.L. Ong et al.

 Informatica 29 (2005) 183–188 183

Efficient and Scalable Communication in Autonomous Networking
Using Bio-inspired Mechanisms – An Overview
Falko Dressler
Dept. of Computer Science 7
University of Erlangen-Nuremberg
Martenstr. 3
91058 Erlangen, Germany
dressler@informatik.uni-erlangen.de
http://www7.informatik.uni-erlangen.de/~dressler/

Keywords: Bio-inspired networking, Organic computing, Scalability, Communication, Autonomous networking

Received: October 11, 2004

Autonomous networking is a challenging research area. Systems, in this case networks, are composed of
many independent entities that perform a predefined task. The behavior of the global system is a result
of the interaction of all the autonomous entities. The programming paradigms shift to the development
of just these small entities. Self-organization is the solution for managing such environments. In this
paper we demonstrate the possibilities which evolve by the application of cell biology for computer
networking. With the focus on autonomous networking, the combination with methodologies known from
swarm intelligence is evaluated. We show the capabilities of this combination and derive destinations
and goals for self-organization in communication networks showing a more efficient and scalable
behavior.
Povzetek: Pregled komunikacij v avtonomnih mrežah na osnovi bioloških mehanizmov.

1 Introduction
Besides to classical research area of bioinformatics, the
turn to nature for solutions to technological questions has
brought us many unforeseen great concepts. This
encouraging course seems to hold on for many aspects in
technology. Many efforts were made in the area of
computer technology employing mechanisms known
from biological systems. The most known examples are
swarm intelligence, evolutionary or genetic algorithms,
and the artificial immune system. The adapted
mechanisms find application in computer networking for
example in the areas of network security [7, 15],
pervasive computing [11, 27], and sensor networks [21,
23].

Organic computing, which is a new term covering
the bio-inspired mechanisms in engineering and
computer science related fields, is attempting to build
high-scalable architectures, which are self-organizing,
self-maintaining, and self-healing [6, 14]. In the fields of
computer networking, methods known from swarm
intelligence are employed. Mechanisms known from ant
colonies and swarms of bees build the basis for
cooperative tasks [22, 25]. Issues of self-organization are
directly addressable using such mechanisms.

In contrast, the focus of our group lays on trying to
map the cellular and molecular biology to networking
architectures [11, 12, 20]. Recently, it was shown that the
known approaches to study effects in computer
networking, especially methods to analyze the behavior

of large scale networks suffer from many presumptions.
We try to study this behavior by analyzing the internal
functioning of network components as well as there
interactions in comparison with cellular systems and the
associated intra and extra cellular signaling pathways.

The main focus of this work is to show the
similarities of computer networks and cellular systems.
Based on the knowledge about cellular metabolism, new
concepts for the behavior patterns of routers, monitor
systems, and firewalls can be deduced and the efficiency
of individual sub-systems can be increased. Focusing on
examples of hot topics in the computer society, i.e.
network security, potential solutions motivated by
cellular behavior are currently studied and, hopefully,
will soon bring new results in these areas. In combination
with efforts known from swarm intelligence, most self-
organization issues can be addressed. Cell biology based
mechanisms build new communication paradigms and
ant colonies are adapted to group formation. Doing this,
we must keep in mind that the deeper the parallels
between biology and technology, the more important it is
to map the corresponding elements correctly. Algorithms
known from swarm intelligence are employed for
clustering and group formation issues. This is a necessary
basis for further bio-inspired communications.

The rest of the paper is organized as follows. In
section 2, an overview to the state of the art in bio-
inspired networking is provided. This builds the basis for

184 Informatica 29 (2005) 183–188 F. Dressler

further studies discussed in section 3. The combination
with swarm intelligence is detailed in section 4. New
destinations and goals are shown in section 4 and some
conclusions summarize the paper.

2 Bio-inspired Networking – State of
the Art

Since billions of years, nature worked out organisms that
adapted perfectly to environmental changes. Survival of
the fittest is the primary selection mechanisms. Research
on self-organization started in the 1960ies and
combination of nature and self-organizing technical
systems was first introduced by Eigen [13]. Reviews of
current research on biological self-organization can be
found in [4, 14].

The development in the area of bio-inspired
engineering is relying basically on the artificial immune
system, swarm intelligence, evolutionary (genetic)
algorithms, and cell and molecular biology based
approaches. The immune system of mammals builds the
basis for research on the artificial immune system. The
reaction of the immune system, even to unknown attacks,
is a high-adaptive process. Therefore, it seems obvious to
apply the same mechanisms for self-organization and
self-healing operations in computer networks [16, 19].

The behavior of large groups of interacting small
insects such as ants and bees builds the basis for field of
swarm intelligence. Simple and unrelated autonomously
working individuals are considered to compose complex
cooperative tasks. Similar actions are required in various
areas of engineering and computer science and should
build a basis for building self-organizing systems [3, 18].
A main focus lies on the formation of groups or clusters.

Evolutionary (genetic) algorithms are self-
manipulating mechanisms. The evolution in nature is the
basis for such methodologies. In particular, there are
multiple ways for organisms to learn. A natural selection
process (survival of the fittest) is going on letting only
the optimal prepared organisms to survive and to
reproduce. Changes appear for example by mutations. An
overview to evolutionary algorithms is provided for
example in [2, 6].

An emerging research area looks for cell and
molecular biology based approaches. All organisms are
built in the same way. They are composed of organs,
which consist of tissues and finally of cells. This
structure is very similar to computer networks, which is
also true for the signaling pathways. Therefore, research
on methods in cell and molecular biology promises high
potentials for computer networking in general and
adaptive sensor networks and network security in
particular [10, 11, 12, 20].

Optimization in general and routing aspects are also
in the focus of bio-inspired networking. Swarm
intelligence builds the basis for this kind of work as
shown by Di Cargo and Dorigo [8, 9]. The group of Suda
has built a middleware, called the bio-networking
platform [28, 30], to investigate in multiple biological
inspired technologies. Optimizations and application in
various research areas such as pervasive computing [27]

and security [26] have been worked out. In the area of
sensor networks, first attempts to study the behavior of
swarms of insects, typically ants and bees, and to adapt
the discoveries to build more efficient sensor networks
are in progress. For example, Kadrovach [17] and the
group of Osadiciw [23, 24, 25] are working in this area.
Liang provided an approach for redundancy allocation
[22] applicable in autonomous systems environments.
Bio-inspired robots, which use biological mechanisms
for flight control and localization, were developed for
example by Chahl and Thakoor [5, 29].

All these examples demonstrate that there is already
work on bio-inspired mechanisms in the fields of
communication networks.

3 Cell Biology as the Key for
Computer Networking

In this section we focus on cell biology as a key for
computer networking. We first show structural
similarities followed by some information about the
signaling pathways within single cells and between
tissues. Based on obvious similarities, high potentials of
this analysis are worked out which will lead to paradigms
and algorithms showing a higher efficiency in computer
networking.

3.1 Structural Comparison of Organisms
and Computer Networks

The sector of cell and molecular biology is analyzing the
basic behavior of organisms from a microscopic point of
view. All the cells are acting in a predefined manner,
controlled by the DNA. In summary it can be said, that
cells are the smallest entities in a profoundly self-
organizing system comparable to autonomous systems in
computer science.

In Fig 1, a structural comparison of organisms and
computer networks is shown. It can be seen that both
show high similarities. This organization of an organism
is a highly regulated process from the single cell up to
complex organs of the body. The hierarchy in the
organism is very high. Every process, e.g. movement,
metabolism, communication, etc. is organized by
interactions of several organs. Organs represent an
assembly of one or more tissues, which fulfill a common
function. One tissue is build by different cell types. One
cell type consists of identical cells, which are associated
and communicate with each other to fulfill a common
function within the tissue.

Interface
Router

Firewall

DNA

Information

Response

Internet
Network
Domain

Network
Node

EFFICIENT AND SCALABLE COMMUNICATION IN... Informatica 29 (2005) 183–188 185

Fig 1. Structural comparison of organisms and
computer networks

The organization in computer networks is quite similar.
An internet consists of network domains, (sub-)networks,
and network nodes, respectively. The network nodes
fulfill specific tasks that finally lead to a common
behavior of the network. Examples are the storage the
aggregation, and the forwarding of data.

3.2 Cellular information exchange and
adaptation to network security

The focus of this section is to examine the information
exchange in cellular environments and to extract the
issues in computer networks that can be addressed by the
utilization of these mechanisms [11, 12, 20].

Similar to the structure, the intercommunication
within both systems is comparable. Information
exchange between cells, called signaling pathways,
follows the same requirements as between network
nodes. A message is sent to a destination and transferred,
possibly using multiple hops, to this target.

From a local point of view, the information transfer
works as follows. A specific signal reaches only cells in
the neighborhood. The signal induces a signaling cascade
in each target cell resulting in a very specific answer
which vice versa affects neighboring cells. This process
is depicted in Fig 2. A cell is shown with a single
receptor that is able to receive a very specific signal and
to activate a signaling cascade which finally forms the
cellular response.

Fig 2. Local information exchange in the cellular
environment

Similar mechanisms are present in networking
environments. Looking on network security solutions,
monitoring probes gather information about the ongoing
traffic in the network. The collected data will be sent to
an attached intrusion detection system for further
processing. Finally, corresponding firewall systems are
configured with rules concerning the actual behavior in
the network. Similar mechanisms can be deduced from
pervasive computing environments or sensor networks.
General issues to address in such a network are:

• Adaptive group formation
• Optimized task allocation
• Efficient group communication

• Data aggregation and filtering
• Reliability and redundancy

The remote information exchange works analogue.

As depicted in Fig 3, proteins are used as information
particles between cells. A signal can be released into the
blood stream, a medium which carries it to distant cells
and induces an answer in these cells which then passes
on the information or can activate helper cells (e.g. the
immune system). The interesting property of this
transmission is that the information itself addresses the
destination. Only cells with a very specific receptor are
able to receive the information, i.e. the protein binds at
the receptor.

Fig 3. Remote information exchange between
cells and tissues

In this scenario, the corresponding issues in
computer networking are for example:

• Localization of significant relays, helpers, or
cooperation partners

• Semantics of transmitted messages
• Cooperation across domain borders
• Internetworking of different technologies
• Authentication and authorization

The lessons to learn from biology are the efficient

and, above all, the very specific response to a problem,
the shortening of information pathways, and the
possibility of directing each problem to the adequate
helper component. Therefore, the adaptation of
mechanisms from cell and molecular biology promises to
enable a more efficient information exchange.
Additionally, issues of task allocation and group
communication are directly addressed by the introduced
capabilities.

4 Application of Swarm Intelligence
The studies on the behavior of swarms of bees and ant
colonies have already shown high potentials solving
issues in the areas of group formation and self-
organization [9, 22, 23].

Some of the communication aspects, e.g. localization
of resources, signaling of control information, and others
can be directly addressed by the methodologies known

DNA

Signal
(information)

Gene transcription
results in the
formation of a
specific cellular
response to the
signal

Receptor

DNADNA
Tissue 1

Tissue 2

DNADNA

DNADNA

DNADNA

DNADNA

DNADNA

Tissue 3

Blood

186 Informatica 29 (2005) 183–188 F. Dressler

from cell biology as described above. Others need further
assistance. The most challenging issue is the adaptive
formation of groups of nodes, so called clusters.
Communication mechanisms provided by intercellular
signaling pathways typically rely on the formation of
clusters.

Groups can be organized using various parameters
such as similar properties, localization information, and
other relationships. Swarm intelligence and collective
behavior are key solutions for such questions [1]. The
clustering of entities using ant system like algorithms
leads to interesting solutions that obviously are the basis
for further interactions as depicted in section 3. An
example is shown in Fig 4. This figure represents an
initial configuration with a random, uniform distribution
of nodes.

Fig 4. Clustering. Initial random distribution of
nodes

Algorithms of swarm intelligence, i.e. collective
ants, can be used to form clusters of nodes. In this
example, only binary information is used to identify the
relationship of nodes. Nevertheless, this algorithm can be
enhanced to work in more sophisticated environments
with multiple properties for an efficient clustering. A
final state is shown in Fig 5.

Fig 5. Cluster formation after running the
algorithm some 10.000 steps [1]

After the successful group formation, other
mechanisms can be applied for an efficient

communication whether between individual systems
(end-to-end, unicast), between all group members (group
multicast), or between systems assigned a particular
function (anycast).

5 Destinations and Goals
The objective of this paper is to provide information
about mechanisms that allow us to build self-organizing
network infrastructures. The key properties are efficiency
and scalability. In order to address these issues, some
bio-inspired mechanisms have been worked out:
communication paradigms following the mechanisms in
cell biology and clustering or group formation based on
algorithms known from swarm intelligence. The primary
destinations are discussed which point to novel solutions
for various network environments employing the
mentioned mechanisms.

Identification of properties
Instead of having a network administrator configuring
individual systems and their properties, dynamic
algorithms are required for self-organizing issues. In the
past, such mechanisms were provided for identifying
individual nodes based on an individual property, e.g.
routing protocols are in some manner self-configuring by
identifying neighboring nodes. Nevertheless, the final
goal is to put new nodes into an existing network without
any preconfigured knowledge. The properties of the
nodes can be described in some common way. Bio-
inspired communication mechanisms learnt from inter-
cellular signaling pathways provides the appropriate
mechanisms.

Localization of nodes
For some reasons, the position of special nodes must be
detectable. In communication networks, typical examples
are the localization of dedicated gateway nodes or the
allocation of resources in mobile sensor networks.
Swarm intelligence based clustering in combination with
bio-inspired communications allows a fast and adaptive
localization of resources even in unreliable network
environments.

Group communication
One of the key features in autonomous systems is an
efficient communication paradigm which connects
multiple interacting nodes. This paradigm is called group
communication. Research on such issues started with
developments of IP multicast and is ongoing work in
peer-to-peer networks. In most protocols, the
management and maintenance of the group is the limiting
factor in terms of scalability. Often, especially in
pervasive environments or in sensor networks, group
communication mechanisms are required which do not
rely on the prior formation and maintenance of groups.
Such communication paradigms can be derivated from
cell biology. Here, fuzzy communication mechanisms are
successfully employed showing a very high efficiency
and specificity.

EFFICIENT AND SCALABLE COMMUNICATION IN... Informatica 29 (2005) 183–188 187

Task allocation
Modern task allocation mechanisms are related to
distributed systems research. Nevertheless, many efforts
were made using bio-inspired engineering approaches for
better utilization of the global system. Interestingly, this
is possible employing the discussed methodologies
known from swarm intelligence in combination with new
communication paradigms. The problem of task
allocation can be reduced to the identification of
available resources and group communication between
related nodes.

Further work in the described destinations on

application scenarios for bio-inspired networking
methodologies is still required. Progress is currently
driven by two factors. First, the analysis of biological
mechanisms is looking for areas offering new paradigm
and concepts which can be transferred to computer
science related field. One example is the described
application of cellular and molecular biology for
communication networks. Secondly, some of the natural
processes are still unknown or need further research in
non-engineering field. We have to look constantly for
emerging new achievements in science and adapt the
changes to our algorithms.

6 Conclusions
We outlined biological inspired mechanisms for efficient
and scalable communication in autonomous networking.
Self-organization issues are promising to be the key
answer to build large and complex systems fulfilling
different tasks out of many simple independent
autonomous entities. Such systems can be found quite
often in computer networking. Network security,
pervasive computing environments, and sensor networks
are only single examples. All these systems require
similar operations as their basis mechanisms:

• group formation
• adaptive communication
• resource localization and management
Mechanisms known from cell biology for the

identification of resources and efficient inter-node
communication in combination with swarm intelligence
based approaches for adaptive group formation are
adequate solutions for the depicted problems. In
summary it can be said, that further developments of
communication principles will have to rely on the
elaborated methodologies in bio-inspired research.

Acknowledgements
This work is part of autonomous systems research at the
chair for computer networks and communication
systems, University of Erlangen-Nuremberg, headed by
Prof. Dr. German. First studies on autonomous
networking and self-organization issues were started in
cooperation with Prof. Dr. Carle, chair for computer
networks and internet at the University of Tuebingen.
The research on bio-inspired networking is collaborative

work with Dr. Krüger, Inst. of Physiology at the
University of Erlangen-Nuremberg.

References
[1] Alenius, E., A. J. Eide, et al. (2004) Experiments on

Clustering using Swarm Intelligence and Collective
Behavior. International IPSI-2004 Stockholm
Conference: Symposium on Challenges in the
Internet and Interdisciplinary Research (IPSI-2004
Stockholm), Stockholm, Sweden.

[2] Bentley, P. J., T. Gordon, et al. (2001) New Trends
in Evolutionary Computation. Congress on
Evolutionary Computation (CEC-2001), Seoul,
Korea.

[3] Bonabeau, E., M. Dorigo, et al. (1999) Swarm
Intelligence: From Natural to Artificial Systems,
Oxford University Press.

[4] Camazine, S., J.-L. Deneubourg, et al. (2003) Self-
Organization in Biological Systems, Princeton
University Press.

[5] Chahl, J., S. Thakoor, et al. (2003) Bioinspired
Engineering of Exploration Systems: A
Horizon/Attitude Reference System Based on the
Dragonfly Ocelli for Mars Exploration Applications.
Journal of Robotic Systems 20(1): 35-42.

[6] Das, S. K., N. Banerjee, et al. (2004) Solving
Otimization Problems in Wireless Networks using
Genetic Algorithms. Handbook of Bio-inspired
Algorithms.

[7] D'haeseleer, P., S. Forrest, et al. (1996) An
Immunological Approach to Change Detection:
Algorithms, Analysis and Implications. IEEE
Symposium on Security and Privacy, Oakland, CA,
USA.

[8] Di Caro, G. and M. Dorgio (1998) AntNet:
Distributed Stigmergetic Control for Communication
Networks. Journal of Artificial Intelligence Research
9: 317-365.

[9] Dorigo, M., V. Maniezzo, et al. (1996) The Ant
System: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics 26(1): 1-13.

[10] Dressler, F. (2004) Bio-inspired mechanisms for
efficient and adaptive network security mechanisms.
Dagstuhl Seminar 04411 on Service Management
and Self-Organization in IP-based Networks, Schloss
Dagstuhl, Wadern, Germany.

[11] Dressler, F. (2004) Bio-inspirierte effiziente
Datenkommunikation in mobilen Netzen.
Systemsoftware für Pervasive Computing:
Fachgespräch der GI/ITG-Fachgruppe
Kommunikation und Verteilte Systeme, Stuttgart,
Germany.

[12] Dressler, F. and B. Krüger (2004) Cell biology
as a key to computer networking. Bielefeld,
Germany, German Conference on Bioinformatics
2004 (GCB'04).

[13] Eigen, M. (1979) The Hypercycle: A Principle
of Natural Self Organization, Springer Verlag.

188 Informatica 29 (2005) 183–188 F. Dressler

[14] Gerhenson, C. and F. Heylighen (2003) When
Can we Call a System Self-organizing? 7th European
Conference on Advances in Artificial Life (ECAL
2003), Dortmund, Germany.

[15] Hofmeyer, S. (1999) An Immunological Model
of Distributed Detection and Its Application to
Computer Security, University of New Mexico.

[16] Hofmeyer, S. and S. Forrest (2000) Architecture
for an Artificial Immune System. Evolutionary
Computation 8(4): 443-473.

[17] Kadrovach, B. A. and G. B. Lamont (2002) A
Practicle Swarm Model for Swarm-based Networked
Sensor Systems. 2002 ACM Symposium on Applied
Computing, Madrid, Spain.

[18] Kennedy, J. and R. Eberhart (2001) Swarm
Intelligence, Morgan Kaufmann.

[19] Kephart, J. O. (1994) A Biologically Inspired
Immune System for Computers. 4th International
Workshop on Synthesis and Simulation of Living
Systems, Cambridge, Massachusetts, USA, MIT
Press.

[20] Krüger, B. and F. Dressler (2004) Molecular
Processes as a Basis for Autonomous Networking.
International IPSI-2004 Stockholm Conference:
Symposium on Challenges in the Internet and
Interdisciplinary Research (IPSI-2004 Stockholm),
Stockholm, Sweden.

[21] Le Boudec, J.-Y. and S. Sarafijanovic (2004)
An Artificial Immune System Approach to
Misbehavior Detection in Mobile Ad-Hoc Networks.
First International Workshop on Biologically
Inspired Approaches to Advanced Information
Technology (Bio-ADIT2004), Lausanne,
Switzerland.

[22] Liang, Y.-C. and A. E. Smith (1999) An ant
system approach to redundancy allocation. 1999
Congress on Evolutionary Computation, Washington
D.C.

[23] Muraleedharan, R. and L. A. Osadiciw (2003)
Balancing The Performance of a Sensor Network
Using an Ant System. 37th Annual Conference on
Information Sciences and Systems (CISS 2003),
Baltimore, MD.

[24] Muraleedharan, R. and L. A. Osadiciw (2003)
Sensor Communication Network Using Swarm
Intelligence. 2nd IEEE Upstate New York Workshop
on Sensor Networks, Syracuse, NY, USA.

[25] Muraleedharan, R. and L. A. Osadiciw (2004) A
Predictive Sensor Network Using Ant System.
Defense and Security Symposium, Orlando, Florida,
USA.

[26] Song, S. and T. Suda (2001) Security on Energy
Level in the Bio-Networking Architecture. 3rd
International Conference on Advanced
Communication Technology (ICACT2001), Muju
Resort, South Korea.

[27] Suzuki, J. and T. Suda (2003) The Bio-
Networking Platform: An Autonomic Agent
Platform for Pervasive Computing. 2nd IPSJ
Workshop on Ubiquitous Computing, Kyoto, Japan.

[28] Suzuki, J. and T. Suda (2003) Design and
Implementation of a Scalable Infrastructure for
Autonomous Adaptive Agents. 15th IASTED
International Conference on Parallel and Distributed
Computing and Systems, Marina del Ray, CA, USA.

[29] Thakoor, S., J. Chahl, et al. (2004) BEES:
Exploring Mars with Bioinspired Technologies.
IEEE Computer 37(9): 38-47.

[30] Wang, M. and T. Suda (2001) The Bio-
Networking Architecture: A Biologically Inspired
Approach to the Design of Scalable, Adaptive, and
Survivable/Available Network Applications. 1st
IEEE Symposium on Applications and the Internet
(SAINT), San Diego, CA, USA.

Informatica 29 (2005) 189–197 189

Model Checking Multi-Agent Systems

Mustapha Bourahla
Computer Science Department, University of Biskra, Algeria
mbourahla@hotmail.com

Mohamed Benmohamed
Computer Science Department, University of Constantine, Algeria
ibnm@yahoo.fr

Keywords: Multi-agent systems, Multi-modal branching-timelogic, Model checking

Received: September 21, 2004

Multi-agent systems are increasingly complex, and the problem of their verification and validation is ac-
quiring increasing importance. In this paper we show how a well known and effective verification tech-
nique, model checking, can be generalized to deal with multi-agent systems. This paper explores a particu-
lar type of multi-agent system, in which each agent is viewed as having the three mental attitudes of belief
(B), desire (D), and intention (I). We present a new approach to the verification of multi-agent systems,
based on the use of possible-worlds framework to describe the system, a multi-modal branching-time logic
BDICTL, with a semantics that is grounded in traditional decision theory, to specify the properties, and a
decision procedure based on model checking technique. An imperative multi-agent programming language
and a formal semantics for this language in terms of the BDICTL logic are used to specify multi-agent
systems. The multi-agent program is used to systemically construct the agents state spaces. Then an au-
tomatic synthesis of these state spaces using the agents mental attitudes will generate the possible worlds
structures. These possible worlds will be used by the adopted decision procedure to solve the problems of
verification. A preliminary implementation of the approach shows promising results.

Povzetek: Predstavljen je nov algoritem za preverjanje pravilnosti multi-agentnih sistemov.

1 Introduction

The design of (in particular safety-critical control) systems
that are required to perform high-level management and
control tasks in complex dynamic environments is becom-
ing of increasing commercial importance. Such systems
include the management and control of air traffic systems,
telecommunications networks, business processes, space
vehicles, and medical services. Experience in applying
conventional software techniques to develop such systems
has shown that they are very difficult and very expensive to
build, verify, and maintain. Agent-oriented systems, based
on a radically different view of computational entities, offer
prospects for a qualitative change in this position.

A number of different approaches have emerged as can-
didates for the study of agent-oriented systems [3, 6, 16,
18, 19]. One such architecture [16] views the system as a
rational agent having certain mental attitudes of Belief (be-
liefs can be viewed as the informative component of sys-
tem state), Desire (desires can be thought of as representing
the motivational state of the system), and Intention (the in-
tentions of the system capture the deliberative component
of the system). Thus BDI (Belief, Desire and Intention)
represents the information, motivational, and deliberative
states of the agent. These mental attitudes determine the

system’s behavior and are critical for achieving adequate
or optimal performance when deliberation is subject to re-
source.

To describe the belief, desire, and intention components
of the system state a propositional form is used, based on
possible worlds. Thus, the possible worlds model [16] con-
sists of a set of possible worlds where each possible world
is a tree structure. A particular index within a possible
world is called a situation. With each situation we associate
a set of belief-accessible worlds, desire-accessible worlds,
and intention-accessible worlds; intuitively, those worlds
that the agent believes to be possible, desires and intends to
bring about, respectively.

In this paper, we address the problem of verification for
such formalisms which is increasingly important. The for-
malism of multi-agent temporal logic [16] is introduced to-
wards lifting one of the most successful verification tech-
niques, model checking [4], for the validation of multi-
agent systems. Multi-agent temporal logic BDICTL com-
bines, within a single framework, the aspects of temporal
logic, used to reason about the temporal evolution of finite-
state automata, with agent-related aspects such as belief,
desire and intention.

The problem of extending the standard temporal logic
model checking techniques, and then using the related

190 Informatica 29 (2005) 189–197 M. Bourahla et al.

tools, to deal with the multi-agent aspects of the logic, is
the specification of the possible worlds and the relation be-
tween them. The essential of our contribution is to present
an approach by which we help reducing the specification
time. This approach is based on the automatic synthesis of
the mental attitudes of agents. Each mental state will be
an index to a new created world using the specifications of
the different agents. For illustrating our approach, we de-
signed a sub-language for specifying multi-agent systems.
The specification will be agent-oriented. A tool is devel-
oped for constructing the state space of each agent in the
multi-agent system. Then an algorithm is developed for
synthesizing the agent models of the specified multi-agent
system. The synthesis result is a possible worlds model.
At the end, we have adopted the standard model check-
ing for the analysis of these models of multi-agent systems.
A symbolic model checking tool for verifying multi-agent
systems has been implemented. The preliminary results are
extremely promising.

This paper is structured as follows. In Section 2 we de-
scribe the multi-agent temporal logic (BDICTL). In Sec-
tion 3, we present the specification sub-language and its
underlying intuitions, and define the language and the se-
mantics as a temporal logic. In Section 4, we present the
algorithm for synthesizing the corresponding multi-agent
structures. In Section 5, we present the extended general
algorithm for model checking. Finally, in Section 6 we out-
line the results, discuss future work, and draw some conclu-
sions.

2 Multi-Agent Temporal Logic
BDICTL

The temporal logic BDICTL [16] we consider is exten-
sion of Computation Tree Logic CTL [7] that has been
used extensively for reasoning about concurrent programs.
The branching-time logic CTL is extended to represent the
mental state or belief-desire-intention state of an agent.
This logic can then be used to reason about agents and
the way in which their beliefs, desires, and actions can
bring about the satisfaction of their desires. The syntax of
BDICTL is as follows.

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ∃Xϕ | ∃Gϕ | ∃ϕUϕ |
Biϕ | Diϕ | Iiϕ.

The primitives of this language include a nonempty setAP
of atomic propositions, propositional connectives ∨ and ¬,
modal operators B (agent believes), D (agent desires), and
I (agent intends), and temporal operators of CTL. The CTL
temporal operators are ∃Xϕ (ϕ might hold at next time in-
stant), ∃ϕUψ (it might be the case that ψ holds at a certain
time future and until then ϕ holds), and ∃Gϕ (ϕmight hold
for all future time instants). Temporal operators are com-
pactly characterized by ∃ϕUψ ⇔ (ψ∨ (ϕ∧∃X∃(ϕUψ)))
and by ∃Gϕ ⇔ (ϕ ∧ ∃X∃Gϕ). We have operators Biϕ,
Diϕ, and Iiϕ which mean that agent i has a belief, desire,

and intention of ϕ, respectively. This grammar is not given
in its most succinct form and there exist equivalence rules
to express the same formula with different operators; for
example, ∀Fϕ (ϕ is inevitable) is equivalent to ¬∃G¬ϕ.
In practice, by using these equivalence rules, a formula can
be written such that the negation appears only at the level
of atomic propositions. Such a form of a formula is known
as Negative Normal Form (henceforth NNF form).

The traditional possible-worlds semantics of beliefs con-
siders each world to be a collection of propositions and
models belief by a belief-accessibility relation B linking
these worlds. A formula is said to be believed in a world if
and only if it is true in all its belief-accessible worlds [10].
The accessibility relation B is a relation between the world
at an index and at a time point to a set of worlds. Intuitively,
an agent believes a formula in a world at a particular index
if and only if in all its belief-accessible worlds the formula
is true. We consider each possible world to be a tree struc-
ture with a single past and a branching future [5]. Eval-
uation of formulas is with respect to a world and a state.
Hence, a state acts as an index into a particular tree struc-
ture or world of the agent. The belief-accessibility relation
maps a possible world at a state to other possible worlds.
The desire-, and intention-accessibility relations behave in
a similar fashion. More formally, we have the following
definition of a Kripke structure.

Definition 1 A Kripke structure is defined to be a tuple
K = 〈W,S, {Sw : w ∈ W}, {Rw : w ∈ W}, {Iw :
w ∈W}, L,B,D, I〉, where W is a set of possible worlds,
S is the set of states, Sw is the set of states in each world
w ∈ W (S = ∪w∈WSw), Rw is a total tree relation, i.e.,
Rw ⊆ Sw × Sw, Iw a set of initial states (Iw ⊆ Sw),
L : W × S → 2AP is a function that labels for each world
w ∈ W , each state s ∈ Sw with the set of atomic propo-
sitions true in that state, and B, D, and I are relations on
the worlds W and states S (i.e. O ⊆W × S ×W), where
O is one of B, D, or I.

We also define a world to be a sub-world of another if
one of them contains fewer paths, but they are otherwise
identical to each other. More formally, we have the follow-
ing definition.

Definition 2 A world w′ is a sub-world of the world w,
denoted by w′ � w, if and only if

1. Sw′ ⊆ Sw, Iw′ ⊆ Iw, Rw′ ⊆ Rw,

2. ∀s ∈ Sw′ , L(w′, s) = L(w, s),

3. ∀s ∈ Sw′ , (w′, s, v) ∈ B iff (w, s, v) ∈ B; and simi-
larly for D and I.

The semantics ofBDICTL involves two dimensions: an
epistemic and a temporal dimension. The truth of a formula
depends on both the epistemic world w and the temporal
state s. A pair (w, s) (denoted also sw) is called a situation

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 191

in whichBDICTL formulas are evaluated. The relation be-
tween situations is traditionally called an accessibility rela-
tion (for beliefs) or a successor relation (for time).

A BDICTL-model M is represented as a Kripke struc-
ture. We note a model M in world w as Mw. A trace
(path) in a world w ∈ W starting from sw is an infinite se-
quence of states ρw = sw

0 s
w
1 s

w
2 · · · such that sw

0 = sw, and
for every i ≥ 0, 〈sw

i , s
w
i+1〉 ∈ Rw. The (i + 1)-th state of

trace ρw is denoted ρw[i]. The set of paths starting in state
sw of the model Mw is defined by ΠMw

(sw) = {ρw |
ρw[0] = sw}.

For any BDICTL-model Mw and state sw ∈ Sw, there
is an infinite computation tree with root labeled sw such
that 〈sw

i , s
w
j 〉 is an arc in the tree if and only if 〈sw

i , s
w
j 〉 ∈

Rw. Satisfaction of formulas, denoted by |=Mw
, is given

with respect to a model M, a world w, and state s. The
expression s |=Mw

ϕ is read as “model M in world w and
state s satisfies ϕ”.

– s |=Mw p iff p ∈ L(w, s)

– s |=Mw ¬p iff s �|=Mw p

– s |=Mw ϕ ∨ ψ iff s |=Mw ϕ or s |=Mw ψ

– s |=Mw ∃Xϕ iff ∃ρw ∈ ΠMw (s) : ρw[1] |=Mw ϕ

– s |=Mw ∃Gϕ iff ∃ρw ∈ ΠMw (s) : ∀j ≥ 0 : ρw[j] |=Mw

ϕ

– s |=Mw ∃ϕUψ iff ∃ρw ∈ ΠMw (s) : (∃j ≥ 0 :
ρw[j] |=Mw ψ) ∧ (∀k, 0 ≤ k < j : ρw[k] |=Mw ϕ)

– s |=Mw Bi(ϕ) iff ∀v, (w, s, v) ∈ B : ∀s′ ∈ B(Bi(ϕ)) :
s′ |=Mv ϕ

– s |=Mw Di(ϕ) iff ∀v, (w, s, v) ∈ D : ∀s′ ∈ D(Di(ϕ)) :
s′ |=Mv ϕ

– s |=Mw Ii(ϕ) iff ∀v, (w, s, v) ∈ I : ∀s′ ∈ I(Ii(ϕ)) :
s′ |=Mv ϕ

We denote the set of states in the world v that are acces-
sible to the state s in the world w, where (w, s, v) ∈ O by
O(Oi(ϕ)) (more details are in Section 4). A formula ϕ is
said to be valid in Mv , written as |=Mv

ϕ, if s |=Mv
ϕ for

every state s ∈ Sv . A formula is valid if it is true in every
state, in every world, in every structure (model).

Recall that an agent i has a belief ϕ, denoted Bi(ϕ), in
state s if and only if ϕ is true in all the belief-accessible
worlds of the agent at state s. As the belief-accessibility re-
lation is dependent on the state, the mapping of B at some
other state may be different. Thus the agent can change its
beliefs about the options available to it. Similar to belief-
accessible worlds, for each state we also associate a set
of desire-accessible worlds to represent the desires of the
agent. Thus, in the same way that we treat belief, we say
that the agent has a desire ϕ in state s if and only if ϕ is
true in all the desire-accessible worlds of the agent in state
s.

In the philosophical literature, desires can be inconsis-
tent and the agent need not know the means of achieving
these desires. Desires have the tendency to ‘tug’ the agent
in different directions. They are inputs to the agent’s de-
liberation process, which results in the agent choosing a

subset of desires that are both consistent and achievable.
In the AI literature such consistent achievable desires are
usually called goals. The desires as presented here are log-
ically consistent, but due to the branching-time structure,
conflicting desires can ‘tug’ the agent along different ex-
ecution paths. That is, while the desires may be logically
consistent, they may not all be realizable, as the agent can
only follow one execution path in the branching tree of pos-
sible executions. The deliberation process must eventually
resolve these conflicts and choose a set of realizable desires
before the agent can act intentionally.

Intentions are similarly represented by sets of intention-
accessible worlds. These worlds are ones that the agent
has chosen to attempt to realize. The intention-accessibility
relation is used to map the agent’s current world and state
to all its intention-accessible worlds. We say that the agent
intends a formula in a certain state if and only if it is true in
all the agent’s intention-accessible worlds at that state.

3 Specification of Multi-Agent
Systems

A multi-agent system contains a finite number of agents.
The basic form of an agent is “agent A is init P ”, where
A is the name of the agent and P is the program body.
Each agent in a multi-agent system is assumed to have a
unique name, drawn from a set of agent identifiers . The
main part of an agent, which determines its behavior, is the
program body P . The basis of program bodies is a simple
imperative language, containing iteration (loop loops), se-
quence (the ; constructor), selection (a form of the if , then ,
else statement), choice (the | constructor), and assignment
statements.

An agent A is allowed to execute by a do instruction any
of a setActions = {α, · · ·} of external actions. The sim-
plest way to think of external actions is as native methods
in a programming language like Java. They provide a way
for agents to execute actions that do not simply affect the
agent’s internal state, but its external environment. The ba-
sic form of the do instruction is do α, where α ∈ Actions
is the external action to be performed. When we incorpo-
rate communication, we do so by modeling message send-
ing as an external action to be performed.

In a conventional programming language, conditions in
if statement are only allowed to be dependent on program
variables. Unusually, we allow conditions in if statement
to be arbitrary formulas of the BDICTL logic (any accept-
able formula is allowed as a condition). To make this more
concrete, consider the following:

if Bjp then r := p else r := false

The idea is that if the agent executing this instruction be-
lieves that agent j believes that p, then the agent executing
the instruction assigns the value of p to r. If the agent ex-
ecuting the instruction believes it is not the case that agent
j believes p, then it assigns the value false to r. Notice

192 Informatica 29 (2005) 189–197 M. Bourahla et al.

the form of words used here: the agent executing this if
instruction must believe that j believes p; the condition
does not depend on what j actually believes, but on what
the agent executing the statement believes that j believes.
As this example illustrates, conditions can thus refer to the
mental state of other agents. The general form of a loop
construct, as in conventional programming languages, is
loop P endloop, where P is a program.

Given a collection {A1, · · · , An} of agents, they are
composed into a multi-agent system by the parallel compo-
sition operator “‖”: A1 ‖ · · · ‖ An. Formally, the abstract
syntax of multi-agent systems is defined by the grammar
below.

MAS ::= Agent ‖ · · · ‖ Agent
Agent ::= agent A is Init P
Init ::= init p := true or false, where p ∈ AP
P ::= do α | p := true or false
| if ϕ then P | if ϕ then P else P
| loop P endloop | P ′;′ P | P ′|′ P

Example 1 To clarify this syntax, let us consider the fol-
lowing scenario involving two agents: a receiver rcv and
a sender snd. snd continuously reads news on a certain
subject (p) from its sensors (e.g., the standard input). Once
read the news, snd informs rcv only if it believes that
rcv does not have the correct knowledge about that sub-
ject (this in order to minimize the traffic over the network).
Once received the news, rcv acknowledges this fact back
to snd. After the reception of acknowledgement from the
agent rcv, the agent snd will believe that the agent rcv be-
lieves p ∨ q (q is a propositional atom) or it believes that
the agent rcv believes p (or q) in the case that the agent
rcv at the beginning, does not have the correct knowledge
about p (or ¬p).

We have therefore three agents: snd , rcv , and a network
(communication protocol) protocol which allows them to
interact. The descriptions of snd , rcv and the communica-
tion protocol protocol , are given below respectively.

agent snd is
init ∀p ∈ AP : p := false
loop

do read(p);
if p ∧ ¬Brcvp then

do putmsg(inform(snd, rcv, p));
do getmsg(inform(rcv, snd, Brcvp));
(Brcvp := true) | (Brcv(p ∨ q) := true);

else if ¬p ∧ ¬Brcv¬p then
do putmsg(inform(snd, rcv,¬p));
do getmsg(inform(rcv, snd, Brcv¬p));
(Brcvq := true) | (Brcv(p ∨ q) := true);

endloop

agent rcv is
init ∀p ∈ AP : p := false
loop

{
do getmsg(inform(snd, rcv, p));
p := true;
do putmsg(inform(rcv, snd, Brcvp));

} | {

do getmsg(inform(snd, rcv, ¬p));
q := true;
do putmsg(inform(rcv, snd, Brcv¬p));

}
endloop

agent protocol is
init ∀p ∈ AP : p := false
loop
∀p ∈ AP : p := false;
{
Bsnd∀F do putmsg(inform(snd, rcv, p)) := true;
Brcv∀F do getmsg(inform(snd, rcv, p)) := true

} | {
Bsnd∀F do putmsg(inform(snd, rcv, ¬p)) := true;
Brcv∀F do getmsg(inform(snd, rcv, ¬p)) := true

};
∀p ∈ AP : p := false;
{
Brcv∀F do putmsg(inform(rcv, snd, Brcvp)) := true;
Bsnd∀F do getmsg(inform(rcv, snd, Brcvp)) := true

} | {
Brcv∀F do putmsg(inform(rcv, snd, Brcv¬p)) := true;
Bsnd∀F do getmsg(inform(rcv, snd, Brcv¬p)) := true

}
endloop

mas = protocol ‖ snd ‖ rcv

In these descriptions, the news subject of the informa-
tion exchange is the truth value of the propositional atom
p. inform(snd , rcv , p) returns a message with sender snd ,
receiver rcv , and content p (inform is a FIPA (Founda-
tion for Intelligent Physical Agents) primitive). putmsg
and getmsg are the primitives for putting and getting (from
the communication channel) a message. read allows for
reading from the standard input. Brcv is the operator used
to represent the beliefs of rcv as perceived by the other
agents, and dually for Bsnd. Notice that the communica-
tion protocol has beliefs about rcv and snd and therefore
must have a representation of how they behave. We sup-
pose that this representation coincides with what rcv and
snd actually are, as described above. This allows us to
model the fact that the communication protocol behaves
correctly following what snd and rcv do. snd also has be-
liefs about rcv . We suppose that snd (which in principle
does not know anything about how rcv works) only knows
that rcv can be in one of two states, with p being either
true or false. In the example, Bsnd∀F do <statement>
(or Brcv∀F do <statement>) intuitively means that
snd (rcv) will necessarily reach a state in which it will have
just performed the action corresponding to<statement>.
The agent program protocol codifies the fact that the proto-
col implements the information flow between snd and rcv ,
and the fact that it always delivers the messages it is asked
to deliver. Some properties that we may want to prove are:

1. An agent liveness property, e.g., that snd will even-
tually believe that rcv believes p or believes ¬p. Its
expression is |=Mwsnd

∀F (Brcvp ∨ Brcv¬p). Where
wsnd is the world seen by the agent snd.

2. An overall system liveness property, e.g., that if it be-
lieves p, then in the future snd will believe that rcv

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 193

will believe p. Its expression is |=M Bsnd(p) ⊃
∀FBsnd∀FBrcvp.

3.1 Formal Semantics

The semantics of a multi-agent program will be defined as
a formula of BDICTL, which characterizes the acceptable
computations of the system, and the “mental state” of the
agents in the system.

The agent program semantic function is defined in terms
of the function [[· · ·]]Bexp : Bexp → B, which gives the
semantics of Boolean expressions. The four remaining se-
mantic functions are defined in Figure 1. The idea is that
the semantics are defined inductively by a set of definitions,
one for each construct in the language.

A declaration “agent A is init P ” binds a name A
with the semantics of the init statements and the pro-
gram body P . We capture the semantics of this by sys-
tematically substituting name A for the place-holder name
self in [[init]]Init ∧ [[P]]P . The semantics of a system
A1 ‖ · · · ‖ An is simply the conjunction of the seman-
tics of the component agents Ai, together with some back-
ground assumptions ψMAS . The idea of the background
assumptions is that these capture general properties of a
multi-agent system that are not captured by the semantics
of the language.

4 Construction of Possible Worlds
Model

We will develop an algorithm to construct a multi-agent
structure as defined in Definition 1. First we need to
build a structure for each agent specification then we will
synthesize these structures. At the beginning, a multi-
agent system will have a Kripke structure of the form
K = 〈W = {w1, · · · , wn}, S = {Sw1 , · · · , Swn

}, R =
{Rw1 , · · · , Rwn

}, I = {Iw1 , · · · , Iwn
}, L,B = ∅,D =

∅, I = ∅〉, where n is the number of agents. Then we will
compute the sets B, D, and I using the worlds w ∈W and
the labeling function L. At the end, a Kripke structure K
will be constructed representing the multi-agent system us-
ing the algorithm below. The initial Kripke structure K is
generated directly from the agents specifications. In each
world, there is a finite set of the BDI operators of the form
Oiϕ (whereO stands forB,D, or I). This set is considered
as a part of the atomic propositions AP .

Let us call TrueBDI(w,v)(s) the set of BDI atoms of
world w (of the current agent), of the form Oiϕ, which
are true at s (TrueBDI(w,v)(s) = BDI(w,v) ∩ L(w, s)).
v is the world of the agent i. An accessibility relation
O(w,v) ⊆ BDI(w,v) × Sv (or O(w,v)(Oiϕ) ⊆ Sv), con-
straints the truth of BDI (Oiϕ) atoms of a world w to the
truth values (of ϕ) in the world v. The states of world v ac-
cessible to s are those states belonging to the intersection,
over the BDI atoms true at s, of the sets of states accessible
to TrueBDI(w,v)(s). We extend the accessiblity relation

to a relation over a set of BDI atoms A ⊆ BDI(w,v) as
follows.

O(w,v)(A) =
⋂

Oiϕ∈A
O(w,v)(Oiϕ)

Therefore, the set of states of v accessible to a state s of w
will be simply denoted by O(w,v)(TrueBDI(w,v)(s)).

Depending on the kind of BDI operator being consid-
ered, the accessibility relation may have different proper-
ties. What makes M a model of a multi-agent possible
world is the particular structure of the accessibility rela-
tions among adjacent sub-worlds.

Definition 3 A BDICTL model M is a possible world
structure if for every word w, every BDI atom Oiϕ of w
and every s ∈ Sw the following conditions hold.

1. If Oiϕ ∈ L(w, s), then s′ ∈
O(w,v)(TrueBDI(w,v)(s)) implies that s′ is
reachable in v and s′ |=Mv

ϕ.

2. If Oiϕ �∈ L(w, s), then for some reachable state s′ ∈
O(w,v)(TrueBDI(w,v)(s)), s′ |=Mv

¬ϕ.

Condition 1 tells us what are the states in world
v which are accessible to a given state s (satisfying
TrueBDI(w,v)(s)), according to the semantics of BDIs ,
namely that the argument of a BDI true at a state must be
true in all the states reachable from it via accessibility re-
lation. Condition 2, on the other hand, tells us what are
the states of world w which actually comply to the seman-
tics of BDIs , i.e. the states which assign truth values to
BDI atoms in accordance with the semantics of the BDI
operator.

Let ϕ and ψ be two BDICTL formulas, assume that
ϕ ⊃ ψ, it would be unreasonable to allow for a state satis-
fying the BDI atom Oiϕ, yet not satisfying the BDI atom
Oiψ at the same time. This is the kind of situation that this
condition prevents. Indeed, let us suppose there is a state s
of a world w satisfying Oiϕ. By Condition 1 of Definition
3, any reachable state s′ of world v accessible to smust sat-
isfy ϕ. By Condition 2 of Definition 3, for s not to satisfy
the BDI atom Oiψ, there must be a reachable state s′′ in
world v accessible to s and which does not satisfy ψ. But,
according to Condition 1, all the states accessible to s must
satisfy ϕ and, consequently, ψ as well, which is impossible.

On the other hand, the definition of multi-agent struc-
ture allows for a state s of a world w to satisfy both BDI
atoms Oiϕ and Oi¬ϕ, where ϕ is BDICTL formula. This
happens when there is no state in world v is accessible to
s (i.e. when O(w,v)(TrueBDI(w,v)(s)) is empty). This
corresponds to the situation where world w, when in state
s, ascribes inconsistent BDIs to world v. Notice how-
ever that this kind of inconsistency is of a different nature
from the one ruled out by Definition 3. Indeed, allowing
a state s not to satisfy Oiψ while satisfying Oiϕ (where
ϕ ⊃ ψ) would make the specification of w itself incon-
sistent, while allowing both Oiϕ and Oi¬ϕ would not. It

194 Informatica 29 (2005) 189–197 M. Bourahla et al.

[[init p]]Init = Bselfp, p ∈ AP
[[do α]]P = Iselfα, α ∈ Actions

[[p := e]]P = ∀XBself [[e]]Bexp

[[if ϕ then P]]P = Bselfϕ⇒ [[P]]P

[[if ϕ then P1 else P2]]P = Bselfϕ⇒ [[P1]]P ∧ ¬Bselfϕ⇒ [[P2]]P

[[loop P endloop]]P = [[P ; loop P endloop]]P

[[P1;P2]]P = [[P1]]P ⇒ [[P2]]P

[[P1 | P2]]P = [[P1]]P ∨ [[P2]]P

[[agent A is init P]]Agent = ([[init]]Init ∧ [[P]]P)[A �→ self]

[[A1 ‖ · · · ‖ An]]MAS = [[A1]]Agent ∧ · · · ∧ [[An]]Agent ∧ ψMAS

Figure 1: Semantics of multi-agent program

is clearly possible, though, to rule out also the latter situa-
tion, by adding the additional constraint that every state s
must have a non-empty set of accessible states of the world
below (i.e. O(w,v)(TrueBDI(w,v)(s)) �= ∅).

4.1 Synthesizing Multi-Agent Structure

In this section we present a synthesis algorithm that auto-
matically constructs the suitable multi-agent Kripke struc-
ture M from a set of independently generated structures for
each agent specification and a selected set of BDI atoms,
thus leading to significant savings in the modeling phase.
The synthesis algorithm is reported below. It takes as input
a set of agents represented as world structures, and a set of
BDI atoms. Intuitively, the algorithm at each world com-
putes as a first step the accessibility relations associated to
each BDI operator of the world. This is done according
to Condition 1 of Definition 3. The second step is to im-
plement Condition 2 of the same definition. The idea is to
check whether there are states of the current world where
the negation of some BDI atoms conflicts with other BDI
atoms true at that state. Condition 2 tells us no such state
is admissible in a multi-agent structure as they correspond
to impossible combination of BDI atoms. Therefore, we
need to get rid of all those states in the structure of the
world. Once those two steps are performed at each world,
the resulting structure is indeed a multi-agent structure.

Algorithm 1 BUILD-MODEL(w,M)

{
for each i ∈ agent identifiers do

Let v be the world structure of the agent i
if BDI(w,v) �= ∅ then

Let wv be the world of the agent i as viewed by
the agent of the world w
M← BUILD-MODEL(wv,M)
M← CreateAR(w, v,M)

end if
end for
return(M)

}

The initial call is BUILD-MODEL(top, M), where top
is the root of the Kripke structure (in our example, is the
protocol agent). At the end of the algorithm, M will con-
tain the accessibility relations of the structure rooted at
w. The algorithm BUILD-MODEL recursively descends
depth-first the tree of worlds rooted at w, and builds the ac-
cessibility relations (algorithm below) with all the worlds
one level below the current world w. The creation of the
accessibility relations is using the algorithm MAS-Sat(w,
ϕ) (descried in the next section) which computes the set of
states satisfying the formula ϕ in the world w.

Algorithm 2 CreateAR(w, v,M)

{
/* Condition 1 of Definition 3 */
for each Oiϕ ∈ BDI(w,v) do

[[ϕ]]v ← MAS-Sat(v, ϕ)
O(w,v)(Oiϕ)← [[ϕ]]v

end for
/* Condition 2 of Definition 3 */
BadStates← ∅
for each Oiϕ ∈ BDI(w,v) do

[[¬ϕ]]v ← MAS-Sat(v, ¬ϕ)
BadBDI ← {A ⊆ BDI(w,v) \ {Oiϕ} |

O(w,v)(A) ∩ [[¬ϕ]]v = ∅}
BadStates← BadStates ∪ {s ∈ Sw |

TrueBDI(w,v)(s) ⊆ BadBDI}
end for
S′

w ← Sw \BadStates
if R′

w (which is Rw restricted to S′
w)

is total tree relation then
substitute w with 〈S′

w, R
′
w, Iw ∩ S′

w〉 inM
else remove w fromM
return(M)

}

Example 2 In Figure 2, the Kripke structure generated
from the agents specifications, contains three worlds for the
agents protocol , snd and rcv . The initial state is marked
by 0 and the list of atomic propositions true at a state are
written beside the circle representing that state. The values
of symbols m1, m2, m3 and m4 are inform(snd, rcv, p),

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 195

inform(snd, rcv,¬p), inform(rcv, snd,Brcvp) and
inform(rcv, snd,Brcv¬p), respectively. The first step of
the synthesis is the creation of the accessibility relations.
The agent protocol has beliefs on the agent snd and the
agent rcv thus, there are accessibility relations from its
world to new created worlds for the two agents as believed
by the agent protocol . These accessibility relations are il-
lustrated by dotted edges. We have also accessibility rela-
tions shown by dashed edges from the world(s) represent-
ing the agent snd to new created world representing the
agent rcv because the agent snd has beliefs on the agent
rcv . In the second step, we have removed the states (with
their edges) that are making conflicts (there are two states
as colored in the world of the agent snd). Then, the result-
ing Kripke structure is a possible world representing the
multi-agent system which can be used to check specified
properties for the multi-agent system.

5 BDICTL Model Checking

In this section, we present an extension of the standard CTL
model checking algorithm [4]. Given a BDICTL-formula
ϕ and a world of BDICTL-model Mw with a finite set
of states (Sw), the model checking algorithm MAS-Sat(w,
ϕ) (presented below) computes the set of states from the
world w satisfying the BDICTL formula ϕ. This set is
denoted [[ϕ]]w, and is computed in a recursive way, i.e. by
computing for each sub-formula ψ of ϕ the set [[ψ]]w. In
order to decide whether s |=Mw

ϕ we just have to check
whether s ∈ [[ϕ]]w.

Algorithm 3 MAS-Sat(w, ϕ)

{
case ϕ of
p | p ∈ AP : [[ϕ]]w ← {s | p ∈ L(w, s)}
Ojψ | Ojψ ∈ AP : [[ϕ]]w ← {s | Ojψ ∈ L(w, s)}
Ojψ |Ojψ �∈ AP : Let v be the world of the agent j

and let wv be the world of the agent j
as viewed by the agent of the world w
[[ψ]]wv ← MAS-Sat(wv, ψ)
O−1

(w,v)([[ψ]]wv)← {A ⊆ BDI(w,v) |
O(w,v)(A) ⊆ [[ψ]]wv}

[[ϕ]]w ← {s ∈ Sw |
TrueBDI(w,v)(s) ⊆ O−1

(w,v)([[ψ]]wv)}
¬ψ : [[ϕ]]w ← Sw\ MAS-Sat(w, ψ)
ψ ∨ γ : [[ϕ]]w ← MAS-Sat(w, ψ) ∪MAS-Sat(w, γ)
∃Xψ : Q← MAS-Sat(w, ψ)

[[ϕ]]w ← {s ∈ Q | ∃〈s, s′〉 ∈ Rw ∧ s′ ∈ Q}
∃Gψ : [[ϕ]]w ← νZ.([[ψ]]w ∩ ∃X Z)
∃(ψUγ) : [[ϕ]]w ← µZ.([[ψ]]w ∪ ([[γ]]w ∩ ∃X Z))

end case
return([[ϕ]]w)

}

The standard model checking algorithm is adopted to ac-
cept formulas of the form Ojψ which are not BDI atoms.
To compute the set of states satisfying these formulas, first
we compute the satisfaction set [[ψ]]wv of the sub-formula

ψ, then we compute the set of BDI atoms (O−1
(w,v)([[ψ]]wv))

whose accessible states are sub-sets of [[ψ]]wv . At the end,
the satisfaction set of Ojψ is the states whose true BDI
atoms are subsets of O−1

(w,v)([[ψ]]wv).
For the last two cases ∃Gψ and ∃(ψUγ) we calculate

a fix-point. The satisfaction set of ∃Gψ is the greatest
fix-point (νZ.([[ψ]]w ∩ ∃X Z)), and the satisfaction set of
∃(ψUγ) is the least fix-point (µZ.([[ψ]]w∪([[γ]]w∩∃X Z))).

6 Conclusion and Related Work

We have presented a new approach to the verification of
multi-agent systems, based on the use of possible worlds
to describe the system, modal temporal logic to specify the
properties, and a decision procedure based on model check-
ing technique. One contribution is the presentation of an
imperative multi-agent programming language, and a for-
mal semantics for this language in terms of the BDICTL

logic. The multi-agent program is used to systemically
construct the agents state spaces. Our main contribution is
the synthesis of these state spaces using the agents mental
attitudes to generate the possible worlds structures. These
possible worlds will be used by the adopted decision pro-
cedure to solve the problems of verification.

The notions of possible worlds is inspired by the works
in [15, 17, 16] and the works in the field of multi-language
systems [8, 9]. Other related work is in [1], where a finitely
nested data structure is used to model the belief-desire-
intention states. The authors of [11] present an automata
theoretic approach to temporal modal logic restricted to the
case of single nesting of beliefs, applied to the specification
of knowledge-based systems.

In [22], the authors present the MABLE language for the
specification of multi-agent systems. In this work, modal-
ities are translated into nested data structures in the spirit
of [1]. The author of [2] use a modified version of the
AgentSpeak(L) language [14] to specify agents and to ex-
ploit existing model checkers. Both the works of [22] and
[2] translate the specification into a SPIN specification to
perform the verification. Effectively, the attitudes for the
agents are reduced to predicates, and the verification in-
volves only the temporal verification of those. In [13] a
tool is provided to translate an interpreted system into SMV
code, but the verification is limited to static epistemic prop-
erties, i.e. the temporal dimension is not present, and the
approach is not fully symbolic. The work of [12] is con-
cerned with verification of interpreted systems for model
checking knowledge and time based on OBDD’s.

Currently we are investigating the extension in many di-
rections. One is the extension of the language to support
the other types of expression. In particular the arithmetic
expressions, by incorporating a tool for abstracting the pro-
gram using the framework of predicate abstractions. An-
other problem which is taking our attention is the explo-
sion problem, where techniques like the equivalence based
reduction or space partition can be investigated. One of the

196 Informatica 29 (2005) 189–197 M. Bourahla et al.

0

1

Bsnd∀F do putmsg(m1)),

2

Bsnd∀F do putmsg(m2))

3

Brcv∀F do getmsg(m1))

4

Brcv∀F do getmsg(m2))

5

6

Brcv∀F do putmsg(m3))

7

Brcv∀F do putmsg(m4))

8 Bsnd∀F do getmsg(m3))

9 Bsnd∀F do getmsg(m4))

5 Brcv(p ∨ q)0

do read(p)

1

p, do putmsg(m1)

2

do putmsg(m2)

3

4

do getmsg(m4)

6

do getmsg(m3)

Brcvp

7 Brcvq

0

1

do getmsg(m1)

2

do getmsg(m2)

3

p

4

q

5 do putmsg(m3)

6 do putmsg(m4)

0

1

do getmsg(m1)

2

do getmsg(m2)

3

p

4

q

5 do putmsg(m3)

6 do putmsg(m4)

Figure 2: Construction of the possible worlds

most and interesting extension is to treat the case of func-
tional dependencies between the mental attitudes, where
a mental attitude is considered to be a function of one or
more other mental attitudes.

References

[1] Benerecetti M., F. Giunchiglia, and L. Serafini (1998)
Model checking multi-agent systems, Journal of
Logic and Computation 8(3), pp. 401–423.

[2] Bordini R. H., M. Fisher, C. Pardavila, and M.
Wooldridge (2003) Model checking AgentSpeak.
Proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multi-agent Sys-
tems (AAMAS’03).

[3] Bratman, M. E., D. Israel, and M. E. Pollack
(1988) Plans and resource bounded practical reason-
ing, Computational Intelligence 4, pp. 349–355.

[4] Clarke, E. M., O. Grumberg, and D. A. Peled (1999)
Model Checking, MIT Press.

[5] Cohen P. R., and H. J. Levesque (1990) Intention is
Choice with Commitment, Artificial Intelligence 42,
pp. 213–261.

[6] Doyle J. (1992) Rationality and its roles in reasoning,
Computational Intelligence 8(2), pp. 376–409.

[7] Emerson E. A., and J. Srinivasan (1989) Branching
time temporal logic, Linear Time, Branching Time
and Partial Order, Proceedings of Logics and Models
for Concurrency, Springer-Verlag, pp. 123–172.

[8] Ghidini C. and F. Giunchiglia (2001) Local Mod-
els Semantics, or Contextual Reasoning = Locality +
Compatibility, Artificial Intelligence 127(2), pp. 221–
259.

[9] Ghidini C. and L. Serafini (1994) Multi-language hi-
erarchical logics (or: how we can do without modal
logics), Artificial Intelligence 65, pp. 29–70.

[10] Halpern J. Y., and Y. O. Moses (1990) A guide to
completeness and complexity for modal logics of
knowledge and belief, Artificial Intelligence 54, pp.
319–379.

[11] van der Meyden R. and M. Y. Vardi (1998) Synthesis
from Knowledge-Based Specifications, Proceedings
of the 9th International Conference on Concurrency
Theory (CONCUR’98).

[12] Raimondi F. and A. Lomuscio (2004) Verification of
multi-agent systems via ordered binary decision di-
agrams: an algorithm and its implementation, Pro-

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 197

ceedings of the First International Joint Conference
on Autonomous Agents and Multi-agent Systems (AA-
MAS’04).

[13] Raimondi F. and A. Lomuscio (2003) A tool for spec-
ification and verification of epistemic and temporal
properties of multi-agent system, Electronic Notes in
Theoretical Computer Science.

[14] Rao A. S. (1996) AgentSpeak(L): BDI agents speak
out in a logical computable language, Lecture Notes
in Computer Science.

[15] Rao A. S., and M. Georgeff (1998) Decision proce-
dures for BDI logics, Journal of Logic and Compu-
tation 8(3), pp. 293–344.

[16] Rao A. S., and M. P. Georgeff (1991) Modeling ra-
tional agents within a BDI architecture, Proceedings
of the Second International Conference on Principles
of Knowledge Representation and Reasoning, Mor-
gan Kaufmann.

[17] Rao A. S., and M. P. Georgeff (1992) An abstract ar-
chitecture for rational agents, Knowledge Representa-
tion and Reasoning, pp. 439–449.

[18] Rosenschein S. J., and L. P. Kaelbling (1986) The
synthesis of digital machines with provable epistemic
properties, Proceedings of the First Conference on
Theoretical Aspects of Reasoning about Knowledge,
Morgan Kaufmann, 1986.

[19] Shoham Y. (1991) Agent0: A simple agent language
and its interpreter, Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI91), pp.
704–709.

[20] Woodridge M. (2000) Computationally grounded the-
ories of agency, Fourth International Conference on
Multi-Agent Systems (ICMAS-2000), pp. 13–20.

[21] Woodridge M., and M. Fisher (1994) A decision pro-
cedure for a temporal belief logic, Proceedings of the
First International Conference on Temporal Logic.

[22] Wooldridge M, Fisher M., M.P. Huget, and S. Parsons
(2002) Model checking multi-agent systems with
MABLE. Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’02).

198 Informatica 29 (2005) 189–197 M. Bourahla et al.

Informatica 29 (2005) 199–207 199

Improving Branch Prediction Performance with A Generalized Design for
Dynamic Branch Predictors

Wei-Ming Lin, Ramu Madhavaram and An-Yi Yang
Department of Electrical Engineering
University of Texas at San Antonio
San Antonio, TX 78249-0669, USA
WeiMing.Lin@utsa.edu

Keywords: Branch Prediction, Two-Level Predictor, Gshare, Generalized Branch Predictor

Received: January 1, 2004

Pipeling delays from conditional branches are major obstacles to achieving a high performance CPU. Pre-
cise branch prediction is required to overcome this performance limitation imposed on high performance
architecture and is the key to many techniques for enhancing and exploiting Instruction-Level Parallelism
(ILP). A generalized branch predictor is proposed in this paper. This predictor is a general case of most
of the predictors used nowadays, including One-Level Predictor, Two-level predictor, Gshare, and all their
close and distant variations. Exact pros and cons of different predictors are clearly analyzed under the same
general format. The concept in the traditional Gshare predictor is then extended to form a more flexible
predictor under the same construct. By following this generalized design scheme, we are able to fine-tune
various composing parameters to reach an optimal predictor and even allow the predictor to adjust accord-
ing to various types of applications. From our simulation results, it is evident that significant improvement
over traditional predictors is achieved without incurring any additional hardware.

Povzetek: Članek obravnava delovanje CPU in napovedovanje razmejitev.

1 Introduction

In the past decade, by taking advantage of RISC archi-
tecture and advanced VLSI technology, computer design-
ers were able to exploit more Instruction-Level Parallelism
(ILP) by using deeper pipelines, wider issue rates and
superscalar techniques. However, these techniques suf-
fer from disruption caused by branches during the issue
of instructions to functional units. How to appease such
a performance-degrading effect from branch instructions,
which typically make up twenty or more percentage of an
instruction stream, has to be paid with more attention.

Branch prediction is a common technique used to over-
come this performance limitation imposed on high per-
formance architectures and is the key to many techniques
for enhancing ILP. Branch prediction essentially involves
a guess on the likely stream direction that is to take place
after a branch instruction; whenever such a guess is cor-
rect, penalty in pipeline delay is either reduced or com-
pletely avoided. There have been various branch prediction
schemes proposed in this area [1, 2, 6, 7, 8, 10, 13, 15, 21].
They are usually classified as static or dynamic according
to how prediction is made. Static prediction schemes al-
ways assume same outcome for any given branch, whereas
a dynamic scheme uses run-time behavior of branches to
adjust the database for later predictions. Focus of this pa-
per is on the dynamic ones which usually show far better
prediction accuracy than the static ones.

A typical dynamic prediction mechanism relies on a pre-
diction table, or the so-called Pattern History Table (PHT)
to record the behavior of past branches. One of the very
early predictors used was the One-Level Predictor which
has a one-dimensional PHT and uses only program counter
(PC) as the index to retrieve past branch behavior and
record new branch behavior. Usually one-bit or two-bit sat-
urating up-down counters are used in the PHT to record the
behavior of branches. When these branches are encoun-
tered again they are predicted based on their entries in the
table, i.e., based on their previous behavior. It was fol-
lowed by the more widely used Two-Level Adaptive Pre-
dictor [17], which has the PHT but organized into a two-
dimensional table. Such a PHT is addressed using both the
PC index and a history register (HR) index. The HR is used
to record behaviors of either the most recent per-address
branch or the most recent global branches. The two-level
predictor easily outperforms the one-level one by exploit-
ing potential correlation between branches at run-time.

Another very popular predictor design, Gshare, was pro-
posed in [9]. Unlike the previously proposed designs,
Gshare addresses the PHT with a blended index between
global history and the PC. Based on Gshare, some other
designs including LGshare [4] have also been proposed.
Although these Gshare-based designs usually yields bet-
ter prediction results than the traditional two-level predic-
tors in most cases, the exact reason behind their design and
their relationship with the two-level predictors has never

200 Informatica 29 (2005) 199–207 W. Lin et al.

been discussed, nor has a complete analysis on their bene-
fits ever been presented.

After carefully analyzing the structure of all the afore-
mentioned predictors, we propose a general prediction
scheme which encompasses all these popular designs. This
generalized scheme displays a standard organization for the
PHT and a flexible selection for HR index. This proposed
scheme provides a platform with which one can easily un-
derstand the similarities and/or differences among different
predictors proposed so far. In addition, based on this, we
can provide a more systematic explanation for the benefits
a predictor provides and the drawbacks it may come with.

The remainder of the paper is organized as follows. A
brief overview of the well-known counter-based dynamic
branch prediction schemes is presented in section 2. The
proposed generalized predictor is then described in the fol-
lowing section along with its variations. In section 4, our
simulation and performance comparison results are pre-
sented. Concluding remarks are given in the last section.

2 Dynamic Branch Prediction
There have been many dynamic branch prediction schemes
proposed in the past decade. A few representative ones are
described in the following for the sake of completeness.

2.1 One-Level Predictor
The prediction table is usually indexed by the lower-order
address bits in the program counter (PC), although other
portions of the PC have been used as well. Figure 1 illus-
trates the design of such a scheme. Each entry in the predic-

●

●

●

PC

Actual Branch Outcome

 (T/NT)

Prediction

n PHT

Figure 1: Implementation of Simple One-Level Branch
Prediction

tion table (PHT) is used to provide prediction information
for the branch instruction mapped to it, and is implemented
by a counter which goes up or down according to the ac-
tual outcome of the corresponding branch instruction. Each
branch is predicted based on its most recent outcome. In-
stead of the simple one-bit counter, a well-known two-bit
up-down counter has been extensively used in this scheme
so as to render a damping effect which enhances predic-
tion accuracy for typical reentrant loop constructs. Dam-
age caused by alternating occurrences between two aliasing

branches can also be alleviated using the two-bit counters.
Such an observation prompts most later advanced designs
to use such a two-bit counter prediction table as a design
base.

2.2 Correlation-based or Two-Level
Adaptive Predictor

Outcome of a branch is usually affected by some previ-
ously executed branches. Such a correlation could exist
among different branch instructions executed temporally
close to one and other, or simply refers to the effect on a
branch from its own recent execution behavior. The lat-
ter one has been partially considered in the simple one-
level two-bit counter design. Such an approach requires
a separate table, the so-called history table, to record the
necessary history information. A general design block di-
agram is shown in Figure 2 in which the PHT organized
as a two-dimensional table is addressed by two separate
indices, the PC index and the history index. History in-
formation established in a history table can be either in
per-address (per-branch) format as shown in Figure 2 or in
global format as shown in Figure 3. In a per-address case, a

●

●

●●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

PC m n-m

PHT

m

n-m

HR

Prediction

Figure 2: Implementation of Per-Address Correlation-
based Branch Prediction

per-address history table is needed which also is addressed
by the PC index. A shift register, so-called History Reg-
ister (HR), is usually used to implement each such entry.
On the other hand, for the global format, only one HR is
needed, as shown in Figure 3. This aims at exploiting the
correlation in behavior existing in most programs between
recurring identical branches (as in the per-address case) or
between distinct branches adjacent in time (as in the global
case). HR index and PC index combined are then used to
locate the counter in the PHT for prediction. It is shown
that [19] global history schemes perform well with integer
programs while per-address history schemes are better for
floating point programs. Also, note that the PC index for
history table does not have to come from the same least sig-
nificant portion of PC that the PC index for PHT normally
uses. The so-called “per-address” refers to the one that uses
the least significant bits of PC for such an index, while the
“per-set” refers to the selections otherwise. In general, such

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 201

HR
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

PC

m

n-m

PHT

n-m

m

Figure 3: Implementation of Gloabl Correlation-based
Branch Prediction

a selection does not lead to any significant discrepancy in
performance.

2.3 Gshare Predictor
In the Gshare scheme [9], as shown in Figure 4, the predic-
tion table is addressed by an index established by XORing
a global history and part of the PC index. Gshare scheme
does lead to improvement in most cases compared to a sim-
ple two-level predictor; however, the exact cause for such
an improvement has never been clearly analyzed. (Note
that, in one of the original Gshare designs, the XORing
function is performed over the entire PC index; that is, m
is set to be equal to n, which in general leads to worse per-
formance than a simple two-level predictor.)

HR

●

●

●

PC m n-m

Prediction

PHT

Figure 4: Implementation of Sharing Index Branch
(Gshare) Prediction

2.4 Others Well-Known Predictors
The possibility of combining different branch predictors is
exploited by McFarling in [9]. It comes from the obser-
vation that some schemes work well on one type of pro-
grams while not so on another. The selective scheme is
implemented with two different predictors, with each mak-
ing prediction separately. A third table is then used to
make decision between the two prediction outcomes based
on various program scenarios. Such a scheme is claimed

to perform well on different circumstances, yet it has a
hardware cost roughly three times of what a non-selective
one would cost. A predictor called LGshare has also been
proposed [4] to further improve on Gshare by using both
global as well as per-address history of a branch to predict
its behavior. Among many more others in this field, a new
predictor discussed in [6] is based on Simultaneous Sub-
ordinate MicroThreading (SSMT), which provides a new
means to improve branch prediction accuracy. SSMT ma-
chines run multiple concurrent microthreads in support of
the primary thread to dynamically construct microthreads
that can speculatively and accurately pre-compute branch
outcomes along frequently mispredicted paths. Another
technique is introduced in [5] to reduce the pattern history
table interference by dynamically identifying some easily
predictable branches and inhibiting the pattern history ta-
ble update for these branches.

In general, there are a few types of well-known potential
problems that would lead to a misprediction result due to
the nature of the predictor employed:

– Initialization –
Every branch instruction that has a predictable behav-
ior needs to have its behavior history properly estab-
lished in the prediction table before a meaningful pre-
diction can be made.

– Alias –
This problem occurs when different branches are
mapped to the same entry in the PHT. Such a prob-
lem is unavoidable unless a sufficiently large number
of entries to cover all potential program sizes are pro-
vided.

– Undetected Correlation –
Due to the limited size of history register, correlation
among branches far apart in time/trace may not be de-
tected.

– “Random” (Unpredictable) Branch Behavior –
A branch’s behavior, either at times or throughout the
life of the program, may be simply run-time data-
dependent which is either completely “random” or un-
predictable based on any of the known branch predic-
tion schemes.

Some of the above problems may further intertwine with
each other. For example, if the overall size of the pre-
dictor table is to remain the same, by increasing the his-
tory depth (the history register size) to allow more poten-
tial correlation to be detected, alias problem between dif-
ferent branches would worsen. It is part of our goals in
our proposed generalized predictor to determine the pros
and cons among the various predictors and to incorporate
an additional flexibility in our predictor to accommodate
for various programs that may call for different prediction
techniques.

202 Informatica 29 (2005) 199–207 W. Lin et al.

3 Proposed Generalized Predictor
A generalized predictor is proposed in this section to show
that most of the predictors mentioned above fall under this
category. With the introduction of this design scheme, po-
tential performance-influencing factors can be more clearly
analyzed. Additional design flexibility is also incorporated
in this design to allow adjustment of certain design param-
eters to accommodate for various program behaviors. In
order to have a fair comparison among all predictors, all
are assumed to be of unified cost, i.e. predictors with simi-
lar hardware are compared.

3.1 Generalized Predictor

Figure 5 illustrates the proposed generalized predictor de-
sign. In this design, the PHT is organized as a two-

PC XOR mask

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

Prediction

HR

PC

n-mm

m

m

m n-m

PHT

Figure 5: The Proposed Generalized Predictor

dimensional table similar to the traditional two-level pre-
dictor. The primary hardware cost resides in the PHT, the
size of which is thus fixed at 2n. The lower portion of PC
from bit 0 to bit n − m − 1 is used to address the PHT
as the row index, while the column index is composed by
XORing the m-bit HR and a “floating” portion of PC. This
portion of PC is called as the “PC XOR mask” throughout
this paper.

3.2 Special Case #1: One-Level Predictor

The one-level predictor as shown in Figure 1 can be reor-
ganized as a special case of the proposed generalized pre-
dictor. Figure 6 illustrates such an arrangement. By having
the PC XOR mask fixed at the highest position of the n-
bit index, and XOR-ing it with the non-existing HR (0’s
throughout the HR content), the original one-dimensional
PHT is then re-arranged as a two-dimensional PHT. The se-
quence of addressing in the original one-dimensional PHT
is then mapped to a column-major-order sequence in this
new two-dimensional PHT, i.e. one column followed by the
next one. Such a rearrangement presents us a platform for
a direct comparison between any advancement from this
technique and the original one.

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

n-mm

m

m

m n-m

PHT

000 ... 0

Figure 6: One-Level Predictor as A Special Case

3.3 Special Case #2: Two-Level Predictor
Comparing the two-level predictor with the one-level Pre-
dictor, one can obviously see that the former intends to im-
prove prediction accuracy by using more history to exploit
correlation information among different branches’ behav-
ior. However, with the cost fixed, the two-level predictor
introduces potentially more alias problem into the picture
by having a smaller PC index (row index) used. That is, for
every additional bit of HR employed (m being increased by
1), the number of row entries of the PHT is reduced by half.
It has been shown that such a tradeoff usually is worthwhile
to a certain extent of m due to the following reasons:

– Benefit from exploiting correlation among branches
usually outweighs the potential performance loss from
the alias problems thus incurred.

– Alias problem between two branches thus incurred
can sometimes be relieved if they have a different
global history pattern in HR even though they are
“aliased” into the same row entry. In this case, the
alias problem is removed since their prediction entries
are mapped into different columns albeit in the same
row.

The two-level predictor based on a global history HR as
shown in Figure 3 can be also reorganized as a special case
of the proposed generalized predictor. Figure 7 illustrates
such an arrangement. The new arrangement has the XOR
mask confined to within the row index, i.e. the first n−m
bits of PC. This results in no change of prediction accu-
racy because the mapping of branches is merely swapped
around among the columns i.e. branches mapped to one
column are now mapped to a different column and this
takes place symmetrically for all the branches. This comes
from a simple understanding of how XOR function applies
to a given bit pattern. For example, in Figure 8, two-bit col-
umn indices from a two-bit HR are one-to-one mapped to
different set of indices when XORed with a different XOR-
mask values from PC. Obviously, if this mask portion of
PC is within the row index portion of PC as indicated in
this special case for two-level predictor, then each branch

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 203

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

m

m

m n-m

PHT

n-m

m

Figure 7: Two-Level Predictor as A Special Case

HR

m

HRHR HR

mm m

01

00

10

1111

01

00

10

PC m n-m

11

10

01

0000

n-m m n-mm

11

10

01

00

PC m n-m

11

10

01

00

PC PC

11

10

01

00

11

10

01

00

11

10

01

00

01 10 11

Figure 8: Index Swapping Effect from XOR Function

will be still mapped to the same row except that it may
be using a different column index mapping according to
its run-time HR content. Thus, the prediction result would
remain the same comparing the original arrangement and
the new arrangement pertaining to a non-alias case. For an
alias case between two different branches that are mapped
to the same row, the alias effect still remains the same since
both instructions would have the same XOR-mask content
from within their identical row index content. An exam-
ple showing such a swapping between two instructions is
given in Figure 9. It happens so because no extra PC in-
formation is used and thus two aliased branches cannot be
differentiated with the same PC index. As shown in Fig-
ure 9 two aliased branches A and B with different histories
are mapped to different columns along the same row before
XORing with XOR-mask from the PC. Consequently, after
XORing as shown in the second figure, both A and B are
mapped to different columns but are just swapped around
which does not lead to different prediction result from the
two-level predictor. So it can be concluded that two-level
predictor is also a special case of this generalized predictor.

3.4 Special Case #3: Gshare

Gshare is one of the global two-level predictors, which ex-
ploits correlation by basing the prediction on the outcome
of the recently executed branches. The XORing is done to
incorporate history information into the PC index thereby
differentiating interfering branches with the help of history
bits. Similarly Gshare can be organized as a special case of
our proposed predictor, through which we can easily an-

A

B

A

Y

X

(b) Re-organized as a special case

B A

B

A

Y

X

(a) Original Two-Level Predictor

B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
11

01

HR

00 01 10 11

●

●

0 1011 0

0 1011 0
●

●

●

●

●

●

11

01

HR

00 01 10 11

0 1011 0

0 1011 0

●

PC 2 6

Figure 9: Index Swapping between Two Aliased Instruc-
tions

alyze the benefits brought by this technique. Figure 10
demonstrates this new arrangement. In the following, a

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

m

m

m n-m

PHT

n-m

m

Figure 10: Gshare Predictor as A Special Case

thorough analysis on how Gshare compares to the two spe-
cial cases thus far introduced is given.

3.4.1 Gshare vs. One-Level Predictor

As shown earlier, the original Gshare predictor is similar
to one-level predictor in the way its PHT is organized with
the difference that Gshare additionally uses history infor-
mation and so produces much better prediction accuracies
than the one-level predictor. Similar to two-level predic-
tor, Gshare benefits from exploiting correlation information
from the use of HR, but it addresses the tradeoff between

204 Informatica 29 (2005) 199–207 W. Lin et al.

alias problem and loss of correlation in a more delicate
manner, which is to be described in the following section.

3.4.2 Gshare vs. Two-Level Predictor

Gshare, when compared to the two-level predictor, is said
to be advantageous due to the XORing effect and can be
explained as shown in Figure 11. The benefit comes from
that fact that, in most programs, global history (HR) con-
tent tends to exhibit one dominant pattern, either 00 . . . 00
or 11 . . . 11, due to loop constructs especially when the his-
tory depth used (m) is small. This claim has also been
confirmed by our simulation results. Consider four aliased
branches A, B, C and D that are aliased into the same row
in the PHT. The mapping of these branches with different
values of HR is shown for both two-level predictor in (a)
and Gshare predictor in (b). A00, B00, C00 and D00, where
the subscripts denote the HR contents, are mapped to dif-
ferent columns of the same row in Gshare as compared to
same column in two-level. Same scenario applies to the
case when HR has a content of 11. This is one of the advan-
tages of Gshare because aliased branches with most domi-
nant history patterns are now mapped to different locations
thereby reducing destructive overlapping. That is, assum-
ing that they have the same history, all the four branches are
mapped to the same column in a two-level predictor and so
cannot be distinguished. In Gshare on the other hand, these
aliased branches are “dispersed” to different columns and
so the problem is resolved.

The mapping difference described above is the only dis-
tinction between the Gshare and the two-level predictor,
and such a distinction may not always favor the Gshare due
to different program behavior. A very important conclusion
that can be drawn from this is that the Gshare is essentially
identical to the two-level predictor if the (n − m)-bit row
index does not lead to any alias problem. That is, the dis-
persion of dominating entries among aliasing branches no
long exists, thus leading to no more difference in prediction
result.

Size of the XOR mask also plays a very important role
in Gshare’s potential performance. Similar to the two-level
predictor, the larger the mask is (larger m), the more his-
tory correlation among branches can be exploited. On the
other hand, a larger mask leads to more alias problems, al-
though the column mapping of Gshare may provide a bet-
ter alias-differentiating support than the two-level one from
our discovery. As one of the most extreme case, in one of
the original Gshare designs, the XORing function is per-
formed over the entire PC index; that is, m is set to be equal
to n. This in general leads to an undesirable performance
due to its excessive alias problems.

3.5 The Proposed Generalized Predictor
with Extensions

A generalized predictor as proposed can be specified
with the position of the m-bit XOR mask in PC. Let the

Z

X

W

1

Y

Z

X

W 00

1

01

10

D 1

(b) Gshare Predictor

Y

A

D

C

B

(a) Two-Level Predictor

A

C

B

11

11

11

●

11

●

●

●

●●

●

●

●

●

●

●

00 01 10

10

10

10

01

01

01

●

●

●

●

01

●

●

10 D
C

●

D

11

●

● ●

●

B

●

A

D

PC 2 6

0 1011 0

0 1011 0
C

0 1011 0

B
A

0 1011 0

C
B
A

00D
00C
00B
00

PC 2 6

0 1011 0

0 1011 0

0 1011 0

A

0 1011 0

00 01 10 11

11A 00

B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

01 10

HR

HR

01 00 11 10

10 11 00 01

11 10 01 00

0

0

0

0

1

11

Figure 11: Difference between Gshare Predictor and Two-
Level Predictor

least significant bit of this mask be starting at bit Ws;
that is, the mask ranges from bit Ws to Ws + m − 1.
Each of the special cases is then defined as in the following:

Case Range of Ws HR value

(a) 0 ≤ Ws ≤ n− 2m run-time

(b) n− 2m + 1 ≤ Ws ≤ n−m− 1 run-time

(c) Ws = n−m 00 . . . 00

(d) Ws = n−m run-time

(e) n−m + 1 ≤ Ws run-time

Clearly, case (a) corresponds to the two-level predictor,
case (c) to the one-level predictor and case (d) corresponds
to the Gshare predictor, while cases (b) and (e) have never
been addressed.

Case (b) is essentially a combination of two-level and
Gshare predictors. Such a hybrid design displays a vari-
ous degree of dispersion on dominating entries of aliasing
branches. Figure 12 shows an example similar to the one
presented in Figure 11. As a compromising point in be-
tween the two-level one that shows zero dispersing effect
and the Gshare that has a 100% dispersing effect, this spe-
cial case exhibits a 50% dispersing capability. Branch A

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 205

Z

X

WA

D

C

B

Y

2 6PC

HR

●

●

●

●

●

1011 0

0 1011 0

●

●

0 1011 0
●

●

0 1011 0

●

●

●
0

00 01 10 11

11A 00

B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

01 10

01 00 11 10

0

0

1

1 1

00 01 10 11

01 00 11 10

1

0

0

Figure 12: A Hybrid Design of Two-Level and Gshare Pre-
dictors

and C remain aligned and so do B and D among the four
aliasing branches. Performance from such a hybrid predic-
tor is usually unpredictable due to its nature.

Case (e) is an extension of Gshare aimed at programs
with larger address space and/or with a small PHT. The ex-
ample in Figure 13 shows that, between the two aliasing
instructions A and B, the dispersing effect does not take
place in the traditional Gshare since both instructions have
the same XOR mask value. That is, under such a circum-

X

B

A

Y 1

HR

011 0

0 1011 00

0

PC 2 6

0

1

0

00

Figure 13: An Extended Design from Gshare

stance, Gshare performs exactly like the two-level predic-
tor. Moving the XOR mask to the higher portion of PC
allows the dispersion effect to re-emerge.

4 Simulation

Our trace analysis and simulation are performed on a
SPARC 20 system. Data are obtained using Shade ver-
sion 5.25 analyzing program. Shade is a dynamic code
tracer, which combines instruction set simulations, trace
generation and custom trace analysis in a process. Our test
programs include a benchmark program from the Stanford
Body Benchmark Suite, sfloat, and seven standard Unix
utility programs. A brief description of these programs on
various aspects of their branch instructions is given in Ta-
ble 1. A trace analysis has been performed on these eight
test programs to show the percentage improvement in mis-
prediction rate.

program # instr # taken # not-taken
sfloat 7730261 111170 125382

ls 1207004 112180 91466
gcc 677017 61258 58096
cc 543900 50519 46536

chmod 492158 45812 42507
grep 491016 45672 42382
awk 490911 45524 42365
pack 486776 45159 42173

Table 1: Description of Test Programs

4.1 Simulation Results
A series of simulation runs are performed by varying the
following three parameters on one-bit and two-bit predic-
tion schemes: (1) Number of index bits (n), (2) Number of
history bits (m), and (3) Shift in the window (Ws). Perfor-
mance comparison results are plotted after taking the aver-
age of improvement in miss prediction rate for all the above
eight programs. The “miss rate improvement percentage”
is defined as:

Mtwo-level −Mgeneralized
Mtwo-level

× 100

where Mtwo-level and Mgeneralized denote the miss rate
of two-level prediction scheme and that of the generalized
one, respectively. Each point in these results corresponds
to the average of results from the eight test programs. Fig-
ure 14, Figure 15 and Figure 16 show the results for both
one-bit and two-bit counters prediction schemes.

We can see that, from all these figures, performance of
the generalized predictor is identical to that of the two-level
one (i.e. improvement equals to 0) when

0 ≤ Ws ≤ n− 2m

Gshare’s results (when Ws = n−m), in general, are among
the better ones for n = 11, but are outperformed by most of
cases with larger Ws values (the Extended Gshare scheme)
for n = 10 and n = 9. This finding verifies our analy-
sis that the Extended Gshare scheme allows the dispersion
effect to reappear when a small PHT is used. The Hybrid
scheme (when n− 2m + 1 ≤ Ws ≤ n−m− 1) does not
distinguish itself clearly from the two-level one.

5 Conclusion
In this paper, we propose a generalized branch predictor
and show that most of the commonly used predictors are
actually special cases of this generalized predictor. Simi-
larities and differences among predictors are clearly identi-
fied. Based on this construct, we are able to easily analyze
and compare the benefits and drawbacks among different
predictor designs. We also show that a simple extension of

206 Informatica 29 (2005) 199–207 W. Lin et al.

the Gshare design, a direct notion from the generalized de-
sign, can outperform Gshare in many cases. This is an im-
provement at no additional cost on hardware. A dynamic
selection of the XOR-mask position according to the nature
of the program may bring additional improvement. Also,
one potential direction that is worthwhile looking into is
the understanding and classification of different kinds of
conditional branches, which may help predict the otherwise
declared “random” branches that have not been addressed
by the prediction methods investigated so far.

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 9, one-bit counter PHT

m=2
m=3
m=4

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 9, two-bit counter PHT

m=2
m=3
m=4

Figure 14: Improvement Results versus Window Shift for
n = 9

References

[1] T. Ball and J. Larus, “Branch Prediction for Free,”
Proc. ACM SIGPLAN 1993 conf. on Prog. Lang. De-
sign and Implementation, June, 1993.

[2] B. Bray and M. J. Flynn, “Strategies for Branch Tar-
get Buffers,” 24th Workshop on Microprogramming
and Microarchitecture, 1991, p.42-p.49.

[3] B. Calder and D. Grunwald, “Fast & Accurate In-
struction Fetch and Branch Prediction,” Intl. Symp. on
Computer Architecture, April, 1994.

[4] M.-C. Chang and Y.-W. CHou, “Branch Prediction
using both Global and Local Branch History informa-
tion,” Computers and Digital Techniques, IEE Pro-
ceedings, Volume: 149 Issue: 2, March 2002.

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 10, one-bit counter PHT

m=2
m=3
m=4

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 10, two-bit counter PHT

m=2
m=3
m=4

Figure 15: Improvement Results versus Window Shift for
n = 10

[5] P.-Y. Chang, M. Evers and Y.N. Patt, “Improving
branch prediction accuracy by reducing pattern his-
tory table interference,” Parallel Architectures and
Compilation Techniques, 1996.

[6] R. S. Chappell, F. Tseng, A. Yaoz and Y. N. Patt,
“Difficult-path Branch Prediction Using Subordinate
Microthreads,” Proc. 29th Annual International Sym-
posium on Computer Architecture, 2002.

[7] J. Fisher and S. Freudenberger, “Predicting Condi-
tional Branch Direction From Previous Runs of a Pro-
gram,” Proc. 5th Annual Intl. Conf. on Architectural
Support for Prog. Lang. and Operating System, Octo-
ber, 1992.

[8] J. K. F. Lee and A. Smith, “Branch Prediction Strate-
gies and Branch Target Buffer Design,” IEEE Com-
puter, January, 1984, p.6-p.22.

[9] S. McFarling, “Combining Branch Predictor,” Tech-
nical Report, Digital Western Research Laboratory,
June, 1993.

[10] S. McFarling and J. Hennessy, “Reducing the Cost of
Branches,” The 13th Annual Intl. Symposium of Com-
puter Architecture, 1986, p.396-p.403.

[11] S. Pan, K. So, and J. Rahmeh, “Improving the Ac-
curacy of Dynamic Branch Prediction Using Branch
Correlation,” Proc. 5th Annual Intl. Conf. on Archi-
tectural Support for Prog. Lang. and Operating Sys-
tem, Oct. 1992.

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 207

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 11, one-bit counter PHT

m=2
m=3
m=4

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 11, two-bit counter PHT

m=2
m=3
m=4

Figure 16: Improvement Results versus Window Shift for
n = 11

[12] D. Patterson and J. Hennessy, “Computer Architec-
ture: A Quantitative Approach, 2nd Edition,” Morgan
Kaufmann Publishers, Inc., 1995.

[13] C. Perleberg and A. J. Smith, “Branch Target Buffer
Design and Optimization,” IEEE Transactions on
Computers, April, 1993, P396-412.

[14] J. Smith, “A Study of Branch Prediction Strategies,”
Proc. 8th Annual Intl. Symp. on Computer Architec-
ture, May, 1981, p.135-p.147.

[15] Z. Su and M. Zhou, “A Comparative Analysis of
Branch Prediction Schemes,” Technical Report, Uni-
versity of California at Berkeley, 1995.

[16] “Shade Manual,” Sun Microsystems, 1995.

[17] T. Yeh and Y. Patt, “Two-level Adaptive Branch Pre-
diction,” Proc. 24th Annual ACM/IEEE Intl. Symp.
and Workshop on Microarchitecture, Nov. 1991.

[18] T. Yeh and Y. Patt, “Alternative Implementations of
Two-level Adaptive Branch Prediction,” Proc. 19th
International Symp. on Computer Architecture, May.
1992.

[19] T. Yeh and Y. Patt, “A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch His-
tory,” Proc. 20th Annual Intl. Symp. on Computer Ar-
chitecture, May. 1993.

[20] T. Yeh and Y. Patt, “Two-level Adaptive Branch Pre-
diction and Instruction Fetch Mechanism for High
Performance Superscalar Processors,” Computer Sci-
ence and Engineering Div. Tech. Report CSE-TR-182-
93, University of Michigan, Oct. 1993.

[21] C. Young and M. Smith, “Improving the Accuracy of
Static Branch Prediction Using Branch Correlation,”
Technical Report 06-95, Center for Research in Com-
puting Technology, Harvard University, March, 1995.

[22] C. Young, N. Gloy and M. Smith, “A Comparative
Analysis of schemes for Correlated branch Predic-
tion,” Proc. 22nd Annual Intl. Symp. on Computer Ar-
chitecture, June, 1995.

208 Informatica 29 (2005) 199–207 W. Lin et al.

Informatica 29 (2005) 209–218 209

Construction of Patient Specific Virtual Models of Medical Phenomena

Božidar Potočnik, Dušan Heric, Damjan Zazula, Boris Cigale and Daniel Bernad
University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova 17, 2000 Maribor, Slovenia
E-mail: bozo.potocnik@uni-mb.si

Tomaž Tomažič
Teaching Hospital of Maribor
Ljubljanska 5, 2000 Maribor, Slovenia

Keywords: virtual medical model, image processing, modelling, simulation

Received: February 10, 2004

A framework for construction of virtual models of the medical phenomena is proposed. Major construc-
tion steps are discussed in detail. The construction of virtual medical model is guided from acquisition of
patient imaging material, to 3D reconstruction based on the image processing, to the basic modelling and
simulation approaches. This framework is demonstrated on human knee joint virtual model construction.
Statistical assessment of the built knee joint model points out sufficient quality and accuracy. Model as-
sessment from clinical point of view confirmed this evaluation, and, simultaneously, verified the proposed
construction chain as very prospective.

Povzetek: Razvita je metoda za prikazovanje medicinskih pojavov na pacientovem kolenu.

1 Introduction
Atlases and 3D human organ models for "typical" patient
do not suffice in a modern medical practice anymore. Suc-
cessful diagnosing and decision-making in medicine today
is unavoidably dependent on relevant patient specific in-
formation. Such information is mainly extracted by us-
ing non-invasive methods like medical imaging techniques,
e.g. ultrasonography and magnetic resonance (MR) imag-
ing. Furthermore, a need to adapt atlases and organ mod-
els for specific patient anatomy emerged. This need is in-
tensified when planning surgeries. Surgeons namely face
a problem when imagining a detailed surgery in advance,
although having MRI recordings at their disposal, for ex-
ample. They lack a model that would offer a virtual walk
through the tissues and organs, and maybe an option of vir-
tual testing of some specific surgery detail. A desired so-
lution, of course, must incorporate a thorough and reliable
computer support, which is not available in today’s medical
devices and computer software.

The models of organs, appropriate for surgical planning,
should be available in their close-to-natural constellation
either for individual usage, i.e. each organ separated from
the others, or for grouping them together in arbitrary com-
binations. The obtained computer models should be aimed
at any virtual (spatial) inspection and scanning along ar-
bitrary cross-sections in all directions. The most desired
option is a kind of virtual travel through models, possibly
equipped with a collision detection module. The most chal-
lenging feature of such models is, however, virtual surgery.

A generic procedure for constructing virtual medical

models is presented in this paper. After a survey of re-
lated work in Section 2, major construction steps are out-
lined on an example of human knee joint in Section 3.
Section 4 presents simulation results and quantitative as-
sessment of quality for constructed models, followed by a
discussion section which emphasises current modelling ap-
proaches and potential difficulties with the process of con-
struction. Our conclusions also stress the applicative value
of such models in the clinical practice. The present work
summarizes a part of the SimBio project results [15].

2 Related work
Current state of the art in the computer science and medi-
cal devices already enable individualisation of patient data
processing. Various approaches to biomedical image pro-
cessing, object recognition, and reconstruction have been
developed [2, 5, 6, 12]. None of those methods cited is,
however, general and equally applicable in different situa-
tions. On the other hand, medical imaging devices are daily
used for patient diagnosis. Such examinations are relatively
low-cost. The technology thus assures all possibilities for
construction of virtual medical models.

There already exist few solutions for the medical
field, where majority deal with an organ reconstruc-
tion/visualisation and virtual inspection. Reference [17]
brings comprehensive review on this topic, while [7] de-
scribes virtual endoscopy as an example of virtual organ in-
spection. Some models tackled a virtual surgery, especially
a surgical planning [9, 20]. There exists also other appli-

210 Informatica 29 (2005) 209–218 B. Potočnik et al.

Figure 1: Major steps for construction of virtual medical model. Verification procedure (encircled V) refines particular
construction steps.

cations of these models. For example, in [3, 8] models are
used as virtual training systems in the medicine, while in
[11] they are used for a construction of organ atlases. Al-
though, above mentioned solutions are effective on fields
for which they were developed, it can not be affirmed that
they are general or generic. Also the construction proce-
dure it is not generic. These models are not complete as
well, because they cover just some viewpoints (e.g. just
surgical planning and not actual virtual surgery).

3 Method: measurement, modelling,
and simulation

In the sequel, we propose a procedure for construction of
virtual models of the medical phenomena. Figure 1 depicts
a construction procedure with all major building blocks.
The construction of virtual medical model is guided from
the initial step, i.e. acquisition of patient imaging mate-
rial (Subsection 3.1), followed by the description of 3D
reconstruction based on the image processing (Subsection
3.2), to the basic modelling-simulation approaches and di-
rectives (Subsection 3.3). It can be seen from Figure 1 that
the results of verification/validation (denoted by the encir-
cled letter V) influence the previous steps. They actually
help to refine object detection, modelling, and simulation,
and, consequently, constructed virtual medical model. This
description is substantiated by example of the human knee
joint virtual model construction. Results are taken from the
SimBio project [15]. The SimBio project is an example of
the proposed construction procedure defined in Figure 1.

3.1 Acquisition of imaging material

The first step in construction of virtual models is to ac-
quire patient specific anatomy. This is usually achieved by
non-invasive imaging methods. It is essential to acquire
high-quality imaging material, because all other construc-
tion steps depend upon it (see Figure 1).

We deal with a human knee joint anatomy in our exam-
ple. Figure 2 depicts the knee joint with three main bones–
bone femur, bone tibia, and bone patella. Our intention is
to observe these bones with their belonging cartilages and
menisci (both lateral and medial), while all other structures
in the knee joint are insignificant.

Important parts of patient anatomy indirectly narrow a

set of potential medical imaging devices. The MR imag-
ing technique was chosen to achieve our aim. We have
access to the Toshiba Visart 1.5T MR scanner. Knee joint
was imaged with different settings of the MR scanner pa-
rameters, such as image technique, flip angle, field of view
(FOV), slice thickness, imaging timing parameters (TR and
TE), number of acquisitions (NAQ), size of output matrix,
etc. MR scanner parameters were selected in order to em-
phasise boundaries between bones, cartilages, and menisci,
and, at the same time, retain adequate resolution for sub-
sequent 3D reconstruction. It should be noted that altering
scanner parameters always alters image quality, which is in
proportion to the acquisition time. The selected MR scan-
ner parameters were: FE3D image technique with QD knee
coil, TR was 41 ms, TE was 9.0 ms, flip angle was fixed at
18/73, NAQ was 1, effective pixel size was 0.4 mm, FOV
was 22 x 22 cm, and the output image matrix was 512x512
pixels. The number of images (slices or cross-sections) in
the sequence was 60 with 2 mm slice thickness. Acquisi-
tion time was around 22 minutes.

Figure 2: Human knee joint with ma3n bones.

3.1.1 Additional patient-specific information
acquisition

If realistic object reconstruction is sought, then it is manda-
tory to keep sufficient spatial and lateral resolution of pa-
tient imaging material. Sometimes also other patient infor-
mation is necessary. The reason can be twofold, namely,
additional information can be mandatory for modelling
procedure, or can be used for the verification/validation of

CONSTRUCTION OF PATIENT . . . Informatica 29 (2005) 209–218 211

behaviour of constructed virtual models.
Our sample virtual medical model should imitate kine-

matics in the human knee joint. Additional information,
as for instance the force in the knee, and examples of real
knee kinematics are thus required. The patient should be
examined when performing a gait cycle to acquire the most
representative values. This can be achieved in an expen-
sive open MRI scanner. Therefore, we seek an alternative
solution. We designed a special MR compliant exercise
rig to record the gait cycle and forces. The MR rig al-
lows a volunteer or patient to undertake a controlled ex-
ercise protocol while exerting known light forces. This rig
is fully MR compliant–it does not utilise any metal or ferro-
magnetic materials in its construction. Wooden part of this
rig–i.e. pedal–was basically constructed according to [10]
and, afterwards, modified to enable setting of 6 different
knee flexion angle positions. Angles vary with respect to
the patient’s leg length, but generally are in the range from
0 to 40 degrees flexion with 8 to 10 degrees increments.
Figure 3 (a) depicts this pedal. Particular knee angle posi-
tion can be selected manually during MR imaging by ad-
justing a wooden coil. The pedal expanse is limited by the
MR scanner bore dimensions. Maximal knee flexion angle
supported is thus around 60 degrees.

Patient with flexed knee pushes against the wooden pedal
during MR imaging. This force is measured with a spe-
cial optical force measuring system which was also de-
veloped. A core of this system is a force sensor, which
utilizes a simple principle of measuring the optical power
losses in optical fibre caused by bending the fibre. The fi-
bre multi-loop coil is positioned between two walls of the
force sensor case (see Figure 3 (b)), separated by elastic
spacers (rubber). The applied force causes displacement of
the movable sensor case wall that bends the optical fibre
coil and induces decreasing of the passed optical power.
Alteration in optical power is afterwards transformed into
a force value, which is displayed and stored by PC-based
monitoring system. Figure 3 (c) depicts a volunteer dur-
ing the acquisition of specific parameters by using the de-
scribed MR-compliant exercise rig.

If additional patient-specific information except imaging
material is required, then it is reasonable to simultaneously
record all patient data and images. Possible errors in sub-
sequent modelling are minimised in this way.

3.2 Image processing and 3D reconstruction

The next step after acquiring patient imaging material is to
build 3D models of the observed organs or tissues (see Fig-
ure 1). This anatomy is usually obtained by applying 3D
reconstruction on image segmentation results. The object
recognition encompasses in general three major steps: pre-
processing, segmentation, and object classification. Pre-
processing either removes artefacts from images and/or en-
hances particular object features. The aim of image seg-
mentation is to group pixels (voxels) with similar features
into potential objects (bodies). Finally, an object classifica-

tion discriminates between actual objects, background, and
noise by using some criteria function.

There is variety of segmentation methods applicable for
medical image sequences [14], either designed for 2D ob-
ject detection in particular image (cross-section) from the
sequence or 3D detection where image sequence is treated
as a whole. Despite heterogeneity of methods, there are
some directives applicable for method selection. First, a
decision between automated or semi-automated segmenta-
tion should be taken. Although automated object recog-
nition is preferred, it should be used with caution; namely,
the obtained results must always be thoroughly verified. On
the other hand, the semi-automated segmentation requires a
clinician interaction during the processing, and verification
is normally not necessary.

Segmentation methods are classified into three major
groups [16]: a) pixel based or thresholding, b) contour or
edge based, and c) region based methods. Selection of seg-
mentation method depends primarily upon image modality
(e.g. ultrasound, MR, positron emission tomography–PET)
and the type of searched objects. If boundaries between ob-
jects and background are distinctive and well-defined, then
methods from all three groups are potential candidates. If
boundaries or edges are, however, weak, then threshold-
ing and edge-based methods will not perform well. In
real applications, the segmentation is a combination of all
three major groups. On the other hand, the image modal-
ity defines the quality of boundary and potential artefacts
(noise) in images. In ultrasound images, for instance, it is
known that edges are not expressed and that speckle noise
is present [13].

Object recognition procedures are designed to detect ob-
jects with special features. It is therefore common to in-
clude a prior-knowledge about objects and image modal-
ity in this recognition process. There are two possibili-
ties for considering the prior-knowledge: a) segmentation
method is context-based, b) classification is context-based.
The first option means that segmentation method favours
regions with pre-described shape and features (e.g. ex-
pected size, mean grey-level, compactness, and texture).
On the other hand, the context-based classification extracts
objects out of all regions obtained by segmentation accord-
ing to some defined criteria. Criteria encompass prior-
knowledge, while the segmentation method treats all re-
gions equally in this process.

A big problem of object detection procedures is that they
are not portable between medical imaging devices of same
type but from different vendors (e.g. Philips MR scanner
and Toshiba Visart MR scanner). Recognition process is
usually developed by analysing the imaging material from
a single device. The variability inherent when using differ-
ent imaging devices is therefore not taken into account. Pa-
rameters of medical imaging device (see Subsection 3.1.1)
are limited and, thus, theoretically could not be uniformed
for all devices. Quality recognition process should there-
fore not be founded on grey-level features, but potentially
on the contrast invariant features.

212 Informatica 29 (2005) 209–218 B. Potočnik et al.

(a) (b) (c)

Figure 3: MR compliant exercise rig: a) wooden pedal, b) optical force sensor integrated on pedal, c) volunteer during
additional parameter acquisition in the MR scanner.

The next step after segmentation is 3D object recon-
struction. The reconstruction builds a 3D object model
from partial segmentation results obtained on slices (cross-
sections). Competent reconstruction supposes accurate
segmentation and exact position of each slice in the 3D
world or sufficient knowledge about image forming. Paral-
lelism of subsequent cross-sections in the sequence greatly
simplifies 3D reconstruction. In this case, it is mandatory
to know exact inter-slice distance. If all conditions at im-
age acquisition are not known or if even medical imaging
device is not capable to return all these parameters, then
the object reconstruction can only be informative. Figure 4
depicts a poor 3D reconstruction of two follicles from ul-
trasound ovarian image sequence obtained by intra-vaginal
probe. This reconstruction mis-assumed that cross-sections
are parallel; in fact, all cross-sections have common origin
(i.e. probe) and an angular displacement between two sub-
sequent cross-sections is constant. This displacement is,
however, not possible to obtain from 2D ultrasound scan-
ner used in this example. This indicates that not all medical
problems could be accurately reconstructed.

3.2.1 Registration of MR knee images and 3D
reconstruction

Image sequences from our human knee joint example are
segmented by using a non-linear registration or mapping,
respectively. Registration method was applied for two rea-
sons: a) weak edges of knee structures, and b) simple and
efficient integration of prior-knowledge (e.g. definition of
relations between bones and cartilages, narrowing search-
ing region). A patient knee image sequence is actually
registered to a template knee image (sequence). Template
knee image is constructed only once and is immutable in
the registration process. It was constructed from knee im-
age sequence of a typical patient. Each knee structure was
accurately annotated on every MR slice. These readings ac-
tually define relations and approximate positions of bones,
cartilages, and menisci in the human knee. The registra-
tion algorithm applied is based on the following registra-

Figure 4: Poor 3D follicle reconstruction from 2D ultra-
sound ovarian image sequence.

tion equation [19]:

f −m =
1
2
[4u(r)

∂f

∂u(r)
−4u(r)−1 ∂m

∂u(r)
], (1)

where f is the fixed or template image, m is the moved or
patient image, 4u(r) is the mapping function which maps
m to f , and 4u(r)−1 is the inverse function which maps
f to m. Making the assumption that 4u(r) ≈ −4u(r)−1

and gradient of f ≈ gradient of m, it is possible to reduce
this equation to either of the following:

f −m = 4u(r)
∂f

∂u(r)
or f −m = −4u(r)

∂m

∂u(r)
.

A quality measure for goodness-of-fit between both im-
ages is based on sum-of-squares of differences of voxel
grey-level intensities. Full details of this registration rou-
tine will be published elsewhere.

This registration routine results in a mapping function
(see Eq. (1)). Mapping function can be used to map read-
ings (e.g. bone femur) from the template image sequence

CONSTRUCTION OF PATIENT . . . Informatica 29 (2005) 209–218 213

to the patient image sequence. These partial results can
be afterwards used for 3D reconstruction. Performing re-
construction this way is possible and valid, however, it in-
troduce some artefacts. Disturbing staircase pattern (i.e.
terracing problem) is frequently noticed in transitions from
slice to slice. Another reconstruction approach was there-
fore followed. First, the 3D template knee model was de-
veloped from template image by using manual annotations.
This template model was afterwards mapped by the cal-
culated mapping function and, thus, the patient 3D knee
model with sufficient quality is obtained.

Template knee model was constructed by using a com-
bination of tools [15]. This knee model is actually finite
element (FE) 3D mesh. First, the SURFdriver 3.5 software
[18] was used to hand segment three bones, the belonging
articular cartilage surfaces, and both menisci. The 3D sur-
face points for each of these structures were then imported
into Ansys meshing software [1], where meshes were man-
ually refined. From a FE point of view the bones them-
selves are considered as rigid body structures. Bones were
then passed from Ansys into Matlab environment, where
the articular cartilage was generated using the registration
algorithm described above. The outer surface of the bone
structure was morphed onto the outer surface of the carti-
lage, and a set of 3D 8-node elements were created using
this mapping. The smoothness constraints in the registra-
tion algorithm ensure that these elements have an accept-
able geometry for analysis and simulation.

Described registration and mapping of template knee
model produce high-quality patient-specific FE 3D knee
meshes as shown in Figure 5.

Figure 5: Patient-specific FE 3D knee mesh.

3.3 Modelling and simulation

Reconstructed human organs and tissues are usually pre-
sented in a form of surface meshes. Surface is formed
from 3, 4 or 6 connected vertices, which consequently de-
fines triangular, tetrahedral or hexahedral mesh. The aim of
modelling phase (see Figure 1) is, however, to imitate the
functionality of organs. An appropriate virtual model needs

thus to be set. Many real-world properties must be linked
to surface meshes of reconstructed objects. The informa-
tion about the object’s material properties (e.g. stiffness,
friction) is mandatory. To imitate kinematics it is necessar-
ily to prescribe the trajectory of movement for all objects
and their interdependence. For complete virtual model it
is also required to define scenarios of model behaviour in
different situations.

Many general purpose modelling and simulation tools
are available on the market to simplify this develop-
ment (e.g. MSC.Software Suite, PAM Suite, ABAQUS).
Besides, it is possible also to develop own modelling-
simulation tools specially adjusted for specific problems–
for instance a virtual delivery room simulator in [8]. Com-
mercial tools are usually well tested and documented, with
good technical support, and extensive consumer list. How-
ever, their drawbacks are usually limited options of a tool
and, of course, high price. On the other hand, special
designed software can support all options required, but
on an expense of lengthy development and poorer valida-
tion/verification.

Virtual model of human knee joint was built by a
commercial modelling/simulation software PAM Suite [4].
PAM Suite is actually a bundle of three products: a mod-
elling tool Generis, a finite element problem solver or sim-
ulator Safe, and a visualisation tool View. The kinemat-
ics of reconstructed patient knee joint–represented in a
form of FE surface meshes–was thus modelled by the PAM
Generis. Four major sub-problems were addressed in the
modelling phase: a) assigning appropriate material proper-
ties to each knee structure, b) design of accurate MR ex-
ercise rig model (foot-pedal), c) applying correct force on
foot-pedal, and d) definition of the knee structure interde-
pendence.

Several material properties like density, shear, yield
stress, bulk modulus, Poisson’s ratio, linear elastic stiff-
ness, and coefficient of static friction are assigned to each
knee structure. The parametric values were carefully se-
lected [15]. It is known that some material properties are
changed by temperature alteration and by patient aging.
Nevertheless, we simplified our model and assigned the
same property values to all patients.

A MR compliant exercise rig (see Subsection 3.1.1) was
used during a patient imaging material acquisition. Its pur-
pose was to mimic and partially record the conditions dur-
ing a gait cycle (i.e. acquisition of forces and angles be-
tween the major knee bones). The simplified rig model
as shown in Figure 6 (b) was added to human knee joint
model. The foot-pedal is modelled by 3 and foot beams by
7 bars. A bar is a special element defined by two nodes and
some material properties. All movements around these two
nodes are possible. However, only forces in the direction
of the bar can be applied.

Three main knee bones and fibula are defined as rigid
bodies to avoid deformations. Their shape is completely
described by the reconstructed FE surface mesh. Liga-
ments and muscles are manually added to the knee model.

214 Informatica 29 (2005) 209–218 B. Potočnik et al.

They are used to define interdependence of bones and, con-
sequently, enable the knee kinematics (i.e. knee exten-
sion/flexion). They are modelled as bars (see Figure 6 (a)).
Quadriceps muscles and tendons (label 1) are modelled by
3 bars, while hamstring (label 2) is modelled by 2 bars,
where one bar is connected to the fibula and the other on
the tibia. Patellar ligament (label 3) consists of 5 bars link-
ing the patella with the tibia. Lateral and medial collateral
ligaments (label 4) are modelled by 4 bars on each side of
the knee. They are main links between the femur and tibia
(or fibula). Bars are also used to fasten menisci to the tibia.
Without these bars, the meniscus remains in its initial posi-
tions during the simulation. Anterior and posterior cruciate
ligaments are also modelled by bars. They ensure the knee
stability.

(a) (b)

Figure 6: Finite element models: a) knee model, b) MR
exercise rig model

The whole leg must be modelled to simulate a patient
pushing against the foot-pedal of the rig. Missing parts
of the bone femur and tibia are modelled by 3 bars each.
These bars join in a common node, which enables rotation
of both bones in every direction. MR exercise rig model
(see Figure 6 (b)) is connected to the node, where bars rep-
resenting the tibia meet. The footplate points are restricted
to translate exactly as the foot is. To simulate the knee
flexion during a gait cycle, it is necessary to apply a cor-
rect force on the foot-pedal. This force is concentrated in
a point of the foot-pedal; its value was, however, obtained
during the patient MRI examination.

The modelling phase is followed by the simulation (see
Figure 1). The obtained patient-specific knee model is af-
terwards simulated by using the PAM Safe tool. No manual
interaction is required during the simulation. PAM Safe of-
fers a very useful option to track the position of elements
(e.g. node) or observe forces during the simulation. The
simulation results in the simulated knee flexion ranging
from fully extended knee to the knee flexed around 90 de-
grees. Results can be visualised by the PAM View tool.

4 Results

Efficiency of the built knee joint model will be presented
in this section. This model actually simulates knee kine-
matics during a gait cycle under different scenarios. It is
possible, for instance, to remove anterior crucial ligaments
or simulate broken meniscus by the modelling tool PAM
Generis and, consequently, observe knee kinematics of the
altered knee anatomy. Results are visualised by the PAM
View tool. It is possible just to observe knee kinematics in
a form of animation movie with graphical manipulation op-
tion (e.g. rotation of the field of view, removing some un-
interesting structures), or observe the results on a detailed
level of nodes and forces. Figure 7 depicts the simulation
results for the human knee joint model from its initial, ex-
tended, position to the final position of fully flexed knee.

There are 3 validation/verification milestones foreseen in
the process of virtual model construction as seen from Fig-
ure 1. However, it is impossible to verify solely the mod-
elling phase of our sample construction process. Verifica-
tion is thus performed on 2 spots only–after image process-
ing and simulation phase. Results after image processing
(and reconstruction) phase are usually 3D surface meshes
for particular structure. Figure 5 depicts surface meshes for
reconstructed MR knee joint (see Subsection 3.2.1). These
intermediate results must be compared to the correct real-
world circumstances in order to assess the accuracy of re-
constructed surface meshes and, indirectly, also the quality
of segmentation-reconstruction process. The most compe-
tent verification relies on construction of virtual model for
a phantom (e.g. phantom of the human knee joint). In the
verification phase, the obtained model and also all inter-
mediate results (e.g. surface meshes) are compared to the
phantom. Usually, there are no phantoms available or they
are very expensive. The most widespread verification tech-
nique is thus to compare the reconstructed surface meshes
with the data provided by several experts. Experts usually
manually annotate all important structures through entire
image sequence. Afterwards, the so called "mean expert"
annotations are calculated, thus minimizing inter-observer
variability. These annotations are then used to build the
experts’ surface meshes, which are compared with the re-
constructed surface meshes.

We performed twofold verification: a) 3D verification,
where the reconstructed meshes are statistically compared
to experts’ (orthopeadic surgeons) meshes, and b) 2D
verification, where the reconstructed meshes are first cut
through and, the obtained contours are, afterwards, com-
pared to experts’ manual readings for a particular slice.
The Haussdorf distance (HD), the mean absolute distance
(MAD), and the spherical distance (SD) as a generalization
of MAD distance for the 3D space, are measured between
the experts’ and segmentation-reconstruction results. Ta-
ble 1 depicts the average distances calculated for surface
meshes of 6 patients. Three major bones and their corre-
sponding cartilages are verified. A bigger distance indi-
cates a bigger error of the registration-reconstruction pro-

CONSTRUCTION OF PATIENT . . . Informatica 29 (2005) 209–218 215

(a) (b) (c)

Figure 7: Simulated knee kinematics: a) initial knee position (simulation cycle 0), b) knee flexed around 45 degrees (cycle
150), c) fully flexed knee (cycle 300).

cess. The HD distance measures the biggest distance be-
tween two corresponding points from two curves, while
the MAD distance returns an average distance between two
curves. The HD distance is thus always bigger than MAD
distance. The obtained results point out sufficient quality
for subsequent construction phases. Also the visual inspec-
tion of these intermediate results performed by orthopeadic
surgeons confirmed a good accuracy through entire image
sequence (if the contours are observed). The biggest error
is noticed on both extreme sides of a particular knee struc-
ture, where this structure begins to emerge or sink. These
regions are very unexpressed and, therefore, present a huge
problem for registration routine.

MAD (mm) HD (mm) SD (mm)
BF 1.51 7.98 4.81
BT 1.48 7.34 3.66
BP 1.42 6.03 2.42
CF 1.32 9.41 7.62
CT 0.92 4.92 2.13
CP 1.22 6.07 2.65

Table 1: Statistical assessment of registration-
reconstruction process for three bones (BF–femur,
BT–tibia, and BP–patella) and their corresponding
cartilages.

Calculated knee surface FE meshes are afterwards used
in the modelling and simulation procedure as described in
Subsection 3.3. Visual inspection of the final virtual human
knee joint model performed by clinicians was focused on
the relations and deformations of articulating bodies during
the knee flexion. In general, the articular proportions in
the simulated knee joint are very clear. No obvious and
non-physiological structure deformations, with exception
of slight patella gliding disturbances, are noticed.

As a quantitative verification measure of the model qual-
ity, three Euler rotation angles for bone tibia with respect
to bone femur are observed–i.e. rotation around X axis
(varus/valgus), around Y axis (internal/external rotation),
and around Z axis (flexion/extension). It is known that dur-
ing a gait cycle both major knee bones experience some

translation and rotation with respect to their initial posi-
tion. The measured rotations in the X, Y, Z directions of the
tibia relative to the femur derived from the MR images are
thus compared to the modelled rotations. Measured angle
values are calculated from low-resolution MR knee images
acquired by using MR exercise rig (see Subsection 3.1.1).
Patient was additionally imaged in 6 flexion positions of
knee. Image sequence acquired at a particular knee flexion
angle was, afterwards, registered to bone femur and bone
tibia surface meshes (volumes). This registration results in
affine matrix which can be decomposed into required Eu-
ler rotation angles. Three Euler rotation angles can also be
calculated from the simulation results. Twenty nodes from
each major bone are traced during the simulation. For the
i-th cycle, the following 4x20 matrix is defined:

Xi =

xi,1 xi,2 xi,20

yi,1 yi,2 yi,20

zi,1 zi,2 . . . zi,20

1 1 1

 ,

where triplet (xi,j , yi,j , zi,j) present coordinates for the j-
th node in the i-th cycle. Usually, there was 300 simulation
cycles. Then, the following predetermined linear equation
system must be solved:

Xi = AiX0,

where X0 denotes a matrix with the initial bone position
(at cycle 0), Xi denotes a matrix with the bone position at
cycle i, and Ai denotes the affine matrix in cycle i. After
calculating affine matrices for all cycles for both bones, a
new affine matrix of tibial flexion position with respect to
femur is calculated in each cycle as follows:

Ji = T−1
i Fi,

where Ti and Fi denote affine matrices in the i-th cycle for
bone tibia and femur, respectively. This affine matrix takes
the form of: [

[R] [L]
0 0 0 1

]
.

The Euler angles for each simulation have been calcu-
lated from the 3x3 rotation matrix, R, and the translation
vector, L.

216 Informatica 29 (2005) 209–218 B. Potočnik et al.

A comparison between the measured and Euler rotation
angles obtained from the simulation pointed out a small dif-
ference in X and Y direction at fixed Z angle. This differ-
ence varied up to 10 degrees [15]. These results confirmed
the virtual human knee joint model as very prospective.

Virtual knee model was built by using a PC-based system
with the following configuration: 2 Intel Pentium Xenon
2.2 GHz processors, 1 GB RAM, and RAID 5 organisa-
tion of 120 GB hard discs. Processing accompanied by
the reconstruction takes about 23 minutes on this PC sys-
tem, modelling around 1 hour of manual work, while the
simulation requires around 40 to 50 hours (300 simulation
cycles). The later essentially depends upon specific patient
anatomy, material properties, and force information used.
The registration-reconstruction code is currently written
just for single-processor computer systems; no speed up is
thus expected if model construction is performed on multi-
processor computer systems. Fortunately, there exist also
multi-processor and cluster versions of the PAM Safe sim-
ulation tool. If simulation is run on 8-node cluster system,
where each node has 2 processors, the calculated speed-up
factor is then around 3 [15]. The most consumable con-
struction part is thus reduced to 13 to 17 hours. The 8-node
cluster system is optimal for our knee model consisting of
a small number of FE elements. If a bigger cluster would
be used, then execution times will be dominated by com-
munication and no extra speed-up will be gained.

5 Discussion

Results of virtual human knee joint model were presented
in the previous section. In the sequel, we will discuss
the results, outline some problems and potential solutions
for virtual model construction. Although discussion is
bounded to human knee joint example, there are many sug-
gestions and directives applicable to all similar applica-
tions.

Assessment of efficiency and accuracy of the constructed
virtual medical model requires not only visual inspection,
which provides just initial quality impression, but also thor-
ough validation and verification. Figure 1 depicts that
the construction of such models is a multi-step procedure.
Thus, the final model depends upon all previous phases
which must be evaluated as well. The error introduced
in a particular processing phase is reflected also in the fi-
nal model. It is very important to isolate potential sources
of errors and to understand how this error is transferred
through the processing chain. To achieve this, it is nec-
essary to know the actual behaviour of the structure that is
being modelled and the forces that it undergoes before it
can be determined whether the behaviour of the model is
valid.

The construction process begins with the patient-specific
data. These data are usually considered completely valid.
However, it is very common that some discrepancies oc-
cur during imaging. Errors introduced in this pre-phase

are mainly neglected by the researchers, but such errors are
extremely important because they can not be removed in
subsequent phases. It is also very difficult to discover and
correct these errors once imaging material is acquired and
stored. A good idea is thus to record an entire process of
patient material acquisition by a CCD camera, for example
and, if in some later phase an error occurs in the imaging
material, the entire acquisition process can be reviewed.

Construction of patient-specific knee joint model is not
a completely automated procedure. Actually, it consists of
two major building blocks (if we neglect imaging phase):
registration-reconstruction part and modelling-simulation
part. Image processing part is automated, while modelling
phase requires user interaction. Modelling usually requires
one hour of trained technician time. User must manually
add some bars to the patient FE knee mesh and make some
other corrections of the model. Fastening of elements (e.g.
bars) to the mesh presents a potential source of errors, be-
cause the elements can be attached to wrong places. On
the other hand, manual modelling is very flexible, as nearly
any knee clinical case can be modelled (e.g. meniscus tear).
However, from the verification point of view it is better that
the construction tool is not so universal, but it supports a
few checked construction scenarios. For a completely au-
tomated construction procedure, fastening points for liga-
ments and muscles should be detected in the image pro-
cessing phase for each patient.

The registration routine used in the image processing
phase (see Subsection 3.2.1) depends considerably upon
MR scanner used in the imaging phase. It is known, that
the variability inherent in MR imaging could cause the im-
ages of the same subject collected with the same MR pro-
tocol but with two different scanners may not be identi-
cal. Currently, this registration routine is fine tuned for the
Toshiba Visart and Phillips Eclipse MR scanners. If knee
joint images of other MR scanners are used, then an initial-
isation phase is required. This phase compensates variabil-
ity found in the new type of images with regard to template
image. This phase should theoretically be done just once
per new type of MR scanner.

Modelling is the least deterministic phase in the entire
process, because only a small portion of this phase is auto-
mated (e.g. assigning the material properties to elements),
while the majority requires manual interaction. Modelling
is to some extent intuitive (especially ligament and muscle
fastening) and highly dependent upon the experts’ knowl-
edge and experience. This phase can not be verified di-
rectly. The only feedback is verification of simulation re-
sults. However, the verification just points out that there are
some problems in the model, but it does not isolate sources
of errors. In the current model, the verification is based
just upon Euler rotation angles for bone tibia with respect
to bone femur. It is thus suggested to expand verification
also on the behaviour of other knee structures.

Stability of the patient FE knee mesh used in the mod-
elling process is also very dependent upon the template
mesh morphing and, indirectly, on the quality of the en-

CONSTRUCTION OF PATIENT . . . Informatica 29 (2005) 209–218 217

tire image registration. For example, if the medial menis-
cus has been deformed considerably for particular patient,
possibly due to actual pathology within the meniscus, the
morphing algorithm will have to reduce the element sizes
markedly. This by all means will not aid simulation sta-
bility. Therefore, it is possible that another manual inter-
vention into modelling process may be necessary for gross
knee pathologies.

In the sequel, the virtual human knee joint model is dis-
cussed from a medical point of view. Verification of the
image processing part pointed out adequate accuracy of
detected anatomical knee structures, especially in the or-
thopaedic surgeons target regions where the most patholo-
gies occur (i.e. the condylar or articular and intercondylar
region). The first benefit of knee model is thus an easy vi-
sualisation of detected knee structures in a particular cross
section, even in anatomically problematic regions. In some
cases, this "second opinion" could be of great help for clin-
icians in a preoperative planning and decision.

The simulated knee joint kinematics is almost realistic.
In general, articular proportions in the simulated knee joint
are very clear and no physiological structure deformations
were detected. There are only some slight disturbances
of the patella gliding at the extreme knee flexion, which
might cause some disturbances in the patella kinematics.
The shape and position of menisci are also very clear and
no meniscus surface deformations are seen. The clinical
benefit of the virtual knee joint model is also a better visu-
alisation of the patient knee kinematics. For example, the
knee could seem from MR images at first sight clinically
stable, while the simulation points out enough functional
instability. This was the case for a patient with partial ante-
rior crucial ligament rupture, where suspicion on the liga-
ment rupture was indicated only by the virtual knee model
and confirmed by an arthroscopy examination. The knee
instability was so big that the operative treatment was nec-
essary.

Virtual knee joint model could have a big significance for
planning operative interventions. It could be especially ad-
vantageous in the situations where postoperative knee joint
stability and functionality is not obvious. When replacing
a meniscus, for instance, a size of meniscus implant is se-
lected by rule of thumb. Appropriateness of choice is usu-
ally confirmed about one year after operation. Thus, it is
much better to play through different scenarios by using
virtual model when taking such decisions.

The described virtual knee joint model has not been used
in daily clinical practice yet. For such usage, this virtual
model must be accompanied by several auxiliary tools. Vi-
sualisation tools and tools for correcting intermediate re-
sults are indispensable. Such tools should, for instance,
visualize image registration results (i.e. 3D patient-specific
knee mesh) and enable manual correction of particular seg-
mentation results and, consequently, 3D knee mesh. Sim-
ulation results are currently visualized in the PAM View
tool. The trained personnel only can interpret these results.
More sophisticated model should also be accompanied by a

tool for interpreting results from the medical point of view.

6 Conclusion
The framework for construction of patient-specific virtual
medical models was presented in this paper. All construc-
tion blocks from imaging, image processing, modelling,
and simulation were described and applicable directives is-
sued. This framework was successfully applied by con-
struction of virtual model of the human knee joint. Sta-
tistical assessment of the developed knee model pointed
out sufficient accuracy of intermediate results and the fi-
nal knee kinematics as well. This model was assessed also
by the clinicians as very prospective.

Acknowledgement
This work was supported by the European funding in the
5th Framework project entitled SimBio (Contract No. IST-
1999-10378).

References
[1] Ansys Inc., http://www.ansys.com/

[2] I.N. Bankman (2000), Handbook of medical imaging:
Processing and analysis, Academic Press.

[3] C. Basdogan, C.-H. Ho, M.A. Srinivasan (2001), Vir-
tual environments for medical training: graphical and
haptic simulation of laparoscopic common bile duct
exploration, IEEE transactions on mechatronics, vol.
6, no. 3, pp. 269–285.

[4] ESI group, PAM Suite,
http://www.esi-group.com/

[5] E.M. Haacke, R.W. Brown, M.R. Thompson, R.
Venkatesan (1999), Magnetic resonance imaging:
Physical principles and sequence design, Wiley-Liss.

[6] J.V. Hajnal, D.L.G. Hill, D.J. Hawkes (2001), Medi-
cal image registration, CRC Press.

[7] T. He, L. Hong, D. Chen, Z. Liang (2001), Reliable
path for virtual endoscopy: ensuring complete exam-
ination of human organs, IEEE transactions on visu-
alization and computer graphics, vol. 7, no. 4, pp.
333–342.

[8] D. Korošec, A. Holobar, M. Divjak, D. Zazula (2003),
Multilevel implementation of the dynamic virtual en-
vironment, Proceedings of Fifth International Con-
ference on Simulations in Biomedicine, WIT Press,
Southampton, pp. 477–486.

[9] J.-D. Lee, C.-H. Huang, S.-T. Lee (2002), Improving
stereotactic surgery using 3-D reconstruction, IEEE
engineering in medicine and biology, vol. 21, no. 6,
pp. 109–116.

218 Informatica 29 (2005) 209–218 B. Potočnik et al.

[10] A.D. McCarthy, D.R. Hose, D.C. Barber, S. Wood, G.
Darwent, D. Chan, D.R. Bickerstaff, I.D. Wilkinson
(2003), A registration-based MR method for calcu-
lating in-vivo 3-D knee joint motion: Validating finite
element simulations, Proceedings of the International
society for magnetic resonance in medicine, ISMRM,
Toronto.

[11] H. Park, P. H. Bland, C.R. Meyer (2003), Construc-
tion of an abdominal atlas and its application in seg-
mentation, IEEE transaction on medical imaging,
vol. 22, no. 4, pp. 483–492

[12] B. Potočnik, D. Zazula (2001), Assessing the effi-
ciency of the image segmentation algorithms, Elec-
trotechnical review, vol. 68, no. 2/3, pp. 97-104.

[13] B. Potočnik, D. Zazula (2002), Automated analysis
of a sequence of ovarian ultrasound images, Part I:
Segmentation of single 2D images, Image vision and
computing vol. 20, no. 3, pp. 217–225.

[14] B. Potočnik, D. Zazula (2002), Automated analysis
of a sequence of ovarian ultrasound images, Part II:
Prediction-based object recognition from a sequence
of images, Image vision and computing, vol. 20, no.
3, pp. 227–235.

[15] SimBio project, http://www.simbio.de

[16] M. Sonka, V. Hlavac, R. Boyle (1994), Image pro-
cessing, analysis and machine vision, Chapman and
Hall.

[17] W. Sun, P. Lal (2002), Recent development on com-
puter aided tissue engineeringŰŰa review, Computer
methods and programs in biomedicine, vol. 67, no. 2,
pp. 85–103.

[18] Surfdriver software,
http://www.surfdriver.com/

[19] S. Wood, D.C. Barber, A.D. McCarthy, D. Chan, I.D.
Wilkinson, G. Darwent, D.R. Hose (2002), A novel
image registration application for the in vivo quan-
tification of joint kinematics, Proceedings of medi-
cal image understanding and analysis, University of
Portsmouth, Portsmouth.

[20] J. Xia, H.H.S. Ip, N. Samman, H.T.F. Wong, J.
Gateno, W. Dongfeng, R.W.K. Yeung, C.S.B. Kot,
H. Tideman (2001), Three-dimensional virtual-reality
surgical planning and soft-tissue prediction for or-
thognathic surgery, IEEE transactions on information
technology in biomedicine, vol. 5, no. 2, pp. 97–107.

Informatica 29 (2005) 219–226 219

System Resource Utilization Analysis based on Model Checking Method

Ki-Seok Bang, Hyun-Wook Jin, Chuck-Yoo and Jin-Young Choi
Department of Computer Science & Engineering, Korea Univerity
{kbang, choi}@formal.korea.ac.kr
{hwjin, chuck}@os.korea.ac.kr

Keywords: Model Checking, Temporal Logic, Property Specification, SPIN, LTL, Myrinet NIC

Received: July 21, 2004

Model checking method is a widely used formal method for proving whether or not a given model satisfies
properties, and for producing counter examples if the model does not satisfy properties. In this paper, we
show model checking methods can be used for resource utilization analysis of systems. We specify system
utilization properties using temporal logic called LTL, and find a bottleneck of system performance using
model checking.

Povzetek: Analiza uporabe sistemskih virov z metodo preverjanja modelov.

1 Introduction

Formal methods[5] are the most notable efforts to guaran-
tee a correctness of system design and behaviors. Correct-
ness of design is a very important factor of H/W and S/W
systems for preventing an economical and human losses
caused by minor errors. Especially, model checking[5] is
one of the most active research areas because its procedures
are automatic and easy to understand. In model checking,
we model a system as a finite state machine and specify the
properties that must be satisfied by the real system using a
temporal logic[12]. After that, we automatically perform
a model checker whether the system satisfies its properties
or not. In general, properties are mostly describing correct-
ness or safety of the system’s operation. It is very important
to specify the correctness property of system design and
behavior, and an appropriate property must be specified to
represent a correct requirement.

However, in some cases, the correctness property is not
an important factor for system designers. In a small system
such as NIC(Network Interface Card), the correctness can
be ignored by the designer and user. Instead of the safety
characteristic, a system efficiency such as operating speed
or performance of system resource utilization is more im-
portant to evaluate the system’s quality level.

Generally, measurement or simulation is used to show
an efficiency property of a system. A professional ana-
lyst measures responses that occur during an experiment
using a simulator, and compares them to an ideal computed
value[15]. If the two values are similar or equal, then it can
be said the system uses its resources effectively and shows
a high performance. Otherwise, the conclusion is that the
system performs ineffectively. Then a reason of the inef-
fectiveness should be found.

To detect it, they must analyze both H/W and S/W. Es-
pecially, they must inspect the whole source codes for
S/W analysis. However, it is almost impossible to analyze

source codes perfectly, since the codes are too long and co-
operates with other systems in a complicate manner. In ad-
dition, network systems are constructed in a distributed en-
vironment, so error detection is very difficult even if source
codes are instpected.

In this paper, we specify system utilization properties us-
ing temporal logic, and show that model checking methods
can be used for performance analysis. We used the model
checker SPIN[8, 9] and LTL(Linear Temporal Logic)[12]
to perform this research. We analyzed a Myrinet NIC
firmware system[3] and successfully found a reason for in-
effictive behavior of the system.

This paper is composed as follows; Chapter 2 is a brief
introduction to network simulation tools and firmware de-
sign methodologies, and model checking method. We ad-
dress the extension of LTL specification to a quantity char-
acteristic in Chapter 3. In Chapter 4, we explain an over-
head analysis of high speed network card and results of
model checking. We conclude in Chapter 5.

2 Related Works

2.1 Simulation of network status and
firmware desin methods

Currently, certain network simulators like Network Simula-
tor II(NS-II)[15] are used to design network system or anal-
yse their behavior. This simulator performs a simulation
for TCP, routing, and multicast protocols on wire/wireless
network. We can find and fix bugs in the network protocol
and communication software using the simulator.

But, simulators just provide a convenient method for
users or software designers to fix their software codes,
since the system modelled by a simulator is not a real sys-
tem, but an ideal model. And, NS-II has many of its own
bugs and errors. Besides that, users must check whether

220 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

the errors from a simulation are from simulator itself.
The research to design NIC firmware correctly is pro-

gressing. An improved NIC program for high performance
MPI of INRIA modelled behaviors of NIC firmware using a
state transition diagram[17]. They modelled and analyzed
behaviors of the NIC sender and receiver are working in
parallel using the state transition diagram. In this way, it
can be helpful for analyzing complex send/receive behav-
iors of firmware.

2.2 Model Checking

Model checking[5] is an automatic verification technique
for correctness of finite state systems. That is a process to
prove a correctness of system through logical proving about
system constraints or requirement for safe system behav-
ior. Even model checking has many advantages and disad-
vantages, but can verify a complex system as a hardware
circuit or communication protocol automatically. Because
verification processes are performed automatically, so the
verification results are correct and easy to analysis. In ad-
dition, model checking is performed to whole states of sys-
tem state space, it can conclude yes or no for very large
system.

The process of model checking is as follows : The first
task is to convert a system to a formal model accepted
by a model checker. In practice, this process is not auto-
mated and formal languages defined by formal semantics
must be used to specify a system. Many abstraction tech-
niques are applied to draw a abstract model in this pro-
cess. Abstraction is very important for reducing states of
a system because system space can be exploded during the
model checking process. After modeling, we needs to spec-
ify properties that the system must hold. The specification
usually is given in some logical formalism. Generally, tem-
poral logics are used to represent a temporal characteristic
of systems. The verification is completely automatic with
the abstract model and properties. However, it does need
human assistance to analyze the result of model checking.
The model checker can produce a counterexample for the
checked property, and it can help the designer in tracking
down where the error occurred. In this case, analyzing the
error trace may require a modification to the system and
reapplication of the model checking process. The error can
also result from incorrect modeling of the system or from
an incorrect specification. The error trace can also be use-
ful in identifying and fixing these two problems.

There are many representative model checkers;
SMV[11] and SPIN[8, 9] are two examples. SMV is a
CTL model checker for hardware verification, and SPIN
is an LTL model checker for communication protocol or
concurrent software. In this paper, we specify system
properties using LTL and verify them using SPIN.

SPIN is a representative LTL model checker. SPIN sup-
ports its own tools for LTL specification and verification. A
User can model a system by Promela, an input language of
SPIN, and specify a required property in LTL. Then SPIN

verifies the model and generates verification results, “True”
or counterexample if the result is “false”. SPIN provides
some basic safety and liveness properties such as deadlock,
invalid end state and non-progress cycle. Therefore, we
don’t have to specify those properties. SPIN also has many
optional switches, so we can control search spaces and ver-
ification times. We can simulate the model’s behavior using
SPIN simulator before verification. The simulation facility
can reduce the verification time and human efforts to spec-
ify a complex property.

2.3 Temporal Logics
It is very important to specify system property that certain
system must be satisfied. In general, CTL(Computational
Tree Logic) or LTL(Linear Temporal Logic) is used for
property specification of model checking. Two logics spec-
ify behaviors of a system according to time structure. Time
is assumed to have a branching structure in CTL. That is,
it models system behavior using state graph that represents
a infinite state transition tree from the initial state. LTL
assumes that the time sequence is linear, the system’s be-
havior is represented by one linear sequence[12].

Model checking can be divided into CTL model check-
ing and LTL model checking based on the used temporal
logic. In CTL model checking, we model finite state sys-
tem using Kripke structure and prove the temporal logic
is satisfied on an arbitrary state of this system by fixed
point theory. LTL model checking models systems and
LTL properties using automata, and checks the emptiness
of two automata[5].

3 Extension of property
specification using temporal logic

In general, model checking is used to prove the correctness
or safety of systems, and property specification by tempo-
ral logics represents that kind of requirement. Especially,
deadlock and invalid endstate are the most common safety
properties. so model checkers can check those properties
without temporal logic specifications. For example, it is
very important to verify mutualy exclusive behaviors in the
critical section of operating system design. When two con-
current processes are trying to operate in a critical section,
we can specify their mutual exclusive property as follows;
[] ! (P ∧ Q). This logic can be translated into " Always
P and Q cannot be true at the same time," and means two
processes cannot operate in a critical section at the same
time.

Another property, “if one process tries to be in a critical
section, then eventually that process can operate in the criti-
cal section.” can be specified for liveness requirement. This
property can be written: [](P →<> Q). Safety and live-
ness properties are very important to guarantee a system’s
behavior and can find many implicit errors easily. How-
ever, in some cases, the correctness property is not an im-

SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 221

portant factor for system designers. In a small system such
as NIC(Network Interface Card), the correctness can be ig-
nored by designer and user. Instead of the safety charac-
teristic, a system efficiency such as operating speed or per-
formance of system resource utilization is more important
to evaluate the system’s quality level. Generally, measure-
ment or simulation is used to show an efficiency property of
system. A professional analyst measures responses that oc-
curr during an experiment using a simulator, and compare
them to an ideal computed value. If two values are similar
or equal, then it can be said the system uses its resources
effectively and shows a high performance. Otherwise, the
conclusion is that the system performs ineffectively. Then
a reason for the ineffectiveness should be found.

To detect it, they must analyze both H/W and S/W. Es-
pecially, they must inspect the whole source codes for
S/W analysis. However, it is almost impossible to analyze
source codes perfectly, since the codes are too long and co-
operates with other systems in a complicate manner . In ad-
dition, network systems are constructed in a distributed en-
vironment, so error detection is very difficult even if source
codes are inspected. However, it is too difficult to find a
reason of error and fix it in the program source code. In
this paper, we show an easy way to analyze source code
using model checking.

In fact, a direct verification of quantitive property is not
so easy. Therefore, simulation or performance measure-
ment must be used with verification to increase the possi-
bility of finding an error.

First, we simulate a target system to measure its perfor-
mance, and analyze its measurements to compare system’s
effectiveness. If it is too low, we can assume the system has
some problems. Then, we model the system using some
abstract techniques, and specify a property which must be
satisfied to the system using a temporal logic. In this case,
the property specification must be concerned with a per-
formance not a safety. For example, we can specify a re-
source sharing characteristic by checking if two processes
can be moved to a specific state simultaneously. That is,
two processes can operate with the same shared resource
at the same time. If the model checking result shows false,
it means resource sharing is impossible and system perfor-
mance can be dropped. Of course, we should guess the
kind of errors. But this method is faster and more correct
than the traditional code inspection. We can find and fix a
problem by a logical proof.

4 Example of system resource
utilization analysis using model
checking

4.1 Performance analysis of high-speed
network card

We performed model checking for performance analysis of
Myrinet NIC(Network Interface Card)[3].

Gigabit network interface cards(NIC) like Myrinet are
becoming popular. In order to achieve the best possible per-
formance out of Myrinet, several user-level communication
primitives have been proposed[4, 7, 16]. Berkeley-VIA[4]
is a well-known implementation of Virtual Interface Ar-
chitecture (VIA)[6] that is an industrial standard for user-
level communication primitives. Therefore, it is generally
expected that VIA can achieve near physical bandwidth
of gigabit networks. However, our research shows that

0

100

200

300

400

500

600

700

800

0 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

T
hr

ou
gh

pu
t

(M
bp

s)

Asynchronous UDP

Berkeley-VIA

UDP

Figure 1: Throughput comparison of Asynchronous UDP,
Berkeley-VIA, and UDP

0

200

400

600

800

1000

1200

0 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

O
ne

-w
ay

 L
at

en
cy

 (
us

)

UDP
Asynchronous UDP

Berkeley-VIA

Figure 2: One-way latency comparison of Asynchronous
UDP, Berkeley-VIA, and UDP

Berkeley-VIA is able to achieve a slightly higher through-
put than UDP on Myrinet as shown in Figure 1. Fur-
thermore, Berkeley-VIA has much less throughput than an
improved UDP named Asynchronous UDP[18]. On the
other hand, we find that Berkeley-VIA has the shortest one-
way latency as shown in Figure 2, which indicates that
Berkeley-VIA has less communication overhead than UDP
and Asynchronous UDP.

So the question is why Berkeley-VIA has a very low
overhead but is not able to achieve the best possible

222 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

throughput. Our goal is to find the performance bottle-
neck. The firmware of Myrinet NIC needs to be analyzed
to see where the bottleneck is. Because Myrinet NIC has
three DMA engines and separate memory and CPU, the
firmware itself is very complicated. Therefore, the analysis
of the firmware is not an easy task. Also the interaction
between the firmware and the host is very complex so that
the firmware analysis becomes even more complicated.

Therefore, we first build state transition diagrams of
the firmware in order to analyze the firmware of Myrinet
NIC. Second, we translate the state transition diagrams
into specifications written in PROMELA (PROcess MEta
LAnguage)[8]. Third, we derive verification formulas, and
then the formulas are verified with SPIN.

4.2 Myrinet Network Interface Card
Myrinet is a gigabit Local Area Network(LAN), which sup-
ports full-duplex 1.28+1.28 Gbps bandwidth[1, 2]. In this
section, we describe the hardware components of Myrinet
NIC based on LANai-4[13]. Myrinet NIC consists of
a RISC processor named LANai, Static Random Access
Memory (SRAM), and three DMA engines. As shown in
Figure 3, LANai executes the firmware, and SRAM stores
the data for sending or receiving. Each DMA engine works
as follows.

Myrinet

LAN

LANai

SRAMDMA
engine

DMA
engine

DMA
engine

Main

Memory

EBUS-LBUS

DMA

send

DMA

receive

DMAMyrinet NIC

Myrinet

LAN

LANai

SRAMDMA
engine

DMA
engine

DMA
engine

Main

Memory

EBUS-LBUS

DMA

send

DMA

receive

DMAMyrinet NIC

Figure 3: Hardware feature of Myrinet NIC

The EBUS-LBUS DMA engine is responsible for the
data movement between the main memory and the SRAM.
The send-DMA engine moves the data in SRAM to the
Myrinet physical network.The receive-DMA engine re-
ceives data from Myrinet LAN into the SRAM. The
firmware initiates the DMA operations by setting the
proper registers of each DMA engine and notices the com-
pletion of corresponding DMA operation via the 32-bit In-
terrupt Status Register (ISR) on LANai processor[3].

4.3 Modeling of firmware
In this section, we discuss the modeling of LCP and MCP.
We construct the state transition diagrams for concerned
modules based on their source codes and specify them with
PROMELA.

4.3.1 LCP

LCP is the firmware for Berkeley-VIA. LCP consists of
four modules: hostDma, lcpTx, lcpRx, and main. Fig-
ures 4and 5 show the state transition diagrams of former
three modules. The hostDma module is responsible for

HostDmaIdle

HostDmaBusy

HostDmaRequest?
(dma_int==1)

-> HostDmaDone!

HostDmaIdle

HostDmaBusy

HostDmaRequest?
(dma_int==1)

-> HostDmaDone!

Figure 4: State transition diagram of the hostDma module

EBUS-LBUS DMA. The initial state of the hostDma mod-
ule is HostDmaIdle. The lcpTx and lcpRx modules invoke
the method of the hostDma module. Then, the hostDma
module initializes the EBUS-LBUS DMA operation, and
its state moves to HostDmaBusy. When the EBUS-LBUS
DMA operation is done, the state of the hostDma mod-
ule moves from HostDmaBusy to HostDmaIdle, and the
method returns to its invoker.

The lcpTx module sends data and lcpRx receives data.
Their initial state is LcpTxIdle and LcpRxReady. Each
module invokes a method of HostDma at the initial state.
If data is received from the network during the send-DMA
operation, the lcpTx module invokes the method of the
lcpRx module and moves to the LcpTxInvokeRx state.
When the lcpRx module has received a data completely,
its method returns to the lcpTx module, and the state of the
lcpTx module moves to LcpTxSendDma again.

Note that the entry point of the hostDma, lcpTx, and
lcpRx modules is the initial state of each module. We will
discuss the entry point in the next section, compared it with

LpcTxHostDma

LcpTxSendDma

LpcTxGotASend

GotASend?

HostDmaRequest!
HostDmaDone?

(sned_int ==1)

LpcTxIdle

LcpTxInvokeRx

(recv_int == 1)

LcpRxDone?
LpcTxHostDma

LcpTxSendDma

LpcTxGotASend

GotASend?

HostDmaRequest!
HostDmaDone?

(sned_int ==1)

LpcTxIdle

LcpTxInvokeRx

(recv_int == 1)

LcpRxDone?

Figure 5: State transition diagram of the lcpTx module

SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 223

MCP.
We specify the modules as processes in PROMELA.

All invocations between modules are performed in a syn-
chronous manner.

4.3.2 MCP

MCP is included in the Myrinet Software package[1] While
Berkeley-VIA supports only VIA protocol, Myrinet Soft-
ware supports TCP/IP protocol suite. MCP consists of five
modules: hostSend, netSend, hostReceive, netReceive, and
main. The hostSend module moves data from main mem-
ory to SRAM, and the netSend module sends the data in
SRAM to the network. The netReceive module receives the
data from the network to SRAM. The hostReceive module
moves the received data to the main memory. The state
transition diagrams of four modules are shown in Figures
6,7,8 and 9.

HostSendIdle

HostSendFull

HostSendDmaBusy

HostSendDma

GotASend?

NetSendQueueNotFull?

SendDmaFree?

HostSendGotASend

HostSendNotFull

(NetSendQueue.full)

(
D
m
a
I
n
U
s
e
=
=
1
)

(DmaInUse==1)

(DmaInUse==0) DmaInUse= 1

(Dm
aI
nU
se
==
0)

 D
ma
In
Us
e=

 1

SendDmaDone?

DmaInUse=0

ReceiveDmaFree!

NetSendQueueNotEmpty!

HostSendIdle

HostSendFull

HostSendDmaBusy

HostSendDma

GotASend?

NetSendQueueNotFull?

SendDmaFree?

HostSendGotASend

HostSendNotFull

(NetSendQueue.full)

(
D
m
a
I
n
U
s
e
=
=
1
)

(DmaInUse==1)

(DmaInUse==0) DmaInUse= 1

(Dm
aI
nU
se
==
0)

 D
ma
In
Us
e=

 1

SendDmaDone?

DmaInUse=0

ReceiveDmaFree!

NetSendQueueNotEmpty!

Figure 6: State transition diagram of the hostSend module

NetSendBusy

NetSendSendDone?

NetSendQueueNotFull!

NetSendQueueNotEmpty?

NetSendIdle NetSendBusy

NetSendSendDone?

NetSendQueueNotFull!

NetSendQueueNotEmpty?

NetSendIdle

Figure 7: State transition diagram of the netSend module

Compared with modules of LCP, the notable difference
is that each module of MCP has plural entry points. This
means that the method of each module is invoked from an
entry point and returns when it moves to another entry point
without waiting for the next event. Therefore, the method
invoked in the next time starts from the state in which the
method returns right before. On the other hand, in the case
of LCP, a method is invoked when the module is in the
initial state and returns only when it goes back to the initial
state. we implement an invocation by using two rendezvous
communication channels of PROMELA. For more details,
refer [10].

HostReceiveIdle

HostReceiveDmaBusyHostReceiveDma

HostReceiveGotAReceive

NetReceiveQueueNotEmpty?

(DmaInUse==1)

(D
ma
In
Us
e
==
0)

Dm
aI
nU
se
=
1

ReceiveDmaFree?

ReceiveDmaDone?

DmaInUse=0

SendDmaFree!

NetReceiveQueueNotFull!

HostReceiveIdle

HostReceiveDmaBusyHostReceiveDma

HostReceiveGotAReceive

NetReceiveQueueNotEmpty?

(DmaInUse==1)

(D
ma
In
Us
e
==
0)

Dm
aI
nU
se
=
1

ReceiveDmaFree?

ReceiveDmaDone?

DmaInUse=0

SendDmaFree!

NetReceiveQueueNotFull!

Figure 8: State transition diagram of the hostReceive mod-
ule

NetReceiveFull

NetReceiveDma

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l

?

R
e
c
e
i
v
e
D
o
n
e
?

NetReceiveDmaDone

(NetReceiveQueue.full)

NetReceiveQueueNotEmpty!

(
!
Ne
t
R
e
c
e
i
v
e
Q
u
e
u
e

.
f
u
l
l
)

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
E
m
p
t
y

!

NetReceiveFull

NetReceiveDma

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l

?

R
e
c
e
i
v
e
D
o
n
e
?

NetReceiveDmaDone

(NetReceiveQueue.full)

NetReceiveQueueNotEmpty!

(
!
Ne
t
R
e
c
e
i
v
e
Q
u
e
u
e

.
f
u
l
l
)

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
E
m
p
t
y

!

Figure 9: State transition diagram of the netReceive mod-
ule

4.4 Formal verification of firmware
behaviors

First, we verified the correctness of each firmware using
SPIN. The correctness means only one module should oc-
cupy the EBUS-LBUS DMA engine at a time. The EBUS-
LBUS DMA engine moves data not only from main mem-
ory to SRAM for sending, but also from SRAM to main
memory for receiving. Therefore, if the other module al-
ready occupies the DMA engine, a module should wait un-
til the DMA engine becomes idle. The formulas used are
as follows:

1. LCP

[] ! (LTHD && LRHD)

The lcpTx module cannot use the EBUS-LBUS
DMA engine while the lcpRx module occupies
it.

2. MCP

[] ! (HSD && HRD)

The hostSend module cannot use the EBUS-
LBUS DMA engine during the hostReceive
module occupies it.

The hostSend module cannot use the EBUS-LBUS DMA
engine while the hostReceive module occupies it.

224 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

The verification results show that both LCP and MCP
satisfy the above correctness property.

Full statespace search for:
never-claim +
assertion violations + (if within scope of claim)
acceptance cycles - (not selected)
invalid endstates - (disabled by never-claim)

State-vector 492 byte, depth reached 472,
errors: 0

Table 1: Formal verification result of NIC - Safety property

However, we can find a significant difference between
two firmwares when analyze the behaviors of LCP and
MCP from the viewpoint of throughput. The key factor
that determines the throughput of NIC is how well the
DMA engines are utilized. The maximum throughput can
be achieved when the EBUS-LBUS DMA engine performs
in parallel with the send-DMA and receive-DMA engine.

For example, let DMAEBUS−LBUS be the throughput of
the EBUS-LBUS DMA and DMAsend be the throughput
of the send-DMA. DMAEBUS−LBUS is determined by the
bandwidth of the I/O bus (e.g. PCI) that connects the main
memory and SRAM of NIC. On the other hand, DMAsend

is determined by the network physical media. When DMA
engines perform in parallel, the throughput is evaluated as
follows:

Throughput =
MIN(DMAEBUS−LBUS , DMAsend)

However, if DMA engines perform sequentially, the
throughput is limited as follows:

Throughput = DMAEBUS−LBUS

/(1 + DMAEBUS−LBUS/DMAsend)

If DMAEBUS−LBUS and DMAsend are the
same, the throughput achieved is reduced to 1/2 of
DMAEBUS−LBUS. The next step of the analysis is to
derive verification formulas. Because the verification
formulas need to reflect the utilization of DMA engines,
we use the following formulas written in LTL:

1. LCP

A. ¦ (LTIR && HDB && ! LRHD)
Can the lcpTx module initiate send-DMA while
the hostDma module is using EBUS-LBUS
DMA that moves data from main memory to
SRAM?

B. ¦ (LRR && HDB && ! LTHD)
Can the lcpRx module initiate receive-DMA
while the hostDma module is using EBUS-
LBUS DMA that moves data from SRAM to
main memory?

– LTIR : The state of lcpTx is LcpTxInvok-
eRx.

– LTHD : The state of lcpTx is LcpTxHost-
Dma.

– LRR : The state of lcpRx is LcpRxReady.
– LRHD : The state of lcpRx is LcpRxHost-

Dma.
– HDB : The state of hostDma is Host-

DmaBusy.

2. MCP

A. ¦ (HSD && NSB)

Can the netSend module initiate send-DMA
while the hostSend module occupies the EBUS-
LBUS DMA engine?

B. ¦ (HRD && NRD)

Can the netReceive module initiate receive-
DMA while the hostReceive module occupies
EBUS-LBUS DMA engine?

– HSD : The state of hostSend is HostSend-
Dma.

– NSB : The state of netSend is NetSendBusy.
– HRD : The state of hostReceive is HostRe-

ceiveDma.
– NRD : The state of netReceive is NetRe-

ceiveDma.

If DMA engines perform in parallel, each verification
formula should result in “True.” When we run SPIN with
the above formulas, the verification formulas of MCP are
“True.” However, the formulas for LCP result in “False.”
That is, LCP cannot perform the send-DMA during the
EBUS-LBUS DMA that moves data from main memory
to SRAM (formula 1-A).

Full statespace search for:
never-claim +
assertion violations + (if within scope of claim)
acceptance cycles - (not selected)
invalid endstates - (disabled by never-claim)

State-vector 492 byte, depth reached 472,
errors: 1

Table 2: Formal verification result of LCP - Reource Uti-
lization property

In order to quantify the parallelism of each firmware, we
measure the DMA overheads. Figures 10 and 11 are the
time charts. The x-axis indicates the time, and the y-axis
represents the DMA engine that each packet goes through
in order to be processed. A rectangle in a DMA engine is
the time spent in the DMA engine to process a packet. A
rectangle starts at the time when the corresponding rectan-
gle in upper DMA finishes. Figure 9 shows that the DMA
overheads of MCP are fully overlapped, while the over-
heads of LCP cannot be pipelined at all, as shown in Fig-
ure 11. Also LCP cannot perform the receive-DMA as

SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 225

well during the EBUS-LBUS DMA that moves data from
SRAM to main memory (formula 1-B). This result explains
why the performance of Berkeley-VIA is limited. The sim-
ulation results also show that LCP performs DMA sequen-
tially but MCP performs DMA in parallel. We have run
random and interactive simulations and confirmed the same
results.

We could prove the safetiness of NIC firmware and find a
reason which causes a problem in the performance of NIC.
If we perform a simulation to find performance problems, it
is easy to show a falling-off in performance. However, we
must analyze the source code of firmware to find the reason.
The real source code of NIC is very complex, as well as too
long to analyze. Therefore, we can perform performance
analysis and find a reason of performance dropping using
model checking.

5 Conclusions

This paper explains a way to identify the problems which
caused system performance drop using model checking.

Generally, logical formula used in model checking is re-
lated to system correctness or safety. It is important that

0 1000 2000 3000 4000 5000 6000

EBUS-LBUS

DMA

send-DMA

time (us)

Figure 10: DMA overheads of LCP

0 500 1000 1500 2000 2500 3000 3500

EBUS-LBUS

DMA

send-DMA

time (us)

Figure 11: DMA overheads of MCP

systems have to be designed accurately for system safety,
since system’s error affects not only the system but its envi-
ronment. But as shown in this paper, even already verified
systems showed the lower processing rate. In that case, we
can conclude that system resources are used ineffectively.

Usually, the quantitative analysis such as performance of
system and usability of resources is done by simulation or
measurement. As a result, it is very difficult to analyze the
cause of performance drop.

In other words, the source code must be analyzed di-
rectly to find the major factor. However, as systems get
complicated and interactions with other systems increase,
it is impossible to directly analyze the source code. In this
case, we propose to adapt a model checking for quantita-
tive analysis like resource utilization. If quantitative prop-
erty can be specified by temporal logic, then quantitative
analysis as performance analysis could be performed eas-
ily. Also, if a reason for performance drop could be found
easily in an abstract model, applying it with the actual code
to fix the source code would be an easy task.

Still, there are a few obstacles to adapting the model
checking to performance analysis. First, the model check-
ing can express finite systems like hardware controller or
communication protocol as a finite state machine, but other
systems can have infinite states, so they have to be mod-
elled by special abstract methods. During the abstraction
process, there could be many new and potential errors. The
most obvious problem to perform the model checking is
the state space explosion problem. Though this method can
search every possible state in finite state system, the states
can be exploded when the system is performing. Therefore,
it is impossible to search all possible state space. Thus
depending on the capability of computer which performs
model checking and verification algorithm, the number of
states that can be verified is limited. To solve this weak-
ness of model checking, there are many attempts and much
research to formally verify the finite states of the compli-
cated system and automation of abstraction process to ana-
lyzation of source code. If more effective model checking
methods could be developed by this research, verification
of safety and analyzation of performance of large and com-
plicated systems can be performed easily.

In this study, we performed a performance analysis using
SPIN. In the future, there are plans to test the effectiveness
with more model checkers. Also, based on the example of
NIC, there should be similar research done with bigger and
more performance sensiteve systems, for example, embed-
ded systems.

References

[1] D. Anderson, J. Chase, S. Gadde, A. Gallatin, K.
Yocum, and M. Feeley, Cheating the I/O Bottleneck:
Network Storage with Trapeze/Myrinet, Proceedings
of the 1998 USENIX Technical Conference, June
1998.

226 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

[2] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
NOW Team, A Case for Networks of Workstations:
NOW, IEEE Micro, February 1995.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. -K.
Su, Myrinet – A Gigabit-per-Second Local-Area Net-
work, IEEE-Micro, Vol. 15, No. 1, pp. 29-36, Febru-
ary 1995.

[4] P. Buonadonna, A. Geweke, and D. Culler, An Imple-
mentation and Analysis of the Virtual Interface Ar-
chitecture, Proceedings of SC’98, November 1998.

[5] E. M. Clarke, O. Grumberg, D. A. Peled, Model
Checking, MIT Press, 1999.

[6] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, A. M. Berry, E. Gronke, and C. Dodd,
The Virtual Interface Architecture, IEEE Micro, Vol.
8, pp. 66-76, March-April 1998.

[7] T. V. Eicken, A. Basu, V. Buch, and W. Vogels, U-Net:
A User-Level Network Interface for Parallel and Dis-
tributed Computing, Proceedings of 15th ACM SOSP,
pp. 40-53, December 1995.

[8] G. J. Holzmann, Design and Validation of Computer
Protocols, Prentice Hall, 1991.

[9] G. J. Holzmann, The Model Checker SPIN, IEEE
Transactions on Software Engineering, May 1997.

[10] H. W. Jin, K. S. Bang, J. Y. Choi, C. Yoo, Bottle-
neck Analysis of a Gigabit Network Interface Card,
Proceedings of 9th International SPIN Workshop, pp.
170-185, May 2002.

[11] K. L. Macmillan, Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

[12] Z. Manna, A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1992.

[13] Myricom Inc., LANai 4, http://www.myri.com,
February 1999.

[14] Myricom Inc., Myrinet User’s Guide,
http://www.myri.com, 1996.

[15] The Network Simulator,
http://www.isi.edu/nsnam/ns.

[16] L. Prylli and B. Tourancheau, BIP: a new protocol de-
signed for high performance networking on myrinet,
Proceedings of IPPS/SPDP98, 1998.

[17] L. Prylli and B. Tourancheau, R. Westrelin, An Im-
proved NIC Program for High-Performance MPI,
Proceedings of Workshop on Cluster-Based Comput-
ing, 1999.

[18] C. Yoo, H. -W. Jin, and S. -C. Kwon, Asyn-
chronous UDP, IEICE Transactions on Communica-
tions, Vol.E84-B, No.12, December 2001.

 Informatica 29 (2005) 227–232 227

Towards Neural Network Model for Insulin/Glucose in Diabetics-II
Raed Abu Zitar
College of Information Technology
Philadelphia University
Jordan
rzitar@philadelphia.edu.jo

Abdulkareem Al-Jabali
College of Engineering
Al-Isra University
Jordan

Keywords: Levenberg-Marquardt Neural Network, Polynomial Networks, Diabetics, Insulin

Received: March 18, 2004

In this work we extending our investigations for a general neural network model that resembles the
interactions between glucose concentration levels and amount of insulin injected in the bodies of
diabetics. We use real data for 70 different patients of diabetics and build on it our model. Two types of
neural networks (NN’s) are experimented in building that model; the first type is called the Levenberg-
Marquardt (LM) training algorithm of multilayer feed forward neural network (NN), the other one is
based on Polynomial Network (PN’s). We do comparisons between the two models based on their
performance. The design stages mainly consist of training, testing, and validation. A linear regression
between the output of the multi-layer feed forward neural network trained by LM algorithm
(abbreviated by LM NN) and the actual outputs shows that the LM NN is a better model. The PN’s have
proved to be good static “mappers”, but their performance is degraded when used in modelling a
dynamical system. The LM NN based model still proved that it can potentially be used to build a
theoretical general regulator controller for insulin injections and, hence, can reflect an idea about the
types and amounts of insulin required for patients.
Povzetek: Na osnovi podatkov o 70 pacientih je razvit nevronski model za razmerna med insulinom in
glukozo.

1 Introduction
Diabetes is a disease in which the body cannot properly
use the energy it gets from food. Normally, most of the
food we eat is broken down or digested into sugar or
glucose. Glucose provides the body’s cells with the
energy they need. Insulin, a hormone produced in the
pancreas, helps the glucose get inside the cells where the
glucose is burned for energy. In diabetes the body cannot
make enough insulin or is resistant to the insulin it
makes. As a result, your blood glucose can become much
higher than usual. A normal fasting blood glucose range
is about 65 -110. When your blood sugar is 126 or higher
after fasting for eight hours, the diagnosis of diabetes is
made.

It is a widespread chronic illness that accounts for a
large part of the health care budget. It affects
approximately one hundred million people world wide
[1] and may lead to a variety of vascular, neurological or
metabolic complications.

Diabetes and complications associated with it can be
viewed as a partial or total failure of one or more
intrinsic therapeutic feedback loops. In a healthy person
the relationship established between glucose level and

insulin secretion is an effective feedback control loop.
Increased blood glucose level (the controlled variable)
results in the production of the hormone insulin by the
pancreas (the controller). This insulin reduces blood
glucose from its elevated level. Diabetic patient has not
this inter-relationship or it does not work as it does in
healthy people.

In practice, the full picture is more complex and the
diabetic patient needs to be regarded as a multi-
input/multi-output physiological system which contains
several controllable and measurable variables as well as
other factors which are not directly observable. The
patient’s diet (the carbohydrate content of which will
directly elevate blood glucose level), hormones
(gastrointestinal, glucagons, …etc), the physical effort
exerted, the amount of insulin delivered, and other
factors [2] can be considered to be control variables
which need to be adjusted in order to maintain
homeostasis within the human organism. Obviously, the
manipulation of all variables that affect the dynamics of
diabetes is cumbersome.

228 Informatica 29 (2005) 227–232 R.A. Zitar et al.

1.1 Mathematical Models of
Glucose/Insulin Dynamics

Mathematical models have provided one mean of
understanding diabetes dynamics. There are various
models based on glucose and insulin distributions, and
those models have been used to explain glucose /insulin
interaction . All these models are valid under certain
conditions and assumptions [3]-[9]. These models
represent a range of approaches, including linear [2],[3],
nonlinear [4],[5], probabilistic [6], compartmental [7],
non-compartmental [8], and parametric models [9].
Although these models may be useful in a research
setting, they all have limitations in predicting blood
glucose in real-time clinical situations because of the
inherent requirement of frequently updated information
about the models’ variables like glucose loads and
insulin availability. For example, glucose challenges to
the body, such as those resulting from a meal, are
important glucose sources in models, but are not
conveniently measurable and must instead be considered
as unknown disturbances. As another example, the
timing and amount of subcutaneous insulin injections are
known to the patient, but the resulting vascular
availability of insulin is often variable, depending on
factors such as the insulin dose and delivery site. Since
frequent insulin determinations are not practical for
routine management, only estimates of vascular insulin
concentrations can be incorporated in models when
applied in an actual clinical setting. In the absence of
accurate, frequently updated information about glucose
loads and insulin concentration, these conventional
models can only be marginally effective in real time at
reliably predicting future blood glucose values [10].
Given this situation, if continuous or very frequent blood
glucose monitoring is available, recent and past glucose
values may be exploited as an alternative to the use of
conventional models to describe blood glucose dynamics.

 The features of data that can be used for such
studies are sometimes based on individual blood glucose
values from a patient or a group of patients, while in
many other studies statistical averages of repeated
challenges for a given patient a or group of patients are
used. Furthermore, blood glucose is sampled frequently
enough to capture a detailed record of excursions. The
monitoring period for a given individual is extended over
a long time period (several weeks). Full information
about external factors such as meals, insulin injections
and the type, exercise, etc.. that cause blood glucose
perturbations is also recorded.

2 The Neural Based Models
Feed forward neural networks have been used
extensively to solve many kinds of problems, being
applied in a wide range of areas covering subjects such
as prediction of temporal series, structure prediction of
proteins, and speech recognition [7]. One of the
fundamental properties making these networks useful is
its capacity to learn from examples. Through synaptic
modifications algorithms, the network is capable of

obtaining a new structure of internal connections that is
appropriate for solving a determined task.

The general underlying theory of the whole learning
process is poorly understood. There are few general
results, especially concerning generalization. One
particular point of interest is the selection of a concise
subset of examples from the whole training set as a way
of improving generalization ability. This problem has
also been referred to as "active learning" or "query-based
learning" by many authors. In a broad sense, these terms
refer to any form of learning in which the learning
algorithm has some control over the inputs used for the
training.

In this work, we use two different types of neural
networks; the LM NN model and the polynomial
network model (PN’s). In a previous work, we studied
the modeling through Radial Basis Function Networks [
?]. We showed that LM NN had more success than
Radial Basis Networks. We related that to capability of
LM NN training algorithm which is an advanced version
of back propagation algorithm to capture the dynamics of
the control surface the associates the patient state
variables with the output which is the amount of insulin
injected. Although, both of them are feed forward types
of neural networks, they fundamentally differ in the way
training is implemented. LM NN model is a feed
forward model consisting of two layers. Its learning
strategy starts with incremental error back propagation
algorithm and gradually switches to conjugate gradient-
based back propagation for the final convergence phase
[11].

In the other hand, PN’s technique is known for fast
convergence toward “closest” local minimum and can
escape shallow local minima. We may consider the
problem of finding the proper amount of insulin as an
identification problem which involves finding the best
matching class given a list of target classes (and their
models obtained in the training phase) In general, the
training data for each class consists of a set of previous
state variables of the possible input vectors that come
from the history of the patient(s). In our case, each
observation is represented by a single vector containing
four previous values of the patient state variables which
are present glucose level, previous glucose level, meals,
exercises, short term insulin, medium term insulin, and
long term insulin, we will come to the details of the
simulations later .

Now, for each class, i, we have a set of Ni training
observations represented by the Ni feature vectors

 Identification requires the decision
between multiple hypotheses, Hi. Given an observation
feature vector x, the Bayes decision rule [7] for this
problem is

 (1)
A common method for solving equation (1) is to

approximate an ideal output on a set of training data with
a network. That is, if {fi(x)} are discriminant functions
[8], then we train fi(x) to an ideal output of 1 on all in-
class observation feature vectors and 0 on all out-of-class

TOWARDS NEURAL NETWORK MODEL... Informatica 29 (2005) 227–232 229

observation feature vectors. If fi is optimized for mean-
squared
error over all possible functions such that

 (2)
The solution entails that:

In equation (2), Ex, H is the expectation operator over the
joint distribution of x and all hypotheses, and yi(x,H) is
the ideal output for Hi. Thus, the least squares
optimization problem gives the functions necessary for
the hypothesis test in equation(1). If the discriminant
function in (9) is allowed to vary only over a given class
(in our case polynomials with a limited degree), then the
optimization problem of equation (9) gives an
approximation of the a posteriori probabilities[8]. Using
the resulting polynomial approximation in equation (8)
thus gives an approximation to the ideal Bayes rule. The
basic embodiment of a Kth order polynomial network
consists of several parts. In the training phase, the
elements of each training feature vector, x = [x1, x2 ...,
xM], are combined with multipliers to form a set of basis
functions, p(x). The elements of p(x) are the monomials
of the form:

 (3)

Once the training feature vectors are expanded into their
polynomial basis terms, the polynomial network is
trained to approximate an ideal output using mean-
squared error as the objective criterion. The polynomial
expansion of the ith class feature vectors are denoted by:

The global matrix for all C classes is obtained by
concatenating all the individual Mi matrices such that:

The training problem reduces to finding an optimum set
of weights, w, that minimizes the distance (in this case
the in the L2 sense) between the ideal outputs and a
linear combination of the polynomial expansion of the
training data such that:

where oi represents the ideal output comprised of the
column vector whose entries are Ni ones in the rows
where the ith class’s data is located in M and zeros
otherwise. The weights (identification models) wi

op can
be obtained explicitly (non iteratively) by applying the

normal equations method [9] such as

If we define:

this will yield:

 (4)

In the recognition stage when an unknown feature vector,
x, is presented to all C polynomial networks, the vector is
expanded into its polynomial terms p(x) (similar to what
was done in the training phase) and its class, c, is
determined such that

 (5)

2.1 Simulations with Neural Networks
In our simulations, we used a set of data for 70 different
patients. Sample of the data used is shown in Table (1).
The terms; STI stands for short term insulin , MTI for
midterm insulin, LTI for long term insulin. In the
columns for exercise and meal, “1” stands for “yes” and
“0” stands for “no”. The terms PGL stands for present
glucose level and NGL stands for next glucose level.
The period of time is the minutes between two
consecutive measurements of the glucose level in blood.
However, we normalized data before training ending up
with 0 mean and unity standard deviation. We did
spectral component analysis and eliminated all
components less than 0.1% of the variations. The
components of a training vector in our data were the
PGL, STI , MTI, time period, and meal. We eliminated
the all “1” exercise input, the all “0” postprandial input,
and the all “0” LTI input. These inputs have no effect
since they do not contribute to the variation of the output
as they are always kept constant to a single value. The
single output of our model has a target of the NGL. This
NGL is measured after the given time period of time. We
had data for more than 70 patients with total of more
than 30,000 samples of input/target training pairs. The
training process itself is equivalent to a nonlinear
regression process between the normalized inputs
(spectral components) and the normalized targets. When
training is complete, the output of the neural network is
un-normalized in a reverse process for the principal
components normalization stage that was implemented
before training. The un-normalized data is then passed

Table. 1: Sample of patients data used for modelling

PGL mg/dL STI
U

MTI
U

LTI
U

Exercise Meal Postprandia
l

Time period
(minutes)

NGL
mg/dL

100 9 13 0 1 0 0 478 119
119 7 0 0 1 1 0 343 123
123 0 0 0 1 1 0 524 216
216 12 13 0 1 1 0 561 211
211 7 0 0 1 1 0 869 257
257 11 13 0 1 0 0 600 129
129 7 0 0 1 1 0 867 239
239 14 14 0 1 1 0 558 129
129 0 0 0 1 1 0 299 340

230 Informatica 29 (2005) 227–232 R.A. Zitar et al.

through a linear regression stage. The linear regression is
implemented between the un-normalized outputs of the
neural network and the actual targets taken from the data
files (NGL). The linear regression reflects the degree of
accuracy and correctness of the neural network
predictions.

The training data were accessed as follows; for every
consecutive four training points, the first and third point
are used for training, the second point is used for testing,
and the fourth point is used for validation. Then, the
process is repeated for the whole set of data. Of course,
during testing and validation there is no learning
(training), only nonlinear regression through the neural
network followed by a linear regression stage between
targets and un-normalized outputs to measure accuracy
of prediction.

It should be mentioned here that what is being done
in this work is some kind of system identification [13],
[14]. Our ultimate goal is to find some general
parameters that govern the behavior of the glucose levels
in diabetics. When some quantity of medication is
investigated its crucial to search for a general theoretical
model that can be used to help in testing the effect of
that medication. Models such as the ones we present here
can be used in giving a theoretical hint about the effect of
the insulin in diabetics. These models can be further used
in building insulin controllers that automatically insert
the proper amount of insulin and work as regulator
control for a required level of glucose in blood.

2.2 Simulations with Polynomial Network
Model

The PN model we explained earlier is used to model the
data of the 70 patients. This model architecture has one
neuron at the output layer, see Figure.1. The number of
neurons (units) at hidden layer starts with one, then two ,
and goes up as long as the error values did not reach the
given criteria. The PN model (which could be
considered as special type of neural networks) number of
neurons at the output layer equal to the discrete ranges
of insulin injections. The inputs are polynomialized , as
we will see later, and then are treated as feature vectors
that require classification to the right level of output
class. This process is equivalent to a nonlinear layer in
standard neural networks. The output layer only contains
the weights that are associated with each class. Each
neuron at the output layer is associated with a class as
target. The error is calculated as the sum of squares
between the output and the target divided over the sum of
target values (in order to give percentage as shown in
Table. 2.

The model we have here could not learn to predict
correctly the next values of glucose levels (NGL). As a
result of the previous experiments, PN’s are only good
“mappers” , as evident from Table. 2. results.

2.3 Simulations with the Levenberg-
Marquardt (LM) NN Model

In this model, we used 5 hidden units and one output
unit. Adaptive parameters are used in calculating
adjustments in weights and biases [15], [16]. Error back
propagation algorithm in conjunction with Levenberg-
Marquardt (LM) optimization [11] is used. This usually
results in fast but memory consuming training. Figure. 2.
shows graphs for training, testing, and validation. The
training data is prepared in a manner similar to the
previous method. The testing and the validation points in
the graph are done by passing the inputs through the
neural network only without any modifications for
weights. The mean square error , which is the
performance criteria, is calculated according to the

difference between the target and the output of the neural
network. It is clear from Figure. 2. as training error goes
down, the testing and validation error also goes down.

Figure. 1. A scheme of feed forward Neural
Network (NN) that could be used with Levenberg-
Marquardt (LM) training algorithm or even PN’s
under some assumptions.

Table2: Sample of PN’s error rates.

group of
observations

training
error

testing
error

1 14.6% 20.6%
2 16.7% 23.1%
3 21.1% 26.7%
4 22.3% 24.7%
5 12.5% 16.6%
6 10.5% 15.7%
7 11.56% 14.5%
8 16.8% 19.8%
9 21.6% 30.3%

TOWARDS NEURAL NETWORK MODEL... Informatica 29 (2005) 227–232 231

Figure. 3. shows a linear regression for the whole set of
data. Although, around half of the data is only used in
the training, the linear regression for the whole set of
data is excellent. Also, note that, the linear regression is
an outside process used only to map the normalized
output of the neural network with the actual target data.
However, the whole process of testing and validation is
based on non linear regression. Neural networks are
highly nonlinear by nature. The results demonstrate the
ability of this type of networks to model the whole set of
data. The neural network, here, could capture, identify,
and generalize the insulin/glucose dynamics for the
samples of the 70 patients with high accuracy. The
normalization process for the raw inputs/targets has great
effect on preparing the data to be suitable for the training.
Without this normalization training the neural networks
would have been very slow.

3 Conclusions and Discussions
RBF networks and Back propagation Feed forward
networks have been applied with success to function
approximation problems [17]. However, PN’s were
mainly used for pattern classification and recognition
problems [20],[21], In this work, we propose using this
type of networks in , a more like, regulator control
problem. The idea as a whole is a decision making
problem, in which a group of previous observations for
the patients state variable are used to approximate a
decision value for the amount of Insulin required. As
shown in Table. 2., It is clear that testing error rates and
even training error rates are higher than the acceptable.
Again, LM NN is proved to be superior over PN’s for
this type of problems. The PN’s even gave worse results
when compared with Radial Basis Function Networks of
our previous work [20]. The solutions derived by PN’s
come from numerical solutions of the polynomialized
inputs matrices. Therefore, there is not much flexibility
and adaptation in this method to catch up the severe
nonlinearity and time dependency of this problem. The
weakness could be in the mapping process in which the
inputs were polynomialized. This process is similar to the
kernel functions used by RBF’s, however it is still less
flexible in shape and works much more in general scale
than the very local kernel functions used by the RBF

network. The LM NN, on the other hand, adjusts all the
parameters of the network at every training sample and
hence, all parameters of the network contribute to the
generation of the output concurrently. This would give
LM NN more ability to create a global fit for data.
Moreover, this collective behavior reduces the size of the
network to much smaller size than that for PN. As a
result, it is more advantageous to use LM NN when data
is “expensive” (i.e. not abundant) and when data is
complex. While it is advised to use PN’s (or RBF
networks) when the data is cheap or plentiful like in
adaptive control or some signal processing applications
[19]. PN’s have the advantage of being fast in training
especially when number of classes is small. As explained
earlier, PN’s has a “single shut” solution. It may suffer
from ill-conditioned cases if the matrices were not
singular, but this is rare to happen since inputs vary
significantly. LM NN training process is more
complicated and time consuming.

If we try to relate the results we have with the nature
of data we are dealing with, it is fair to conclude that the
nature of data we have is not an PN type of data. The
target for training, which is the NLG, is not only a
function of current state of patient and of the amount and
type of insulin she/he just has, but also it is dependent on
previous states of the patient and on previous
medications she/he already has. The LM NN model is a
successful method to identify and capture those
dynamics. Some other techniques for modeling are based
some on conceptual mathematical modeling followed by
standard numerical optimization to approximate the
model parameters (least squares method for example).
However, in this paper we are more interested in
Artificial Intelligence-based models and, in particular, in
Neural Networks (NN’s). Moreover, we presented two
techniques of NN, one is more successful in classifying
features. While (LM NN) has a more global strategy at
which all hidden neurons participate in generating the
output for some input or stimuli. As a matter of fact,
NN proved to be a potentially good modeling tool for
such type of problems, and that is the bottom line for this
work. But we do not advice to use PN’s in modeling of
dynamical problems due to the limited success we had.
We have decided even not to apply linear regression for

Figure 3. Linear regression of LM NN simulations

Figure. 2: The error versus Training/Validation/Testing
epochs for Levenberg-Marquardt neural network.

232 Informatica 29 (2005) 227–232 R.A. Zitar et al.

the outputs and the targets in the case of PN’s due to the
apparent unsuccessfulness.

Future work will include designing neural based
controllers to regulate the level of glucose in blood
based on those NN plant models. We hope that these
neural network based techniques will add a little
knowledge toward the understanding of insulin/glucose
dynamics.

4 References
[1] E.Carson et al, , 1992 ”A Spectrum of Approaches

for Controlling Diabetes”, IEEE Transactions on
Control Systems, No.12.

[2] Pank, Klaus;Jurgens, Clemens; et al; , 1998
“Predictive neural networks for learning the time
course of blood glucose levels from the complex
Interaction of counter regulatory hormones” Neural
Computation, Vol. 10 Issue 4.

[3] Bergman RN, Ider YZ, Bowden CR, Cobelli C,
1979: Quantitative estimation of insulin sensitivity.
Am. J. Physiology 236:E667-E677.

[4] Lehmann ED, Hermanyi I, Deutsch T. , 1994
Retrospective validation of a physiological model of
glucose-insulin interaction in type 1 diabetes
mellitus. Med Eng Phys16:193-202, 1994 , Trans.
Blamed Eng 41:116-124.

[5] Naylor JS, Hodel AS, Albisser AM, Evers JH,
Strickland JH, Schumacher DA, 1997: Comparison
of parameterized models for computer-based
estimation of diabetic patient glucose response. Med.
Inform. 22:21-34.

[6] Bremer, Troy; Gough, David A. ;1999 “Is blood
glucose predictable from previous values? “
Diabetes, Vol. 48 Issue 3.

[7] Hassoun M. H. ,1995 “ Fundamentals of Artificial
Neural Networks”, MIT Press, Cambridge, Mass.

[8] Sturis J, Polonsky KS, Mosekilde E, Van Cauter E,
1991: Computer model for mechanisms underlying
ultra oscillations of insulin and glucose. Am. J.
Physiology 260:E801-E809.

[9] Andreassen S, Benn JJ, Hovorka R, Olesen KG,
Carson ER, 1994: A probabilistic approach to
glucose prediction and insulin dose adjustment:
description of a metabolic model and pilot
evaluation study. Computer Methods Programs
Biomedical 41:153-163.

[10] Ferrannini E, Smith JD, Cobelli C; Toffolo G,
Pilo A, DeFronzo RA, 1985: Effect of insulin on the
distribution and disposition of glucose in man. J.
Clinical Invest 76:357-364.

[11] Cobelli C, Toffolo G, Ferrannini E, 1996: A
model of glucose kinetics and their control by
insulin, compartmental and non compartmental
approaches. Math Biosciences 71:291-316.

[12] Rumelhart, D. E., McClelland J. L., and the
PDP Research Group, 1986. “Parallel Distributed
Processing: Exploration in the Microstructure of
Cognition.” Vol.1. MIT Press, Cambridge, Mass.

[13] T. Kohonen, , 1993, "Self-organizing maps:
Optimization approaches, in Artificial Neural

Networks” ,T. Kohonen, K.Makisara, O.Simula, and
J.Kanga, eds., pp..1147-1156. IEEE, New York.

[14] B. Eisenstein and R.Vaccaro, , 1982"Feature
Extraction by System Identification," IEEE Trans.
on Systems, Man, and Cybernetics, vol.SMC-12, No.
1, pp.42-50.

[15] Jefferies, C. , 1991” Code Recognition and set
selection with neural networks” Boston, Birkhauser.

[16] Kosko, B. ed. , 1991 “Neural Networks for
Signal Processing.” , Prentice-Hall.

[17] Broomhead, D.S., and Lowe, D. Multivariate
Function Interpolation and Adaptive Networks,
Complex Systems, 2, 321-355.

[18] Kohonen, T. , 1983 “Self-Organization and
Associative Memory,” Springer-Verlag Series in
Information Sciences 8.

[19] Lee, Y. , 1991 “Handwritten Digit recognition
Using k- nearest Neighbor, Radial-basis Functions,
and Back-propagation Neural Networks, Neural
Computation, 3(3), 440-449.

[20] Abu Zitar, RA, 2004, “ Towards Neural
Networks Model for Insulin/Glucose in Diabetics,”
accepted at the International Journal of Computers
and Information Systems.

[21] K. Fukunaga, 1990, Introduction to Statistical
Pattern Recognition. Academic Press.

 Informatica 29 (2005) 233–240 233

A Survey of Contemporary Real-time Operating Systems
S. Baskiyar, Ph.D. and N. Meghanathan
Dept. of Computer Science and Software Engineering
Auburn University
Auburn, AL 36849, USA
baskiyar@eng.auburn.edu
http://www.eng.auburn.edu/~baskiyar

Keywords: Scheduling, POSIX, kernels

Received: June 26, 2004

A real-time operating system (RTOS) supports applications that must meet deadlines in addition to
providing logically correct results. This paper reviews pre-requisites for an RTOS to be POSIX 1003.1b
compliant and discusses memory management and scheduling in RTOS. We survey the prominent
commercial and research RTOSs and outline steps in system implementation with an RTOS. We select a
popular commercial RTOS within each category of real-time application and discuss its real-time
features. A comparison of the commercial RTOSs is also presented. We conclude by discussing the
results of the survey and suggest future research directions in the field of RTOS.
Povzetek: Podan je pregled operacijskih sistemov v realnem času.

1 Introduction
A real-time system is one whose correctness involves
both the logical correctness of outputs and their
timeliness [7]. It must satisfy response-time constraints
or risk severe consequences including failure. Real-time
systems are classified as hard, firm or soft systems. In
hard real-time systems, failure to meet response-time
constraints leads to system failure. Firm real-time
systems have hard deadlines, but where a certain low
probability of missing a deadline can be tolerated.
Systems in which performance is degraded but not
destroyed by failure to meet response time constraints are
called soft real-time systems.

An embedded system is a specialized real-time
computer system that is part of a larger system. In the
past, it was designed for specialized applications, but re-
configurable and programmable embedded systems are
becoming popular. Some examples of embedded
systems are: the microprocessor system used to control
the fuel/air mixture in the carburetor of automobiles,
software embedded in airplanes, missiles, industrial
machines, microwave ovens, dryers, vending machines,
medical equipment, and cameras.

We observe that the choice of an operating system is
important in designing a real-time system. Designing a
real-time system involves choice of a proper language,
task partitioning and merging, and assigning priorities to
manage response times. Language synchronization
primitives such as Schedule, Signal and Wait simplify
translation of design to code and also offer portability.
Depending upon scheduling objectives, parallelism and
communication [3] may be balanced. Merging highly
cohesive parallel tasks for sequential execution may
reduce overheads of context switches and inter-task

communications. The designer must determine critical
tasks and assign them high priorities. However, care
must be taken to avoid starvation, which occurs when
higher priority tasks are always ready to run, resulting in
insufficient processor time for lower priority tasks [9].
Non-prioritized interrupts should be avoided if there is a
task that cannot be preempted without causing system
failure. Ideally, the interrupt handler should save the
context, create a task that will service the interrupt, and
return control to the operating system. Using a task to
perform bulk of the interrupt service allows the service to
be performed based on a priority chosen by the designer
and helps preserve the priority system of the RTOS.
Furthermore, good response times may require small
memory footprints in resource-impoverished systems.
Clearly the choice of an RTOS in the design process is
important for support of priorities, interrupts, timers,
inter-task communication, synchronization, multipro-
cessing and memory management.

The organization of this paper is as follows. Section
2 outlines the basic requirements of an RTOS for POSIX
1003.1b compliance. Section 3 reviews memory
management and scheduling algorithms used in RTOS.
Section 4, classifies popular RTOS, compares
contemporary commercial RTOSs and discusses the real-
time features of two popular general-purpose operating
systems. Section 5 concludes by discussing the results of
this survey with a few suggestions for future research.

2 Features
The desirable features of an RTOS include the ability to
schedule tasks and meet deadlines, ease of incorporating
external hardware, error recovery, low task switching
latency, small footprint and overheads. The kernel is the
core of an OS that provides task scheduling, task

234 Informatica 29 (2005) 233–240 S. Beskiyar et al.

dispatching and inter-task communication. In embedded
systems, usually the kernel can serve as an RTOS while
commercial RTOSs like those used for air-traffic control
systems require all of the functionalities of a general
purpose OS. In this section, basic requirements of an
RTOS and POSIX compliance requirements have been
addressed.

2.1 Basic Requirements
The following are the basic requirements of an RTOS:

(i) Multi-tasking and preemptable: To support multiple
tasks in real-time applications, an RTOS must be
multi-tasking and preemptable. The scheduler should
be able to preempt any task in the system and give
the resource to the task that needs it most. An RTOS
should also handle multiple levels of interrupts to
handle multiple priority levels.

(ii) Dynamic deadline identification: In order to achieve
preemption, an RTOS should be able to dynamically
identify the task with the earliest deadline. To handle
deadlines, deadline information may be converted to
priority levels that are used for resource allocation.
Although such an approach is error prone,
nonetheless it is employed for lack of a better
solution.

(iii) Predictable synchronization: For multiple threads
to communicate among themselves in a timely
fashion, predictable inter-task communication and
synchronization mechanisms are required. Semantic
integrity as well as timeliness constitutes
predictability. Predictable synchronization requires
compromises [14]. Ability to lock/unlock resources
is one of the ways to achieve data integrity. To
illustrate this point, Java methods can be declared
with the keyword synchronized, e.g. synchronized
void AddOne(). Only one thread can call a
synchronized method on a particular object, other
threads trying to access that method on the same
object wait; thus performance degradation is
possible. Molesky, Shen, and Zlokapa [12] have
proposed the Deferred Bus Theorem for binding the
waiting time on a semaphore based on the number of
requesters, time spent in the critical region, and the
execution times of requesting and releasing a
semaphore. However, they assume that the user can
estimate the time each task may hold a lock, which
may not be always feasible. Although deadlines
may be assigned with semaphores, there is no
guarantee that critical tasks have access over non-
critical tasks. Another technique achieves speedup
by non-blocking (lock-free) synchronization using
FIFO queues [23]. The worst-case execution time of
accessing a shared data object can thus be bounded.

(iv) Sufficient Priority Levels: When using prioritized
task scheduling, the RTOS must have a sufficient
number of priority levels, for effective
implementation [9]. Priority inversion occurs when
a higher priority task must wait on a lower priority

task to release a resource and in turn the lower
priority task is waiting upon a medium priority task.
Two workarounds in dealing with priority inversion,
namely priority inheritance and priority ceiling
protocols (PCP), need sufficient priority levels.

In a priority inheritance mechanism, a task blocking
a higher priority task inherits the higher priority for
the duration of the blocked task. In PCP a priority is
associated with each resource which is one more
than the priority of its highest priority user. The
scheduler makes the priority of the accessing task
equal to that of the resource. After a task releases a
resource, its priority is returned to its original value.
However, when a task’s priority is increased to
access a resource it should not have been waiting on
another resource.

(v) Predefined latencies: The timing of system calls
must be defined using the following specifications:

• Task switching latency or the time to save the
context of a currently executing task and switch
to another.

• Interrupt latency or the time elapsed between
the execution of the last instruction of the
interrupted task and the first instruction of the
interrupt handler [4].

• Interrupt dispatch latency or the time to switch
from the last instruction in the interrupt handler
to the next task scheduled to run.

2.2 POSIX Compliance
IEEE Portable Operating System Interface for Computer
Environments, POSIX 1003.1b provides the compliance
criteria for RTOS services and is designed to allow
application programmers write portable applications. The
services required for compliance include the following:

• Asynchronous I/O: The ability to overlap application
processing and application initiated I/O operations
[5]. To support user-level I/O, an embedded RTOS
should support the delivery of external interrupts
from an I/O device to a process in a predictable and
efficient manner.

• Synchronous I/O: The ability to assure return of the
interface procedure when the I/O operation is
completed [5].

• Memory locking: The ability to guarantee memory
residence by storing sections of a process that were
not recently referenced on secondary memory
devices [20].

• Semaphores: The ability to synchronize resource
access by multiple processes [17].

• Shared memory: The ability to map common
physical space into independent process specific
virtual space [5].

• Execution scheduling: The ability to schedule
multiple tasks. Common scheduling methods include

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 235

round robin and priority based preemptive
scheduling.

• Timers: Timers improve functionality and
determinism of the system [9].

• Inter-process Communication (IPC): Common
RTOS communication methods include mailboxes
and queues.

• Real-time files: The ability to create and access files
with deterministic performance.

• Real-time threads: Schedulable entities that have
individual timeliness constraints [9].

3 Memory Management and
Scheduling

This section addresses important issues of memory
management and scheduling in an RTOS.

3.1 Memory management
An RTOS uses small memory size by including only the
necessary functionality for an application while
discarding the rest [22]. Below we discuss static and
dynamic memory management in RTOSs.

Static memory management provides tasks with
temporary data space. The system’s free memory is
divided into a pool of fixed sized memory blocks, which
can be requested by tasks. When a task finishes using a
memory block it must return it to the pool. Another way
to provide temporary space for tasks is via priorities. A
pool of memory is dedicated to high priority tasks and
another to low priority tasks. The high-priority pool is
sized to have the worst-case memory demand of the
system. The low priority pool is given the remaining free
memory. If the low priority tasks exhaust the low priority
memory pool, they must wait for memory to be returned
to the pool before further execution [1].

Dynamic memory management employs memory
swapping, overlays, multiprogramming with a fixed
number of tasks (MFT), multiprogramming with a
variable number of tasks (MVT) and demand paging.
Overlays allow programs larger than the available
memory to be executed by partitioning the code and
swapping them from disk to memory. In MFT, a fixed
number of equalized code parts are in memory at the
same time. As needed, the parts are overlaid from disk.
MVT is similar to MFT except that the size of the
partition depends on the needs of the program in MVT.
Demand paging systems have fixed-size pages that reside
in non-contiguous memory, unlike those in MFT and
MVT [7]. In many embedded systems, the kernel and
application programs execute in the same space i.e., there
is no memory protection.

3.2 Scheduling
In this section, we very briefly outline scheduling
algorithms employed in real-time operating systems. We
note that predictability requires bounded operating
system primitives. A feasibility analysis of the schedule

may be possible in some instances. The scheduling
literature is vast and the reader is referred to [15] for a
detailed discussion.

Task scheduling can be either performed
preemptively or non-preemptively and either statically or
dynamically. For small applications, task execution
times can be estimated prior to execution and the
preliminary task schedules statically determined. Two
common constraints in scheduling are the resource
requirements and the precedence of execution of the
tasks. Typical parameters associated with tasks are:

• Average execution time
• Worst case execution time
• Dispatch costs
• Arrival time
• Period (for periodic tasks).

The objective of scheduling is to minimize or maximize
certain objectives. Typical objectives minimized are:
schedule-length, average tardiness or laxity.
Alternatively, maximizing average earliness and number
of arrivals that meet deadlines can be objectives. In [15]
scheduling approaches have been classified into: static
table driven approach, static priority driven preemptive
approach, dynamic planning based approach, dynamic
best effort approach, scheduling with fault tolerance and
resource reclaiming. We briefly discuss the approaches
below.

(i) Static table driven: The feasibility and schedule
are determined statically. A common example
is the cyclic executive, which is also used in
many large-scale dynamic real-time systems [2].
It assigns tasks to periodic time slots. Within
each period, tasks are dispatched according to a
table that lists the order to execute tasks. For
periodic tasks, there exists a feasible schedule if
and only if there is a feasible schedule within
the least common multiple of the periods. A
disadvantage of this approach is that a-priori
knowledge of the maximum requirements of
tasks in each cycle is necessary.

(ii) Static priority driven preemptive: The feasibility
analysis is conducted statically. Tasks are
dispatched dynamically based upon priorities.
The most commonly used static priority driven
preemptive scheduling algorithm for periodic
tasks is the Rate Monotonic (RM) scheduling
algorithm [8]. A periodic system must respond
with an output before the next input. Therefore,
the system’s response time should be shorter
than the minimum time between successive
inputs. RM assigns priorities proportional to the
frequency of tasks. It can schedule any set of
tasks to meet deadlines if the total resource
utilization less than ln 2. If it cannot find a
schedule, no other fixed-priority scheduling
scheme will. But it provides no support for
dynamically changing task periods/priorities and
priority inversion. Also, priority-inversion may
occur when to enforce rate-monotonicity, a non-
critical task of higher frequency of execution is

236 Informatica 29 (2005) 233–240 S. Beskiyar et al.

assigned a higher priority than a critical task of
lower frequency of execution.

(iii) Dynamic planning based: The feasibility
analysis is conducted dynamically—an arriving
task is accepted for execution only when
feasible. The feasibility analysis is also a
source for schedules. The execution of a task is
guaranteed by knowing its worst-case execution
time and faults in the system. Tasks are
dispatched to sites by brokering resources in a
centralized fashion or via bids. A technique
using both centralized and bidding-approach
performs marginally better than any one of them
but is more complex [15].

(iv) Dynamic best effort approach: Here no
feasibility check is performed. A best effort is
made to meet deadlines and tasks may be
aborted. However, the approaches of Earliest
Deadline First (EDF) and Minimum Laxity First
(MLF) are often optimal when there are no
overloads. Research into overloaded conditions
is still in its infancy. Earliest deadline first
(EDF) scheduling can schedule both static and
dynamic real-time systems. Feasibility analysis
for EDF can be performed in O(n2) time, where
n is the number of tasks [7]. Unlike EDF, MLF
accounts for task execution times.

(v) Scheduling with fault tolerance: A primary
schedule will run by the deadline if there is no
failure and a secondary schedule will run by the
deadline on failure. Such a technique allows
graceful degradation but incurs cost of running
another schedule. In hard real-time systems,
worst-case blocking must be minimized for fault
tolerance.

(vi) Scheduling with resource reclaiming: The
actual task execution time may be shorter than
the one determined a-priori because of
conditionals or worst-case execution
assumptions. The task dispatcher may try to
reclaim such slacks, to the benefit of non real-
time tasks or improved timeliness guarantees.

4 Commercial RTOSs
In this section, we select a prominent commercial RTOS
for each class of real-time application and discuss its
features. For small memory devices Windows CE has
been discussed, for hard real-time systems, LynxOS, for
embedded applications VxWorks, Jbed for the Java
platform and pSOS for an object-oriented operating
system. But first, we list the common capabilities of
these operating systems.

• Efficiency: Most RTOSs are micro-kernels with low
overhead. In some, almost no context switch
overhead is incurred in sending a message to the
system service provider.

• Non-preemptable system calls: Certain portions of
system calls are non-preemptable to support mutual

exclusion. These parts are optimized, made as
deterministic as possible.

• Prioritized scheduling: For POSIX compliance, all
RTOSs offer at least 32 priority levels. The number
of priority levels range from 32-512.

• Priority inversion control: A means of handling
priority inversion.

• Memory management support: Support for virtual
memory management exists but not necessarily
paging. The users are offered choices among
multiple levels of memory protection.

4.1 Windows CE
Windows CE [13] is a modular, portable real-time
embedded OS for small memory, mobile 32-bit devices.
Windows CE slices CPU time among threads and
provides 256 priority levels. To optimize performance,
all threads are enabled to run in kernel mode. Windows
CE kernel has the following features:
• While executing non-preemptive code in the kernel,

translation look-aside buffer (TLB) misses are
avoided by moving all kernel data into physical
memory.

• Kcalls, all non-preemptable portions of the kernel,
are broken into small sections reducing the duration
of non-preemptable code.

• All kernel objects (such as processes, threads,
critical sections, mutexes, events and semaphores)
are dynamically allocated in virtual memory.

• For portability, an equipment adaptation layer
isolates device dependent routines. The equipment
manufacturer can specify trusted modules and
processes to prevent unauthorized applications from
accessing system application programming
interfaces.

4.2 LynxOS
LynxOS [10] is a POSIX compatible, multithreaded OS
designed for complex real-time applications that require
fast, deterministic response. It is scalable from large
switching systems down to small-embedded products.
The micro-kernel can schedule, dispatch interrupts, and
synchronize tasks. Other services offered by the kernel
lightweight service modules, are TCP/IP streams, I/O and
file systems, sockets, etc. In response to an interrupt, the
kernel dispatches a kernel thread, which can be
prioritized and scheduled similar to other threads. The
priority of the interrupt handling kernel thread is the
priority of the user thread that handles the interrupting
device. This mechanism ensures predictable response
even in the presence of heavy I/O. The OS depends upon
hardware memory management units for memory
protection, but does offer optional demand paging. It
uses scheduling policies such as prioritized FIFO,
dynamic deadline monotonic scheduling, time-slicing
etc. It has 512-priority levels and supports remote
operation.

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 237

4.3 VxWorks
VxWorks [21] is a widely adopted RTOS in the
embedded industry with a visual development
environment. It is scalable with over 1800 APIs and is
available on popular CPU platforms. It offers network
support, file system and I/O management. The micro-
kernel supports 256 priority levels, multitasking,
deterministic context switching and preemptive and
round robin scheduling, semaphores and mutual
exclusion with inheritance. TCP, UDP, sockets and
standard Berkeley network services can all be scaled in
or out of the networking stack as necessary. It can be set
up so that each task has a private virtual memory upon
request. For portability a Board Support Package
interfaces with the hardware-dependent layer.

4.4 Jbed
Jbed [6] is a real-time operating system for embedded
systems. It supports applications and device drivers
written in Java. Instead of interpreting byte-codes, Jbed
translates byte-codes to machine code prior to class
loading. Its modular architecture allows dynamic code
loading and scaling from small to high performance
devices. It supports real-time memory allocation,
exception handling and automatic object destruction.
Hard real-time applications are supported via specific
class libraries. It supports ten thread priority levels and
EDF scheduling.
Jbed light is a smaller version for fast and precompiled
applications. It contains the basic components such as the
core virtual machine, a small set of standard Java
libraries, and the Jbed libraries required to directly access
peripherals. The Java virtual machine calls are
implemented in the kernel. This avoids the need for a
slow Java Native Interface, otherwise needed to make
system calls. Current versions support ARM7, 68k and
the PowerPC architectures.

4.5 pSOS
The objects, in object-oriented pSOS, include tasks,
memory regions, message queues, and semaphores. It
schedules tasks in preemptive priority-driven or EDF and
handles priority inversion by both priority inheritance
and priority-ceiling protocol. The application developer
has complete control over interrupt handling. User tasks
may also run in supervisory mode. Device drivers may
be dynamically loaded. A memory region is a physically
contiguous block of memory, created in response to a
call from an application. pSOS allocates memory regions
to tasks. As other objects, a memory region may be local
or global.

4.6 General purpose operating systems
In this section, we outline real-time features of two
popular general-purpose operating systems: Windows
NT and Unix, Table 1 shows a comparison1.

Real-time feature
Windows
NT

Native
Unix

Preemptive, priority-based
multitasking

Yes Yes

Deferred interrupt threads Yes No
Non-degrading priorities Yes No
Memory locks Yes Yes

Table 1. Real-time features of Windows NT and Unix

• Preemption: Although Windows NT kernel is non-
preemptable there are points within the kernel where
preemption is allowed. Real-time Unix also allows
preemption points within system calls.

• Deferred Procedure Calls (DPCs): DPCs are queued
calls to kernel mode functions to be executed later.
They are used by drivers to schedule I/O operations
that do not necessarily have to take place in an
interrupt service routine at a high interrupt level and
can be safely postponed until the level has been
lowered. Such a mechanism allows servicing of
interrupts within interrupts, if the processor disables
future interrupts when an interrupt is being serviced.

• Non-degrading priorities: To ensure fairness, the
system continuously manipulates thread priorities in
Unix and Windows NT. However, Windows NT
provides a band of interrupt priorities that cannot be
altered. Accordingly, there exist two types of thread
priorities: a real-time class and a dynamic class.
Real-time class threads operate with fixed priorities
that are not altered by the kernel. There are 16
priority levels in the real-time class. But any given
thread is restricted only to a subset of priorities in
the range of (+ or -) 2 levels of its initial priority, but
not beyond the set of priorities of its class.

Although Windows NT provides fast response times, it is
not as deterministic as a hard RTOS [11] because of
deferred procedure calls. Since user threads have lower
priority than DPCs or ISRs, mouse and keyboard
handlers may preempt urgent processes. Also, DPCs are
not preempted by other DPCs/threads. Furthermore, the
developer has no control over third party drivers.

Since Windows NT kernel does not support priority
inheritance, deadlocks may occur. It does not support
prioritized queuing for inter-thread communication. In
other words, if multiple threads are blocked waiting on a
resource, they will be granted access in FIFO rather than
priority order unlike an RTOS.

1 Although Windows NT was not intended to be an
RTOS it has been used as one in some instances.

238 Informatica 29 (2005) 233–240 S. Beskiyar et al.

4.7 Other commercial RTOS
Table 2 lists other common commercial RTOSs and their
main features with respect to the basic requirements of an
RTOS discussed in Section 2. All of the products below
use a prioritized FIFO scheme for scheduling.

4.8 Research kernels
We now discuss three real-time kernels, Extensible
Micro-kernel for Embedded ReAL-time Distributed
Systems (EMERALDS), Spring and Arx to provide an
overview of the scope and type of ongoing research in
the field of RTOS. Other prominent research kernels
include Chimera (from Carnegie Mellon University),
Harmony (from National Research Council of Canada)
and Maruti (from University of Maryland).

EMERALDS is designed for small to medium sized
embedded systems [24]. It maps the kernel into every
user space. Therefore a system call does not need any
context switch. User level communication protocol
stacks and device drivers may be added without
modifying the kernel. It uses preemptive fixed priority
and dynamic scheduling. A user can choose the priority
of a thread based on rate-monotonic, deadline-monotonic
or other fixed priority scheme. It supports 32-bit non-
unique thread priorities—by setting a thread’s priority to
its deadline, EDF scheduling can be accomplished. The
priority can be dynamically modified via a system call to
support dynamic EDF scheduling. The IPC mechanisms
are shared memory and message passing via mailboxes.
A 32-bit priority is assigned to each message that can be
used to sort them to retrieve the highest-priority message
first.

Arx [16] employs user level threads for scheduling,
communication and multithreading. It consists of virtual
threads and a scheduling event upcall mechanism.
Virtual threads provide a kernel-level execution
environment for user threads. They are passive entities
that are temporarily bound to user-level threads when
necessary. The scheduling event upcall mechanism
enables the kernel to notify user processes of kernel
events such as thread blocking and timer expiration.
User-level I/O allows programmers to write flexible and
efficient device drivers for proprietary devices.

The Spring kernel [18] provides real-time support for
distributed systems. It can schedule tasks dynamically
based upon execution time and resource constraints.
Thus the need to a priori compute the worst case
blocking time for tasks is avoided. It schedules safety-
critical tasks using a static table. The kernel helps retain
enough application semantics to improve fault-tolerance
and performance on overloads. It supports both
application and system level predictability. Spring
supports abstraction for process groups [19], which
provides a high level of granularity and a real-time group
communication mechanism. Processes within a “process
group” in Spring work towards a common goal. Spring
supports a system description language, which allows

programmers to predefine groups and impose timing and
precedence constraints on them. It supports both
synchronous and asynchronous multicasting groups. It
achieves predictable low-level distributed
communication via globally replicated memory. It
provides abstractions for reservation, planning and end-
to-end timing support.

A comparison of the features of Arx, EMERALDS and
Spring show that all of them incorporate most of the
basic recommendations of POSIX 1003.1 b. However,
the feature of real-time files has not been incorporated in
any of the above research kernels.

5 Conclusion
This paper reviewed the basic requirements of an RTOS
including the POSIX 1003.1b features. The POSIX
1003.1b standard does not address support for fixed-size
buffers and heterogeneous multiprocessing. Designing
an embedded system using an RTOS may help lower cost
and the time to market. If an application has real-time
requirements, an RTOS provides a deterministic
framework for code development and portability. To
meet the needs of commercial multimedia applications,
low code size and high peripheral integration is needed.
Reliability in complex real-time systems could be
achieved using multilevel specifications that check the
correctness of systems at compile-time and run-time.

6 References
[1] S.R. Ball, Embedded Microprocessor Systems: Real

World Design, Third edition, Newnes, 2002.
[2] G. D. Carlow, “Architecture of the Space Shuttle

Primary Avionics Software System,” CACM, v 27,
no. 9, 1984.

[3] H.Gomaa, Software Design Methods for Concurrent
and Real-time Systems, First edition, Addison-
Wesley, 1993.

[4] S.Heath, Embedded Systems Design, Second
edition, Newnes, 2002.

[5] IEEE Information Technology—Portable Operating
System Interface (POSIX)—Part1:

[6] System Application Program Interface, ANSI/IEEE
Std 1003.1, 1996 Edition. Jbed RTOS,
http://www.esmertec.com, Accessed Nov 15, 2004.

[7] P.A. Laplante, Real-Time Systems Design and
Analysis: An Engineer’s Handbook, Second edition,
IEEE Press, 1997.

[8] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-time
Environment,” Journal of the ACM, v. 20, no. 1, pp.
46-61, 1973.

[9] J.W.S. Liu, Real-time Systems, First edition,
Prentice Hall, 2000.

[10] LynxOS, http://www.lynuxworks.com,
Accessed Nov 15, 2004

[11] Microsoft Windows NT,
http://www.microsoft.com, Accessed Nov 10, 2004

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 239

RTOS, Vendor Thread
priorit
y levels

Synchronization
mechanisms

Priority inversion
prevention provided

Development hosts, kernel
characteristics

AMX, KADAK
Products Ltd. N/A

Mailboxes; wait-
wake requests

Yes
Windows, predictable memory block
availability

C Executive, JMI
Software
Systems, Inc.

32
Messages, dynamic
data queues

Yes Windows, Solaris

CORTEX,
Australian Real-
time Embedded
Systems.

62
Recursive locks,
mutexes

Yes, uses priority
ceiling

Windows/Unix, CPU-independent
software interrupt manager; statically
and dynamically segmented memory
models

Delta OS,
CoreTek Systems,
Inc.

256
Semaphores,
timers, message
queues

Yes Windows, Linux.

Ecos
RedHat, Inc.

1-32
Semaphores, timers
and counters

Yes, uses priority
ceiling

Windows, Linux
For soft real-time embedded
applications in small devices

Emboss
SEGGER
Microcontroller
Systems.

255
Mailbox, binary
and counting
semaphore

No

Windows, Linux, profiling to collect
timing information for every task; task
activation time independent of number
of tasks.

ERTOS
JK Microsystems,
Inc.

256
Inter-thread
messaging, queues,
semaphores

No
Windows, DOS, OS/2.
High-speed interrupt driven serial port
routines

INTEGRITY
GreenHills
Software, Inc.

255

Semaphores,
breakpoints can be
placed any where
in the system
including ISRs.

Yes, mutex,
semaphore

Used in critical embedded applications;
object-oriented; supports distributed
processing; task execution profiling.

IRIX
1.1.1.1.1 SGI

255 Message queues Yes
SGI, Double-precision matrix support;
Multi-pipe scalability

Nuclear Plus
Accelerated
Technology, Inc.

N/A
Mailboxes, pipes
and queues

Yes Windows.

OS-9
Microware
Systems
Corporation.

65535
Semaphore and
queues

Yes Windows.

OSE
OSE Systems.

32 Message passing Yes

Windows, Solaris, Linux.
User-defined system clock resolution;
fault-tolerant; suited for wireless
applications.

RT-Linux
Finite State
Machine Labs.

1024
Shared memory or
via files

Yes, lock free data
structures and
priority ceiling

Linux; supports hard real-time
applications

ThreadX
Express Logic,
Inc.

32
Mutexes, counting
semaphores and
messaging

Yes, by disabling
preemption over
ranges of priorities
and by priority
inheritance

Windows.

QNX Neutrino
QNX Software
Systems Ltd.

64 Message passing
Yes, using priority
inheritance

Windows, Solaris, Linux, Symmetrical
multiprocessor systems. Every OS
component runs in its own MMU-
protected address space

Table 2. Features of commercial RTOSs

240 Informatica 29 (2005) 233–240 S. Beskiyar et al.

[12] L. Molesky, C. Shen, G. Zlokapa, “Predictable
Synchronization Mechanisms For Multiprocessor
Real-Time Systems,” COINS, University of
Massachusetts, Technical Report 90-30, 1990.

[13] C. Muench, The Windows CE Technology
Tutorial: Windows Powered Solutions for the
Developer, First edition, Addison Wesley, 2000.

[14] R. Ortega, “Timing Predictability in Real-Time
Systems,” Technical Report, Dept. of Computer
Science, University of Washington, 1994.

[15] K. Ramamritham and J. A. Stancovic,
“Scheduling Algorithms and Operating Systems
Support for Real-time Systems,” Proceedings of the
IEEE, pp. 55-67, Jan 1994.

[16] H.Y. Seo, and J.Park. “ARX/ULTRA: A New
Real-Time Kernel Architecture for Supporting User-
Level Threads,” Technical Report SNU-EE-TR1997-
3, School of Electrical Engineering, Seoul National
University, 1997.

[17] A. Silberschatz, P.B. Galvin and G. Gagne,
Operating Systems Concepts, Sixth edition, John
Wiley, 2001.

[18] J.A. Stankovic and K. Ramamritham, “The
Spring Kernel: A New Paradigm for Hard Real-time
Operating Systems,” ACM Operating Systems
Review, vol. 23, no. 3, pp. 54-71, 1989.

[19] M. Teo, “A Preliminary Look at Spring and
POSIX 4,” Spring Internal Document, 1995,
available at http://www-
cs.umass.edu/spring/internal/spring-kernel-docs.html

[20] The Open Group, http://www.opengroup.org/,
Accessed Nov 10, 2004

[21] VxWorks, http://www.windriver.com, Accessed
Nov 10, 2004

[22] C. Walls, “RTOS for Microcontroller
Applications,” Electronic Engineering, vol. 68, no.
831, pp. 57-61, 1996.

[23] Y. Zhang, Non-blocking Synchronization:
Algorithms and Performance Evaluation, Ph.D.
Thesis, Chalmers University of Technology,
Sweden, 2003.

[24] K. M. Zuberi and K. G. Shin, “EMERALDS: A
Small-Memory Real-Time Micro-kernel,” IEEE
Trans. on Software Engineering, vol. 27, no. 10, pp.
909-928, October 2001.

7 Acknowledgements
This paper has been developed while the first author was
teaching classes in Real-time and Embedded Computing
over the last several years. As such several students
within these classes helped generously in this work to
whom the first author is very grateful. The first author
also thanks Dr. James H. Cross, Dept. of Computer
Science and Software Engineering, Auburn University,
Auburn, AL for reviewing this paper. This work was
supported in part by an Auburn University internal grant
and National Science Foundation Grant numbers
0408136 and 0411540.

8 Biography
S. Baskiyar is Assistant Professor in the Department of
Computer Science and Software Engineering at Auburn
University, Auburn, AL. His research interests are in the
areas of Task Scheduling on Clusters, Computer
Architecture and Embedded Systems. He has published
extensively in the area of Task Scheduling on Clusters.
He received the PhD and MSEE degrees from the
University of Minnesota, Minneapolis and the BE
(Electronics and Communications) degree from the
Indian Institute of Science, Bangalore. He received the
BS degree in Physics with honors and distinction in
Mathematics. He received the competitive State-merit
and the Indian Institute of Science scholarships. He has
taught courses in Real-time and Embedded Computing,
Computer Architecture, Operating Systems,
Microprocessor Programming and Interfacing and VLSI
Design. His experience includes working as an
Assistant Professor at the Western Michigan University,
as a Senior Software Engineer in the UNISYS
Corporation and as an Assistant Computer Engineer in
Tata Engineering and Locomotive Company Ltd., India.

N. Meghanathan received the Master’s degree in
Computer Science from Auburn University, Auburn, AL
in 2002. He received the Bachelor’s degree in Chemical
Engineering from Anna University, Chennai, India. He
was a research assistant in the Department of Computer
Science and Software Engineering at Auburn University.

 Informatica 29 (2005) 241–247 241

An FPGA-Based Parallel Distributed Arithmetic Implementation
of the 1-D Discrete Wavelet Transform
Ali M. Al-Haj
Department of Computer Engineering,
Princess Sumaya University for Technology,
Al-Jubeiha P.O.Box 1438, Amman 11941, Jordan

Keywords: Discrete wavelet transform, Parallel distributed arithmetic, Parallel implementation, Virtex FPGAs

Received: February 7, 2004

The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be well
exploited to implement the computation-intensive discrete wavelet transform, which is increasingly
employed in multimedia consumer electronics. In this paper, we describe a parallel implementation of
the discrete wavelet transform and its inverse using Virtex FPGAs. We make maximal utilization of the
look-up table architecture of the Virtex FPGAs by reformulating the wavelet computation in
accordance with the parallel distributed arithmetic algorithm. The reported single chip implementation
may be used effectively in the construction of low-power, wavelet-based MPEG-4 and JPEG2000
decoders.
Povzetek: Opisana je implementacija FPGA algoritma za uporabo v uporabniški elektroniki.

1 Introduction
Digital signal processing algorithms are increasingly
employed in modern wireless communications and
multimedia consumer electronics, such as cellular
telephones and digital cameras. Traditionally, such
algorithms are implemented using programmable DSP
chips for low-rate applications [1], or VLSI application
specific integrated circuits (ASICs) for higher rates [2].
However, advancements in Filed Programmable Gate
Arrays (FPGAs) provide a new vital option for the
efficient implementation of DSP algorithms [3]. FPGAs
are bit-programmable computing devices which offer
ample quantities of logic and register resources that can
easily be adapted to support the fine-grained parallelism
of many pipelined digital signal processing algorithms
[4] - [6].

At the heart of most digital signal processing
algorithms is a multiply-and-accumulate function that
can be implemented more efficiently with distributed
arithmetic architectures [7]. These architectures make
extensive use of look-up tables, which make them ideal
for implementing digital signal processing functions on
Xilinx FPGAs, whose architectures are based on look-up
tables. Moreover, distributed architectures are suitable
for low power portable applications, because they
replace the costly multipliers with shifts and look-up
tables [8].

An emerging arithmetic-intensive digital signal
processing algorithm is the discrete wavelet transform [9]
. The perfect reconstruction and lack of blocking
artifacts properties of this transform have proven to be
extremely useful for image and video coding applications
[10]. Furthermore, the basis functions of the discrete

wavelet transform match the human visual profiles, and
hence provide subjectivity pleasing images at high
compression rates. By virtue of such attractive features of
the wavelet transform, it has been adopted by the recent
multimedia compression standards MPEG-4 [11] and
JPEG2000 [12].

 In this paper, we describe a parallel and high speed,
single-chip implementation of the discrete wavelet
transform and its inverse using Virtex FPGAs [13]. We
make maximal utilization of the look-up table
architecture of Virtex FPGAs by reformulating the
wavelet transform computation in accordance with the
parallel distributed arithmetic algorithm. Unlike most
papers in literature which report on single-chip VLSI
architectures of the forward discrete wavelet transform
only [14] - [17], this paper describes an actual
implementation of both the forward and inverse
transforms. Therefore, the implementation may be used
in the construction of effective MPEG-4 and
JPEG2000 decoders.

Finally, the paper is organized as follows. Section
two gives preliminaries of the implementation which
includes an overview of the discrete wavelet transform
and Xilinx Virtex FPGAs. Section three describes
principles of parallel distributed arithmetic, and section
four describes our parallel implementation which is
based on parallel distributed arithmetic. Performance
results are presented in section five, and discussed in
section six. Finally, some concluding remarks are
presented in section seven.

2 Preliminaries
In this section we give a brief description of the Mallat
algorithm which is an efficient algorithm used to

242 Informatica 29 (2005) 241–247 A.M. Al-Haj

compute the coefficients of the discrete wavelet
transform. We also give an overview of Xilinx Virtex
FPGAs which are used as our single-chip implementation
platform.

2.1 Discrete Wavelet Transform
Coefficients

Wavelets are special functions which, in a form
analogous to sines and cosines in Fourier analysis, are
used as basal functions for representing signals. The
coefficients of the discrete wavelet transform can be
calculated recursively and in a straight forward manner
using the well-known Mallat’s pyramid algorithm [18].
Based on Mallat’s algorithm, the discrete wavelet
coefficients of any stage can be computed from the
coefficients of the previous stage using the following
iterative equations:

)1().........2()1,(),(0 nmhjmWjnW
m

LL −−= ∑

)2)........(2()1,(),(1 nmhjmWjnW
m

LH −−= ∑

Where WL(n,j) is the nth scaling coefficient at the jth
stage, WH(n,j) is the nth wavelet coefficient at the jth
stage, and h0(n) and h1(n) are the dilation coefficients
corresponding to the scaling and wavelet functions,
respectively. In order to reconstruct the original data, the
DWT coefficients are upsampled and passed through
another set of low pass and high pass filters, which is
expressed as

)3(....................).........2()1,(

)2()1,(),(

1

0

lngjlW

kngjkWjnW

l
H

k
LL

−+

+−+=

∑

∑

where g0(n) and g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding to the
mother wavelet. It is observed from Equation (3) that the
jth level coefficients can be obtained from the (j+1)th
level coefficients.

Daubechies 8-tap wavelet has been chosen for this
implementation. This wavelet type is known for its
excellent special and spectral localities which are useful
properties in image compression [19]. The filters
coefficients corresponding to this wavelet type are
shown in Table 1. H0 and H1 are the input
decomposition filters and G0 and G1 are the output
reconstruction filters.

Table 1. Daubechies 8-tap wavelet filter coefficients.

H0 H1 G0 G1

-0.0106 0.2304 -0.2304 -0.0106
 -0.0329 0.7148 0.7148 0.0329
 0.0308 0.6309 -0.6309 0.0308

 0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
 0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

2.2 Virtex FPGAs: Architecture and
Programming

One of most advanced FPGA families in industry is the
FPGA series produced by Xilinx [20]. The Virtex user-
programmable gate array comprises two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs). Each CLB is composed
of two slices as shown in Figure 1. A slice contains 4-
input, 1-output LUTs and two registers. Interconnections
between these elements are configured by multiplexers
controlled by SRAM cells programmed by a user’s
bitstream. The LUTs allow any function of five inputs,
and two functions of four inputs, or some functions of up
to nine inputs to be created within a CLB slice. This
structure allows a very powerful method of implementing
arbitrary, complex digital logic.

Fig. 1. Simplified Architecture of Virtex configurable
logic block.

Virtex FPGAs are programmed using Verilog HDL; a
popular hardware description language [21]. The
language has capabilities to describe the behavioral
nature of a design, the data flow of a design, a design’s
structural composition, delays and a waveform
generation mechanism. Models written in this language
can be verified using a Verilog simulator. As a
programming and development environment, Xilinx ISE
Foundation Series tools have been used to produce a
physical implementation for the Viretx FPGA.

3 Distributed Arithmetic
Distributed arithmetic (DA) is an efficient method for
computing the inner product operation which constitutes
the core of the discrete wavelet transform. Mathematical
derivation of distributed arithmetic is extremely simple;
a mix of Boolean and ordinary algebra [22]. Let the
variable Y hold the result of an inner product operation
between a data vector x and a coefficient vector a. The
distributed arithmetic representation the inner product
operation is given as follows:

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 243

)4.........(..............................2

)(2

1

1

1
0

1

1 1

FF

xaaxY

j
B

j
j

N

i
ii

j
B

j

N

i
iij

−=

−+⎥
⎦

⎤
⎢
⎣

⎡
=

−
−

=

=

−
−

= =

∑

∑∑ ∑

Where the input data words xi have been represented by
the 2’s complement number presentation in order to
bound number growth under multiplication. The variable
xij is the jth bit of the xi word which is Boolean, B is the
number of bits of each input data word and x0i is the sign
bit. Distributed arithmetic is based on the observation
that the function Fj can only take 2N different values that
can be pre-computed offline and stored in a look-up
table. Bit j of each data xij is then used to address this
look-up table. Equation (4) clearly shows that the only
three different operations required for calculating the
inner product. First, a look-up to obtain the value of Fj,
then addition or subtraction, and finally a division by two
that can be realized by a shift.

3.1 Parallel Realization
In its most obvious and direct form, distributed
arithmetic computations are bit-serial in nature, i.e., each
bit of the input samples must be indexed in turn before a
new output sample becomes available. When the input
samples are represented with B bits of precision, B clock
cycles are required to complete an inner-product
calculation. A parallel realization of distributed
arithmetic corresponds to allowing multiple bits to be
processed in one clock cycle by duplicating the LUT and
adder tree. In a 2-bit at a time parallel implementation,
the odd bits are fed to one LUT and adder tree, while the
even bits are simultaneously fed to an identical tree. The
bits partials are left shifted to properly weight the result
and added to the even partials before accumulating the
aggregate. In the extreme case, all input bits can be
computed in parallel and then combined in a shifting
adder tree.

3.2 Virtex Implementation
The Xilinx Virtex slices have the ability to implement
distributed memory instead of logic. Each 4-input LUT
in a slice may be used to implement a 16x1 ROM or
RAM, or the two LUTs may be combined together to
create a 32x1 ROM or RAM or a 16x1 dual-port RAM.
This allows each slice to trade logic resources for
memory in order to maximize the resources available for
a particular application. Distributed Arithmetic for inner
product generation can be easily implemented in the
LUT-based Xilinx Virtex FPGAs. The inner product
production basically consists of table-lookup operations
and additions. Thus RAM or ROM can be employed
holding table values, and table lookup operations can be
performed, and then a parallel adder usually follows to
sum up LUT values provided by ROM or RAMs.

4 Parallel DA Implementation
The discrete wavelet transform equations can be
efficiently computed using the pyramid filter bank tree
shown in Figure 2. In this section we describe a parallel
distributed arithmetic implementation of the filter banks
shown. We start by deriving a parallel distributed
arithmetic structure of a single FIR filter. We then
describe the implementation of the decimator and
interpolator; the basic building blocks of the forward
and discrete wavelet transforms, respectively.

X[n]
1H (z)

2H (z)0

2

H (z)1

H (z)0 2

2

H (z)1

H (z)0 2

2

H [n]1

2 G (z)

2 G (z)0

1

Y[n]

0G (z)2

G (z)2 1

2

2

G (z)0

G (z)
1

H [n]2

H [n]3

L [n]
3

L [n]
3

H [n]

H [n]3

2

H [n]1

(a)

(b)

Fig. 2. Mallat's quadratic mirror filter tree used to compute the
coefficients of the (a). forward and (b). inverse wavelet
transforms.

4.1 Parallel DA FIR Filter Structure
All filters in the pyramid tree structure shown in Figure 2
are constructed using FIR filters because of their
inherent stability. Most discrete wavelet transform
implementations reported in literature employ the direct
FIR structure, in which each filter tap consists of a delay
element, an adder, and a multiplier [23] . However, a
major drawback of this implementation is that filter
throughput is inversely proportional to the number of
filter taps. That is, as filter length is increased, the filter
throughput is proportionately decreased. In contrast,
throughput of an FIR filter constructed using distributed
arithmetic is maintained regardless of the length of the
filter. This feature is particularly attractive for flexible
implementations of different wavelet types since each
type has a different set of filer coefficients.

Distributed arithmetic implementation of the
Daubechies 8-tap wavelet FIR filter consists of an
LUT, a cascade of shift registers and a scaling
accumulator, as shown in Figure 3. The LUT stores all
possible sums of the Daubechies 8-tap wavelet
coefficients given in Table 1. As the input sample is
serialized, the bit-wide output is presented to the bit-
serial shift register cascade,1-bit at a time. The cascade
stores the input sample history in a bit-serial format and
is used in forming the required inner-product
computation. The bit outputs of the shift register cascade
are used as address inputs to the LUT. Partial results
from the LUT are summed by the scaling accumulator to
form a final result at the filter output port.

244 Informatica 29 (2005) 241–247 A.M. Al-Haj

Fig. 3. A DA implementation of the Daubechies FIR filter.

Since the LUT size in a distributed arithmetic
implementation increases exponentially with the number
of coefficients, the LUT access time can be a bottleneck
for the speed of the whole system when the LUT size
becomes large. Hence we decomposed the 8-bit LUT
shown in Figure 3 into two 4-bit LUTs, and added their
outputs using a two-input accumulator. The 4-bit LUT
partitioning is optimum in terms of logic resources
utilization, since this matches naturally the Virtex slice
architecture, shown in Figure 1, which uses 4-input
LUTs. The modified partitioned-LUT architecture is
shown in Figure 4. The total size of storage is now
reduced since the accumulator occupies less logic
resources than the larger 8-bit LUT. Furthermore,
partitioning the larger LUT into two smaller LUTs
accessed in parallel reduces access time.

Fig. 4. A partitioned-LUT DA implementation of the Daubechies
FIR filter.

A parallel implementation of the inherently serial
distributed arithmetic (SDA) FIR filter, shown in Figure
4, corresponds to partitioning the input sample into M
sub-samples and processing these sub-samples in
parallel. Such a parallel implementation requires M-
times as many memory look-up tables and so comes at a
cost of increased logic requirements. We describe below
the implementation of our PDA FIR filter at two
different degrees of parallelism; a 2-bit PDA FIR filter
and a fully parallel 8-bit PDA FIR filter.

A 2-bit parallel distributed arithmetic (PDA) FIR
filter implementation is shown in Figure 5. It corresponds

to feeding the odd bits of the input sample to an SDA
LUT adder tree, while feeding the even bits,
simultaneously, to an identical tree. Compared to the
serial DA filter, shown is Figure 4, the shift registers are
each replaced with two similar shift registers at half the
bit size. The odd bit partials are left shifted to properly
weight the result and added to the even partials before
accumulating the aggregate by a 1-bit scaling adder.
Finally, since two bits are taken at a time, the scaling
accumulator is changed from 1-to-2-bit shift (1/4) for
scaling.

 Fig. 5. A 2-bit PDA Daubechies FIR filter.

As for the fully parallel 8-bit PDA FIR filter
implementation, the 8-bit input sample is partitioned into
eight 1-bit sub-samples so as to achieve maximum
speed. Figure 6 shows the ultimate fully parallel PDA
FIR filter, where all 8 input bits are computed in parallel
and then summed by a binary-tree like adder network.
The lower input to each adder is scaled down by a factor
of 2. No scaling accumulator is needed in this case, since
the output from the adder tree is the entire sum of
products.

Fig. 6. (a). A single-bit and (b). an 8 -bit PDA Daubechies FIR
filter.

4.2 Decimator Implementation
Wavelets are The basic building block of the parallel
DA forward discrete wavelet transform filter bank is the
decimator, which consists of a parallel DA, anti-aliasing
FIR filter, followed by a down-sampling operator [24].

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 245

Down sampling an input sequence x[n] by 2 generates
an output sequence y[n] according to the relation y[n] =
x[2n]. All input samples with indices equal to an integer
multiple of 2 are retained at the output, and all other
samples are discarded. Therefore, the sequence y[n] has
a sampling rate equal to half of the sampling rate of
x[n].

We implemented the decimator as shown in Figure
7a. The input data port of the PDA FIR filter is
connected to the external input samples source, and its
clock input is tied with the clock input of a 1-bit
counter. Furthermore, the output data port of the PDA
FIR filter is connected to the input port of a parallel-load
register. The register receives or blocks data appearing
on its input port depending on the status of the 1-bit
counter. Assuming an unsigned 8-bit input sample is
used, the decimator operates in such a way that when
the counter is in the 1 state, the PDA FIR data is stored
in the parallel load register, and when the counter turns to
the 0 state, the PDA FIR data is discarded.

The decimator operation was modeled and verified
using Verilog’s functional simulator. The corresponding
simulation waveform is displayed in Figure 7b. As
shown, a random input sample X enters the decimator at
a rate of 1sample/1 clocks , and an output filtered
sample Y leaves the decimator at a rate of 1sample/
2clocks. The input frequency is clearly halved by the
decimator. We maintained sufficient precision of the
decimator output sample as indicated by number of bits
in the parenthesis. Allocating sufficient bits to the
intermediate and output coefficients has been a necessary
step to keep the perfect reconstruction capabilities of the
discrete wavelet transform.

FIR

DATA

IN

CLK

DATA

OUT

CLK

Counter
1-bit

OUT

m-bit
Register

QD

CLK

CLOCK

X
n m m

Y

 (a)

 (b)

Fig. 7. (a). Implementation and (b). functional simulation of the
decimator.

4.3 Interpolator implementation
Wavelets are The basic building block of the inverse
discrete wavelet transform filter bank is the interpolator
which consists of a parallel DA, anti-imaging FIR filter,
proceeded by an up-sampling operator [24]. In up-
sampling by a factor of 2, an equidistant zero-valued
sample is inserted between every two consecutive
samples on the input sequence x[n] to develop an output
sequence y[n], such that y[n] = x[n/2] for even indices
of n, and 0 otherwise. The sampling rate of the output
sequence y[n] is twice as large as the sampling rate of
the original sequence x[n].

We implemented the interpolator as shown in Figure
8a. The input data port of the PDA FIR filter is
connected to the output port of a parallel-load register.
Furthermore, the input port of the register is connected
to the external input sample source, and its CLK input is
tied with the CLK input of a 1-bit counter. The operation
of the register depends on the signal received on its
active-high CLR (clear) input from the 1-bit counter.
Assuming the input signal source sends out successive
samples separated by 2 clock periods, the interpolating
filter operates in such a way that when the counter is in
the 0 state, the register passes the input sample X to the
PDA FIR filter, and when the counter turns to the 1 state,
the register is cleared, thus transferring a zero to the PDA
FIR filter. That is, a zero is inserted between every tow
successive input samples.

The interpolator operation was modeled and
verified using Verilog’s functional simulator. The
simulation waveform is displayed in Figures 8b. The
filter receives an input sample X at the rate of 1
sample/2 clocks , and sends out its filtered sample Y at
the rate of 1 sample/1 clock. The input frequency is
clearly doubled by the interpolator. Also, similar to the
decimator, we maintained sufficient precision of the
interpolator output as indicated by number of bits in the
parenthesi

1-bit
Counter

CLOCK

X
m

CLK

m

OUT

D

CLR

CLK

Q
n

Y
DATA

IN

CLK

FIR

DATA

OUT

Register
m-bit

(a)

(b)

Fig. 8. (a). Implementation and (b). unctional simulation of the
interpolator.

246 Informatica 29 (2005) 241–247 A.M. Al-Haj

5 Implementation Results
We have implemented the PDA filter bank architectures
described in the previous section using one of the largest
available Xilinx Virtex FPGA devices, XCV300. This
device contains 322,970 gates (3072slices) and can
operate at a maximum clock speed of 200 MHz.
Therefore, performance is usually measured with respect
to two evaluation metrics; the throughput (sample rate)
and is given in terms of the clock speed, and device
utilization, and is given in terms number of Virtex logic
slices used by the implementation.

In the 2-bit PDA FIR implementation, the forward
discrete wavelet transform operated at a throughput of
48.1 MHz, and required 645 Virtex slices which
represents around 21 % of the total 3072 slices.
Throughout of the inverse discrete wavelet transform
was 46.5 MHz, and the hardware requirement was 707
slices which represent around 23 % of the total Virtex
slices. On the other hand, the fully 8-bit PDA
implementation, and as expected, performed much better.
The forward discrete wavelet transform operated at a
throughput of 154.6 MHz, and required 1167 Virtex
slices which represents around 38 % of the total 3072
slices. Throughout of the inverse discrete wavelet
transform was 151 MHz, and the hardware requirement
was 1352 slices which represent around 44 % of the total
Virtex slices.

The bit stream corresponding to the 8-bit PDA
implementation was downloaded to a prototyping board
called the XSV-300 FPGA Board, developed by XESS
Inc [25]. The board is based on a single Xilinx XCV300
FPGA. It can accept video with up to 9-bits of resolution
and output video images through a 110 MHz, 24-bit
RAMDAC. Two independent banks of 512K x 16 SRAM
are provided for local buffering of signals and data.

6 Discussion
In this section we compare the results presented above
with the results of a serial distributed arithmetic
implementation. We also compare the results of the
FPGA implementations with the results of an
implementation on a Texas Instruments digital signal
processor. Comparison results are illustrated in Figures 9
and 10, and analyzed in the following paragraphs.

We implemented the discrete wavelet transform tree
using the SDA FIR shown in Figure 4. The forward
discrete wavelet transform implementation operated at a
throughput of 26 MHz, and required 369 Virtex slices
which represents around 12 % of the total 3072 slices.
Throughout of the inverse discrete wavelet transform
implementation was 23.7 MHz, and the hardware
requirement was 461 slices which represent around 15 %
of the total Virtex slices. It is noted from these results
that there is a 6-fold performance increase for a 3-fold
increase in slice count between the serial distributed
arithmetic implementation and the fully parallel
distributed arithmetic implementation. The results clearly
demonstrate the speed/cost scalability of the distributed
arithmetic algorithm, and suggest that in between the

SDA and fully PDA there exist opportunities to increase
performance by a factor of two or more, with
corresponding increase in logic requirements.

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

H
z)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

(a)

0
200
400
600
800

1000
1200
1400

U
til

iz
at

io
n

(S
lic

e)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

(b)

Fig. 9. Performance comparison (a). Throughput and (b).
Utilization.

The wavelet transform was also implemented on the
TMS320C6711; a Texas Instrument digital signal
processor with an a complex architecture suitable for
image processing applications [26]. The TMS320C6711
is a highly integrated single chip processor and can
operate at 150 MHz (6.7 ns clock cycle) with a peak
performance of 900 MFLOPS. The processor was
programmed such that the main portion of the wavelet
transform was written in C, and certain sections in
assembly. Also, parallel instructions were used whenever
possible to exploit the abundant parallelism inherent in
the wavelet transform. Sample execution times obtained
for both the forward and inverse discrete wavelet
transforms were 0.153 µs (6.53 MHz) and 0.276 µs (3.62
MHz), respectively.

It is noted from the results obtained above, and
illustrated in Figure 10, that all distributed arithmetic
FPGA implementations perform much better than the
TMS20C6711 implementation. The superior
performance of the FPGA-based implementations is
attributed to the highly parallel, pipelined and distributed
architecture of Xilinx Virtex FPGA. Moreover, it should
be noted that the Virtex FPGAs offer more than high
speed for many embedded applications. They offer
compact implementation, low cost and low power
consumption; things which can’t be offered by any
software implementation.

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 247

0
20
40
60
80

100
120
140
160

Th
ro

ug
pu

t (
M

H
z)

TMS320C6711 SDA 2-Bit PDA 8-Bit PDA
Implementation

Forward DWT Inverse DWT

 Fig. 10. Throughput performance comparison.

Finally, After completing this FPGA implementation of
the discrete wavelet transform and its inverse, we are
now working on integrating a whole wavelet-based
image compression system on a single, dynamic,
runtime reconfigurable FPGA. A typical image
compression system consists of an encoder and a
decoder. At the encoder side, an image is first
transformed to the frequency domain using the forward
discrete wavelet transform. The non-negligible wavelet
coefficients are then quantized, and finally encoded
using an appropriate entropy encoder. The decoder side
reverses the whole encoding procedure described above.
Transforming the 2-D image data can be done simply by
inserting a matrix transpose module between two 1-D
discrete wavelet transform modules such as those
described in this paper.

7 Conclusions
In this paper we described an effective parallel single-
chip implementation of the discrete wavelet transform
and its inverse using Virtex FPGAs. The effectiveness of
the implementation is attributed to the exploitation of
the natural match which exits between the parallel
distributed arithmetic technique, and the LUT-based
architecture of the Virtex FPGAs. In conclusion, the
implementation can be adopted in the construction of
high speed MPEG-4 and JPEG2000 multimedia
compression decoders.

8 References
[1] Texas Corporation, www.ti.com
[2] M. Smith, Application-specific integrated circuits.

USA: Addison Wesley Longman, 1997.
[3] R. Seals and G. Whapshott, Programmable Logic:

PLDs and FPGAs. UK: Macmillan, 1997.
[4] P. Kollig, B. Al-Hashimi and K. Abbot, “ FPGA

implementation of high performance FIR filters,” In
Proc. International Symposium on Circuits and
Systems, 1997.

[5] M. Shand, “ Flexible image acquisition using
reconfigurable hardware,” In Proc. of the IEEE
Workshop on Filed Programmable Custom
Computing Machines, Napa, Ca, Apr. 1995.

[6] J. Villasenor, B. Schoner, and C. Jones, “Video
communication using rapidly reconfigurable
hardware,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 5, no. 12, pp.
565-567, Dec. 1995.

[7] L. Mintzer, “The role of distributed arithmetic in
FPGAs,” Xilinx Corporation.

[8] K. Parhi, VLSI digital signal processing systems.
US: John Wiley & Sons, 1999

[9] G. Strang and T. Nguyen, Wavelets and filter
banks. MA: Wellesley-Cambridge Press, 1996.

[10] M. Antonini, M. Barlaud, P. Mathieu, and I.
Daubechies, “Image coding using wavelet
transform,” IEEE Trans. Image Processing, vol. 1,
no.2, pp. 205-220, April 1992.

[11] T. Ebrahimi and F. Pereira, The MPEG-4 Book.
Prentice Hall, July 2002

[12] D. Taubman and M. Marcellin. JPEG2000: Image
compression fundamentals, standards, and practice.
Kluwer Academic Publishers, November, 2001,

[13] Xilinx Corporation. “Xilinx breaks one million-gate
barrier with delivery of new Virtex series,” October
1998

[14] G. Knowles, “VLSI architecture for the discrete
wavelet transform,” Electron Letters, vol. 26, no.
15, pp. 1184-1185, July 1990.

[15] A. Grzeszczak, M. Kandal, S. Panchanathan, and
T. Yeap, “ VLSI implementation of discrete
wavelet transform,” IEEE Trans. VLSI Systems, vol.
4, no. 4, pp. 421-433, Dec. 1996

[16] K. Parhi and T. Nishitani, VLSI architectures for
discrete wavelet transforms, IEEE Trans. VLSI
Systems, pp. 191-202, June 1993.

[17] C.Chakabarti, M. Vishwanath, and R. Owens,
"Architectures for wavelet transforms: a survey,"
Journal of VLSI Signal Processing, vol. 14, no. 2,
pp.171-192, Nov. 1996.

[18] S. Mallat, “ A theory for multresolution signal
decomposition: The wavelet representation, IEEE
Trans. Pattern Anal. And Machine Intell., vol. 11,
no. 7, pp. 674-693, July 1989.

[19] I. Daubechies, “Orthonomal bases of compactly
supported wavelets,” Comm. Pure Appl. Math, vol.
41, pp. 906-966, 1988.

[20] Xilinx Corporation. Virtex Data Sheet, 2000.
[21] S. Palnitkar, Verilog HDL, SunSoft Press, 1996.
[22] S. White, “Applications of distributed arithmetic to

digital signal processing: a tutorial”, In IEEE ASSP
Magazine, pp. 4-19, July 1989.

[23] A. Oppenheim and R. Schafer, Discrete signal
processing. New Jersy: Prentice Hall, 1999.

[24] P. Vaidyanathan, Multirate systems and filter
banks. New Jersey: Prentice Hall, 1993.

[25] Xess Corporation. www.xess.com.
[26] Texas Instruments Corporation. TMS320C6711

data sheet, 2000.

248 Informatica 29 (2005) 241–247 A.M. Al-Haj

Informatica 29 (2005) 249

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 29 (2005)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

largehttp://ai.ijs.si/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2005 (Volume 29) is
– 60 EUR (80 USD) for institutions,
– 30 EUR (40 USD) for individuals, and
– 15 EUR (20 USD) for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printed by Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. Drago
Torkar, Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number
or use the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841
for domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 29 Number 2 June 2005 ISSN 0350-5596

Introduction N. Nedjah,
L. de M. Mourelle

123

Investigating Strategic Inertia Using OrgSwarm A. Brabazon,
A. Silva, T. Ferra
de Sousa, M. O’Neill,
R. Matthews, E. Costa

125

Towards Improving Clustering Ants: An Adaptive
Ant Clustering Algorithm

A.L. Vizine,
L.N. de Castro,
E.R. Hruschka,
R.R. Gudwin

143

Efficient Pre-Processing for Large Window-Based
Modular Exponentiation Using Ant Colony

N. Nedjah,
L. de M. Mourelle

155

Max Min Ant System and Capacitated p-Medians:
Extensions and Improved Solutions

F.O. de França,
F.J. Von Zuben,
L.N. de Castro

163

Application of Ant-based Template Matching for
Web Documents Categorization

S.L. Ong,
W.K. Lai, T.S.Y. Tai,
C.H. Ooi, K.M. Hoe

173

Efficient and Scalable Communication in Autono-
mous Networking using Bio-inspired Mechanisms

F. Dressler 183

Model Checking Multi-Agent Systems M. Bourahla,
M. Benmohamed

189

End of special section / Start of normal papers

Improving Branch Prediction Performance with a
Generalized Design for Dynamic Branch Predictors

W.-M. Lin,
R. Madhavaram,
A.-Y. Yang

199

Construction of Patient Specific Virtual Models of
Medical Phenomena

B. Potočnik,
D. Heric, D. Zazula,
B. Cigale, D. Bernad,
T. Tomažič

209

System Resource Utilization Analysis Based on
Model Checking Method

K.-S. Bang,
H.-W. Jin, C. Yoo,
J.-Y. Choi

219

Towards Neural Network Model for Insulin/Glucose
in Diabetics-II

R.A. Zitar,
A. Al-Jabali

227

A Survey of Contemporary Real-time Operating
Systems

S. Baskiyar,
N. Meghanathan

233

An FPGA-Based Parallel Distributed Arithmetic
Implementation of the 1-D Discrete Wavelet
Transform

A.M. Al-Haj 241

Informatica 29 (2005) Number 2, pp. 123–249

