
Volume 30 Number 2 June 2006

Learning in Web Search

Guest Editors:
Stephan Bloehdorn
Wray Buntine
Andreas Hotho

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Editorial Board
Suad Alagić (USA)
Anders Ardo (Sweden)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Janez Grad (Slovenia)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Karl H. Pribram (USA)
Luc De Raedt (Germany)
Dejan Raković (Serbia and Montenegro)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (USA)

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Informatica 30 (2006) 141–141 141

Editors’ Introduction to the Special Issue “Learning in Web Search”

Introduction

The emerging world of search we see is one which makes
increasing use of information extraction, gradually blends
in semantic web technology and peer to peer systems, and
employs grid style computing resources for information ex-
traction and learning. This Informatica special issue ex-
plores the theory and application of machine learning in
this context for the internet, intranets, the emerging seman-
tic web and peer to peer search.

Search can also be viewed as a knowledge sharing ser-
vice on the Web, as an interface to the Semantic Web.
While some automation in building the Semantic Web has
been achieved, it remains a labour intensive annotation pro-
cess with problems in scaling up to the full free-text Web. A
partial implementation of semantic-based search is possible
where hierarchical concept spaces rather than full ontolo-
gies are used, and where information extraction and learn-
ing tools in the search engine perform approximate tagging
of concepts. This partial semantic-based search could be
viewed as a key infrastructure for more complete Semantic
Web development, and arguably, as a safety net for it.

Overview of the issue

The articles in this special issue originate from two dif-
ferent backgrounds. Two articles are from the EU IST
project ALVIS1, which aims to bring web search infrastruc-
ture closer to the vision of the semantic web by automating
some of the labor intensive annotation processes. The ar-
ticle Semantic Search in Tabular Structures by Aleksander
Pivk, Matjaz Gams and Mitja Lustrek explores techniques
for making tables and their content the subject of search
while also considering the implicit semantics in the tabu-
lar structure. In the contribution Beyond term indexing: A
P2P framework for Web information retrieval, the authors
Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm
and Karl Aberer present a new framework for full-text in-
formation retrieval in P2P overlay networks and introduce a
novel retrieval model based on highly discriminative keys.

Two further papers are selected papers from the work-
shop “Learning in Web Search” held at the International
Conference on Machine Learning (ICML) in 2006 orga-
nized by the editors of this issue. The article A Seman-
tic Kernel to classify Texts with very few Training Exam-
ples by Roberto Basili, Marco Cammisa and Alessandro
Moschitti contributes to the field of using semantic back-
ground knowledge in the context of kernel methods. The
article Sailing the Web with Captain Nemo: a Personal-
ized Metasearch Engine by Stefanos Souldatos, Theodore
Dalamagas and Timos Sellis presents the implementation

1http://www.alvis.info/

of a metasearch engine that exploits personal user search
spaces.

We thank the authors, reviewers and the Informatica edi-
tors for their efforts to ensure the quality of accepted papers
and to make the reading as well as the editing of this special
issue a rewarding activity.

Stephan Bloehdorn, Wray Buntine and Andreas Hotho

142 Informatica 30 (2006) 141–141

Informatica 30 (2006) 143–152 143

Semantic Search in Tabular Structures

Aleksander Pivk1, Matjaž Gams1 and Mitja Luštrek1,2

1 Department of Intelligent Systems, Jozef Stefan Institute,
Jamova 39, SI-1000 Ljubljana, Slovenia

2 Department of Computer Science, University of Alberta,
Edmonton, Alberta, Canada T6G 2E8

E-mail: {aleksander.pivk, matjaz.gams, mitja.lustrek}@ijs.si

Keywords: tabular structures, ontology learning, semantic web, query answering

Received: November 18, 2005

The Semantic Web search aims to overcome the bottleneck of finding relevant information using formal
knowledge models, e.g. ontologies. The focus of this paper is to extend a typical search engine with
semantic search over tabular structures. We categorize HTML documents into topics and genres. Using the
TARTAR system, tabular structures in the documents are then automatically transformed into ontologies
and annotated to build a knowledge base. When posting queries, users receive responses not just as lists of
links and description extracts, but also enhanced with replies in the form of detailed structured data.

Povzetek: Razvili smo metode semantičnega spleta za iskanje informacij v tabelah.

1 Introduction

The World Wide Web has in the years of its exponential
growth become a universal repository of human knowledge
and culture, thus enabling an exchange of ideas and infor-
mation on a global level. The tremendous success of the In-
ternet is based on its usage simplicity, efficiency, and enor-
mous market potential [4].

The success of the World Wide Web is countervailed by
efforts needed to search and find relevant information. The
search of interesting information turned out to be a diffi-
cult, time-consuming task, especially due to the size, poor
structure and lack of organization of the Internet [3, 7, 31].
A number of approaches appeared in the last decade with
a common objective to improve searching and gathering of
information found on the Web.

One of the first solutions to cope with the information
overload was search engines. In order for a search engine to
function properly and to return relevant and satisfactory an-
swers to user queries, it must conduct two important tasks
in advance. The first task is to crawl the Web and gather,
following the hyperlinks, as many documents as possible.
The second task deals with document indexing [12, 35], hy-
perlink analysis, document relevance ranking [20, 23] and
high dimensional similarity searches [13, 19].

Once these tasks are completed, a user may post queries
to gain answers. User queries, unless they include highly
selective keywords, tend to match a large number of doc-
uments, because they do not contain enough information
to pinpoint most highly relevant resources [28]. They may
sometimes even miss the most relevant responses, because

of no direct keyword matches, but the most common dis-
advantage of this approach is that an engine might return
thousands of potentially interesting links for a user to man-
ually explore. The study described in [17] showed that the
number of keywords in queries is typically smaller than
three, which clearly cannot sufficiently narrow down the
search space. In principle, this can be seen as the prob-
lem of users of search engines themselves. Reducing the
ambiguity of search requests can be achieved by adding
semantics, i.e. by making computers better ’understand’
both the content of the web pages and the users’ intentions,
which can help to improve search results even with a re-
quest of a very limited size. In addition, search engines
favor largest information providers due to name-branding
and time optimization. To overcome this bottleneck, the
Semantic Web search, where information is structured in
a machine interpretable way, is a natural step forward, as
originally envisioned by Tim Berners-Lee [4].

Moving to a Semantic Web, however, requires the se-
mantic annotation of Web documents, which in turn cru-
cially depends on some sort of automatic support to fa-
cilitate this task. Most information on the Web is pre-
sented in semi-structured and unstructured documents, i.e.
loosely structured natural language text encoded in HTML,
and only a small portion represents structured documents
[2, 12]. A semi-structured document is a mixture of natural
language text and templates [2, 12]. The lack of metadata
that would precisely annotate the structure and semantics
of documents and ambiguity of natural language in which
these documents are encoded makes automatic computer
processing very complex [9, 21].

144 Informatica 30 (2006) 143–152 A. Pivk et al.

Tabular structures (i.e. tables or lists) are incorporated
into semi-structured documents and may have many dif-
ferent forms and can also differ substantially even if they
represent the same content or data [14, 16].

Here we consider tabular structures as tables and lists
which are described by a particular tag in HTML, i.e.
<table> represents a table, where , and
<dl> stand for different list types. A simple example of
a table, found in a Web document, is represented in Fig-
ure 1.

Figure 1: A simple table example belonging to a tourism
domain.

Understanding of their content is crucial when it comes
to finding and providing explicit answers to user queries.
The table understanding task demands efficient handling
of tabular structures and automatic transformation of struc-
tures into explicit semantics, which enables further reason-
ing about the data within tables. But both, a table structure
comprehension task and a semantic interpretation task ex-
ceed in complexity the corresponding linguistic task [16].

The paper is structured as follows. In Section 2 we first
introduce a simplified view of the ALVIS search engine fol-
lowed by a detailed description and an algorithm of our
extensions. Section 3 describes the current state of our
approach and its evaluations. After presenting the related
work in Section 4 we give concluding remarks in Section 6.

2 ALVIS - Semantic search engine
extensions

The basic idea for attaining a semantic search engine is to
automatically enrich the indexed web pages with seman-
tics, in our case in the form of ontologies. This is the key
subject of the EU IST-project ALVIS (Superpeer Semantic
Search Engine, IST-1-002068-STP), which represents the
framework for our contribution. The general architecture
of ALVIS is presented in Figure 2. Our major contribution
is represented as two bold boxes on the right-hand side of
the figure.

The ALVIS project (www.alvis.info/alvis) con-
ducts research in the design, use and interoperability of

topic-specific search engines with the goal of developing
an open source prototype of a distributed, semantic-based
search engine. ALVIS facilitates semantic retrieval and
incorporates pre-existing domain ontologies using facili-
ties for import and maintenance. The distributed design
is based on exposing search objects as resources and on
using implicit and automatically generated semantics (not
just ontologies) to distribute queries and merge results. Be-
cause semantic expressivity and interoperability are com-
peting goals, developing a system that is both distributed
and semantic-based is the key challenge: research involves
both the statistical and linguistic format of semantic inter-
nals, and determining the extent to which the semantic in-
ternals are exposed at the interface.

The problems that were identified and served as a mo-
tivation factor while developing the system and methodol-
ogy are: (a) tabular structures present a general schema for
data presentation due to their good visual comprehension,
hence a great deal of data is hidden within them, (b) multi-
ple table representations for the same content/data are very
likely, (c) manual annotation does not scale in general, (e)
tables and lists, due to their richer structure, support the
discovery of interdependent information, whilst a typical
keyword or link-analysis based search usually fails in this
area [27], and (f) ontology learning from arbitrary text has
so far had limited success [6, 9].

The whole process of semantic search over tabular struc-
tures consists of two subprocess: (a) transformation of tab-
ular structures found on the Web into the knowledge base,
described in subsection 2.1 and shown in Figure 3, and
(b) user query processing, described in subsection 2.2 and
shown in Figure 6.

2.1 Tabular structures transformation

The overall analysis, transformation, and formalization of
tabular structures can be graphically observed in Figure 3.
It roughly corresponds to the bold boxes in Figure 2 and di-
rectly to Figure 4. Here we will shortly present each of the
five major steps with the obtained results given in section 3:

(1) Categorization of Web documents
(a) into Topics
(b) into Genres

(2) Filtering of proper tabular structures
from documents

(3) Transformation of arbitrary tabular
structures into formal representations

(4) Automatic ontology generation from
formalized tabular structures

(5) Knowledge base construction

Figure 4: Tabular structure formalization procedure.

SEMANTIC SEARCH IN TABULAR STRUCTURES Informatica 30 (2006) 143–152 145

Figure 2: Performance architecture of ALVIS search engine.

1) Categorization of Web documents

Clustering is a technique for classification of Web docu-
ments into groups within which interdocument similarity is
large compared to the similarity between documents cho-
sen from different groups, and enables taxonomy design,
e.g. topic hierarchy construction. The technique assists
fast similarity search, while groups of similar documents
significantly narrow the search space.

1.a) Topics

Work on topic classification has been utilized by our col-
leagues Mladenić et al. [22]. They used machine learn-
ing techniques on a document collection gathered from Ya-
hoo to reconstruct Yahoo’s manually built topic taxonomy.
Documents are represented as feature-vectors that include
word sequences, where the learning approach depends on
feature subset selection and results in a combination of a
set of independent classifiers. The whole categorization
process belongs to the bold box (Full-text index...) in Fig-
ure 2.

1.b) Genres

Another type of categorization that we propose is cate-
gorization into genres. According to Merriam-Webster On-

line Dictionary, a genre is a category of artistic, musical,
or literary composition characterized by a particular style,
form, or content. Editorial and poem, for example, are gen-
res characterized by style and form, while science fiction is
a genre characterized by content. For our purpose, we will
concentrate on the first kind of genres, because the second
kind are already in large part covered by topical catego-
rization. In information retrieval, genres should ideally be
orthogonal to topics, because this best divides the search
space and reduces the number of search hits. Traditional
genres often do not satisfy this requirement, but in the se-
lection of genres we use and in the preparation of training
data for the genre classifier, we tried to be as close to the
ideal as possible.

We chose 20 genres one can expect to find on the World
Wide Web: some of them Web-specific, such as FAQ and
community, others traditional, such as journalistic and po-
etry. The next step was the preparation of the training data
for the genre classifier. We gathered Web pages returned
by the most popular queries according to Google, random
Web pages and Web pages specifically sought to belong to
the less common genres. Each Web page was manually
categorized by two annotators and in case of disagreement
checked by the authors.

Finally, a suitable classification algorithm needed to be
selected. Most algorithms require extraction of stylistic

146 Informatica 30 (2006) 143–152 A. Pivk et al.

Figure 3: The transformation of tabular structures found on the Web into the knowledge base.

features from the Web pages. Due to the complexity and
irregularity of HTML found on the Web, this is a time-
consuming and error-prone procedure that can compromise
the robustness of the classifier. Therefore we chose pre-
diction by partial matching (PPM) classification algorithm,
which can accept raw HTML as the input. This algorithm is
derived from data compression techniques and essentially
learns the way to most efficiently compress the Web pages
belonging to each genre. An uncategorized page is then
compressed with each genre-specific compressor in turn
and categorized into the genre associated with the most ef-
fective compressor. Initial tests have been performed by
Bratko and colleagues [5], proving successful in a related
problem setting.

2) Filtering of proper tabular structures

Tabular structures appear in Web documents within spe-
cific tags, thus enabling their easy discovery. Unfortu-
nately, it has been shown that at least 70% of such struc-
tures are not used for presentation of data but for better vi-
sual and layout purposes [8]. To solve this problem, we
adopted a solution developed by Wang et al. [34]. It is
based on machine learning techniques, in particular deci-
sion trees and support vector machines. In the learning
process, several types of features are used, such as struc-
tural, content, and word/text features.

3) Formalization of tabular structures

This essential part concentrates on the analysis of tab-
ular structures aiming to exploit their partial structure and
cognitive modeling habits of humans. Understanding of ta-
ble contents requires table-structure comprehension and se-

mantic interpretation. The outcome of applying the method
is a knowledge frame encoded in an F-Logic representation
language [18].

The most comprehensive and complete model for the
analysis and transformation of tables found in literature is
Hurst’s [15], which is also adopted here. The model an-
alyzes tables along graphical, physical, structural, func-
tional, and semantic dimensions. Our approach stepwise
instantiates the last four dimensions.

In the first step, corresponding to the physical dimension,
a table is extracted, cleaned, canonicalized and transformed
into a regular matrix form.

In the second step, the goal is to detect the table struc-
ture. This is a very complex task, since there is a huge num-
ber of table layout variations. The three most important
sub-tasks are: (a) to determine table reading orientation(s),
which is discovered by measuring the distance/similarity
among cells and hence among rows and columns (features
given at the end of the paragraph); (b) to dismember a table
into logical units and further into individual regions, in a
way that regions consist of only attribute cells, e.g. ’Lo-
cation’ in Figure 1, or instance cells, e.g. ’Rogla’; (c) to
resolve the table type, which must belong to the one of five
pre-defined types (one- or two-dimensional, or three types
of complex tables). For these purposes several heuristics,
i.e. token type hierarchy, and measures are used, i.e. value
similarity (regression), value features (character/numeric
ratio, mean, variance, standard deviation), data frames (e.g.
regular expressions for recognizing dates), and string pat-
terns.

In the third step, the functional table model (FTM) is
constructed. FTM is represented as a directed acyclic
graph, which rearranges table regions in a way to exhibit

SEMANTIC SEARCH IN TABULAR STRUCTURES Informatica 30 (2006) 143–152 147

an access path for each individual cell. After finalizing the
FTM construction, its recapitulation is carried out with a
goal to minimize the model.

Finally, in the fourth step we deal with the discovery of
semantic labels for table regions, where WordNet [11] lex-
ical ontology and GoogleSets service are employed. These
semantic labels serve as annotations of FTM nodes and are
later also used within outgoing formal structures as can be
observed in Figure 5.

A very detailed description of this particular part can be
found in [30].

4) Automatic ontology generation

Tables with different structures that are categorized into
the same topic/genre clusters and had been individually
transformed into knowledge frames, could now be merged
into a single cluster ontology. In this way, a generalized
representation that semantically and structurally describes
captured tables within each cluster would be created.

Our approach to frame matching and merging is multi-
faceted, which means that we use all evidence at our dis-
posal to determine how to match concepts. In using this
evidence we look not only for direct matches as is com-
mon in most schema matching techniques, but also indirect
matches. The most relevant matching techniques are the
following: (a) label matching which depends on WordNet
features and string distance metrics; (b) value similarity,
where matching is based on value characteristics; (c) ex-
pected values by using constant value recognizers in data
frames; (d) constraints that include keys of the table, func-
tional relationships, one-to-one correspondences, and sub-
set/superset relationships; and (e) structural context, where
features such as proximity, node importance measured by
in/out-degree, and neighbor similarity help match object
sets.

Once the mappings among frames have been discovered,
the actual merging is executed. Sometimes two frames are
directly fused by simply merging corresponding nodes and
edges. Often, however, merging induces conflicts that must
be resolved, where several different approaches for con-
flict resolution are used. Conflict resolution will not be
discussed in this paper due to length limits. Finally, af-
ter all frames of a particular topic/genre cluster are incor-
porated, the outcome reflects an appropriate domain ontol-
ogy, where the concepts are arranged into a directed acyclic
graph, where the arcs represent the relations among con-
cepts and are labeled with relation type.

Figure 5 illustrates a simple example of the ontology cre-
ation process by merging two same-cluster tables; the sec-
ond table is shown in Figure 1. Both tables deal with ho-
tel price information, but the naming convention and con-
tents are different. The matching of the frame concepts and
object sets are based on several techniques: Label Match-
ing and Structure help determine the concept matching,
while Value Similarity and Expected Values apply to price,
room type, and period. The domain ontology is presented
as a frame, but its concepts are further classified and the

Figure 5: A simple example of the ontology creation pro-
cess.

classification encoded in F-Logic notation. For example,
concepts ’Hotel’ and ’Accommodation’, according to the
WordNet, share a common hypernym ’Structure’; values
’Double/Single Room’, ’Apartment’, and ’Suite’ become
concepts and are hierarchically organized under a ’Room-
Type’ concept; the same thing happens to season periods.
Also note that concepts ’Price’ and ’Cost’ share the same
synset in WordNet, which is in the ontology described by
an equivalent operator (≡) among them. In this way a com-
mon ontology covering both frames is generated, which en-
ables annotation and query answering, the later through the
knowledge base.

We have explored issues of frame matching for ontology
generation in [29], where further information can be found.

5) Knowledge base construction

By constructing multiple domain ontologies, where
each one corresponds to a particular topic/genre cluster,
the final step of our algorithm is evident in a construction
of a knowledge base. The knowledge base is created by
formalizing the table contents according to the newly
generated formal structures. Together with the inference
engine it will be used for providing replies to user queries.

Steps 2, 3, 4, and 5 are all implemented within a sys-
tem named TARTAR (Transforming ARbitrary TAbles into
fRames) as part of the PhD dissertation [25] and later ex-
tended for ALVIS. Further information regarding TARTAR
can be found in [27, 30], while the open source code is
freely available and can be downloaded at http://dis.

148 Informatica 30 (2006) 143–152 A. Pivk et al.

Figure 6: A seven-step user query processing schema.

ijs.si/sandi/work/tartar/.
Each of these algorithmic steps is important in the over-

all process and benefits search in terms of accuracy and
reduced complexity.

2.2 Tabular structures querying
Many search systems permit the query to contain single
words, phrases, and word inclusions and exclusions. In-
stead of exclusion, a safer way is to rate each document for
how likely it is to satisfy the user’s information need, to sort
in decreasing order of this score, and present the results in
the ranked list. Search engines differ in how they perform
vector-space ranking.

Our motivation is to extend the ALVIS search engine
with our tabular structure handling approach, where for-
mal knowledge models and semantics decrease ambiguity
and hence better determine similarity among a query and a
document. In addition, they provide semantically relevant
replies to user queries.

The execution of a user query is performed along the
following seven steps, as shown in Figure 6 (note the cor-
responding numbers):

1. Querying: users provide queries using CQL [1] (Com-
mon Query Language). CQL is a formal language
for representing queries to information retrieval sys-
tems such as Web indexes, bibliographic catalogs and
museum collection information and has been adopted
in ALVIS. The CQL design objective is that queries
be human readable and human writable, and that the
language be intuitive while maintaining the expres-
siveness of more complex languages such as SQL.
Simplicity and intuitiveness of expression is achieved
by combining with the richness of Z39.50’s type-1
query [32]. This process corresponds to the ’Query
requests’ box in Figure 2.

2. Resolution: the ALVIS query server resolves the CQL
query and extracts its key terms. This step corre-
sponds to the ’Distributed search engine’ box in Fig-
ure 2.

3. Categorization: extracted key terms are used to de-
termine potentially interesting categories, topics and
genres in particular, where detailed search should be
executed. Categorization is perform as described in
subsection 2.1 1) and is utilized by Mladenić and col-
leagues [22] and Bratko and colleagues [5]. The pur-
pose of searching only within certain topics and gen-
res is to significantly narrow the search space and con-
sequently speed up the whole replying process, which
is of particular importance when querying the knowl-
edge base of tabular structures. This corresponds to
the left-upper bold box (Full test index ...) in Figure 2.

4. Mapping: as described in subsection 2.1 (4), each
cluster possesses its own automatically generated on-
tology. The ontology concepts and relations are used
together with the extracted key terms in order to refor-
mulate posted CQL queries into new, formal queries.
These queries are encoded in the F-Logic formal lan-
guage, same as the knowledge base. This corresponds
to the TARTAR component in Figure 2.

5. Inference: The new formal queries, obtained in a pre-
vious step, are posted against the knowledge base us-
ing an appropriate inference engine, which returns
plausible results. This part has been presented in the
paper by Pivk and colleagues [30].

6. Ranking: ALVIS ranking component ranks, according
to its ranking function, the results obtained from the
knowledge base with the set of documents that match
the CQL query. The ranked results are sent to the out-
put creation module.

7. Results: ranked results and document excerpts are
gathered and incorporated into a document, which
is returned to the user. Note that this document in-
volves also the results inferred from the knowledge
base, which represent semantically aware answers to
a posted query.

Here we present processing of two simple example
queries that relate to the content of tables shown in

SEMANTIC SEARCH IN TABULAR STRUCTURES Informatica 30 (2006) 143–152 149

Figure 1 and 5. For simplicity, we will first present a
query in a natural language, followed by individual step
descriptions. Natural language interface is also being
developed, but not directly as part of the ALVIS system.
The two demonstrating examples are:

A) SHOW THE ACCOMMODATIONS THAT OFFER APART-
MENTS.

1. Q="accommodation=* and
type=apartment";

2. Key terms of Q, such as accommodation, type, and
apartment would determine possible categories, i.e.
"tourism:skiing:slovenia", and a genre, such as "com-
mercial/shopping".3. An example of an F-logic query where for mapping
purposes the ontology shown in Figure 5 is used:

FORALL S,L <- EXISTS A,T,P
A:StructureCost[Cost@(S,L,
apartment,T)->P].

4. The query Q posted against the knowledge base re-
turns the following three results gained from the table
examples:

- S=Bungalow GABER, L=Rogla;
- S=Pension MARTIN, L=Pohorje;
- S=Hotel ALPINA, L=?;

5. - 7. The results are ranked and returned to the user
as a Web document, as shown in Figure 7. Some re-
sults are upgraded with tables, where a table consists
of all semantically relevant facts found in the partic-
ular document. These results are in the output doc-
ument marked as ’Reply #’ link, where # represents
the relevance number of a document introducing the
facts. Such examples can be observed from the first
two results in Figure 7.

B) SHOW ALL PRICES OF DOUBLE ROOMS IN HOTELS ON
POHORJE, SLOVENIA.

1. Q="price=* and accommodation=hotel
and hotel=* and place=pohorje and
type=’double room’";

2. Holds a similar description as in the previous exam-
ple;

3. FORALL S,T,P <- EXISTS A
A:StructureCost[Cost@(S,pohorje,
double room,T)->P and
isa_(S,hotel)].

and
FORALL S,T,P <- EXISTS A
A:StructureCost[Cost@(S,pohorje,
twin bed,T)->P and isa_(S,hotel)].

4. - S=Hotel AREH, T=Winter, P=840;
- S=Hotel AREH, T=Rest, P=690;

5. - 7. Similar as in the previous example.

Figure 7: A simulated graphical representation of ranked
results, requested in example A).

3 Current state and evaluations
Here we will shortly present the individual state-of-the-art
of the described system components and some evaluations.
More detailed descriptions are given in the referenced pa-
pers.

• Topic categorization is based on a hierarchical topic
structure. For each topic, a naive Bayesian classi-
fier is built. For an uncategorized document, each of
the classifiers estimates the probability of it belong-
ing to a given topic. Experimental evaluation on real
world data shows that the proposed approach gives
good results. The best performance was achieved with
features selected based on a feature scoring measure
known from information retrieval called Odds ratio
using relatively small number of features [22].

• Genre categorization: For this purpose, we created
a dataset of over 1500 Web pages manually catego-
rized into 20 genres. Each genre has at least 70 ex-
amples. Work on classification is still in progress,
but initial tests have been performed by Bratko and
colleagues [5] using prediction by partial matching
(PPM) classification algorithm [10], which proved
very successful in related problem setting. Upon com-
pletion of the work, the dataset will be made publicly

150 Informatica 30 (2006) 143–152 A. Pivk et al.

available.

• Filtering of proper tabular structures: To solve this
problem, we adopted a solution developed by Wang
et al. [34], which is based on machine learning tech-
niques, as presented in section 2.1 (2). The classi-
fication accuracy reaches almost 95%, meaning that
nearly no human intervention is required [25, 26].

• Formalization of tabular structures: The empirical
evaluation is performed from efficiency and applica-
bility perspectives, where the dataset consisted of over
700 test tables, belonging to two different domains,
tourist and geopolitical. First, the efficiency E of
the approach is measured according to the portion of
correctly transformed tables into knowledge frames
reaching 84.52% (E = 1

2 (Et +Eg) = 1
2 (289

369 + 313
345)).

The more detailed results description is omitted due to
its complexity and the lack of space but can be found
in [26, 25]. Second, the applicability is shown by
querying the content of tables encoded in the knowl-
edge base, where it is shown that returned answers are
true and complete in 100% of cases [30].

• Automatic ontology generation: Initial tests of the on-
tology generation process have been shown in [29],
indicating that the process is feasible but pointing out
that the conflict resolution still needs some improve-
ments. Further tests are still in progress.

• Knowledge base construction: This step cannot be
evaluated separately since it depends on the results
of previous two tasks and merely formalizes the data
found within tables. Anyway, the study in [30]
showed that by querying the content of tables encoded
in the knowledge base, the returned answers are true
and complete in all cases.

The system consisting of the described parts is not yet
fully implemented. While individual parts have already
been tested and achieved the expected performance, the
functionality of the integrated system is yet to be verified.

4 Related work
In this paper we have covered several important topics
of modern information handling, which can be basically
split into three main areas: document categorization, on-
tology learning, and analysis of tabular structures. We will
not present each of these areas thoroughly, since these are
given in respective papers, but will rather show their main
achievements.

An important portion of information retrieval [3, 31]
is focused to the document categorization tasks, where
several different techniques and methods have been
used, ranging from machine learning techniques such as
Bayesian learning, SVM, or (hierarchial) clustering, to nat-
ural language processing, graph theory, and combination of
these approaches.

Genre categorization is most commonly performed by
parsing the documents to extract a set of stylistic features,
which vary significantly from author to author, and then us-
ing one of the numerous classification algorithms: regres-
sion, SVM, decision trees, naive Bayes, clustering. Less
common are character-base methods, which use raw text
as the input. The best classification accuracy in this group
is shown by Peng et al. [24] reaching 86% when classi-
fying documents into 10 different genres. Prediction by
partial matching (PPM), the method which we are going to
employ, also belongs to this group. Finally, there are vi-
sual methods, but these are typically used on scanned doc-
uments represented as bitmaps and are not well suited for
use in a search engine.

A very recent systematic overview of related work on
table recognition, transformation, and inferences can be
found in [36]. Most of the work in this area has been
done on table detection and recognition addressing sev-
eral types of document encodings, mostly plain text files,
images, and HTML documents. Work performed on tex-
tual tables and images was mainly oriented towards table
detection, row labeling, and cell classification [36]. Work
on HTML tables was extended to indexing relation detec-
tion, cell/row/table merging or splitting, classification [34],
and other approaches aiming at the deep understanding of
table structure [36]. Table extraction methods have also
been applied in the context of question answering and on-
tology learning. A similar proposal to ours was introduced
by Tijerino et al. [33]. They presented only a vision for a
system that would be able to generate ontologies from arbi-
trary tables or table-equivalents. Their approach consists of
a four-step methodology which includes table recognition
and decomposition, construction of mini ontologies, dis-
covery of inter-ontology mappings, and merging of mini-
ontologies. For the purpose of semantics discovery the ap-
proach is multifaceted, meaning they use all evidence at
their disposal (i.e. Wordnet, data frames, named entities,
etc.). Since the paper, unlike ours, presents only a vision,
no evaluation is provided.

5 Conclusion and Future Work

ALVIS represents a major attempt to create a semantic
search engine. For this purpose, it introduces several novel
approaches and mechanisms. Our approach is novel in the
sense that it is the first to address the whole process of se-
mantically aware information discovery and query answer-
ing by analyzing information presented in tabular struc-
tures. By putting together the components, such as two-
aspect document categorization, detection, filtering, trans-
formation and formalization of tabular structures, a search
engine gets enhanced with new capabilities in a scalable
way.

Each of the major formalization algorithmic steps is im-
portant in the overall process and benefits in terms of accu-
racy and reduced complexity. We anticipate that the system

SEMANTIC SEARCH IN TABULAR STRUCTURES Informatica 30 (2006) 143–152 151

will also benefit in terms of scalability and speed, but can-
not show or discuss that in details since it has not been fully
implemented and tested yet.

Regarding success rate of HTML input tabular transfor-
mations into formal semantic descriptions, the proposed
approach reaches nearly 85%. Besides the transformation
the approach also enables annotation of the original re-
sources with generated formal descriptions.

Although tabular semantic approach by itself may not be
the ultimate research goal, and although its success relies
on specific properties of tables, i.e. implicit relationships,
it might give some indications regarding semantic search
from plain text. We are aware that our approach and the
ontology learning text processing approaches tackle and
cope with different problems, thus making direct compari-
son nearly impossible, we still assume that our results show
great potential for wide acceptance.

Future research in the tabular structure analysis area is
aiming into two main directions. Firstly, the focus will be
to incorporate some machine learning techniques, in partic-
ular for: (a) the classification of tabular structures into the
(predefined) table type classes, and (b) the improved and
more scalable discovery and division of tables into logical
units and regions. This will enable better grounds for the
ongoing transformation process. Secondly, our method-
ology is domain and document type independent, but has
been implemented to cover HTML tables only. Therefore
two important extensions need to be provided in the fu-
ture: (a) the extensions to cover other document types, i.e.
PDF, excel, etc., and (b) to enable a framework for a simple
inclusion of the other domain-dependent knowledge mod-
els. With these extensions comprehended, we anticipate
that the approach will be used to semantically enrich a va-
riety of legacy data and will support the conversion of the
existing Web into a Semantic Web.

Acknowledgement

This work has been supported by the EU IST-projects
ALVIS (Superpeer Semantic Search Engine, IST-1-
002068-STP) and SEKT (Semantically Enabled Knowl-
edge Technologies, IST-2004-506826). The research was
also supported by Slovenian Ministry of Education, Sci-
ence and Sport, and by Marie Curie Fellowship of the Eu-
ropean Community program ’Host Training Sites’, medi-
ated by FZI and AIFB at University of Karlsruhe, Germany.
Thanks to all our colleagues for participating in the evalu-
ation of the system as well as to the reviewers for useful
comments on the paper.

References

[1] Z39.50 International Maintenance Agency. CQL -
Common Query Language, 2004. http://www.
loc.gov/z3950/agency/zing/cql/.

[2] A. Antonacopoulos and J. Hu. Web Document Analy-
sis: Challenges and Opportunities. World Scientific,
2004.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison Wesley, 1999.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The se-
mantic web. Scientific American, 2001(5), 2001.

[5] A. Bratko and B. Filipic. Exploiting structural infor-
mation for semi-structured document categorization.
Information Processing & Management, 42(3):679–
694, 2006.

[6] P. Buitelaar, P. Cimiano, and B. Magnini, editors. On-
tology Learning from Text: Methods, Applications
and Evaluation, volume Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2005.

[7] S. Chakrabarti. Mining the Web: Discovering Knowl-
edge from Hypertext Data. Morgan-Kauffman, 2002.

[8] H. Chen, S. Tsai, and J. Tsai. Mining tables from
large scale HTML texts. In Proceedings of the 18th
International Conference on Computational Linguis-
tics (COLING), pages 166–172, 2000.

[9] P. Cimiano, L. Schmidt-Thieme, A. Pivk, and
S. Staab. Learning taxonomic relations from hetero-
geneous evidence. In P. Buitelaar, P. Cimiano, and
B. Magnini, editors, Ontology Learning from Text:
Methods, Applications and Evaluation, pages 56–71.
IOS Press, 2005.

[10] John G. Cleary and Ian H. Witten. A comparison of
enumerative and adaptive codes. IEEE Transactions
on Information Theory, 30(2):306–315, 1984.

[11] C. Fellbaum. WordNet, an electronic lexical
database. MIT Press, 1998.

[12] W.B. Frakes and R. Baeza-Yates. Information Re-
trieval: Data Structures and Algorithms. Prentice
Hall, 1992.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In VLDB,
pages 518–529, 1999.

[14] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wil-
fong. Why table ground-truthing is hard? In Proceed-
ings of the 6th International Conference on Document
Analysis and Recognition, pages 129–133, 2001.

[15] M. Hurst. Layout and language: Beyond simple text
for information interaction - modelling the table. In
Proceedings of the 2nd International Conference on
Multimodal Interfaces, 1999.

152 Informatica 30 (2006) 143–152 A. Pivk et al.

[16] M. Hurst. Layout and language: Challenges for ta-
ble understanding on the web. In Proceedings of the
International Workshop on Web Document Analysis,
pages 27–30, 2001.

[17] B. Jansen, A. Spink, and J. Bateman. Searchers,
the subjects they search, and sufficiency: A study of
a large sample of excite searchers. In Proceedings
of the World Conference on the WWW, Internet and
Intranet (WebNet-98), pages 913–928. AACE Press,
1998.

[18] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Jour-
nal of the ACM, 42:741–843, 1995.

[19] J.M. Kleinberg. Two Algorithms for Nearest-
neighbor Search in High Dimension. In ACM Sympo-
sium on Theory of Computing, pages 599–608, 1997.

[20] J.M. Kleinberg. Authoritative Sources in a Hyper-
linked Environment. Journal of the ACM, 46(5):604–
632, 1999.

[21] A. Maedche. Ontology Learning for the Semantic
Web. Kluwer Academic Publishers, 2002.

[22] D. Mladenič and M. Grobelnik. Feature Selection on
Hierarchy of Web Documents. Decision Support Sys-
tems, 35:45–87, 2003.

[23] L. Page, S. Brin, R. Motwani, and T. Wino-
grad. The PageRank Citation Ranking: Bring-
ing Order to the Web. Technical report, Stan-
ford Digital Library Technologies Project,
1998. http://www-db.stanford.edu/
~backrub/pageranksub.ps.

[24] F. Peng, S. Dale, and W. Shaojun. Language and Task
Independent Text Categorization with Simple Lan-
guage Models. In Proceedings of the Human Lan-
guage Technology Conference of the ACL, pages 189–
196, Edmonton, Canada, 2003.

[25] A. Pivk. Automatic Generation of Ontologies from
Web Tabular Structures. PhD Thesis (in Slovene),
University of Maribor, Slovenia, 2005.

[26] A. Pivk. Automatic Ontology Generation from Web
Tabular Structures. AI Communications, 19(1):83–85,
2006.

[27] A. Pivk, P. Cimiano, and Y. Sure. From Tables
to Frames. Web Semantics: Science, Services and
Agents on the World Wide Web, 3(2–3):132–146,
2005.

[28] A. Pivk and M. Gams. Domain-dependant informa-
tion gathering agent. Expert Systems with Applica-
tions, 23:207–218, 2002.

[29] A. Pivk and M. Gams. Construction of domain on-
tologies from tables. In Proceedings of the 8th In-
ternational Multi-Conference on Information Society
(IS’05), pages 615–619, 2005.

[30] A. Pivk, Y. Sure, P. Cimiano, M. Gams, V. Rajkovic,
and R. Studer. Transforming Arbitrary Tables into
Logical Form with TARTAR. Data & Knowledge En-
gineering, accepted, 2006.

[31] F. Sebastiani, editor. Advances in Information Re-
trieval, Proceedings of the 25th European Conference
on IR Research (ECIR 2003), Lecture Notes in Com-
puter Science, Vol. 2633, Pisa, Italy, April 14-16,
2003. Springer.

[32] M. Taylor and M. Cromme. Searching very large bod-
ies of data using a transparent peer-to-peer proxy. In
Proceedings of DEXA 2005 Workshop, pages 1049–
1053. IEEE Computer Society, 2005.

[33] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, and
G. Nagy. Ontology generation from tables. In
Proceedings of 4th International Conference on Web
Information Systems Engineering (WISE’03), pages
242–249, 2003.

[34] Y. Wang and J. Hu. A machine learning based ap-
proach for table detection on the web. In Proceedings
of the 11th International Conference on World Wide
Web, pages 242–250. ACM Press, 2002.

[35] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gi-
gabytes: Compression and Indexing Documents and
Images. Multimedia Information and Systems. Mor-
gan Kaufmann, 1999.

[36] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of
table recognition: Models, observations, transforma-
tions, and inferences. International Journal of Docu-
ment Analysis and Recognition, 7(1):1–16, 2004.

Informatica 30 (2006) 153–161 153

Beyond Term Indexing: A P2P Framework for Web Information Retrieval

Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm and Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Keywords: information retrieval, peer-to-peer overlay networks

Received: December 05, 2005

Web search over peer-to-peer (P2P) networks shows promise to become an alternative to the state-of-the-art
search engines since P2P overlays offer means for decentralized search across widely-distributed document
collections. However, the design of effective techniques for P2P indexing and retrieval raises a number of
technical challenges due to potentially unscalable resource (e.g. bandwidth, storage) consumption.
The paper presents a framework for full-text information retrieval in structured P2P networks and intro-
duces a novel retrieval model based on highly discriminative keys—terms and term sets appearing in a
restricted number of documents—that ensure efficient and scalable retrieval. Our goal is to design scalable
techniques for building a global key index in structured P2P overlays for large document collections. We
present experimental results that show acceptable indexing and retrieval costs while the retrieval quality is
comparable to standard centralized solutions with BM25 relevance computation scheme.

Povzetek: Razvito je P2P ogrodje za internetne iskalnike.

1 Introduction

Web search over P2P overlay networks has the potential to
become an alternative to current Web search engines due
to its decentralized nature and favorable scalability proper-
ties. Contemporary Web search engines are in essence cen-
tralized and require a central coordination service, which,
even when replicated, has been identified as a major system
bottleneck [5]. P2P overlays are self-organizing networks
for resource sharing that require no central coordination.
Moreover, they require minimal infrastructure and mainte-
nance, and enable higher diversity in contents and search
methods, which makes P2P Web search appealing from a
business perspective [4].

However, there is an ongoing debate on the feasibility of
P2P Web search for scalability reasons. In [9] it is shown
that the naïve use of P2P networks is practically infeasi-
ble for Web search, since the generated traffic exceeds the
available capacity of the Internet. Thus different schemes
have been devised to make P2P Web search feasible. Sev-
eral approaches target at a term-to-peer indexing strategy,
where the unit of indexing are peers rather than individ-
ual documents [7, 3]. Hierarchical solutions for resource
discovery have also been proposed where a backbone P2P
network maintains a directory service which routes queries
to peers with relevant resources, i.e. documents [2, 11].
At this point little evidence is available whether these ap-
proaches can scale to very-large scale P2P Web search en-
gines.

In this paper we introduce a general framework for infor-
mation retrieval (IR) over structured P2P networks which
keeps indexing at document granularity while ensuring

scalable retrieval costs. Our assumption is that peers are
cooperative and provide documents for indexing that will
become searchable through a global index. At the same
time, they offer computing and storage resources to build
and maintain the global index and the underlying P2P net-
work. Peers choose independently the indexing features
and related posting lists for their local document collec-
tion and, for this task, combine their local knowledge and
the global knowledge maintained by the P2P overlay. A
peer basically advertises its local document collection and
collaborates with other peers by taking the responsibility
for a part of the global indexing space. Note that a sin-
gle peer cannot impose the rules used at a global level, but
a malicious peer might impede the search performance by
providing fictive descriptions of its local collection.

The framework assumes an underlying distributed hash
table (DHT) which maintains a global key-to-document in-
dex. The approach is characterized by the following central
idea: We carefully select the indexing keys so that they con-
sist of terms and term sets that are rare and thus discrimina-
tive with respect to a global document collection. As such,
they appear in a limited number of documents, thus limit-
ing the size of the posting lists associated with the keys in
the global inverted index. This directly addresses the main
problem identified in [9] for structured P2P Web search,
namely the processing and transmission of extremely large
posting lists. The achieved key-based indexing procedure
results in an extremely efficient retrieval because the post-
ing lists associated with the keys in the global P2P index are
short and correspond to precomputed and therefore readily
available results for potential multiple term queries.

Many possible techniques can be considered for creating

154 Informatica 30 (2006) 153–161 I. Podnar et al.

a rare key vocabulary, but the major issue to cope with is the
fact that such a vocabulary can easily become unmanage-
able in size because it theoretically grows with 2|V |, where
V is the single-term vocabulary. Therefore, we present a
particular instantiation of our key-indexing which creates
keys by combining terms appearing in well-defined con-
texts in a limited number of documents. We hereafter refer
to such keys as highly discriminative keys (HDKs). Our
experiments show the following: The growth of the HDK
vocabulary per peer and the size of the global index per peer
are logarithmic when increasing the global document col-
lection by adding new peers that contribute with their local
documents to the global collection. More importantly, the
average posting list size remains constant when increasing
the global document collection size, which bounds the gen-
erated traffic during retrieval. In addition, the observed re-
trieval performance is comparable to the one achieved with
a single-term centralized model using BM25 (Okapi) as rel-
evance computation scheme. Our indexing scheme there-
fore represents a contribution toward scalable P2P Web
search engines that opens the opportunity to index and
search virtually unlimited document collections, well be-
yond the capacity of today’s best centralized solutions.

The rest of the paper is structured as follows: Section 2
gives an overview of existing strategies for P2P informa-
tion retrieval and introduces our concept of indexing with
HDKs. Section 3 presents the P2P framework for build-
ing a global full-text index in structured P2P overlays with
scalable retrieval costs and provide details about the HDK-
based retrieval model. In Section 4 we analyze its perfor-
mance through experimental evaluations using our truly-
distributed P2P-IR prototype. The related work in the area
of P2P information retrieval is revisited in Section 5, and
we conclude the paper in Section 6.

2 Web information retrieval over
P2P overlays

There are two main strategies for designing P2P search
engines in the area of IR: The first strategy uses unstruc-
tured/hierarchical P2P networks where peers maintain lo-
cal indexes of their document collections, and the second
strategy builds a global index in structured P2P networks.

In a P2P network with N peers and a global document
collection D, the first strategy divides D over the peer net-
work, and each peer Pi maintains the index of its local doc-
ument collection Di. Such indexes are in principle inde-
pendent, and a naïve solution broadcasts a query to all the
peers generating an unscalable number of messages. To
limit the query traffic, more advanced approaches use e.g.
random walks [12] or answer the query at two levels, the
peer and document level. At the first level a group of peers
with relevant document collections is located, while at the
second level the query is submitted to relevant peers that
produce answers by querying their local indexes. The an-
swers are subsequently merged to produce a single ranked

answer set. A number of different approaches for the initial
peer selection process have been proposed in the context of
unstructured [7], hierarchical [2, 10], and structured P2P
overlays [3].

The second strategy splits the global document index
over a structured P2P network that maintains a global DHT
mapping of each indexing feature to the related posting
list [15, 18]. Structured P2P overlays offer efficient data
inserts and searches [1]: insert(key, data) routes the data
to the peer responsible for the given key, and search(key)
retrieves the data for the given key. Such networks typically
guarantee the routing latency of O(logN) number of hops,
while the routing information maintained by each peer is
bounded by O(logN).

term 1 posting list 1

term 2 posting list 2

term M-1 posting list M-1

term M posting list M

... ...

long posting lists

s
m
a
ll
v
o
c
.

key 11 posting list 11

key 12 posting list 12

key 1i posting list 1i

... ...

short posting lists

la
rg
e
 v
o
c
.

PEER 1

...

key N1 posting list N1

key N2 posting list N2

key Nj posting list Nj

... ... PEER N

PEER 1

PEER N

...

indexing with rare keys

naïve approach

Figure 1: The basic idea of indexing using rare keys

The naïve approach splits the global index over a peer
network as depicted in the upper part of Figure 1 and makes
each peer responsible for a disjoint set of indexing terms
from the global vocabulary. While solving the issue of stor-
ing very large indexes, such an approach is practically in-
feasible and unscalable because of extremely large posting
lists for frequent terms. The key-based indexing approach
directly addresses this issue by limiting the size of the post-
ing lists as shown in the lower part of Figure 1. The key
index only contains single terms and term sets that are rare
and thus discriminative with respect to a document collec-
tion. Notice that the extension of the index entries to rare
terms and term sets, while limiting the size of the posting
lists, entails the expansion of the key vocabulary. How-
ever, the distributed nature of the global index can provide
a virtually unlimited storage space if the number of peers
is large enough, but only in case the growth of the key vo-
cabulary size and the corresponding index size is scalable.

We define a key k from the set of keys K as a set of
terms {t1, t2, . . . , ts}. These terms are elements of the doc-
ument collection indexing vocabulary V appearing in a sin-
gle document d ∈ D. The number of terms comprising a
key is bounded, i.e. 1 ≤ s ≤ smax.

BEYOND TERM INDEXING: A P2P FRAMEWORK FOR. . . Informatica 30 (2006) 153–161 155

The quality of a key k for a given document d with re-
spect to indexing adequacy is determined by its discrim-
inative power. To be discriminative, a key k must be as
specific as possible with respect to the document d it is as-
sociated with and the corresponding document collection
D [17]. In this perspective, we categorize a key on the
basis of its global document frequency (DF), and define a
threshold DFmax to divide the set of keys K into two dis-
joint classes, rare and frequent keys. If a key k appears in
more than DFmax documents, i.e. DF (k) > DFmax, the
key is frequent, and has low discriminative power. Other-
wise, k is rare and specific with respect to the documents it
is associated with in the document collection.

The rareness property is in line with the capacity con-
straints of P2P networks that are capable of storing and
transmitting posting lists of limited size. However, the set
of rare keys, although bounded for a limited document col-
lection size, might be extremely large. It is therefore im-
portant to select among the potential key candidates those
that have favorable properties for the retrieval performance
of the P2P search engine. Additionally, it is important to
understand that keys can be interpreted as discriminative
user queries that can be answered very efficiently because
the global index already stores precomputed answers asso-
ciated with such queries.

3 P2P framework for information
retrieval with HDKs

In this section we present a general framework for full-text
retrieval in a P2P environment using key-based indexing.
The framework is designed for building a global key-based
index in structured P2P networks and takes into account ca-
pacity constraints of P2P networks, such as available band-
width and storage. Resource management is performed at
two levels, locally as a peer builds an index of its local
document collection to be subsequently inserted into the
global index, and globally as the peer maintains a part of
the global index. Note that a single peer can simultane-
ously perform tasks at both levels.

3.1 Indexing
Indexing can be divided into the following three steps:

1. local selection of the vocabulary,

2. local selection of postings, and

3. global selection of postings.

The two initial steps represent local efforts of a single
peer to choose suitable indexing features for its local doc-
ument collection since each peer is competing with others
for a part of the global index space. The third step is per-
formed by all the peers maintaining the global index.

As the example in Figure 2 shows, Pi builds the key vo-
cabulary Ki for its local document collection Di. In the

next step it chooses a set of postings associated with each
key according to the global resource constraints it is aware
of, and subsequently inserts the (key, posting list) pairs
into the P2P overlay. In the given example, Pj is respon-
sible for three such pairs from Pi. Concurrently, two other
peers Pk and Pl have built a vocabulary for their document
collections, and have started inserting (key, posting list)
pairs into the P2P overlay. In the third step Pj chooses
postings to be stored in the global index, e.g., it builds a
posting list for kx using the postings received from Pi, Pk

and Pl.
We will now describe in more details each of the three

indexing steps.

3.1.1 Vocabulary selection

A peer chooses locally rare keys because it assumes they
are good indexing candidates that are potentially globally
rare. A peer can also put frequent keys into the key vo-
cabulary if they are strongly representative of the docu-
ments they are associated with (as measured by standard
IR weighting schemes). The goal of this phase is to se-
lect discriminative keys that meet the following criteria:
the selected keys can achieve good retrieval quality, they
are likely to appear in user queries, and the key vocabulary
does not contain redundant keys.

Possible key filtering mechanisms for selecting a ‘good’
key vocabulary are the following:

Proximity. The proximity filter uses textual context to re-
duce the size of the rare key vocabulary, and retains
keys only composed of terms appearing in the same
textual context, e.g., a phrase, a paragraph, or a docu-
ment window of a given maximal size. The main argu-
mentation behind this approach is that words appear-
ing close to each other in documents are good candi-
dates to appear together in a query. The analysis pre-
sented in [16] reports the importance of text passages
that are more responsive to particular user needs than
full documents. A similar reasoning is used in a re-
cently proposed method for static index pruning [8]
which indexes ‘significant sentences’, i.e. phrases ap-
pearing in similar contexts.

Redundancy. A key k is semantically adequate for a doc-
ument d if there is a high probability that a user pro-
duces k when searching for d. As the user is more
likely to generate generic terms in a query, a semanti-
cally adequate key contains a specific combination of
quite generic and frequent terms. In other words, the
redundancy filter ensures that all term subsets of a key
are frequent keys. Note that all supersets of rare keys
are redundant, as they only increase the vocabulary
without improving retrieval performance.

Top-k keys. As it is possible to compute relevance be-
tween a document and a key, we can choose for each
document the top-k most relevant keys. The number
of chosen keys can, for example, depend on document

156 Informatica 30 (2006) 153–161 I. Podnar et al.

ki1
ki2

kij

...

Ki

Di

ki1 posting listi1
ki2 posting listi2

kij posting listij

... ...
Step 1

select

vocabulary

Step 2

select

postings

(locally)

Peeri

...

insert

(key, posting list)

into P2P overlay

Peerj

Step 3

select postings

(globally)
Peerl (klx, posting listlx)

(klz, posting listlz)

Peerk

(kx, posting listx)

(ky, posting listy)

(kz, posting listz)(kkx, posting listkx)

(kky, posting listky)

(kix, posting listix)

(kiy, posting listiy)

(kiz, posting listiz)

Figure 2: The framework for P2P indexing

length and be controlled by a relevance threshold. The
key vocabulary size can also be limited to a predefined
value.

Query-adaptive indexing. Keys are coined by combining
terms appearing in past user queries.

Note that the above mentioned techniques can be com-
bined to reduce the key vocabulary size. Our current pro-
totype uses the proximity and redundancy filter, and com-
putes HDKs by combining terms appearing within a doc-
ument window of maximal size w while ensuring that all
key subsets are globally frequent. We also extend the key
vocabulary with frequent keys to improve retrieval perfor-
mance. The top-k indexing of frequent keys is feasible be-
cause our analysis shows that the size of the frequent key
vocabulary is less than 1% of the HDK vocabulary size.

Computing HDKs. We compute HDKs of increasing
size because a peer needs to know s-level globally frequent
keys to compute (s + 1)-level keys since these are candi-
dates for expansion with additional keys. An indexing peer
first categorizes terms from V as locally rare and locally
frequent single-term keys, and publishes their local DFs in
the P2P network. In our current implementation the index-
ing peer needs to be informed if keys from its local doc-
ument collection are globally frequent. Locally frequent
keys are necessarily globally frequent, but locally rare keys
may still be globally frequent. As the indexing peer has no
local knowledge about the global key DFs, it relies on the
P2P network which maintains the global statistics and no-
tifies the indexing peer if a key considered as locally rare is
globally frequent. With such a notification mechanism in
place, each indexing peer will have a consistent knowledge
about globally frequent keys for its local document collec-
tion. A globally frequent key is expended by another fre-
quent key with a restriction that their terms occur within a
predefined window as defined by the proximity filter. The
indexing peer counts the number of documents in which
this property holds to determine local DF of a newly cre-
ated key, and categorizes it as locally rare or frequent. Then

it publishes the key and its DF into the P2P network. The
process continues until smax-term keys are created.

3.1.2 Local selection of postings

In this phase, a peer decides which documents are indexed
for its key vocabulary. Since there are capacity constrains
that restrict the number of postings associated with a key,
each peer is allowed to insert only a limited number of post-
ings, e.g. controlled by a globally defined value DFmax.
Firstly, a peer can insert all postings for locally rare keys,
and the P2P overlay then decides globally about the set of
postings that get stored. Secondly, a peer can be notified
when its already published locally rare keys become glob-
ally frequent, and using this global knowledge provided by
the P2P network, insert postings only for globally rare keys,
which will reduce the indexing traffic compared to the first
solution. Thirdly, for locally and globally frequent keys,
a peer can publish top-DFmax representative postings by
ranking documents based on their relevance with respect to
a given key.

Our current prototype implements the second and third
option: Indexing peers publish all local postings for glob-
ally rare keys. To improve retrieval performance and ef-
ficiently answer queries composed of frequent terms and
term combinations, we have decided to index also glob-
ally frequent keys and maintain only DFmax postings in
the global index. Indexing peers therefore also insert top-
DFmax postings associated with their local keys that are
globally frequent.

3.1.3 Global selection of postings

This phase takes place at the peer responsible for storing
and maintaining the posting list associated with a given key.
The total index size maintained by the peer is has to comply
with its available storage space, which in turn also influ-
ences the maximum number of postings associated with a
key. Furthermore, the posting list size is restricted to meet
capacity constraints imposed by the retrieval phase.

BEYOND TERM INDEXING: A P2P FRAMEWORK FOR. . . Informatica 30 (2006) 153–161 157

For globally rare keys peers store all received posting
lists because rare key are by definition associated with short
posting lists. If there are more postings than the constraints
allow, the responsible peer has to select a set of postings
to keep as it is already done locally for frequent keys. The
mechanisms for choosing DFmax postings can range from
a simple random selection procedure, to sophisticated rank-
ing of postings using available techniques for content and
link-based ranking. Our prototype currently stores all re-
ceived posting associated with globally rare keys and top-
DFmax ranked postings associated with frequent keys, i.e.
documents with highest relevance to a frequent keys ac-
cording to TF-IDF scores.

3.2 Retrieval
The retrieval part of our framework deals with the problem
of finding, given a query Q = {t1, t2, . . . , tq}, the corre-
sponding relevant keys in the global P2P index, retrieving
the postings associated with those keys, and ranking of the
result set. It is performed in two steps:

1. mapping of a query to keys and subsequent retrieval
of postings from the P2P overlay, and

2. merging of the received answers with a global ranking
scheme in order to produce a single hit list.

Figure 3 shows the querying process when peer Pi re-
ceives the query Q. We assume Q is a simple set of terms,
and it must be mapped to a set of keys present in the P2P
global index. All term subsets of a query are possible key
candidates that may be stored in the P2P index, and Pi

needs to explore the lattice of term combinations and check
which key candidates are indeed keys from the global in-
dex.

The optimistic strategy is to start with the largest possi-
ble term set (marked as level-1), limited either by the query
size q (as it is assumed in Figure 3) or the maximal number
of terms forming a key (smax). Pi will try to retrieve the
keys sequentially by exploring initially level-1 keys, and
then depending on the result of the previous step continue
with level-2 keys, . . ., level-q keys. The perfect situation
occurs when k11 = {t1, t2, . . . , tq} is an HDK, in other
words, a user has posed a good discriminative query for the
indexed document collection: The posting list is readily
available and is simply retrieved from the global index by
issuing a single request search(k11) to the P2P network.
Indeed, this will not happen with all user queries. There-
fore, level-2 set of potential key candidates of size q − 1
is explored. If the P2P network stores postings associated
with level-2 keys that cover all terms in Q, the hit list is the
union of the retrieved postings. However, it is possible that
either (a) no level-2 keys exist in the index, or (b) that some
ti ∈ Q are not covered by the retrieved keys. In case of (a),
Pi explores all level-3 keys and subsequently higher level
keys until finally reaching level-q. In case of (b), Pi ex-
plores level-3 keys but only those that contain non-covered

terms from the previous levels. Depending on the retrieved
set of keys, the procedure is extended to higher-level keys
until all ti ∈ Q are covered by the retrieved key set. The re-
sulting answer set is the union of postings associated with
the retrieved keys.

However, in some cases the answer set may be empty
because all key candidates are frequent. A valid option is
to notify a user that the query is non-discriminative with
respect to the document collection, and offer support for
query refinement. Another possibility is to apply additional
measures and, for example, index frequent keys or perform
query expansion that maps terms to semantically related
terms which enables the creation of many key-candidates
and increases the probability of finding relevant keys in
the global index. As our prototype currently indexes fre-
quent keys, all single-term keys from V can eventually be
retrieved, which solves the problem of queries that map to
frequent keys.

Let us again consider the example in Figure 3. The P2P
network does not contain k11, and Pi searches for level-2
keys. Out of q possible level-2 keys, only k21 is an HDK
and its posting list is retrieved from Pl. However, tq is still
not covered, and Pi unsuccessfully explores keys on higher
levels containing tq , until finally reaching level-q where a
posting list is associated with kqq .

Both posting lists are merged by a simple union proce-
dure in the second step. Note that there is a possibility that
tq appears in some documents associated with k21, but as
it does not appear within the predefined window, k11 was
not produced during the indexing procedure. Note also that
documents associated with kqq are those with highest rele-
vance to tq , but they may also contain other terms from Q,
also outside the window. The ranking function produces
the final ranked result set giving higher scores to documents
with higher relevance to Q. The peer uses available ranking
methods, either content based, and/or link-based, to pro-
duce the final ranking of the merged result set. The ranking
procedure must be implemented in a distributed fashion us-
ing global document collection statistics such as global DFs
available from the P2P index.

4 Experimental evaluation
Experiments have been performed using our prototype
P2P search engine which is built on top of the P-Grid
P2P layer [19]. Our implementation is a fully-functional
P2P search engine that integrates a solution for distributed
maintenance of global key vocabulary with associated doc-
ument frequencies, calculates HDKs used for indexing in
a completely distributed fashion, and stores posting lists in
a global index for computed keys. The presented experi-
ments analyze both rare and frequent keys associated with
top-DFmax postings, and the corresponding index sizes.

Experimental setup. The experiments were carried out
using a subset of news articles from the Reuters corpus1.

1http://about.reuters.com/researchandstandards/corpus/

158 Informatica 30 (2006) 153–161 I. Podnar et al.

Peeri

k11= {t1, t2, … tq}

k21={t1, t2, … tq-1}, k22, …, k2q
...

kq1= {t1}, kq2= {t2}… kqq= {tq}

Step 1

query-to-key

mapping

...Search sequentially for keys

starting with level 1, then 2,

…, with a goal of covering all

terms t1, t2, … tq.

query

Q = {t1, t2, … tq} ranked hit

list for Q

Step 2

rank postings

using global

metrics

Peerk

Peerl

posting list_k21

hit list

posting list_kqq

(level-1)

(level-2)

...

(level-q)

Figure 3: The framework for P2P retrieval

The documents in our test collection contain between 70
and 3000 words, while the average number of terms in a
document is 170, and the average number of unique terms
is 102. To simulate the evolution of a P2P system, i.e. peers
joining the network and increasing the document collec-
tion, we started the experiment with 4 peers, and added
additional 4 peers at each new experimental run. Each peer
contributes with 5000 documents to the global collection,
and computes HDKs for its local documents. Therefore,
the initial global document collection for 4 peers is 20,000
documents, and it is augmented by the new 20,000 docu-
ments for each experimental run. The maximum number of
peers is 24, hosting in total the global collection of 120,000
documents. The experiments were performed on our cam-
pus intranet. Each peer runs on a Linux RedHat PC with
1GB of main memory connected via 100 Mbit Ethernet.
The prototype system is implemented in Java.

Performance analysis. Experiments investigate index-
ing and retrieval costs in terms of bandwidth and stor-
age consumption, and compare retrieval performance of
our P2P search engine to a centralized engine. All docu-
ments are pre-processed: First we removed 250 common
English stop words and applied the Porter stemmer, and
then we removed 100 extremely frequent terms (e.g. the
term ‘reuters’ appears in all the news). DFmax is set to
250 and 500, and smax is 3. We have decided to build
keys with a maximum of 3 terms having observed that an
increase of smax substantially increases the computational
load without significant improvement of retrieval perfor-
mance. In particular this is beneficial for P2P Web search
engines because short queries are the ones typically used
for Web retrieval. We set the window size to 20 words for
the proximity filter as this is the average length of phrases
in the collection.

Figure 4 shows the growth of the HDK vocabulary per
peer maintained in the global index when increasing the
number of documents by adding new peers. Note that
each peer contributes an equal number of documents into
the global collection. As expected, an increased value of
DFmax reduces the key vocabulary size because there are

0

50000

100000

150000

200000

250000

300000

350000

400000

20000 40000 60000 80000 100000 120000

#Documents

#K
ey

s

DFmax=250 DFmax=500

Figure 4: HDK vocabulary per peer

less frequent single-term keys to build 2 and 3-term rare
keys. Both experimentally obtained result sequences show
logarithmic growth and are expected to converge to a con-
stant value for large document collection sizes. We can
conclude that a peer will maintain a negligibly increasing
number of HDKs when increasing the document collec-
tion size by adding new peers. Therefore, our experiments
show that the size of the total key vocabulary maintained
in the global P2P index will increase almost linearly with
the number of documents for large document collections.
The number of keys is significantly larger compared to the
single-term vocabulary that grows with

√
x (Heaps law),

but we expect benefits in terms of retrieval efficiency and
bandwidth consumption.

Figure 5 compares the average posting list size in case
of HDK and single-term indexing. Surprisingly, the aver-
age posting list size of the HDK index remains constant
and much smaller than DFmax, although we only limit the
maximum size of posting lists. It is superior to single-term
indexing that exhibits a linear increase of the average post-
ing list size. This finding has a major impact on the band-
width consumption during retrieval as it is shown in Fig-
ure 6 that depicts the average number of retrieved postings
per query and compares single-term to the HDK approach
with DFmax = 250 and DFmax = 500.

Since a query log is not available for the Reuters corpus,

BEYOND TERM INDEXING: A P2P FRAMEWORK FOR. . . Informatica 30 (2006) 153–161 159

0

20

40

60

80

100

120

20000 40000 60000 80000 100000 120000

#Documents

#P
o

st
in

g
s

HDK, DFmax=250 HDK, DFmax=500 ST

Figure 5: Average posting list size

we have preprocessed a Wikipedia query log2 to generate
1,000 queries. From all available queries we have initially
extracted 1,000,000 queries that have more than 20 hits
from the Reuters corpus. The resulting 1,000 queries were
selected randomly from this set. The generated queries
contain on average 3.14 terms, with a minimum of 2 and
maximum of 8 terms. Note that longer queries are favor-
able for our search engine because the probability of find-
ing precomputed rare keys in the P2P index increases. Sin-
gle term queries would generate bounded traffic since only
DFmax postings are retrieved and are therefore not consid-
ered.

Figure 6 shows an enormous reduction of bandwidth
consumption per query of the HDK-based approach com-
pared to the naïve single term indexing: 92% for DFmax =
500 and even 96% for DFmax = 250. In addition, the
reduction increases when increasing the number of doc-
uments in the global collection which practically demon-
strates the effect of the bounded number of index postings
to bandwidth consumption during retrieval.

0

2000

4000

6000

8000

10000

12000

14000

80000 100000 120000

#Documents

#P
o

st
in

g
s HDK, DFmax=250

HDK, DFmax=500

ST

Figure 6: Number of retrieved postings per query

The essential question remains whether the retrieval per-
formance of the HDK approach is satisfactory and compa-
rable to centralized counterparts. Due to the lack of rele-
vant judgment for the generated query set, we have com-
pared the retrieval performance to a centralized engine3

with BM25 relevance computation scheme which is cur-
rently considered as one of the top performing relevance
schemes [13].

2www.wikipedia.org, query log 08/2004 and 09/2004
3Terrier search engine, http://ir.dcs.gla.ac.uk/terrier/

0
10

20
30
40
50

60
70
80

90
100

80000 100000 120000

#Documents

o
ve

rl
ap

[%
]

HDK, DFmax=250

HDK, DFmax=500

ST

Figure 7: Overlap on top 20

Figure 7 presents the overlap on top-20 retrieved docu-
ments retrieved by our system and the Terrier search en-
gine. We are interested in the high-end ranking as typ-
ical users are often interested only in the top 20 results.
The comparison shows significant and satisfactory over-
lap between the retrieved result sets. As expected, the re-
trieval performance is better for larger DFmax as we are
approaching single-term indexing (when DFmax equals
vocabulary size, all HDKs are single-term). There is ob-
viously a trade-off between retrieval quality and bandwidth
consumption of our indexing strategy because an increased
value of DFmax results in an increased bandwidth con-
sumption during retrieval, while on the other hand, offers
retrieval performance that better mimics centralized en-
gines. However, as required bandwidth is the major ob-
stacle for retrieval, it is vital to choose an adequate value
for DFmax taking into account available network capacity.
There is another limiting factor influenced by this param-
eter: Note that the process of building the key vocabulary
is less expensive in terms of computational costs and band-
width consumption for an increased DFmax. This is intu-
itively clear because for small values of DFmax, the num-
ber of potential terms for building rare keys increases, and
the whole process creates more precomputed keys, which
is obviously very efficient during the retrieval phase if such
term sets, i.e. keys, appear in user queries.

0

1000000

2000000

3000000

4000000

5000000

6000000

20000 40000 60000 80000 100000 120000

#Documents

#P
o

st
in

g
s

DFmax=250 DFmax=500 ST

Figure 8: Number of postings per peer (index size)

To quantify indexing costs and the influence of DFmax

on required storage and bandwidth consumption, Figure 8
shows the average number of postings stored per peer for
DFmax = 250, DFmax = 500, and the single-term index.

160 Informatica 30 (2006) 153–161 I. Podnar et al.

This is the actual index size per peer. The curve is logarith-
mic for HDKs as it is mostly influenced by the key vocab-
ulary size, and is linear for the single-term index (the de-
crease of the term vocabulary size per peer compensates for
the increased posting list size). It is visible that a peer hosts
significantly more postings for the HDK approach, and the
index size increases when decreasing DFmax. The index-
ing costs are still feasible and profitable because the gains
in terms of bandwidth consumption during the query phase
are huge, and compensate for the increased indexing costs.
Nevertheless, we plan to investigate further techniques to
reduce the index size, and study the influence of DFmax

on bandwidth consumption during indexing and retrieval,
and on the resulting retrieval performance.

5 Related Work

To the best of our knowledge, [6] is the only published P2P
framework for information retrieval that is based on dis-
tributed semantic indexing on top of structured P2P net-
works, and therefore highly related to our work. However,
it uses a different indexing approach which relies on se-
mantic locality to cluster documents with similar seman-
tics, and to store them on nearby peers.

A number of solutions have been proposed to cope with
the scalability problem of P2P information retrieval. Re-
cent approaches combine global knowledge with local in-
dexes: For example, PlanetP [7] gossips compressed in-
formation about peers’ collections in an unstructured P2P
network, while MINERVA [3] maintains a global index
with peer collection statistics in a structured P2P overlay
to facilitate the peer selection process, and implements a
method which penalizes peers holding overlapping docu-
ment collections. A similar approach for resource selection
is presented in [10, 11] in the context of hierarchical P2P
networks where special directory nodes route queries to ap-
propriate peers having high chances of answering a query.
A recent solution builds an index dynamically following
user queries [2]. A super-peer backbone network main-
tains the information about good candidates for answering
a query, while peers answer the queries based on their local
document collections. Since large posting lists are the ma-
jor concern for global single-term indexing, both [15] and
[18] have proposed top-k posting list joins, Bloom filters,
and caching as promising techniques to reduce search costs
for multi-term queries.

The listed solutions are orthogonal to our approach since
they use different assumptions to reduce network traffic.
However, our approach is not the only indexing strategy
that uses term sets as indexing features. The set-based
model [14] indexes term sets occurring in queries, and ex-
ploits term correlations to reduce the number of indexed
term sets. The authors report significant gains in terms
of retrieval precision and average query processing time,
while the increased index processing time is acceptable. In
contrast to our indexing scheme, the set-based model has

been used to index frequent term sets, and has been de-
signed for a centralized setting.

6 Conclusion
We have presented a P2P framework for information re-
trieval that uses a novel retrieval model based on global
indexing of rare keys in structured P2P overlay networks.
Rare keys are terms and term sets occurring in a limited
number of documents, limiting thus the size of posting
lists stored in the global index. This approach directly ad-
dress the unscalable network traffic cased by large post-
ing lists for single-term indexing. The experimental results
have shown the potential of our approach in preserving a
retrieval quality (top-k precision) comparable to the stan-
dard single term with BM25 scoring scheme with enor-
mous reduction of generated traffic during retrieval. Next,
it gives evidence that the indexing process is feasible be-
cause it produces the key vocabulary and global index of
manageable size. More importantly, the average posting
list size remains constant when increasing the global docu-
ment collection size. Therefore, the generated traffic during
retrieval remains bounded, which solves one of the major
obstacles for scalable IR in P2P networks.

Acknowledgements
The work presented in this paper was carried out in the
framework of the EPFL Center for Global Computing and
supported by the Swiss National Funding Agency OFES as
part of the European FP 6 STREP project ALVIS (002068).

References
[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas,

S. Haridi, and M. Hauswirth. The Essence of P2P: A Refer-
ence Architecture for Overlay Networks. In Fifth IEEE In-
ternational Conference on Peer-to-Peer Computing, pages
11–20, 2005.

[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Dl
meets p2p - distributed document retrieval based on clas-
sification and content. In 9th European Conference on
Research and Advanced Technology for Digital Libraries,
(ECDL), pages 379–390, 2005.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving collection selection with overlap
awareness in P2P search engines. In Proceedings of the
28th annual international ACM SIGIR conference on Re-
search and development in information retrieval (SIGIR
’05), pages 67–74, 2005.

[4] W. Buntine, K. Aberer, I. Podnar, and M. Rajman. Opportu-
nities from open source search. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelli-
gence, pages 2–8, 2005.

[5] F. Cacheda, V. Plachouras, and I. Ounis. A case study of
distributed information retrieval architectures to index one
terabyte of text. Inf. Process. Manage., 41(5):1141–1161,
2005.

BEYOND TERM INDEXING: A P2P FRAMEWORK FOR. . . Informatica 30 (2006) 153–161 161

[6] Y. Chen, Z. Xu, and C. Zhai. A scalable semantic indexing
framework for peer-to-peer information retrieval. In SIGIR
2005 workshop: Heterogeneous and Distributed Informa-
tion Retrieval, 2005.

[7] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content Ad-
dressable Peer-to-Peer Information Sharing Communities.
In 12th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-12), June 2003.

[8] E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S.
Silva, P. Calado, and M. A. Nascimento. Improving Web
search efficiency via a locality based static pruning method.
In WWW ’05: Proceedings of the 14th International Con-
ference on World Wide Web, pages 235–244, 2005.

[9] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. The feasibility of peer-to-peer web indexing and
search. In Peer-to-Peer Systems II: 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS), pages 207Ű–215,
2003.

[10] J. Lu and J. Callan. Content-based retrieval in hybrid peer-
to-peer networks. In Proceedings of the 12th International
Conference on Information and Knowledge Management
(CIKM ’03), pages 199–206, 2003.

[11] J. Lu and J. Callan. Federated search of text-based digital
libraries in hierarchical peer-to-peer networks. In Advances
in Information Retrieval, 27th European Conference on IR
Research (ECIR), pages 52–66, 2005.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In 16th
International Conference on Supercomputing, June 2002.

[13] V. Plachouras, B. He, and I. Ounis. University of Glasgow
at TREC2004: Experiments in Web, Robust and Terabyte
tracks with Terrier. In Proceeddings of the 13th Text RE-
trieval Conference (TREC 2004), 2004.

[14] B. Pôssas, N. Ziviani, J. Wagner Meira, and B. Ribeiro-
Neto. Set-based vector model: An efficient approach
for correlation-based ranking. ACM Trans. Inf. Syst.,
23(4):397–429, 2005.

[15] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. MiddlewareŠ03, 2003.

[16] G. Salton, J. Allan, and C. Buckley. Approaches to Passage
Retrieval in Full Text Information Systems. In Proceedings
of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
49–58, 1993.

[17] G. Salton and C. Yang. On the specification of term val-
ues in automatic indexing. Journal of Documentation,
4(29):351–372, 1973.

[18] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Khar-
razi, X. Long, and K. Shanmugasundaram. ODISSEA:
A Peer-to-Peer Architecture for Scalable Web Search and
Information Retrieval. Proc. Int’l Workshop Web and
Databases (WebDB ’03), pages 67Ű–73, 2003.

[19] The P-Grid Consortium. The P-Grid project, 2005.
http://www.p-grid.org/.

162 Informatica 30 (2006) 153–161 I. Podnar et al.

Informatica 30 (2006) 163–172 163

A Semantic Kernel to Classify Texts with Very Few Training Examples

Roberto Basili, Marco Cammisa and Alessandro Moschitti
Department of Computer Science
University of Rome "Tor Vergata"
Rome,Italy
e-mail: {basili,cammisa,moschitti}@info.uniroma2.it

Keywords: kernel methods, similarity measures, support vector machines, WordNet

Received: May 12, 2005

Advanced techniques to access the information distributed on the Web often exploit automatic text cat-
egorization to filter out irrelevant data before activating specific searching procedures. The drawback of
such approach is the need of a large number of training documents to train the target classifiers. One way
to reduce such number relates to the use of more effective document similarities based on prior knowl-
edge. Unfortunately, previous work has shown that such information (e.g. WordNet) causes the decrease
of retrieval accuracy.
In this paper, we propose kernel functions to use prior knowledge in learning algorithms for document
classification. Such kernels implement balanced and statistically coherent document similarities in a vector
space by means of the term similarity based on the WordNet hierarchy. Cross-validation results show the
benefit of the approach for Support Vector Machines when few training examples are available.

Povzetek: Predstavljena je kategorizacija besedil na osnovi malo primerov.

1 Introduction

The access to Web distributed information often requires
the detection and filtering of the target objects (e.g. texts)
before specialized automatic retrieval processes can be ap-
plied. In this perspective, text categorization (TC) is a use-
ful approach to filter out irrelevant (or equivalently accept
relevant) data.

As the Web is a dynamic source of information, a flexible
and fast design of categorization systems is required. One
of the most important aspects to achieve the above proper-
ties is to limit the time and effort needed to manually an-
notate large training data. Unfortunately, when few data
is available the classification accuracy is rather unsatisfac-
tory. The main reason for this outcome is the document
representation based on bag-of-words along with the term
matching document similarity. If few documents are avail-
able for training there is a high probability that terms in test
documents will not be matched. Consequently, the docu-
ment similarity results inadequate for an effective classifi-
cation.

This problem has been tackled by enriching the docu-
ment representation with term clustering (term generaliza-
tion) or adding compound terms (term specification). Such
approaches are based on the assumption that the similarity
between two documents can be expressed as the similarity
between pairs of complex terms or term clusters. The lat-
ter are built based on corpus term distributions, e.g. [4], or
prior knowledge external to the target corpus (e.g. provided
by WordNet [9]).

The main problem of term cluster representation is the

unclear relationship with the one based on simple words.
Although (semantic) clusters tend to improve the system
recall, simple terms are, on a large scale, more accurate
(e.g. [17]). To overcome this problem, hybrid spaces con-
taining terms and clusters were experimented (e.g. [19])
but, again, the results showed that the mixed statistical dis-
tributions of clusters and terms impact either marginally or
even negatively on the overall accuracy. Hence, the suc-
cessful introduction of prior/external knowledge relies on
the solution of this problem.

In this paper, we propose a model to introduce the se-
mantic lexical knowledge encoded in the WN hierarchy
in automatic text classification. The idea is to compute
document similarity between two documents d1 and d2 by
summing the term similarity contributions of all term pairs
〈t1, t2〉 where t1 ∈ d1 and t2 ∈ d2. Each pair contribu-
tion is evaluated by considering the spatial and topolog-
ical properties that the two compounding terms have in
WN. Such approach has two advantages: (a) we obtain a
well defined space which supports the similarity between
terms of different surface forms based on external knowl-
edge and (b) we avoid to explicitly define term or sense
clusters which inevitably introduce noise.

The above document similarity is a valid kernel that can
be used with kernel-based learning machine methods such
as Support Vector Machines (SVMs) [25]. Moreover, as
we believe that the external knowledge in TC is not very
useful when a sufficient amount of training documents is
available, we experimented our model in poor training con-
ditions (e.g. 10 documents for each category). The im-
provement in the accuracy, observed on the classification

164 Informatica 30 (2006) 163–172 R. Basili et al.

of the well known Reuters and 20 NewsGroups corpora,
shows that our document similarity model is very promis-
ing for general IR tasks: unlike previous attempts (e.g.
[26, 22, 17], it makes sense of the adoption of semantic
external resources (i.e. WN) in IR.

Section 2 introduces the WordNet-based term similar-
ity whereas Section 3 defines the new document similar-
ity measure, the kernel function and its use within SVMs.
Section 4 discusses the computational aspects of such ker-
nel. Section 5 presents the comparative results between the
traditional linear and the WN-based kernels within SVMs.
In Section 6 comparative discussion against the related IR
literature is carried out. Finally Section 6 derives the con-
clusions.

2 Term similarity based on general
knowledge

In IR, similarity metrics in vector space models are usually
driven by lexical matching. When small training material
is available, few words can be effectively used and the re-
sulting document similarity may be inaccurate. Semantic
generalizations overcome data sparseness problems as con-
tributions from different but semantically similar words can
be derived.

Methods for the induction of semantic word clusters
have been widely used in language modeling and lexical
acquisition tasks (e.g. [7]). The linguistic resource em-
ployed in most previous work is WordNet [9] which con-
tains three subhierarchies for nouns, verbs and adjectives.
Each hierarchy represents lexicalized concepts (or senses)
organized according to an "is-a-kind-of " relation, where
a concept s is described by a set of words syn(s), called
synset, and the words w ∈ syn(s) are synonyms accord-
ing to the sense s.

For example, the words line, argumentation, logical ar-
gument and line of reasoning describe a synset which ex-
presses the methodical process of logical reasoning (e.g. "I
can’t follow your line of reasoning"). Each word/term may
be lexically related to more than one synset depending on
its senses. The word line is also a member of the synset
line, dividing line, demarcation and contrast, as a line de-
notes also a conceptual separation (e.g. "there is a narrow
line between sanity and insanity"). The Wordnet noun hier-
archy is a direct acyclic graph1 in which the edges establish
the direct_isa relations between two synsets.

2.1 Problems with WordNet similarities
The automatic use of WordNet for NLP and IR tasks has
shown to be very complex:

First, how the topological distance among senses is re-
lated to their corresponding conceptual distance is unclear.

1As only the 1% of its nodes own more than one parent in the graph,
most of the techniques assume the hierarchy to be a tree, and treat the few
exception heuristically.

The pervasive lexical ambiguity is also problematic as it
impacts on the measure of conceptual distances between
word pairs.

Second, the approximation of a set of concepts by means
of their generalization in the hierarchy implies a conceptual
loss that affects the target IR (or NLP) tasks. For example,
black and white are colors but also chess pieces and this
impacts on the similarity score that should be used in IR
applications.

Finally, similar words play different roles in IR tasks and
in other NLP-based systems, e.g. machine translation, so
that the equivalence between them cannot be imposed in
general. It is thus difficult to decide the degree of general-
ization (which allows us to reduce a set of senses into single
features) effective for IR.

To solve the above problems, some methods attempt to
map (a priori) terms to specific generalization levels, i.e.
they cut the hierarchy at some levels (e.g. [16, 18]) and
use corpus statistics to assign weights to the resulting gen-
eralizations. For several tasks (e.g. in TC) this is unsatis-
factory: different contexts of the same corpus (e.g. docu-
ments) may require different levels of generalization of the
same word since they have a different impact on the docu-
ment similarity.

On the contrary, the Conceptual Density (CD) [1, 3] is a
flexible semantic similarity measure which depends on the
generalizations of word senses not referring to any fixed
level of the hierarchy.

2.2 The Conceptual Density

CD defines a metric according to the topological structure
of WN. Intuitively, given two words, their lowest common
WN hypernym determines a sub-hierarchy. This latter will
suggest maximum relatedness if only few levels are used to
connect the two words. The CD of such words is expressed
as the ratio between the size of the minimal (ideal) tree
connecting such words and the sub-hierarchy.

To formally define CD, we introduce some basic con-
cepts: let ḡ be the set of nodes of the hierarchy rooted in
the synset g, i.e. {c ∈ S|c isa g}, where S is the set of
WN synsets. By definition ∀g ∈ S, g ∈ ḡ. CD makes a
guess about the proximity of the senses, su and sv , of two
words u and v, according to the information expressed by
the minimal subhierarchy, ḡ, that includes them. Let Gu be
the set of generalizations for at least one sense of the word
u, i.e. Gu = {g ∈ S|∃s ∈ ḡ, u ∈ syn(s)}. The CD of u
and v is:

CD(u, v) =

0 iff Gu ∩Gv = ∅
maxg∈Gu∩Gv

Ph
i=0(µ(ḡ))i

|ḡ|
otherwise

(1)

where:

– Gu ∩Gv is the set of WN shared generalizations (i.e.
the common hypernyms) of u and v.

A SEMANTIC KERNEL TO CLASSIFY TEXTS . . . Informatica 30 (2006) 163–172 165

– µ(ḡ) is the average number of children per node (i.e.
the branching factor) in the sub-hierarchy ḡ. µ(ḡ) de-
pends on WordNet and in some cases its value can
approach 1.

– h is the depth of the ideal, i.e. maximally dense, tree
with enough leaves to cover the two senses, su and
sv , according to an average branching factor of µ(ḡ).
This value is actually estimated by:

h =
{ blogµ(ḡ)2c iff µ(ḡ) 6= 1

2 otherwise (2)

When µ(g)=1, h ensures a tree with at least 2 nodes
to cover su and sv (height = 2).

– |ḡ| is the number of nodes in the sub-hierarchy ḡ. This
value is statically measured on WN and it is a negative
bias for the higher generalization levels (i.e. larger ḡ).

CD models the semantic distance as the density of the
generalizations g ∈ Su ∩ Sv . Such density is the ratio
between the number of nodes of the ideal tree and |ḡ|.
The ideal tree should (a) link the two senses/nodes su and
sv with the minimal number of edges (isa-relations) and
(b) preserve the same branching factor (bf) observed in ḡ.
In other words, this tree contains the minimal number of
nodes (and isa-relations) sufficient to connect su and sv ac-
cording to the topological structure of ḡ. When bf is 1, Eq.
1 degenerates to the inverse of the number of nodes in the
path between su and sv , i.e. the simple proximity measure
used in [21].

Figure 1 shows a subhierarchy ḡ of two senses su and sv

and the associated ideal tree. Note that the bf is the average
of the node branching factors (nbfs), i.e. 2. This suggests
that, in this zone, the topological structure has a density
quantifiable by a factor equal to 2. Ideally, if two senses
are very close they should be linked by only one node, i.e.
using the ideal tree on the right of the figure. Once the
ideal tree is built, the CD(su, sv) is computed by dividing
the number of its nodes by the number of nodes in the real
hierarchy, e.g. 3/7 for the example.

The final CD(u, v) between two words is the maximum
CD among all the word sense pairs. This means that
CD(u, v) is determined by the closest lexical senses, su,
sv ∈ ḡ: the remaining senses of u and v are irrelevant, with
a resulting semantic disambiguation side effect.

As the number of word pairs is in general very high, ef-
ficient approaches to compute the document similarity are
needed. The next section describes how kernel methods
can make practical the use of the Conceptual Density in
Text Categorization.

3 A document similarity kernel
based on WordNet

Term similarities are used to design document similarities
which are the core functions of most TC algorithms. The

su sv

su sv

Ideal Tree

23/)312()(=++=gµ

21/2)(==gµ

Original Tree

nbf = 2

nbf = 1 nbf = 3

nbf = 2 g g

Figure 1: A subhierarchy ḡ, rooted in g, of two word senses,
su and sv and the corresponding ideal tree. The branching factor
µ(ḡ) is the average over the node branching factors (nbfs) of ḡ

one proposed in Eq. 1 is valid for all term pairs of a target
vocabulary and has two main advantages:

1. the relatedness of each term occurring in the first doc-
ument can be computed against all terms in the sec-
ond document, i.e. all different pairs of similar (not
just identical) tokens can contribute; and

2. if we use all term pair contributions in the document
similarity, we obtain a measure consistent with the
term probability distributions, i.e. the sum of all term
contributions does not penalize or emphasize arbitrar-
ily any subset of terms.

The positive aspects of the first point is quite clear and
will solve data sparseness problems. Regarding the second
point, we should consider that when document representa-
tion is enriched by means of some term clusters a simpli-
fication assumption about all the other possible clusters is
made, i.e. a zero probability is assumed for them. As the
literature on smoothing techniques has shown, this is not
the best way to approach the problem. However, it should
also be stated that the discriminative nature of Support Vec-
tor Machines makes them less sensitive to such smoothing
aspects.

The next subsections present more formally the above
ideas.

3.1 Document similarity Kernel
Given two documents d1 and d2 ∈ D (the document set),
we define their similarity as:

K(d1, d2) =
∑

w1∈d1,w2∈d2

(λ1λ2)× σ(w1, w2) (3)

where λ1 and λ2 are the weights of the words (features)
w1 and w2 in the documents d1 and d2, respectively, and
σ is a term similarity function, e.g. the conceptual density
defined in Section 2.

The above document similarity could be used in kernel
based machines if we prove that it is a valid kernel func-
tion, i.e. if it satisfies the Mercer’s conditions [8]. Such
conditions establish that the Gram matrix, G = K(di, dj)
∀i, j = 1, .., l, where d1, .., dl are the training documents,

166 Informatica 30 (2006) 163–172 R. Basili et al.

must be positive semi-definite. In order to obtain such
property in [21] was adopted as term similarity the ma-
trix M ′ · M , where M is defined by σ(w1, w2) with
w1, w2 ∈ V and M ′ is its transposed. As shown in [8],
P = M ′ ·M as well as K(di, dj) = ~λ′iP~λj are positive
semi-definite matrices. Unfortunately, this approach does
not use the original similarity matrix M , i.e. the term to
term similarity defined in WN, since P = M2. Although,
we can see the application of such matrix as a feature ex-
pansion techniques, we loose the direct similarity seman-
tics of two words encoded by the matrix M .

With the aim to preserve an intuitive notion of document
similarity, we adopt the simple similarity term matrix given
by P = σ(w1, w2) = CD(w1, w2) without applying the
square operation. This means that (a) we exactly use Eq.
3 as a kernel function and (b) we need to prove that P is
positive semi-definite. To prove that P is positive semi-
definite, a general way is to show that all its eigenvalues are
non negative. Thus, we run the single value decomposition
algorithm and verified that such condition holds.

Additionally, in [10], it is shown that when kernel func-
tions are not positive semi-definite, SVMs still solve a data
separation problem in pseudo Euclidean spaces. The draw-
back is that the solution may be only a local optimum.
Therefore, we can experimentally observe if the empirical
results are satisfactory. Our extensive experimentation (re-
ported in Section 5) with different corpora and many train-
ing document subsets provides some evidence that Eq. 3 is
a useful function as SVMs based on Eq. 3 always conver-
gence to a significant accuracy.

The next section shows as a similarity measure can be
used within Support Vector Machines.

3.2 Kernel methods and Support Vector
Machines

Given a vector space in Rη and a set of positive and nega-
tive points, SVMs classify vectors according to a separating
hyperplane, H(~x) = ~ω · ~x + b = 0, where ~x and ~ω ∈ Rη

and b ∈ R are learned by applying the Structural Risk Min-
imization principle [25]. From the kernel theory we have
that:

H(~x) =
(∑

h=1..l

yhαh ~xh

)
·~x+b =

∑

h=1..l

yhαh~xh ·~x+b =

=
∑

h=1..l

yhαhφ(dh) · φ(d) + b =

=
∑

h=1..l

yhαhK(dh, d) + b. (4)

where yh and αh are the class labels and the Lagrange mul-
tipliers associated with the l training documents dh. d is the
classifying document and φ is the mapping which projects
it and dh in the vectors ~x and ~xh, respectively. By choos-
ing the right φ, the product K(d, dh) =〈φ(d) · φ(dh)〉 will
correspond to the Semantic WN-based Kernel (SK).

Eq. 4 shows that to evaluate the separating hyperplane
in Rη , we do not need to evaluate the entire vector ~xh or
~x. As it is sufficient to compute K(d, dh), we can carry
out the learning with Eq. 3 in Rn, avoiding to use the ex-
plicit representation in the Rη space. The real advantage
is that we can consider only the word pairs associated with
non-zero weights, i.e. we can use a sparse vector computa-
tion. Additionally, to have a uniform score across different
document size, the kernel function can be normalized as
follows:

SK(d1, d2)√
SK(d1, d1) · SK(d2, d2)

4 Computational Aspects
The previous section has shown that we can apply the ker-
nel trick to train the SVMs in the dual space. In this way
we avoid to compute the huge space of all WN word pairs.
However, the computational complexity of the algorithm is
higher than the usual approach based on the bag-of-words
model. It depends on two main aspects:

1. The similarity measure between two documents d1

and d2 requires the evaluation of all the word pairs
〈w1,w2〉. This leads to a complexity of O(|d1| × |d2|)
which is remarkably higher than the usual complexity,
O(|d1|+ |d2|), of traditional approaches.

2. The conceptual density evaluation requires to navi-
gate the WN hierarchy which includes more than 105

nodes. On the contrary the traditional term similarity
is carried out by a fast string matching function.

Since we use an implicit document representation, we
need to test all document pairs during the kernel evalua-
tion, thus, unless we apply a feature selection in the kernel
space, the complexity of point 1 cannot be improved. On
the contrary, we can improve the conceptual density evalu-
ation by pre-computing it for all WN term pairs and store
them in a hash table.

In the next section we described the technical approach
that we adopted.

4.1 Technical approach

To evaluate the CD between two words u and v, for each
sense pairs, su and sv , we need to derive: (a) the minimal
subhierarchy ḡ (with its number of nodes) which includes
both of them and (b) the ideal tree associated with ḡ.

Step (a) requires to evaluate the lowest hierarchy node
g that dominates su and sv , i.e. we need to consider all
the ISA relation paths that links su and sv . To optimize
this step, we pre-computed all the transitive closures (about
2× 105) of the ISA relation for all WN synsets along with
the number of nodes dominated by g.

The ideal tree evaluation corresponds to derive its height
and the branching factor, µ(ḡ). The former is computed

A SEMANTIC KERNEL TO CLASSIFY TEXTS . . . Informatica 30 (2006) 163–172 167

by means of Eq. 2. The latter can be incrementally pre-
computed by navigating bottom-up the hierarchy.

The current version of WordNet package2 makes avail-
able a set of built in libraries, written in C language, to
navigate the hierarchy. These use an internal structure to
store the WN information (e.g. glosses, relations,...). To
make more efficient such data structures, we retain only (1)
the relations between nouns and synsets, (2) the "is-a-kind-
of" hierarchy and (3) we implemented special libraries to
gather information efficiently.

Moreover, to speed-up the kernel computation, we de-
signed hashed associative containers which store any word
pair similarity requested during the learning or testing
phase. Note that, although the term pairs are sparse, their
similarity values are not. We observed that, for a set of
about 32, 000 words (i.e. 1, 024 × 106 pairs), the number
of different values were about 6, 500, if we consider only
similarity values higher than 2 × 10−5. We exploit this
property by replacing them with an integer index to access
a dictionary of float numbers. This reduced the memory
usage by a factor of 2.

Given the above optimized architecture, we carried out
an extensive experimentation (as illustrated in the next sec-
tion).

5 Experiments
The use of WordNet (WN) as a term similarity function in-
troduces a prior knowledge whose impact on the Semantic
Kernel (SK) should be experimentally assessed. The main
goal is to compare the traditional Vector Space Model ker-
nel against SK, both within the Support Vector learning
algorithm.

The high complexity of the SK limits the size of the
experiments that we can carry out in a feasible time. More-
over, we are not interested to large collections of training
documents as in these training conditions the simple bag-
of-words models are in general very effective, i.e. they
seem to model well the document similarity needed by the
learning algorithms. Thus, we carried out the experiments
on small subsets of the 20NewsGroups3 (20NG) and the
Reuters-215784 corpora to simulate critical learning condi-
tions.

5.1 Experimental set-up
For the experiments, we used the SVM-light software [12]
(available at svmlight.joachims.org) with the default
linear kernel on the token space (adopted for the baseline
evaluations). For the SK evaluation we implemented Eq.
3 with σ(·, ·) = CD(·, ·) (Eq. 1) inside SVM-light. As
Eq. 1 is only defined for nouns, a part of speech (POS)
tagger was applied. However, also verbs, adjectives and

2Downloadable from wordnet.princeton.edu
3Available at www.ai.mit.edu/people/jrennie/20News-

groups/.
4The Apté split available at kdd.ics.uci.edu/

databases/reuters21578/reuters21578.html.

numerical features were included in the feature space. For
these tokens a CD = 0 is assigned to pairs made by dif-
ferent strings. As the POS tagger could introduce errors,
in a second experiment, any token with a successful look-
up in the WN noun hierarchy was considered in the kernel.
This approximation has the benefit to retrieve useful infor-
mation even for verbs and capture the similarity between
verbs and some nouns, e.g. to drive (via the noun drive)
has a common synset with parkway.

For the evaluations, we applied a careful SVM param-
eterization: a preliminary investigation suggested that the
trade off (between the training-set error and margin, i.e. c
option in SVM-light) parameter optimizes the F1 measure
for values in the range [0.02,0.32]5. We noted also that the
cost-factor parameter (i.e. j option) is not critical, i.e. a
value of 10 always optimizes the accuracy. Feature selec-
tion techniques and weighting schemes were not applied
in our experiments as they cannot be accurately estimated
from few training documents.

The classification performance was evaluated by means
of the F1 measure6 for the single category and the Mi-
croAverage F1 for the final classifier pool [28]. Given the
high computational complexity of SK, we selected 8 cate-
gories from the 20NG7 and 8 from the Reuters corpus8

To derive statistically significant results from few train-
ing documents, we randomly selected 10 different samples
from the 8 categories of each corpus. We trained the clas-
sifiers on one sample, parameterized on a second sample
and derived the measures on the other 8. By rotating the
training sample, we obtained 80 different measures for each
model. The size of the samples ranged from 24 to 160 doc-
uments depending on the target experiment. The training
of the SVMs adopting SK required about 10/20 minutes
for each sample (depending on their size). Considering
that the parameterization phase carries out the training of
each classifier 16 times (one for each parameter values),
we chose to use an 8 multiprocessor machine in which the
classifiers can run independently. Even with this optimized
strategy, we employed about 1 month to accomplish all the
experiments.

5.2 Cross validation results
With the aim of showing the benefit of SK (Eq. 3) for text
categorization, we compared it with the linear kernel which
obtained the best F1 measure in [12].

First, in Table 1, we report the results for 8 categories
of 20NG on 40 training documents. They are expressed
as the Mean and the Std. Dev. over 80 runs. Column 2,
3 and 4 show the F1 for the linear kernel (bow), for SK

5We used all the values from 0.02 to 0.32 with step 0.02.
6F1 assigns equal importance to Precision P and Recall R, i.e. F1 =

2P ·R
P+R

.
7We selected the 8 most different categories (in terms of their content)

i.e. Atheism, Computer Graphics, Misc Forsale, Autos, Sport Baseball,
Medicine, Talk Religions and Talk Politics.

8We selected the 8 largest categories, i.e. Acquisition, Earn, Crude,
Grain, Interest, Money-fx, Trade and Wheat.

168 Informatica 30 (2006) 163–172 R. Basili et al.

without applying POS information and for SK with the
use of POS information (SK-POS), respectively. The last
row of the table shows the MicroAverage performance for
the above three models on all 8 categories. We note that
SK improves bow of 3%, i.e. 34.3% vs. 31.5% and that
the POS information reduces the improvement of SK, i.e.
33.5% vs. 34.3%.

Second, to verify that the above results are general, we
repeated the evaluation over the 8 categories of Reuters
with samples of 24 and 160 documents, respectively. Ta-
ble 2 illustrates that (1) again SK improves bow (41.7%
- 37.2% = 4.5%) and (2) as the number of documents in-
creases the improvement decreases (77.9% - 75.9% = 2%).

Third, the complexity of the classification task across the
samples varies remarkably thus the standard deviations as-
sume high values. Nevertheless, the high number of sam-
ples should provide reliable results. To verify the hypoth-
esis that SK improves bow, we evaluated the Std. Dev.
of the difference, d, between the MicroAverage F1 of SK
and the MicroAverage F1 of bow over the samples. For in-
stance, in relation to the Table 2 experiment, we obtained
that the mean and the Std. Dev. of d on the 80 test sam-
ples (of 24 documents) are 4.53 and 6.57, respectively. Us-
ing the Normal Distribution, we found that at a confidence
level of 99% d is in the range [2.40,6.66], thus the proba-
bility that d is negative, i.e. bow is better than SK, is very
small.

Category bow SK SK-POS
Atheism 29.5±19.8 32.0±16.3 25.2±17.2
Comp.Graph 39.2±20.7 39.3±20.8 29.3±21.8
Misc.Forsale 61.3±17.7 51.3±18.7 49.5±20.4
Autos 26.2±22.7 26.0±20.6 33.5±26.8
Sport.Baseb. 32.7±20.1 36.9±22.5 41.8±19.2
Sci.Med 26.1±17.2 18.5±17.4 16.6±17.2
Talk.Relig. 23.5±11.6 28.4±19.0 27.6±17.0
Talk.Polit. 28.3±17.5 30.7±15.5 30.3±14.3
MicroAvg. F1 31.5±4.8 34.3±5.8 33.5±6.4

Table 1: Performance of the linear and Semantic Kernel with 40
training documents over 8 categories of 20NewsGroups collec-
tion.

Category 24 docs 160 docs
bow SK bow SK

Acq. 55.3±18.1 50.8±18.1 86.7±4.6 84.2±4.3
Crude 3.4±5.6 3.5±5.7 64.0±20.6 62.0±16.7
Earn 64.0±10.0 64.7±10.3 91.3±5.5 90.4±5.1
Grain 45.0±33.4 44.4±29.6 69.9±16.3 73.7±14.8
Interest 23.9±29.9 24.9±28.6 67.2±12.9 59.8±12.6
Money-fx 36.1±34.3 39.2±29.5 69.1±11.9 67.4±13.3
Trade 9.8±21.2 10.3±17.9 57.1±23.8 60.1±15.4
Wheat 8.6±19.7 13.3±26.3 23.9±24.8 31.2±23.0
Mic.Avg. 37.2±5.9 41.7±6.0 75.9±11.0 77.9±5.7

Table 2: Performance of the linear and Semantic Kernel with
24 and 160 training documents over 8 categories of the Reuters
corpus.

Next, the above findings confirm that SK outperforms

the bag-of-words kernel in critical learning conditions as
the semantic contribution of the SK recovers useful infor-
mation. To confirm this hypothesis we carried out experi-
ments with samples of different size, i.e. 3, 5, 10, 15 and
20 documents for each category. Figures 2 and 3 show the
learning curves for 20NG and Reuters corpora. Each point
refers to the average on 80 samples.

As expected the improvement provided by SK decreases
when more training data is available. However, the SK
model without POS information on 160 training documents
still outperforms the baseline of about 2-3%. This suggests
that the matching between noun-verb pairs still provides
semantic information which is useful for topic detection.
In particular, during the similarity estimation, each word
shows a non-null similarity with 60.05 words on average.
This is useful to increase the amount of information avail-
able to the SVMs. To confirm such hypothesis, we removed
the string matching contributions from SK such that only
words having different surface forms participate to the eval-
uation of Eq. 3. The interesting result is that SK still con-
verged to a MicroAverage F1 measure of 56.4% (compare
with Table 2). This shows that SVMs can discern between
the correct and incorrect categories by using only the WN
similarity.

Finally, to provide a comparison with literature models,
we experimented with SK by training on 10 random sam-
ples of 40 documents and testing on the Reuters test set, i.e.
on the 2,502 documents labeled with the 8 target categories.
The SK obtained a MicroAverage F1 (averaged on the 10
runs) of 67.4% which is higher than 65,0% of the baseline
outcome. In a second experiment, we used for the Acquisi-
tion category all the available training data from the 8 cat-
egories (i.e. 6,367 documents) obtaining a F1 of 94.5% for
the SK vs. a F1 of 96.0% of the baseline. This shows that
when the number of training documents is large, the word
distributions assume a statistical significance that is more
reliable than the distribution of the term pairs weighted by
WN. Indeed, these latter introduce necessarily some errors
due to disambiguation mistakes or incorrect (for the spe-
cific target domain) term similarities.

In summary, WN allows the learning algorithm to carry
out document similarity when few or no terms can be
matched. When precise terms are available with a reli-
able statistical distribution, string matching is more precise
since it is less affected by errors.

6 Related Work

Several IR studies focus on the term similarity models to
embed prior knowledge in document similarity.

In [15] a Latent Semantic Indexing analysis was used for
term clustering. Such approach assumes that values xij

in the transformed term-term matrix represents the similar-
ity (values ≤ 0) and anti-similarity (values < 0) between
terms i and j. This enables both positive and negative clus-
ters of terms. Evaluation of query expansion techniques

A SEMANTIC KERNEL TO CLASSIFY TEXTS . . . Informatica 30 (2006) 163–172 169

30.0

33.0

36.0

39.0

42.0

45.0

48.0

51.0

54.0

40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow

SK

SK-POS

Figure 2: MicroAverage F1 of SVMs using bow, SK and SK-
POS kernels over the 8 categories of 20NewsGroups.

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

20 40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow
SK

Figure 3: MicroAverage F1 of SVMs using bow and SK over
the 8 categories of the Reuters corpus.

showed that positive clusters can improve Recall of about
18% for the CISI collection, 2.9% for MED and 3.4% for
CRAN. Furthermore, the negative clusters, when used to
prune the result set, improved the precision.

In [4], a feature selection technique that clusters similar
features/words, called the Information Bottleneck (IB), is
applied to TC. Support Vector Machines trained over such
clusters were experimented with three different corpora:
Reuters-21578, WebKB and 20NewsGroups. Controver-
sial results were obtained as the cluster based representa-
tion outperformed the simple bag-of-words only on the lat-
ter collection (>3%). This was explained as a consequence
of the corpus "complexity". Reuters and WebKB corpora
seem to require few features to reach optimal performance.
IB can thus be adopted either to reduce the problem com-
plexity as well as to increase accuracy by using a simpler
representation space.

In [6], Latent Semantic Analysis (LSA) was applied
to derive domain-specific concepts and to create semantic
document representations over these concepts. Such repre-
sentations (based on both terms and concepts) were used to
design weak classifiers. Concepts were derived from dif-
ferent LSA models (i.e. LSA spaces of different dimen-
sions). AdaBoost was applied to efficiently combine weak

hypotheses and integrate term and concept based informa-
tion. The experiments on two standard document collec-
tions show that conceptual features in addition to terms
lead to consistent and quite substantial accuracy gains. In
our own opinion such evidence is restricted to the used ex-
perimental set-up, i.e. classification models, parameteriza-
tion, data pre-processing and so on. Indeed, the highest
F1, i.e. 85.82%, reached on the Reuters corpus using the
extended representation is lower than the one achieved by
means of the bag-of-words in other work, e.g. 87.8% using
ADABOOST.MH (see the table in [20] about comparative
TC results on Reuters corpus). Consequently, we cannot
derive that LSA representations are better than the simple
bag-of-words (when a sufficient amount of training data is
used).

The use of external semantic knowledge for document
retrieval has even been more problematic. In [22], a
study on the impact of semantic ambiguity was carried
out. A WN-based semantic similarity function between
noun pairs was applied to improve indexing and document-
query matching. However, the WSD algorithm had a per-
formance ranging between 60-70%, and this made the over-
all semantic similarity not effective.

Other studies on semantic information for improving IR
were carried out in [24] and [26, 27]. Word semantic in-
formation was used for text indexing and query expansion,
respectively. In [27], it was shown that semantic informa-
tion derived directly from WN with automatic WSD pro-
duces poor results. Nevertheless, recently, a revised ap-
proach to the use of word senses for document indexing
was proposed in [23]. Only senses which are automati-
cally determined with a high probability are utilized. This
enabled the experimented retrieval system to improve the
accuracy over the simple bag-of-words.

In TC word senses have a similar impact if not lower:
when enough training data is available, the positive and
negative examples of a category allow the learning algo-
rithm to build implicit word clusters based on corpus statis-
tics. These provide matching capabilities more accurate
than the matching between concepts of different surface
forms defined in external resources, e.g. WN term similar-
ity. Moreover, different categories are better characterized
by different words rather than different senses [17].

In [19], WN senses were used to replace words without
any word sense disambiguation. The result was a small im-
provement on a poorly accurate state-of-art TC algorithm
on a small corpus. When a more statistical reliable set of
documents was used, the adopted representation produced
a performance decrease. The scale and assessment pro-
vided in [17] (3 corpora using cross-validation techniques)
showed that even an accurate disambiguation of WN senses
(about 80% accuracy on nouns) did not improve TC.

In [14], an extensive experimentation with several al-
gorithms has been carried out to compare the accuracy of
classifiers based on words and senses. The target document
collection was a subset of the Brown Corpus annotated with
semantic concordance. The results indicate that the use of

170 Informatica 30 (2006) 163–172 R. Basili et al.

senses does not produce any significant categorization im-
provement.

In [5], AdaBoost classifiers are trained with document
represented by concepts extracted from WN. Experiments
with Reuters and Ohsumed show an improvement on the
bag-of-words representation. Again this results cannot be
generalized as the absolute value of the highest achieved
F1, i.e. 85.89%, on the Reuters corpus, is lower than the
best literature results, i.e. 87.8%. Nevertheless, it is worth
to note that other relevant improvements were obtained on
the Ohsumed corpus for which the results of the best TC
models are not available. Thus, on corpora different from
Reuters we do not know if the conceptual representation
improves the bag-of-words. According to the analysis car-
ried out in [4], we may assume that the Reuters corpus
is not representative in general and the bag-of-words ap-
proach is superior only on some corpora.

In [21] an approach similar to the one presented in this
article was proposed. A term proximity function was used
to design a kernel able to semantically smooth the simi-
larity between two document terms. Such semantic kernel
was designed as a combination of the Radial Basis Func-
tion (RBF) kernel with the term proximity matrix. Entries
in this matrix are inversely proportional to the length of
the WN hierarchy path linking the two terms. The perfor-
mance, measured over the 20NewsGroups corpus, showed
an improvement of 2% over the bag-of-words. The main
differences with our approach are:

First, the term proximity is not fully sensitive to the in-
formation of the WN hierarchy. For example, if we con-
sider pairs of equidistant terms, the nearer to the WN top
level a pair is the lower similarity it should receive, e.g.
sky and location (hyponyms of entity) should not accumu-
late similarity like knife and gun (hyponyms of weapon).
Measures, like CD, that deal with this problem have been
widely proposed in literature (e.g. [18]) and should be al-
ways applied.

Second, the kernel-based CD similarity is an elegant
combination of lexicalized and semantic information. In
[21] the combination of weighting schemes, the RBF ker-
nel and the proximity matrix has a less clear interpretation.

Finally, the experiments were carried out by using only
200 features (selected via Mutual Information statistics). In
this way the contribution of rare or non statistically signif-
icant terms is neglected. In our view, such features may
give, instead, a relevant contribution once we move in the
SK space generated by the WN similarities.

Other important work on semantic kernel for retrieval
has been developed in [8, 13]. Two methods for inferring
semantic similarity from a corpus were proposed:

In the first a system of equations were derived from the
dual relation between word-similarity based on document-
similarity and vice versa. The equilibrium point was used
to derive the semantic similarity measure.

The second method models semantic relations by means
of a diffusion process on a graph defined by lexicon and co-
occurrence information. The major difference with our ap-

proach is the use of a different source of prior knowledge,
i.e. WN. Similar techniques were also applied in [11] to de-
rive a Fisher kernel based on a latent class decomposition
of the term-document matrix.

In summary, a careful analysis of literature work shows
that prior knowledge (derived directly from the corpus or
extracted by external resources) is not able to improve the
best TC model learned with an adequate number of training
data. On the contrary, the experiments shown in this paper
suggest the following reasonable hypothesis: when the sta-
tistical word distributions derivable from training data are
not reliable, we can use external resources to provide an
effective semantic smoothing. In other words, two doc-
uments containing different terms have zero match prob-
ability in the bag-of-words model. Using term similarity
we associate them with a probability different from zero
designing a more accurate model. Of course, this approx-
imation is less accurate than the probability distributions
derived from a statistically representative sample of docu-
ments.

7 Conclusions

The way to use semantic prior knowledge in IR has always
been an interesting subject as confirmed by the examined
literature work.

In this paper, we applied the conceptual density function
on the WordNet (WN) hierarchy to define a document sim-
ilarity metric. Accordingly, we defined a semantic kernel
(SK) to train Support Vector Machine classifiers. Cross-
validation experiments over 8 categories of 20NewsGroups
and Reuters corpora over multiple samples have shown
that:

– in poor training data conditions, the WN prior knowl-
edge can be effectively used to improve the TC accu-
racy (up to 4.5 absolute percent points, i.e. 10%);

– the CD is an effective way to capture the topological
WN properties; and

– the higher is the number of training documents, the
lower is the improvement produced by SK. This sug-
gests that the general prior knowledge embedded in
WN is useful to increase accuracy until the category
statistical information (e.g. its word probability distri-
butions) is not completely reliable.

These promising results enable a number of future re-
searches: (1) larger scale experiments with different mea-
sures and semantic similarity models (e.g. [18]); (2) im-
provement of the overall efficiency by exploring feature se-
lection methods over the SK; and (3) the extension of the
semantic similarity by a general (i.e. non binary) applica-
tion of the conceptual density model as proposed in [2] for
semantic tagging.

A SEMANTIC KERNEL TO CLASSIFY TEXTS . . . Informatica 30 (2006) 163–172 171

References
[1] E. Agirre and G. Rigau. Word sense disambiguation

using conceptual density. In Proceedings of COL-
ING’96, pages 16–22, Copenhagen, Danmark., 1996.

[2] R. Basili and M. Cammisa. Unsupervised semantic
disambiguation. In In Proceedings of LREC Work-
shop on "Beyond Named Entity Recognition - Se-
mantic Labelling for Natural Language Processing
Tasks", Lisbon, Portugal, 2004.

[3] R. Basili, M. Cammisa, and F. M. Zanzotto. A
similarity measure for unsupervised semantic disam-
biguation. In In Proceedings of Language Resources
and Evaluation Conference, 2004.

[4] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Win-
ter. On feature distributional clustering for text cat-
egorization. In Proceedings of the 24th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 146–153,
New Orleans, Louisiana, United States, 2001. ACM
Press.

[5] S. Bloehdorn and A. Hotho. Text classification by
boosting weak learners based on terms and concepts.
In Proceedings of the 4th IEEE International Confer-
ence on Data Mining (ICDM 2004), 1-4 November
2004, Brighton, UK, pages 331–334. IEEE Computer
Society, NOV 2004.

[6] L. Cai and T. Hofmann. Text categorization by boost-
ing automatically extracted concepts. In SIGIR ’03:
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 182–189, New York, NY,
USA, 2003. ACM Press.

[7] S. Clark and D. Weir. Class-based probability estima-
tion using a semantic hierarchy. Comput. Linguist.,
28(2):187–206, 2002.

[8] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent
semantic kernels. J. Intell. Inf. Syst., 18(2-3):127–
152, 2002.

[9] C. Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press., 1998.

[10] B. Haasdonk. Feature space interpretation of SVMs
with indefinite kernels. IEEE Trans Pattern Anal
Mach Intell, 27(4):482–92, Apr 2005.

[11] T. Hofmann. Learning probabilistic models of the
web. In Research and Development in Information
Retrieval, pages 369–371, 2000.

[12] T. Joachims. Making large-scale SVM learning prac-
tical. In B. Schölkopf, C. Burges, and A. Smola, ed-
itors, Advances in Kernel Methods - Support Vector
Learning, 1999.

[13] J. Kandola, J. Shawe-Taylor, and N. Cristianini.
Learning semantic similarity. In in Neural Infor-
mation Processing Systems (NIPS 15) - MIT Press.,
2002.

[14] A. Kehagias, V. Petridis, V. G. Kaburlasos, and
P. Fragkou. A comparison of word- and sense-based
text categorization using several classification algo-
rithms. J. Intell. Inf. Syst., 21(3):227–247, 2003.

[15] A. Kontostathis and W. Pottenger. Improving retrieval
performance with positive and negative equivalence
classes of terms, 2002.

[16] H. Li and N. Abe. Generalizing case frames using a
thesaurus and the mdl principle. Computational Lin-
guistics, 23(3), 1998.

[17] A. Moschitti and R. Basili. Complex linguistic fea-
tures for text classification: a comprehensive study.
In S. McDonald and J. Tait, editors, Proceedings of
ECIR-04, 26th European Conference on Information
Retrieval, Sunderland, UK, 2004. Springer Verlag.

[18] P. Resnik. Selectional preference and sense disam-
biguation. In Proceedings of ACL Siglex Workshop
on Tagging Text with Lexical Semantics, Why, What
and How?, Washington, April 4-5, 1997., 1997.

[19] S. Scott and S. Matwin. Feature engineering for text
classification. In I. Bratko and S. Dzeroski, editors,
Proceedings of ICML-99, 16th International Confer-
ence on Machine Learning, pages 379–388, Bled, SL,
1999. Morgan Kaufmann Publishers, San Francisco,
US.

[20] F. Sebastiani. Machine learning in automated text cat-
egorization. ACM Computing Surveys, 34(1):1–47,
2002.

[21] G. Siolas and F. d’Alché Buc. Support vector ma-
chines based on a semantic kernel for text catego-
rization. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks
(IJCNN’00)-Volume 5, page 5205. IEEE Computer
Society, 2000.

[22] A. F. Smeaton. Using NLP or NLP resources for in-
formation retrieval tasks. In T. Strzalkowski, editor,
Natural language information retrieval, pages 99–
111. Kluwer Academic Publishers, Dordrecht, NL,
1999.

[23] C. Stokoe, M. P. Oakes, and J. Tait. Word sense dis-
ambiguation in information retrieval revisited. In Pro-
ceedings of SIGIR03, Canada, 2003.

[24] M. Sussna. Word sense disambiguation for free-text
indexing using a massive semantic network. In A. P.
New York, editor, The Second International Con-
ference on Information and Knowledge Management
(CKIM 93), pages 67–74, 1993.

172 Informatica 30 (2006) 163–172 R. Basili et al.

[25] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

[26] E. M. Voorhees. Using wordnet to disambiguate word
senses for text retrieval. In R. Korfhage, E. M. Ras-
mussen, and P. Willett, editors, Proceedings of the
16th Annual International ACM-SIGIR Conference
on Research and Development in Information Re-
trieval. Pittsburgh, PA, USA, June 27 - July 1, 1993,
pages 171–180. ACM, 1993.

[27] E. M. Voorhees. Query expansion using lexical-
semantic relations. In W. B. Croft and C. J. van Ri-
jsbergen, editors, Proceedings of the 17th Annual In-
ternational ACM-SIGIR Conference on Research and
Development in Information Retrieval. Dublin, Ire-
land, 3-6 July 1994 (Special Issue of the SIGIR Fo-
rum), pages 61–69. ACM/Springer, 1994.

[28] Y. Yang. An evaluation of statistical approaches to
text categorization. Information Retrieval Journal,
1999.

Informatica 30 (2006) 173–181 173

Captain Nemo: A Metasearch Engine with Personalized Hierarchical Search
Space

Stefanos Souldatos, Theodore Dalamagas and Timos Sellis
School of Electrical and Computer Engineering,
National Technical University of Athens, 157 73, Athens, GR
E-mail: {stef, dalamag, timos}@dblab.ntua.gr
http://www.dblab.ntua.gr/∼ {stef, dalamag, timos}

Keywords: web search, personalization, metasearch engine, classification, hierarchy

Received: November 18, 2005

Personalization of search has gained a lot of publicity the last years. Personalization features in search and
metasearch engines are a follow-up to the research done. On the other hand, text categorization methods
have been successfully applied to document collections. Specifically, text categorization methods can
support the task of classifying Web content in thematic hierarchies. Combining these two research fields,
we have developed Captain Nemo, a fully-functional metasearch engine with personalized hierarchical
search spaces. Captain Nemo, retrieves and presents search results according to personalized retrieval
models and presentation styles. Here, we present the hierarchical Web page classification approach newly
adopted. Captain Nemo lets users define a hierarchy of topics of interest. Search results are automatically
classified into the hierarchy, exploiting hierarchical k-Nearest Neighbor classification techniques. The user
study conducted demonstrates the effectiveness of our metasearch engine.

Povzetek: Opisan je metaiskalnik Captain Nemo.

1 Introduction

Searching for Web content can be extremely hard. Web
content can be found in a variety of information sources.
The number of these sources keeps increasing, while at the
same time sources continually enrich their content. Not
only should users identify these sources, but they should
also determine those containing the most relevant informa-
tion to satisfy their information need.

Search and metasearch engines are tools that help the
user identify such relevant information. Search engines re-
trieve Web pages that contain information relevant to a spe-
cific subject described with a set of keywords given by the
user. Metasearch engines work at a higher level. They re-
trieve Web pages relevant to a set of keywords, exploiting
other already existing search engines.

Personalization on the Web is an issue that has gained a
lot of interest lately. Web sites have already started provid-
ing services such as preferences for the interface, the lay-
out and the functionality of the applications. Personaliza-
tion services have also been introduced in Web search and
metasearch engines. However, those services deal mostly
with the presentation style and ignore issues like the re-
trieval model, the ranking algorithm and topic preferences.

On the other hand, text classification methods, including
k-Nearest Neighbor (k-NN) [30, 18], Support Vector Ma-
chines (SVM) [15, 8], Naive Bayes (NB) [20, 2], Neural
Networks [21], decision trees and regression models, have
been successfully applied to document collections (see [31]

for a full examination of text classification methods).
Such methods can support the task of classifying Web

content in thematic hierarchies. Organizing Web content in
thematic categories can be useful in Web search, since it
helps users easily identify relevant information while navi-
gating in their personal search space.

There are two main approaches for classifying docu-
ments in thematic hierarchies:

– Flat Model (Flatten the hierarchy): Every topic of the
hierarchy corresponds to a separate category having
its own training data. A classifier, based on text cat-
egorization techniques determines the right category
for a new incoming Web document.

– Hierarchical Model (Exploit the hierarchy): A hier-
archy of classifiers is built such that every classifier
decides each time to classify a document in the appro-
priate category among the categories of the same level
in the hierarchy, following a path from the root down
to the leaves of the hierarchy tree. For example, an
incoming document might be added to Arts category
(between Arts, Science and Sports), then to Dance cat-
egory inside Arts (between Poetry, Photography and
Painting), then to Spanish_Dances inside Arts/Dance.
The assignment scores for all these decisions can de-
termine the final category for the incoming document.

Combining these two research fields, namely personal-
ization of search and Web content hierarchical classifica-
tion, we have created Captain Nemo, a fully-functional

174 Informatica 30 (2006) 173–181 S. Souldatos et al.

metasearch engine with personalized hierarchical search
spaces. Captain Nemo, initially presented in [26], retrieves
and presents search results according to personalized re-
trieval models and presentation styles. In this paper, we
present the hierarchical Web page classification approach,
recently adopted in Captain Nemo. Users define a hierar-
chy of topics of interest. Search results are automatically
classified into the hierarchy, exploiting Nearest-Neighbour
classification techniques.

Our classification approach is a hybrid one. Every topic
of the hierarchy is considered to be a separate category hav-
ing its own training data, as in the flat model. However,
the training data set of a topic is enriched by data from its
subtopics. As a result, the decision of whether a Web page
belongs to a category strongly depends on its descendants.

A typical application scenario for Captain Nemo starts
with a set of keywords given by the user. Captain Nemo ex-
ploits several popular Web search engines to retrieve Web
pages relevant to those keywords. The resulting pages are
presented according to the user-defined presentation style
and retrieval model. We note that users can maintain more
than one different sets of preferences, which result to dif-
ferent presentation styles and retrieval models. For every
retrieved Web page, Captain Nemo recommends the most
relevant topic of user’s personal interest. Users can option-
ally save the retrieved pages to certain folders that corre-
spond to topics of interest for future use.

Contribution. The main contributions of our work are:
(a) We expand personalization techniques for metasearch
engines, initially presented in [26].
(b) We suggest semi-automatic hierarchical classification
techniques in order to recommend relevant topics of inter-
est to classify the retrieved Web pages. The thematic hier-
archy is user-defined.
(c) We present a fully-functional metasearch engine, called
Captain Nemo1, that implements the above framework.
(d) We carry out a user study to evaluate the hierarchical
classification process and its effect on searching. The ex-
periments demonstrate the effectiveness of our approach.

Related Work. The need for Web information personal-
ization has been discussed in [25] and [24]. Following this,
several Web search and metasearch engines2 offer primitive
personalization services.

Concerning the topics of interest, topic-based search will
be necessary for the next generation of information re-
trieval tools [4]. Inquirus2 [11] uses a classifier to rec-
ognize Web pages of a specific category. Northern Light3

has an approach called custom folders that organizes search
results into categories. However, these categories are cre-
ated dynamically by the search results and do not reflect the

1http://www.dblab.ntua.gr/∼ stef/nemo/
2Google, Alltheweb, Yahoo, AltaVista, WebCrawler, MetaCrawler,

Dogpile, etc.
3http://www.northernlight.com/index.html

users’ personal interest. A similar approach is presented in
[6], but the thematic hierarchy is the same for all users.

Recently, many researchers have looked into the prob-
lem of classifying Web content into thematic hierarchies,
using either the flat or the hierarchical model. The for-
mer approach has shown poor results, since flat classifiers
cannot cope with large amounts of information including
many classes and content descriptors. In [17], an n-gram
classifier was used to classify Web pages in Yahoo cate-
gories. Probabilistic methods to automatically categorize
Web documents are presented in [12, 10], while statisti-
cal models for hypertext categorization are presented in
[5]. The hierarchical approach has been explored initially
in [16]. Experiments with bayesian classification models
showed the superiority of the hierarchical model over the
flat. Experiments on two-level classification using SVMs
were conducted in [7], while a kernel-based algorithm for
hierarchical text classification was presented in [23]. Fi-
nally, [28] exploits the structure of the hierarchy, by group-
ing the topics into meta-topics.

Outline. The rest of this paper is organized as follows.
The personalization features of Captain Nemo are dis-
cussed in Section 2. The architecture of Captain Nemo and
several implementation issues are discussed in Section 3.
A user study is presented in Section 4. Section 6 concludes
the paper.

2 Personal Search Spaces
Personal search spaces are maintained for users of Cap-
tain Nemo. Each personal search space includes user pref-
erences able to support the available personalization fea-
tures. In fact, more than one sets of preferences can be
maintained for each user, which result to different retrieval
models and presentation styles. A personal search space is
implemented through three respective personalization fil-
ters.

We next discuss the available personalization features re-
garding the retrieval model, the presentation style and the
topics of interest. The hierarchical Web page classification
approach is presented in the following section.

2.1 Personal Retrieval Model
As seen before, most of the existing metasearch engines
employ a standard retrieval model. In Captain Nemo, this
restriction is eliminated and users can create their personal
retrieval model, by setting certain parameters in the system.
Default values of the parameters are preset for users that
do not want to spend time on this. These parameters are
described below:

Participating Search Engines. Users can declare the
search engines they trust, so that only these search engines
are used by the metasearch engine.

CAPTAIN NEMO: A METASEARCH ENGINE WITH. . . Informatica 30 (2006) 173–181 175

Search Engine Weights. In a metasearch engine, re-
trieved Web pages may be ranked according to their rank-
ing in every individual search engine that is exploited. In
Captain Nemo, as shown in Section 3.1, the search en-
gines can participate in the ranking algorithm with differ-
ent weights. These weights are set by the user. A lower
weight for a search engine indicates low reliability and im-
portance for that particular engine. The results retrieved by
this search engine will appear lower in the output of Cap-
tain Nemo.

Number of Results. A recent research [14] has shown
that the majority of search engine users (81.7%) rarely read
beyond the third page of search results. Users can define
the number of retrieved Web pages per search engine.

Search Engine Timeout. Delays in the retrieval task of
a search engine can dramatically deteriorate the response
time of any metasearch engine that exploits the particular
search engine. In Captain Nemo, users can set a timeout
option, i.e. time to wait for Web pages to be retrieved for
each search engine. Results from delaying search engines
are ignored.

2.2 Personal Presentation Style
Captain Nemo results are presented through a customizable
interface, called personal presentation style. Again, default
values of the parameters are preset for users that do not
want to spend time on this. The following options exist:

Grouping. In a typical metasearch engine, results re-
turned by search engines are merged, ranked and presented
in a list. Beside this typical presentation style, Captain
Nemo can group the retrieved Web pages (a) by search en-
gine or (b) by topic of interest. The latter is based on a
hierarchical classification technique, described in Section
3.2. An example of search results grouped by topic of in-
terest is shown in Figure 1.

Content. The results retrieved by Captain Nemo include
three parts, title, description and URL. Users can declare
which of these parts should be displayed. The available
options are (a) title, description and URL, (b) title and URL
and (c) title.

Look and Feel. Users can customize the general look and
feel of Captain Nemo. Selecting among the available color
themes and page layouts, they can define preferable ways
of presenting results. There are six color themes and three
page layouts.

2.3 Topics of Personal Interest
Captain Nemo users can define topics of personal interest,
i.e. thematic categories where search results can be kept for

Figure 1: Results grouped by topic of interest.

future reference. The retrieved Web pages can be saved in
folders that correspond to these topics. These folders have
a role similar to Favorites or Bookmarks in Web browsers.

For every retrieved Web page, Captain Nemo recom-
mends the most relevant topic of personal interest. Users
can optionally save the retrieved pages to the recommended
or other folder for future use.

The topics of personal interest are organized in a hier-
archy. The hierarchy can be thought of as a tree structure
having a root and a set of nodes which refer to topics of
the thematic hierarchy. For every topic node, there is (a) a
label that describes its concept and (b) a stricter description
of the concept (a set of keywords).

Figure 2 shows such a hierarchy of topics of personal
interest. The hierarchical classification technique is dis-
cussed in more detail in Section 3.2.

ROOT

ART
fine arts

SPORTS
athlete athletic score referee

CINEMA
movie film actor

PAINTING
painter camvas

gallery

BASKETBALL
basket nba

game

FOOTBALL
ground ball

match

Figure 2: Hierarchy of topics of personal interest.

3 System Implementation
This section presents the architecture of our application and
discusses various interesting implementation issues. Figure

176 Informatica 30 (2006) 173–181 S. Souldatos et al.

3 illustrates the main modules of Captain Nemo.

Search
Module

Ranking
Module

Presentation
Module

Preference
Manager

Category
Manager

USER
PROFILE

DATABASE
XSL Files

Category
Folders

Hierarchical
Classifier

Figure 3: System architecture.

Search Module. It implements the main functionality of
the metasearch engine, providing connection to the search
engines selected by the user. It retrieves the relevant Web
pages according to the retrieval model defined by the user.
The results are sent to the ranking module for further pro-
cessing. The module is implemented in Perl, using the
search engine wrappers WWW::Search4, parameterized by
user preferences.

Ranking Module. The retrieved Web pages are ranked
and grouped according to the personal retrieval model of
the user. For every retrieved Web page, a corresponding
topic of personal interest is determined. The ranking pro-
cess, implemented in Perl, is discussed in further detail in
Section 3.1.

Presentation Module. It presents the search results pro-
vided by the ranking module. It is implemented in Perl
CGI generating XML output. The latter is passed through
the appropriate XSL filter representing the look and feel
settings of the specific user.

Preference Manager. It provides the connection be-
tween the three aforementioned modules (i.e. search mod-
ule, ranking module, presentation module) and the infor-
mation stored in user profiles. It is also responsible for
updating user profiles and the corresponding XSL files. It
is implemented in Perl on top of the PostgreSQL database
system5.

Hierarchical Classifier. It implements the hierarchical
classification of results to the thematic hierarchy of the
user, as described in Section 3.2. It is implemented in Perl.

4http://search.cpan.org/dist/WWW-Search/lib /WWW/Search.pm
5http://www.postgresql.org/

Category Manager. It manages the topics of interests
and keeps the appropriate folders on disk in accordance
with the user profiles. It provides all the necessary infor-
mation to the hierarchical classifier. It cooperates with the
presentation module, when grouping by topics of interest is
selected by the user. Thematic hierarchies are represented
by XML indexes, which are parsed by Perl.

The next sections discuss in detail the ranking and clas-
sification mechanisms used in our application.

3.1 Ranking
Given a query, a typical metasearch engine sends it to sev-
eral search engines, ranks the retrieved Web pages and
merges them in a single list. After the merge, the most
relevant retrieved pages should be on top. There are two
approaches used to implement such a ranking task. The
first one assumes that the initial scores assigned to the re-
trieved pages by each one of the search engines are known.
The other one does not presupposes any information about
these scores.

In [22], it is pointed out that the scale used in the simi-
larity measure in several search engines may be different.
Therefore, normalization is required to achieve a common
measure of comparison. Moreover, the reliability of each
search engine must be incorporated in the ranking algo-
rithm through a weight factor. This factor is calculated
separately during each search. Search engines that return
more Web pages should receive higher weight. This is due
of the perception that the number of relevant Web pages
retrieved is proportional to the total number of Web pages
retrieved as relevant for all search engines exploited by the
metasearch engine.

On the other hand, [9, 13, 27] stress that the scores of
various search engines are not compatible and comparable
even when normalized. For example, [27] notes that the
same document receives different scores in various search
engines and [9] concludes that the score depends on the
document collection used by a search engine. In addi-
tion, [13] points out that the comparison is not feasible not
even among engines using the same ranking algorithm and
claims that search engines should provide statistical ele-
ments together with the results.

In [1], ranking algorithms are proposed which com-
pletely ignore the scores assigned by the search engines to
the retrieved Web pages: bayes-fuse uses probabilistic the-
ory to calculate the probability of a result to be relevant to
the query, while borda-fuse is based on democratic voting.
The latter considers that each search engine gives votes in
the results it returns, giving N votes in the first result, N−1
in the second, etc. The metasearch engine gathers the votes
for the retrieved Web pages from all search engines and the
ranking is determined democratically by summing up the
votes.

Weighted Borda-Fuse. The algorithm adopted by Cap-
tain Nemo is the weighted alternative of Borda-fuse. In this

CAPTAIN NEMO: A METASEARCH ENGINE WITH. . . Informatica 30 (2006) 173–181 177

algorithm, search engines are not treated equally, but their
votes are considered with weights depending on the relia-
bility of each search engine. These weights are set by the
users in their profiles. Thus, the votes that the i result of
the j search engine receives are:

V (ri,j) = wj ∗ (maxk(rk)− i + 1) (1)

where wj is the weight of the j search engine and rk is the
number of results rendered by search engine k. Retrieved
pages that appear in more than one search engines receive
the sum of their votes.

Example. A user has defined the personal retrieval model
of Table 1.

Search Engine Results Weight Timeout
SE1 20 7 6
SE2 30 10 8
SE3 10 5 4

Table 1: Personal retrieval model.

The user runs a query and gets 4, 3 and 5 results respec-
tively from the three search engines specified. According to
Weighted Borda-Fuse, the search engines have given votes
to the results. The first result of each search engine receives
5 votes, as the largest number of results returned is 5. Table
2 shows the votes received by the search engines.

Search Engine 1st 2nd 3rd 4th 5th
SE1 5 4 3 2 -
SE2 5 4 3 - -
SE3 5 4 3 2 1

Table 2: Result votes by search engines.

Captain Nemo multiplies these votes by the weight of
each search engine to push upward results of search engines
trusted most by user. The final votes of each result of each
search engine is shown in Table 3.

Search Engine 1st 2nd 3rd 4th 5th
SE1 35 28 21 14 -
SE2 50 40 30 - -
SE3 25 20 15 10 5

Table 3: Result votes by Captain Nemo.

So, the first result to appear in the rank is the first result
of search engine SE2.

3.2 Hierarchical Classification of Retrieved
Web Pages

As we have already mentioned, Captain Nemo recom-
mends relevant topics of interest to classify the retrieved

pages, exploiting k-Nearest Neighbor classification tech-
niques. Other classification algorithms can be easily
adopted as well. However, our efforts were focused on
providing the appropriate framework and not on testing
various classification algorithms, which has been widely
addressed by many researchers (see Related Work in Sec-
tion 1). Thus, we selected the simple yet effective [31]
k-Nearest Neighbor classification technique.

Retrieved Web pages are processed by k-NN and classi-
fied in the thematic hierarchy. The part of a Web page that
is used for classification includes its title and the part of its
content extracted by search engines. The latter is usually
strongly relevant to the imposed query. The whole content
of Web pages could be used for higher accuracy, but this
would deteriorate the response time [7].

k-NN Classification. The k-NN classification method
presumes that a group of categories is defined for a data
set and a set of training documents corresponds to each
category. Given an incoming document, the method ranks
all training documents according to the similarity value be-
tween those documents and the incoming document. Then,
the method uses the categories of the k top-ranked docu-
ments to decide the right category for the incoming docu-
ment by adding the per-neighbour similarity values for each
one of those categories [30, 31]:

y(x, cj) =
∑

diεkNN

sim(x,di)× y(di, cj) (2)

where:

1. x is an incoming document, di is a training document,
cj is a category,

2. y(di, cj) = 1 if di belongs to cj or 0 otherwise,

3. sim(x,di) is the similarity value between the incom-
ing document x and the training document di,

Using thresholds on these scores, k-NN obtains binary cat-
egory assignments and allows the system to assign a doc-
ument to more than one categories. Instead it can just use
the category with the highest score as the right one for the
incoming document. Captain Nemo follows the second ap-
proach.

Hierarchical k-NN Classification. Hierarchical k-NN
classification algorithms are usually implemented in a top-
down approach. The document under consideration is first
classified to one of the first-level categories. Recursively,
the classification continues in the subtree rooted to the cat-
egory selected in the previous step. The process stops when
the selected category is either a leaf or more similar to the
document than its subcategories. In this approach, all cate-
gories in the hierarchy should be defined in detail to attract
documents that belong to one of their subcategories. To
avoid this difficulty, in Captain Nemo, where the descrip-
tions of the categories are given by users, a hybrid approach
is employed.

178 Informatica 30 (2006) 173–181 S. Souldatos et al.

Our Hybrid Approach. Our classification approach is a
hybrid one. The topics of interest are organized in a the-
matic hierarchy. Every topic of the hierarchy is consid-
ered to be a separate category having its own training data
(its keyword description), as in the flat model. However,
the training data set of a topic is enriched by data from its
subtopics. For example, the categories of the hierarchy of
Figure 2 are enriched as shown in Figure 4. As a result,
the decision of whether a Web page belongs to a category
strongly depends on its descendants.

ROOT

ART
fine arts cinema movie

film actor painting painter
camvas gallery

SPORTS
athlete athletic score referee
basketball basket nba game
football ground ball match

CINEMA
movie film actor

PAINTING
painter camvas

gallery

BASKETBALL
basket nba

game

FOOTBALL
ground ball

match

Figure 4: Enriched hierarchy.

In Captain Nemo, the topic descriptions set by the user
are used instead of training documents in k-NN. To be more
specific, Captain Nemo needs to calculate similarity mea-
sures between the description of each retrieved Web page
and the description of every topic of personal interest. The
similarity measure employed is a tf − idf one [29]. Let D
be the description of a topic of interest and R the descrip-
tion of a retrieved Web page. The similarity between the
topic of interest and the retrieved Web page, sim(R, D), is
defined as follows:

Sim(R, D) =

∑

tεR∩D

wR,t × wD,t

√ ∑

tεR∩D

w2
R,t ×

√ ∑

tεR∩D

w2
D,t

(3)

where t is a term, wR,t and wD,t are the weights of term t
in R and D respectively. These weights are:

wR,t = log
(

1 +
C

Ct

)
(4)

wD,t = 1 + log fD,t (5)

where C is the total number of topics of interest, Ct is
the number of topics of interest including term t in their
description and fD,t is the frequency of occurence of t in
description D.

Having a new, retrieved Web page, we rank the topics
of interest according to their similarity with the page (the
topic of interest with the highest similarity will be on the
top). Then, the top-ranked topic of interest is selected as
the most appropriate for the retrieved page.

Example. We have created a user with the hierarchy of
topics of personal interest presented in Figure 2. For this
user, we have run the query “michael jordan”, asking for
just a few results. A screenshot of the results grouped by
topic of interest is shown in Figure 1. Totally, there are:

– 0 results in category 1. ART,

– 3 results in category 1.1. CINEMA,

– 2 results in category 1.2. PAINTING,

– 3 results in category 2. SPORTS,

– 8 results in category 2.1. BASKETBALL,

– 0 results in category 2.2. FOOTBALL.

As expected, the majority of results are matched to
topic BASKETBALL. However, there are results matching
to other topics as well. Results matching to topic CIN-
EMA deal with Michael Jordan as an actor. Results in topic
PAINTING refer to photo galleries with photos of Michael
Jordan. Finally, results matching to topic SPORTS refer to
the athletic background of Michael Jordan in general.

4 User Study
A user study was conducted to evaluate the hierarchical
classification process and its effect on searching. Twelve
persons of various backgrounds participated in the experi-
ments. We divided users into two teams, users and testers.

Experiment 1. The first experiment evaluated the perfor-
mance of the hierarchical classification process. The six
users were assigned the task to create a hierarchy of four to
six topics of personal interest in Captain Nemo. However,
the users were advised to restrict in one domain, so that we
can test classification among similar categories, e.g. ap-
ples vs oranges. Testing among totally different categories,
for example oranges vs shoes, would be easy; hence it was
avoided. The user hierarchies are shown in Table 4.

After the six hierarchies (category names and descrip-
tions) were defined in the system, we asked the users to rec-
ognize categories of the Dmoz directory6 that correspond
to their thematic categories. Then, we fed the Dmoz pages
into the Hierarchical Classifier and counted the percentage
of pages that were classified correctly in the appropriate
category. These percentages are shown in Table 4. For in-
stance, 75% of the pages found under the Dmoz category
corresponding to category audio were classified to category
audio as well. The average percentage of pages correctly
classified for each user is noted next to the user label.

On average, 73% of pages found in the Dmoz hierar-
chy are classified in the correct category by the Hierarchi-
cal Classifier of Captain Nemo. The reader should keep in
mind that the categories created by users in this experiment

6http://www.dmoz.org/

CAPTAIN NEMO: A METASEARCH ENGINE WITH. . . Informatica 30 (2006) 173–181 179

User 1 (avg: 64%) User 2 (avg: 67%) User 3 (avg: 73%)
electronics (55%) databases (67%) jazz musicians (75%)
`audio (75%) `data mining (94%) `bassists (92%)
`photography (43%) `warehousing (62%) `trumpeters (50%)
`digital camera (83%) `olap (44%) `trombonists (76%)

User 4 (avg: 80%) User 5 (avg: 81%) User 6 (avg: 70%)
cooking (61%) furniture (49%) music festivals (82%)
`potatoes (67%) `leather (93%) `folk (59%)
`onions (100%) `bamboo (100%) `electronic (56%)
`pizza (93%) `bedroom (81%) `dance (83%)

Table 4: User-defined thematic hierarchies and percentage of correctly classified query results.

were forced to belong in the same domain. In real cases,
users define categories of various domains, making cate-
gories more distinguishable and classification percentages
even higher.

Experiment 2. The second experiment was conducted to
evaluate the effect of presenting the results classified in
user-defined categories. We measured the time users need
to identify Web pages relevant to their information need (in
the spirit of [6]). We conducted the experiments with users
that created the hierarchy themselves, and testers who were
not previously aware of the user-defined categories.

Each user was given the results of a query in the domain
of the self-defined hierarchy and was asked to identify Web
pages for a query more detailed than the given one (called
target query), as in [6]. For example, user3 was given the
results of query ‘brian’ and was asked to identify a Web
page regarding the famous bassist Brian Bromberg. The
time the user spent using the classified-by-category inter-
face and the classified-in-a-list interface is shown in Table
5. Next, each tester was asked to do exactly the same using
the user-defined hierarchy of their corresponding user (see
Table 5). For users that have defined their own thematic hi-
erarchy, searching was more than 60% faster than searching
of testers that have not defined the categories themselves.

5 Conclusion
Getting this idea from two research fields, namely person-
alization of search and Web content classification, we have
created Captain Nemo, a fully-functional metasearch en-
gine with personalized hierarchical search spaces. Captain
Nemo, initially presented in [26], retrieves and presents
search results according to personalized retrieval mod-
els and presentation styles. In this paper, we presented
the hierarchical Web page classification approach, recently
adopted in Captain Nemo. Users define a hierarchy of top-
ics of interest. Search results are automatically classified
into the hierarchy, exploiting k-Nearest Neighbor classifi-
cation techniques.

For future work, we are going to improve the hierarchical
classification process, exploiting background knowledge in

the form of ontologies [3]. Next, we will incorporate a
Word Sense Disambiguation (WSD) technique in the spirit
of [19].

References

[1] J. A. Aslam and M. Montague. Models for
metasearch. In Proceedings of the 24th ACM SIGIR
Conference, pages 276–284. ACM Press, 2001.

[2] L. D. Baker and A. K. McCallum. Distributional clus-
tering of words for text classification. In Proceedings
of the 21st ACM SIGIR Conference, pages 96–103.
ACM Press, 1998.

[3] S. Bloehdorn and A. Hotho. Text classification by
boosting weak learners based on terms and concepts.
In Proceedings of the 4th ICDM Conference, pages
331–334, 2004.

[4] W. L. Buntine, J. Löfström, J. Perkiö, S. Perttu,
V. Poroshin, T. Silander, H. Tirri, A. J. Tuominen,
and V. H. Tuulos. A scalable topic-based open source
search engine. In Proceedings of the ACM WI Con-
ference, pages 228–234. ACM Press, 2004.

[5] S. Chakrabarti, B. E. Dom, and P. Indyk. En-
hanced hypertext categorization using hyperlinks. In
Laura M. Haas and Ashutosh Tiwary, editors, Pro-
ceedings of the 17th ACM SIGMOD Conference,
pages 307–318. ACM Press, 1998.

[6] Hao Chen and Susan Dumais. Bringing order to the
web: automatically categorizing search results. In
CHI ’00: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 145–152,
New York, NY, USA, 2000. ACM Press.

[7] S. Dumais and H. Chen. Hierarchical classification of
web content. In Proceedings of the 23rd ACM SIGIR
Conference, pages 256–263. Athens, Greece, ACM
Press, 2000.

180 Informatica 30 (2006) 173–181 S. Souldatos et al.

USERS QUERY BY CATEGORY IN A LIST
User Tester Given Target User Tester User Tester

User 1 Tester 1 car car audio system 7 sec 22 sec 92 sec 104 sec
User 2 Tester 2 select SQL tutorial 8 sec 19 sec 45 sec 42 sec
User 3 Tester 3 brian bassist Brian Bromberg 4 sec 14 sec 31 sec 28 sec
User 4 Tester 4 italian Italian pizza recipe 5 sec 35 sec 85 sec 69 sec
User 5 Tester 5 outdoor outdoor furniture 3 sec 17 sec 29 sec 36 sec
User 6 Tester 6 rainbow Rainbow band 4 sec 12 sec 31 sec 28 sec

Table 5: Time to identify relevant Web pages for given queries.

[8] S. Dumais, J. Platt, D. Heckerman, and M. Sa-
hami. Inductive learning algorithms and represena-
tions for text categorization. In Proceedings of the
7th ACM CIKM Conference, pages 148–155. ACM
Press, 1998.

[9] S. T. Dumais. Latent semantic indexing (lsi) and trec-
2. In Proceedings of the 2nd TREC Conference, 1994.

[10] N. Fuhr and C.-P. Klas. A new effective approach for
categorizing web documents. In Proceedings of the
22nd IRSG Conference, 1998.

[11] E. Glover, G. Flake, S. Lawrence, W. P. Birmingham,
A. Kruger, C. Lee Giles, and D. Pennock. Improving
category specific web search by learning query mod-
ifications. In Proceedings of the SAINT Symposium,
pages 23–31. IEEE Computer Society, January 8–12
2001.

[12] N. Govert, M. Lalmas, and N. Fuhr. A probabilistic
description-oriented approach for categorizing web
documents. In Proceedings of the 8th ACM CIKM
Conference, pages 475–482. ACM Press, 1999.

[13] L. Gravano and Y. Papakonstantinou. Mediating and
metasearching on the internet. IEEE Data Engineer-
ing Bulletin, 21(2), 1998.

[14] iProspect. iProspect search engine user at-
titudes. http://www. iprospect.com /premi-
umPDFs/iProspectSurveyComplete.pdf, 2004.

[15] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th ECML Conference, 1998.

[16] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In Proceedings of
the 14th ICML Conference, 1997.

[17] Y. Labrou and T. Finin. Yahoo! as an ontology -
using Yahoo! categories to describe documents. In
Proceedings of the 7th ACM CIKM Conference, pages
180–187. ACM Press, 1998.

[18] B. Masand, G. Linoff, and D. Waltz. Classifying news
stories using memory based reasoning. In Proceed-
ings of the 15th ACM SIGIR Conference, pages 59–
65. ACM Press, 1992.

[19] D. Mavroeidis, G. Tsatsaronis, M. Vazirgiannis,
M. Theobald, and G. Weikum. Word sense disam-
biguation for exploiting hierarchical thesauri in text
classification. In Proceedings of the 16th ECML/9th
PKDD Conference, pages 181–192, 2005.

[20] A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In Proceed-
ings of the Learning for Text Categorization Work-
shop, at the 15th AAAI Conference, 1998.

[21] H.-T. Ng, W.-B. Goh, and K.-L. Low. Feature selec-
tion, perceptron learning, and a usability case study
for text categorization. In Proceedings of the 20th
ACM SIGIR Conference, pages 67–73. ACM Press,
1997.

[22] Y. Rasolofo, F. Abbaci, and J. Savoy. Approaches
to collection selection and results merging for dis-
tributed information retrieval. In Proceedings of the
10th ACM CIMK Conference. ACM Press, 2001.

[23] Juho Rousu, Craig Saunders, Sandor Szedmak, and
John Shawe-Taylor. Learning hierarchical multi-
category text classification models. In ICML ’05:
Proceedings of the 22nd international conference on
Machine learning, pages 744–751, New York, NY,
USA, 2005. ACM Press.

[24] M. Sahami, V. O. Mittal, S. Baluja, and H. A. Rowley.
The happy searcher: Challenges in web information
retrieval. In Proceedings of the 8th PRICAI Confer-
ence, pages 3–12, 2004.

[25] C. Shahabi and Y-S. Chen. Web information person-
alization: Challenges and approaches. In Proceedings
of the 3rd DNIS Workshop, 2003.

[26] S. Souldatos, T. Dalamagas, and T. Sellis. Sailing the
web with captain nemo: a personalized metasearch
engine. In Proceedings of the Learning in Web Search
Workshop, at the 22nd ICML Conference, 2005.

[27] G. Towell, E. M. Voorhees, N. K. Gupta, and
B. Johnson-Laird. Learning collection fusion strate-
gies for information retrieval. In Proceedings of the
12th ICML Conference, 1995.

CAPTAIN NEMO: A METASEARCH ENGINE WITH. . . Informatica 30 (2006) 173–181 181

[28] Andreas S. Weigend, Erik D. Wiener, and Jan O. Ped-
ersen. Exploiting hierarchy in text categorization. Inf.
Retr., 1(3):193–216, 1999.

[29] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, 2nd edition,
1999.

[30] Y. Yang. Expert network: Effective and efficient
learning from human decisions in text categorization
and retrieval. In Proceedings of the 17th ACM SIGIR
Conference, pages 13–22. ACM Press, 1994.

[31] Y. Yang and X. Liu. A re-examination of text cate-
gorization methods. In Proceedings of the 22nd ACM
SIGIR Conference, pages 42–49. ACM Press, 1999.

182 Informatica 30 (2006) 173–181 S. Souldatos et al.

 Informatica 30 (2006) 183–192 183

Plan Sharing: Showcasing Coordinated UAV Formation Flight
Henry Hexmoor, Swetha Eluru and Hadi Sabaa
Department of Computer Engineering and Computer Science
University of Arkansas
Fayetteville, AR 72701, USA.
E-mail: {Hexmoor, seluru, hsabaa}@uark.edu

Keywords: agents, collaboration, UAV, benevolence, help

Received: December 7, 2005

Agent teaming and autonomy are foundational themes in multi-agent systems. Agents may work as
singletons or they may work in environments where other agents exist. In multi-agent systems, agents
may form teams by sharing common goals with other agents. Cooperation is essential for any
collaborative, group activity. Beyond coordination and judicious role assignment, cooperation enables
members of a team to be aware and account for collection of their goals as well as the performance of
agents on individual goals. This paper presents a general model of cooperation and illustrates how it
may enhance group performance. In this paper, we present results of an application of the concept of
cooperation in a simulated swarm of reconnaissance urban UAVs that are tracking vehicles in an urban
environment.
Povzetek: Opisan je splošni model sodelovanja agentov.

1 Introduction
An agent is defined as an autonomous, problem-

solving computational entity capable of effective
operation in dynamic and open environments (Luck and
Griffiths, 2003). A multi-agent system is a system of
agents that exhibit social rationality, normative patterns,
and values, among themselves within an environment
(Hexmoor, 2003).

Typically, each agent in a multi-agent system
possesses incomplete information for solving a problem
with limited global knowledge. Therefore, agents interact
with one another to gather information, act upon that
information, and hence collectively solve a problem.
Collaborative, behavior-coordinated activity involves
participants to work jointly with each other to satisfy a
shared goal that often yields more than the sum of
individual actions (Grosz and Sidner, 1990). The
mentioned type of activity may be distinguished from
both interaction and simple coordination in terms of the
commitments agents make to each other (Grosz and
Kraus, 1996).

A theory of collaboration must therefore account for
not only intentions, abilities, and knowledge about
actions of individual agents, but also for their
coordination in group planning and group acting.
Furthermore, it must account for the manner in which
plans may be incrementally formed and executed by the
participants.
Agents may have different beliefs concerning the
methods for performing an action or those for achieving
a desired state. Pollack argued for a view of plans as
purely data-structures (Pollack, 1990) i.e., a plan is more
appropriately viewed as a set of partially ordered actions

that, when performed under appropriate conditions, lead
to a specified new state of the world. She has argued for
a view of plans as mental states that are necessary for
plan interference. Having a plan does not merely require
the know-how to perform a behavior, but it also includes
possessing the intention to perform the actions entailed.

To adequately model cooperation, it is necessary to
accommodate differences among beliefs of individual
participants as well as to distinguish between knowledge
about action performance and the intention to act. Agents
may differ not only in their beliefs about the strategies to
perform an action and the state of the world, but also in
their assessments of the ability and willingness of an
individual to perform an action.

The shared plan formalization provides mental state
specifications of both shared plans and individual plans.
Shared plans are constructed by groups of cooperative
agents and include subsidiary shared plans formed by
subgroups as well as subsidiary individual plans formed
by individual participants in the group (Lochbaum,
1994). The formalization distinguishes between complete
plans in which all the requisite beliefs and intentions
have been established and partial plans. In addition to the
propositional attitude of intending to perform an action, it
introduces the attitude of intending that a proposition be
held.

Agents can enhance their fitness by mutual help
rather than by competition, as is observed in nature
(Benton, 2001). This assumes that resources adequate for
both agents exist, or are created by interacting and
sharing their information. This enhances both, the
process of working together toward a common goal as

184 Informatica 29 (2005) 183–192 H. Hexmoor et al.

well as the process of sharing effort, expertise and
resources to achieve mutually desirable outcome.

Figure 1. Collaboration subsumes Cooperation and

Cooperation subsumes both Coordination and Role
assignment. [Inspired by (Tuomela, 2000)]

Figure 1 illustrates that the coordination process and role
assignment are subsets of the process of cooperation. The
later, in turn, is a part of the collaboration process.

Agents need to organize themselves in a manner that
permits them to perform their tasks efficiently. A
malformed organization will affect the entire multi-agent
system. When multi-agent systems change state, the
agents in the system should be able to organize
themselves accordingly by sharing information amongst
them. When this is not accomplished, cooperation should
be adapted in order to avoid disruption in the multi-agent
system.

We have applied the just mentioned concept to a
simulated swarm of reconnaissance Unmanned Arial
Vehicles (UAVs) that are tracking vehicles in an urban
environment with details discussed in Section 3.

 This paper offers an approach to adapt cooperation
in multi-agent systems. The main focus will be
particularly on the cooperation among agents who are
working together for a particular task while using the
plan sharing techniques to enhance the cooperation.
Rudimentary metrics are developed to gauge the effect of
collaboration on system performance.

 The novelties of this paper are in the following
areas:

• Developing superior strategies for a given set of
agents to work together

• Devising a process by which the agents are
integrated into a team, regulated to achieve team
goals

• Increasing agents’ performance to contribute to
a high functioning system.

• Evaluating agents during the process of
cooperation.

• Quantifying the effect of cooperation on the
goals and the system performance.

 In the remainder of this paper, Section 2 contains related
work in the area of cooperation between the agents and
also the application of the cooperation in multi UAV

interactions. In this section, issues related to cooperation,
necessity of cooperation, and plan sharing among the
agents are discussed. Application of cooperation and
collaboration in our implemented UAV swarm is
presented in section 3. Section 4 outlines a novel,
generalized cooperation algorithm. We describe the
importance of cooperation by illustrating how agent plan
sharing enhances the cooperation process. Section 5
briefly describes incorporation of collaboration in our
UAV swarm. We then present experiments and results in
section 6. Section 7 provides concluding remarks and
suggestions for future work.

2 Related Work
Since there is a growing demand for robust and
intelligent multi-agent systems, a vast body of work is
available in the area of group activity (Hexmoor, 2003).

According to Alonso, two agents may depend on one
another in one of sixteen ways (Alonso, et. al., 1999).
Sharing a goal achievement is central to forming agent
teams (Cohen, et.al., 1997). Agents that want to
maximize their gain may consider cooperation in order to
lower their workload and temporal penalties (Beer et. al,
1999). Hexmoor extended the explorations for teaming
(Hexmoor and Duchscherer, 2001).

An understanding of collaboration is essential to
modeling the intentional context of discourse and its
structure (Grosz and Sidner, 1990; Lochbaum, et.al.,
1990 and Lochbaum, 1995, 1998). As a theoretical
framework for modeling collaboration (Grosz and Kraus,
1996), it is evident that collaborative activities require a
complex set of parameters that must be taken into
account. The primary focus while attempting to achieve a
goal is on understanding the states of mind of the
individuals who participate in collaboration, and on
properties of the group. An overview of the model
designed by Grosz provides a setting in which to
examine the roles of parameters of agents on
collaborative plans and activities (Grosz, 1999).

In this process, the mutual beliefs of the discourse
participants, the amount of knowledge that each
individual participant or all participants should have,
which was discussed in (Clark and Richard, 1981;
Cohen, 1981) as well as differences in beliefs among
participants in a discourse are important (Pollack, 1990).

Partial, individual plans are expanded to more
complete plans through means-ends reasoning about
intended goals. Cooperation mirrors this reasoning
process, i.e., plan-collaboration process. However, their
expansion requires communication and negotiation as
well as means-ends reasoning about the way in which to
perform the group action (Grosz and Kraus, 1999).

By and large, communication and collaboration are
disjoint; yet interdependent activities. Communication is
inherently a collaborative activity (Grosz and Sidner,
1990; Korta, 1995 and Arrazola, 1996). An agent
communicates to achieve a purpose. The motivations
underlying communication provide structure for an
agent’s discourse (Mataric, 1993). Collaboration, in turn,
requires communication. Both communication and

PLAN SHARING: SHOWCASTING... Informatica 30 (2006) 183–192 185

collaboration can be used parametrically in agent design.
As a result, theories and models of collaboration are
essential to understand and model intentional states and
the intentional attributes of discourse (Grosz and Sidner,
1990; Lochbaum, Grosz and Sidner, 1990 and
Lochbaum, 1995, 1998), which use the Shared Plans
formalization of collaboration, as the basis of a
computational model for recognizing the intentional
structure of disclosure.

Building directly on Lochbaum’s use of Shared
plans, others have constructed a collaborative graphical
interface for a travel planning system. These applications
use the logical specification provided by shared plans to
constrain utterance generation and interpretation, e.g.,
(Rich and Sidner, 1994) and (Sidner and Rich, 1997).

Furthermore, in a collaborative activity,
collaboration commonly occurs within the process of
planning. Each agent may have incomplete or incorrect
beliefs. Furthermore, their beliefs about each other’s
beliefs and capabilities to act may be incorrect. As a
result, a collaborative act cannot be modeled simply by
aggregating plans of individual agents.

Therefore, rather than modeling plan recognition,
what must be modeled is the augmentation of beliefs
about the actions of multiple agents and their intentions.
Thus, Grosz and Sidner modified and expanded the
Shared plan model of collaborative behavior originally
proposed in (Grosz and Sidner, 1990), to present an
algorithm for updating an agent’s beliefs about a partial,
shared plan, and describe an initial implementation of
this algorithm in the domain of network management for
augmenting an evolving jointly-held plan.

For a multi-agent collaborative control, Chandler and
Pachter conclude that decision making through planning
and management are the essence of the autonomous
control problem (Chandler and Patcher, 1998).

To improve teamwork, we need to better understand
the nature of coordination and its ramifications. This is
explained with in-depth analysis of the coordination that
is required to carry on a conversation.

For investigation of cooperative control of multiple
UAVs, a simulator is offered (Chandler and Rasmussen,
2001). This is implemented in a hierarchal manner where
inter-vehicle communication is explicitly modeled.
During the construction of a UAV swarm, issues
concerning memory usage and functional encapsulation
were also considered. This simulation has been
instrumental in evaluating cooperative control strategies
for UAVs.

Control Automation and Task Allocation (CATA),
which is a multiple-vehicle/multi-agent simulation was
developed at the Boeing Corporation. This simulation
has been used in several early cooperative control
studies, such as in (Chandler and Rasmussen, 2001).
Since CATA was relatively large and written in C++, it
proved to be difficult for widespread use.

A number of other UAV simulations exist. Their
payload weight carrying capability, their
accommodations (volume, environment), their mission
profile (altitude, range, duration) and their command,

control and data acquisition capabilities vary
significantly; for a brief survey, See (Lua, et. al., 2003).

Recent military operations have showcased the
abilities of UAVs where they provide intelligence,
surveillance, reconnaissance, command, and control
information to commanders in real-time or near real-time
format. The success of UAVs has raised questions about
future roles for UAVs in the military operation. These
roles include arming UAVs and using UAVs for target
designation; these missions are commonly grouped under
the title of Unmanned Combat Aerial Vehicles (UCAVs),
see (Raymond, 2000).

The ability to control many remote entities with
minimal user intervention has many military and
commercial applications. Current techniques for
controlling UAVs, which rely on centralized control and
on the availability of global information, are not suited to
the control of UAV swarms owing to the complexity that
arises from the interactions between swarm elements
(Stover and Gibson, 1997).

Traditional, centralized approaches, frequently lead
to exponential increases in communication bandwidth
requirements and in the size of the controlling swarm. In
contrast, swarms of simple biological or artificial
organisms exhibit rich, emergent behaviors, without the
need for centralized control or global communication
(Boanabeau, et.al., 1999). Controlling UAV swarms via
human supervision is of great interest to the US military.

For coordination, as explained earlier, allocation of
tasks to the UAV during their flight is one of the criteria
for achieving the joint activity. Work for optimizing the
task allocation problem for a fleet of Unmanned Aerial
Vehicles with tightly coupled tasks and rigid relative
timing constraints is available in (Alighanbari, et.al.,
2003). The overall objective is to minimize the mission
completion time for the fleet, and the task assignment
must account for differing UAV capabilities and no-fly
zones.

For many vehicles, obstacles, and targets, fleet
coordination is a complicated optimization problem and
the computation time increases rapidly with the problem
size (Pachter, et.al, 2002 and Richards, et.al., 2001).

Work on particle swarms (Parker, 1993), cultural
algorithms (Reynolds and Chung, 1996), and bacterial
chemo taxis algorithms (Muller, et. al., 2002) has
generalized the idea for abstract, n-dimensional cognitive
spaces that make up self-organizing particle systems.

Interactions between particles result in complex
global behavior which emerges from the joint actions and
relatively simple behaviors of the individual particles,
thereby exhibiting self-organization. These properties
have been used in applications in computer graphics
(Reynolds, 1987, 1999), multi-robot team control (Balch
and Arkin, 1998; Fredslund and Matartic, 2002; Winder
and Reggia, 2004; Vail and Veloso, 2003), and numerical
optimization (Parker, 1993). We have implemented an
Urban UAV test bed, described in the following section.

186 Informatica 29 (2005) 183–192 H. Hexmoor et al.

3 An Urban UAV surveillance
system

UAVs in our simulation are modeled as powered
aerial vehicles sustained in flight by aerodynamic lift and
guided without an onboard crew. In general, a UAV may
be expendable or recoverable, and can fly autonomously
or be piloted remotely. When working together as a
group, UAVs resemble a multi-agent system. UAVs
interact with other UAVs and perform their tasks
collectively.

Figure 2. Snapshot of our UAV simulation screen

Figure 2 depicts a typical flight pattern of a swarm of

UAVs tracking terrestrial vehicles. The “white” circles
depict cloud cover. Vehicles may temporarily disappear
from UAV view when they are traveling below the
randomly appearing clouds. This makes tracking them
more challenging. UAVs need to interact to improve
their collective tracking capability. Vehicles as well as
cloud patches appear randomly in our simulation for a
measure of realism. The system maintains the track
quality, i.e., the number of cycles tracked, for each target,
which is described in more detail as the Performance list
and denoted as Perf [] in Section 4. Upon entry of a
UAV in the theater, it determines a number of targets,
i.e., vehicles, to track largely based on proximity. This is
called a UAV Preference list denoted as Pref [], also
described in Section 4.

Elsewhere, (Hexmoor, et. al., 2005) we have
described how a human supervisor may guide and alter
interactions among UAVs to improve system tracking.
This is achieved primarily via parameters that affect a
UAV social personality. These consist of four
parameters.

• Dedication parameter determines how
committed the UAVs are to reacquire lost
targets.

• Sociability parameter determines how
gregarious UAVs will be. A UAV with a
positive sociability will tend to operate in
proximity to other UAVs. Conversely, a UAV
with negative sociability (i.e., anti-social) will
make the UAV shun others and operate
independently.

• Conformity parameter determines how quickly
the UAV reacts to operator suggestions.

• Finally, Disposition parameter determines how
quickly a UAV will become frustrated with the
negotiation process.

In contrast, herein we focus on a single parameter of
Cooperation level, denoted as CL, further described in
Section 4. This parameter is used to adjust the level of
collaboration among UAVs. We have explored setting
CL at four levels. The results of a set of experiments are
presented in Section 6.

4 A Proposed Cooperation Model
 Although we used the same collaboration model, in this
section we describe our collaboration model in abstract
terms and we will not refer to UAVs or target tracking.
Our model chiefly concentrates on how agents team up to
form a collaborative pattern to achieve their goals.

Upon entry, an agent determines its own intentions
for a plan to achieve its goal. Each agent has its own
individual plan for achieving its goals. The common goal
refers to the collective set of agent goals to be achieved.

Each agent has knowledge of its environment in the
form of beliefs. An agent will desire to perform its
individual tasks by assessing its knowledge of the
environment. After environmental assessment and
determination of a course of action (i.e., a plan), it will
form intentions to achieve its selected goals.

Next, we outline our model in general terms. Let
there be n agents in a given environment. Assume m
goals are to be achieved at any instant in time.

After updating beliefs, an agent compiles a list of
goals to be achieved. By default, an agent will wish to
follow the order of goals in its list. Each agent forms a
course of action.

We consider all agents to be identical in every
respect. Furthermore, agents are assumed to possess
identical capabilities and limitations. To recapitulate, in
an environment with a team with m goals, each agent has
its own courses of actions gleaned from its own personal
observations.

Each agent may independently pursue its individual
intentions. In some circumstances, agents might be
successful in reaching their goals independently.
However, this lack of interdependence might adversely
affect the achievement of common goals.

Next, we outline a plan sharing process. Each agent
shares its intentions, desires, and also the course of action
in which it wants to proceed. In other words, each agent
has global knowledge about other agents’ intentions and
desires, and also about all the goals which have been
already achieved. This includes updating the changed
intentions of all agents. If an agent changes its desire and
thus changes its intentions, this is shared with other
agents in the environment.

Cooperation is uniformly introduced in the process
of achieving goals. Agents are considered to have the
same cooperation level. The system level performance is
quantified as the overall cumulative performance of all

PLAN SHARING: SHOWCASTING... Informatica 30 (2006) 183–192 187

the agents working in the system; that is, the number of
goals processed in the duration of time. The rate of goal
performance is broadcasted to other agents in the system,
hence making it available for them to access.

During the cooperation process, each agent in each
cycle considers its preferred intentions, the performance
of each goal in the environment, and the predetermined
cooperation level in the system. Tracking information
(i.e., goal performance) is maintained locally on targets.
This phenomenon provides a way for communication
between UAV’s where each UAV can access the
tracking information on the targets. Cooperation level in
our model is a system parameter for cooperativeness,
shared by all agents. In each cycle, when agent decision
making process considers the cooperation level in the
environment, it generates a new bid order list which will
be considered as the new intention list for each agent.
enters

This new intention list is generated starting from the
preference list of the particular agent and reflects changes
to this preference list to favor the goals with low
performance levels biased with the cooperation level.

For example, if a particular agent has a preference
list of goals, say 3, 6, and 7. Assume the relative
cumulative performance levels of these goals are 9, 21,
and 11 respectively. Then without cooperation, agents
may revise their goal list by comparing their preference
list with the goal performance list. The revised list will
be 6, 7 and 3. That means, here, the goal with less
performance is given the least priority.

When cooperation is introduced in this example and
with some global value for the cooperation level, the
new, revised intention list will not only depend on the
performance of the goals but also on the cooperation
level among agents. We assume cooperation level to
encapsulate an implicit notion of benevolence where
agents tend to help one another achieve low performing
goals. With cooperation, the revised example goal list
will be 3, 7, 6. That means, here, the goal with less
performance is given the highest priority.

Assume an agent has a goal g to be achieved and it
has been trying it for a long period of time. Meanwhile,
the agent concentrates only on the present goal, and by
the time it plans to achieve the goal, which is the next
one in its intention goal list, that goal might be
unavailable for the agent due to unforeseen reasons.
Here, benevolent agents might come forward to achieve
this particular goal. Agents come forward even if goal g
is less appealing due to its lack of performance.

 Cooperative agents will act out their benevolence by
striving to achieve poorly performing goals in order to
exhibit cooperation. With the largest cooperation level
values, agents will consider achieving the poorest
performing goals. The summary of our model is thus as
follows.

Consider an agent A in a given environment. It
possesses its own beliefs, desires and intentions for
achieving goals. Each agent constructs its own
preference list of goals it wants to follow along with its
individual plan. Let us denote the former as Pref[A].
Each goal in the list of goals of the environment is

continually assessed and ascribed a performance level.
This performance level is given depending on the
number of times the goal has been attempted by agents in
the environment. To summarize, each goal G has its
instantaneous performance value codified with Perf [G].

In each cycle, each agent A considers its Pref [A],
Perf [G], and Coop level. As shown in the Figure 3, a
new bid order list for each agent is generated using
performance and preference lists as input. If the
cooperation level value is large the agent will prefer the
poorest performing goals. The reordering of the agent
preference list reflects the degree of the cooperation
level.

Figure 3. Parametric Cooperation

Figure 4 presents a pseudocode for our cooperation

algorithm, which demonstrates how an agent cooperates.
An agent A’s bid list, B[], is initialized to its preference
list. CL is the cooperation level parameter set to a
constant. The reorder list is set to the size of the
preference list Pref [A]. During each iteration, reorder
list is computed using the given equation. The new
reorder list is sorted and is assigned as the agent’s new
bid list. Intuitively, lack of performance is amplified by
the cooperation level constant CL. Capability of agent
[A] is the capability to perform the goal i.

Figure 4. Cooperation Algorithm

Suppose an agent’s original preference list is [1, 2, 3]

and the respective performance list of goals are [0.2, 0.7,
0.9]. Assume the cooperation level CL to be set at 0.75.
Reorder list is computed:

For 1, reorder = 1 – 0.2 * 0.75 = 1 – 0.15 = 0.75
 2, reorder = 1 – 0.7 * 0.75 = 1 – 0.525 = 0.475
 3, reorder = 1 – 0.9 * 0.75 = 1 – 0.675 = 0.325

188 Informatica 29 (2005) 183–192 H. Hexmoor et al.

After sorting, we have [0.325, 0.475, 0.75], thus the
new bid list is [3, 2, 1]. In this example we assume all
agents are equally capable toward all goals, i.e.,
Capability[A, i] = 1.0.

5 Implementation and Experiments
Our cooperation algorithm (Figure 4) was applied to the
UAV swarm system described in section 3. Here UAVs
are agents and the goals are targets. An environment with
different paradigms and parameters is used to achieve the
simulation and experiments. The Java programming
language is used to code the algorithms and the Borland
JBuilder was used as our IDE.

Initializing all the UAVs with similar capabilities
created the multi-agent system. All targets are initialized
with similar qualities as well. Each UAV has its own
preference list of targets and a performance list of all the
targets in the corresponding preference list as mentioned
in the algorithms. The initial positions of all UAVs are
randomly generated. The preference list for each UAV is
generated by the number of targets it has been able to
sense in the environment. All the targets are mobile and
keep moving.

The system is initially simulated without plan sharing
and without cooperation. Then plan sharing process is
introduced and the system is simulated at different levels
of cooperation i.e., the cooperation level (CL) shown in
the algorithm is assigned different values and then the
system performance is captured by the simulation.

6 Results and Discussions

6.1 UAVs with no Plan-Sharing and no
Cooperation

We used 200 UAVs for tracking, initially placed
randomly, but then they move and values change. We
first examined the system performance behavior when
agents were not sharing plans nor cooperating with each
other as shown in Figures 5 and 6. UAVs proceed with
tasks in their preference list as they enter the system. As
there is no cooperation or plan-sharing among the UAVs,
the targets untracked during the given time cycle are not
substantially decreased. As shown in the Figure 5, the
targets untracked reach a steady state of about 194, given
225 as the total number of targets in the system.

Figure 6 shows the cumulative number of traces
achieved, which is climaxed at about 332.

These results motivated us to introduce plan-Sharing
and Cooperation as discussed in Section 5.

190

195

200

205

210

215

220

225

230

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 5. Untracked targets over time with no Plan

Sharing and no cooperation

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

Time Cylces

S
ys

te
m

 p
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r
of

 tr
ac

es
)

Figure 6. Total number of traces over time with no

Plan-Sharing and no cooperation

6.2 UAVs with Plan-Sharing but no
cooperation

Next, we first introduced Plan-Sharing among UAVs
where they share their preference list with every other
UAV present in the system. Although there is no explicit
cooperation, plan sharing helps UAVs account for a
larger number of targets. An implicit style of cooperation
takes place by targets that are tracked independently by
multiple UAVs.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

To
ta

l N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 7. Change in untracked targets over time with

Plan-Sharing but no cooperation

PLAN SHARING: SHOWCASTING... Informatica 30 (2006) 183–192 189

The decrease in the total number of untracked targets
can be observed in Figure 7, at about 174, which is lower
than that without plan-sharing. The enhancement in the
system performance can also be observed as the total
number of traces that increased up to 1248 in the Figure
8.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

S
ys

te
m

 p
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r o
f t

ra
ce

s)

Figure 8. Total number of traces over time with

Plan-Sharing but no cooperation (plan sharing is
introduced at about cycle number 950, at “the knee of the

curve”)

6.3 UAVs with Plan-Sharing and with the
lowest level Cooperation

Next, we introduced plan sharing as well as the lowest
level cooperation. UAVs work together and generate
their own bid list as explained in the algorithm in section
5. Here the cooperation level threshold is set to the
lowest level. The results are depicted in Figures 9 and 10.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

To
ta

l N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 9. Untracked Targets over time with Plan-
Sharing and with the lowest level cooperation

As shown in Figure 9, the total number of untracked

targets is reduced to about 139. The system performance
is shown in Figure 10 where the total number of
collective system traces has increased to 2896.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

S
ys

te
m

 P
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r
of

 tr
ac

es
)

Figure 10. Total number of traces over time with

Plan-Sharing and with the lowest cooperation level (low
cooperation is introduced at about cycle number 850, at

“the knee of the curve”)

6.4 UAVs with Plan-Sharing and medium
level cooperation

Here, the cooperation level is turned up to the medium
level. With UAV bid list revised due to cooperation,
performances are shown in Figures 11 and 12.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 11. Untracked Targets over time with Plan-

Sharing and medium level cooperation

Total number of untracked targets has further

decreased to 79 as shown in figure 11. System
performance as the total number of traces has increased
to 3445.

190 Informatica 29 (2005) 183–192 H. Hexmoor et al.

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

S
ys

te
m

 p
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r
of

 tr
ac

es
)

Figure 12. Total number of traces over time with

Plan-Sharing and with medium level cooperation

6.5 UAVs with Plan-Sharing and medium
high level of cooperation

At the medium high cooperation level, UAV bid lists
were more seriously revised and the results are shown in
Figures 13 and 14.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 13. Untracked Targets over time with Plan-
Sharing and at medium high cooperation level

The total number of untracked targets is further

decreased to about 45 as shown in figure 13. Figure 14
shows an increase in the system performance to 4194.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

S
ys

te
m

 p
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r
of

 tr
ac

es
)

Figure 14. Total number of traces over time with

Plan-Sharing and at medium high level cooperation

6.6 UAVs with Plan-Sharing and with the
highest level cooperation

Finally, we increased the cooperation level to the highest
level and the results are shown in Figures 15 and 16.

The total number of untracked targets, shown in
Figure 15, is reduced to 14. The system performance,
shown in Figure 16 reached 5353 traces.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

N
o.

 o
f U

nt
ra

ck
ed

 T
ar

ge
ts

Figure 15. Untracked Targets over time with Plan-

Sharing and at the highest cooperation level

It is observed that system performance increases by

increasing level of cooperation.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000

Time Cycles

S
ys

te
m

 p
er

fo
rm

an
ce

 (T
ot

al
 n

um
be

r
of

 tr
ac

es
)

Figure 16. Total number of traces over time with

Plan-Sharing and the highest cooperation level

7 Conclusions and Future work
The primary focus of this paper was on an implicit

sense of plan sharing where agents modify their plans in
light of other agents’ plans. Communication is a key
form of interaction in multi-agent systems, where
multiple agents collaborate to attain a common goal.

The concept of collaboration was elaborated in a

strategy for cooperation. Certain cooperation techniques
are better suited for our experiments. Plan sharing and
collaborative plan refinements clearly demonstrated
improved performance.

PLAN SHARING: SHOWCASTING... Informatica 30 (2006) 183–192 191

Further work will consider agents with different
capabilities as well as plan and goal priorities. Along
with deontological notions of request and permission for
collaboration, we will explore overlaps between
collaboration, autonomy, and benevolence (Hexmoor,
2003).

8 References
[1] Alighanbari M., Kuwata Y., and How J. P.,

“Coordination and Control of Multiple UAVs with
Timing Constraints and Loitering,” Space Systems
Laboratory, IEEE proceedings 2003.

[2] Alonso G., Schuldt H., Schek H.J., “Transactional
Coordination Agents for Composite Systems,”
Proceedings of the International Database
Engineering and Applications Symposium
(IDEAS'99). Montreal, Canada, August 1999.

[3] Arrazola X., “Collective Action: Logical
Foundations for Interaction,” report no. ILCLI-96-
FCSAI-1. Donostia – San Sebastian: ILCLI, 1996.

[4] Balch T. and Arkin R., “Behavior-based Formation
Control for Multi-robot teams,” IEEE Robotics and
Automation, 14(6), 926-939. 1998.

[5] Beer J. M., Whatley J., “Group Project Support
Agents for helping students work online,” HCI
International 1999, Munich, Germany, Lawrence
Erlbaum, London.1999.

[6] Benton M.J., “Biodiversity on land and in the sea,”
Geological Journal, 36:211-230, 2001.

[7] Bonabeau E., Dorigo M. and Theraulaz G., “Swarm
Intelligence: From Natural to Artificial Systems,”
New York, NY: Oxford University, 1999.

[8] Chandler R., and Pachter M., “Research Issues in
Autonomous Control of Tactical UAV’s,”
proceedings of the American Control Conference,
1998, Vol.: 1, 24-26, pp.394-398. June 1998

[9] Chandler P., Schumaker C., Rasmussen S., “Task
Allocation for Wide Area Search Munitions via
Network Flow Optimization,” AIAA GNC, Aug
2001.

[10] Clark R., “Uninhabited combat aerial vehicles:
airpower by the people, for the people, but not with
the people,” Maxwell air force base al: air
university press CADRE paper, 2000.

[11] Cohen, D.M., Moridae. In W. Fischer, G. Bianchi
and W.B. Scott (eds), “FAO species identification
sheets for fishery purposes,” Eastern Central
Atlantic; fishing areas 34, 47 (in part). Vol. 3, FAO,
Rome, 1981.

[12] Cohen, P. R., Levesque H. R., and Smith I., “On
team formation,” Hintikka, J. and Tuomela, R.
(Eds.) Contemporary Action Theory. Synthese,
1997.

[13] Fredslund J. and Mataric M., “A General Algorithm
for Robot Formations Using Local Sensing and
Minimal Communication,” IEEE Transactions on
Robotics and Automation, 18(5):837-846. 2002.

[14] Grosz. B. and Sidner. C., “Plans of Discourse,” In
P. Cohen et.al. eds., Intentions in Communication.
MIT press. Forthcoming, 1990.

[15] Grosz B., Sidner C. and Loachbaum K. E., “Models
of plans of support communication: An initial
report,” In proceedings of AAAI-90, Boston, MA,
1990.

[16] Grosz B. and Kraus S., “Collaborative Plans for
Complex Group Action,” In Artificial Intelligence.
86(2), pp. 269-357. 1996.

[17] Grosz B., and Kraus, S., "The Evolution of
SharedPlans," In Foundations and Theories of
Rational Agencies, A. Rao and M. Wooldridge, eds.
pp. 227-262, 1999.

[18] Hexmoor, H., Duchscherer H., “Efficiency as a
Motivation to Team,”. FLAIRS Conference 2001:
49-52, 2001.

[19] Hexmoor, H., “Weekly Dependent Agents may rely
on their luck or Collaboration: A Case for
Adaptation,” In Proceedings of The Society for the
Study of Artificial Intelligence
and the Simulation of Behavior (AISB), York, UK,
2003.

[20] Henry Hexmoor, Agent Autonomy in a group, A
special issue of Journal of Connection Science,
Taylor and Francis, 2003.

[21] Hexmoor, H., McLaughlin, B., and Baker, M.,
Swarm Control in Unmanned Aerial Vehicles, In
Proceedings of International Conference on
Artificial Intelligence (IC-AI), CSREA Press, 2005.

[22] Korta, K. and Larrazabal J. M. (eds.) “Semantics
and Pragmatics of Natural Language: Logical and
Computational Aspects,” Proceedings of the
Donostia-Toulouse 1993 Workshop. Donostia:
ILCLI Series No. 1. (ISBN: 84-920104-3-6), 1995.

[23] Lochbaum K., “Using Collaborative Plans to
Model the Intentional Structure of Discourse,” PhD
thesis, Harvard University, 1994.

[24] Lochbaum K., “The Use of Knowledge
Precondition in Language Processing,” In IJCAI95,
Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 1260-
1266, 1995.

[25] Lochbaum K., “A collaborative planning model of
intentional structure,” Computational Linguistics
24(4). 1998.

[26] Luck, M. and Griffiths, N., Coalition Formation
Through Motivation and Trust. In Proceedings of
the Second International Conference on
Autonomous Agents and Multi-agent Systems
(AAMAS 2003), ACM Press, 2003.

[27] Lua, C.A., Altenburg, K., and Nygard, K.E.,
Synchronized Multi-Point Attack by Autonomous
Reactive Vehicles with Simple Local
Communication, Proceedings of IEEE Swarm
Intelligence Symposium, 2003., 2003.

[28] Mataric, M.J., Kin recognition, similarity, and
group behavior. In Fifteenth Annual Cognitive
Science Society Conference, pages 705--710.
Lawrence Erlbaum Associates, June 1993.

[29] Muller, S., Marchetto J., Airaghi, S. and
Kourmoutsakos, P., “Optimization Based on
Bacterial Chemo taxis,” IEEE Transactions on
Evolutionary Computation, 6:16-29. 2002.

192 Informatica 29 (2005) 183–192 H. Hexmoor et al.

[30] Parker, L., “Designing Control Laws for
Cooperative Agent Teams,” Proc. IEEE
International Conference on Robotics and
Automation, 3:582-587. 1993.

[31] Patcher, M., Chandler, P., Swaroop, D., Fowler, J.,
“Complexity in UAV cooperative control,” ACC
2002. pp. 1831-1836. 2002.

[32] Pollack. M. E., “Plans as complex mental
attitudes,” in P. Cohen et. al., eds., Intentions in
Communication. MIT press. Forthcoming, 1990.

[33] Raymond, R., Hill S., Dougherty, and Moore, J.T.,
“Model Signal Latency Effects Using Arena,”
Proceedings of the 2000 Winter Simulation
Conference. 2000.

[34] Reynolds, C., Flocks, Herds and Schools,
“Computer Graphics,” 1987, 21:25-34. 1987.

[35] Reynolds, R., and Chung, C., “A Test bed for
Solving Optimization Problems Using Cultural
Algorithms,” Evolutionary Programming, 225-236.
1996.

[36] Reynolds, C., “Steering Behaviors for Autonomous
Characters,” Proc. Game Developers Conf.1999,
763-782. 1999.

[37] Richards, A., Bellingham, J., Tillerson, M., and
How, J., “Multi-Task Allocation and Path Planning
for Cooperative UAVs,” Second Annual Conference

on Cooperative Control and Optimization, Nov
2001.

[38] Rich, C., Sidner, C. L., , “Adding a collaborative
agent to graphical user interfaces,” Symposium on
User Interface Software and Technology,
Proceedings of the 9th annual ACM symposium on
User interface software and technology, 1994.

[39] Sidner, C. L., Rich C., “COLLAGEN: When Agents
Collaborate with People,” Proceedings of the First
International Conference on Autonomous Agents
(Agents'97), 1997.

[40] Stover, J.A., and Gibson, R.E., “Controller for
Autonomous Device,” US patent # 5, 642,467,
Issued June 1997.

[41] Tuomela, R., “Cooperation” , Kluwer Academic,
2000.

[42] Reggia, J. and Winder, R., “Distributed Partial
Memories to Improve Self-Organizing Collective
Movements,” IEEE Transactions. SMC B, 2004, 34:
1967-1707. 2004.

[43] Vail D. and Veloso, “Multi-Robot Dynamic Role
Assignment and Coordination through Shared
Potential Fields,” In Multi-Robot Systems. A.
Shultz, L. Parker, and F. Schneider (editors),
Kluwer, 2003.

 Informatica 30 (2006) 193–212 193

An Integration Rule Processing Algorithm and Execution
Environment for Distributed Component Integration
Ying Jin
California State University, Sacramento
Department of Computer Science
Sacramento, CA 95819, USA
E-mail: jiny@ecs.csus.edu

Susan D. Urban, Suzanne W. Dietrich and Amy Sundermier
Arizona State University
Department of Computer Science and Engineering
Tempe, AZ 85287-8809, USA
E-mail: s.urban@asu.edu, dietrich@asu.edu

Keywords: active databases, software component integration, rule processing algorithm, transaction, management

Received: July 25, 2005

The Integration Rules (IRules) Project* provides an active, rule-based approach for supporting event-
driven activity in applications involving distributed software component integration. This paper presents
the execution model, transaction model, and integration rule execution algorithm of the IRules
environment. The paper begins with an overview of the IRules language framework to establish the
context for the use of events and rules in the integration process, with Enterprise JavaBeans (EJBs)
serving as a component model. The paper then elaborates on the integration rule processing algorithm
and execution environment. The rule execution model supports traditional active rule coupling modes,
and defines a new immediate asynchronous mode to support concurrent execution of triggered rules and
transactions. The transaction model is based on the flexible transaction model, providing a means to
coordinate global transaction execution with the transactional features of EJB containers. IRules
component wrappers also provide support for the global transaction context as well as the
synchronization of method execution with the nested execution of integration rules. The paper defines
the semantics of coupling modes in terms of cycles and levels of rule execution, presenting the
integration rule processing algorithm for coordinating the execution of events and methods on
components with the nested execution of integration rules in the context of the transaction model. The
details of the algorithm are presented using Unified Modeling Language (UML) activity diagrams,
providing a generic approach that can be used as the foundation for rule processing in other distributed
environments. An investment application is used to illustrate the concepts presented in this paper.
Povzetek: Predstavljen je algoritem za integracijo pravil.

* This research was supported by National Science Foundation under Grant No. IIS-9978217.

1 Introduction
The development of advanced enterprise applications
often requires the integration of distributed software
components and services. Standard component
models and distributed computing tools, such as the
Common Object Request Broker Architecture
(CORBA) [1] and Enterprise JavaBeans (EJBs) [2],
have been developed to facilitate the integration
process in distributed environments. However,
component integration could be a difficult process in
some cases, since application integrators must not only
mediate the semantics of component interactions, but
must also be skilled in low-level knowledge of
middleware programming, event handling, and
transaction management. This difficulty motivates the

need for a more declarative approach to the integration
process.

In response to this need, the Integration Rules
(IRules) Project has developed an active rule-based
approach to distributed component integration, using
integration rules to provide a declarative approach to
event-driven integration activity [3, 4, 5, and 6]. The
IRules project is based on the concept of active
database rules. Active database systems extend
traditional databases by supporting mechanisms to
automatically monitor and react to events that are
taking place either inside or outside of the database
system [7 and 8]. Active database rules, known as
Event-Condition-Action (ECA) rules, are the core of
any active system.

194 Informatica 30 (2006) 193–212 Y. Jin et al.

Similar to an active rule, an integration rule
consists of an event, a condition, and an action. The
event of an integration rule is generated from
distributed sources. The condition is expressed as a
query over distributed components. If the condition
evaluates to true, the action is invoked to execute
methods on components or to invoke application
transactions that capture integration logic. Integration
rules can therefore be used to separate event
processing from the main integration logic of an
application. Furthermore, event handling and rule
processing are managed within the transactional
environment of the IRules system, shielding the low-
level details of event handling and transaction
management from integrators. Integrators can
therefore focus on integration logic rather than low-
level programming details.

The IRules approach to component integration
consists of a language framework described in [4] and
an execution environment for processing rules and
transactions [6] over distributed components. The
execution environment presented in this paper consists
of a rule processing algorithm and transaction
management system, illustrating a rule-based approach
to the integration of components with well-defined
interfaces based on the EJB component model [2]. The
integration of black-box components introduces
several challenges to the development of a rule and
transaction processing framework for integration rules.
First of all, components cannot be modified and they
are typically not aware of their participation in the
integration framework. As a result, components alone
do not provide necessary behavior for participating in
more global rule and transaction processing activities.
Furthermore, the EJB component model has its own
notion of transactional behavior, which is beyond the
control of an external environment such as IRules.
The execution of integration rules within a
transactional context requires suitable control logic at
the global IRules level to overcome the restrictions of
the underlying EJB component model. Furthermore,
active rules can trigger other active rules, thus forming
a nested structure as a result of cascaded rule
execution. Since the nested execution of rules and
their transaction control in a distributed environment
may span across several distributed locations,
distributed rule processing is more challenging than
that of centralized active rule environments.

The IRules execution model presented in this
paper supports the traditional dimensions of active
rule execution, with extensions for use in a distributed
environment. The Integration Rule Processing (IRP)
algorithm controls rule processing in a distributed
environment, fully supporting immediate, deferred,
and decoupling modes of execution. The immediate
asynchronous mode is a new coupling mode defined in
this research to support concurrent execution of
triggering transactions and triggered rules, thus
improving the performance of distributed rule
processing. The IRP algorithm also provides support
for the nested execution of immediate rules. Handling

immediate rules in a distributed environment requires
system control for synchronization between a
triggering transaction and the triggered rules. The
synchronization process requires suspension of the
method execution of the EJB component, allowing the
generation of events before and after the method
execution, with the immediate execution of rules in
response to the events. The IRP algorithm described
in this paper contributes to the use of immediate
coupling modes and nested rule execution within the
IRules framework. These features for the nested
execution of immediate rules in a distributed
environment have not been addressed by previous
research, especially in the context of component
integration.

Our research uses Unified Modeling Language
(UML) activity diagrams [9] to present the logic of the
rule execution algorithm. The algorithm is generic so
that it can be used in other environments for rule
processing, although the specific implementation of
the IRP algorithm within the IRules environment is
supported by the IRules transaction management [6],
wrapper design [10], and synchronization algorithms
[11].

The rest of the paper is organized as follows.
Section 2 surveys related work. Section 3 provides an
overview of the IRules approach with a presentation of
the language framework and system architecture.
Section 4 presents the integration rule coupling modes
as well as the transaction model and the transactional
support found in wrappers for the synchronization of
rule and method execution. Section 5 describes the
rule processing algorithm and provides an example of
rule execution using an investment application. The
paper concludes in Section 6 with a summary and
discussion of future research directions.

2 Related Work
There are several active database research projects that
have influenced the development of the IRules
environment, including relational active databases,
such as POSTGRES [12] and Starburst [12], as well as
object-oriented active databases, such as HiPAC [14],
SAMOS [15], ADOOD RANCH [16], and REACH
[17]. Active rules also exist in a limited form in
commercial database systems as database triggers
[18].

Active rule execution algorithms have been
addressed in centralized environments, such as the
research outlined in the introduction to active database
systems in Widom and Ceri [8], as well as the work of
Fraternali and Tanca [19] and Warshaw [20]. The
algorithm in [8] provides a high level abstract view of
rule processing, repeatedly retrieving a triggered rule,
evaluating the condition, and performing the action if
the condition evaluation is true. Similarly, the
algorithm in [19] presents three phases of active rule
processing. In the triggering phase, the algorithm
builds a set of rules that are triggered. In the
consideration phase, the algorithm first gets rules from

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 195

the set of rules constructed in the triggering phase, and
then evaluates the condition part of each rule. In the
action phase, if the condition evaluation of a rule
returns non-empty bindings, the algorithm will
perform the action of the rule. Compared to [8] and
[19], this paper presents an active rule processing
algorithm that was specifically designed to assist with
component integration in a distributed environment.
The IRules algorithm not only covers the three basic
phases of active rule processing for a set of triggered
rules, but also elaborates on the nested execution of
integration rules for distributed components, which is
a challenging extension to past work on centralized
rule execution algorithms. The IRules algorithm also
describes how to execute a rule according to four
types of coupling modes and how to react to different
types of events in the context of distributed component
integration. Whereas the algorithm in [20] uses state
transition to characterize rule execution according to
different coupling modes, the IRules algorithm uses a
coordinate system to describe the semantics of rule
execution.

In addition to centralized active database systems,
there are several research projects on active, rule-
based distributed systems. In the system described in
[21], ECA rules are used to provide distributed
communication for the components that describe
interfaces in the Object Management Group (OMG)
Interface Definition Language (IDL) [22]. The project
focuses on the specification, detection and
management of composite events.

C2offein [23] is a CORBA-based system with a
comprehensive design of distributed event detection.
The underlying data sources are wrapped to enable
read access in a CORBA environment. If a database
does not support an active mechanism, the wrapper
queries the database at regular intervals to detect
changes in the data. Clients can also call event
detection before any update operation to the database.
Rule processing is supported using a production rule
expert system shell.

The FRAMBOISE (FRAMework using oBject
OrIented technology for Supplying active
mEchanisms) project [24] is an object-oriented
framework formed by a toolbox to provided active
database functionality, such as event definition, event
detection, and rule execution. The set of architectural
components that separates the active functionality
from the underlying DBMS is called an activity
service. A database event detection connector,
condition evaluation connector, and database action
execution connector regulate the interaction between
the activity service and the underlying DBMS.

In the system described in [25], active rules are
used to glue together existing applications in a
distributed environment. Active rule processing is
implemented through event, condition, and action
services. The condition object of a rule subscribes to
the event object of the rule, while the action object
subscribes to the condition object of the rule. The
system uses the publish/subscribe service

implementation of X2TS [26] as a notification
mechanism between event, condition, and action,
where X2TS is based on the CORBA Notification
Service. X2TS can also provide additional transaction
control mechanisms such as exception handling over
the basic CORBA Transaction Service. In contrast,
the IRules rule manager controls when to evaluate a
condition and execute an action according to coupling
modes, rather than through a publish/subscribe
service.

The above distributed rule projects have all been
based on the use of the CORBA standard. In contrast,
the IRules project requires access to distributed
resources that advertise services using the EJB
component model. The use of distributed rules for the
integration of EJB component technology has not been
addressed by the existing research. The IRules project
is also using Jini connection technology [27] as the
primary means for distributed object computing, rather
than CORBA as in other projects. Furthermore, the
rule processing algorithm of IRules can handle nested
rule execution in a distributed environment. Existing
distributed rule projects have not addressed cascaded
rule execution within distributed transactions.

Using active rules to control the flow between
activities of a workflow system has been adopted by a
number of projects, such as the project described in
[28]. More recent work on workflow uses ECA rules
both inside and outside of activities. The work in [29]
is a centralized workflow management system, where
ECA rules are used for constraint management inside
tasks, as well as for the control of the execution order
of tasks. In [30], the workflow system named
CapBasED-AMS uses ECA rules to specify the
security authorization requirements imposed on a task
as well as the execution sequence. The TriGSflow
system of [31] is introduced as a framework for
workflow management, where ECA rules encapsulate
and realize coordination policies. In the WIDE
(Workflow on Intelligent Distributed Database
Environment) project [32], active rules are used in a
workflow management system for exception handling.
Compared to component integration, the flow
movements from task to task in a workflow
environment are well-defined compared to the
interconnection of software components. A workflow
system has more control over the tasks that are
executed, while access to component services,
especially black-box components, may be more
restrictive.

Active rules are also used in the composition of
web services. The research in [33] proposed the
SELF-SERV (compoSing wEb accessibLe
inFormation & buSiness sERVices) system to
compose services within a peer-to-peer paradigm.
SELF-SERV includes a declarative language based on
state charts and a peer-to-peer service execution
model. A statechart consists of states and transitions.
Transitions are labeled by ECA rules. Compared to
IRules, SELF-SERV is for the composition of web
services, while IRules is for the integration of software

196 Informatica 30 (2006) 193–212 Y. Jin et al.

components. ECA rules are used as the “glue” of the
IRules integration to specify event-driven integration
logic, while state charts are the “glue” for the
composition of SELF-SERV. ECA rules are used in
SELF-SERV for state transition, but the logic of
execution is not controlled by ECA rules. In the IRules
environment, integration logic is composed from the
use of application transactions together with
integration rules that respond to events.

3 The IRules Approach
There are two important aspects of the IRules
environment: the IRules Definition Language (IRDL)
for application specification and the IRules execution
environment for integration rule and transaction
execution. IRDL supports the definition of
components, events, rules, and application transactions
for distributed component integration. The execution
environment consists of the execution model for
integration rules, transaction management for rule
execution, and the rule execution algorithm that
coordinates the execution model with transaction
management. The IRules execution environment is
described in detail in Section 4. This section
overviews the language framework and the
architectural design of the IRules environment.

3.1 The IRules Definition Language
 The IRDL consists of four sub-languages: the
Component Definition Language (CDL) for defining
IRules components, the IRules Scripting Language
(ISL) for describing application transactions, the
Event Definition Language (EDL) for defining events,
and the Integration Rule Language (IRL) for defining
active rules. The IRDL was initially reported in [3, 5]
with refinements of the language presented in [10, 11,
34, 35]. The examples of the language presented in
this section originally appeared in [4, 6] and are
repeated here to make the paper self-contained.

3.1.1 Component Definition Language (CDL)
The CDL establishes an object model for application
integration activity [3, 5, and 10]. The current
implementation of IRules is based on the EJB
component model, assuming that all of the
components of the environment are EJB components.
To support component interconnection with active
rules, IRules adds a semantic layer on top of existing
EJB components. This layer is the IRules wrapper
layer. IRules wrappers are automatically generated
after CDL is compiled. IRules wrappers provide
additional functionality to black-box components,
such as defining externalized relationships between
distributed components, and specifying extents,
derived attributes, and stored attributes for each
component. The IRules wrapper layer also defines the
events generated before and after method calls on
components as well as the events that are internal to

black-box components. The details of IRules
wrappers can be found in [10].

As an example of CDL, Figure 1 defines two
externalized relationships and one event for a pending
order component within an investment application.
The first line of the component definition indicates
that the StockBroker_PendingOrder is an EntityBean
component. The second line of the definition specifies
an extent that can be used to query all pending order
instances, a feature that is useful in the specification of
integration rule conditions (see Section 3.1.4 for an
example). Assuming that StockBroker_Stock,
StockBrocker_Portfolio, and StockBroker_PendingOrder
are implemented as separate distributed components,
the first relationship definition in Figure 1 illustrates
an externalized, bi-directional relationship between
components: a StockBroker_PendingOrder is orderedBy a
StockBroker_Portfolio, while in the inverse direction, a
StockBroker_Portfolio orders a StockBroker_PendingOrder.
The second relationship defines the relationship
between StockBroker_PendingOrder and
StockBroker_Stock: a StockBroker_PendingOrder actsUpon
a StockBroker_Stock while a StockBroker_Stock has
pendingTrades on the StockBroker_PendingOrder. The
CDL also defines an event afterSetAction that is to be
raised after the setAction operation on
StockBroker_PendingOrder. Note that the CDL
definition of StockBroker_PendingOrder does not repeat
any of the method definitions of the original
component definition. CDL is used to enhance the
component definition with IRules functionality.

3.1.2 IRules Scripting Language (ISL)
In the IRules environment, ISL describes well-defined
sequences of processing logic as application
transactions [3, 5]. ISL is based on JACL [36], which
is the Java version of the Tool Command Language
(TCL) [37]. An ISL example in an investment
application is shown in Figure 2. The
clientWantsToSellStock application transaction consists
of two steps: create a pending order component and
print the information of this pending order. The
newInstance command is a JACL extension that
abstracts a sequence of statements into one command,
thus making the script concise and easy to reuse.

Component StockBroker_PendingOrder implements
EntityBean
(extent pendingOrders)
{ relationship StockBroker_Portfolio orderedBy inverse
StockBroker_Portfolio::orders;
 relationship StockBroker_Stock actUpon inverse
StockBroker_Stock::pendingTrades;
 event afterSetAction (pnAction) {method after
setAction(string pnAction)};}

Figure 1: CDL of PendingOrder Component

application transaction clientWantsToSellStock(String pnId,
String portfolioId, String stockId, int numOfShares,float

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 197

desiredPrice, String action, Stock actUpon, Portfolio
orderedBy)
tcl newInstance
{
set pn [newInstance PendingOrder $pnId $portfolioId
$stockId $numOfShares $desiredPrice $action $actUpon
$orderedBy $irulesId];
 printPendingOrderInfo $pn $irulesId;
}

Figure 2: ISL Example for the

clientWantsToSellStock transaction

3.1.3 Event Definition Language (EDL)
There are four different types of IRules events [3, 5,
and 11]: method events, application transaction
events, internal events, and external events. A method
event is generated before or after the execution of a
method on a component. An application transaction
event is generated before or after the execution of an
application transaction. An internal event is an event
generated by a black-box component. An external
event is generated by sources external to the IRules
environment. EDL describes application transaction
events and external events. Method events and internal
events are defined in CDL following EDL syntax.
Figure 1 illustrates the definition of a method event
afterSetAction that is generated after the setAction
operation in the Stock component.

Figure 3 shows an application transaction event
definition in EDL. The specification has the syntax
similar to the method event specification in Figure 1.
The key word appTrans identifies that the event is an
application transaction event. The event has an event
name afterSellStockOnNewPO and five parameters. The
event parameters are constructed by the projection of
the parameters of the application transaction by
parameter name.

event afterSellStockOnNewPO(stockId, price, portfolioId,
numOfShares, pn)
{
appTrans after sellStockOnNewPO(String stockId, float
price, String portfolioId, int numOfShares,
stockBroker.PendingOrderComponent.PendingOrder pn);
}

Figure 3: EDL for the afterSellStockOnNewPO
event

3.1.4 Integration Rule Language (IRL)
IRL is a language for defining integration rules [3, 5,
34, and 35]. IRL is based on the traditional ECA rule
format in active database systems. An integration rule
includes an event, a condition, and an action. A
condition includes a Boolean clause and an optional
query over the object model to define a binding
structure for data that satisfies the condition. The

action part consists of an optional from clause and a do
clause. The from clause iterates through the binding
structure passed from the condition. The do clause
executes the action in the format of a method call or
an application transaction.

create rule clientWantsToSellStockRule
event afterClientWantsToSellStock(pnId, portId, stockId,
numOfShares, desPrice, pnaction, actUpon, orderedBy)
condition immediate
 when pnaction = "sell"
 define stockAndPendingOrder as
 select struct (stk: s, newPo: pn)
 from s in stocks, pn in pendingOrders
 where pn.id=pnId and pn.actUpon=s
 and desPrice<=s.price
action immediate
 from sp in stockAndPendingOrder
 do sellStockOnNewPO(stockId, sp.stk.price,
portId, numOfShares, sp.newPo)

Figure 4: IRL Example of the

clientWantsToSellStockRule rule

An example of IRL is shown in Figure 4. In this rule,
the event is signaled after the clientWantsToSellStock
application transaction. The condition checks
whether the pendingOrder intends to sell stock.. If the
rule condition is satisfied, a binding structure is
defined for relevant instances of stock and
pendingOrder. The binding structure definition uses the
extents of the stock and pendingOrder components that
are specified in the CDL and the parameters of the
event to find relevant stocks and pending orders. The
action part iterates through the stockAndPendingOrder
structure and executes the sellStockOnNewPO
application transaction to perform the functionality of
selling stocks.

3.1.5 Putting It All Together
Figure 5 presents an example of how all of the
sublanguages of IRDL work together. CDL defines
wrapped components and the compilation of CDL
generates wrappers. After wrappers are generated
[10], distributed components in different containers
may have externalized relationships. Four types of
events are defined by EDL and CDL. Events can
trigger integration rules defined by IRL. The action
part of the rule can invoke an application transaction
(defined by ISL) or a method on an EJB component.
The execution of an application transaction or a
method can raise application transaction events,
method event, or internal events, which can trigger
additional rules. As a result, integration rules can be
triggered in a nested structure. We will present an
execution scenario of rule nesting in Section 5.3.

3.2 The IRules Architecture
IRules has designed a distributed architecture to
support the IRDL language framework. The

198 Informatica 30 (2006) 193–212 Y. Jin et al.

architecture can be abstracted into three layers, as
shown in Figure 6. The top and middle layers are the
interfaces. The bottom layer is the implementation of
the integration system.

IRules provides interfaces for two types of
integration users: integrators and end users.
Integrators use IRDL to describe integration logic.
The compilation of IRDL results in the population of
metadata and the automatic generation of wrappers.
The interface for end users consists of a list of
application transactions, which have been expressed
by integrators using ISL and compiled by the IRules
compiler. An end user then selects an existing
application transaction to express their integration
request. For example, if a user wants to sell stock, the
user can select the clientWantsToSellStock application
transaction from Figure 2, providing values for each
parameter of the application transaction. The user
request is sent to the application transaction processor
component of the IRules system.

The implementation layer consists of architectural
components for the IRules system. Figure 6 presents
the fundamental components of the architecture. The
Jini distributed computing environment is used as the
backbone of the system, with IRules architectural
components implemented as Jini Services. Upon user

request, the application transaction processor
processes the ISL script. The processing may invoke
wrapped EJB components. The processing of an
application transaction or a method call on an EJB
component can raise events. The event handler pushes
the event to the rule manager, where the rule manager
queries the metadata to retrieve rules triggered by this
event. During rule processing, the rule manager
interfaces with the transaction manager to establish the
transaction context for rule execution. The rule
manager also interfaces with the object manager for
accessing components. The rule manager submits
requests to the query processor for rule condition
evaluation during rule processing.

Through the IRDL language framework and the
architectural design, the IRules integration system
allows application integrators to specify the
integration logic in a declarative fashion, while the
end users can use the defined integration logic to
specify their request. In contrast to the traditional
integration approach, the IRules approach does not
require an integrator’s low-level knowledge of
distributed programming issues. Integrators can focus
on integration logic, rather than the technical details of
rule and transaction processing.

PendingOrder

IRulesPendingOrder

Portfolio

IRulesPortfolio

PendingOrder Container

Portfolio Container

Method event Internal event

Application Transaction
Begin

Operation1
...

Operation k
...

Operation n
End

Application transaction
event

Integration Rule

triggers

triggers

triggers

generate

generate

generate

generate

Execute operation
on EJB

Integration Rule:
create rule ruleName
event eventName(event Parameters)
 [on componentName
 componentVariable]
condition [eaCoupling]
 when conditionSpecification
 [define bindingsName as
 select <>
 from <>
 [where <>]]
action [caCoupling]
 [from <>
 [where <>]]
 do action

External event

Integration Rule

Integration Rule

Execute operation
on EJB

triggers

Externalized relationship

Figure 5 Interaction Between the IRDL Sublanguages

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 199

4 The IRules Execution and
Transaction Model

This section presents the details of the IRules
execution and transaction model. A preliminary
discussion of the IRules transaction model appears in
[6]. The full details of the transaction management
system are presented in this section to establish the
context for presentation of the rule processing
algorithm in Section 5. Section 4.1 defines the
coupling modes of the environment, with specific
emphasis on the synchronous and asynchronous
options of the immediate coupling mode. Section 4.2
elaborates on the transaction model and the manner in
which it interacts with the transactional features of
EJB containers. Section 4.3 discusses the support that
IRules component wrappers provide for the global
transaction context as well as the synchronization of
rule and method execution.

4.1 Integration Rule Coupling Modes
The execution model of an active rule system specifies
how to coordinate a set of rules at runtime. The
execution model is characterized by several features,
such as coupling modes, transition granularity, net-
effect policy, cycle policy, priority, and scheduling
[7]. IRules follows the definition of the execution
model features that are defined in [7]. In this paper,
we address the coupling mode feature, since the use of
coupling modes in a distributed environment is the
primary focus of the IRules execution model.

The coupling modes of an active rule allow rule
definers to specify how to execute the rule at run time.
A coupling mode can be specified between the event
and condition (E-C), between the condition and action
(C-A), or between the event and action (E-A).
Integration rules support four types of coupling
modes: immediate synchronous, immediate
asynchronous, deferred, and decoupled.

Using the E-C coupling mode as an example, the
immediate synchronous E-C coupling mode indicates
that the condition of a rule must be evaluated
immediately after the event is raised. The immediate
asynchronous mode is a new coupling mode that has
been defined as part of this research. In an immediate
asynchronous E-C coupling mode, the condition is
evaluated immediately after the occurrence of an
event, but the triggering transaction that raised the
event will not be suspended. The execution of the
integration rule and the triggering transaction are
therefore concurrent.

Figure 7 illustrates the difference between the
immediate synchronous and immediate asynchronous
modes using a UML activity diagram [9]. In each box
of Figure 7, the pair of synchronization bars (heavy
black bars) represents the logic to fork and join
processes, where the first bar is a fork and the second
bar is a join. In Figure 7a, Op1 is an event that triggers
an immediate synchronous rule, so a subtransaction is
started to process the rule. The triggering transaction
suspends until the rule completes. After the rule joins
the triggering transaction, Op2 and Op3 can be
executed. In contrast, as shown in Figure 7b, Op1 is an

Jini

AppTran
Processor metadata EJB

wrapper Object
Manager

Rule
Manager

Transaction
Manager

Event
Handler

Interface to Integrators
 IRules Definition
Language (IRDL)

Specify integration
logic using IRDL

C
om

pile

Compile

Interface to end users

Parameter Value

Execution Results

Query
Processor

Implementation

Figure 6: IRules Architecture

200 Informatica 30 (2006) 193–212 Y. Jin et al.

event that triggers an immediate asynchronous rule. A
new subtransaction is started to execute the
asynchronous rule, but the triggering transaction does
not suspend. As a result, Op2 and Op3 are concurrently
executed with the asynchronous rules. At the end of
the triggering transaction, the asynchronous rule joins
the triggering transaction. The use of the immediate
asynchronous mode can only be used when the rest the
operations of the triggering transaction do not depend
on the results of the immediate rule.

The deferred E-C coupling mode postpones rule
condition evaluation to the end of the top-level
transaction of execution (i.e., the outermost
transaction within which the event was raised), based
on the use of the deferred coupling mode as defined in
[378]. The decoupled mode is only available for E-A
and C-A coupling. Using the decoupled C-A coupling
mode as an example, the decoupled action of a rule is
executed immediately in a new top-level transaction,
concurrent with the transaction that triggered the rule.

In addition to coupling modes, an integration rule
can be triggered before an event happens or after an
event happens. This feature is specified as before and
after modifiers in the definition of a rule. Rule
execution before an event is reasonable only when an
event generator can trap the occurrence of the
operation associated with the event.

4.2 Transaction Model of the IRules
Environment

In an active system, the execution model relies heavily
on the notion of transactions. For example, coupling
modes are used to specify the transactional
relationships between different parts of an active rule.
Rules are also required to execute within appropriate
transaction contexts for correct processing logic.

A fundamental issue with respect to transaction
processing within IRules is the selection of a
transaction model that is appropriate for the nested
execution of rules over EJB components. In the nested
transaction model [39], a subtransaction cannot release
its results until its parent transaction commits. In
contrast, the flexible transaction model [40] has a
compensating mechanism that allows early commit of
subtransactions. The flexible model avoids
unnecessary blocking of subtransactions. The
compensating mechanism ensures atomicity of a
transaction when allowing unilateral commit of
subtransactions. Although the flexible transaction
model avoids unnecessary waiting time, the flexible
transaction model can be more time-consuming than
the nested transaction model when compensating work
is required in the case of transaction failure.

The underlying component model also constrains
the selection of a suitable transaction model. In
transaction control for traditional databases, the
release of locks and the update of permanent storage
can be fully controlled by the transaction manager of
the database. It is not possible to control black-box
EJB components in such a manner. Each entity bean
has an underlying relation in a relational database, and
each instance of the bean corresponds to a tuple in that
relation. Entity beans must be accessed with a
container-managed transaction. That is, the
transaction for method invocation of an entity bean is
totally controlled by the EJB container.

As a more detailed explanation, each container
uses ejbload() to refresh an entity bean's state from the
database and ejbstore() to save the entity bean's state in
the database. Before a method defined in the EJB
remote interface is invoked from outside of the EJB
component, the container will call ejbload(). After the
method finishes execution, the container will call

0

O p 1

E x e c u te
s y n c h ro n o u s ru le
t r ig g e re d b y O p 1

O p 1

O p 2

O p 3

E x e c u te
a s y n c h ro n o u s ru le
t r ig g e r e d b y O p 1

O p 2

O p 3 0

a . E x e c u t io n o f Im m e d ia te
S y n c h ro n o u s R u le s

b . E x e c u t io n o f Im m e d ia te
A s y n c h ro n o u s R u le s

Figure 7: Synchronous vs. Asynchronous Rule Processing

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 201

ejbstore(). If the IRules transaction manager attempts to
use the Two Phase Commit (2PC) protocol [41], the
permanent storage can only be updated when all
subtransactions are ready to commit. However, with
no notion of the parent-child hierarchy of the outer
transaction semantics for 2PC, the container is
independently determining when to retrieve and
update the database. In contrast, the flexible
transaction model is more suitable for integration rules
since it allows unilateral commit of subtransactions.
This research has developed techniques for the use of
the flexible transaction model to support the nested
execution of integration rules. In the scope of this
research, we assume a failure semantics where
individual rules might abort without affecting the
triggering transaction. The design of the
compensating mechanism of the IRules system is a
research issue that is currently under investigation.

In the IRules environment, transaction entities are
execution objects that encapsulate the transactional
control for rules and application transactions. All
transaction classes inherit from an abstract class
IRulesTransaction. The superclass IRulesTransaction
encapsulates the generic logic of transaction
execution. There are four sub-classes of
IRulesTransaction: ISLTransaction,
TopLevelTransactionForEvent,
TopLevelTransactionForMethod, and NestedTransaction.
These four sub-classes are responsible for capturing
the execution-time behavior of transaction processing
under different circumstances within the IRules
system. ISLTransaction implements the transactional
behavior of an application transaction. The
TopLevelTransactionForEvent is used to offer
transactional context to handle responses to internal
and external events. The TopLevelTransactionForMethod
applies to the specific case of a decoupled coupling
mode when the action of the rule invokes a method of
an EJB component. The NestedTransaction class
encapsulates the execution of a subtransaction created
as the context of a nested rule. Since the processing of
rules is wrapped by transactions, rule nesting behavior
can be controlled by the execution of parent and child
transactions. For example, suppose rule Rx triggers
immediate synchronous rule Ry, and the transaction
contexts of Rx and Ry are Tx and Ty, respectively.
Since we want to let Rx suspend until Ry finishes
(according to the immediate synchronous E-C
coupling mode), we control this behavior by
suspending Tx until Ty commits.

4.3 Transactional Support for Wrappers
and Rule/Method Synchronization

In the immediate synchronous coupling mode, the
triggering transaction suspends while the triggered
rule executes as a subtransaction, so this coupling
mode results in rule nesting of rules. In this research,
the suspension of transactions in a distributed
environment is supported by the design of the IRules
wrapper.

Figure 8 shows the structure of an IRules wrapper.
A black-box bean may have a specific method, such as
m1(param1,param2). IRules builds a property bean for
each black-box bean to store external relationships
between distributed components, as well as extents,
derived attributes, and stored attributes for each
component. A property bean has methods to provide
the above functionality. A detail description of the
property wrapper can be found in [10].

There is a proxy bean in the IRules wrapper
structure that interfaces with clients. A proxy bean is
responsible for generating method events, passing
transaction contexts, and handling the suspension of
current execution. A proxy bean has the same
methods as the black-box bean, as well as a
corresponding method for every method provided by
the property bean and the black-box bean. For
example, as shown in Figure 8, the proxy bean has a
method m1(param1,param2) that is the same as the black-
box bean. So any client that is unaware of the IRules
system can still use the black-box API to access the
purchased component. The proxy bean also has the
m1(param1,param2,transactionId) method, which has the
same name as the corresponding method in the black-
box bean. In addition to the method parameters of the
black-box bean, every method in the proxy bean has a
parameter named transactionId. The transactionId
parameter is used to pass transaction contexts during
execution time in the IRules system. Similarly, the
proxy bean has the m2(para1,transactionId) method
responding to m2(para1) of the property bean to pass
transaction contexts. When there is method invocation
from clients to a proxy bean, the proxy bean will
delegate the invocation to the corresponding method
of the property bean or the black-box bean.

Property Bean
m2(para1)

Black-Box Bean
m1(param1,param2)

Proxy Bean
m1(param1,param2)
m1(param1,param2,transactionId)
m2(para1,transactionId)

Figure 8: IRrules Wrapper Structure for EJB
Components

A proxy bean has a three-step logic for event
generation. The first step is to generate before method
events, if any such events exist. When there is a
method call to the proxy bean, the proxy bean will
contact the metadata manager to determine whether
this method call can generate a before method event.
If it can, the proxy bean generates a method event
through the Java Message Service (JMS) [42]. Then
the proxy bean will try to read a semaphore object
from the synchronization space in JavaSpaces [43].
JavaSpaces is a Jini Service that supports the storage
and retrieval of objects in a distributed environment.

202 Informatica 30 (2006) 193–212 Y. Jin et al.

The blocking call mechanism of JavaSpaces is used to
synchronize the execution of a transaction and its
triggered immediate rules, releasing the suspension of
the transaction upon the completion of the rule
processing. Initially, the semaphore object does not
exist. Since the read operation to JavaSpaces is
blocking, the current transaction suspends at the proxy
bean. During this suspension period, the event is
propagated to the rule manager and the rule manager
begins to process any rules triggered by the event.
After processing rules triggered by a before method
event, the rule manager will put the semaphore object
into the synchronization space. Once the semaphore
object is in the synchronization space, the proxy bean
can successfully read the object to release the
suspension of the wrapper.

The second step of the logic of the proxy bean is
to call the property layer or the black-box bean to
execute the method call. The third step is to generate
after method events so that rules triggered after the
execution of the method can be executed. The logic of
generating an after event and the suspension for
immediate synchronous rules is the same as in the first
step. A more detailed description of the
synchronization algorithm appears in [10].

5 Integration Rule Processing
Algorithm

The rule processing algorithm is the logical circuit
through which integration rules are processed. The
algorithm instructs the rule manager in the processing
of rules at execution time, depending on the
transactional framework described in Section 4 for
interaction with EJB components and coordination of
rule execution with method execution. In Section 5.1,
we specify the behavior of integration rule coupling
modes in the context of cycles and levels of rule
execution. In Section 5.2, we present the logic of the
rule processing algorithm. A specific example of rule
execution in the IRules environment is presented in
Section 5.3. A brief summary of a performance
analysis of the IRules environment appears in Section
5.4.

5.1 Specification of Coupling Mode
Behavior

The Integration Rule Processing (IRP) algorithm is
based on the algorithm of the ADOOD RANCH
project [38], using cycles to control the nested
execution of active rules. This research has re-
designed the rule execution algorithm for a distributed
environment, fully supporting the IRules coupling
modes and transaction processing model.

Within the IRules environment, integration rules
are processed according to coupling modes. A rule
with an immediate E-C mode (either immediate
synchronous mode or immediate asynchronous mode)
is scheduled to execute as soon as it is triggered, while
a rule with a deferred E-C mode is added to the

deferred rule list that will be scheduled to execute at
the commit time of the top-level transaction. A
decoupled rule is executed immediately in a new top-
level transaction, while the transaction of the
triggering event execution resumes.

As shown in Figure 9, rule execution occurs in a
coordinate system in two dimensions: the Cycle
dimension and Level dimension. Cycle represents the
logic of deferred rule processing, while Level
represents the logic of nested rule execution. In Figure
9, dashed arrows represent immediate rule triggering
in Levels, while solid arrows represent deferred rule
scheduling in Cycles.

Illustration

Immediate rule triggering

D
ef

er
re

d
ru

le
 tr

ig
ge

rin
g

0 1

0

...

...

1

LEVEL

C
YC

LE

Triggers immediate rules
Schedules deferred rules

Top-
Level

Transaction

Figure 9: Cycles and Levels of Rule Execution

Each top-level transaction and its subtransactions are
represented as a coordinate system, formed as a
Cartesian product of Cycle and Level. A top-level
transaction tk, as the root of a transaction, is executed
at Cyclek

0 and Levelk
0 in coordinate system Gk. If an

event in (Cyclek
0, Levelk

j) triggers an immediate rule,
the rule will be executed in the same cycle but in
Levelj+1 as a new subtransaction. As an example, if an
event e1 in (Cyclek

0, Levelk
0) triggers immediate rules

r1, r2, and r3, then r1, r2, and r3 execute at (Cyclek
0,

Levelk
1). Within the same level, rules r1, r2, r3 can

execute sequentially or concurrently. The algorithm
for determining sequential or concurrent rule
execution is presented in [44].

If an operation of a top-level transaction (Cyclek
0,

Levelk
0) triggers a deferred rule, the rule will be

scheduled to execute at the end of the top-level
transaction in (Cyclek

1, Levelk
0). In general, if an event

in Cyclek
i triggers a deferred rule, the rule will be

executed in Cyclek
i+1. If there is more than one

deferred rule at the end of the transaction, the rules are
executed in sequence. If an event in Levelk

j triggers a
deferred rule, the rule will always be executed in
Levelk

0 of the next cycle.
When an event in any (Cyclek

i, Levelk
j) of a

coordinate system Gk triggers a rule that contains a

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 203

decoupled action, the decoupled action is executed as
a new top-level transaction at (Cyclen

0, Leveln
0) of a

new coordinate system Gn, where Gn and Gk are two
distinct coordinate systems for rule execution.

Additional execution procedures apply for the
execution of immediate asynchronous rules. If an
event in (Cyclek

i, Levelk
j) triggers a rule with an

immediate asynchronous E-C mode, the rule will be
executed in Levelk

j+1 without suspending the execution
of the operations in Levelk

j. A synchronization point
that requires the commit of asynchronous rule
execution exists at this point. The synchronization
point is after the last operation of Levelk

j and before
the commitment of a transaction in Levelk

j, which is
called the end-Proc stage. This point allows the
maximum time interval for the execution of the
asynchronous rules without delaying the processing of
the triggering transaction. In the end-Proc state of
Levelk

j within Cyclek
i, all of the immediate

asynchronous rules that executed at (Cyclek
i, Levelk

j+1)
are required to commit for the triggering transaction to
continue. At the end of a top-level transaction, after
all of the asynchronous rules commit, deferred rules
can be processed.

The above presentation of IRP describes rule
execution in a two dimensional coordinate system,
focusing on the logic of rule execution. At run time,
rules are executed in a distributed environment, which
is related to a third dimension – Location of the
objects accessed by a rule. An event is generated from
one location, while the data accessed by a triggered
rule can exist in multiple locations. The value of the
Location depends on which software components are
involved in the condition and action part of the rule.
The IRP algorithm instructs the rule manager to
invoke the IRules object manager to locate the
position of a component. In a more complicated case,
the objects accessed by a rule can require the use of
multiple locations for evaluating the condition and
performing the action of the rule.

5.2 Execution Logic of the IRP
Algorithm

The IRP algorithm is the core of the rule manager. IRP
instructs and regulates the execution behavior of the
rule manager for the processing of application
transactions and integration rules. In this section, the
logic of the IRP algorithm is presented using Unified
Modelling Language (UML) activity diagrams [9].

When a user makes a request to the rule manager
to process an application transaction, the rule manager
will start an application transaction processor to
process the request. The processing logic is illustrated
in Figure 10 for the PROCESS TOP-LEVEL
TRANSACTION module. There are two sub-component
modules of the processing: EXECUTE AN APPLICATION
TRANSACTION and PROCESS DEFERRED RULES,
which are detailed in Figures 11 and 13, respectively.
As shown in Figure 10, after EXECUTE AN

APPLICATION TRANSACTION, the execution arrives at
the pre-commit state, which is the time for deferred
rule processing. Then PROCESS DEFERRED RULES is
executed and the transaction commits.

The EXECUTE AN APPLICATION TRANSACTION
module is presented in Figure 11. Before execution of
the application transaction, the algorithm checks for
the existence of a before application transaction event.
If a before event is raised, rules triggered by the before
event are processed. Next, the algorithm will execute
the application transaction. Since an application
transaction consists of a set of operations, the
algorithm calls the EXECUTE OPERATIONS module to
execute all the operations of the application
transaction. After all operations of the application
transaction have been executed, the algorithm checks
for an after application transaction event. If an after
event exists, rules triggered by the event are executed
according to different coupling modes. The EXECUTE
AN APPLICATION TRANSACTION module uses the same
algorithm as the EXECUTE OPERATIONS module
(Figure 12) with respect to rule processing according
to different coupling modes. The following paragraph
provides an explanation of rule processing for
different coupling modes in the context of the
EXECUTE OPERATIONS module.

MODULE: PROCESS TOP-LEVEL TRANSACTION

Arrive
pre-commit

state

Commit
transaction

Transaction
begin

EXECUTE AN APPLICATION
TRANSACTION

PROCESS DEFERRED RULES

Figure 10: Process Top-Level Transaction

In Figure 12, the EXECUTE OPERATIONS module
presents the logic of executing a sequence of
operations for a transaction by iterating through all
operations. Before execution of any operation, the
algorithm will check for the existence of a before
method event. If a before event has been raised, all
rules triggered by this event will be obtained. The
current transaction is suspended until the completion

204 Informatica 30 (2006) 193–212 Y. Jin et al.

of all triggered rules. The “*[For each rule]” notation
indicates that the PROCESS A RULE module will be
started for each rule. The PROCESS A RULE module is
illustrated in Figure 14. These rules can be executed
sequentially or concurrently.

MODULE: EXECUTE AN APPLICATION TRANSACTION

[Raise before
event]

Get rules triggered
by the event

*[For each rule]

[No before
event]

[No rule]

Get rules triggered
by the event

[Raise after event]

[No after
event]

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn] [Asyn]

[No rule]

Join Asyn rules

PROCESS A RULE

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

EXECUTE
OPERATIONS

Figure 11: Execute An Application Transaction

Recall that only immediate synchronous rules are
allowed for before events, so those rules will be
processed immediately. After the rules with a before
modifier are processed, the operation is executed as
shown in Figure 12. The algorithm in Figure 12
checks for method events raised after the execution of
the operation. Rules triggered by the after method
event are obtained. If a rule is decoupled, a new top-
level transaction is started that follows the logic of the
EXECUTE TOP-LEVEL TRANSACTION module. If a rule
is deferred, the rule is added to the deferred list of its
top-level transaction. If the rule is immediate, the rule
will be started immediately as a subtransaction by
invoking the PROCESS A RULE module. In the case of
an immediate synchronous rule, the current transaction
cannot continue until the subtransaction joins the
current transaction. In contrast, the current transaction
can continue execution in parallel with the execution
of its immediate asynchronous rules. At the end-proc
state, the current transaction will suspend until all
immediate asynchronous rules finish execution and
join the current transaction.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 205

The PROCESS DEFERRED RULES module is
presented in Figure 13. Recall from Section 5.1 that
deferred rules are executed in cycles. For each cycle,
deferred rules are executed in sequence as described in
the PROCESS A RULE module of Figure 14. A
subtransaction will be created as the child of the
triggering transaction. For an EA rule, the action is
executed immediately. The execution of an action
occurs in the EXECUTE ACTION module. For an ECA
rule, the condition is evaluated first. If the C-A
coupling mode is immediate synchronous, the action
will be executed immediately. In the case of a
decoupled C-A mode, a new top-level transaction is
started immediately.

Recall that before calling the PROCESS A RULE
module, the rule was already scheduled according to
the E-C coupling mode for an ECA rule and the E-A
coupling mode for an EA rule. So in the PROCESS A
RULE module, the condition of an ECA rule and the
action of an EA rule are always executed immediately.

Figure 15 illustrates the logic of the EXECUTE ACTION
module. The execution of an action invokes the
EXECUTE OPERATIONS module when the action is in
the format of a method call. If the action is in the
format of an application transaction, the algorithm will
call the EXECUTE AN APPLICATION TRANSACTION
module.

[No operation]

[More operations]

MODULE: EXECUTE OPERATIONS

[Raise before
event]

Get rules triggered
by the event

*[For each rule]

[No before
event]

Execute the
operation

[No rule]

Get rules triggered
by the event

[Raise after event]

[No after
event]

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn] [Asyn]

[No rule]

Join Asyn rules

PROCESS A RULE

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

Arrive
end_Proc

state

Figure 12: Execute Operations

206 Informatica 30 (2006) 193–212 Y. Jin et al.

[No more
Cycle]

[Next Cycle]

Get deferred rule list
from current Cycle

Get a rule from this
cycle

[List not empty]

[List empty]

MODULE: PROCESS DEFERRED RULES

PROCESS A RULE

Figure 13: Process Deferred Rules

The algorithm has so far illustrated the rule processing
logic for user requests as a top-level transaction.
Recall that the other architectural component that can
cause the rule manager to start top-level transaction
processing is the event handler. For any internal or
external event pushed by the event handler, the rule
manager will handle the event according to the logic
in Figure 16. The rule manager gets rules triggered by
the event, and then processes each rule according to
different coupling modes. Recall that no rule with a
before modifier can be raised by an internal or an
external event, because it is impossible for an active
system to control when an internal or an external event
occurs. Similar to the processing of a top-level
application transaction, once the processing arrives at
the end-proc stage, asynchronous rules must join the
triggering transaction. After the pre-commit state, all
deferred rules are processed.

Transaction begin

[EA rule]

[ECA rule]

Evaluate condition

MODULE: PROCESS A RULE

[C-A decoupled]

[C-A immediate
synchronous]

Commit transaction

EXECUTE ACTION

EXECUTE ACTION

PROCESS TOP-LEVEL
TRANSACTION

[true]

[false]

Figure 14: Process A Rule

MODULE: EXECUTE ACTION

EXECUTE OPERATIONS EXECUTE AN APPLICATION
TRANSACTION

[Method] [Application transaction]

Figure 15: Execute Action

5.3 Execution Scenario of an Investment
Application

To illustrate the rule processing algorithm, this section
presents an execution scenario for selling stocks using
the investment example presented in Section 3. A
preliminary version of the scenario from Figures 17-
19 appears in [6] without the notion of cycles and
levels.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 207

MODULE: HANDLE INTERNAL/EXTERNAL EVENT

Transaction begin

Get rules triggered by the
event

Arrive
end-proc

state
Join asyn rules

Arrive
pre-commit

state

Commit transaction

PROCESS DEFERRED RULES

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn]
[Asyn]

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

Figure 16: Handle internal/external event

As shown in Figure 17, the application transaction
clientWantsToSellStock is the request from a user to
perform the function of placing an order to sell a
stock. The transaction creates an order to sell a stock
at a desired price, and then prints a report. An event is
generated after this application transaction, triggering
the integration rule clientWantsToSellStockRule in
Figure 18. The integration rule examines the desired
prices for the stock to be sold and compares it with the
current price, selling the stock if the condition is
satisfied. The action part of the rule executes the
sellStockOnNewPO application transaction in Figure 17,
which raises two events. The first event
(afterSellStock) is generated after the stock is sold but
before the end of the transaction, allowing rules to be
triggered in reaction to each sell operation. In
particular, the scenario has an active rule
stockBuyOnUpdateCash that allows a portfolio to
exercise pending purchases when sufficient funds are
available in the user’s account. The
afterSellStockOnNewPO event is signaled after the
action of sellStockOnNewPO is complete to trigger a

rule billingToAccountOnSell. This rule sends billing
information to the user. Both of the
stockBuyOnUpdateCash and billingToAccountOnSell rules
are shown in Figure 18.

application transaction clientWantsToSellStock(String pnId,
String portfolioId, String stockId, int numOfShares,float
desiredPrice, String action, Stock actUpon, Portfolio
orderedBy)
tcl newInstance
{
set pn [newInstance PendingOrder $pnId $portfolioId
$stockId $numOfShares $desiredPrice $action $actUpon
$orderedBy $irulesId];
printPendingOrderInfo $pn $irulesId;
}

application transaction sellStockOnNewPO(String stockId,
float price, String portfolioId, int numOfShares,
StockBroker.PendingOrderComponent.PendingOrder pn)
tcl printSellInfo
{
set session [newInstance PortfolioSessionBean $irulesId];
$session sellStock $stockId $price $portfolioId
$numOfShares $irulesId;
$pn setStatus "executed" $irulesId;
printSellInfo $pn $irulesId;
}

Figure 17: Examples of Application Transactions

for the Investment Scenario

Figure 19 illustrates the execution scenario that occurs
as a result of the IRP algorithm. Figure 19 uses a
notation that is based on UML activity diagrams.
There are four transactions represented by four
different swimlanes [45], one for each transaction
context of the application transactions and rules. We
use notation such as T1, e1, R11, as the abbreviated
names of transactions, events, and rules, respectively.

When a user invokes the clientWantsToSellStock
application transaction, the transaction manager
creates a top-level transaction (T1) to process the
application transaction. The top-level transaction T1
executes at (Cycle1

0, Level1
0) in coordinate system G1.

The clientWantsToSellStock application transaction
generates an event named afterClientWantsToSellStock
(e1). The event e1 triggers the rule
clientWantsToSellStockRule (R11) presented in the
second column of Figure 19. Because the E-C
coupling mode of R11 is immediate synchronous, the
condition of R11 is evaluated immediately. T1
suspends until R11 completes. The execution of
immediate rule R11 is within the context of
subtransaction T11. Because R11 is an immediate rule
triggered by an event at (Cycle1

0, Level1
0) , the rule is

executed at (Cycle1
0, Level1

1).

create rule clientWantsToSellStockRule
event afterClientWantsToSellStock(pnId,

 portId, stockId, numOfShares,

208 Informatica 30 (2006) 193–212 Y. Jin et al.

 desPrice, pnaction, actUpon,
orderedBy)

condition immediate
 when pnaction = "sell"
 define stockAndPendingOrder as
 select struct (stk: s, newPo: pn)
 from s in stocks, pn in pendingOrders
 where pn.id=pnId and pn.actUpon=s

and desPrice<=s.price
action immediate
 from sp in stockAndPendingOrder
 do sellStockOnNewPO(stockId,
 sp.stk.price, portId, numOfShares,
 sp.newPo)

create rule stockBuyOnUpdateCash
event afterSellStock(stockId, price, portfolioId,

numOfShares)
condition asynchronous
 define portfolioOnUpdate as
 select p
 from p in portfolios
 where p.portfolioId=portfolioId and p.cash >

p.buyThreshold
action decoupled
 from p in portfolioOnUpdate
 do buyStockOnUpdateCash(p)

create rule billingToAccountOnSell
event afterSellStockOnNewPO(stockId, price,

portfolioId, numOfShares, pn)
action deferred
 from p in portfolios
 where p.portfolioId= portfolioId

do setAccountBillingOnSell(stockId, price,
portfolioId, numOfShares, p.accountId)

Figure 18: Examples of Integration Rules for the

Investment Scenario

The condition of R11 is evaluated in the second
column. If the condition evaluation returns a non-null
structure containing stocks and pending orders, then
the action of R11 is performed using the structure as
input bindings. Because of the immediate synchronous
C-A coupling mode, the action is executed
immediately. The action part of R11 is wrapped in a
subtransaction named sellStockOnNewPO (T11a), which
has four operations. The second operation sellStock is a
method that generates a method event afterSellStock
(e2). The event e2 triggers the rule
stockBuyOnUpdateCash (R111) in the third column.
Since the E-C coupling mode of R111 is immediate
asynchronous, the condition of R111 is evaluated
immediately. Moreover, the condition evaluation of
R111 is concurrent with the execution of the triggering
transaction T11a. Because R111 is an immediate rule
triggered by an event at (Cycle1

0, Level1
1), R111 is

executed at (Cycle1
0, Level1

2).

If the condition evaluation of R111 returns a non-null
set of portfolios, the action of R111 will be performed
upon the set. Due to the decoupled C-A coupling
mode, the action of R111 becomes a new top-level
transaction named buyStockOnUpdateCash (T2) since
the action is an application transaction. Since the C-A
coupling mode is decoupled, the action part of R111
will be executed in a different coordinate execution
system G2 at (Cycle2

0, Level2
0).

Once T2 is started in the fourth column, T111 resumes
and commits. As shown in the second column, when
the set status and printInfo operations of T11a finish
executing, T11a is at the end of execution. At this time
T11a waits until all the triggered asynchronous rules
join. In this example, T111 joins T11.

As shown in the second column, the completion of
sellStockOnNewPO generates an event (e3) that triggers
an EA Rule named billingToAccountOnSell (R112).
Because the E-A coupling mode of R112 is deferred,
R112 is scheduled to the end of the top-level
transaction (T1). Subtransaction T11 finishes execution
and commits. Because R112 is a deferred rule
triggered by an event at Cycle1

0, R112 will be executed
at (Cycle1

1, Level1
0).

In the first column, the commit of T11 releases the
suspension of T1. Just before T1 commits, deferred
rule R112 is processed. After R112 finishes executing,
T1 commits.

5.4 Performance Analysis of the IRules
Environment

The IRules system is a Java implementation that uses
the BEA Weblogic Server [46] to provide EJB
components. The Jini distributed computing
environment is used as the backbone of the system,
with IRules architectural components implemented as
Jini Services. Java Message Service (JMS) [42]
provides asynchronous event notification for
communication between the event-signaling
components and the event-handling components.
JavaSpaces [43] is used for the storage of metadata.
The blocking call mechanism of JavaSpaces is also
used in the synchronization space to synchronize the
execution of a transaction and its triggered immediate
rules, releasing the suspension of the transaction upon
the completion of the rule processing [11].

We have evaluated the performance of the IRules
environment using the OBJECTIVE benchmark [47]
as the basis for the evaluation. The OBJECTIVE
Benchmark was originally designed to identify
bottlenecks and to evaluate the functionality of an
active object-oriented database. The OBJECTIVE
benchmark was adjusted and extended as part of this
research to apply the benchmark to a distributed
component integration environment. The full details of
the performance analysis and how the benchmark was
adapted to the IRules environment is beyond the scope

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 209

of this paper and can be found in [44, 48]. The
evaluation was conducted within the IRules
environment and has not been applied to any industrial
environment.

As a brief summary of the performance evaluation
process, the system was implemented and evaluated
using four Windows NT 4.0 computers. The metadata
and object manager illustrated in Figure 6 were co-
located on one physical machine, while in two
different Java virtual machines. The rule manager,
event handler, and the Weblogic EJB server, also
illustrated in Figure 6, were each physically located on

one machines. The evaluation was conducted using
four parameters of configuration: 1) the number of
events, 2) the number of rules, 3) the number of
application transactions, and 4) the number of
component instances. The primary focus of the
evaluation was on four different aspects of the
execution environment: 1) three phases of active
behavior (event detection, rule retrieval, and rule
execution), 2) performance of different coupling
modes, 3) performance of the rule processor under a
heavy event load, and 4) the time for event detection

New
PendingOrder

R11::
Evaluate Condition

new SessionBean

sellStock

set Status

printInfo

R111:: Action
T11a: sellStockOnNewPO

R111::
Action

buystockOn
UpdateCash

E-C ImmediateSynchronous

R111::
Evaluate Condition

Schedule
deferred rule R112

(billingToAccountOnSell)
to the end of T1

e3:afterSellStockOnNewPo
E-C deferred

e2: afterSellStockE-C ImmediateAsynchronous

C-A Decoupled

PrintInfo

Process deferred
rule R112

T1: (Top-Level) T11: (Sub of T1) T111: (Sub of T11) T2: (Top-Level)

C-A
Immediate Synchronous

Join Asyn Rules

e 1:afterClientWantsToSellStock

Cycle1
0

Cycle1
1

Level10 Level12 Level20

Cycle2
0

Level11

G1 G2

Cycle2
1

Figure 19: Execution Scenario of the Investment Application

210 Informatica 30 (2006) 193–212 Y. Jin et al.

for the different types of IRules events. The primary
results of the evaluation indicate that:
1) The decoupled and immediate asynchronous

modes provide the best performance since they
allow concurrent execution. The deferred mode is
the slowest due to the need to schedule rules for
execution at the end of the top-level transaction.

2) Execution time is somewhat affected by a large
number of rules and transactions due to the larger
amount of metadata that must be searched during
rule and transaction retrieval.

3) A heavy event load can cause the rule processor
to be interrupted to queue events, thus slowing
down the performance of the rule processor, but
the performance eventually levels off to a
consistent execution speed regardless of the event
arrival load.

4) Access to EJB components is the primary point of
slow performance, affecting the time for method
execution as well as the time for method event
generation. A future improvement of the IRules
system should involve re-design of the wrapper
structure to reduce the EJB component layers,
thus reducing the time associated with method
invocation.

6 Summary and Future Directions
This paper has presented the integration rule
processing algorithm of the IRules environment, with
supporting descriptions of the rule execution model
and transaction model. The IRP algorithm illustrates
an approach for active rule processing in the context
of distributed component integration, where events are
used to trigger rules that invoke application
transactions and methods on components. The IRP
algorithm is presented in a form that can be reused in
other environments for a rule-based approach to
integration logic, defining the manner in which
immediate coupling modes can be used together with
nested rule execution in a distributed environment.
The IRules integration system allows application
integrators to specify the integration logic in a
declarative fashion, which does not require an
integrator’s low-level knowledge of programming and
transaction management. Integrators can focus on
mediating the interaction between components, rather
than the technical details of event handling and
transaction processing.

It has been a challenging effort to develop a
distributed rule and transaction processing
environment such as IRules, since it involves the
combination of issues such as component autonomy,
rule distribution, cascaded rule triggering, and
distributed synchronization. The implementation of
the execution environment presented in the paper has
been completed. One future direction is to expand the
environment to support multiple component models.
The transaction model also needs further investigation
to address failure in the execution process, especially
when global transactions execute over different

component models with heterogeneous transaction
processing semantics. These future research
directions will be explored in the context of Grid
services for virtual organizations, where a Grid service
provides a service-oriented view of a component [49,
50] and the Grid environment forms the foundation of
the underlying architecture.

References
[1] Object Management Group: The Common Object

Request Broker, Architecture and Specification.
(1999) John Wiley Publishing.

[2] Enterprise Java Beans Specification (2000) Sun
Microsystems, version 2.0.

[3] S. D. Urban, S. W. Dietrich, Y. Na, Y. Jin, and A.
Sundermier (2001) The IRules Project: Using
Active Rules for the Integration of Distributed
Software Components, Proc. of the 9th IFIP 2.6
Working Conf. on Database Semantics: Semantic
Issues in E-Commerce System, Hong Kong,
April 2001, pp. 265-286.

[4] S. D. Urban, S. W. Dietrich, Y. Jin, S.
Kambhampati, and Y. Na (2002) Distributed
Software Component Integration: A Framework
for a Rule-Based Approach, Handbook of
Electronic Commerce in Business and Society,
Watson, R., Lowery, P. and Cherrington, J. Ed.

[5] S. W. Dietrich, S. D. Urban, A. Sundermier, Y.
Na, Y. Jin, and S. Kambhampati (2001) A
Language and Framework for Supporting an
Active Approach to Component-Based Software
Integration, Informatica, Vol. 25, No. 4, pp. 443-
454.

[6] Y. Jin, S. D. Urban, S. W. Dietrich, and A.
Sundermier (2002) An Execution and Transaction
Model for Active, Rule-Based Component
Integration Middleware, Proceedings of the
Engineering and Deployment of Cooperative
System, Beijing, China, pp. 403-417.

[7] N. W. Paton, O. Diaz (1999) Active Database
Systems, ACM Computing Surveys, Vol. 31, No.
1, pp. 3-27.

[8] J. Widom and S. Ceri (Eds.) (1996) Active
Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan
Kaufmann Publisher.

[9] Unified Modeling Language (UML)
Specification, version 2.0.
http://www.uml.org/#UML2.0

[10] R. Patil (2003) A Framework Supporting an
Active Approach to Component-Based Software
Integration, M.S. Thesis, Arizona State
University, Department of Computer Science and
Engineering.

[11] S. Urban, S. Kambhampati, S. Dietrich, Y. Jin,
and A. Sundermier (2004) An Event Processing
System for Rule-Based Component Integration,
Proceedings of the International Conference on
Enterprise Information Systems, Porto, Portugal,
pp. 312-319.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 211

[12] M. Stonebraker, E. N. Hanson, and S.
Potamianos (1998) The POSTGRES Rule
Manager, IEEE Transactions on Software
Engineering, Vol. 14, No. 7, pp. 897-907.

[13] J. Widom (1992) The Starburst Rule System:
Language Design, Implementation and
Application, IEEE Data Engineering Bulletin,
December, pp. 15-18.

[14] U. Dayal, B. Blaustein, A. Buchmann, and S.
Chakravarthy (1998) The HiPAC Project:
Combining Active Databases and Timing
Constraints, ACM SIGMOD Record, Vol. 17,
No. 1, pp. 51-70.

[15] S. Gatziu, K. R. Dittrich (1992) SAMOS: An
Active Objective-Oriented Database System,
Data Engineering bulletin, pp. 23-26.

[16] S. W. Dietrich, S. D. Urban, J. V. Harrison and
A. Karadimce (1992) A DOOD RANCH at ASU:
Integrating Active, Deductive and Object-
Oriented Databases, IEEE Data Engineering
Bulletin: Special Issue on Active Database
Systems, Vol. 15, No. 1-4, pp. 40-43.

[17] H. Branding, A. P. Buchmann, T. Kudrass, and J.
Zimmermann (1993) Rules in an Open System:
The REACH Rule System, Rules in Database
Systems, pp. 111-126.

[18] P. Gulutzan and T. Pelzer (1999) SQL-99
Complete Really, Miller Freeman Publishing.

[19] P. Fraternali and L. Tanca (1995) A Structured
Approach for the Definition of the Semantics of
Active Databases, ACM Transactions on
Database Systems, Vol. 20, No. 4.

[20] L. B. Warshaw (2001) Facilitating Hard Active
Database Applications, Ph.D. Dissertation, The
University of Texas at Austin, Department of
Computer Science.

[21] S. Chakravarthy, and R. Le (1998) ECA Rule
Support for Distributed Heterogeneous
Environments, International Conference on Data
Engineering, pp. 601.

[22] Object Management Group (OMG) Interface
Definition Language (IDL), International
Organization for Standardization (ISO)
International Standard, number 14750.
http://www.omg.org/gettingstarted/omg_idl.htm

[23] A. Koschel, and P. C. Lockemann (1998)
Distributed Events in Active Database Systems -
Letting the Genie out of the Bottle, Journal of
Data and Knowledge Engineering, Vol. 25, pp.
11-28

[24] H. Fritschi, S. Gatziu, K. and R. Dittrich (1998)
FRAMBOISE – an Approach to Framework-
Based Active Database Management System
Construction, Proceedings of the 7th ACM
International Conference on Information and
Knowledge management, pp. 364-370.

[25] M. Cilia, C. Bornhovd, and A. Buchmann (2001)
Moving Active Functionality from Centralized to
Open Distributed Heterogeneous Environments,
Proceedings of 9th International Conference on

Cooperative Information Systems (CoopIS’01),
Trento, Italy, pp. 195-210.

[26] C. Liebig, M. Malva, A. Buchmann (2000)
Integrating Notfications and Transactions:
Concepts and X2TS Prototype, Proceedings of
the 2nd International Workshop on Engineering
Distributed Objects, University of California,
Davis, USA, pp.194-214.

[27] W. K. Edwards (2000) Core Jini, Prentice-Hall
PTR, Second Edition.

[28] C. Bussler, and S. Jablonski (1994) Implementing
Agent Coordination For Workflow Management
Systems Using Active Database Systems, The
International Workshop On Active Database
Systems, Houston TX, pp. 53-59.

[29] F. Casati, S.Ceri, B. Pernici, and G. Pozzi (1996)
Deriving Active Rules for Workflow Enactment,
DEXA, Switzerland, pp. 94-115.

[30] K. Karlapalem and P. C. K. Hung (1998) Security
Enforcement in Activity Management Systems,
Workflow Management Systems and
Interoperability, Ed. Dogac, etc., Springer-Verlag
publisher, pp. 165-193.

[31] G. Kappel, and W. Retschitzegger (1998) The
TriGS Active Object-Oriented Database System -
An Overview," SIGMOD Record, 27(3), pp.36-
41.

[32] Workflow on Intelligent Distributed database
Environment. http://dis.sema.es/projects/WIDE/

[33] B. Benatallah, M. Dumas, Q. Sheng, and H. Ngu
(2002) Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services,
Proceedings of the 18th International. Conference
on Data Engineering, San Jose, CA, pp. 297-308.

[34] R. Peri (2002) Compilation of the Integration
Rule Language, M.C.S. Report, Arizona State
University, Department of Computer Science and
Engineering.

[35] K. Marimuthu (2003) An Object-Oriented Query
Processor Based on an Extended Monoid
Algebra, M.S. Thesis, Arizona State University,
Department of Computer Science and
Engineering.

[36] M. DeJong, C. Laird, “TCL+Java = A Match
Made for Scripting,”
http://www.sunworld.com/sunworldonline/swol-
11-jacl.html.

[37] J. Ousterhout (1994) TCL and the TK Toolkit,
Addison-Wesley Publishing.

[38] T. Abdellatif (1999) An Architecture for Active
Database Systems Supporting Static and
Dynamic Analysis of Active Rules Through
Evolving Database States, Ph.D. Dissertation,
Arizona State University, Department of
Computer Science and Engineering.

[39] J. Gray and A. Reuter (1994) Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann Publishers.

[40] S. Jajodia and L. Kerschberg (1997) Advanced
Transaction Models and Architectures, Kluwer
Academic Publishers.

212 Informatica 30 (2006) 193–212 Y. Jin et al.

[41] M. T. Ozsu and P. Valduriez (1999) Principles of
Distributed Database Systems, Prentice Hall
Publishing.

[42] JMS 2002. Java Messaging Service. Version 1.1.
http://java.sun.com/products/jms/docs.html

[43] E. Freeman, S. Hupfer, K. Arnold (1999)
JavaSpace: Principles, Patterns, and Practice,
Addison-Wesley Publisher.

[44] Y. Jin (2004) An Architecture and Execution
Model for Component Integration Rules, Ph.D.
Dissertation, Arizona State University,
Department of Computer Science and
Engineering.

[45] G. Booch, J. Rumbaugh, I. Jacobson (1999) The
Unified Modeling Language User Guide.
Addison-Wesley Publisher.

[46] BEA Systems Weblogic Server (2003).
http://www.bea.com

[47] U. Cetintemel (1995) OBJECTIVE: A
Benchmark for Object-Oriented Active Database
Systems, M.S. Thesis, Bikent University, Turkey.

[48] Y. Jin, S. D. Urban, D. W. Dietrich (2005)
Extending the OBJECTIVE Benchmark for
Evaluation of Active Rules in a Distributed
Component Integration Environment, submitted
for journal publication, 2005.

[49] S. D. Urban, V. Kumar, and S. W. Dietrich
(2005) A Prototype for Integration of Web
Services into the IRules Approach to Component
Integration, Proceedings of the International
Conference on Enterprise Information Systems,
Miami, FL., pp.3-10.

[50] H. Ma, S. D. Urban, Y. Xiao, and S. W. Dietrich
(2005) GridPML: A Process Modeling Language
and History Capture Systems for Grid Service
Composition, Proceedings of the International
Conference on e-Business Engineering, Beijing,
China.

 Informatica 30 (2006) 213–220 213

A PC-based Decision Support System for Optimal Cutting of Logs in
Veneers Production
Anton Čižman and Marko Urh
University of Maribor, Faculty of Organizational Sciences
Kranj, Kidričeva cesta 55a
E-mail: anton.cizman@fov.uni-mb.si, marko.urh@fov.uni-mb.si

Keywords: decision support systems, cutting, production, operations management, linear programming

Received: July 14, 2005

We report on a user-friendly decision support system (DSS) for solving specific cutting stock problem
from a smaller wood-processing company. A prototype DSS is developed for use in veneers production
and is designed to aid mangers in create or improving existing tailoring of logs using their experience
and preference s. The results of testing a typical cutting-stock problem are shown to point out how such
DSS, which utilizes linear and mixed-integer programming, can reduce inventory costs and improves the
exploitation of input material.
Povzetek: V prispevku je prikazan odločevalni informacijski sistem (OIS) za reševanje problema razreza
hlodov na podhlode v proizvodnji furnirja.

1 Introduction
Decision Support Systems (DSS) have emerged as the
computer-based system to assist decision makers
address semi structured problems by allowing them to
access and use data and analytic models. Such systems
have the following characteristics: they are interactive
computer-based systems; they are aimed at semi-
structured problems. They utilize models with internal
and external databases, and they emphasize flexibility,
effectiveness, and adaptability. These characteristics
have guided much of the research in the DSS area, but
the potential benefits of DSS in the business
environment have not been fully realized [1, 2, 3].

Although the definition of the DSS concept has
been elusive, the field has flourished with the
development of computer technology. Keen [8]
reviewed the decade of DSS development and
concluded that there is a need for balance between each
of the three DSS elements: decision, support and
systems. To achieve the mission of DSS - helping
people make better decisions - Keen stressed the need
for an active supporting role for decisions that really
matter. This paper focuses on the decision component of
the DSS.

PC technologies are becoming accepted and
incorporated into organizations and our personal lives.
PC-based systems have the potential to improve both
individual and organizational performance. As decision
makers recognize the potential benefits, many
companies are investing in information technology. PC-
based systems have been generally hailed as a
revolution that will change the nature of professional
work and transform the way people work. It is expected
that almost all knowledgeable workers are likely to have

their own PC to perform both stand-alone tasks and
network services.

Despite the proliferation of microprocessor-based
systems, the potential benefits of these systems, as aids
to managerial decision making, may not be fully
realized due to poor design and low acceptance by
users. It is recognized that individuals are sometimes
unwilling to use these systems, even if the system may
increase their productivity. While some of these systems
may have an impact on individuals and organizations,
the adoption and acceptance of these systems among
decision-makers has been limited. This may be due to
the inflexibility in the systems as well as their narrow
design. Therefore, it is important to understand the
environment of the decision makers and the type of
support they need in order to make effective decisions,
and to examine the models appropriate for addressing
their problems [1, 5].

In this paper we describe a PC-based DSS which
addresses the optimal cutting of logs in the
manufacturing of veneers. The development of DSS is
proposed on generalized prototyping approach [2, 3]
that leads to more efficient and simpler use of such
systems. The effectiveness of the DSS is shown by
relatively simple example which utilizes the pattern-
oriented LP-based methods for solving one-dimensional
cutting stock problem. The results of testing show that
the application of such managerial DSS enhances
problem solving capability for achieving greater
competitiveness of an organization.

In the first part of the paper, we present a
description of the major operations in the production of
veneers focusing on the process of efficient longitudinal
tailoring of logs. The second part of the paper describes

214 Informatica 29 (2005) 213–220 A. Čižman et al.

design and development of a DSS for this environment.
Finally, we illustrate how the DSS can be used in
practice to improve existing intuitive tailoring of logs.

2 The application problem
The application problem that is considered in this case
study was identified in a small-to-medium size
Slovenian veneers factory. The factory belongs to a
group of connected wood-processing enterprises that
have successfully passed the process of economical
restructuring in the past few years. The factory is
producing steamed and sliced veneers from domestic
and imported wood species. It has been operating since
1926 and is famous all over Europe particularly for its
top-quality steamed beech veneers. On one side, this
reputation is a result of a long tradition. On the other
side, the management is continuously striving to
improve the competitive position of the enterprise by
gradual automation of production facilities as well as by
introducing modern information systems and advanced
information technology.

In this sense, a particular challenge for the manager
of the company in recent years has been a better
integration of production and business processes by
means of various DSS. Such integration became a
necessity due to a change in market conditions. In
previous decades of successful operation for the largely
unsaturated market, their production relied on the so-
called "make-to-stock" strategy. With recent economy
trends, such as: loss of the market share in the countries
of the former Yugoslavia, privatization and
restructuring of the Slovenian national economy, as well
as further globalization of trade, the management has
been forced to switch over to the strategy of "make to
order". In such a situation, we would define the problem
as follows.

While the partially intuitive planning, assisted with
simple calculations, was enough to manage the previous
strategy, the new production planning strategy requires
more sophisticated information systems. Due to very
tight resources in terms of available time, qualified
people and investment money, the management
currently cannot deal satisfactorily with these problems.
In this situation, our research group decided to perform
some exploratory work, with the aim to develop a
suitable DSS for a specific Mathematical Programming
(MP) application.

2.1 Analyzing the decision-making
process

The essential operation to be discussed in this paper is
longitudinal tailoring of logs. It is done by cutting the
selected logs in the transversal direction to a pre-
determined number of sub-logs. The tailoring plan is
prepared in advance according to the actual purchasing
orders, as it is explained later. The aim of this operation
is to get proper initial length of sub-logs before slicing
them to veneer sheets that have the same length as sub-
logs. In terms of optimal wood exploitation, this
operation has the greatest potential for achieving
substantial cost savings. Therefore this operation was
chosen to receive the main attention in the presented
case study.

 Primary analysis of the decision-making process
applied to the management of the veneers production
operations described in a paper [3] reveals a number of
decision-making situations. One of the relevant
problems in this regard, such as determination the
optimal log-cutting strategy and the quantity of logs to
be purchased, is related to optimal exploitation of input
material (logs). This situation is shown in Fig. 1.

Decide on:
• logs to be purchased
• logs needed to be cut

Calculate the optimal
cutting of logs

Logs on
stock

Veneer sheets
on stock

Customer orders

New veneer
sheets to be
produced

Purchase order
for new logs

Compose the shipment
to customer

Fig. 1: The decision-making process in the production of veneers.

 The discussion is focused to the indicated initial

decision-making problem from Fig. 1, i.e. the optimal
cutting of logs. The current decision-making model in
the production of veneers is based on obtainable data

samples about logs and related veneer sheets that have
been produced in several periods (see Table 1).

 Up to the present, the longitudinal tailoring was
performed by an intuitive “rule of thumb”. Thereby, the

A PC-BASED DECISION SUPPORT SYSTEM... Informatica 30 (2006) 213–220 215

goal of the operations manager is to establish a
“reasonable minimum” of the edge-waste remainders of
logs which, unfortunately, does not take into account the
end-waste remainders of logs. This simple approach to
log cutting causes gradual accumulation of an undesired
inventory of veneer sheets in the warehouse which

significantly increases inventory costs. Thus the idea is
to improve the existing decision-making process using
scientific approach to minimize at the same time both,
the edge waste as well as the end waste from cutting the
logs.

2.2 The problem-solving paradigm
The problem of optimal cutting of logs in veneer
production is called one-dimensional cutting stock
problem (1d-CSP). This problem consists of
determining the smallest number of logs of length Lp,
(p = 1, 2, …, s) that are available in sufficiently large
quantity and have to be cut in order to satisfy the
required number bi sub-logs of lengths li (i =1, 2, …,
m). The lengths of sub-logs li are determined by the
required length of ordered veneer sheets. On the other
hand, the required number of sub-logs (bi) can be
calculated from the required area and thickness of
ordered veneer sheets taking into account the diameter
and quality of logs to be cut. A combination of
required sub-logs lengths in the log of length Lp is
called cutting pattern. For each log length Lp, the
number np (p = 1, 2,..., s) of all different cutting-
patterns can be determined with regard to the
particular sub-log length li. The element aijp of matrix
A that describes each cutting pattern, represents the
number of sub-logs of length li obtained in cutting
pattern j related to log length Lp. The number of logs
of length Lp to be cut according to cutting pattern j is
denoted by a decision variable xjp.

 In this problem situation, the objective is to
minimize the number of logs (xjp) of length Lp, that
have to be cut according to the j-th pattern. Thus, our
1d-CSP represents a pure integer programming (IP)
problem that can be modeled as follows:

jp

s

p

n

j
p xL

p

∑∑
= =1 1

min (1)

subject to

i

s

p

n

j
jpijp bxa

p

≥∑∑
= =1 1

, i = 1,...,m

(2)
where

xjp ≥ 0 and integer, j = 1,...,np; p = 1,..., s

For cutting pattern to be valid:

pi

m

i
ijp Lla ≤∑

=1

 (3)

aijp ≥ 0 and integer, j = 1,...,np;
p = 1,..., s

The IP problem described above can be solved

using different LP-based methods [3, 4, 9]. In practice,
most IP problems can be solved by the technique of
Branch-and-Bound (BB).

 In actual situation, the ordered number of
different veneer sheet lengths and the number of
different log lengths that are available for cutting at
the same time is usually small; that means: (m < 5 and
s < 3). Therefore, the number of all possible log-
cutting patterns that can be enumerated is not large.
Because of this property, a normally good solution for
many real log cutting problems can be obtained by
using the BB method of selected DSS development
software.

 In the case of larger number of different
veneer sheets lengths (large-scale 1d-CSP) the use of
the BB method is impractical, because the number of
all possible cutting patterns (columns) can be very
large. As a result, the IP will be too large to even
formulate and difficult or impossible to solve. To
tackle this problem, the "delayed column generation
approach" can also be included into DSS [6, 7].

2.3 Selecting the DSS development

2.3.1 Software
Criteria for the evaluation of DSS software have been
dealt with by some authors (e.g. Buede, 1992). For the
purpose of our selection, the process of setting up
requirements for a proper software tool was
considered from three different viewpoints: (1) broad
viewpoint of the enterprise, (2) viewpoint of the OR
expert (developer) and (3) pragmatic viewpoint of the
user (i. e. manager). Results of preliminary selection

Table 1: Typical data samples about the logs and the veneer sheets

 Log ID
number

Length
(cm)

Volume
(m3)

 Log ID
number

Length of
sheets (cm)

Area
(m2)

Log 1 1234 563 1,19505 Packet 1 1234 220 13,024
Log 2 1535 657 2,047 Packet 2 1535 182 8,91072
Log 3 1623 446 0,741 Packet 3 1623 151 6,2816
Log 4 1854 721 1,904 Packet 4 1854 193 12,4678
Log 5 1910 512 0,701 Packet 5 1910 112 2,0608

216 Informatica 29 (2005) 213–220 A. Čižman et al.

based on these criteria, and at the same time taking
into account local preferences, have shown that a
couple of OR or general-purpose software candidates
(see Table 2) are remarkable for further consideration.

If compared on the basis of requirements given
previously, all commercial MP software systems given
in Table 2 have favorable features as candidates to be
selected for further development of a manager-friendly
DSS in our specific circumstances. They appear to
have an almost equal rank from the viewpoint of the
OR expert. Therefore, the choice of the basic DSS
development software may depend largely on the
particular needs and circumstances of the enterprise
where the new DSS will be used.

A general argument for SAS/OR software
selection was the fact that the SAS System offers to
the user enterprise a wider selection of software tools
and technology, not only for MP [9, 10, 11, 12]. In the
context of a production enterprise, such as that of
veneers production, the software tools for forecasting
(the SAS/ETS module), for statistical analysis (the
SAS/STAT module) and quality control (the SAS/QC
module) are of particular interest. In this way, the
benefit of this selection for the company is to have a
single software provider, the same source of technical
support and a truly integrated information delivery
system with similar user interfaces.

 Another important argument for having
selected the SAS System is the possibility of effective
exploitation of modern technologies for effective
development and implementation of end-user oriented
DSS such as: Data Warehousing and On-Line
Analytical Processing (OLAP), object-oriented
programming concepts (the SAS/AF software) with
powerful Screen Control Language (SCL), and
interfaces that provide easily and timely access to data

from SAS-format and outside databases (the
SAS/ACCESS software).

The other two arguments that have led to the
selection of the SAS/OR software are bounded to the
circumstances that are important for the enterprises in
Slovenia. In particular, the SAS System provides data-
exchange interfaces for ERP systems used in a number
of important Slovenian enterprises (specifically the
SAP R/3). Finally, the local SAS office in the capital
of Slovenia, Ljubljana, has a good reputation for their
technical support of SAS products and training
courses in the Slovenian language.

3 The system design, development
and testing

A specific DSS was build to assist the operations
manger during his tasks of log cutting in production of
veneers, such that the system: (1) is based on the
mental model of the user; (2) does not require any
special MP knowledge for operating it; (3) can be used
through simple point-and-click commands; (4) has
simple data-input and data-output procedures; (5) can
be operated from a standard personal computer
running the Microsoft Windows operating system; (6)
exploits as much as possible the features and functions
of the selected SAS/OR software; (7) is flexible and
easy to modify as well as to maintain. During the
initial development steps of the reported DSS it was
confirmed that the above requirements can be satisfied
by the SAS software.

 The DSS includes four components: the user-
interface, the modeling base, the database and solution
techniques. The integration of the four components of
the DSS, i.e., the structure of our DSS, is presented in
Fig. 2.

Table 2: List of commercial DSS software development tools selected as closer candidates

Name Short description Supplier

LINDO linear programming (LP) solver
LINGO linear, non-linear programming (NLP) and integer

programming (IP) solver with specific mathematical
language

What's
Best

spreadsheet (EXCEL) add-in for solving LP, NLP and
IP problems

LINDO Systems

ILOG resource optimization suite (includes CPLEX) ILOG, Inc.
MS

EXCEL
standard solver, Frontline solvers for EXCEL for

solving LP, IP and NLP problems
Microsoft Inc.,

Frontline Systems Inc.
CPLEX

optimizer
general large-scale MP software and services for

resource optimization
CPLEX division

of ILOG, Inc.
SAS/OR

module
software tools for MP, scheduling, decision analysis, project
management, statistical analysis

SAS Institute,
Inc.

A PC-BASED DECISION SUPPORT SYSTEM... Informatica 30 (2006) 213–220 217

However, the standard SAS/OR graphical user
interface provides a specific programming language
that was not considered appropriate for an operations
manger. Therefore, development was focused around
building a special window-based graphical user
interface (GUI) allowing easier use of related solution

technique. The graphical user interface was developed
specifically for this application by means of the
SAS/AF software. The application is started from
standard SAS GUI screen by clicking to the
application-specific "PROC" icon (see Fig.3).

3.1 Test case
A typical test case is described here for illustrating

an ordinary production task in log cutting that can be
solved by the developed DSS. Let suppose that a
customer orders three different quantities of veneers of
equal thicknesses and of three different sheets lengths: l1
= 182 cm and total area A1 m2; l2 = 151 cm and total
area A2 m2; l3 = 112 cm and total area A3 m2. In this
situation it is calculated that the 350 sub-logs (b1) of
length l1, 250 sub-logs (b2) of length l2 and 400 sub-logs
(b3) of length l3 are needed if the original logs of tree

type 3 with length of 446 cm is used. All possible
cutting patterns that can be created from selected log of
length 446 cm are determined. Results of this step are
given in Table 3.

 The operations manager has to input data into the
DSS, according to the Table 3. Input data relate to the
computation objective (min or max), to the number of
constraints and decision variables and to the file name
(existing or new). Fig. 3 and the upper-left/central part
of Fig. 4 illustrate how the test data can be fed into the
new DSS by means of the two data-input GUI screens.

Fig. 2: The structure of a decision support system

Fig. 3: Basic data-definition screen

218 Informatica 29 (2005) 213–220 A. Čižman et al.

After performing data input, the presented test case
brings the operations manager to the results of the SAS
"PROC LP" optimization procedure. To get them, he
has to click on the "SOLVE" button shown in Fig. 4.
The results of the optimal solution appear in the left-
bottom part of the same (main data input/output) screen.
In this solution, the values of decision variables (X1,
X2,…, X12) practically represents the number of 446

cm logs that have to be cut according to twelve (n1 = 12)
cutting patterns given in Tab. 1. In this case, the
minimally required number of original logs to fulfill this
customer order is 338. Optional sensitivity analysis is
available by clicking either to the "RANGE/PRICE" or
to the "RANGE/RHS" button. Recalling Fig. 4, the user
can combine input data from other databases by clicking
the "ACCESS" button.

Fig. 4: Main data I/O screen: input test data and the results of optimal solution

4 Analysis and discussion
The approach to DSS development used in this paper
represents an attempt to make the implementation and
use of DSS in industry and other smaller businesses more
efficient. It recognizes the fact that effective DSS are
aimed at semi-structured problems, utilize models with
internal and external databases, and emphasize
flexibility, effectiveness and adaptability. Introduction of
such systems in the business environment requires to
solve a range of non-technical and people-related
problems, e.g. limited resources, low level of IT and MP
knowledge, open organizational issues, sometimes

resistance to use quantitative models for decision
making, etc. In this situation, the approach recommends
to take full advantage of commercially available MP
software and modern information-processing facilities,
i.e. personal computers, mostly affordable to or available
even in smaller firms, respectively.

Looking at the case study from the practical
viewpoint, let us discuss the benefits of using the new
DSS, in comparison to the intuitive decision-making
used in the veneers manufacturing firm to date. For this
purpose, we will look closer to the test case given in
Table 3. First, let us look how the operations manager
solves the problem by his ad-hoc approach. He may
intuitively decide to cut one original 446 cm log directly

Table 3: Possible cutting patterns for a log of length L1 = 446 cm, j = 1, 2, …, 12, p = 1

Cutting patterns (j) 182-cm sublogs 151-cm sublogs 112-cm sublogs Edge waste (cm)
Pat. 1- x1 1 0 0 264
Pat. 2 - x2 2 0 0 82
Pat. 3 - x3 1 1 0 113
Pat. 4 – x4 1 1 1 1
Pat. 5 – x5 1 0 1 152
Pat. 6 – x6 1 0 2 40
Pat. 7 – x7 0 1 0 295
Pat. 8 – x8 0 2 0 144
Pat. 9 – x9 0 2 1 32

Pat. 10 – x10 0 0 1 334
Pat. 11 – x11 0 0 2 222
Pat. 12 – x12 0 0 3 110

Req.nb. of sublogs 350 250 400

A PC-BASED DECISION SUPPORT SYSTEM... Informatica 30 (2006) 213–220 219

into the required lengths of sub-logs of 182, 151 and 112
cm, leaving an edge-waste of 1 cm. This requires to cut
400 original 446 cm logs and gives a total edge waste of
4 m only, a total end waste of 317,5 m. In this situation
total length of original logs required for cutting is 1784
m.

One reason is that the manager is looking only on
reducing edge waste and is not used to care about end
waste. This was acceptable before, as the over-
production of veneer sheets and the consequent inventory
costs were not problematic because the additional
veneers packets could be sold at a later date. The next
reason is that the manager is not enough skilled now to
create intuitively different cutting patterns and/or to
choose the best one. Thus, the simplest way for him is to
cut the logs as the above example shows.

 On the other hand, the optimal solution that is
generated by the DSS results in total 338 original logs
required for cutting, where total edge waste is 44,98 m
that is much greater then 4 m, but total end waste is zero
and the consumption of original logs is reduced to
1507,48 m.

There are also some other possibilities in the same
production process where this DSS can be used, such as:

 Help in ordering new logs.
 Log cutting optimization with

 consideration of logs on stock.
 Consideration of cutting-machine setup

 costs.
 Consideration of a greater number of different sub-

log lengths using the delayed column generation
method.

 Broader use of DSS for similar
 decision-making situations in other
 types of production.

 Optimization in the same organization,
 such as product-mix problems, blending
 problems and transportation problems.

The GUI is the essence of the new DSS which is

built around the original SAS/OR software. Actually, it
works with four data input/output screens having a
relatively simple layout. Developing a DSS application
directly from the original SAS/OR software requires
from the user knowing the SAS high-level programming
language and some basic computer knowledge.

On the other hand, this new GUI is an user-friendly
interactive windowing point-and-click application that
gives a user quick, easy access to desired information.
For using the new GUI efficiently, the user has to
understand: the goal and the basic assumptions, the
principles of LP, the 1d-CSP formulation in LP terms,
the structure of the screens, the meaning of command
options and the contents of data-input/output windows.
Once instructed about the procedure of using the DSS for
solving the log-cutting problem, the user can get
information that will help him at more appropriate
decision making.

When comparing the use of this DSS with the
procedure of using the original SAS GUI for solving the

same 1d-CSP, it turns out that the main advantage of
such a DSS is the fact that the user does not need to
formulate the LP model in the specific SAS language.
The other advantage is the possibility of using the other
SAS optimization procedures [9] for solving other types
of optimization problems. The DSS prototype that
includes the PROC LP of the SAS/OR software is not
very case-specific. This means that it is useful for solving
other types of LP and MIP problems and can also be used
for training the users about the new approach to
operational decision-making.

5 Conclusion
Through a case study from the production of

veneers, the paper presents a pragmatic approach to the
development of a DSS, to be used by the operations
managers. The basic idea of the proposed approach is to
choose a good commercially available OR software and
then upgrade it with a user-friendly graphical interface.
The feasibility of the approach is illustrated by a simple
prototype DSS for optimal cutting of logs in the
manufacturing of veneers.

By choosing to test the DSS which utilizes the
pattern-oriented LP-based Methods for solving the
standard 1d-CSP, it was attempted to show that the
power of OR can be more successfully presented to the
industrial practitioners when the underlying theory is
relatively straightforward. The results of testing a typical
cutting-stock problem with actual production data
indicate that such a user-oriented DSS can indeed
improve the competitiveness of a (small) organization. It
does this by supporting the operations manager to
process customer orders more efficiently and, at the same
time, by helping him (her) to keep the inventory of
finished goods as low as possible. Therefore, it is
considered that the challenge mentioned at the beginning
of this paper can be met satisfactorily by using the
prototyping approach even for solving of more complex
OR problems.

By taking together the cumulative benefits from all
these possible future DSS applications, it can be
imagined that a significant financial/economic/
commercial benefit for the firm can be expected. Of
course, only a detailed cost-benefit analysis, based on
real production data, can give a proper basis for investing
in this direction of further DSS development.

6 References

[1] Basnet, C., Foulds, L., Igbaria, M. (1996) Fleet
Manager: a microcomputer-based decision support
system for vehicle routing, Decision Support
Systems 16, pp. 95-207.

[2] Buede, M.D. (1992) Superior Design Features of
Decision Analytic Software, Computers &
Operations Research, pp. 19 (1), 43 - 57.

[3] Chaudhry, S., Salhenberger, L. and Beheshstian, M.
(1996) A small business inventory DSS: design,

220 Informatica 29 (2005) 213–220 A. Čižman et al.

development and implementation issues, Computers
& Operations Research 23 (1), pp. 63-72.

[4] Čižman, A., Černetič, J. (2004) Improving
competitiveness in veneers production by a simple-
to-use DSS, European Journal of Operational
Research 156, pp. 241-260.

[5] Dyckhoff, H. (1990) A typology of cutting and
packing problems, European Journal of
Operational Research 44, pp. 145-159.

[6] Foulds L. and Thachenkary C., 2001. Empower to
the people – how decision support systems and IT
can aid the OR analyst, OR/MS Today, June 2001,
p. 3. (Downloadable from website
http://www.lionhrtpub.com/orms/orms-6-
01/foulds.html).

[7] Gillmore, P.C. and Gomory, R.E. (1961) A linear
programming approach to the cutting stock
problem, Operations research, 9, pp. 849-859.

[8] Haessler R.W.and Sweeney P.E. (1991) Cutting
stock problems and solution procedures, European
Journal Of Operational Research, 54, pp. 141-150.

[9] Keen, P.G.W. (1988) Decision Support Systems:
the Next Decade, Decision Support systems 3, pp.
253-265.

[10] Kearney, D.T. (1999) Advances in Mathematical
Programming and Optimization in the SAS System,
Proceedings SAS European Users Group
International (SEUGI) 99, SAS Institute Inc.

[11] SAS (1999) SAS/OR User’s Guide: Mathematical
Programming, Version 8, SAS Institute Inc., Cary,
NC.

[12] SAS (1995) SAS/AF Software Frame Application
Development Concepts, Version 6, First Edition,
SAS Institute Inc., Cary, NC.

[13] SAS (1994) The SAS System for Information
Delivery-Scientific and Technical Applications,
SAS Institute Inc.

Informatica 30 (2006) 221–232 221

Dissipationless Waves for Information Transfer in Neurobiology – Some
Implications

Danko D. Georgiev
Division of Pharmaceutical Sciences
Kanazawa University Graduate School of Natural Science and Technology
Kakuma–machi, Kanazawa, Ishikawa 920–1192, JAPAN
E-mail: danko@p.kanazawa-u.ac.jp

James F. Glazebrook
Department of Mathematics and Computer Science
Eastern Illinois University
600 Lincoln Avenue, Charleston IL 61920–3099, USA
E-mail: jfglazebrook@eiu.edu

Keywords: soliton, energase, microtubule, SNARE complex.

Received: June 17, 2005

We describe a biophysical framework for subneuronal processing of information via certain quantum me-
chanical processes and solitonic interactions as applicable to neuronal microtubules. In particular, we
describe how certain energase actions and vibrationally assisted tunneling may influence the conforma-
tional dynamics of the neuronal cytoskeletal protein network. Some implications are also discussed in
relationship to special neurophysiological processes as basic to the study of mind and memory.

Povzetek: Opisan je model neurobiološkega delovanja.

1 Introduction
Solitons are dissipationless waves whose theory and appli-
cations prevail in fields such as quantum physics, atmo-
spherics, oceanography, cellular automata, and biophysi-
cal systems. Some well known examples appearing in the
wealth of literature on the subject include the equations
of Korteweg-de Vries, Boussinesq, Klein–Gordon, and the
nonlinear Schrödinger (NLS) equation (Dodd et al. 1982,
Calogero and Degasperis 1982, Davydov 1991). These ro-
bust, often bell–shaped waves can propagate in a pulsating
manner while retaining their form and velocity in undergo-
ing collisions; so in a sense they can be compared with in-
teracting particles. On the other hand, their universality as
a nonlinear scientific phenomenon suggests they are essen-
tial to understanding life and information within a unified
framework, and therefore provide an essential contribution
to the understanding of consciousness.

Soliton equations constitute part of a hierarchy of in-
tegrable, or ‘solvable’, systems admitting high degrees of
symmetry (Ablowitz and Clarkson 1991, Calogero and De-
gasperis 1982, Miwa et al. 1982), but seen as solutions to
nonlinear wave equations, solitons do not normally obey
the superposition principle, so that when two solutions
are combined, a complicated wave is formed. Eventually
however, pairs of soliton waves are seen to actually pass
through each other thus revealing an unusual phenomenon
that has far–reaching applications. Of specific interest here

are ‘kink’ and ‘antikink’ solutions which are common to
a number of solvable systems where spatial derivatives are
localized; typically, the resulting wave pulsates in a twist-
ing fashion with certain asymptotic properties. Besides
kink and antikink solutions, there may also be oscillatory
solutions known as ‘breathers’ which will play an instru-
mental role in the discussion following.

For biomolecular/physical systems, the works of Davy-
dov (1982, 1991) provide a foundation for applying the the-
ory of solitons for dissipationless energy transfer in hydro-
gen bonded systems, DNA, membraneous flexing, muscu-
lar contraction and other phenomena (we refer also to the
excellent article by Scott 1992 on this subject). Our inter-
est here draws upon the role that soliton dynamics can play
in neurobiology/neurophysiology in a particular situation;
namely, we survey how such effects theoretically related
to systems such as the sine–Gordon and the class of evo-
lutionary equations considered in Davydov (1982, 1991),
might influence the mechanisms of dendritic and axonal
microtubules, subneuronal processing of information, and
synaptogenesis in cerebral architecture.

222 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

2 Microtubules and C–terminal
tubulin tails

Neuronal structures within the brain are known to be dy-
namically regulated by strings of self–assembling protein
networks forming the cytoskeleton, a skeleton–like protein
network that regulates cellular dynamics. The main con-
stituents of the cytoskeleton consist of microtubules which
are like hollow cylinders of 25 nm in diameter, of vari-
able length (from micrometers to milimeters, depending on
whether they are contained within dendrites or axons) and
are composed of assemblies of α/β tubulin dimers. Mi-
crotubules interact with intermediary and actin filaments,
MAPs (microtubule associated proteins), as well as dif-
ferent scaffold proteins, thus organizing the intracellular
space and tuning the biochemical activity of microtubule
anchored enzymes (mostly phosphatases and kinases). The
assembly by α/β tubulin dimers is a process requiring
nucleotide GTP (guanosine triphosphate) to bind to both
α and β tubulins. The α–bound GTP never hydrolyzes,
whereas the GTP–molecule which is tied to the β–tubulin,
is hydrolyzed to nucleotide GDP (guanosine diphosphate)
soon after the dimer is incorporated into the growing mi-
crotubule lattice. The released energy is then stored in
the microtubule wall as an elastic strain, and the β–tubulin
bound GDP cannot be further phosphorylated or exchanged
for GTP because the successive α–tubulin in the protofila-
ment occludes the preceding β–tubulin nucleotide binding
pocket (Heald and Nogales, 2002).

Experimental data by Sackett (1995) revealed the form
of microtubules not as smooth cylinders, since extending
from each tubulin are tiny ‘hairy’ projections of 4–5 nm in
length, referred to as tubulin tails. Since these projections
are highly flexible, their PDB structure was revealed only
recently by Jimenez et al. (1999) who determined the he-
licity of α (404–451) and β (394–445) tubulin C–terminal
recombinant peptides with the use of NMR (nuclear mag-
netic resonance). They showed that the C–terminal domain
of tubulins has a different length and structure in both α–
and β–tubulin. In general, the C–terminal domain has a
C–terminal helix H12 and a random coil C–terminal tubu-
lin tail. In α–tubulin molecules aminoacid residues 418–
432 form the C–terminal helix H12 and aminoacid residues
433–451 comprise the α–tubulin tail. The α–tubulin
C–terminal tail aminoacid sequence is EEVGVDSVEG-
EGEEEGEEY. The α–tubulin tail is 19 aminoacids long
and possesses 10 negatively charged residues. The situa-
tion in the β–tubulin C–terminal domain is more interest-
ing. Jimenez et al. (1999) have computed a 9 aminoacid
longer helix of the β–tubulin compared to previous PDB
models (cf Nogales et al. 1998). This suggests an ex-
tension in the protein, supporting the possibility of a func-
tional coil–to–helix transition at the C–terminal zone. The
β–tubulin C–terminal helix H12 is formed by aminoacid
residues 408-431, but it seems that the reversible transi-
tion between coil and helix of the last 9 aminoacid residues

423–431 from the C-terminal helix (with sequence QQYQ-
DATAD) could either decrease or increase the length of
the helix H12, at the same time increasing or decreasing
the β–tubulin tail length. The β–tubulin tail aminoacid
sequence (residues 432–445) is EQGEFEEEEGEDEA. It
has 14 aminoacids and 9 negatively charged residues, but
depending on the conformational status of the residues
423–431, the β–tubulin tail random coil can extend to 23
aminoacid residues bearing 11 negative charges. Follow-
ing the C–terminal helices α–H12 and β–H12, the 19 and
14 C–terminal residues of the respective α– and β–tubulin
tails are observed to be disordered by NMR. In particular,
this is a dynamical disordering and is effectively the man-
ifestation of the extreme sensitivity of the tubulin tails to
environmental conditions, and local electric fields yielding
a plethora of metastable conformations (Georgiev 2003a).

Located within dendrites and axonal projections, micro-
tubules serve as tracks for the transportation of post–Golgi
vesicles by microtubule bound motor proteins (such as ki-
nesin and dynein). Microtubules however are not passive
elements in the vesicle transport and it has been shown that
the tubulin C–terminal tails modulate kinesin function. Ex-
periments performed by Skiniotis et al. (2004) have shown
that the β–tubulin tail interacts with the kinesin switch II
domain, while the α–tubulin tail possibly interacts with the
kinesin α 7–helix in such a way that after the kinesin bound
ATP (adenosine triphosphate) is hydrolyzed, the kinesin
perambulates along the microtubule surface. Native micro-
tubules that possess tubulin tails cannot be decorated by
ADP (adenosine diphosphate)–kinesin molecules because
of the weak ADP–kinesin/tubulin tail binding, while subtil-
isin treated microtubules that lack tubulin tails bind stably
ADP–kinesin, thus blocking the kinesin walk. The conclu-
sion is that the tubulin tails catalyze the detachment of the
kinesin–ADP complex from the microtubule surface allow-
ing the kinesin dimer to take a ‘step’ along the microtubule
protofilament.

Microtubules do not only regulate motor protein func-
tion but also attach with their C–terminal tubulin tails dif-
ferent MAPs and protein kinases and phosphatases, thus
organizing the intraneuronal space. The proper attach-
ment/detachment of these proteins could regulate their en-
zymatic activity. In case studies of schizophrenia, Arnold
et al. (1991) have found altered expressions of MAP2 and
MAP5 that result in abnormalities in the neuronal cytoar-
chitecture. Whereas in Alzheimer’s disease, the primary
alteration is the phosphorylation status of axonal MAP–tau
and the activity of protein phosphatase 2A (PP2A) regu-
lated via attachment/detachment to microtubules (Sontag
et al. 1999).

We propose that the mechanism of the tubulin tail en-
zymatic action is generated by vibrationally assisted tun-
neling – a key concept which emerged and was experi-
mentally verified over the last several years (Sutcliffe and
Scrutton, 2000). A locally formed tubulin tail standing
breather could promote or suppress conformational tunnel-

DISSIPATIONLESS WAVES FOR INFORMATION. . . Informatica 30 (2006) 221–232 223

ing of a molecule attached to the tubulin tail. The effect
of vibrations on mixed-tunneling could be either to pro-
mote or to suppress the tunneling process and this depends
on the boundary conditions (Takada and Nakamura 1994,
1995). Formally, the mechanism of the tubulin tail breath-
ing action could be manifestly a form of enzymatic ener-
gase process. Energases do not have source of energy, but
rather induce conformational transitions in a molecule that
has accumulated energy in an intermediate highly energetic
conformational state (Purich, 2001). The accumulated en-
ergy is derived from hydrolyzed ATP or GTP in previous
biochemical steps, so for that reason this energy is usually
called ‘primed energy’ and the process of energy accumu-
lation in metastable protein states is referred to as ‘prim-
ing’.

The idea that microtubules might be agents of sub-
neuronal processing of information was originally sug-
gested by Hameroff and Watt (1982). Hameroff and col-
leagues (Hagan et al. 2000) conjectured that the energy
for computation could be delivered from the tubulin bound
GTP molecules. Since it had been already observed that
in stable microtubules there is no possibility for tubulin
bound nucleotide cycling, we propose that tubulin tail ener-
gase action releases the energy accumulated in metastable
conformational states of kinesin, dynein, or phosphory-
lated MAPs. The metastable states of these proteins are
produced via ATP hydrolysis through previous ‘priming’
steps. We mention that ideas involving GTP–hydrolysis,
ferroelectric phase and (C–terminal) tubulin tails as possi-
ble agents of information transfer, have been suggested in
Georgiev (2003a, 2003c, 2004), Georgiev et al. (2004), Sa-
tarić and Tuszyński (2003) and the appropriate references
therein.

3 The water laser as a pumping
mechanism

As the organizing framework for special neurobiological
processes, the cytoskeleton is the major intracellular struc-
ture providing a protein surface to which water molecules
cling thus facilitating the water ordering. We point out that
the term ‘water’ used here is not quite the same as its mun-
dane sense, but instead should be regarded as a protein–like
saturated mixture. Ordered (vicinal) water molecules are
microscopic dipoles that interact with each other via hy-
drogen bonds whose effect influences a relatively high vis-
cosity, surface tension and dielectric constant. They form
the water electric dipole (WEDP)–field occurring on ei-
ther side of a brain cell. Within the interior of the cell,
the water molecules generate a WEDP–field in the vicin-
ity of the cytoskeleton, whereas in the exterior of the cell,
the molecules form an intercellular flow completing the
regions between neighbouring cells. Del Giudice et al.
(1983) have proposed that electromagnetic waves arising
from the WEDP–field within the body of the cytoskeleton,

create signals compatible in size with the internal diameter
of a given microtubule.

To proceed, we adopt in part the development of Jibu et
al. (1994, 1996, 1997). Let V denote a perimembranous
region or a spatial region in the vicinity of a cytoskeletal
microtubule. The WEDP–field in V taken within a cylin-
drical neighbourhood, is represented by a 2–spinor field

ψ(x, t) =
[
ψ+(x, t)
ψ−(x, t)

]
, (3.1)

where ψ+(x, t) and ψ−(x, t) are spinor components. The
electric dipole moment is given by

µ = ψ(x, t)∗
}
2
σ ψ(x, t) , (3.2)

where σ = [σ1, σ2, σ3] is a 3–vector whose components
consist of the Pauli spin matrices. The dipole moment
µ exhibits the water molecule as similar to a quantum–
mechanical spinning top. In other words, it is due to µ that
the water molecules interact dynamically with the quan-
tized electromagnetic field in V . If mp and ep denote
the proton mass and charge respectively, then the aver-
age moment of inertia of a water molecule is estimated as
I = 2mpd

2 with d ≈ 0.82Å, whereas µ is estimated as
µ = 2epP , with P ≈ 0.2Å .

Given ψ(x, t) 6= 0 only holds at each position x = xk

of the k–th manifestation of localization, the WEDP–field
with N localizations are describable in terms of N spin
variables as given by

sk(t) = ψ(xk, t)∗ σ ψ(xk, t) , 1 ≤ k ≤ N . (3.3)

The Hamiltonian of the WEDP–field for N water
molecules with energy difference ε, is given by

HWM = ε

N∑

k=1

sk
3(t) , (3.4)

where for a given wave vector k0, it is convenient to as-
sume that a normal mode has an angular frequency ωk0

resonating to the energy difference between two principal
eigenstates for which ε = }ωk0 (ε ≈ 24.8 meV), in accor-
dance with the predictions of dominance over other possi-
ble energy exchanges (Del Giudice et al. 1988). The radi-
ation field of V is given by a scalar electric field operator
E = E(x, t) whose associated Hamiltonian is

HEM =
1
2

∫

V
E2 d3x . (3.5)

A main premise of Jibu and Yasue (1997) is that the
dynamics of the WEDP–field and the quantized electro-
magnetic (EM) field is an energy interchange through cre-
ation and annihilation operators of photons. In order to see
this, consider a decomposition of the electric field operator
E = E+ + E− into its positive and negative frequency

224 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

components. Then the Hamiltonian for the interaction be-
tween the WEDP–field and the EM–field is given by

HI = −µ

N∑

k=1

{E−(rk, t)sk
− + sk

+E+(rk, t)} , (3.6)

where sk
± = sk

1 ± ιsk
2 . The total Hamiltonian HQM

which governs the quantum mechanical dynamics of the
electromagnetic field, the dipolar vibrational field of water
molecules along with their interaction, is then expressed by

HQM = HEM + HWM + HI . (3.7)

Since parts of the region V in the vicinity of a cell can
be considered as a cavity for the electromagnetic wave, we
introduce the normal mode expansion of E given by

E±(x, t) =
∑

λ

E±
λ (t) exp[± ι(λ · x− ωλt)] . (3.8)

From a motivational viewpoint, let us mention that the
process of signaling response in synapses is influenced by
certain classes of cellular adhesive molecules (CAMs) in
which the actin cytoskeleton provides a suitable structural
mechanism for assimilating the signaling inputs. The for-
mation of functional synapses at an axonal growth cone
involves identifying and initiating contacts with suitable
companion cells (Brose 1999). Of special importance for
synapse formation are two types of CAMs known as β-
neurexin and neuroligin forming a heterologous adhesive
interaction. Remarkably, β-neurexin-neuroligin interaction
alone has the unique ability to act as a bidirectional trig-
ger of synapse formation (Dean and Dresbach, 2006). β–
neurexin is located in axons and interacts presynaptically
with CASK, a multidomain scaffolding protein that orga-
nizes the presynaptic space and emits signals to the actin
cytoskeleton via protein 4.1. β–neurexin also directly in-
teracts with the synaptic vesicle protein synaptotagmin-1,
thus controlling exocytosis and neuromediator release (see
later). Synaptotagmin-1 per se might act as MAP molecule
binding to β–tubulin tails stabilizing microtubules in high
Ca2+ concentration presynaptically. Neuroligins are lo-
cated in dendrites and transmit information to postsynap-
tic density protein (PSD-95), which is a multidomain scaf-
fold protein that anchors different ion channels to the active
zones of the postsynaptic membrane. Neuroligin-1 is a spe-
cific CAM for excitatory (glutamatergic) synapses, while
neuroligin-2 is a specific CAM for inhibitory (GABAer-
gic) synapses. PSD-95 is anchored to postsynaptic micro-
tubules via another protein known as CRIPT. Neuroligins
on binding with presynaptic β–neurexins, comprise an ad-
hesive system facilitating learning processes manifest as
a morphological reorganization of the synapse. Relevant
here is that the radiation field of (3.8) could be considered
as falling within this junction as shielded by ordered water
molecules, and so assists the signaling mechanism between
neighbouring neurons (Georgiev 2003b, 2003c).

Next, we introduce collective dynamical variables S±λ
for water molecules given by

S±λ (t) =
N∑

k=1

sk
±(t) exp[± ι(λ · x− ωλt)] . (3.9)

On setting S ≡ ∑
k sk

3 , we can express (3.7) in the form

HQM = HEM + εS − µ
∑

λ

{E−
λ S−λ + S+

λ E+
λ } . (3.10)

Equation (3.10) resembles that of the Hamiltonian for a
laser radiation process, and in this way suggests that the
water molecules of V exhibit a laser–like coherent optical
property, provided the energy is sustained above a certain
threshold; this threshold will be represented by equation
(3.15) below. The dynamically ordered region of water
molecules and quantized EM–field, are considered within a
coherence length of 50 µm. The explanation given by Jibu
et al. (1997) is that by increasing the ordering of water on
the microtubule surface, spontaneous symmetry breaking
occurs (see below), thus creating Nambu–Goldstone (NG)
bosons, the quanta of long–range correlation waves of the
aligned electric dipoles referred to as dipole wave quanta,
denoted DWQ.

The Hamiltonian HEM can also be expressed in terms
of canonical operators (observables) Pλ(t) and Qλ(t) as
defined by

Pλ(t) =

√
}ωλ

2
ι(E−

λ −E+
λ) ,

Qλ(t) =
√

}
2ωλ

(E−
λ + E+

λ) ,

(3.11)

and which satisfy the well–known canonical commutation
relations of the Heisenberg algebra. On making the neces-
sary transformations and substituting into (3.10), we obtain

HQM =
1
2

∑

λ

{P ∗λ (t)Pλ(t) + ω2
λQ∗λ(t)Qλ(t)}

+ ε

N∑

k=1

sk
3(t)

−
√

2
}
µ

N∑

k=1

∑

λ

{√ωλQλ(t)sk
1

− 1√
ωλ

Pλ(t)sk
2} .

(3.12)

Consider when a system possesses a certain symmetry
but through which the vacuum state is altered (through this
symmetry) and may be transformed into some other de-
generate state, whereas the Lagrangian symmetry remains
independent of the vacuum solution. In other words, the
Hamiltonian may be invariant under the symmetry trans-
formation but the vacuum (or lowest energy) state is not.
In this way, spontaneous symmetry breaking (SSB) occurs

DISSIPATIONLESS WAVES FOR INFORMATION. . . Informatica 30 (2006) 221–232 225

and results in massless quanta governed by Bose–Einstein
(BE) statistics that are assigned to repair the broken sym-
metry. The NG bosons are understood to be the quanta of
long range coherence induced by the vacuum state, which
violated the original dynamical symmetry. Typically, what
might otherwise be two massive fields emerge from SSB as
one massive and one massless field, the latter in this case is
a NG boson. In Jibue–Yasue (1997) this is explained when
the corresponding Heisenberg equations of (3.12) are con-
sidered in order to study the dynamically ordered state of
the WEDP–field in terms of a long–range alignment of as-
sociated spin variables. Under an SO(2)–transformation of
the canonical variables, the Hamiltonian HQM is invariant,
whereas a time independent solution is not invariant.

In order for the coherent emission of photons to have
the proper biological impact, it is necessary to consider
timescales of the order of 10–15 picoseconds which are
compatible with that of protein action. In the presence
of a disordered thermodynamic system, thermal fluctua-
tions, noise and dissipation have to be take into consider-
ation. However, the laser–like emission of coherent pho-
tons may still be realized under such circumstances once
the protein molecules achieve dynamics sufficient to en-
gage a pumping effect of the WEDP–field. This ‘slow phe-
nomenon’ involving the water laser is preferred in this sit-
uation to the ‘fast phenomena’ of superradiance. Jibu and
Yasue (1997) consider the relevant system of Heisenberg–
Langevin equations governing the collective dynamics of
the quantized EM–filed in V . On assuming a certain co-
herent state representation, these are seen to reduce to the
stochastic Langevin equation

dZ

dt
= α1Z − α2ZZ2 + B , (3.13)

where Z = Z(t) is a Markov process in C of the cor-
responding EM–field operator, B = B(t) is a (complex)
Gaussian white noise of thermal fluctuations of quantized
EM–field, and α1, α2 are particular constants depending on
the volume V of the region, thermal fluctuations for the EM
and WEDP–field, damping coefficients (denoted γ, γ0) for
the WEDP–field, and a parameter of pumping rate (denoted
S∞) resulting from the interaction of the WEDP–field with
the dynamics of the microtubule protein molecules. In turn,
these parameters are used to define a diffusion constant D,
which along the probability density function f = f(z, x̄, t)
of Z(t), transform equation (3.13) to its corresponding
Fokker–Planck equation

∂f

∂t
= − ∂

∂z
[(α1z − α2zz2)f] + D

∂2f

∂z ∂z̄
. (3.14)

Finally, and again referring to Jibu and Yasue (1997) for
details, the required level of excitations of the quantized
EM–field, namely the photon emission as induced by the
electric dipoles of tubulin, is attained when the pumping
rate S∞ satisfies the estimate

S∞ >
}2V γ0γ

4πεf2
. (3.15)

Thus it is suggested that the energy for the coherent pulse
emission by vicinal water in a proximity of 4-5 nm of the
microtubule’s outer surface could be gained from the tubu-
lin electric dipole oscillations and/or from vibrations along
the microtubule walls. The transmission of pulse mode co-
herent photons is determined by Maxwell’s equation as de-
rived from the total Hamiltonian HQM . For E = E(z, t)
it is given by the quantum dynamical equation of motion
(Jibu et al. 1994, 1997, Abdalla et al. 2001) :

∂E±

∂z
+

1
c

∂E±

∂t
= ∓ι

2πεµ

}V
S± . (3.16)

In terms of a quantum average, denoted 〈 〉q , the expression
for the electric field is

θ±(z, t) =
2µ

}

∫ t

−∞
〈E±(z, u)〉q du . (3.17)

This leads to a soliton equation of sine–Gordon type

∂2

∂t∂σ
θ± = −2A sin θ± , (3.18)

expressed in Lorenztian coordinates, where
A = 2πεµ2N

}2V , in which N
V is the number of water dipoles

per unit of volume, and σ = t + z
c . The indices ± indi-

cate the transverse directions of the electric field where it is
assumed there is no propagation in the longitudinal direc-
tion. The soliton equation (3.18) is an equation character-
istic of self–induced transparency as realized in nonlinear
optics and here suggests how the cumulative effects of the
WEDP–field might induce a transfer of energy via dissipa-
tionless waves. Time–differentiating (3.17), leads to

E =
}
µ

√
Aρ sech [

√
Aρ (t− z

c
)] , (3.19)

where ρ = v0
c−v0

. The above equations were taken up by
Abdalla et al. (2001) who studied the correspondence be-
tween information configurations induced by solitonic in-
teractions and the DWQ at certain levels of excitation. As
is part represented by the sine–Gordon equation (3.18), the
cumulative effect of the WEDP–field then induces a source
of resonant–propulsive energy.

Let us mention several alternative models which con-
sider different dynamics, based on equations of ‘solvable’
type, which are relative to the lattice structure of micro-
tubules. For instance, in Chou et al. (1994) energy releas-
ing effects of GTP–hydrolysis could generate certain kinks
and pulsations which propagate along the microtubule via
elastic flexing of the dimers. In Satarić and Tuszyński
(2003) a liquid crystal property of microtubules is con-
sidered relative to kink ‘shifting’ through GTP hydrolysis
whose rate may increase given additional Ca2+ and where
possible impediments to the kink motion, polymerization,
and microtubular caps are taken into account. These mod-
els, however, investigate effects in dynamic microtubules
that undergo assembly/disassembly while not addressing

226 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

the contrasting situation for stable microtubules (such as
the neuronal types). Another model involving solitonic in-
teractions, as considered by Mavromatos et al. (2002), en-
tails possible quantum coherent states of the DWQ on the
tubulin dimer walls where the DWQ are paired to electrons
in the dimer hydrophobic pockets via Rabi field coupling.

A model suggested in Georgiev (2004) relates to how
the water dipoles from the tubulin tail hydration shells that
form a 4–5 nm layer on the outer microtubular surface,
strongly interact with the local electromagnetic field thus
affecting the conformational state of the tiny C–tubulin
tails. The model is based on a long–range interaction of
the water molecule dipoles and local EM field resulting in
a coherent emission of photon pulses propagating via tun-
neling. The resulting solitons could be viewed as traveling
conformational waves in the tubulin tails that do not dis-
sipate under thermal fluctuations, but could be pumped by
the water laser provided the threshold inequality (3.15) is
satisfied. This model also considers solutions to the sine–
Gordon equation as providing the necessary dynamics. To
facilitate matters, consider a change of parameters from
Lorentzian coordinates to laboratory coordinates, so that
equation (3.18) is now expressed by :

utt − uxx = ± sin u , u ≡ u(x, t) . (3.20)

We have chosen for now a description based on the elas-
tic ribbon model, and recall that a kink soliton involves a
twist in a solution, u = u(x, t) say, which moves from one
solution u = 0 to an adjacent solution u = 2π . Vacuum
states as constant solutions of zero energy, correspond to
u = 0(mod 2π). In this respect, the traveling solitons of
Jibu–Yasue can be regarded as tunneling photons coupled
with tubulin tail hydration shells. The assumption is that
there is a prevailing coherence time of 10–15 picoseconds.

Such a kink (K) solution uK of (3.20) as given by :

uK = 4 tan−1 exp[γK(x− vKt− xK)] , (3.21)

where 0 ≤ vK < 1 is the kink velocity, xK the kink posi-
tion at t = 0, and

γ−1
K = (1− v2

K)
1
2 , (3.22)

the kink width. The kink energy is given by EK = 8γK .

On setting G = γK(x − vKt − xK), one also finds the
derived equations :

ux = 2γK sech G , (magnetic field)
ut = −2γKvK sech G , (electric field)

sin
1
2
u = sech G ,

(3.23)

(see Dodd et al. 1982).

The antikink (AK) solutions correspond to reversing the
velocity, v 7→ −v, and taking the negative square root in

(3.22). At this stage we mention the role of certain so-
lutions, called breathers which are manifestly local oscil-
lating waves resulting from how a kink and antikink can
merge into a combined state. Breathers admit more struc-
ture compared to a usual traveling wave because of the for-
mer’s internal oscillations, and in contrast to (topological)
ribbon solitons, can evolve without energy activation. In
practice they have been realized as linear phonon modes
which are excitable within thermal fluctuations (Russell et
al. 1997). It was suggested earlier that some class of prop-
agating solitons may influence the conformational states
of the tubulin tails. To this extent, in Georgiev (2004,
2003a) several possibilities involving sine–Gordon kink–
antikink–breather soliton collisions were proposed, where
for instance, a standing breather soliton could be coupled
to the energase action of the tubulin tails through vibra-
tionally assisted tunneling. Further, we are reminded how
the β–tubulin tails may interact with kinesin switches and
the role of the α–tubulin tail in activating the kinesin walk
(Skiniotis 2004).

As outlined in Dodd et al. (1982), the scheme of Bäck-
lund transformations can be employed to derive 3–soliton
from 2–soliton solutions. In relationship to the kink so-
lution uK in (3.21), we follow Dmitriev et al. (1998) to
describe a 3–soliton solution uKB representing the elastic
collision (without exchange of energy or momentum) be-
tween a kink and a breather, as it is given by the sum

uKB = uK + wB , (3.24)

where the term wB is explained as follows. Firstly, if ω
denotes the frequency of the breather, 0 ≤ ω < 1, we set
η = (1− ω2)

1
2 . Then

wB = 4 tan−1
{(

2ωη(sinh D − cos C sinhG)

+ 2ηγKγB(vK − vB) sin C coshG
)
·

(
2ωη(cos C + sinh D sinhG)

− 2ωγKγB(1− vKvB) cosh D cosh G
)−1}

,

(3.25)
where we have set

C = −ωγB(t− vB(x− xB)) + 2πm ,

m an integer,

D = ηγB(x− xB − vBt) ,

γ−1
B = (1 − v2

B)
1
2 is the kink width in which vB denotes

the velocity of the breather 0 ≤ |vB | < 1, and lastly, xB

denotes the position of the breather at time t = 0 . In the
continuum limit, the breather’s wavelength λ and period T
are related via

|vB | = λ

T
, λ = 2πγB |vB | 1

ω
, (3.26)

DISSIPATIONLESS WAVES FOR INFORMATION. . . Informatica 30 (2006) 221–232 227

whereas the amplitude A and energy EB are given by A =
4 tan−1(η

ω) , EB = 16ηγB .
Particularly interesting is the collision between a stand-

ing breather (vB = 0) and a traveling kink. After the
collision the kink and breather recover their velocity and
shape. However, the interaction results in a phase shift
of the standing breather that oscillates at a new position.
Therefore we can consider the sine–Gordon soliton colli-
sions as a kind of application of computational gates.

In the process of collision between a moving kink and a
standing breather, the shift ∆B of the breather is given by
the formula

∆B =
2 tanh−1

√
(1− ω2)(1− v2

K)√
1− ω2

, (3.27)

where vK is the velocity of the kink. If the original position
is denoted x0, then post–collision, the new position will be
x = x0 + ∆B .

Thus as a result of a pushing/pulling kink or antikink col-
lision with a standing breather, the latter through its phase
shift is conjectured to cause a deflection of the tubulin tails
so as to influence the kinesin walk across the microtubule
surface. Making the necessary change in parameters, a
kink–breather or an antikink–breather collision might ac-
tually implement the required ‘pushing’ effect (this ques-
tion remains open) if indeed a breather does function as
a catalytic agent registering transitions, influencing MAPs
and as noted, the workings of the prevailing motor pro-
teins (kinesin and dynein) through tunneling and the ener-
gase action. It is possible there are other combinations and
permutations of kink–antikink–breather collisions in, say,
the pendulum or discrete models (cf Miroshnichenko et al.
2000, even perhaps a configuration of moving breathers
as in Russell et al. 1997), which could provide the rel-
evant dynamics. At the same time we keep in mind the
kink etc. counterparts in other integrable/solvable systems
which might also serve as models of regulatory or compu-
tational gates that could influence cytoskeletal processes.

These last issues are discussed in Georgiev (2004) in re-
lationship to some finer neurobiological processes. Con-
cerning these, we comment on two important mechanisms
corresponding to protein constituents such as synapsin-1
and synaptotagmin-1. Hirokawa et al. (1989) have pro-
posed that phosphorylation of synapsin-1 by Ca2+ depen-
dent kinases, on releasing synaptic vesicles from actin fil-
aments, may accelerate vesicles to the presynaptic mem-
brane. In Honda et al. (2002) it is shown that cy-
toskeletal protein tubulin binds directly to synaptotagmin-
1 which promotes tubulin assembly. At the same time,
synaptotagmin-1 functions by attaching synaptic vesicles
to microtubules in high concentrations of Ca2+. Presy-
naptic microtubules may attach directly to the synaptotag-
min/SNARE complexes (SNARE abbreviates soluble NSF
attachment protein receptor, where NSF abbreviates N-
ethyl-maleimide-sensitive fusion protein) where β–tubulin

tails may trigger synaptotagmin dimerization which is es-
sential for accomplishing exocytosis. A further open pos-
sibility is that presynaptic microtubules remain crosslinked
to docked synaptic vesicles by means of a complex presy-
naptic scaffold protein network referred to as the cytoma-
trix of the active zone (CAZ).

The SNARE complex, while functioning as a fusion
mechanism, may be capable of receiving Ca2+ signals
transmitted by synaptotagmin-1 Ca2+ binding, which may
result in the fusion of synaptic vesicle with the presynap-
tic membranes. This opens up the possibility that a trav-
eling antikink (for instance) on collision with a stationary
breather, typically located at a penultimate tubulin tail, may
push the breather to the microtubule end β–tail which is at-
tached to the synaptotagmin Ca2+ sensor molecule located
above the SNARE complex. If indeed the case, then such
a model should be relevant to questions posed by Chap-
man (2002) concerning how synaptotagmin-1 may be real-
ized as a catalyst of exocytosis. Answering these and other
questions may well reflect upon the earlier ideas of Beck
and Eccles (1992) who hypothesized long–range quantum
correlation resulting from the exocytosis of synaptic vesi-
cles when propagating into a bouton.

4 Solitons in α–helix protein
molecules

The relevance of soliton dynamics to biophysics can be
traced back in part to the studies of Fröhlich (1968, 1975)
who considered one–dimensional electron systems occur-
ring in biology. When these systems admit holes of some
kind, it was conjectured that electron–hole pairing leads to
the existence of intracellular solitonic dynamics inducing
dissipationless energy transfer. Fröhlich postulated unusual
protein dipole moments and wave frequencies as exhibited
by cell membranes and certain enzymes. Such dielectric
systems were considered as producing longitudinal electric
oscillations across the matter. At suitable levels, energy
can be channeled into a single mode and sufficiently or-
dered so as to sustain coherent electric waves, an ordering
suggestive of long range quantum–coherence comparable
to BE–condensation. In short, particles forsake their indi-
vidual characteristics and unite into a condensate regulated
by a single wave function, whereas particles outside of the
condensate disperse erratically.

Further studies revealed molecules beneath the cell
membrane as exhibiting dipolar vibrational activity where
thin layers appear to act like biological superconductors
in which the resulting wave propagation leads to Fröhlich
waves possessing a frequency of order 1011 to 1012 sec−1

(see e.g. Grundler and Keilmann 1983). The evidence
suggests that protein dipoles in a common electromagnetic
field exhibit resonating effects when energy is supplied.
Such waves are seen to be induced by dipolar oscillations
maintained by hydrogen bonds and non–localized electrons

228 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

within hydrophobic regions of protein molecules. The in-
teraction between dipolar excitations and harmonic vibra-
tions of certain biological lattice structures can be modeled
on a Hamiltonian from which, as shown in e.g. Satarić et
al. (1991), Davydov solitons can be derived relative to rates
of chemical reactions. In a broader perspective, the ideas
of Fröhlich are linked to electron superconductivity and are
closer to utilizing this class of solitons.

Next, we recall the basic principle of how proteins
act in converting chemical into mechanical energy, and
when aided by lipids they generate the traffic of ions and
molecules in and around cellular membranes. As we have
mentioned, the protein chain can coil into a helix-like form
which is manifestly the structure of hydrogen bonded pep-
tide groups of the protein molecule. Protein molecules in-
corporated into the cytoskeleton create transduction energy
and intracellular couplings all of which assist and deter-
mine energy release of hydrolysis of ATP molecules while
at the same time portions of the helix constitute part of the
cytoskeleton’s protein composition. On the other hand, the
excited states of a protein molecule are related to the res-
onant interaction between peptide groups within distinct
chains.

According to Davydov (1982, 1991), a class of solitons
evolve at the origin of each chain and so can be created
within short intervals of α–helix proteins. The propagation
of a soliton within an α–helix protein molecule could be
either symmetric or asymmetric. Of these, the asymmetric
soliton is the more stable and its radiation life–span does
not depend on velocity and can increase sharply as the an-
gle between the spiral axis and vibrational dipole moment
decreases. This explains why the asymmetric solitons are
favourable for transferring the energy of ATP hydrolysis
without loss of energy along the α–helix protein chain over
suitably large distances. Recall that Jiminez et al. (1999)
have predicted a helicial structure to the C–terminal do-
mains, and for certain C–terminal recombinant peptides,
this helicity has been determined with evidence supporting
a functional coil to the helix transition at the C–terminal
zone. As also seen in Amos (2000), each tubulin monomer
possesses twelve α–helices (labeled from H1 to H12), so
in terms of short–range localization, it is plausible that the
above asymmetric soliton propagation is applicable.

In order to see how the corresponding solutions arise,
consider the Hamiltonian HPM for collective excited states
of the protein molecules as given by

HPM =
∑
n,α

{
(E + Dnα)B∗

nαBnα

+ Jn,α;n+1,α(B∗
nαBn+1α + B∗

n+1αBnα)

+ Jnα;n,n+1(B∗
nαBnα+1 + B∗

nα+1Bnα)
}

+ Hph ,

(4.1)

(Davydov 1982). In this expression the B∗
nα and Bnα are

creation/annihilation operators for the excitation E of the

peptide group nα; the term Jnα;mβ denotes the energy of
the resonance inter–dipolar coupling between the peptide
groups nα and mβ; Dnα denotes the deformation energy
of interaction with neighbouring groups arising from exci-
tations of the group nα, and Hph is the displacement op-
erator of the groups from their equilibrium position along
hydrogen bonds. This is given by

Hph =
1
2

∑
nα

[
1
M

P 2
nα + w(Unα − Un+1α)2] , (4.2)

where M denotes the effective mass displaced along with
the peptide group, w is the elasticity coefficient of the chain
along the hydrogen bonds, and Pnα is the momentum op-
erator conjugated to the displacement operator Unα of the
peptide group.

Associated to the Hamiltonian HPM is the wave func-
tion describing the collective vibrations of the system as
given by :

|Ψ(t) 〉 =
∑
nα

ana(t)eσ(t)B∗
nα|0 〉 , (4.3)

where |0〉 denotes a function for which all of the groups
are in the ground-state with vibrationless excitations away
from their equilibria, and where

σ(t) = − ι

}
∑
nα

[βnα(t)Pnα − πnα(t)Unα] . (4.4)

In this last expression, the functions βnα(t) and πnα(t)
depend on the average values for the displacement of
the groups nα and their momenta in the above state.
The coefficient function anα(t) satisfy

∑ |anα(t)|2 = 1,
where the latter corresponds to the distributive probabil-
ity over the groups nα in their collective excitation states.
The complex–valued functions anα(t) and the real–valued
functions βnα(t), πnα(t) are obtained from minimizing the
functional

〈Ψ(t)|H|Ψ(t)〉 , (4.5)

and on applying a certain approximation, the following sys-
tem of equations is deduced (Davydov 1982 §22.4). Firstly,
since the functions anα(t), βnα(t) are continuous in n, they
are replaced by aα(ξ, t), βα(ξ, t) respectively. The system
in question is then :

{
ι}

∂

∂t
− [E0 + W − 2J]− 2χ

∂βα

∂ξ

}
aα

+ J
∂2aα

∂ξ2
− L(aα+1 + aα−1) = 0 ,

[
∂2

∂t2
− vα

∂2

∂ξ2
]βα =

2χ

M

∂

∂ξ
|aα|2 .

(4.6)

Here χ is formed from coupling parameters for internal
excitations of the peptide groups and their displacements
from the equilibrium positions; J denotes the resonant
energy of inter–dipolar interactions between neighbour-
ing groups in the same chain, and L the energy of the

DISSIPATIONLESS WAVES FOR INFORMATION. . . Informatica 30 (2006) 221–232 229

same interaction between neighbouring groups from dif-
ferent chains (J ≈ 967 µeV, L ≈ 1537 µeV). Also,
v2

α = w/M , the term W is the average density for dis-
placement of molecules from the equilibria position, and
E0 is the excitation energy of the peptide group relative to
the deformation potential. It is from this system that the
symmetric and asymmetric solitons are derived (see Davy-
dov 1982 §22.4 for explicit details).

It is worth pointing out that Davydov solitons can sub-
serve the function of local effectors (e.g. responsible for
local tubulin–kinesin interaction) but are not suitable for
long–range dissipationless transfer of information. The BE
condensation of tunneling photons in a macroscopic coher-
ence region of ≈ 50µm, however, is sufficiently long–
ranged to mediate a global coupling between distant parts
within the neuron. The tunneling photons have boson mass
of 13.6 eV and their condensation is sustainable even at
body temperature of 310 K (Jibu and Yasue, 1997). This is
the main reason to didactically separate the possible quan-
tum effects into local (Davydov solitons) and global (BE–
condensation of tunneling photons) interactions.

5 DWQ and arrows of time

5.1 Dipole wave quanta and arrows of time
Following the model of Ricciardi and Umezawa (1967) (cf
Stuart et al. 1979) that memory entails a phase transition
from a chaotic vacuum state to one that is relatively or-
dered, Vitiello (1995, 2003) proposes the DWQ when in
their lowest ground state as inducing a stability of memory
with the distinctions of long–term as ‘stable’ and inherent
to the vacuum state, whereas short–term (memory) corre-
sponds to the excitations of the DWQ condensates which
were described earlier. Order parameters correspond to the
WDQ, ‘symmetron’ (Riccardi and Umezawa 1967, Vitiello
1995) and the WEDP field electric polarization, the ‘corti-
con’ (Stuart et al 1979, Vitiello 1995). These order param-
eters are considered as corresponding to the code strength
specifying the vacuum, the value of which is determined
by the density of condensed NG bosons. In turn, informa-
tion storage is proposed to be represented by coding of the
ground state via symmetron condensation.

We have described the vacuum state in a conventional
QM–sense, but now we mention an alternative characteri-
zation following Vitiello (1995, 2003). Firstly, on denot-
ing the DWQ by A(k) for some k, the number N(A) for
all k of the A(k)–modes in the vacuum state |0(N)〉, is
taken to define a coding of information relative to the order
parameters. Taking a time reversal Ã(k) of the copies of
the A(k), the vacuum state is then characterized by setting
N(A)−N(Ã) = 0, for all k . The same applies to differing
values of the code N(A), that is, all ground states for which
N ′(A) 6= N(A) . It is proposed that the brain ground state
is the entirety of memory states |0(N)〉, for all N , and fur-
ther, memory is manifestly how the brain may accomodate

a multitude of co-existent macroscopic quantum states.

Such a proposition commences with the premise that the
brain forms an ‘open system’ and its environment, in the
appropriate sense, forms the ‘closure’. Given that the DWQ
frequency depends on time t, modes A(k, t), Ã(k, t), are
considered so that the coupled system of differences A− Ã
is describable in terms of an oscillator frequency. In the
continuum limit, the system of differences A − Ã also be-
comes closed. A finiteness of size for the corresponding
domains implies then a transition through distinct vacuum
states for a given t . In the presence of external stimuli,
the reversal of time symmetry is broken and the purported
dissipation results in multifold degenerate vacuua, in turn,
resulting in a vast memory storage. Possibly the mem-
ory state |0(N)〉 as a finite temperature state corresponds
to thermodynamic effects in brain activity, further suggest-
ing that in view of increasing entropy, the thermodynamic
arrows of time may have the same orientation as the psy-
chological arrows as emergent in the dissipative process.

It is possible that there may be any number of exper-
imental studies that could prove or disprove such a hy-
pothesis. The question bears some similarity to the rela-
tionship between (brain) cortical versus thermodynamical
phase transitions (Steyn–Ross et al. 2001): how cortical en-
tropy varies under the effects of anesthetics from a state of
consciousness (ordered phase transitions) to unconscious-
ness (disordered phase transitions). On the surface, such
findings might suggest an ‘emergent’ process through ob-
jective time intervals, at least as far as clinical conscious-
ness is concerned. The soliton–like mechanisms we have
described are in essence derived from time evolution equa-
tions, and thus mathematically involve a time flow. How-
ever, the mechanisms by themselves do not explain away
the questions of objective versus subjective time. The vari-
ous models in which they feature, suggest how they may be
tied to memory storage and retrieval, and to the irreversibil-
ity of consciousness. We can see the relevance of the mech-
anisms to objective time as manifest in the brain within cer-
tain cortical regions, but we cannot tie these (mechanisms)
to the subjective feeling of time, as exemplified in the case
of individuals suffering from time agnosia : the compre-
hension of time is altogether lost, although most normal
mental processes may still function nevertheless.

6 Conclusion

We have discussed some mechanisms for solitonic in-
teractions ambient to microtubular surfaces, suggesting
possibilities for interaction between local EM–fields of
electro–neural impulses and the cytoskeletal structure. The
broader model suggests how these processes might actu-
ally recover an EM–field through the chain of events EM–
field =⇒ tubulin–tail solitons =⇒ exocytosis =⇒ EM–
field. This progression may be crucial towards understand-
ing the neurobiological basis for mind and memory, as well

230 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

as for the possible implementation of quantum or semi–
classical computational schemes which are to be assessed
in a future work.

Acknowledgement
The authors wish to thank the referees for comments.

References
[1] E. Abdalla, B. Maroufi, B. C. Melgar and M. B. Se-

dra. Information transport by sine–Gordon solitons in
microtubules, Physica A 301 (2001), 169–173.

[2] M. J. Ablowitz and P. A. Clarkson. Solitons, Non-
linear Evolution Equations and Inverse Scattering,
Cambridge Univ. Press, Cambridge UK 1991.

[3] L. A. Amos. Focusing on microtubules, Current
Opinion in Structural Biology 10 (2000), 236–241.

[4] S. E. Arnold, V. M. Lee, R. E. Gur and J. Q. Tro-
janowski. Abnormal expression of two microtubule–
associated proteins (MAP2 and MAP5) in specific
subfields of the hippocampal formation in schizophre-
nia, Proc. Nat. Acad. Sci. USA 88 (1991), 10850–
10854.

[5] F. Beck and J. C. Eccles. Quantum aspects of brain ac-
tivity and the role of consciousness, Proc. Natl. Acad.
Sci. USA 89 (1992), 11357–11361.

[6] N. Brose. Synaptic cell adhesion proteins and synap-
togenesis in the mammalian central nervous system,
Naturwissenschaften 86 (1999), 516–524.

[7] F. Calogero and A. Degasperis. Spectral Transform
and Solitons: Tools to Solve and Investigate Nonlin-
ear Evolution Equations, North Holland, New York
1982.

[8] E. R. Chapman. Synaptotagmin. A Ca2+ sensor that
triggers exocytosis?, Nat. Rev. Mol. Cell Biol. 3
(2002), 1–11.

[9] K. C. Chou, C. T. Zhang and G. M. Maggiora. Soli-
tary wave dynamics as a mechanism for explaining
the internal mechanism during microtubule growth,
Biopolymers 34 (1994), 143–153.

[10] A. S. Davydov. Biology and Quantum Mechanics,
Pergamon Press, Oxford 1982.

[11] A. S. Davydov. Solitons in Molecular Systems,
Kluwer, Dordrecht 1991.

[12] C. Dean and T. Dresbach. Neuroligins and neurexins:
linking cell adhesion, synapse formation and cogni-
tive function, Trends in Neuroscience 29 (2006), 21–
29.

[13] E. Del Giudice, S. Doglia and M. Milani. Self–
focusing and ponderomotive forces of coherent elec-
tric waves–a mechanism for cytoskeleton formation
and dynamics, in Coherent excitations in biological
systems (ed. H. Frölich and F. Kremer) Springer–
Verlag, 1983.

[14] E. Del Giudice, S. Doglia, M. Milani and G. Vi-
tiello. Electromagnetic field and spontaneous symme-
try breaking in biological matter, Nucl. Phys. B 275
(1986), 185–199.

[15] E. Del Giudice, G. Preparata and G. Vitiello. Water as
a free electric dipole laser, Phys. Rev. Lett. 61 (1988),
1085–1088.

[16] S. V. Dmitriev, T. Shigenari, A. A. Vasiliev and A.
E. Miroshnichenko. Effect of discreteness on a sine–
Gordon three soliton solution, Phys. Lett. A 246
(1998), 129–134.

[17] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C.
Morris. Solitons and Nonlinear Wave Equations, Aca-
demic Press, New York 1982.

[18] H. Fröhlich. The extraordinary dielectric properties of
biological materials and the action of enzymes, Proc.
Natl. Acad. Sci. USA 72 (1975), 4211–4215.

[19] H. Fröhlich. Long–range coherence and energy stor-
age in biological systems, Int. J. Quantum Chem. 2
(1968), 641–649.

[20] D. Georgiev. Electric and magnetic fields inside neu-
rons and their impact upon the cytoskeletal micro-
tubules, (2003a) http://cogprints.org/3190/

[21] D. Georgiev. The β–neurexin–neuroligin–1 interneu-
ronal intrasynaptic adhesion is essential for quantum
brain dynamics, (2003b) http://arXiv.org/abs/quant-
ph/0207093

[22] D. Georgiev. On the dynamic timescale of mind–brain
interaction, (2003c) in proceedings of Quantum Mind
II : Consciousness, Quantum Physics and the Brain
15–19 March 2003, The Convention Center, Tucson
Arizona. http://cogprints.org/4463/

[23] D. Georgiev. Solitonic effects of the local elec-
tromagnetic field on neuronal microtubules–tubulin
tail sine–Gordon solitons could control MAP attach-
ment and microtubule motor protein function, (2004)
http://cogprints.org/3894/

[24] D. Georgiev, S. Papaioanou, and J. F. Glazebrook.
Neuronic system inside neurons: molecular biology
and biophysics of neuronal microtubules, Biomedical
Rev. 15 (2004), 67–75.

[25] W. Grundler and F. Keilmann. Sharp resonances in
yeast growth proved nonthermal sensitivity to mi-
crowaves, Phys. Rev. Letts. 51 (1983), 1214–1216.

DISSIPATIONLESS WAVES FOR INFORMATION. . . Informatica 30 (2006) 221–232 231

[26] S. Hagan, S. R. Hameroff and J. A. Tuszyński. Quan-
tum computation in brain microtubules? Decoher-
ence and biological feasibility, Phys. Rev. E 65(2002),
061901, 1–11.

[27] S. R. Hameroff and R. C. Watt. Information process-
ing in microtubules, J. Theor. Biology 98 (1982), 549–
561.

[28] R. Heald and E. Nogales. Microtubule dynamics, J.
Cell Sci. 115 (2002), 3–4.

[29] N. Hirokawa, K. Sobue, K. Kanda, A. Harada and H.
Yorifuji. The cytoskeletal architecture of the presy-
naptic terminal and molecular structure of synapsin-1,
J. Cell Biol. 108 (2002), 111–126.

[30] A. Honda, M. Yamada, H. Saisu, H. Takahashi, K.
J. Mori and T. Abe. Direct Ca2+–dependent interac-
tion between tubulin and synaptotagmin-1. A possible
mechanism for attaching synaptic vesicles to micro-
tubules, J. Biol. Chem. 277 (2002), 20234–20242.

[31] M. Jibu, S. Hagan, S. R. Hameroff, K. H. Pribram,
and K. Yasue. Quantum optical coherence in cy-
toskeletal microtubules : Implications for brain func-
tion, Biosystems 32 (1994), 195–209.

[32] M. Jibu and K. Yasue. What is mind? – Quantum the-
ory of evanescent photons in brain as quantum theory
of consciousness, Informatica 21 (1997), 471–490.

[33] M. Jibu, K. Yasue and K. H. Pribram. From conscious
experience to memory storage and retrieval: The role
of quantum brain dynamics and boson condensation
of evanescent photons, Int. J. Mod. Phys. B 10 (1996),
1735–1754.

[34] M. Jibu, K. Yasue and S. Hagan. Evanescent (tunnel-
ing) photon and cellular vision, Biosystems 42 (1997),
65–73.

[35] M. A. Jiminez, J. A. Evangelio, C. Aranda, A. Lopez-
Braet, D. Andreu, M. Rico, R. Lagos, J. M. Andreu
and O. Monasterio. Helicity of α (404-451) and β
(394-445) tubulin C–terminal recombinant peptides,
Protein Science 8 (1999), 788–799.

[36] N. E. Mavromatos, A. Mershin and D. V. Nanopoulos.
QED–cavity model of microtubules implies dissipa-
tionless energy transfer and biological quantum tele-
portation, Int. J. Modern Physics B 16 (2002), 3623—
3642.

[37] A. E. Miroshnichenko, S. V. Dmitriev, A. A. Vasiliev
and T. Shigenari. Inelastic three–soliton collisions in
a weakly discrete sine–Gordon system, Nonlinearity
13 (2000), 837–848.

[38] T. Miwa, M. Jimbo and E. Date. Solitons–Differential
equations, symmetries and infinite dimensional al-
gebras, Cambridge Tracts in Math. 135, Cambridge
University Press, 2000.

[39] E. Nogales, S. G. Wolf and K. H. Downing. Structure
of the α/β tubulin dimer by electron crystallography,
Nature 391 (1998), 199–203.

[40] D. L. Purich. Enzyme catalysis: a new definition ac-
counting for noncovalent substrate- and product-like
states, Trends Biochem. Sci. 26 (2001), 417-421.

[41] L. M. Ricciardi and H. Umezawa. Brain and physics
of many–body problems, Kybernetik 4 (1967), 44–48.

[42] F. M. Russell, Y. Zolotaryuk and J. C. Eilbeck. Mov-
ing breathers in a chain of magnetic pendulums, Phys.
Rev. B 55 (1997), 6304–6308.

[43] D. L. Sackett. Structure and function in the tubulin
dimer and the role of the acid carboxyl terminus, Sub-
cellular Biochemistry-Proteins: Structure, function
and engineering 24 (1995), 255–302.

[44] M. V. Satarić and J. A. Tuszyński. Relationship be-
tween the nonlinear ferroelectric and liquid crystal
models for microtubules Phys. Rev. E 67 (2003),
011901, 1–11.

[45] M. V. Satarić, R. Zakula, Z. Ivic and J. Tuszyński.
Influence of a solitonic mechanism on the process of
chemical catalysis, J. Molecular Electronics 7 (1991),
39–46.

[46] A. C. Scott. Davydov’s solitons, Phys Rev. Lett. 217
(1992), 1–67.

[47] G. Skiniotis, J. C. Cochran, J. Mueller, E. Man-
delkow, S. P. Gilbert and A. Hoenger. Modulation
of kinesin binding by the C–termini of tubulin, The
EMBO J. 23 (2004), 989–999.

[48] E. Sontag, V. Nunbhakdi-Craig, G. Lee, R. Brandt, C.
Kamibayashi, J. Kuret, C. L. White, M. C. Mumby
and G. S. Bloom. Molecular Interactions among Pro-
tein Phosphatase 2A, Tau, and Microtubules: Impli-
cations for the regulation of tau phosphorylation and
the development of tauopathies, J. Biol. Chem. 274
(1999), 25490-25498.

[49] M. L. Steyn–Ross, D. A. Steyn–Ross, J. W. Sleigh
and L. C. Wilcocks. Toward a theory of the general–
anesthetic–induced phase transition of the cerebral
cortex. I. A thermodynamics analogy Phys. Rev. E 64
(2001), 011917, 1–16.

[50] C. I. J. M. Stuart, M. Takahashi and H. Umezawa.
Mixed–system brain dynamics. Neural memory as a
macroscopic ordered state, Foundations of Physics 9
(1979), 301–327.

[51] M. J. Sutcliffe and N. S. Scrutton. Enzyme cataly-
sis: over-the-barrier or through-the-barrier? Trends
Biochem. Sci. 25 (2000), 405-408.

232 Informatica 30 (2006) 221–232 D. D. Georgiev et al.

[52] S. Takada and H. Nakamura. Wentzel-Kramer-
Brillouin theory of multi-dimensional tunneling:
General theory for energy splitting. J. Chem. Phys.
100 (1994), 98-113.

[53] S. Takada and H. Nakamura. Effects of vibrational
excitation on multi-dimensional tunneling: General
study and proton tunneling in tropolone, J. Chem.
Phys. 102 (1995), 3977-3992.

[54] G. Vitiello. Quantum dissipation and information : a
route to consciousness modeling, Neuroquantology 2
(2003), 266–279.

[55] G. Vitiello. Dissipation and memory capacity in the
quantum brain model, Int. J. Mod. Phys. B 9 (1995),
973–989.

Informatica 30 (2006) 233–244 233

Actors as a Coordinating Model of Computation

N. Raja and R.K. Shyamasundar
School of Technology & Computer Science
Tata Institute of Fundamental Research
Mumbai 400 005, India
Email: {raja, shyam}@tifr.res.in

Keywords: Actors, agents, pi-calculus

Received: November 24, 2004

This paper relates two prominent models of concurrent computation, namely Actors and the π-calculus.
We build on a thesis that proclaims – Actors enact the role of a coordinating model of computation. We
enrich the Actor model by defining a mechanism for achieving a higher level of abstraction. This helps in
reasoning with collections of Actors termed Actor Troupes. We identify a notion of interaction equivalence
between Actor Troupes; and provide a semantic foundation for the enriched Actor model, in terms of the
π-calculus – which has emerged as the canonical process calculus for the semantic analysis of object-
based concurrent systems. Furthermore, we show that the algebraic notion of barbed bisimilarity in the
π-calculus, corresponds precisely to interaction equivalence of the corresponding Actor Troupes.

Povzetek: Predstavljena sta dva računska modela - z akterji in π-računi.

1 Introduction

There has been an exponential increase in the number of
new paradigms that are being proposed to model concur-
rent distributed computation. This number far exceeds the
corresponding figure for sequential computation. (This
is understandable as the basic sequential architecture, the
von Neumann model, has essentially remained unchanged.)
Despite this fact, concurrency is less well understood than
sequential computation. It would be an understatement to
say that there is an urgent need for a coordinating model
of computation which can interconnect and unify the var-
ied paradigms. The solution to the problem of finding such
a model should commence with a search among the exist-
ing models, rather than in the immediate proposal of yet
another novel paradigm. The factors guiding us in this
search should be at least threefold – expressive power of the
model; relative efficiency of execution of the model with
respect to paradigms based on orthogonal features; and the
demonstrated existence of a sound semantic basis for the
model.

This paper is based on a thesis that proclaims, Actors
enact the role of a coordinating model of computation. Ex-
isting evidence corroborating such a thesis is the following:
Actors have been shown to be an expressive medium which
can easily mimic other paradigms [2, 3]; and the execution
efficiency of Actors has been shown to be as efficient [7]
as the shared memory models (which are orthogonal to the
message passing paradigm of Actors). The only factor that
remains is the provision of a semantic foundation. This pa-
per aims to further the above thesis by taking a step in the
direction of providing a semantic basis to Actors.

Among the various process-calculus approaches to the

algebraic analysis of concurrency, the π-calculus is con-
spicuous by its success. With a well-developed body of
theoretical work supporting it, the π-calculus has attained
a canonical status in the semantic frameworks of object-
based concurrent systems, analogous to the λ-calculus in
sequential programming. The semantic power of the π-
calculus has been demonstrated in many ways – by en-
coding the λ-calculus [26]; by embedding various data-
types [23]; by translating higher-order primitives [23]; and
by using it as a semantic domain for various object-based
concurrent languages [31]. All these facts provide a com-
pelling basis to choose the π-calculus as a semantic foun-
dation for Actors.

This paper relates two prominent models of concurrent
computation – Actors and the π-calculus – in a precise way,
and has the following significant contributions:

1. It argues that Actors can play the role of a coordinat-
ing model of computation, due to the simplicity and
inherent flexibility of the Actor primitives.

2. It enriches the Actor model by defining the notion of
an Actor Troupe – which is a mechanism to achieve a
higher level of abstraction – by restricting the visibil-
ity of some Actors.

3. It provides a semantic foundation to the enriched Ac-
tor model by mapping it to the π-calculus – which has
emerged as the canonical process calculus for the se-
mantic analysis of object-based concurrent systems.

4. It identifies an equivalence relation, interaction equiv-
alence on Actor Troupes, and shows that under the
translation this corresponds to the algebraic notion of
barbed bisimilarity in the π-calculus semantics.

234 Informatica 30 (2006) 233–244 N. Raja et al.

The rest of this paper is organized as follows: Section
2 gives an introduction to the Actor model of computa-
tion; Section 3 introduces the basic π-calculus notions re-
quired for the purposes of this paper; Section 4 develops a
higher level of abstraction called Actor Troupe and defines
a notion of equivalence between them; Section 5 demon-
strates the translation process from actor systems to the π-
calculus; Section 6 shows that the embedding is semantics
preserving; Section 7 reviews related work; and finally Sec-
tion 8 examines avenues for further research.

2 Actor Model of Computation

Actors [15] form one of the earliest proposed models of
concurrent distributed computation. They include very few
primitive constructs, but serve as a framework for studying
various issues in computation. An actor system consists of
a finite set of three basic entities – actors, messages, and
behavior definitions.

The formal abstract syntax is shown in Figure 1.
(Note that in Figure 1 the following non-terminals: <
actorName>,< behaviorName>, <method>, and <
var> are all identifiers for which there are no correspond-
ing production rules. Furthermore, although < acqList >
and < parameters > are defined by the same production
rule, they are distinguished for the sake of clarity of expo-
sition.)

Actors embody the spirit of objects. Every actor has a
unique name, and a unique mailbox address which remains
unaltered throughout the lifetime of the actor. In other
words, there is an implicit injective function mapping actor
names to mailbox addresses. (We shall make this function
explicit in the translation we provide.) It is at this address
that the actor receives messages. The body of an actor con-
sists of a state, an acquaintance list, and a collection of
methods with relevant actions. The state – encapsulated,
persistent, and private – is made up of variables, which in
turn contain references to other actors. The acquaintance
list is a collection of names of actors which are known to
the present actor at the time of its creation. It is important
to note that, the name of an actor may not be known to all
other actors in the system. Conversely, an actor may not be
aware of the names of all the other actors. Messages can be
sent only to those actors whose addresses are known. Apart
from the addresses that make up the acquaintance list ini-
tially, an actor might receive the addresses of more actors
through the contents of incoming messages. Furthermore,
every actor is also aware of its own mailbox address. Thus
every actor can send messages to itself. The address of an
actor is contained in its own acquaintance list. In partic-
ular, we stipulate that it occurs as the last element of its
acquaintance list. Thus the acquaintance list of an actor is
never empty, and always contains at least a single element
namely its own address. Each method has a set of param-
eters, which is received along with the method name to be
serviced. Corresponding to each method, is a set of actions

that the actor performs. We shall explain the actions after
we deal with behavior definitions.

Behavior definitions are parametric actor definitions,
parameterized over the state variables and acquaintance
names. Behavior definitions by themselves are not actors
– they provide templates for the creation of new actors.
The parameters corresponding to the state and the acquain-
tances have to be specified and instantiated at the time of
creating new actors.

Messages are the driving force of an actor system. This
is due to the fact that computation in an actor system is car-
ried out in response to messages received by the actors of
the system. Every message has two distinct parts – destina-
tion address and message contents. The destination address
is the mailbox address of an actor in the system to which the
message is to be delivered. The message content comprises
a method name and corresponding parameters. The actor
at the destination is known to respond to this method name.
The parameters comprise names of other actors. Message
passing in actors is point to point and asynchronous. Mes-
sage delivery is guaranteed but the despatch order need not
be preserved even when we consider the arrival order of
a sequence of messages addressed to the same actor. The
guarantee of message delivery forms a type of fairness as-
sumption [2].

Each instance of an actor can receive only one message.
In response to a message received, which requires one of
the methods of an actor to be processed, an actor may
change its state, and may also perform a finite number of
the following actions:

Send a message to another actor whose mail address is
known;

Create a new actor using a behavior template, by provid-
ing all the parameters required for initialization;

Become an actor, which specifies the replacement behav-
ior to come into effect, when the next message is pro-
cessed.

It may be noted that the next incoming message at the
same mail address is processed by another instance of the
actor with the specified replacement behavior. The process-
ing of the current message need not be completed before
the replacement is specified. During start up time, an ac-
tor system consists of a collection of behavior definitions,
together with a declaration of initial actors and messages.
The actor system evolves in response to the messages sent
to the system.

Example 2.1 (Actor R). Actor R has an empty state, an
acquaintance list comprising three actor names, and it pro-
cesses the method name f . It takes requests for possibly
transforming data by the method name f , and sends the re-
sult to the first actor on its acquaintance list by the method
name g. It specifies an identical replacement behavior to
replace itself. The template of actor R is given by the fol-
lowing behavior definition, which is parametrized by the
two actor names on its acquaintance list:

ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 235

< System > ::= {< actorName > ← < behaviorDef >}∗
< behaviorDef > ::= Bdef < behaviorName > with < state > and < acqList >

< method > (< parameters >) → {< actions >}∗
...

endBdef
< state > ::= {< var > ← < actorname >}∗

< acqList > ::= {< actorName >}∗
< parameters > ::= {< actorName >}∗

< actions > ::= become < behaviorName > with < state > and < acqList >
| create < behaviorName > with < state > and < acqList >
| send < method > (< parameters >) to < actorName >

where < actorName >∈< acqList >

Figure 1: An Abstract Syntax for a System of Actors.

Bdef
R with <> and a′, x′, r′

f(d) → send g(d) to a′

become R with <> and a′, x′, r′

endBdef
An instance of actor R can be created by the following mes-
sage:
create R with <> and a′, x′, r′

As mentioned before, the state is made up of variables
which in turn are represented by actors. The state may con-
tain integers or other data-types. However for the sake of
simplicity we consider only empty state configurations in
the examples in this paper.

Example 2.2 (Actor A). Actor A has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name g. It takes requests for possibly
transforming data by the method name g, and sends the re-
sult to the first actor on its acquaintance list by the method
name h. It specifies an identical replacement behavior to
replace itself. The template of actor A is given by the fol-
lowing behavior definition, which is parametrized by the
actor name on its acquaintance list:
Bdef
A with <> and b′, a′

g(d) → send h(d) to b′

become A with <> and b′, a′

endBdef
An instance of actor A can be created by the following mes-
sage:
create A with <> and b′, a′

Example 2.3 (Actor A1). Actor A1 has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name g. It accepts requests for possibly
transforming data by the method name g, and sends the re-
sult to the first actor on its acquaintance list by the method

name m. It specifies an identical replacement behavior to
replace itself. The template of actor A1 is given by the fol-
lowing behavior definition, which is parametrized by the
two actor names on its acquaintance list:
Bdef
A1 with <> and x′, a′

g(d) → send m(d) to x′

become A′ with <> and x′, a′

endBdef
An instance of actor A1 can be created by the following
message:
create A1 with <> and x′, a′

Example 2.4 (Actor B). Actor B has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name h. It accepts data by the method
name h, and sends the untransformed data to the first actor
on its acquaintance list by the method name m. It speci-
fies an identical replacement behavior to replace itself. The
template of actor B is given by the following behavior def-
inition, which is parametrized by the two actor names on
its acquaintance list:
Bdef
B with <> and x′, b′

h(d) → send m(d) to x′

become B with <> and x′, b′

endBdef
An instance of actor B can be created by the following
message:
create B with <> and x′, b′

Example 2.5 (Actor X). Actor X has an empty state,
an acquaintance list comprising two actor names, and re-
sponds to the method name m. It accepts data by the
method name m, does nothing with the data, and speci-
fies an identical replacement behavior to replace itself. The
template of actor X is given by the following behavior def-

236 Informatica 30 (2006) 233–244 N. Raja et al.

inition, which is parametrized by the two actor names on
its acquaintance list:
Bdef
X with <> and r′, x′

m(d) → become X with <> and r′, x′

endBdef
An instance of actor X can be created by the following
message:
create X with <> and r′, x′

3 The Polyadic π-calculus
In this section, we include a brief review of the polyadic π-
calculus (PPC) [24, 23, 25] and also introduce the specific
syntax that we use for it in this paper.

Following Milner’s idea [22], a number of calculi for
concurrent computation have been proposed, where the
communication mechanisms are similar. Communication
consists of synchronously sending and receiving messages
through a shared labeled channel. PPC [23, 25, 9] is a model
of concurrent computation that supports process mobility
by naming and passing channels. It consciously forbids the
transmission of processes as messages. One of its goals is
to demonstrate that in some sense it is sufficiently powerful
to allow only channel names to be the content of communi-
cations. PPC has two kinds of entities – names (channels)
and processes (agents).

Definition 3.1 (Names and Processes). Names (x, y, . . . ∈
X) are atomic entities while Processes (P,Q, . . . ∈ P)
have the following structure:

P ::= N | (P |Q) | !P | (νx)P

where, Normal Processes (M,N, · · · ∈ N) are defined as:

N ::= π.P | 0 | M + N

and, the Prefix (π), is given by:

π ::= x(ỹ) | x[ỹ]

where, ỹ refers to a finite sequence of names.
The term 0 represents an inactive process, which cannot

perform any action. We shall omit the trailing “.0” from
process terms. Basic actions in PPC constitute sending or
receiving names on channels. The construct x(y) (called
an input prefix) represents an atomic action, where name x
binds name y. The process term x(y).P waits for a name
to be transmitted along channel x, substitutes the received
name for all free occurrences of y in P , and then triggers P .
The construct x[y] (representing an atomic action) outputs
the name y along x, but does not bind name y. The form
P |Q denotes that P and Q are concurrently active, inde-
pendent, and can communicate. The form M + N means
that the process can indulge in precisely one of the alterna-
tives, given by M and N , for communication. Operator “!”

is called replication, and !P denotes P |!P . Finally, (νx)P
restricts the use of name x to P . Apart from input prefix,
“ν” is another mechanism for binding names within a pro-
cess term in API. Operator “ν” may also be thought of as
creating new channels. As both mechanisms – input prefix
and ν – bind names, we define BoundNames(P) as those
names with a bound occurrence in P , and FreeNames(P)
as those with a not bound occurrence in P . The basic rule
of computation in PPC is provided by the parallel composi-
tion of processes which communicate along the same chan-
nel.

The operational semantics of PPC is given in two stages.
A structural congruence is first defined over processes, as
shown below; and then a reduction relation is defined as
shown in Figure 2. Note that the rules do not allow reduc-
tion under prefix, sum, or replication.

Definition 3.2 (Structural Congruence). The relation ‘≡’
is the smallest congruence relation over processes such that
the following laws hold:

1. Processes are identified if they only differ by a change
of bound names.

2. (N/ ≡,+, 0) is an abelian monoid.

3. (P/ ≡, |, 0) is an abelian monoid.

4. !P ≡ P |!P
5. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P

6. If x 6∈ FreeNames(P) then (νx)(P |Q) ≡ P |(νx)Q

Furthermore, the synchronous π-calculus outlined
above, can be suitably modified to yield the asynchronous
π-calculus [10, 17]. The word ‘asynchrony’ in this calcu-
lus, means that message output is non-blocking. This is
ensured by restricting the formation of a term x[ỹ].P in the
π-calculus to the case where P is a ‘nil’ process. However,
it has been shown that under certain natural assumptions,
the asynchronous version is strictly less expressive than the
synchronous one [29].

PPC allows for the definition of a variety of equivalences
between processes. Following Milner [27, 23], we define
the notion of barbed bisimulation for PPC:

Definition 3.4 (Unguarded Process). A process Q occurs
unguarded in P if it has some occurrence in P which is not
under a prefix.

Definition 3.5 (Observable Action). A process P can per-
form an observable action at x, written P ↓x, if for some
x, ỹ, either the input prefix x(ỹ).Q or the output pre-
fix x[ỹ].Q occurs unguarded in P with x unrestricted.

Let “→∗” denote the transitive reflexive closure of “→”.
We shall use Q →∗↓x to denote “Q →∗ Q′ for some Q′,
and Q′ ↓x”.

Definition 3.6 (Barbed Bisimulation). A relation Rw over
processes, is a barbed simulation, if P Rw Q implies:

ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 237

Definition 3.3 (Reduction Relation). The reduction relation → over processes is the smallest relation satisfying the
following rules:

Comm (. . . + x(ỹ).P) | (. . . + x[z̃].Q) → P{ỹ ← z̃} | Q

Par P→P ′
(P |Q)→(P ′|Q)

Struct Q≡P P→P ′ P ′≡Q′
Q→Q′

Res P→P ′
(νx)P→(νx)P ′

Figure 2: Reduction Relation in PPC

1. For each x, P ↓x implies Q →∗↓x.

2. If P → P ′ then Q →∗ Q′ and P ′ Rw Q′;

The relation Rw is a barbed bisimulation if R and R−1

are barbed simulations. Processes P and Q are barbed-
bisimilar, if P Rw Q for some barbed bisimulation Rw.

4 Actor Troupes: A Higher Level of
Abstraction

An important requirement of a potential coordinating
paradigm, which seeks to unify diverse models of concur-
rent computation, is the inherent support for various levels
of abstraction. A desirable level of abstraction would be
one which helps in dealing with bigger collections of Ac-
tors as if they were a single unit. Such a higher level of
abstraction on actor systems can be defined by restricting
and specifying the interface of actor systems (rather than
individual actors) with the external world. We introduce
the abstraction of Actor Troupes and also formally define a
notion of Interaction Equivalence with respect to this ab-
straction.

Definition 4.1 (Actor Troupe). An Actor Troupe comprises
actors, behavior definitions, and messages which satisfy
the following conditions:

1. Certain actors within the troupe, declared Reception-
ists, are the only components whose existence is visi-
ble to the external world. Furthermore, only the mail
addresses and the method names of Receptionists are
visible outside.

2. Conversely, the components comprising the troupe are
aware of the mail addresses and method names of a

certain collection of External actors (fixed a priori)
which are not members of the troupe. (Actor A is said
to be aware of Actor B, if the acquaintance list of A
contains the mail address of B).

The notion of Actor Troupes helps in the modular devel-
opment and composition of Actor programs, since it speci-
fies the interface of a collection of actors with the external
world. This can be observed by the fact that in any Ac-
tor Troupe only the Receptionists are capable of receiving
messages from the external world. Furthermore, the Exter-
nal Actors are the only ones which can potentially receive
messages from any member comprising the Actor Troupe.
By adapting Milner’s idea of experiments [22], we define a
notion of Interaction Equivalence between actor troupes.

Definition 4.2 (Interaction Equivalence). Actor Troupes
T1 and T2 are said to be interaction equivalent, when there
is a nonempty relation Ra over Actor Troupes such that
T1 Ra T2 implies:

1. The Receptionists of T1 and T2 have the same loca-
tions, and respond to the same set of messages.

2. The External Actors that are known to T1 and T2 have
the same locations, and respond to the same set of
messages. (An external actor X is said to be known
to Troupe T if the mail address of X is contained in
the acquaintance list of any of the actors comprising
Troupe T).

3. For every input message I sent to T1 and T2, where
the message content of I does not contain the mail
address of any component external to the troupe; the
set of output messages O emanating from T1 and T2

are the same, and the message contents of O do not
contain the mail address of any component internal to
the troupe.

238 Informatica 30 (2006) 233–244 N. Raja et al.

4. The Actor Troupes T ′1 and T ′2 which result from T1

and T2 respectively after they process message I , are
in the relation T ′1 Ra T ′2.

The purpose of the definition is to ensure that if the above
notion of equivalence is satisfied by the Actor Troupes T
and T ′, then any occurrences of the Troupe T in an Actor
program, may be replaced by the Troupe T ′ without any
change in the meaning of the program. The above notion
of equivalence does not permit the mail addresses of com-
ponents to be carried in the messages because such com-
munications violate and destroy the encapsulation of Actor
Troupes.

Example 4.1 (Troupe T). Comprises actors – R, A, and
B, where R is the Receptionist – with a reference to an
External Actor X . Actor R takes requests for transforming
data by the message f , and sends the result to actor A by
the message g. Actor A transforms the data further and
sends the result to B by the message h. Actor B passes it
on unchanged to the external actor X by the message m.

Example 4.2 (Troupe T1). Similar to Troupe T except for
actor A which is replaced by actor A1, which returns its
results directly to the external actor.

5 Semantic Foundation for Actors
In this section, we present a semantic foundation for Actors
in terms of the polyadic π-calculus (PPC). We shall con-
centrate on constructs that are unique to the Actor model.
The translation uses, for each syntactic category, a map-
ping [[.]] from the Actor grammar to PPC process-terms.
The translation also employs a set of auxiliary functions
for “book-keeping” purposes, namely for maintaining cor-
respondences between entities in the Actor formalism and
PPC-names. Figure 3 is a formal description of the seman-
tic function. The translation is explained in detail below.

Recall that in actor systems, behavior definitions are not
actors. They are templates which enable creating actors.
However, in the translation, we shall associate PPC pro-
cesses with behavior definitions, and also with actors. The
translation of Behavior definitions is given by:

[[BehaviorDef]] = ! l(~s,~a, i).([[Actor]])

Behavior definitions are mapped to process terms contain-
ing the Bang operator, in order to model a resource which
can create a new actor instance, every time it is requested.
The PPC name l represents the location of the process term,
and is statically determined by the function

β : BehaviourName −→ PPC-Name

However, the association of actor addresses with PPC-
names will be modeled by a dynamic mechanism. The
tuples ~s and ~a are formal place holders for the state and
acquaintance parameters which are supplied with each

create and become request. The parameter i, again sup-
plied by incoming requests, represents the address at which
the newly created actor instance (or the replacement behav-
ior) is to be located.

In the actor model the create primitive is endowed
with an implicit capability of generating globally unique
actor addresses on a purely local basis. This mechanism is
modeled using the properties of the operator “ν” of PPC:

[[create BehaviorName with state and acqList]]

= (ν i)(l[~s,~a, i])

The PPC-name l represents the location of the process term
corresponding to the behavior definition which receives
and services the create action. It is given as before by
β(BehaviourName) = l. The function

σ : state −→ PPC-Names

which maintains the correspondence between the state and
PPC-names, gives σ(state) = ~s. Similarly the correspon-
dence between acqList and PPC-names is maintained by the
function

τ : acqList −→ PPC-Names

which gives τ(acqList) = ~a.
The newly generated name i is guaranteed to be globally

unique by the semantics of PPC [25, 23]. This can be ex-
plained as follows. Consider a PPC process term, (νy) Q,
where the name y is bound by the restriction operator. The
restriction mechanism combines two distinct roles in one
operator. Firstly, it hides all interactions on the name y
within Q, thus preventing external processes from inter-
fering on communications along channel y. In effect, it
declares a local name y, for use exclusively within Q. In
this role it is similar to the ‘let-in’ construct in program-
ming languages, and the hiding mechanism of CCS. Sec-
ondly, the restriction operator also ensures that the name
y is distinct from all external names too [25, 23]. This
follows from the fact that PPC allows local names to be
communicated to external processes. A term of the form
(νy)(x[y].Q) can be viewed as simultaneously creating and
transmitting a new name. The name y is at first local to Q
and becomes active after the transmission. Thus the op-
erator “ν” is a mechanism which creates globally unique
channel names.

The “book-keeping” associated with the dynamic cre-
ation of addresses is managed in the semantic domain by
the function

α : Actor −→ PPC-Name

whose definition enlarges after every creation of an actor
instance.

The onus of providing a globally unique address for the
newly created actor lies with the actor which issues the cre-
ate command. This feature of the semantics guarantees the
requirement of actor systems that at first the location of a

ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 239

newly created actor is known only to its parent. Any other
actor in the system becomes aware of the new arrival only
on receiving the address of the newcomer. As we shall see
later, this is a powerful mechanism to achieve modularity
in actor systems by keeping certain actors hidden from the
view of certain other actors.

The translation of become action is similar to that of
create action:

[[become BehaviorName with state and acqList]]

= l[~s,~a, i]

but more simple. In the case of become, no new actor
address needs to be generated because, the replacement is
to be at the same location as its parent (namely ‘i’), even
though both may exist concurrently. However, the parent
cannot accept messages any longer. It is worthwhile to
point out that we have modeled the become action exactly
as envisaged by the pioneering work on Actors [15]. We
place absolutely no restriction on the type of replacement
behavior an actor instance might specify. For example, an
actor instance created from a behavior definition A could
specify its replacement to be created from the behavior def-
inition Z.

The translation of the actor instance created by the be-
havior definition is:

[[Actor]] = (ν ~s)(ν ~m)(i[~m].Σ~m(~p)[[actions]])

The actor instance resides at location i, and its state ~s is en-
capsulated as shown by the restriction operator. The actor
instance creates a tuple of channels ~m – which has as many
elements as the number of messages the actor responds to.
The newly created channel names are accessible at its loca-
tion i, and are used for receiving parameters corresponding
to each of the messages that are available. However, a sin-
gle instance of an actor can service only one message – as
indicated by the summation operator of PPC. The transla-
tion of the send action:

[[send method (parameters) to Actor]]

= i(~m).mj [~p]

shows that in order to execute the method mj of actor i, the
parameters ~p have to be sent on the corresponding channel
name. The function

µi : methods −→ PPC-Name

which maintains the correspondence between the methods
and PPC-names of actor i, gives µi(method) = mj . Also
~m is a list of all the PPC-names which can be used to access
the different methods provided by the actor. Quite naturally
we have mj ∈ ~m. Similarly the correspondence between
parameters and PPC-names is maintained by the function

ρ : parameters −→ PPC-Names

which gives ρ(parameters) = ~p. Notice that the send
action is serviced by actor instances, while the create
and become actions are serviced by the behavior defini-
tions.

In the pure actor formalism that we have considered, the
entities state, acqList, and parameters refer to sequences of
Actor Names. The translation of these entities is provided
by the functions σ, τ , and ρ respectively. As explained ear-
lier, these functions map the Actor Names pointed to by
these entities to the corresponding PPC-names. Note that
it is possible to add integers and other data-types to the ac-
tor formalism and translate them to PPC-processes [23, 26].
However, for the sake of simplicity we shall not consider
the encoding of data-types in this paper.

Actor Troupes correspond to Systems of actors which sat-
isfy the additional constraints imposed by Definition 4.1.
These constraints can be easily imposed and verified by
monitoring the messages from the troupe to the external
world, and vice versa. The translation of Actor Troupes is
then very similar to the translation of the System of actors
explained till now in this section.

Example 5.1 (Translation of Troupe T). Consider the
Troupe T of example 4.1. Suppose that the templates of the
actors A, B,R, and X are located at a, b, r, and x respec-
tively. The PPC translations of the templates are as follows:

A ≡!a(b′, a′).(νg)(a′[g].g(d).b′(h).h[d].a[b′, a′])

B ≡!b(x′, b′).(νh)(b′[h].h(d).x′(m).m[d].b[x′, b′])

R ≡!r(a′, x′, r′).

(νf)(r′[f].f(d).a′(g).g[d].r[a′, x′, r′])

X ≡!x(r′, x′).(νm)(x′[m].m(d).x[r′, x′])

The translations of the create operations which ini-
tialize the troupe T are as follows:

[[create A with <> and b′, a′]] = (ν a′)a[b′, a′]

[[create B with <> and x′, b′]] = (ν b′)b[x′, b′]

[[create R with <> and a′, x′, r′]]

= (ν r′)r[a′, x′, r′]

[[create X with <> and r′, x′]] = (ν x′)x[r′, x′]

As all the above four create operations are meant to
initialize the same troupe T in the example under consid-
eration, they can be combined with the translation of the
behaviour definitions using parallel composition. Further
evolution of the troupe is given in later examples.

Example 5.2 (Translation of Troupe T1). Consider the
Troupe T1 of example 4.2. The Troupe T1 has been built
by modifying Troupe T of example 4.1. The template A
is replaced by the template A1 at the same location as A;
the template B is discarded; and the templates of R and X

240 Informatica 30 (2006) 233–244 N. Raja et al.

[[System]] = [[BehaviourDef1]] | . . . | [[BehaviourDefn]]
with the auxiliary functions (α, β, µ, ρ, σ and τ)

[[BehaviourDef]] = ! l(~s,~a, i).[[Actor]]
where β(BehaviourName) = l

[[Actor]] = (ν ~s)(ν ~m)(i[~m].Σ~m(~p)[[actions]])

[[create BehaviourName with state and acqList]] = (νi)(l[~s,~a, i])
where β(BehaviourName) = l; σ(state) = ~s; τ(acqList) = ~a

[[become BehaviourName with state and acqList]] = l[~s,~a, i]
where β(BehaviourName) = l; σ(state) = ~s; τ(acqList) = ~a

[[send method (parameters) to Actor]] = i(~m).mj[~p], where
α(Actor) = i; µi(method) = mj, mj ∈ ~m; ρ(parameters) = ~p

Figure 3: Mapping Actors to PPC.

remain the same. The PPC process term corresponding to
the template A1 is given by

A1 ≡!a(x′, a′).(νg)(a′[g].g(d).x′(m).m[d].a[x′, a′])

The translation of the creation of an instance of actor A1 is
given by:
[[create A1 with <> and x′, a′]] = (νa′)a[x′, a′]

5.1 Preserving fairness on message delivery
As we mentioned before, the guarantee of message deliv-
ery in the Actor model forms a type of fairness assumption
[2]. Message delivery is guaranteed but the despatch or-
der need not be preserved. In the semantic domain, the
corresponding property which provides the means to pre-
serve fairness, is given by the fact that the reduction rules
of π-calculus ensure that allowed reductions do take place
within an unbounded but finite number of reduction steps.

The semantics ensures the fairness condition on mes-
sage delivery. This can be seen from the fact that the only
cases where the bang (“!”) operators arise in the semantic
mapping are from the translations of behaviour definitions.
Such infinitely replicating terms are always guarded by in-
put prefix operators. However, infinitely replicating terms
that are guarded by matching output prefixes never arise.

This suffices to rule out the occurrence of situations like
the following:

P = (a(x).Q | a[w]) | (!b(x) | !b[z])

Situations similar to the above will never arise from our
semantic mappings. It is important to note that if the trans-
lation allowed processes with behaviors similar to those

above, then fairness is not ensured, since there is no guar-
antee that in the above process the following allowed re-
duction:

a(x).Q | a[w]

would ever take place.

6 Semantic Correspondence
In this section we demonstrate that our embedding is a se-
mantic preserving mapping from actor troupes to PPC pro-
cesses. In particular, the semantic function defined by our
embedding maps interaction equivalence of actor troupes
to barbed bisimilarity of PPC processes.

Consider actor troupes T and T1 whose definitions are
given in examples 4.1, and 5.1 respectively. Not surpris-
ingly, it turns out that Troupe T is interaction equivalent
to Troupe T1 (A detailed evolution of Troupes T and T1 is
provided in examples 6.1 and 6.2). So an actor program
containing Troupe T can be transformed into an actor pro-
gram which has Troupe T1 in place of T . In the semantic
domain this would correspond to the replacement of one
PPC process with another. Such an operation would make
sense only if the PPC processes corresponding to T and T1

are equivalent in some way. In fact, our semantic mapping
has precisely the required property of equivalence preserva-
tion. The equivalence in the semantic domain corresponds
to barbed bisimilarity [23] of PPC processes (defined in
Section 3).

The following theorem establishes that the seman-
tic function preserves interaction equivalence of Actor
Troupes.

ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 241

Lemma 6.1. If T1, T2 denote arbitrary actor troupes
which are interaction equivalent, and [[T1]], [[T2]] de-
note their corresponding semantic mappings in PPC, then:
[[T1]] ↓x implies [[T2]] →∗↓x

Proof: By simple induction over reduction rules.

Lemma 6.2. If T1, T2 denote arbitrary actor troupes
which are interaction equivalent, and [[T1]], [[T2]] de-
note their corresponding semantic mappings in PPC, then:
[[T1]] →∗↓x implies [[T2]] →∗↓x

Proof: By simple induction over reduction rules.

Theorem 6.3 (Semantic Correspondence). For any two Ac-
tor Troupes T1, T2 and their corresponding semantic map-
pings [[T1]], [[T2]] in PPC, we have the following: If T1 Ra T2

where Ra is an interaction equivalence, then [[T1]] Rw [[T2]]
where Rw is a barbed bisimulation.

Proof: From the definition of Actor Troupes and from
the definition of the semantic mapping it is easy to see
that there is a one-to-one correspondence between the set
comprising ‘Receptionists and method names’ and a cer-
tain ‘subset of PPC channel names’. The channel names on
which actions are observable, belong to this subset. Ac-
tions on all other channel names which do not correspond
either to the Receptionists or their methods, are unobserv-
able since they are bound by the restriction operator. By
Lemma 6.1, for all x, [[T1]] ↓x implies [[T2]] →∗↓x. Fur-
thermore if [[T1]] reaches a state [[T1]]′ through an unobserv-
able action, then [[T2]] can also reach a state [[T2]]′ through a
series of unobservable actions such that the observable ac-
tions of [[T1]]′ and [[T2]]′ coincide (by Lemma 6.2) (where
[[T1]]′ and [[T2]]′ denote PPC processes). Thus the semantic
mapping preserves interaction equivalence by transforming
it to bisimilarity. 2

The following examples provide a concrete and detailed
illustration of the fact that the troupes T and T1 (of exam-
ples 4.1 and 4.2) are equivalent.

Example 6.1 (Evolution of Troupe T). Consider the
Troupe T of examples 4.1 and 5.1. In the following we
shall use A,B, R, and X as abbreviations for the PPC terms
of the corresponding templates. In the beginning, the con-
figuration is

(ν a, b, r)(R | A | B) | X
When the create messages are introduced for the sake of
initializing troupe T , and the external actor X , we get
(ν a, b, r, a′, b′, r′)(R | A | B | r[a′, x′, r′]
| a[b′, a′] | b[x′, b′]) | X | x[r′, x′]

This causes transitions to occur on r, a, b, and x to give rise
to
(ν a, b, r, a′, b′, r′)

(R | A | B | R′ | A′| B′) | X ′ | X
where R, A, B and X are as before; while

R′ ≡ (ν f)(r′[f]. f(d).a′(g).g[d′]. r[a′, x′, r′])

A′ ≡ (ν g)(a′[g].g(d′).b′(h).h[d′′]. a[b′, a′])

B′ ≡ (ν h)(b′[h].h(d′′).x′(m).m[d′′]. b[x′, b′])

X ′ ≡ (ν m)(x′[m].m(d′′). x[r′, x′])

R′, A′, B′ and X ′ correspond to particular instances of ac-
tors, with addresses r′, a′, b′, and x′ respectively. They are
created from the templates R,A, B and X respectively.

The next step of the evolution is caused as the result of
the message, send f(d) to r′, being sent to the troupe.
The above send operation translates to the PPC expression
r′(f).f [d] which is placed in parallel with the existing con-
figuration.

Thus we now have
(ν a, b, r, a′, b′, r′)(R | A | B | R′ | A′ | B′)

| X | X ′ | r′(f).f [d]
→ (ν a, b, r, a′, b′, r′)(R | A | B
| a′(g).g[d′].r[a′, x′, r′] | A′ | B′) | X ′ | X

→ (ν a, b, r, a′, b′, r′)(R | A | B | r[a′, x′, r′]
| b′(h).h[d′′].a[b′, a′] | B′) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B | R′
| a[b′, a′] | x′(m).m[d′′].b[x′, b′]) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | x′(m).m[d′′].b[x′, b′]) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | b[x′, b′]) | x[x′] | X

→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | B′) | X ′ | X

Example 6.2 (Evolution of Troupe T1). Consider the
Troupe T1 of examples 4.2 and 5.2. The troupe T1 has been
built by modifying Troupe T , by replacing the template A
by the template A1 at the same location as A; the template
B has been discarded; while the templates of R and X re-
main the same. The PPC process term corresponding to the
template A1 is given by
A1 ≡ (ν g)(!a(x′, a′).a′[g].

g(d′).x′(m).m[d′′].a[x′, a′])
After the appropriate create messages have been

sent to the troupe, the configuration is as follows:
(ν a, r, a′, r′)(R | A1 | R′ | A′1) | X ′ | X
where R,X, R′, X ′ are as before; while
A′1 ≡ (ν g)(a′[g].g(d′).x′(m).m[d′′].a[x′, a′])

We follow the changes in the troupe resulting from the
arrival of the message, send f(d) to r′, which translates
to r′(f).f [d].

Thus we now have
(ν a, r, a′, r′)(R | A1 | R′ | A′1)
| X ′ | X | r′(f).f [d]

→ (ν a, r, a′, r′)(R | A1

| a′(g).g[d′].r[a′, x′, r′] | A′1) | X ′ | X
→ (ν a, r, a′, r′)(R | A1 | r[a′, x′, r′]
| x′(m).m[d′′].a[x′, a′]) | X ′ | X

→ (ν a, r, a′, r′)(R | A1 | R′
| x′(m).m[d′′].a[x′, a′]) | X ′ | X

→ (ν a, r, a′, r′)(R | A1 | R′
| a[x′, a′]) | x[x′] | X

→ (ν a, r, a′, r′)(R | A1 | R′ | A′1) | X ′ | X
Notice that the PPC processes corresponding to the Actor

242 Informatica 30 (2006) 233–244 N. Raja et al.

Troupes T and T1, are barbed bisimilar. Thus, the replace-
ment is valid in the semantic domain as well.

7 Related Work and Comparisons
The Actor model is one of the earliest proposed paradigms
of object-based concurrent computation. It has been treated
in a rather informal fashion by most of the papers which
originally proposed the model [15][14]. There have been
a few attempts to give a formal semantics to Actors, in
the decades that have passed since it was proposed [15].
Research work related to formulating a semantic basis for
Actors may be broadly classified under three main sub-
headings, as explained in detail in the following three sub-
sections.

7.1 Process-Algebraic Semantics for
(Non-Actor) Object-Based Systems

Work that has used process algebras to give semantics to
object-based systems can in turn be classified into two ma-
jor groups depending on the type of process algebra they
use – higher-order or first-order. Higher-order process al-
gebras like CHOCS [37] allow only processes to be trans-
mitted as messages. First-order process algebras like the
π-calculus [25] allow only channels to be passed in com-
munication.

Among papers that use first order process algebras are
those by – Walker [40] who maps POOL to the π-calculus;
Jones [19] who maps on object-based design notation
called πoβλ to the π-calculus; Pierce and Turner [31] who
use the π-calculus for the design of concurrent object-
based programming languages; Vaandrager [38] who maps
POOL to the process algebra ACP [8]; and Honda and
Tokoro [16] who map an object-based calculus to the pro-
cess calculus reported in [17].

Researchers who use higher-order process algebras are:
Nierstrasz [28] who uses the higher-order π-calculus to
model his object-based calculus; Sangiorgi [34] proposes
the higher-order π-calculus as a rival semantic domain to
the π-calculus. But Papathomas [30] and Walker [41] show
that the higher-order calculi provide no more conceptual
advantages over the first-order process calculi, while mod-
eling object-based systems.

7.2 Non Process-Algebraic Semantics for
Actors

The work reported in [13], [12], and [39], model only the
concurrent execution of Actors while completely ignoring
the object-based features of Actors like persistent state, en-
capsulation, dynamic creation and reconfigurability. He-
witt and Baker [13] define the notion of an activation or-
der, which is a partial order on events. An event x is said to
activate an event y when y is related to some message cre-
ated by x. They also define an arrival order on messages

(for each actor), which is a linear order. The linear order
arises from the condition that the mailing queue associated
with an actor can receive only one message at a time. Con-
currency is modeled by the history order which is defined
as the transitive closure of the activation and arrival orders.
Clinger [12] develops the above work by creating event di-
agrams from the activation order. An event diagram is a
historical record of all the computations right from the ini-
tial stage. The event diagram together with the set of pend-
ing messages is said to form a powerdomain which is used
to describe the concurrency of Actors. Vasconcelos and
Tokoro [39] refine this work further by weakening the con-
dition on activation orders which no longer requires each
event to have at most one immediate predecessor. Thus
they use the notion of traces to model concurrent execu-
tions where an event might be immediately be preceded by
many events.

The papers [5, 36] deal with the object-based features
of Actors as well as with the concurrency notions, Agha
et al. [5] formulates an Actor language as an extension of
a simple functional language, and employs transition sys-
tems to provide an operational semantics for Actors. It
further demonstrates that in the presence of fairness as-
sumptions, the three notions of equivalences (testing, may,
and must), collapse into two classes. Talcott [36] char-
acterizes actor languages by defining a notion of abstract
actor structure, and provides a semantics for them using
transition rules that use properties of concurrent rewriting
systems. Janssens and Rozenberg [18] model a restricted
version of actors using graph grammars, and introduce the
notion of an abstract actor structure. Kahn and Saraswat
[20] model actors as a special case of concurrent constraint
programming.

7.3 Process-Algebraic Semantics for Actors

The only other paper in this category, apart from our work,
is by Agha [2]. It is a preliminary attempt using CCS [22]
to provide a semantics for Actors. However, only the con-
currency features of Actors is modeled, while key aspects
like encapsulation, dynamic creation, and unrestricted re-
placement behaviors are completely ignored. This is be-
cause of the limitations in the expressive power of CCS –
which deals with synchronous agents having a static inter-
connection topology, and lacks dynamic creation of new
channels and processes.

In contrast with all the related work on Actors, our ap-
proach gives a comprehensive process-algebraic interpreta-
tion of all the basic features of the Actor Model for the first
time. Also noteworthy is the fact that we use π-calculus
– which is synchronous – to simulate an asynchronous
system like Actors. This is possible due to the power of
the Bang (!) operator of the π-calculus, which allows un-
bounded replication of processes and thereby provides the
capability to model asynchronous behavior. This particu-
lar feature of the π-calculus has been recognized by other
researchers in a different setting [10, 17, 33].

ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 243

8 Conclusion

We have related two prominent models of concurrent com-
putation, namely Actors and the π-calculus, by present-
ing an elegant semantic mapping of all the fundamental
constructs of actors in terms of the polyadic π-calculus.
We have enriched the Actor model by defining a higher
level of abstraction, and also have provided a notion of
equivalence between them. There are several interesting
avenues which present themselves for further exploration.
The object-based nature of the primitive constructs of ac-
tors, should be extended to include other object-oriented
notions as well. In particular the varieties of inheritance
[21, 42, 11], like self-based inheritance, and delegation-
based inheritance, and also the notion of subtyping should
be studied in this setting. The actor model allows various
levels of granularity and abstraction. This flexibility of the
actor model should be explored further by encompassing
the framework given by [6]. A sound basis for typed object-
based computing [1], can be explored using extensions to
the formalism of this paper. Such extensions should in-
clude the notion of types in the setting of Actors. The Ac-
tor model has been extended in a different way by [4], using
constructs which seem to have strong connections with the
paradigm of concurrent constraint programming. It would
be meaningful to explore connections between ActorSpace
[4] and the model proposed in this paper.

Acknowledgement

We wish to thank the anonymous referees for construc-
tive comments which were of immense help in improving
the content and presentation of this paper. Our thanks to
Ms. Margaret D’Souza for typing and proofreading this pa-
per.

References

[1] M. Abadi, and L. Cardelli (1995) A theory of primi-
tive objects: Second-order systems, Science of Com-
puter Programming, Vol. 25, pp. 81–116.

[2] G. Agha (1987) Actors: A Model of Concurrent Com-
putation in Distributed Systems, MIT Press.

[3] G. Agha (1989) Supporting Multiparadigm pro-
gramming on Actor Architectures, Proc. PARLE’89,
LNCS 366, Springer, pp. 1–19.

[4] G. Agha, and C. J. Callsen (1993) ActorSpace:
An Open Distributed Programming Paradigm, Proc.
PPOPP’93, ACM, pp. 23–32.

[5] G. Agha, I. A. Mason, S. Smith, and C. Talcott
(1997) A Foundation for Actor Computation, Journal
of Functional Programming, Vol. 7, pp. 1–72.

[6] J. M. Andreoli, H. Gallaire, and R. Pareschi (1995)
Rule-Based Object Coordination, Object-Based Mod-
els and Languages for Concurrent Systems, LNCS
924, Springer, pp. 1–13.

[7] F. Baude, and G. Vidal-Naquet (1991) Actors as a Par-
allel Programming Model, Proc. STACS’91, LNCS
480, Springer, pp. 184–195.

[8] J. Bergstra, and J. Klop (1985) Algebra of communi-
cating processes with abstraction, Theoretical Com-
puter Science, Vol. 37, pp. 77–121.

[9] G. Berry, and G. Boudol (1992) The Chemical Ab-
stract Machine, Theoretical Computer Science, Vol.
96, pp. 217–248.

[10] G. Boudol (1992) Asynchrony and the π-calculus,
Research Report, Number 1702, INRIA Sophia-
Antipolis.

[11] K. B. Bruce (1994) A Paradigmatic Object-Oriented
Programming Language: Design, Static Typing and
Semantics, Journal of Functional Programming, Vol.
4, pp. 127–206.

[12] W. Clinger (1981) Foundations of Actor Semantics,
AI-TR, Number 633, MIT.

[13] C. Hewitt, and H. Baker (1977) Laws for Communi-
cating Parallel Processes, Proc. IFIP, pp. 987–992.

[14] C. Hewitt (1977) Viewing Control Structures as Pat-
terns of Passing Messages, Artificial Intelligence, Vol.
8, pp. 323–364.

[15] C. Hewitt, P. Bishop, and R. Sterger (1973) A Univer-
sal Modulator Actor Formalism for Artificial Intelli-
gence, Proc. IJCAI, pp. 235–245.

[16] K. Honda, and M. Tokoro (1991) A Small Calculus
for Concurrent Objects, OOPS Messenger, Vol. 2, pp.
50–54.

[17] K. Honda, and M. Tokoro (1991) An Object
Calculus for Asynchronous Communication, Proc.
ECOOP’91, LNCS 512, Springer, pp. 133–147.

[18] D. Janssens, and G. Rozenberg (1989) Actor gram-
mars, Math. Systems Theory, Vol. 22 (2), pp. 75–107.

[19] C. B. Jones (1993) A pi-calculus Semantics for
an Object-Based Design Notation, Proc. CONCUR,
LNCS 715, Springer, pp. 158–172.

[20] K. M. Kahn, and V. A. Saraswat (1990) Actors as a
Special Case of Concurrent Constraint Programming,
Proc. ECOOP/OOPSLA’90, ACM Press, pp. 57–66.

[21] B. Meyer (1993) Systematic Concurrent Object-
Oriented Programming, Communications of the
ACM, Vol. 36, pp. 56–80.

244 Informatica 30 (2006) 233–244 N. Raja et al.

[22] R. Milner (1989) Communication and Concurrency,
Prentice Hall.

[23] R. Milner (1999) Communicating and Mobile Sys-
tems: The Pi Calculus, Cambridge University Press.

[24] R. Milner (1993) Elements of Interaction, CACM,
Vol. 36 (1), pp. 78–89.

[25] R. Milner, J. Parrow, and D. Walker (1992) A calculus
of mobile processes (Parts I and II), Information and
Computation, Vol. 100, pp. 1–77.

[26] R. Milner (1992) Functions as processes, Mathemati-
cal Structures in Computer Science, Vol. 2, pp. 119–
141.

[27] R. Milner, and D. Sangiorgi (1992) Barbed Bisimu-
lation, Proc. ICALP, LNCS 623, Springer, pp. 685–
695.

[28] O. Nierstrasz (1992) Towards an Object Calculus,
Proc. Object-Based Concurrent Computing, LNCS
612, Springer, pp. 1–20.

[29] C. Palamidessi (1997) Comparing the expressive
power of the Synchronous and the Asynchronous pi-
calculus, Proc. POPL, ACM, pp. 256–265.

[30] M. Papathomas (1991) A Unifying Framework for
Process Calculus Semantics of Concurrent Object-
oriented Languages, LNCS 612, Springer, pp. 53–79.

[31] B. C. Pierce, and D. N. Turner (1994) Concurrent Ob-
jects in a Process Calculus, Proc. TPPP, LNCS 907,
Springer, pp. 187–215.

[32] B. C. Pierce, and D. N. Turner (2000) Pict: A Pro-
gramming Language Based on the Pi-calculus, Proof,
Language and Interaction: Essays in Honour of
Robin Milner, MIT Press, pp. 455–494.

[33] N. Raja, and R. K. Shyamasundar (1996) Actors as a
Coordinating Model of Computation, Proc. Perspec-
tives of System Informatics, LNCS 1181, Springer,
pp. 196–202.

[34] D. Sangiorgi (1993) From pi-calculus to higher-order
pi-calculus and back, Proc. TAPSOFT’93, LNCS 668,
Springer, pp. 151–166.

[35] D. Sangiorgi, and D. Walker (2001) The Pi-Calculus -
A Theory of Mobile Processes, Cambridge University
Press.

[36] C. Talcott (1997) Interaction Semantics for Com-
ponents of Distributed Systems, Proc. IFIP Work-
shop on Formal Methods for Open Object-based Dis-
tributed Systems, Chapman & Hall, pp. 154–169.

[37] B. Thomsen (1993) Plain CHOCS: A Second Gener-
ation Calculus for Higher Order Processes, Acta In-
formatica, Vol. 30, pp. 1–59.

[38] F. W. Vaandrager (1990) Process algebra semantics of
POOL, Applications of Process Algebra, Cambridge
University Press, pp. 172–236.

[39] V. Vasconcelos, and M. Tokoro (1992) Trace Seman-
tics for Actor Systems, Proc. Object-Oriented Con-
current Computing, LNCS 612, Springer, pp. 141–
162.

[40] D. Walker (1991) π-calculus Semantics of Object-
Oriented Programming Languages, Proc. TACS’91,
LNCS 526, Springer, pp. 532–547.

[41] D. Walker (1995) Objects in the π-calculus, Informa-
tion and Computation, Vol. 116, pp. 253–271.

[42] A. Yonezawa (1990) ABCL: An Object-Oriented Con-
current System, MIT Press.

Informatica 30 (2006) 245–251 245

On Integrating Conversations into Web Services Composition

Zakaria Maamar
Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

Soraya Kouadri Mostéfaoui
Oxford Brookes University, Oxford, UK
E-mail: kouadris@acm.org

Keywords: Web service, conversation, composition, context.

Received: November 28, 2004

We present an approach for integrating conversations into the process of composing Web services. A Web
service is an accessible application that other applications and humans can discover and trigger to satisfy
various needs such as weather forecasts. While much of the work on Web services to date has focussed on
low-level standards, it is becoming urgent to allow Web services engage in conversations, make decisions,
and adjust their behavior according to the context of the situations in which they participate.

Povzetek: Predstavljena je integracija koverzacije v spletne storitve.

1 Introduction

In this paper, we highlight the role of conversations in the
field of Web services and assess the value-added of inte-
grating conversations into the composition of Web services.
Composition primarily addresses the situation of a user’s
request that cannot be satisfied by any available Web ser-
vice, whereas a composite service obtained by combining
available component services (i.e., Web services or com-
posite services) might be used [3]. While much of the work
on Web services to date has focussed on low-level stan-
dards for publishing, discovering, and triggering Web ser-
vices [2], the use of conversations promotes Web services
to a higher level by giving them the opportunity to act as ac-
tive components. A conversation is a consistent exchange
of messages between participants who are involved in joint
operations and thus have common interests.

In order to engage in conversations, Web services (also
called services in the rest of the paper) have to be lever-
aged from passive components, which only respond to trig-
gers, to active components, which make decisions and ad-
just their behavior according to the context in which they
evolve. Context is the information that characterizes the
interactions between humans, applications, and the sur-
rounding environment [4]. Huhns backs the importance of
leveraging Web services by using software agent architec-
tures [9]. Indeed Web services, unlike software agents, are
not designed to use and reconcile ontologies. Moreover,
software agents are inherently communicative, whereas
Web services are passive until invoked.

While some authors agree on the importance of leverag-
ing Web services to the level of active components, others
have already identified some similarities between Web ser-
vices and software agents [6]. Services (i) advertise their

capabilities after specification using for example WSDL,
(ii) search for other services using for example UDDI, and
(iii) invoke services without prior notice using for exam-
ple SOAP. This kind of behavior bears many likenesses
to software agents. For instance, a service accepts re-
quests (sense) and returns responses (action) [6]. In ad-
dition, once a service is invoked, it performs tasks with or
without further inputs (autonomy). However, it is the au-
thors’ belief that the aforementioned behavior of a service
is mainly hard-coded and consequently, limits the service
in its action selection. Enhancing Web services with con-
versation capabilities will first, enable an emergent behav-
ior during composition and second, permit to services to
be more flexible in managing the situations in which they
participate.

Web services composition is a very active area of re-
search and development. However, very little has been
achieved to date regarding the seamless integration of con-
versations into composition approaches of Web services.
In particular, several obstacles still hinder this integration
such as: (i) Web services are dealt with as passive com-
ponents rather than active components that can be embed-
ded with context-awareness mechanisms, (ii) existing ap-
proaches for service composition (e.g., BPEL4WS) typi-
cally facilitate orchestration only, while neglecting contex-
tual information on services, and (iii) lack of support tech-
niques for modeling and specifying conversations between
Web services. In this paper, the focus is on the conversa-
tions happening among a group of Web services, which are
called to constitute composite services.

246 Informatica 30 (2006) 245–251 Z. Maamar et al.

2 Conversations and Web services
Several authors note that current standards of Web services
are used in systems featured by simple interactions [1, 7].
Simple because the interactions adopt a request-response
pattern (e.g., announce/confirm). However there are multi-
ple situations that need more than two turns of interaction
(e.g., propose/counter-propose/accept ⊕ reject ⊕ counter-
propose/...). The participants in these situations have to
engage in conversations before they reach an agreement.
Another initiative in the field of Web services is the Web
Services Conversation Language (WSCL). This language
describes the structure of documents that a Web service ex-
pects receiving and producing, as well as the order in which
the exchange of documents is expected to take place. While
conversations in [1] occur between end-users and providers
of Web services, and WSCL focusses on specifying the op-
erations that Web services support, our focus is on the con-
versations happening among Web services. These services
might originate from different sources and have to engage
in conversations in order to agree on what to exchange, how
to exchange, when to exchange, and what to expect from an
exchange during composition.

2.1 Composition stages
To assess the benefits of conversations to Web ser-
vices composition, we decompose the composition into
three stages: pre-composition, composition, and post-
composition. In the following, only the pre-composition
stage is discussed. Because similar services exist on the In-
ternet, it is important to search for and identify the services
that satisfy specific user-defined selection criteria (e.g., ex-
ecution cost, reliability, availability [14]). Conversations in
the pre-composition stage concern the following aspects:

1. Identification aspect: use search mechanisms
(e.g., UDDI registries) to identify Web services. We
assume that Web services are already specified and
advertised.

2. Invitation aspect: invite Web services to participate
in a composition. An invitation is either accepted or
refused. The rationale of inviting services instead of
directly triggering them is given in [12]. In addition,
conversations occurring during service invitation are
described towards the end of this paper.

3. Compatibility aspect: check if the Web services can
exchange meaningful information because of data het-
erogeneity issues that may raise. Details on the
semantic compatibility of Web services are found
in [13].

2.2 Conversation’s components
Pre-composition, composition, and post-composition
stages are each concerned with some of the conversational
aspects that take place during Web services composition.

Because of the variety of these aspects, we decided on
(i) associating each aspect with a conversation session and
(ii) implementing a session with a course of conversational
actions.

To handle the multiple conversation sessions, we use
Conversation Schemas (CSs) as a technique for describing
these sessions and their respective course of conversational
actions. We define a conversation schema as a specification
of the exchange of messages that is expected to happen be-
tween participants. This exchange depends on several fac-
tors including application domain, active context, and cur-
rent chronology. For example, a conversation schema de-
scribes both the side-effects of a conversation that is misun-
derstood and the corrective actions that permit fixing these
side-effects.

First of all, the initiator of a conversation downloads
a conversation schema from the library of conversation
schemas (Fig. 2) according to the following elements: cur-
rent composition stage, progress in this stage with regard
to the current aspect, and intention behind establishing the
conversation. These elements are needed since conversa-
tions are context sensitive [5, 15]. Next, the initiator in-
stantiates the conversation object (i.e., gives a value) and
checks the activation condition before it transfers a mes-
sage to a receiver. Upon reception of the conversation ob-
ject that the message conveys, the receiver takes one of the
following actions:

1. Accepts the conversation object without any change
and starts acting based on the conversation object’s
content.

2. Changes the conversation object and submits the mod-
ified conversation object to the initiator for either fur-
ther change, approval, or rejection.

3. Rejects the conversation object and either submits a
new conversation object to the initiator or ignores the
initiator (this one has a time-out constraint).

Modeling conversations is a complex process as several
requirements need to be satisfied. Some of these require-
ments are identified in [10]: (i) conversation models should
be task-oriented, (ii) conversation models should be as-
sociated with a semantics, (iii) conversation models must
provide communication abstractions, and (iv) conversation
models should be reusable and extendable. In this paper,
we specify conversation schemas with state charts [8]. In
addition to satisfying some of the aforementioned require-
ments such as (i) and (iv), encoding the flow of conver-
sations using state charts has several benefits. First, state
charts have a formal semantics, which is essential for rea-
soning on the content of conversations. Next, state charts
are becoming a standard process-modeling language as
they are being integrated into UML. This process modeling
helps in managing admissible turns and decision makings
during conversations. Finally, state charts offer most of the
control-flow constructs that can be found in real conver-
sations such as branching and looping. Fig. 1 depicts the

ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 247

mapping of the concepts of a conversation schema onto the
concepts of a state chart.

– Name of states is labelled with S/R (sender/receiver).

– Name of transitions is labelled with activation condi-
tion and conversation object.

– Actions of states implement the information that con-
versation objects convey.

– A complete state chart illustrates the conversation
schema of a conversation session.

Conversation schema
S: State

do/
Actions

(CO: conversation object)

CO

/Activation condition

R: State

do/
Actions

Figure 1: Conversation schema as a state chart

3 Context-aware conversations for
Web services composition

To assess the way a composition of Web services pro-
gresses so relevant conversation sessions are entered and
relevant conversation schemas are downloaded from the li-
brary of conversation schemas (Fig. 2), the use of aware-
ness mechanisms is required. These mechanisms ensure
that the status of each Web service is known and instanta-
neously reflected in a structure, which we denote by W-
context (context of Web service). using the information
that W-context caters, it is possible to know if a Web ser-
vice is part of a composition, under execution, or invited to
participate in a composition.

In one of our previous works [12], we strengthened the
advantages of the combination (software agent, Web ser-
vice, context). For example, agents track Web services in
order to update their respective W-contexts. The tracking
is about the composition in which a service takes part, the
current state that the service takes in the composition, and
the type of conversations that the service has initiated dur-
ing the composition. Fig. 2 presents the context-aware con-
versation approach for Web services composition that we
developed. The features of this approach are below.

1. Three types of software agents are set: conversation-
manager-agent, composite-service-agent, and service-
agent.

A conversation-manager-agent runs on top of the li-
brary of conversation schemas. It updates the library
if a new specification of a conversation schema is de-
veloped (e.g, by a designer). Plus, the conversation-
manager-agent responds to the requests of down-
loading conversation schemas that composite-service-
agents and service-agents submit.

A composite-service-agent triggers and monitors the
deployment of the specification of a composite service
(to keep Fig. 2 clear, the specification store is not rep-
resented1). This monitoring is reflected in a context,
which we refer to as C-context (context of Composite-
service). In addition, the composite-service-agent in-
teracts with service-agents when it comes to inviting
services for composition or informing services of the
changes in the specification of the composite services.

A service-agent is responsible for getting a Web ser-
vice ready for composition, monitoring its execution
through its state chart, and updating its W-context.

2. Besides the state charts of the conversation
schemas (Fig. 1), additional state charts are as-
sociated with Web services (Fig. 2). The states that
a Web service takes are immediately reflected in its
W-context. Interesting to note that the transitions
in the state charts of services are context-based and
conversation-oriented (Fig. 2-2). However, these
conversations are less complex than the conversations
that involve Web services (Fig. 2-1). Therefore, each
state of a Web service is associated with a T -context
(context of Web-service sT ate).

3. A library of conversation schemas that stores the spec-
ifications of conversation schemas (Fig. 1). The li-
brary is a resource from which composite-service-
agents and service-agents download conversation
schemas after interactions with the conversation-
manager-agent.

In Fig. 2, the conversations occur in two separate loca-
tions. In the first location, the conversations concern the
component Web services that participate in a composite
service (Fig. 2-1). These conversations are specified us-
ing the conversation schemas of Fig. 1. In the second lo-
cation, the conversations concern the states of the Web ser-
vices (Fig. 2-2). It should be noted that the state chart of
a conversation schema supports the interactions between
the state charts of services. The distinction between states
of services and states of conversations gives a much better
flexibility in managing the aspects that each type of state
chart is concerned with. State charts of services focus on
the changes that apply to services such as availability, com-
mitment, and execution, whereas state charts of conversa-
tions focus on the changes that apply to conversations such
as formulation, reception, and response.

Because of both types of state (those associated with ser-
vices and those associated with conversations), we annotate
each conversation state with a context, which we refer to as
S-context (context of conversation State). The rationale of
S-contexts of the states of conversations is similar to the
rationale of T -contexts of the states of services. Moreover,

1The specification of a composite service is based on state chart dia-
grams, where a state is labelled with a service chart diagram and a tran-
sition is labelled with events, conditions, and variable assignment opera-
tions [11].

248 Informatica 30 (2006) 245–251 Z. Maamar et al.

Web service 1

-1-
Conversations

State chart 1 State chart 2

Web service 2

W-context

Library
of CSs

Update

Interactions Interactions

Access Access

C-context
Update Update

Access

State 11 State 1i

-2-
Conversations

State 21 State 2j
-2-

Conversations

W-context

T11-context T1i-context T21-context T2j-context

Update

Conversation-manager-agent Service-agent Composite-service-agent

C-context: Composite-service context W-context: Web-service context T-context: sTate context

Legend

Figure 2: Context-aware conversation approach for Web services composition

to track the progress of a conversation a context, which we
denote by V-context (context of a conVersation), is used.
This is similar to the W-context of a Web service.

4 Development example of a
conversation schema

We decomposed the composition of Web services into
three stages: pre-composition, composition, and post-
composition. Each stage consists of different aspects,
which characterize the conversations that occur. In this sec-
tion, we illustrate how a conversation schema is developed.
This development consists of devising two state charts, one
for the conversations and one for the services that partici-
pate in these conversations. Before we explain the devel-
opment process, the following comments are made on both
types of state charts:

– State labels are annotated with S/R (sender/receiver).
If there is no annotation, the state identifies the com-
munication network.

– Transitions implement the links between states. Two
types of transition exist. The transitions that connect
states of the same chart are represented with regular
lines. The transitions that connect states of separate
charts are represented with dashed lines.

To keep the paper self-contained, only the conversation
schema featuring the invitation aspect is illustrated (Fig. 3).
While a composite service monitors the component Web
services that are currently under execution, the composite
service submits an invitation to the next component Web
service to join the composition.

States of services. There are four states, which are seen
from two perspectives.

– Sender perspective: two states are associated with
the sender service namely monitoring and assessment.
Here, the sender corresponds to the composite service.
One of the actions in the monitoring state consists of
downloading the conversation schema for Web ser-
vices invitation. We recall that this schema is stored
in the library of conversation schemas (Fig. 2).

– Receiver perspective: two states are associated with
the receiver service namely assessment and deploy-
ment. Here, the receiver corresponds to the next com-
ponent Web service. One of the actions in the assess-
ment state consists of checking the current commit-
ments that the Web service has towards other compos-
ite services. Based on these commitments, the com-
ponent service either accepts or rejects the invitation
to participate in a composite service.

States of conversations. There are six states, which are
seen from three perspectives. Ellipses glued to transitions
correspond to conversation objects.

– Sender perspective: two states are associated with the
sender service namely preparation and reception.

– Receiver perspective: two states are associated with
the receiver service namely preparation and reception.

– Network perspective: two states are associated with
the communication network namely transmission
from the sender to the receiver, and transmission from
the receiver to the sender.

5 Implementation
As a first step of validating the proposed approach of
Fig. 2, we have developed a conversation and Web services
composition-manager, using Borland JBuilder Enterprise

ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 249

Invitation

/CS downloaded

S: Preparation
do/
devise message

S: Monitoring
do/
monitor cur. service
prepare next service
download CS

/Message not validated
or not understood

Re-
formulation

States of conversationStates of services

: Transmission
do/
transmit message
(S,R)

Invitation

R: Reception
do/
parse message
check message
understand message

/Message validated
and understood

R: Assessment
do/
analyse CO
check current
commitments

/Message validated
and understood

/Invitation rejected xor postponed

/Decision on CO made

/Message not validated
or not understood

Re-
formulation

R: Preparation
do/
devise message

Decision

Decision

S: Reception
do/
parse message
check message

/Message devised

/Message submitted

/CO accepted

R: Deployment
do/
prepare service

/service ready
to be deployed

/Message devised

: Transmission

do/
transmit message
(R,S)

/Message submitted

S: Assessment
do/
analyse CO

/Next service
to be triggered

T-context

T-context

T-context

T-context

S-context

S-context

S-context

S-context

/Execution current
service completed

Figure 3: State chart of a conversation schema - invitation aspect

250 Informatica 30 (2006) 245–251 Z. Maamar et al.

Figure 4: Graphical editor for conversation schemas and service chart diagrams

Edition version 92. The prototype integrates a set of tools,
which allow for instance Web services’ providers and users
to create, compose, and execute services based on the dif-
ferent contexts. WSDL is used for Web services specifi-
cation, and UDDI is used for Web services announcement
and discovery. Details of contexts and conversation ses-
sions are structured as XML files. A dedicated XML editor
was developed in order to create, validate, test, and mon-
itor the different XML files. The validation of these files
is based on two XML schemas (conversations.xsd and con-
text.xds). In addition, the conversation manager offers an
editor for describing the state charts of conversation ses-
sions and composite services (Fig. 4). The graphical edi-
tor provides means for directly manipulating conversations
and service chart diagrams, states, and transitions (add, re-
move, modify, etc.) graphically using drag and drop oper-
ations.

6 Conclusion

In this paper, we overviewed our approach for compos-
ing Web services using software agents, conversations, and
context. Several types of conversation schemas are dis-
cussed such as those for inviting Web services to partici-
pate in composition. Conversation schemas have been as-
sociated with software agents and contextual information.
Because needs and interests of users always change, it is
important to ensure that the composition of Web services
efficiently handles these changes. What is needed is to al-
low Web services to decide whether to join a composition,
what states to take with regard to the outcomes of conver-
sations, and what actions to perform within these states.

2http://www.borland.com/jbuilder/enterprise/index.html.

References
[1] L. Ardissono, A. Goy, and G. Petrone. Enabling

Conversations with Web Services. In Proceed-
ings of the Second International Joint Conference
on Autonomous Agents & Multi-Agent Systems (AA-
MAS’2003), Melbourne, Australia, 2003.

[2] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-
Serv Environment for Web Services Composition.
IEEE Internet Computing, 7(1), January-February
2003.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and M. Mecella. A Foundational Vision
for e-Services. In Proceedings of The Workshop
on Web Services, e-Business, and the Semantic
Web (WES’2003) held in conjunction with The 15th
Conference On Advanced Information Systems En-
gineering (CAiSE’2003), Klagenfurt/Velden, Austria,
2003.

[4] P. Brézillon. Focusing on Context in Human-
Centered Computing. IEEE Intelligent Systems,
18(3), May/June 2003.

[5] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
Specification: A New Approach to Design and Anal-
ysis of E-Service Composition. In Proceedings of
The Twelfth International World Wide Web Confer-
ence (WWW’2003), Budapest, Hungary, 2003.

[6] B. Burg. Agents in the World of Active Web Services.
In Proceedings of Second Kyoto Meeting on Digital
Cities, Kyoto, Japan, 2001.

[7] J. Dale, D. Levine, F. G. McCabe, G. Arnold, M. Lyel,
and H. Kuno. Advanced Web Services. Technical

ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 251

Report FLA-NARTM02-08, Fujitsu Laboratories of
America, Inc., Sunnyvale CA, USA, 2002.

[8] D. Harel and A. Naamad. The STATEMATE Seman-
tics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4), October 1996.

[9] M. Huhns. Agents as Web Services. IEEE Internet
Computing, 6(4), July-August 2002.

[10] F. Lin and D. H. Norrie. Schema-based Conver-
sation Modeling for Agent-oriented Manufacturing
Systems. Computers in Industry, 46(3), October
2001.

[11] Z. Maamar, B. Benatallah, and W. Mansoor. Ser-
vice Chart Diagrams - Description & Application. In
Proceedings of The Twelfth International World Wide
Web Conference (WWW’2003), Budapest, Hungary,
2003.

[12] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui.
A Web Services Composition Approach based on
Software Agents and Context. In Proceedings of The
19th Annual ACM Symposium on Applied Comput-
ing (SAC’2004), Nicosia, Cyprus, 2004.

[13] B. Medjahed, A. Bouguettaya, and A. Elmagarmid.
Composing Web Services on the Semantic Web. The
VLDB Journal, Special Issue on the Semantic Web,
Springer Verlag, 12(4), 2003.

[14] D. A. Menascé. QoS Issues in Web Ser-
vices. IEEE Internet Computing, 6(6), Novem-
ber/December 2002.

[15] J. P. Morgenthal. Web Service Conversations. Busi-
ness Integration Journal, August 2003.

252 Informatica 30 (2006) 245–251 Z. Maamar et al.

Informatica 30 (2006) 253–277 253

An Overview of Slicing Techniques for Object-Oriented Programs

Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar1

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, WB 721 302, India
E-mail: {durga, rajib, rkumar}@cse.iitkgp.ernet.in

Keywords: program slicing, program dependence graph, debugging, object-oriented programs, concurrent object-
oriented program, multi-threading, distributed programming.

Received: April 15, 2005

This paper surveys the existing slicing techniques for object-oriented programs. Many commercial object-
oriented programs are concurrent in nature. Concurrency is typically implemented in the form of multi-
threading or message passing using sockets or both. We therefore review the available techniques in slicing
of concurrent object-oriented programs. Another trend that is clearly visible in object-oriented program-
ming is client-server programming in a distributed environment. We briefly review the existing techniques
for slicing of distributed object-oriented programs

Povzetek: Opisana je tehnika analize objektnih programov.

1 Introduction

Program slicing is a program analysis technique. The main
applications of program slicing includes various software
engineering activities such as program understanding, de-
bugging, testing, program maintenance, complexity mea-
surement etc. It can also be used to extract the statements
of a program that are relevant to a given computation. A
program slice consists of the parts or components of a pro-
gram that (potentially) affect the values computed at some
point of interest, referred to as a slicing criterion. Typi-
cally, a slicing criterion consists of a pair < s, V >, where
s is the statement number and V is a variable. The com-
ponents of a program which have a direct or indirect effect
on the values computed at a slicing criterion < s, V > are
called the program slice with respect to the slicing criterion
< s, V >.

The concept of a program slice was introduced by
Weiser [92]. Various slightly different notions of program
slices have been proposed. There has also been a prolifera-
tion of the number of methods to compute slices. The main
reason for this proliferation of slicing techniques is that
different applications require different properties of slices.
Weiser [91] defined a program slice S as a reduced, exe-
cutable program obtained from a program P by removing
statements, such that S replicates part of the behavior of
P . The program slicing technique originally introduced by
Weiser [91, 92, 93] is now called static backward slicing. It
is static in the sense that the slice is independent of the in-
put values to the program. It is backward because the con-
trol flow of the program is considered in reverse while con-
structing the slice. Another common definition of a slice
is a subset of the statements and control predicates of the
program which directly or indirectly affect the values com-

puted at the slicing criterion, but which do not necessarily
constitute an executable program.

Object-oriented programming style is becoming the
norm. These programs may be very large as well as con-
current. In some applications the programs run in a dis-
tributed manner on several nodes connected through a net-
work. The code size of these object-oriented programs of-
ten exceeds million of lines. Making such programs de-
pendable and trust worthy is a major challenge. Program
slicing is advocated as a technique to automatically ana-
lyze a program. The results of the analysis can be used to
help in debugging, test case design, test coverage analysis
and others [94, 82, 96, 19].

Slicing object-oriented programs presents new chal-
lenges which are not encountered in traditional program
slicing. To slice an object-oriented program, features such
as classes, dynamic binding, encapsulation, inheritance,
message passing and polymorphism need to be considered
carefully. Although the concepts of inheritance and poly-
morphism are strengths of object-oriented programming
languages, they pose special challenges in program slicing.
Due to inheritance and dynamic binding in object-oriented
programs, the process of tracing dependencies becomes
more complex than that in a procedural program. Larson
and Harrold were the first to consider these aspects in their
work [60]. To address these object-oriented features, they
enhanced the system dependence graphs (SDG) [48] to rep-
resent object-oriented software. After the SDG is con-
structed, the two phase algorithm of Horwitz et al. [48] is
used with minor modifications for computing static slices.
Larson and Harrold have reported only a static slicing tech-
nique for object-oriented programs [60], and did not ad-
dress dynamic slicing aspects. The dynamic slicing aspects
have been reported by Zhao [100], Song et al. [84], Xu et

254 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

al. [94] and Wang et al. [90].
Most of the commercial object-oriented programs are

concurrent in nature and run in different machines con-
nected through a network. It is usually accepted that under-
standing and debugging concurrent and distributed object-
oriented programs are much harder compared to the se-
quential programs. Slicing techniques promise to come in
handy at this point. However, most of the research work in
the program slicing area have focused attention on sequen-
tial programs. Research reports addressing slicing of con-
current and distributed object-oriented programs are scarce
in literature [102, 17, 54, 55, 75].

Several comprehensive surveys are available for pro-
gram slicing in general [86, 12, 63, 45, 95, 20]. But, sur-
veys on slicing of object-oriented programs have not been
reported to the literature to the best of our knowledge. In
this paper, we present a brief survey of the existing slicing
techniques for object-oriented programs. Also, we have re-
viewed the available literatures on the available techniques
for slicing concurrent object-oriented programs. Subse-
quently, we have discussed the current trend in the area of
slicing of distributed object-oriented programs. In this sur-
vey, we discuss the contribution of each work and compare
the major difference between them.

In the following, we review some basic slicing concepts
that would be useful to understand the rest of the paper.

1.1 Categories of Program Slicing
Several categories of program slicing as well as methods
to compute them are found in literature. The main rea-
son for the existence of so many categories of slicing is
the fact that different applications require different types
of slices. Slices can be backward or forward [48, 98],
static or dynamic [3, 52, 27], intra-procedural or inter-
procedural [48].

Static Slicing and Dynamic Slicing: Static slicing tech-
nique uses static analysis to derive slices. That is, the
source code of the program is analyzed and the slices are
computed for all possible input values. Therefore static
slices are conservative and contain more statements than
necessary. For object-oriented programs the situation is
still worse as the computed static slice will contain all
most all of the statements present in the program. This is
due to the various relationships such as inheritance, poly-
morphism, dynamic binding etc. existing among classes.
Therefore, static slices are of little use in the context of
object-oriented programs.

Korel and Laski [52] introduced the concept of dynamic
program slicing. Dynamic slicing makes use of the infor-
mation about a particular execution of a program. A dy-
namic slice with respect to a slicing criterion < s, V >,
for a particular execution, contains those statements that
actually affect the slicing criterion in the particular exe-
cution. Therefore, dynamic slices are usually smaller than
static slices and are more useful in interactive applications

1 main()

2 {

3 int i, sum;

5 sum = 0;

6 while(i <= 10)

7 {

8 sum=sum+i;

9 ++ i;

10 }

11 cout<< sum;

12 cout<< i;

13 }

4 cin>> i;

Figure 1: An example program

such as program debugging and testing. Dynamic slicing is
more suitable for object-oriented programs than static slic-
ing as the computed dynamic slice will contain only those
statements that actually affect the slicing criterion. In other
words, we can say that dynamic slicing techniques compute
precise slices. A comprehensive survey on the existing dy-
namic program slicing algorithms is reported in Korel and
Rilling [53] and Xu et al. [95].

Consider the C++ example program given in Fig. 1.
The static slice with respect to the slicing criterion <
11, sum > is the set of statements {4, 5, 6, 8, 9}. Con-
sider a particular execution of the program with the input
value i = 15. The dynamic slice with respect to the slicing
criterion < 11, sum > for the particular execution of the
program is {5}.

Backward Slicing and Forward Slicing: As already
discussed, a backward slice contains all parts of the pro-
gram that might directly or indirectly affect the slicing cri-
terion [92]. Thus a static backward slice provides the an-
swer to the question: “which statements affect the slicing
criterion?”.

A forward slice with respect to a slicing criterion <
s, V > contains all parts of the program that might be af-
fected by the variables in V used or defined at the program
point s [84, 98]. A forward slice provides the answer to the
question: “which statements will be affected by the slicing
criterion?”.

Intra-procedural Slicing and Inter-procedural Slicing:
Intra-procedural slicing computes slices within a single
procedure. Calls to other procedures are either not handled
at all or handled conservatively. If the program consists of
more than one procedure, inter-procedural slicing can be
used to derive slices that span multiple procedures [48].

For object-oriented programs, intra-procedural slicing is
meaning less as practical object-oriented programs contain
more than one method. So, for object-oriented programs,
inter-procedural slicing is more useful.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 255

Other Slicing Categories: Many examples of slicing
are combinations of the categories above. For example,
Weiser’s original work [91] describes backward, static,
intra-procedural slicing; although he also later gave an al-
gorithm for backward, static, inter-procedural slicing [93].
The work of Kamkar [49] produces backward, dynamic,
inter-procedural slicing. It is also possible to combine the
features of static slicing with the features of dynamic slic-
ing. This new form of slicing is called hybrid slicing [40].
Hybrid slicing is an approach for refining static slices using
dynamic information.

There are variants of slicing in between the two extremes
of static and dynamic, where some but not all properties
of the initial state are known. These are known as con-
ditioned slices [13, 31, 42, 25] or constrained slices [29].
Traditional slicing methods are all based on statement dele-
tion. In a recently reported form of slicing called amor-
phous slicing [11, 43, 46], slices are not necessarily pro-
duced by deleting statements and may not necessarily even
be made from components of the original program being
sliced. The slice is computed based on the semantics of the
program. Recently, another form of slicing called modular
monadic slicing has been developed where slices are com-
puted based on the modular monadic semantics of the pro-
gram analyzed [99]. This method computes slices directly
on abstract syntax of the program without constructing in-
termediate representations such as dependence graphs.

1.2 Applications of Program Slicing

This section describes the use of program slicing tech-
niques in various applications. In trying to use the basic
slicing concepts in diverse domains, several variations of
the notions of program slicing as described in Section 1
are developed. The program slicing technique was origi-
nally developed to realize automated static code decompo-
sition tools. The primary objective of those tools was to
aid program debugging [92, 64]. From this modest begin-
ning, the use of program slicing techniques has now ram-
ified into a powerful set of tools for use in such diverse
applications as program understanding, program verifica-
tion, automated computation of several software engineer-
ing metrics, software maintenance and testing, functional
cohesion, dead code elimination, reverse engineering, par-
allelization of sequential programs, software portability,
reusable component generation, compiler optimization,
program integration, showing differences between pro-
grams, software quality assurance, software fault-injection
etc. [10, 96, 65, 86, 32, 49, 44, 39, 104, 21, 30, 42, 19].
Slicing methods also play an important role in software
fault-injection, see [89] for using slicing methods in soft-
ware fault-injection. A comprehensive study on the appli-
cations of program slicing is made by Binkley and Gal-
lagher [12], Lucia [63] and Qi et al. [82].

1.3 Paper Organization
The remainder of this paper is organized as follows. In
Section 2, we discuss the inter-procedural slicing tech-
nique, that would be useful in understanding slicing of
object-oriented programs. In Section 3, methods for slic-
ing object-oriented programs are discussed. In Section
4, we review the slicing techniques for concurrent object-
oriented programs. In Section 5, techniques for slicing of
distributed object-oriented programs are discussed. Section
6 concludes the paper.

2 Inter-Procedural Slicing
Horwitz et al. [48] developed the system dependence graph
(SDG) as an intermediate program representation and pro-
posed a two-phase graph reachability algorithm on the
SDG to compute inter-procedural slice. A system de-
pendence graph is a collection of procedure dependence
graphs, one for each procedure. A procedure dependence
graph represents a procedure as a graph in which vertices
are statements or predicate expressions and the edges rep-
resent the dependence relationships. There are two types
of dependence edges: data dependence edge and control
dependence edge. Data dependence edges represent flow
of data between statements or expressions, and control de-
pendence edges represent control conditions on which the
execution of a statement or expression depends. Each pro-
cedure dependence graph contains an entry vertex that rep-
resents entry into the procedure. To model parameter pass-
ing, an SDG associates each procedure entry vertex with
formal-in and formal-out vertices. An SDG contains a
formal-in vertex for each formal parameter of the proce-
dure and a formal-out vertex for each formal parameter that
may be modified by the procedure. An SDG associates
each call site in a procedure with a call vertex and a set
of actual-in and actual-out vertices. An SDG contains an
actual-in vertex for each actual parameter at the call site and
an actual-out vertex for each actual parameter that may be
modified by the called procedure. At procedure entry and
call sites, global variables are treated as parameters. Thus,
there are actual-in, actual-out, formal-in and formal-out
vertices for these global variables. SDGs connect proce-
dure dependence graphs at call sites. A call edge connects
a procedure call vertex to the entry vertex of the called pro-
cedure’s dependence graph. Parameter-in and parameter-
out edges represent parameter passing. parameter-in edges
connect actual-in and formal-in vertices, and parameter-
out edges connect formal-out and actual-out vertices. Hor-
witz et al. compute inter-procedural slices by solving a
graph reachability problem on the SDG. To obtain precise
slices, the computation of a slice must preserve the call-
ing context of called procedures, and ensure that only paths
corresponding to legal call/return sequences are consid-
ered. To facilitate the computation of inter-procedural slic-
ing that considers the calling context, an SDG represents
the flow of dependencies across call sites. A transitive flow

256 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

of dependence occurs between the actual-in vertex and an
actual-out vertex if the value associated with the actual-in
vertex affects the value associated with the actual-out ver-
tex. The transitive flow of dependence may be caused by
data dependencies, control dependencies or both. A sum-
mary edge models the transitive flow of dependence across
a procedure call. Fig. 2 represents a simple example pro-
gram containing two procedures i.e. add and inc. The sys-
tem dependence graph of Fig. 2 is shown in Fig. 3. In the
SDG of Fig. 3, circles represent program statements and
ellipses represent parameter vertices.

After constructing the SDG, Horwitz et al. [48] applied
a two-pass algorithm on the SDG to compute the static
slices. The first pass of the inter-procedural slicing algo-
rithm traverses backward along all edges except parameter-
out edges, and marks those vertices reached. The second
pass traverses backward from all vertices marked during
the first pass along all edges except call and parameter-in
edges, and marks reached vertices. The slice is union of the
vertices marked during pass one and pass two.

3 Slicing of Object-Oriented
Programs

In this section, we first discuss some work on static slicing
of object-oriented programs. Then, we discuss how these
basic slicing techniques have subsequently been extended
by researchers to handle dynamic slicing of object-oriented
programs.

3.1 Static Slicing of Object-Oriented
Programs

Static slicing of object-oriented programs has drawn con-
siderable research interest [56, 60, 88, 87, 62, 16, 59, 57,
58, 47, 66, 41]. While slicing object-oriented programs,
how to represent the programs is an important problem.
Larson and Harrold [60] extended the SDG of Horwitz et
al. [48] to represent object-oriented programs. They have
constructed Class Dependence Graphs (ClDG) for each
class in an object-oriented program. A ClDG captures the
control and data dependence relationships that can be de-
termined about a class without knowledge of calling envi-
ronments. Each method in a ClDG is represented by a pro-
cedure dependence graph [60]. Each method has a method
entry vertex that represents the entry into the method. A
ClDG also contains a class entry vertex that is connected
to the method entry vertex for each method in the class by
a class member edge. Class entry vertices and class mem-
ber edges let us quickly access method information when a
class is combined with another class or system. The ClDG
construction expands each method entry by adding formal-
in and formal-out vertices similarly as procedure depen-
dence graphs.

Fig. 4 contains an example program written in C++
which creates the class Elevator and AlarmElevator de-

pending on the command line arguments. Fig. 5 shows the
ClDG for the Elevator class. A rectangle represents the
class entry vertex and circles represent the statements. The
ellipses represent the parameter vertices. For example in
Fig. 5, the vertex 1 is the class entry vertex and 2, 6, 7, 9,
11, 13, 15 and 21 are method entry vertices. Bold dashed
edges represent class member edges that connect class en-
try vertex to method entry vertex. For example (1, 2), (1,
6), (1, 7), (1, 9) and (1, 11) are class member edges. Each
method entry vertex is the root of a subgraph that is itself
a partial SDG containing control dependence edges, data
dependence edges, call and parameter edges, and summary
edges.

Since methods in a class can interact with each other
or with other methods, a ClDG represents the effects of
method calls by a call vertex. At each call vertex, there
are actual-in and actual-out vertices to match the formal-
in and formal-out vertices present at the entry to the called
method. For example, in Fig. 5, vertices 18 and 20 repre-
sent calls to add().

To represent derived class, Larson and Harrold con-
structed a ClDG for the derived class by constructing a rep-
resentation for each method defined by the derived class,
and reusing the representations of all methods that are in-
herited from the base classes [60].

A polymorphic method call occurs when a method call is
made and the destination of the call is unknown at compile
time. The ClDG should represent the polymorphic method
call. For this purpose, the ClDG uses a polymorphic choice
vertex to represent the dynamic choice among the possible
destinations. A call vertex corresponding to a polymorphic
call has a call edge incident to a polymorphic choice vertex.
A polymorphic choice vertex has call edges incident to sub-
graphs that represent calls to each possible destination. The
polymorphic choice vertex represents the dynamic selec-
tion of a destination. In fig. 6 P1 is a polymorphic choice
vertex that represents a dynamic choice between calls to El-
evator::go() and AlarmElevator::go(). The two unlabeled
vertices associated with P1 represent the dummy polymor-
phic choice vertices.

At last, the SDG for a complete program is constructed
by connecting calls in the partial system dependence graph
to methods in the ClDG for each class. This process in-
volves connecting call vertices to method entry vertices,
actual-in vertices to formal-in vertices, and formal-out ver-
tices to actual-out vertices. The summary edges for meth-
ods in a previously analyzed class are added between the
actual-in and actual-out vertices at call sites. This construc-
tion of the SDG for an object-oriented system maximizes
reuse of previously constructed portions of the representa-
tion.

Fig. 4 contains an example of an application program
that instantiates an object. The SDG of Fig. 4 is given in
Fig. 6. The variable e_ptr could point to an object of type
Elevator or AlarmElevator. This graph was constructed by
building a partial SDG for the main function, including the
previously computed representation for the Elevator and

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 257

{

 s = 0;

i = 1;

while (i < 10) do

 {

 add(s, i);

 inc(i);

 }

write(s);

 }

main()

 int s, i;

void add(int a, int b)

 {

 a = a + b;

 return;

 }

void inc(int z)

 {

 add(z,1);

 return;

 }

Figure 2: An example program

entry main

s=0 i=1 write(s)

add

ain= s bin= i s=aout

inc

in= i

entry inc

in add
zout=z

ain=z bin
=1

entry add

a=ain b=bin a=a+b a =a

call, parameter−in, parameter−out edge

data dependence edge

control dependence edge

summary edge

z=aout

while (i<10)

i=z out

z=z

z

out

Figure 3: The system dependence graph of the example program of Fig. 2

258 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

 && (current_floor <= top_floor)

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

31: void go(int floor)

32: { if (! alarm_on)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

/* initialization for Elevator */

20: add(current_floor, −1); } /* end if */

/* polymorphic method call */

 /* end of main */

8: { current_direction = UP; }

 public:

1: class Elevator{

30: {alarm_on = 0; }

33: Elevator :: go(floor);

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

 /* This method computes value of current_floor */

23: class AlarmElevator: public Elevator { /* AlarmElevator is derived from Elevator */

Figure 4: An example program

AlarmElevator classes, and connecting each graph using
call, parameter-in, and parameter-out edges. In Fig. 6, the
left hand side keys represent keys for formal parameter ver-
tices and right hand side keys represent keys for actual pa-
rameter vertices.

After constructing the SDG for a complete object-
oriented program, they have used the two-pass graph reach-

ability algorithm [48] for computing slices. Fig. 6 shows
the SDG of the example program given in Fig. 4 and the
static slice with respect to the call to which_floor() at ver-
tex 39, which includes all statements that may affect cur-
rent_floor. The shaded vertices in the SDG represent the
statements included in the slice. The static slice is shown
in Fig. 7 in more detail. Since Larson and Harrold [60] have

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 259

2

3

6

9

10

15

16

17

19

18

20

21

22

F4−in F1−out F2−out F3−out

4 5

1

7

F2−in F2−out

8

F2−in F2−out

F1−in

11
13

14

F2−in

12

F1−in F2−n F3−in F5−in

A2−in
A1−out

F6−in F7−in
F6−out

A1−in A3−in A1−out

A1−in

F1−out

KEY FOR PARAMETER VERTICES

F2−in: Current_dirn=Current_dirn_in

F1−in: Current _floor = Current_floor_in
F1−out: Current_floor_out=current_floor

F2_out: Current_dirn_out=Current_dirn
F3−in: Top_floor=Top_floor_in
F3−out: Top_floor_out=top_floor
F4−in: 1_toop_floor=1_top_floor_in
F5−in: Floor=Floor_in
F6−in: a=a_in
F6−out: a_out=a
F7−in: b=b_in

A1−in: a_in=Current_floor

A1−out: Current_floor=A_out

A2−in: b_in=1

A3−in: b_in=−1

Formal Parameters Actual Parameters

Class membership edge

Data dependence edge

Summary edge

Call edge, parameter edge

Control dependence edge

Figure 5: The ClDG for class Elevator

computed the static slice, so all most all of the statements
in the example program are included in the slice.

One limitation of this approach is that the data dependen-
cies obtained using the approach for creating the individual
procedure dependence graphs are imprecise: by treating
data members declared in a class as if they were global to
the methods of that class, the approach fails to consider the
fact that in different method invocations, the data members
used by the methods might belong to different objects. A
second limitation of the approach is that it does not handle
cases in which an object is used as a parameter or as a data
member of another object.

Tonella et al. [88] have addressed the first limitation by
extending a methods signature to include data members of
the class as formal parameters so that an object can pass
its data members into the method as actual parameters.
Their approach, however, is unnecessarily expensive be-

cause each method call site has actual parameter vertices
for all data members of the object, even if only a few of
them are referenced by the method. They addressed the
second limitation by representing an object as a single ver-
tex when the object is used as a parameter. This representa-
tion, however, might cause the slicer to produce imprecise
slices because the slice may include all the data members of
the object even if a few of them affects the slicing criterion.

Liang et al. [62] developed a more efficient intermediate
representation to overcome the above limitations. To obtain
more precision when an object is used as a parameter (pa-
rameter object), their modified SDG explicitly represents
the data members of the object. They have represented
the parameter object as a tree. The root of the tree rep-
resents the object itself, the children of the root represent
the data members of the object and the edges of the tree
represent the data dependencies between the object and it’s

260 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

A10_in

34

35

37 36

24

25

26

3 4 5

31

32

33

15

16

19

18

21

F1_in F5_in F1_out

F6_in F7_in

A5_out A6_out A7_out

F3_in F1_out F2_out F8_out

A8_in A4_out A5_out A6_out

A11_in A4_out A5_out A6_out

A4_in A5_in A6_in A7_in A9_in

F1_in F2_in F3_in F5_in F1_out

A4_in A5_in A6_in A9_in

F4_in F3_out

A4_in A5_in A6_in A8_in

P1

39

A4_in

F1_in

11

A4_out

12

F2_out

2

38

A1_in A2_in A1_out A1_in A3_in A1_out

20key for parameter vertices

F1_in: current_floor = current_floor_in
F1_out: current_floor_out = current_floor

F3_in: top_floor = top_floor_in
F3_out: top_floor_out = top_floor

F5_in: floor = floor_in
F6_in: a = a_in
F6_out: a_out = a
F7_in: b = b_in
F8_in: alarm_on = alarm_on_in
F8_out: alarm_on_out = alarm_on

F2_in: current_dirn = current_dirn_in
F2_out: current_dirn_out = current_dirn

 A1_in: a_in = current_floor
 A1_out: current_floor = a_out

 A2_in: b_in = 1
 A3_in: b_in: = −1

 A4_in: current_floor_in = current_floor
 A4_out: current_floor = current_floor_out
 A5_in: current_dirn_in = current_dirn
A5_out: current_dirn = current_dirn_out

F4_in: 1_top_floor = 1_top_floor_in A6_in: top_floor_in = top_floor
A6_out: top_floor = top_floor_out

A7_in: alarm_on_in = alarm_on
A7_out: alarm_on = alarm_on_out
A8_in: 1_top_floor_in = 1_top_floor
A9_in: floor_in = 5

control dependence edge

summary edge

22

F6_out

17

F2_in F3_in

F1_out

 slice point

call edge, parameter edge

A!0_in: top_floor = 10
A11_in: 1_top_floor = 10

data dependence edge

F3_out

F8_in

A4_out

A4_out

A4_out

Figure 6: The system dependence graph of Fig. 4

data members. Under this representation, if a data member
of the object is another object, then this data member can
be further expanded into a subtree.

In this representation, a polymorphic object is repre-
sented as a tree in which the root of the tree represents the
polymorphic object itself and the children of the root repre-
sent objects of the possible types. When the polymorphic
object is used as a parameter, the children are further ex-
panded into trees. When the polymorphic object receives a
message, the children are further expanded into call sites.
Note that, in this case, the technique of Liang et al. [62]
differs from that of Larson and Harrold [60]. Liang et al.
have used one call site for each possible object type, in
their representation. But in the representation of Larson
and Harrold, different call sites are used only for different
implementations of a virtual method.

To represent inheritance, Liang et al. [62] have main-
tained one copy of the representation for a method within
a class hierarchy. Then, this representation can be shared
by different classes in the hierarchy. The class entry vertex
in the SDG groups the methods belonging to one class to-
gether using class member edges [60]. But in some cases,

a method might require a new representation when the pro-
gram dependence graph for a new class to the hierarchy, is
constructed. Liang et al. [62] suggested that, a method will
require a new representation, if

– the method is declared in the new class, or

– the method is declared in a lower level class in the
hierarchy and calls a newly redefined virtual method
directly or indirectly.

Liang et al. [62] have also introduced a new concept
called object slicing, which enables the user to inspect the
effects of a particular object on the slicing criterion. Ob-
ject slicing provides better support for debugging and pro-
gram understanding for large scale programs. Sometimes
the user may like to focus attention on one object at a time.
To do this, they have designed a method to identify the
statements in the methods of a particular object that might
affect the slicing criterion.

The shortcomings of their method are that:

1. When slicing the object, we must obtain the complete

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 261

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

23: class AlarmElevator: public Elevator

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

30: {alarm_on = 0 }

31: void go(int floor)

32: { if (! alarm_on)

33: Elevator :: go(floor)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

8: { current_direction = UP; }

 public:

1: class Elevator{

 /* end of main */

/* initialization for Elevator */

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

/* polymorphic method call */

 && (current_floor <= top_floor)

 /* This method computes value of current_floor */

/* AlarmElevator is derived from Elevator */

20: add(current_floor, −1); } /* end if */

Figure 7: The static slice of Fig. 4 on slicing criterion (39, current_floor)

slice first for the program. This might be too expen-
sive.

2. When an object’s method invokes other methods or is
invoked by other methods, we must traverse backward
through several methods.

Hammer et al. [41] proposed a new slicing algorithm
for Java, which includes all dependencies between fields
of nested objects but is more precise than previous algo-
rithms [60, 88, 62]. Instead of limiting the tree level, Ham-
mer et al. [41] unfold the tree completely. As this is not
possible for recursive data structures, they have presented
a condition for safe termination of unfolding. The condi-

tion is based on points-to information. This method keeps
all trees finite but guarantees that no dependencies are lost.
Points-to information is also used to constrain run-time tar-
gets of method calls. As a by-product, a call graph is ex-
tracted. But, even the best points-to analysis will not re-
solve all object polymorphism, and the object trees must
represent all possible run-time types of an object. Unlike
[62], Hammer et al. [41] do not represent polymorphic ob-
jects as a set of trees, but as one merged tree. To disam-
biguate fields with the same name but defined in different
classes, they have used the fully qualified field name. Thus
merging does not reduce the precision of the final SDG. It
just reduces the size of the SDG. The short coming of this

262 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

approach is that it is more expensive than [60, 62].
Krishnaswamy [56] proposed a different approach

to slicing object-oriented programs. He used an-
other dependence-based representation called the object-
oriented program dependency graph (OPDG) to represent
the object-oriented programs. The OPDG of an object-
oriented program represents control flow, data dependen-
cies and control dependencies. The OPDG representation
of an object-oriented program is constructed in three lay-
ers, namely: Class Hierarchy Subgraph (CHS), Control
Dependence Subgraph (CDS), and Data Dependence Sub-
graph (DDS). The CHS represents inheritance relationship
between classes, and the composition of methods into a
class. A CHS contains a single class header node and a
method header node for each method that is defined in the
class. Inheritance relationships are represented by edges
connecting class headers. Every method header is con-
nected to the class header by a membership edge. Subclass
representations do not repeat representations of methods
that are already defined in the super classes. Inheritance
edges of a CHS connect the class header node of a derived
class to the class header nodes of it’s super classes. In-
herited membership edges connect the class header node of
the derived class to the method header nodes of the meth-
ods that it inherits. A CDS represents the static control
dependence relationships that exists within and among the
different methods of a class. The DDS represents the data
dependence relationship among the statements and pred-
icates of the program. The OPDG of an object-oriented
program is the union of three subgraphs: CHS, CDS and
DDS. Slices can be computed using OPDG as a graph-
reachability problem. He also computed the polymorphic
slices of object-oriented programs based on the OPDG.

The OPDG of an object-oriented program is constructed
as the classes are compiled and hence it captures the com-
plete class representations. The main advantage of OPDG
representation over other representations is that the repre-
sentation has to be generated only once during the entire
life of the class. It does not need to be changed as long as
the class definition remains unchanged. Fig. 8 represents
the CHS of the example program of Fig. 4.

Kung et al. [59, 57, 58] presented a representation for
object-oriented software. Their model consists of an ob-
ject relation diagram and a block branch diagram. The
object relation diagram of an object-oriented program pro-
vides static structural information on the relationships ex-
isting between objects. It models the relationship that exists
between classes such as inheritance, aggregation and asso-
ciation. The block branch diagram of an object-oriented
program contains the control flow graph of each of the class
methods, and presents a static implementation view of the
program. Harrold and Rothermel [47] presented the con-
cept of Call Graph. A call graph provides a static view
of the relationship between object classes. A call graph is
an inter-procedural program representation in which nodes
represent individual methods and edges represent call sites.
However, a call graph does not represent important object-

oriented concepts such as inheritance, polymorphism and
dynamic binding.

Chen et al. [14] proposed an intermediate representa-
tion called Object-Oriented Dependency Graph (ODG) to
represent object-oriented programs. The ODG is a multi-
diagraph which is extended from a directed graph by aug-
menting multiple edge types, vertex properties, and prop-
erty relations. With this extension, the ODG can avoid
some dependencies due to object encapsulation. Based on
the ODG, Chen et al. [14] presented an algorithm for slic-
ing of object-oriented programs.

Chen et al. [15] defined two types of program slices,
state and behavior slices by considering the dependencies
of object-oriented features. A state slice for an object is a
set of messages and control statements that might affect the
state of the object. A behavior slice for an object is a set of
attributes and methods defined in related classes that might
affect the behavior of the object.

Although, these approaches [56, 60, 88, 87, 62, 16, 59,
57, 58, 47, 66, 41] represent many features of object-
oriented programs, still there are some drawbacks with
these approaches. First, these techniques are not fit to rep-
resent larger programs, because all the procedure depen-
dence graphs of subprograms are connected in the SDG,
and for a large program the SDG will be too large to man-
age and understand. Second, the existing techniques only
slice statements in methods of a class. A class consists of a
set of methods and data members. Statement slicing is not
enough to analyze and understand classes. Finally, to im-
prove the efficiency, most of the PDGs of methods should
be reused.

To overcome these drawbacks, Chen and Xu [18] have
proposed a new approach to represent dependence for
object-oriented Java software that is quite different from
the existing SDG representations [60, 88, 62, 56], which
connect all PDGs of methods. This new program depen-
dence graph is a set of PDGs with tags that are not con-
nected. The PDG of a class consists of a set of PDGs of
its methods. Each PDG is an independent graph, and does
not connect to any other PDGs. The tags have the form (x,
y) (where x and y are variables) and are used to distinguish
the different definitions and dependencies in a statement.
They have used the following sets in their approach: def(s),
ref(s), Def(s, x), Dep_D(s, x), and Dep_R(s). They have
defined these sets as follows:

– Def(s) denotes the variables whose values are defined
(modified) at s. The in formal parameters are defined
at entry node of the subprogram.

– Ref(s) denotes the variables whose values are refer-
eed, but not modified at s.

– Def(s, x) denotes the variables used when defining
variable x at s.

– Dep_D(s, x) = {(x, s1, y), such that y ∈
Def(s, x)andy ∈ Def(s1) and there exists a
path from s1 to s on which y is not redefined}.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 263

Method Direction()

Method Elevator()

Class header Elevator

Class header AlarmElevator

Method downMethod up() ()

Method which_floor()

Method ~Elevator()

Method go()

Method set_alarm() Method reset_alarm()Method AlarmElevator()

inherited method

inheritance

class membership

Figure 8: The CHS for the example program of Fig. 4

– Dep_R(s) = {(x, s1, x), such that if s is a control
statement, x is a conditional variable used at s, and
x ∈ Def(s1) and there exists a path from s1 to s on
which x is not redefined}.

Chen and Xu [18] defined the program dependence
graph (PDG) of a method M as a directed graph with tags.
According to this approach, PDG is triplet < S1, E1, T >,
where node set S1 = S (S is the node set of M’s CFG),
edge set E1 = E1 ∪ E2, whereE1 is the set of di-
rect control dependence edges and E2 = {< s1, s2 >
suchthat(x, s2, y) ∈ Dep_D(s1, x)and(x, s2, x) ∈
Dep_R(s1)} is the set of direct data dependence edges. T
is a tag set. The tag on an edge < s1, s2 > can be obtained
in the following way:

– If < s1, s2 >∈ E1, then its tag is (*, *);

– If < x, s2, y >∈ Dep_D(s1), then its tag is (y, x);

– If < x, s2, x >∈ Dep_R(s1), then its tag is (x, x);

For example, consider the sample program in Fig. 4. The
PDG of the method Elevator, according to the approach
of Chen and Xu [18], is shown in Fig. 9. Similarly the
PDG of other methods can be drawn. According to the
approach of Chen and Xu [18], in Fig. 9, the tag for the
edge (2, 3) is (current_floor, 1), the tag for edge (2, 4) is
(current_direction, UP) and the tag for the edge (2, 5) is
(top_floor, 1). There are three classes, Elevator, AlarmEle-
vator and main, in the sample program. The PDG of class
Elevator is shown in Fig. 10. It may be observed that the

PDG of each method in Fig. 10,is independent. Using the
PDG of a method, Chen and Xu [18] solved intra-method
slicing as a graph-reachability problem with tags. The ap-
proach of Chen and Xu [18] differs from the previous ap-
proaches [48] in that it checks not only the edges but also
the tags on these edges. Based on this new model, they
have introduced the concepts of partial slicing, object slic-
ing and class slicing.
Partial slicing: partial slicing can make the user pay at-
tention to the interesting parts of the program, and slice
incomplete programs or components from a third party
without source codes. Informally, given a slicing criterion
< s, v >, the partial slicing only slices the interested parts
of the program such as a class, few methods of a class or an
object. To slice parts of a program, they have constructed
the PDGs of interested subunits. For other methods, only
the interfaces, i.e., the dependencies among parameters are
needed. It is enough to know the interface (how to use
the method) of incomplete programs or components from a
third party. When we construct the PDG of a program, all
PDGs of methods have been constructed. Based on these
PDGs, we can use the partial slicing algorithm. In the slic-
ing algorithm, each method is sliced independently. If the
method is not considered, we just do not slice it.
Object slicing: Object slicing was first introduced by
Liang et al. [62]. It is mainly used for tasks, such as de-
bugging and program understanding. Object slicing iden-
tifies statements in methods of an object that might affect
the slicing criterion. To slice an object, the slicing criterion
is changed to < s, v, Object >. Informally, given a slic-
ing criterion < s, v,Object >, object slicing identifies the

264 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

2

4

(current_direction, UP)(current_floor, 1)

3 5

 (top_floor, 1_top_floor)

Figure 9: The PDG of method Elevator of the example program of Fig. 4

PDG of Elevator PDG of up PDG of down

PDG of which_floor PDG of direction PDG of go PDG of add

Figure 10: The PDG of class Elevator of the example program of Fig. 4

statements in the methods of the object that might affect
slicing criterion < s, v >.
Class slicing: Class slicing identifies data members and
statements in methods of the class that might affect the slic-
ing criterion. Class slicing slices not only the methods, but
also all the data members. To slice a class, the slicing cri-
terion is changed to < s, v, Class >. Informally, given a
slicing criterion < s, v, Class >, the result of class slicing
of a class is a class that includes partial data members and
statements in the methods of class, and these data members
and statements might influence the variable defined at s.
To slice a class, one method is to union all the object slices
of the class and record the data members used. When the
number of objects is large, this method will be too expen-
sive. Another way is that, when constructing the PDG, we
do not distinguish data members for different objects in-
stantiated from the same class. But using such PDG will
lose much information that is useful for other slicing. The
best way is to traverse backward from s when slicing and
mark the statements and data members used in the class
based on this new PDG.

The advantages of this approach [18] are that:

– It distinguishes data members for different objects and
represents the effects of polymorphism and dynamic
binding.

– Using this representation, the PDGs can be con-
structed concurrently as each PDG is independent. So,
this representation is quite fit for representing larger
programs.

– Object slicing enables users to inspect statements in
a slice, object by object. Class slicing enables users
to inspect not only the statements in methods but also
data members in classes.

– According to this slicing algorithm, when the slicing
criterion changes, most PDGs need not be traversed,
because the previous results that are saved on disks,
can be reused.

The shortcoming of this approach is that when we only
slice once or few times, the cost might be too much, be-
cause all the methods are analyzed first before slicing and
the results are stored in libraries on disk.

Steindl [85] has developed a fully operational program
slicing tool, Oberon Slicing Tool, for the programming lan-
guage Oberon-2. It generates state-of-the-art algorithms
and applies them to a strongly-typed object-oriented pro-
gramming language. It extends them to support inter-
modular slicing of object-oriented programs. Control and
data flow analysis considers inheritance, dynamic binding
and polymorphism, as well as side-effects of functions,
short circuit evaluation of Boolean expressions and aliases
due to reference parameters and pointers. The algorithm
for alias analysis is fast but effective by taking into account
information about the type of variables and the place of
their declaration. The result of static program analysis is
visualized with active text elements: hypertext links con-
nect the call sites with the possible call destinations, pa-
rameter information elements indicate the direction of data
flow at calls. Since static program analysis must make con-
servative assumptions about actual program executions, the
sets of possible aliases and call destinations due to dynamic
binding are more general than necessary. Steindl has vi-
sualized these sets and allowed the programmer to restrict
them via user interaction. These restrictions are then used
to compute more precise control and data flow information.
In this way, the programmer can limit the effects of aliases
and dynamic binding and bring in his knowledge about the
program into the analysis.

The disadvantages of this technique are:

– The layout of the the original source code is lost.

– The front-end of the compiler skips all comments, so
they are lost and cannot be displayed.

– The front-end of the compiler performs some simple
optimizations such as constant folding, transformation

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 265

of IF statements with constant conditions, replace-
ment of integer multiplication by a power of two by
arithmetic shifts, etc. These optimizations cannot be
undone and the results are presented to the user. This
may give insights, but may also confuse.

– The reconstruction of the source code is difficult, the
module implementing the reconstruction and the user
interface is very big, approximately 3000 lines.

3.2 Dynamic Slicing of Object-oriented
Programs

Korel and Laski [52] introduced a new form of slicing. This
new form of slicing is dependent on input data and is gener-
ated during execution-time analysis as opposed to Weiser’s
static slicing [92] and is therefore called dynamic slicing.
Similar to the major objective of static slicing, dynamic
slicing was specifically designed as an aid to debugging,
and can be used to help in the search for offending state-
ments which caused the program error [63].

Considerable research results on dynamic slicing of pro-
cedural programs are available [4, 52, 3, 49, 2, 78, 79, 37,
27, 98]. But dynamic slicing of object-oriented programs
have scarcely been reported in the literature [100, 84, 94,
90].

Agrawal and Horgan [4] were the first to present al-
gorithms for finding dynamic program slices using pro-
gram dependence graphs. They proposed a dynamic slic-
ing method by marking nodes on a static program depen-
dence graph. The computed slice is not always precise,
because some dependencies might not hold in dynamic ex-
ecution. They also proposed a precise method based on
the dynamic dependence graph (DDG) [4]. Zhao [100] ex-
tended the DDG of Agrawal and Horgan [4], known as dy-
namic object-oriented dependence graph (DODG) to rep-
resent various dynamic dependencies between statement
instances for a particular execution of an object-oriented
program. The DODG is an arc-classified diagraph (V, A),
where V is the multi-set of flow-graph vertices, and A is
the set of arcs representing dynamic control dependencies
and data dependencies between vertices. Zhao’s construc-
tion of DODG is based on dynamic analysis of control
flow and data flow of the program, and similar to those
for constructing dynamic dependence graphs for procedu-
ral programs [2]. Zhao constructed the DODG by creating
a new node for each occurrence of a statement in the execu-
tion trace, and creating all the dependence edges associated
with the occurrence at run-time. The execution trace of the
example program in Fig. 4 on input argument argv[1] = 3,
is given in Fig. 11. Fig. 12 shows the DODG of the exam-
ple program in Fig. 4 with respect to the execution trace in
Fig. 11.

Zhao [100] has considered the specific features of object-
oriented programs such as method calls, inheritance, poly-
morphism and dynamic binding etc. in his algorithm. Zhao
has regarded a call statement in an object-oriented program
as one of the following statements:

– a statement that calls a free standing procedure,

– a statement that has function application,

– a statement that creates an object,

– a statement that invokes a method, or

– a statement that returns a value to its caller.

Using similar techniques proposed by Agrawal and Hor-
gan [4], Zhao has solved the problem of representing a call
statement in the DODG.

Zhao has adopted the following concepts for dynamic
slicing of object-oriented programs:

– A slicing criterion for an object-oriented program is
of the form (s, v, t, i), where s is a statement in the
program, v is a variable used at s, and t is an execution
trace of the program with input i.

– A dynamic slice of an object-oriented program on a
given slicing criterion (s, v, t, i) consists of all state-
ments in the program that actually affected the value
of a variable v at statement s.

Based on the DODG, Zhao has used a two-phase algo-
rithm to compute dynamic slices of object-oriented pro-
grams. Computation of dynamic slices using the DODG
is carried out as a graph-reachability problem. The two
phases of the algorithm are:

1. Computing a dynamic slice over the DODG of the
object-oriented program.
(This can be done by using a usual depth-first or
breadth-first graph traversal algorithm to traverse the
DODG of the program by taking the vertex corre-
sponding to the statement of interest as the start point
of traversal.)

2. Mapping the slice over the DODG to the source code
to obtain a dynamic slice of the program.
(This can be done by simply defining a mapping func-
tion.)

It may be noted that the dynamic slice computed by
Zhao [100] is not executable. This is in contrast to that
presented in [52] which defines a dynamic slice as an ex-
ecutable subprogram. For program debugging and testing,
a non-executable dynamic slice can also supply enough in-
formation as an executable dynamic slice, but can be com-
puted more easily.

Fig. 13 shows the dynamic slice of the example pro-
gram in Fig. 4 with respect to the slicing criterion (39, cur-
rent_floor, t, argv[1] = 3), where t is the execution trace
given in Fig. 11. The statements within the boxes are in-
cluded in the slice. It can be marked that the size of the re-
sulting dynamic slice is reduced significantly compared to
its corresponding static slice. The disadvantage of Zhao’s
approach is that the number of nodes in a DODG is equal

266 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

34(0) main(argc, char **argv)

37(0) e_ptr = new Elevator(10);
2(0) Elevator(int 1_top_floor);
3(0) current_floor = 1;
4(0) current_direction = UP;
5(0) top_floor = 1_top_floor;
38(0) e_ptr go(3);

15(0) virtual void go(int floor);

16(0) if (current _direction = UP)

18(0) add(current_floor, 1),

21(0) add(int &a, const int &b);
22(0) a = a + b;

17(0) while ((current_floor != floor) && (current_floor) <= top_floor));

;

17(1) while ((current_floor != floor) && (current_floor) <= top_floor));

18(1) add(current_floor, 1);

21(1) add(int &a, const int &b);

22(1) a = a + b;

17(2) while ((current_floor != floor) && (current_floor) <= top_floor));

39(0) cout << "\n currently on floor:" << e_ptr which_floor() <<"

11(0) int which_floor ();
12(0) return current_floor;

35(0) if (argv[1])

Figure 11: An execution trace of the example program in Fig. 4 on input argv[1] = 3.

34

35

36

38

39 11 12

 2 3 4 5

15 16 17 18 21 22

 17 18 21 22

17

data dependence arc

control dependence arc

Figure 12: The DODG of the program of Fig. 4 on input argv[1]=3

to the number of executed statements, which may be un-
bounded for programs having many loops. Further, Zhao
has used trace files to store the execution history which is
expensive. The space complexity and the time complexity
of this dynamic slicing algorithm are of O(S) and O(S2),
respectively, where S is the length of execution of the pro-
gram.

Song et al.[84] proposed a method to compute forward
dynamic slice of object-oriented programs using dynamic
object relationship diagram (DORD). In this method, they
computed the dynamic slices for each statement immedi-

ately after the statement is executed. When the last state-
ment is executed, the dynamic slices of all executed state-
ments have been obtained. However, only some special
statements in the loops need to compute dynamic slices.
So the dynamic slices computed by this technique is un-
necessarily expensive.

Xu et al. [94] extended their earlier method [18] to dy-
namically slice object-oriented programs. Their method
uses object program dependence graph (OPDG) and other
static information to reduce the information to be traced
during execution. Their method computes dynamic slices

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 267

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

23: class AlarmElevator: public Elevator

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

30: {alarm_on = 0 }

31: void go(int floor)

32: { if (! alarm_on)

33: Elevator :: go(floor)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

20: add(current_floor, −1); } /* end if */

8: { current_direction = UP; }

 public:

1: class Elevator{

 /* end of main */

/* initialization for Elevator */

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

/* polymorphic method call */

 && (current_floor <= top_floor)

 /* This method computes value of current_floor */

/* AlarmElevator is derived from Elevator */

Figure 13: The dynamic slice of the example program in Fig. 4 on slicing criterion (39, current_floor, t, argv[1] = 3).

by combining static dependence information and dynamic
execution of the program. By analyzing the control flow
graph of the given program, fewer breakpoints are inserted
to trace the execution of the program. It is an approach
combining forward analysis with backward one. In the for-
ward process, it marks nodes on the OPDG and computes
intermediate dynamic slices (which are used to record dy-
namic execution information) at the necessary points dur-
ing the program execution. In the backward process, it tra-
verses the OPDG marked to obtain the final dynamic slice.
Based on this model, they have proposed algorithms to dy-
namically slice methods, objects and classes.

Wang et al. [90] presented a new dynamic slicing algo-

rithm for Java programs which operates on compact byte
code traces. According to their algorithm, first, the byte
code stream corresponding to an execution of a Java pro-
gram is compactly represented. Then, they perform a back-
ward traversal of the compressed program trace to compute
data/control dependencies on-the-fly. The slice is updated
as these dependencies are encountered during the traversal.

The compactness of the trace representation is owing to
several factors. First, byte codes which do not correspond
to memory read/write (i.e., data transfer to and from the
heap) or control transfer are not stored in the trace. These
byte codes can be ignored for computing control and data
dependencies. Secondly, the sequence of addresses used by

268 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

each memory reference, control transfer byte code is stored
separately. Since these sequences typically have high repe-
tition of pattern, they exploit such repetition to save space.
They have extended the dynamic slicing algorithm to ex-
plain certain classes of omission errors.

The important advantage of their technique is that it is
more space efficient than that of Zhao [100] since they use
the results from data compression to compactly represent
byte code traces of Java programs. The major space sav-
ings come from the optimized representation of data (in-
struction) addresses used by memory reference (branch)
byte codes as operands. Also, their algorithm can directly
traverse the compact traces without restoring to costly de-
compression. The disadvantage of this approach is that it
uses trace files, which are expensive to handle.

Mohapatra et al. [70, 72] proposed a new algorithm for
dynamic slicing of object-oriented programs. They have
used extended system dependence graph (ESDG) as the in-
termediate representation. They have statically constructed
the ESDG only once before the execution of the program
starts. Their algorithm is based on marking and unmarking
the edges of the ESDG as and when the dependencies arise
and cease during run-time. So, they have named their al-
gorithm edge marking dynamic slicing (EMDS) algorithm
for object-oriented programs. The EMDS algorithm marks
an edge of the ESDG when the corresponding dependency
arises and unmarks an edge when the dependency ceases
to exist. Mohapatra et al. [70, 74] also proposed another
algorithm called node marking dynamic slicing (NMDS)
algorithm for object-oriented programs. The NMDS algo-
rithm also uses ESDG as the intermediate representation.
The NMDS algorithm is based on marking and unmarking
the executed nodes of the ESDG appropriately during run-
time. The space complexity of both the algorithms (EMDS
and NMDS) is O(n2), where n is the number of statements
in the program. The time complexity of both the algorithms
(EMDS and NMDS) is O(n2S), where S is the length of
the execution trace. Each vertex of ESDG is annotated with
its most recent dynamic slice during execution of program.
Thus, slices can be extracted in constant time i.e., in O(1)
time.

The advantage of both the algorithms [72, 74] compared
to the related ones [100, 84, 94, 90] is that they do not not
require any new nodes to be created and added to the in-
termediate representation at run-time nor do they require to
maintain any execution trace in trace files. This saves the
expensive node creation and file I/O steps. Another im-
portant advantage of their algorithms is that when a request
for a slice is made, it is already available. Once a slicing
command is given the algorithms produce results almost in-
stantus through a mere table-lookup and avoid on-demand
slicing computation. They have shown that the EMDS and
NMDS algorithms are more space and time efficient than
the related algorithms [100, 84, 94, 90]. They have also
shown that the NMDS algorithm is faster than the EMDS
algorithm. Table 1 shows the comparison of various dy-
namic slicing algorithms for object-oriented programs.

Ohata et al. [81] observed that static slicing cannot com-
pute precise slices and dynamic slicing requires too much
computation time and memory space. So, they adopted an
intermediate slicing method between static and dynamic
slicing called Dependence-Catch (DC) slicing to object-
oriented programs. DC slicing method uses dynamic data
dependence analysis and static control dependence anal-
ysis. Dependence-Catch slicing computes more precise
slices than static slicing and needs less computation time
and memory space.

4 Slicing of Concurrent
Object-Oriented Programs

Concurrent object-oriented programs are becoming more
popular. Many of the real life object-oriented programs are
concurrent which run on different machines connected to a
network. It is usually accepted that understanding and de-
bugging of concurrent object-oriented programs are much
harder compared to those of sequential programs. The non-
deterministic nature of concurrent programs, lack of global
states, unsynchronized interactions among objects, multi-
ple threads of control and a dynamically varying number of
objects are some reasons for this difficulty [6, 9, 8]. An in-
creasing amount of resources are being spent in debugging,
testing and maintaining these products. Slicing techniques
promise to come in handy at this point. However research
attempts in the program slicing area have focused attention
largely on sequential programs. But research reports deal-
ing with slicing of concurrent object-oriented programs are
scarce in literature [104, 101, 102, 17, 103, 105, 82, 97, 73].

4.1 Static Slicing of Concurrent
Object-Oriented Programs

Static slicing of concurrent procedural programs has
drawn the attention of many researchers [36, 35, 38, 7].
Also, static slicing of concurrent object-oriented programs
has been addressed by some researchers [17, 103, 102, 105,
82, 97]. Excellent surveys on static slicing of concurrent
object-oriented programs can be found in [20].

Zhao et al. [104] presented a dependence based represen-
tation called the system dependence net (SDN) which ex-
tends the previous dependence based representations [60]
to represent various dependence relationships in concur-
rent object-oriented programs. An SDN of a concurrent
object-oriented program consists of a collection of depen-
dence graphs each representing a main procedure, a free
standing procedure, or a method in a class of the pro-
gram. It also consists of some additional arcs to represent
direct dependencies between a call and the called proce-
dure/method and transitive inter-procedural data dependen-
cies. To represent interprocess communications between
different methods in a class of a concurrent object-oriented
program, they have introduced a new type of program de-
pendence arc named as external communication depen-

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 269

Table 1: Comparison of algorithms for dynamic slicing of object-oriented programs

Approach Category Break points Trace
of slice inserted files used

Zhao backward no yes
Song et al. forward no yes
Xu et al. backward yes yes

Wang et al. backward no yes
Mohapatra et al. backward no no

dence arc into the SDN. An SDN can be used to represent
either object-oriented features or concurrency issues in a
concurrent object-oriented program.

Based on the SDN, Zhao et al. [104] have used the two-
phase algorithm [48] to compute static slices of concurrent
object-oriented programs such as CC++. In CC++, syn-
chronization between different threads is realized by using
a single assignment variable. Threads that share access to
a single assignment variable can use that variable as a syn-
chronization element. Their system dependence net (SDN)
is an extension of the SDG of Larson and Harrold [60]
and therefore can be used to represent many object-oriented
features in a CC++ program. To handle concurrency issues
in CC++, they used an approach proposed by Cheng [22]
which was originally used for representing concurrent pro-
cedural programs with a single procedure each. However,
their approach, when applied to concurrent Java programs
suffers from some problems due to the fact that the concur-
rency models of CC++ and Java are essentially different.
While Java supports monitors and some low level thread
synchronization primitives, CC++ uses a single assignment
variable mechanism to realize thread synchronization. This
difference leads to different sets of concurrency constructs
in both the languages, and therefore requires different tech-
niques to handle concurrency issues in computing slices.

Zhao [102] has also presented a dependence-based rep-
resentation called the multi-threaded dependence graph
(MDG) to represent concurrent Java programs. The MDG
is composed of a collection of thread dependence graphs
(TDG) each representing a single thread in the program,
and some special kinds of dependence arcs to represent
thread interactions between different threads. The TDG
is used to represent a single thread in a concurrent Java
program and is similar to the SDG [60]. The TDG of
a thread is an arc-classified diagraph that consists of a
number of method dependence graphs each representing
a method, and some special kinds of dependence arcs to
represent direct dependencies between a call and the called
method and transitive inter-procedural data dependencies
in the thread. The method dependence graph is similar to
the procedure dependence graph proposed by Horwitz [48].
To represent synchronization among threads and communi-
cation among shared objects in different threads, Zhao has
used two special types of dependence arcs in the MDG.
He has used synchronization dependence arcs to repre-

sent dependence relationships between different threads
due to inter-thread synchronization and communication de-
pendence arcs to represent dependence relationships be-
tween different threads due to inter-thread communication.

Zhao [102] has constructed the MDG for a complete
concurrent Java program by combining the TDGs for all
threads in the program at synchronization and communica-
tion points by adding synchronization and communication
dependence arcs between these points. Based on the MDG,
Zhao [102] has presented a two-phase algorithm for com-
puting static slices of concurrent Java programs.

Zhao et al. [105] developed another dependence-based
representation called concurrent program dependence
graph (CPDG) to represent program dependencies in a con-
current Java program. The CPDG is a diagraph which
consists of a collection of dependence graphs each rep-
resenting a single method in the class. Also, it includes
a few additional vertices and arcs to model parameter
passing between different methods in a class, and inter-
thread synchronization and communication between differ-
ent threads. Zhao et al. [105] used the two phase algo-
rithm [48] to compute static slices of concurrent Java pro-
grams.

Cheng [23] introduced an intermediate representation
called program dependence net (PDN) for parallel and dis-
tributed programs. Cheng [23] has also discussed various
possible applications of PDN including slicing concurrent
programs. Cheng has defined a dynamic slicing criterion
of a concurrent program as a quadruplet (s, V, H, I), where
s is a statement in the program, V is a set of variables used
at s, and H is a history of an execution of the program with
input I . According to Cheng, the dynamic slice DS(s, V, H,
I) of a concurrent program on a given slicing criterion (s,
V, H, I) consists of all statements in the program that actu-
ally affected the beginning or end of execution of s and/or
affected the values of variables in V at s in the execution
with I that produced H .

All these approaches [103, 102, 105, 23] slice concur-
rent programs by solving a node reachability problem in
the graph. A shortcoming of these algorithms is that the
resulting slice is not precise since they consider that de-
pendencies between concurrently executed statements are
transitive. But, in practice, the dependencies between con-
currently executed statements are not transitive due to the
presence of synchronization dependence and communica-

270 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

tion dependence [17].
To get a more precise slice than that of Zhao [102]

and Cheng [23], Krinke [54] introduced a slicing algo-
rithm without synchronization. Krinke has introduced a
new type of dependence called interference dependence,
among threads. In Krinke’s algorithm, the interference de-
pendence is not transitive. So, the resulting slice is more
precise. However, synchronization is widely used in con-
current programs and in some environments unavoidable.
Thus Krinke’s algorithm can be used only in some re-
stricted applications.

Krinke [55] has also developed another technique for
context sensitive slicing of concurrent programs. In this
technique, Krinke has extended the control flow graph
(CFG) and program dependence graph (PDG) [48] to repre-
sent concurrent programs with interference. This technique
does not require serialization or inlining of called proce-
dures. Nanda and Ramesh [80] have extended Krinke’s
technique [54] to compute static slices of concurrent pro-
grams with synchronization. In their approach, they have
considered loop-carried data dependence while computing
the slice. They have proposed some optimizations to slice
more efficiently. They have claimed that it could get near
linear behavior for many practical concurrent programs.

Qi and Xu [82] have developed a task synchronization
reachability graph (TSRG) for analyzing concurrent Ada
programs. Based on the TSRG, they determine the syn-
chronization dependencies in a concurrent Ada program,
and construct a new type of program dependence graph,
TSRG-based program dependence graph (RPDG). They
have discussed various applications of RPDG including
program understanding, debugging, testing and software
maintenance etc. A limitation of this approach is that, it
does not consider the communication dependencies in a
concurrent program. But, communication dependencies do
exist in many practical situations and is normally unavoid-
able in a concurrent object-oriented program. This makes
Qi and Xu’s approach [82] difficult to use in many practical
situations.

Chen and Xu [17] have developed concurrent control
flow graphs (CCFG) and concurrent program dependence
graphs (CPDG) to represent concurrent Java programs.
Based on the CPDG, they proposed a static slicing algo-
rithm for concurrent Java programs [17]. In their algorithm,
they have considered the fact that the inter-thread data de-
pendencies are not transitive. So, the resulting slice is more
precise than that of Zhao [102] and Cheng [23].

All the reported approaches [104, 101, 102, 23, 54, 55,
17, 82] focus on static slicing. They have not considered
the dynamic slicing aspects.

4.2 Dynamic Slicing of Concurrent
Object-Oriented Programs

Reports on dynamic slicing of concurrent object-oriented
programs are scarcely available in the literature [71, 73, 76,
77].

Mohapatra et al. [71] extended the dynamic slicing al-
gorithm of Zhao [100] to compute dynamic slices of con-
current object-oriented programs. They have used dynamic
multi-threaded dependence graph (DMDG) as the interme-
diate representation. The DMDG is an arc-classified dia-
graph (V, A), where V is the multi-set of flow graph ver-
tices, and A is the set of arcs representing dynamic con-
trol dependencies, data dependencies, synchronization de-
pendencies and communication dependencies between the
vertices. Based on the DMDG, they have used a two-phase
algorithm to compute dynamic slices of concurrent object-
oriented programs. The space complexity and the time
complexity of this algorithm are of O(S) and O(S2), re-
spectively, where S is the length of the execution trace. The
disadvantage of this approach is that they have used a trace
file to store the execution history, which is expensive.

Mohapatra et al. [70, 73, 77] have also proposed another
algorithm for dynamic slicing of concurrent Java programs
without using trace files. They have used concurrent con-
trol flow graph (CCFG) and concurrent system dependence
graph (CSDG) as the intermediate representations. Ac-
cording to their approach, first the CCFG is constructed
statically. Then, the CSDG is constructed by using the
CCFG. A concurrent system dependence graph (CSDG)
GC of a concurrent object-oriented program P is a directed
graph (NC , EC) where each node n ∈ NC represents a
statement in P . For x, y ∈ NC , (x,y) ∈ EC iff one of the
following holds:

1. y is control dependent on x. Such an edge is called a
control dependence edge.

2. y is data dependent on x. Such an edge is called a data
dependence edge.

3. y is synchronization dependent on x. Such an edge is
called a synchronization dependence edge.

4. y is communication dependent on x. Such an edge is
called a communication dependence edge.

Based on the CSDG, they have proposed a marking
based dynamic slicing (MBDS) algorithm for concurrent
Java programs. The MBDS algorithm is based on mark-
ing and unmarking the edges of the CSDG as and when the
dependencies arise and cease during run-time. MBDS al-
gorithm permanently marks the control dependence edges
as control dependencies do not change during program ex-
ecution. The algorithm considers all the data dependence
edges, synchronization dependence edges and communica-
tion dependence edges for marking and unmarking during
run-time. During execution of the program P , MBDS al-
gorithm marks an edge of the CSDG when its associated
dependence exists, and unmarks when its associated de-
pendence ceases to exist. After each statement u is exe-
cuted, MBDS algorithm unmarks all incoming marked de-
pendence edges excluding the control dependence edges,
associated with the object obj, corresponding to the pre-
vious execution of the statement u. Then, the algorithm

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 271

marks the dependence edges corresponding to the present
execution of the statement u.

MBDS algorithm operates in three main stages:

Stage 1: Statically constructing the intermediate program
representation graph,

Stage 2: Managing the CSDG at run-time, and

Stage 3: Computing the dynamic slice.

In the first stage of MBDS algorithm, the CCFG is con-
structed from a static analysis of the source code. Also at
this stage, using the CCFG the static CSDG is constructed.
The stage 2 of the algorithm is responsible for maintain-
ing the CSDG during run-time. The maintenance of the
CSDG at run-time involves marking and unmarking the
different dependencies such as data dependencies, synchro-
nization dependencies and communication dependencies as
they arise and cease. The stage 3 is responsible for comput-
ing the dynamic slices for a given slicing criterion using the
uptodate CSDG. However, the third step is simply a look up
as the dynamic slice computed during run-time is already
available. So, when a request for a slice is made, it is im-
mediately obtained. The space complexity of the MBDS
algorithm is O(n2), where n is the number of statements
in the program. The time complexity of the MBDS algo-
rithm is O(n2S), S being the length of the execution trace.
Each node of the CSDG is annotated with its most recent
dynamic slice during execution of the program. Thus, the
dynamic slices can be looked up in constant time i.e., in
O(1) time.

The important features of the MBDS algorithm are listed
below.

– It computes correct dynamic slices with respect to any
slicing criterion.

– It can handle inter-thread synchronization by using
primitives such as wait() and notify().

– It can handle inter-thread communication through
shared objects.

– No trace files are used. All information are maintained
and updated dynamically for all threads and are dis-
carded at run-time of a program on termination of a
thread.

– It does not create any additional nodes during run-
time. This saves the expensive node creation steps.

– When a request for a slice is made, it is already avail-
able.

– No serialization of the events of the concurrent pro-
gram is required.

– As MBDS algorithm marks an edge of the CSDG only
when the dependence exists, so the transitive prob-
lem [17] does not arise at all. So, MBDS algorithm
often results in slices that are more precise.

– It can be easily extended to compute dynamic slices
of distributed object-oriented programs as each com-
ponent program of the whole distributed program can
be considered as a single concurrent program.

Mohapatra et al. [70, 77] have developed a slicing a
tool called Dynamic Slicer for Concurrent Object-Oriented
Programs (DSCOP) to implement the MBDS algorithm.
DSCOP can compute the dynamic slice of a concurrent
object-oriented program with respect to any given slicing
criterion. DSCOP can handle only a subset of the Java syn-
tax. However, the tool supports inter-thread synchroniza-
tion and inter-thread communication using shared memory.
The lexical analyzer, parser and semantic analyzer com-
ponents of DSCOP have been implemented using ANTLR
(Another Tool for Language Recognition) [1, 67]. Dur-
ing semantic analysis, the input program code is appropri-
ately instrumented so as to facilitate computation of dy-
namic slices and to update other associated run-time data
structures after execution of each statement, as described in
the MBDS algorithm. The Compile and Execute block of
DSCOP compiles and links the instrumented source code
using the Java compiler.

5 Slicing of Distributed
Object-Oriented Programs

As software applications grow larger and become more
complex, program maintenance activities such as adding
new functionalities, porting to new platforms, and correct-
ing the reported bugs consume enormous effort. This is
especially true for distributed object-oriented programs. In
order to cope with this scenario, programmers need effec-
tive computer-supported techniques for decomposition and
dependence analysis of programs. Program slicing is one
technique for such decomposition and dependence analy-
sis.

Many real life object-oriented programs are distributed
in nature and run on different machines connected to a
network. The emergence of message passing standards,
such as MPI, and the commercial success of high speed
networks have contributed to making message passing pro-
gramming common place. Message passing programming
has become an attractive option for tackling the vexing is-
sues of portability, performance, and cost effectiveness. As
distributed computing gains momentum, development and
maintenance tools for these distributed systems seem to
gain utmost importance.

Development of real life distributed object-oriented
programs presents formidable challenge to the program-
mer. Distributed object-oriented programs introduce sev-
eral problems which do not exist in sequential programs.
The non-reproducible behaviors, non-deterministic selec-
tion of communication events, lack of global states and un-
synchronized interactions among threads are some of the
problems which arise in case of distributed object-oriented

272 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

programs [83]. An increasing amount of effort is being
spent in debugging, testing and maintaining these products.
Slicing techniques promise to come in handy at this point.
Through the computation of a slice for a message pass-
ing program, one can significantly reduce the amount of
code that a maintenance engineer has to analyze to achieve
some maintenance tasks. However, research attempts in
program slicing area have focused attention largely on se-
quential programs. Slicing of distributed procedural pro-
grams [26, 51, 28, 22, 50, 24, 61] has also drawn the atten-
tion of many researchers. But, research reports on slicing
of distributed object-oriented programs are scarcely avail-
able in the literature [34, 75].

Goel et al. [34] proposed compression schemes for rep-
resenting execution profiles of shared memory parallel pro-
grams. Their representation captures control flow, data
flow and synchronization in the execution of a shared mem-
ory multi-threaded program running on a multiprocessor
architecture. According to their approach the control and
data flow of each processor is maintained individually as
whole program paths (WOP). The total order of the syn-
chronization operations executed by all processors and the
annotation of each processor’s WOP with synchronization
counts help to capture the inter-processor communications
which are protected via synchronization primitives such as
lock, unlock and barriers. They have illustrated the appli-
cations of compact execution traces in program debugging,
program comprehension, code optimization, memory lay-
out etc. They have used trace files to store the execution
history. This leads to slow I/O operations. They have con-
sidered that the communication across different threads oc-
curs only via synchronization primitives. Communication
via shared variable accesses is not explicitly represented in
their method. We have considered communications among
threads through shared variables as well as message pass-
ing.

Garg et al. [33] introduced the notion of a slice of a dis-
tributed computation. They have defined the slice of a dis-
tributed computation with respect to a global predicate, as
a computation which captures those and only those con-
sistent cuts of the original computation which satisfy the
global predicate. A computation slice differs from a dy-
namic slice in that it is defined for a property rather than
a set of variables of a program. Unlike a program slice,
which always exists, a computation slice may not always
exist. They have proved that the slice of a distributed com-
putation with respect to a predicate exists iff the set of con-
sistent cuts that satisfy the predicate, forms a sub lattice
of the lattice of consistent cuts. Mittal and Garg [68, 69]
presented an efficient algorithm to graft two slices, that is,
given two slices, either compute the smallest slice that con-
tains all consistent cuts that are common to both slices or
compute the smallest slice that contains all consistent cuts
that belong to at least one of the slices.

Mohapatra et al. [75] were the first to propose an al-
gorithm for dynamic slicing of distributed object-oriented
programs. They have introduced the notion of distributed

program dependence graph (DPDG) as the intermediate
program representation. In distributed object-oriented pro-
grams, communication dependency may exist among sub
programs running on different machines. A rcvmsg() call
executed on one machine, might have a pairing sndmsg()
on some other remote machine. To represent this aspect,
they have introduced a logical (dummy) node in the DPDG.
They have named this logical node as a C-node. They have
defined a C-node in the following way:

Let GD1 and GD2 be the DPDGs of two sub programs
P1 and P2 respectively. Let x be a node in GD1 represent-
ing a statement invoking a sndmsg() method. Let y be a
node in GD2 representing the statement invoking the corre-
sponding rcvmsg() method. A C-Node represents a logical
connection of the node y of DPDG GD1 with the node x of
the remote DPDG GD2 . Node x represents the pairing of
sndmsg() with a rcvmsg() call at node y. Node y is Com-
munication dependent on node x.

The C-nodes maintain the logical connectivity among
DPDGs representing different sub programs. A C-node
does not represent any specific statement in the source
code of a sub program. Rather, it encapsulates the triplet: <
send_PID,send_node_number, dynamic_slice_at_send_node >
representing the pairing of the components in a distributed
program. Here, send_PID represents the id of the process
sending the message, send_node_number represents the
particular label number of the statement sending the
message and dynamic_slice_at_send_node represents
the dynamic slice at the sending node. C-nodes capture
communication dependencies among the processes of
different sub programs. It may be noted that the number
of C-nodes in the DPDGs of a distributed C++ program,
equals the number of rcvmsg() calls present in the program.
In the DPDG, for a rcvmsg() node x, the corresponding
C-node is represented as C(x).

They have defined a distributed program dependence
graph (DPDG) in the following way:

Let P = (P1, . . . , Pn) be a distributed C++ program, and
Pi be a sub program of P . P is represented using a set of
DPDGs (GD1 , . . . GDn). The distributed program depen-
dence graph (DPDG) GDi of the component-program Pi is
a directed graph (NDi , EDi) where each node n (excepting
the dummy nodes) represents a statement in Pi. For x, y ∈
NDi , (y,x) ∈ EDi iff any one of the following holds:

1. y is control dependent on x. Such an edge is called a
control dependence edge.

2. y is data dependent on x. Such an edge is called a data
dependence edge.

3. y is fork dependent on x. Such an edge is called a fork
dependence edge.

4. y is communication dependent on x. Such an edge is
called a communication dependence edge.

For all the nodes x, representing rcvmsg() calls, in the
sub program Pi, a dummy node C(x) is created, and a corre-
sponding dummy communication edge (x, C(x)) is added.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 273

The set of DPDGs for each sub program of the dis-
tributed program is constructed statically only once before
the execution of the distributed program starts. Based on
the DPDG, Mohapatra et al. [75] have proposed an al-
gorithm for dynamic slicing of distributed object-oriented
programs. They have named their algorithm parallel dy-
namic slicing (PDS) algorithm as the algorithm can run par-
allely on several machines connected through a network.
The PDS algorithm is based on marking and unmarking the
edges of the DPDG as and when the dependencies arise and
cease at run-time. To achieve fast response time, the PDS
algorithm can run parallely on several machines connected
through a network. For this purpose, we use local slicers at
each remote machine. Our slicing algorithm in effect op-
erates as the coordinated activities of local slicers running
at the remote machines. Each local slicer contributes to the
dynamic slice by determining its local portion of the global
slice in a fully distributed fashion.

The PDS algorithm addresses the concurrency issues
of object-oriented programs while computing the dynamic
slices. It also handles the communication dependency aris-
ing due to objects shared among processes on same ma-
chine and due to message passing among processes on dif-
ferent machines. The space complexity of the PDS algo-
rithm is O(N2), N being the total number of statements of
the distributed program. The time complexity of the PDS
algorithm is O(N2S), where S is the total length of execu-
tion of the distributed program.

The advantage of PDS algorithm is that it does not re-
quire any trace file to store the execution history. Another
important advantage of their algorithm is that when a slic-
ing command is given, the dynamic slice is extracted im-
mediately by looking up the appropriate data structure, as
it is already available during run-time.

Mohapatra et al. [70] also have developed another al-
gorithm for distributed dynamic slicing of Java programs.
They have named their algorithm distributed dynamic slic-
ing (DDS) algorithm for Java programs. To achieve fast re-
sponse time, DDS algorithm can run in a fully distributed
manner on several machines connected through a network,
rather than running it on a centralized machine. They have
used local slicers at each node in a network. A local slicer
is responsible for slicing the part of the program executions
occurring on the local machine.

DDS algorithm uses a modified program dependence
graph (PDG) [48] as the intermediate representation. This
intermediate representation is called as distributed program
dependence graph (DPDG). First, the DPDG is constructed
statically before run-time. DDS algorithm marks and un-
marks the edges of the DPDG appropriately as and when
dependencies arise and cease during run-time. Such an ap-
proach is more time and space efficient and also completely
does away with the necessity to maintain a trace file. This
eliminates the slow file I/O operations that occur while ac-
cessing a trace file. Another advantage of DDS algorithm
is that when a request for a slice for any slicing criterion is
made, the required slice is already available. This appre-

ciably reduces the response time of slicing commands.
Mohapatra et al. [70] have developed a slicing tool to

implement the DDS algorithm. The tool can compute the
dynamic slice of a distributed Java program with respect
to a given slicing criterion. The tool handles only a subset
of Java language constructs. They have named their tool
Dynamic Slicer for Distributed Java programs (DSDJ). To
construct the intermediate graphs they have used the com-
piler tool ANTLR [1, 67]. A distributed Java program is
given as the input to the ANTLR program. The ANTLR
program automatically generates the DPDGs for the com-
ponent programs. The lexical analyzer, parser and seman-
tic analyzer components of DSDJ are combined and the
joint component is termed as program analysis compo-
nent [5]. The lexical analyzer, parser and semantic ana-
lyzer components of DSDJ have been implemented using
ANTLR [1, 67]. During semantic analysis, the Java source
code is analyzed token by token to gather the various pro-
gram dependencies. The tokens are first used to construct
the DCFG (Distributed Control Flow Graph). Next, us-
ing the DCFG the corresponding DPDG (Distributed Pro-
gram Dependence Graph) is constructed. The source pro-
gram is then automatically instrumented, by adding calls
to the slicer module after every statement in the source
program. After the execution of each statement, the up-
date_slice() method is invoked, which marks and unmarks
the edges of the DPDG appropriately and updates the dy-
namic slice. For storing the dynamic slice of each state-
ment they have used a two dimensional integer array. When
the dynamic slice of a particular statement is requested, the
compute_slice() method is invoked, and it provides the dy-
namic slice for the given slicing criterion.

6 Conclusions

We have reviewed the recent works in the area of object-
oriented program slicing including static slicing of object-
oriented programs, dynamic slicing of object-oriented pro-
grams, static slicing of concurrent object-oriented pro-
grams and dynamic slicing of concurrent object-oriented
programs. We have presented a brief review on slicing of
distributed object-oriented programs. We have also dis-
cussed some available tools for slicing of object-oriented
programs. Starting with the basic sequential program con-
structs researchers are now trying to address various issues
of slicing distributed object-oriented programs. Since mod-
ern software products are often large and consist of millions
of lines of code, processing a single data structure becomes
very slow and therefore development of parallel algorithms
for slicing has assumed importance.

References

[1] Antlr. http://www.antlr.org/.

274 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dy-
namic slicing in the presence of unconstrained point-
ers. In Proceedings of the ACM Fourth Symposium
on Testing, Analysis and Verification (TAV4), pages
60 – 73, 1991.

[3] H. Agrawal, R. A. DeMillo, and E. H. Spafford.
Debugging with dynamic slicing and backtracking.
Software Practice and Experience, 23(6):589 – 616,
1993.

[4] H. Agrawal and J. Horgan. Dynamic program slic-
ing. In Proceedings of the ACM SIGPLAN’90 Con-
ference on Programmimg Lanuages Design and Im-
plementation, SIGPLAN Notices, Analysis and Veri-
fication, volume 25, pages 246 – 256, White Plains,
NewYork, 1990.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[6] G. R. Andrews. Concurrent Programming: Princi-
ples and Practice. Addison-Wesley, 1991.

[7] G. R. Andrews and F. B. Schneider. Concepts and
notations for concurrent programming. ACM Com-
puting Surveys, 15:3 – 43, 1983.

[8] M. Awad and J. Ziegler. A practical approach to the
design of concurrency in object-oriented systems.
Software Practice and Experience, 27:1013 – 1034,
1997.

[9] M. Ben-Ari. Principles of Concurrent and Dis-
tributed Programming. Prentice Hall, 1990.

[10] D. Binkley. The application of program slicing to
regression testing. Information and Software Tech-
nology, Special Issue on Program Slicing, 40(11-
12):583 – 594, 1998.

[11] D. Binkley. Computing amorphous program slices
using dependence graphs and a data flow model.
In Proceedings of the ACM Symposium on Applied
Computing, ACM Press, 1999.

[12] D. Binkley and K. B. Gallagher. Program Slic-
ing, Advances in Computers, volume 43. Academic
Press, San Diego, CA, 1996.

[13] G. Canfora, A. Cimitile, and A. D. Lucia. Condi-
tioned program slicing. Information and Software
Technology, 40:595 – 607, 1998.

[14] J. Chen, F. Wang, and Y. Chen. An object-
oriented dependency graph. Technology of Object-
Oriented Languages and Systems Tools, Beijing,
China, 1997.

[15] J. Chen, F. Wang, and Y. Chen. Slicing object-
oriented programs. In 4th Asia-Pacific Software En-
gineering and International Computer Science Con-
ference (APSEC-97 / ICSC-97), Hong Kong, 1997.

[16] J. T. Chen, F. J. Wang, and Y. L. Chen. Slicing
object-oriented programs. In Proceedings of the
APSEC’97, pages 395 – 404, Hongkong, China, De-
cember 1997.

[17] Z. Chen and B. Xu. Slicing concurrent Java pro-
grams. ACM SIGPLAN Notices, 36:41 – 47, 2001.

[18] Z. Chen and B. Xu. Slicing object-oriented Java pro-
grams. ACM SIGPLAN Notices, 36:33 – 40, 2001.

[19] Z. Chen, B. Xu, and H. Yang. Test coverage analysis
based on program slicing. In Proceedings of IRI,
pages 559 – 565, 2003.

[20] Z. Chen, B. Xu, and J. Zhao. An overview of meth-
ods for dependence analysis of concurrent programs.
ACM SIGPLAN Notices, 37(8):45 – 52, 2002.

[21] Z. Chen, Y. Zhou, B. Xu, J. Zhao, and H. Yang. A
novel approach for measuring class cohesion based
on dependence analysis. In Proceedings of Interna-
tional Conference on Software Maintenance, IEEE
Press, pages 377 – 384, 2002.

[22] J. Cheng. Slicing concurrent programs - a graph the-
oretical approach. In Automated and Algorithmic
Debugging, AADEBUG’93, LNCS, Springer-Verlag,
pages 223 – 240, 1993.

[23] J. Cheng. Dependence analysis of parallel and dis-
tributed programs and its applications. In Interna-
tional Conference on Advances in Parallel and Dis-
tributed Computing, pages 370 – 377, 1997.

[24] J. D. Choi, B. Miller, and R. Netzer. Techniques for
debugging parallel programs with flowback analy-
sis. ACM Transactions on Programming Languages
and Systems, 13:491 – 530, 1991.

[25] S. Danicic, M. Daoudi, C. Fox, M. Harman, R. M.
Hierons, J. R. Howroyd, L. Ourabya, and M. Ward.
ConSUS: a light-weight program conditioner. Jour-
nal of Systems and Software, 2005.

[26] S. Danicic, Mark Harman, and Yoga Sivagu-
runathan. A parallel algorithm for static program
slicing. Information Processing Letters, 56:307 –
313, 1995.

[27] D. M. Dhamdhere, K. Gururaja, and P. G. Ganu. A
compact execution history for dynamic slicing. In-
formation Processing Letters, 85:145 – 152, 2003.

[28] E. Duesterwald, R. Gupta, and M. L. Soffa. Dis-
tributed slicing and partial re-execution for dis-
tributed programs. In Fifth Workshop on Languages
and Compilers for Parallel Computing, New Haven
Connecticut, LNCS Springer-Verlag, pages 329 –
337, August 1992.

[29] J. Field, G. Ramalingam, and F. Tip. Parametric pro-
gram slicing. In Conference Record of the Twenty-
Second ACM Symposium on Principles of Program-
ming Languages, pages 379 – 392, San Francisco,
CA, USA, 1995.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 275

[30] I. Forgacs and A. Bertolino. Feasible test path selec-
tion by principal slicing. In Proceedings of 6th Eu-
oropean Software Engineering Conference, Septem-
ber 1997.

[31] C. Fox, S. Danicic, M. Harman, and R. M. Hi-
erons. Consit: a fully automated conditioned pro-
gram slicer. Software Practice and Experince,
34:15 – 46, 2004.

[32] K. Gallagher and J. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Soft-
ware Engineering, SE-17(8):751 – 761, 1991.

[33] V. K. Garg and N. Mittal. On slicing a distributed
computation. In Proceedings of 21st IEEE Inter-
national Conference on Distributed Computing Sys-
tems (ICDCS), pages 322 – 329, 2001.

[34] A. Goel, A. RoyChoudhury, and T. Mitra. Com-
pactly representing parallel program executions.
In Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 191 – 202, 2003.

[35] D. Goswami and R. Mall. Fast slicing of concur-
rent programs. In Sixth International Conference
on High Performance Computing (HiPC), LNCS
Springer-Verlag, pages 38 – 42, December 1999.

[36] D. Goswami and R. Mall. Dynamic slicing of con-
current programs. In Seventh International Con-
ference on High Performance Computing (HiPC),
LNCS Springer-Verlag, pages 17 – 26, December
2000.

[37] D. Goswami and R. Mall. An efficient method for
computing dynamic program slices. Information
Processing Letters, 81:111 – 117, 2002.

[38] D. Goswami, R. Mall, and P. Chatterjee. Static slic-
ing in unix process environment. Software Pracice
and Experience, 30:17 – 36, 2000.

[39] R. Gupta, M. J. Harrold, and M. L. Soffa. Program
slicing-based regression testing techniques. Journal
of Software Testing, Verification and Reliability, 6,
1996.

[40] R. Gupta and M. L. Soffa. Hybrid slicing: An ap-
proach for refining static slices using dynamic infor-
mation. In Proceedings of ACM SIGSOFT, pages
29 – 40, 1995.

[41] C. Hammer and G. Snelting. An improved slicer for
Java. In Proceedings of PASTE, pages 107 – 112,
2004.

[42] M. Harman. Conditioned slicing supports partition
testing. Journal of Software Testing, Verification and
Reliability, 12:23 – 28, 2002.

[43] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software,
68:45 – 64, 2003.

[44] M. Harman and S. Danicic. Using program slicing
to simplify testing. Journal of Software Testing, Ver-
ification and Reliability, 5, 1995.

[45] M. Harman and R. M. Hierons. An overview of pro-
gram slicing. Software Focus, 2:85 – 92, 2001.

[46] M. Harman, L. Hu, M. Mumro, X. Zhang, D. Bink-
ley, and S. Danicic. Syntax-directed amorphous slic-
ing. Automated Software Engineering, 11:27 – 61,
2004.

[47] M. J. Harrold and G. Rothermel. Performing data
flow testing on classes. In Second ACM SIGSOFT
Symposium on the Foundation of Software Engineer-
ing, pages 154 – 163, December 1994.

[48] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs. ACM Trans-
actions on Programming Languages and Systems,
12(1):26 – 61, 1990.

[49] M. Kamkar. Inter Procedural Dynamic Slicing with
Applications to Debugging and Testing. PhD thesis,
Linkoping University, Sweden, 1993.

[50] M. Kamkar and P. Krajina. Dynamic slicing of dis-
tributed programs. In International Conference on
Software Maintenance, IEEE CS Press, pages 222 –
229, October 1995.

[51] B. Korel and R. Ferguson. Dynamic slicing of dis-
tributed programs. Applied Mathematics and Com-
puter Science, 2:199 – 215, 1992.

[52] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155 – 163,
1988.

[53] B. Korel and J. Rilling. Dynamic program slic-
ing methods. Information and Software Technology,
40:647 – 659, 1998.

[54] J. Krinke. Static slicing of threaded programs. ACM
SIGPLAN Notices, 33:35 – 42, April 1998.

[55] J. Krinke. Context-sensitive slicing of concurrent
programs. In Proceedings of ACM SIGSOFT Soft-
ware Engineering Notes, pages 178 – 187, 2003.

[56] A. Krishnaswamy. Program slicing: An application
of program dependency graphs. Technical report,
Department of Computer Science, Clemson Univer-
sity, August 1994.

[57] D. Kung, J. Gao, P. Hisa, and Y. Toyoshima.
Change impact identification in object-oriented soft-
ware maintenance. In Proceedings of International
Conference on Software Maintenance, pages 202 –
211, September 1994.

276 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

[58] D. Kung, J. Gao, P. Hisa, and Y. Toyoshima. Fire-
wall regression testing and software maintenance of
object-oriented systems. Journal of Object-Oriented
Programming, 1994.

[59] D. Kung, J. Gao, P. Hisa, Y. Toyoshima, and
C. Chen. Design recovery for software testing of
object-oriented programs. In Working Conference
on Reverse Engineering, pages 202 – 211, May
1993.

[60] L. D. Larson and M. J. Harrold. Slicing object-
oriented software. In Proceedings of the 18th Inter-
national Conference on Software Engineering, Ger-
man, March 1996.

[61] Hon. F. Li, Juergen Rilling, and Dhrubajyoti
Goswami. Granularity-driven dynamic predicate
slicing algorithms for message passing systems. Au-
tomated Software Engineering, 11:63 – 89, 2004.

[62] D. Liang and L. Larson. Slicing objects using sys-
tem dependence graphs. In Proceedings of Interna-
tional Conference on Software Maintenance, pages
358 – 367, November 1998.

[63] A. D. Lucia. Program slicing: Methods and applica-
tions. In Proceedings of IEEE International Work-
shop on Source Code Analysis and Manipulation,
pages 142 – 149, 2001.

[64] J. R. Lyle and M. D. Weiser. Automatic program bug
location by program slicing. In Proceedings of the
second International Conference on Computers and
Applications, Peking, China, pages 877 – 882, 1987.

[65] R. Mall. Fundamentals of Software Engineering.
Prentice Hall, India, 2nd Edition, 2003.

[66] B. A. Malloy, J. D. McGregor, and A. Krish-
naswamy. An extensible program representation for
object oriented software. In Proceedings of ISFST,
pages 105 – 112, 2004.

[67] A. J. S. Mills. Antlr. The University of Birmingham,
2002.

[68] N. Mittal and V. K. Garg. Computation slicing:
Techniques and theory. Technical Report, TR-PDS-
2001-02, The Parallel and Distributed Systems Lab-
oratory, Department of Electrical and Computer En-
gineering, The University of Texas at Austin, 2001.

[69] N. Mittal and V. K. Garg. Computation slicing:
Techniques and theory. In Proceedings of Sympo-
sium on Distributed Computing, 2001.

[70] Durga Prasad Mohapatra. Dynamic slicing of object-
oriented programs. PhD thesis, Indian Institute of
Technology, Kharagpur, India, 2005.

[71] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. Dynamic slicing of concurrent object-
oriented programs. In Proceedings of Interna-
tional Conference on Information Technology: Pro-
gresses and Challenges (ITPC), pages 283 – 290,
Kathamandu, May 2003.

[72] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. An edge marking dynamic slicing technique
for object-oriented programs. In Proceedings of 28th
IEEE Annual International Computer Software and
Applications Conference, IEEE CS Press, pages 60 –
65, September 2004.

[73] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. An efficient techinque for dynamic slic-
ing of concurrent Java programs. In Proceedings
of Acian Applied Conference on Computing (AACC-
2004), Kathmandu, LNCS Springer-Verlag, volume
3285, pages 255 – 262, October 2004.

[74] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A node marking dynamic slicing technique
for object-oriented programs. In Proceedings of
Workshop on Software Development and Architec-
ture (SoDA), pages 1 – 15, Bangalore, January 2004.

[75] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A novel approach for dynamic slicing of dis-
tributed object-oriented programs. In Proceedings of
International Conference on Distributed Computing
and Internet Technology (ICDCIT), Bhubaneswar,
LNCS Springer-Verlag, volume 3347, pages 304 –
309, December 2004.

[76] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A novel method for computing dynamic
slices of concurrent C++ programs. In Proceedings
of International Conference on Advanced Comput-
ing and Communications, pages 744 – 750, Ahmed-
abad, December 2004.

[77] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. Computing dynamic slices of concurrent
object-oriented programs. Information and Software
Technology, 2005.

[78] G. B. Mund, R. Mall, and S. Sarkar. An efficient dy-
namic program slicing technique. Information and
Software Technology, 44:123 – 132, 2002.

[79] G. B. Mund, R. Mall, and S. Sarkar. Computation of
intraprocedural dynamic program slices. Informa-
tion and Software Technology, 45:499 – 512, April
2003.

[80] M. G. Nanda and S. Ramesh. Slicing concurrent pro-
grams. In ACM International Symposium on Soft-
ware Testing and Analysis, August 2000.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 277

[81] F. Ohata, K. Hirose, M. Fuji, and K. Inoue. A slic-
ing method for object-oriented programs using dy-
namic light weight information. In Eighth Asia-
Pacific Software Engineering Conference (APSEC-
01), China, 2001.

[82] X. Qi and B. Xu. Dependence analysis of concurrent
programs based on rechability graph and it’s appli-
cations. In Proceedings of International Conference
on Computational Science, pages 405 – 408, 2004.

[83] M. Singhal and N. G. Sivaratri. Advanced Con-
cepts in Operating Systems - Distributed, Database,
and Multiprocessor Operating Systems. TATA Mc-
GRAW HILL, 2002.

[84] Y. Song and D. Huynh. Forward Dynamic Object-
Oriented Program Slicing, Application Specific Sys-
tems and Software Engineering and Technology (AS-
SET’99). IEEE CS Press, 1999.

[85] C. Steindl. Program slicing for object-oriented pro-
gramming languages. PhD thesis, Johannes Kepler
University Linz, 1999.

[86] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121 –
189, 1995.

[87] F. Tip, J. D. Choi, J. Field, and G. Ramalingam.
Slicing class hierarchies in C++. In Conference on
Object-Oriented Programming Systems, Languages
and Applications, pages 179 – 197, 1996.

[88] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo.
Flow insensitive C++ pointers and polymorphism
analysis and its application to slicing. In Proceed-
ings of 19th International Conference on Software
Engineering, pages 433 – 443, May 1997.

[89] M. Jeffrey Voas and Gary McGraw. Software fault-
injection: inoculating programs against errors. Wi-
ley and Sons, 1998.

[90] T. Wang and A. RoyChoudhury. Using compressed
bytecode traces for slicing Java programs. In Pro-
ceedings of IEEE International Confrence on Soft-
ware Engineering, pages 512 – 521, 2004.

[91] M. Weiser. Program Slices: Formal, Psychological,
and Practical Investigations of an Automatic Pro-
gram Abstraction Method. PhD thesis, University of
Michigan, Ann Arbor, MI, 1979.

[92] M. Weiser. Programmers use slices when debug-
ging. Communications of the ACM, 25(7):446 – 452,
1982.

[93] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352 – 357, 1984.

[94] B. Xu and Z. Chen. Dynamic slicing object-oriented
programs for debugging. In SCAM, pages 115 – 122,
2002.

[95] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A
brief survey of program slicing. ACM SIGSOFT
Software Engineering Notes, 30(2):1 – 36, 2005.

[96] L. Xu, B. Xu, Z. Chen, J. Jiang, H. Chen, and
H. Yang. Regression testing for web applications
based on slicing. In Proceedings of 28th IEEE An-
nual International Computer Software and Applica-
tions Conference, IEEE CS Press, pages 652 – 656,
2003.

[97] J. Zeng, C. Soviani, and S. A. Edwards. Generat-
ing fast code from concurrent program dependence
graph. In Proceedings of ACM LCTES, pages 175 –
181, 2004.

[98] X. Zhang, R. Gupta, and Y. Zhang. Efficient for-
ward computation of dynamic slices using reduced
ordered binary decision diagrams. In International
Conference on Software Engineering, 2004.

[99] Y. Zhang, B. Xu, L. Shi, B. Li, and H. Yang. Modu-
lar monadic program slicing. In Proceedings of 28th
IEEE Annual International Computer Software and
Applications Conference, IEEE CS Press, pages 66 –
71, September 2004.

[100] J. Zhao. Dynamic slicing of object-oriented pro-
grams. Technical report, Information Processing So-
ciety of Japan, May 1998.

[101] J. Zhao. Multithreaded dependence graphs for cun-
current Java programs. In Proceedings of the 1999
International Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE’99),
1999.

[102] J. Zhao. Slicing concurrent Java programs. In Pro-
ceedings of the 7th IEEE International Workshop on
ProgramComprehension, May 1999.

[103] J. Zhao, J. Cheng, and K. Ushijima. Static slicing of
concurrent object-oriented programs. In 20th IEEE
Annual International Computer Software and Appli-
cations Conference, pages 312 – 320, August 1996.

[104] J. Zhao, J. Cheng, and K. Ushijima. A dependence-
based representation for concurrent object-oriented
software maintenance. In Proceedings of 2nd Eu-
romicro Conference on Software Maintenance and
Reengineering, pages 60 – 66, March 1998.

[105] J. Zhao and B. Li. Dependence based representation
for concurrent Java programs and it’s application to
slicing. In Proceedings of ISFST, pages 105 – 112,
2004.

278 Informatica 30 (2006)

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 30

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, John-Paul Hosom, Doug Howe, Rod Howell, Tomáš Hruška, Don
Huch, Simone Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard
Jakubowski, Piotr Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko
Juvancic, Sabhash Kak, Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan
Kniat, Stavros Kokkotos, Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese,
Zbyszko Krolikowski, Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan
Lah, Phil Laplante, Bud Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph
Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman,
Vincenzo Loia, Matija Lokar, Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej
Małachowski, Peter Marcer, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin
R. Mikler, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé,
John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian
Niedq’zwiedziński, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano
Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle,
Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg,
William C. Perkins, Warren Persons, Mitja Peruš, Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin
Place, Peter Planinšec, Gabika Polčicová, Gustav Pomberger, James Pomykalski, Tomas E. Potok, Dimithu
Prasanna, Gary Preckshot, Dejan Rakovič, Cveta Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer,
Vojislav D. Radonjic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Mária Smolárová, Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek,
Olivero Stock, Janusz Stokłosa, Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun,
Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic,
Wieslaw Traczyk, Denis Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski,
Marko Uršič, Tadeusz Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P.
Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc,
Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard
Widmer, Stefan Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang,
Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at America: http://ocean.ocean.cs.siu.edu/informatica/index.html,
Europe: http://www.informatica.si/, Asia: http://www3.it.deakin.edu.au/ hdai/Informatica/.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2006 (Volume 30) is
– 60 EUR (80 USD) for institutions,
– 30 EUR (40 USD) for individuals, and
– 15 EUR (20 USD) for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printed by Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. Drago
Torkar, Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number
or use the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841
for domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 30 Number 2 June 2006 ISSN 0350-5596

Introduction S. Bloehdorn,
W. Buntine, A. Hotho

141

Semantic Search in Tabular Structures A. Pivk, M. Gams,
M. Luštrek

143

Beyond Term Indexing: A P2P Framework for Web
Information Retrieval

I. Podnar, M. Rajman,
T. Luu, F. Klemm,
K. Aberer

153

A Semantic Kernel to Classify Texts with Very Few
Training Examples

R. Basili, M. Cammisa,
A. Moschitti

163

Captain Nemo: A Metasearch Engine with
Personalized Hierarchical Search Space

S. Souldatos,
T. Dalamagas, T. Sellis

173

End of special section / Start of normal papers

Plan Sharing: Showcasing Coordinated UAV
Formation Flight

H. Hexmoor, S. Eluru,
H. Sabaa

183

An Integration Rule Processing Algorithm and
Execution Environment for Distributed Component
Integration

Y. Jin, S.D. Urban,
S.W. Dietrich,
A. Sundermier

193

A PC-based Decision Support System for Optimal
Cutting of Logs in Veneers Production

A. Čižman, M. Urh 213

Dissipationless Waves for Information Transfer in
Neurobiology–Some Implications

D.D. Georgiev,
J.F. Glazebrook

221

Actors as a Coordinating Model of Computation N. Raja,
R.K. Shyamasundar

233

On Integrating Conversations into Web Services
Composition

Z. Maamar,
S.K. Mostéfaoui

245

An Overview of Slicing Techniques for
Object-Oriented Programs

D.P. Mohapatra,
R. Mall, R. Kumar

253

Informatica 30 (2006) Number 2, pp. 141–279

	Informat 30-2-new.pdf
	RobOvitka.pdf

