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2024 ACM A.M. Turing Award: Richard S. Sutton and Andrew G.

Barto for Reinforcement Learning

Matjaz Gams
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
E-mail: matjaz.gams@ijs.si

Editorial

Abstract: The 2024 ACM A.M. Turing Award (the “Nobel Prize of Computing”) was awarded to
Andrew G. Barto and Richard S. Sutton “for developing the conceptual and algorithmic foundations
of reinforcement learning.” Announced on 5 March 2025, the honor not only celebrates nearly five
decades of pioneering scholarship but also signals that reinforcement learning (RL) has moved from
the periphery of artificial-intelligence research to its very center —most visibly through its role in

training large-language models (LLMs).

1 From unfashionable curiosity to
mainstream core

In the early 1980s, when Barto and Sutton began
formalising how agents learn from trial-and-error reward
signals, prevailing Al paradigms favoured rule-based
expert systems and supervised pattern recognition. Their
insistence that evaluation rather than instruction should
drive intelligence proved prescient [1]. Today,
temporal-difference learning, policy-gradient methods
and the option framework first articulated in their work
underpin systems ranging from AlphaGo [2] to the
reinforcement learning from human feedback (RLHF)
pipelines that help align modern LLMs [3].

A pair of interviews in the June 2025 issue of
Communications of the ACM capture the laureates’
outlook [4],[5]. “In RL, the feedback you get is either a
reward or a penalty, rather than instructions about what
you should have done,” Sutton notes—underscoring the
distinctive challenges of sparse feedback, delayed credit
assignment and sustained exploration [5].

For many readers, the gateway to the field was
Reinforcement Learning: An Introduction by Sutton and
Barto [1]. First published in 1998 and freely available in a
revised second edition since 2018, the textbook’s blend of
rigorous proofs and intuitive cartoons demystified Markov
decision processes, eligibility traces and function
approximation long before “deep RL” became common
parlance.

2 Explaining ML through games

An early hardware demonstration of machine learning was
Marvin Minsky’s SNARC (1951-52), an analog device
that let a ‘rat’ learn a maze by reward signals,
foreshadowing today’s reinforcement-learning agents.
Although rudimentary, the device presaged the formal
theory of RL later developed by Sutton and Barto:
behaviour is shaped by maximising cumulative reward
through trial and error.

Modern chess engines embrace the same principle at
planetary scale. AlphaZero, for instance, starts with
random parameters and improves solely by playing
millions of games against itself. Each iteration:

e Chooses moves with a combined policy-and-value
neural network that estimates both the probability of
promising actions and the expected game outcome.

e  Guides exploration using Monte-Carlo tree search
(MCTS) where network evaluations bias search
toward fruitful branches.

e Learns by minimising a temporal-difference loss: the
gap between the predicted value and the eventual
result (win = +1, draw = 0, loss = -1).

This closed feedback loop (an instance of Sutton’s
policy-iteration and TD-learning algorithms) [1] quickly
eclipses classical alpha-beta engines reliant on
handcrafted heuristics. After four hours of self-play,
AlphaZero surpassed Stockfish 8 and ultimately achieved
a 3500+ Elo rating [6]. As Savage concludes, it has proven
to be “a rewarding line of work” [4]. This leap dwarfs the
earlier breakthrough in 2015, when the Deep Q-Network
(DQN) first matched human scores on dozens of Atari
games, showing that end-to-end pixel learning was
possible [7].

3 Why the Turing award matters

1. Conceptual Unity. RL provides a single mathematical
framework that spans robotics, operations research and
behavioral neuroscience; dopaminergic prediction-error
signals in primate brains can be modeled almost
equation-for-equation by temporal-difference learning

[1].

2. Practical Impact. RL is already saving
megawatt-hours  of electricity by autonomously
optimising Google data-centre cooling loops—cutting
energy use by up t040%[8]. The same
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learning-while-deployed  paradigm now  produces
state-of-the-art chip floor-plans for the latest Tensor
Processing Units in under six hours, an optimisation task
that previously required weeks of expert effort [9]. NASA
test-beds are likewise exploring RL for on-board
spacecraft guidance and fault recovery.

3. Ethical Imperative. Reward-driven systems can
amplify undesirable incentives as easily as beneficial
ones; mis-specified reward functions have led
experimental robots to spin in circles or exploit physics
simulators. Developing reward specifications that
faithfully encode human intent and auditing agents during
deployment remains an urgent research frontier [5].

Barto and Sutton describe themselves as “still unsatisfied”
with our theoretical understanding of generalization in
RL—a humility that both belies their achievements and
challenges the community to push further. Their work
reminds us that intelligence is an active process: agents
must do in order to learn. With the Turing Award as
validation, reinforcement learning is poised to tackle
domains where static models fall short, such as
climate-smart energy grids, adaptive therapeutics,
large-scale social simulations.

4  Conclusions

The Association for Computing Machinery (ACM) as the
world’s largest computing society presents the Turing
Award annually since 1966. If Alan Turing is often
compared to Albert Einstein for his transformative impact
on 20th-century science, then the ACM A.M. Turing
Award is rightly seen as computing’s counterpart to the
Nobel Prize. By recognising Barto and Sutton in 2024, the
award committee has affirmed that learning from reward
is a foundational principle for intelligent systems. Their
ideas power today’s most advanced RL agents, shape the
training of LLMs and chart the road toward autonomous
systems that learn safely and continually. As they
themselves like to remind us, “the best is yet to come.”

M. Gams
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Special issue on “The 13th International Symposium on Information and
Communication Technology—SOICT 2024

Since 2010, the Symposium on Information and
Communication Technology— SOICT has been organized
annually. The symposium provides an academic forum for
researchers to share their latest research findings and
identify future challenges in computer science. The best
papers from SOICT 2015, SOICT 2016, SOICT 2017,
SOICT 2019, SOICT 2022, SOICT 2023, and SOICT
2024 have been extended and published in the special
issues “SOICT 2015,” “SOICT 2016,” “SOICT 2017,”
“SOICT 2019,” “SOICT 2022, “SOICT 2023,” and
“SOICT 2024” of the Informatica Journal, Vol. 40, No. 2
(2016), Vol. 41. No. 2 (2017), Vol. 42, No. 3 (2018), Vol.
44, No. 2 (2020), Vol. 47. No. 3 (2023), and No. 3 (2025),
respectively.

In 2024, SOICT was held in Furama resort Danang, from
December 13-15. The symposium covered major areas of
research including Al Foundations and Big Data,
Networking and  Communication  Technologies,
Multimedia Processing, Software Engineering, Al
Applications, Generative Al, Applied Operations
Research and Optimization, Recent Advances in Cyber
Security.

Among 224 submissions from 24countries, 84 papers were
accepted for oral presentation at SolCT 2024 and 66 papers
for posters. Among them, the following four papers were
carefully selected, after further extension and additional
reviews, for inclusion in this special issue.

The first paper, “Context-Enriched Dynamic Graph Word
Embeddings for Robust NLP Applications” by Truong X.
Tran, Ryan E. Himes, and Hai-Anh Tran, extends their
prior SOICT 2024 work by introducing a dynamic graph-
based word embedding framework that integrates syntactic
and positional relationships. The proposed ARMA+ELMo
Graph Dynamic model demonstrates robust performance
across diverse NLP tasks such as sentiment analysis, topic
classification, and named entity recognition.

The second paper, “Enhanced Cardio Care: Explainable
Vision Transformer Multimodal Pipeline for Cardiac
Abnormalities Detection Using Electrocardiogram Image
Reports” by Ngoc M. To, Vu Q. Vo, Quoc Cuong Ngo,
Dinesh Kumar, Minh N. Dinh, Dang V. Nguyen, and Dan
V. B. Do, presents an enhanced version of the Cardio Care
pipeline for ECG-based cardiac diagnosis. The study
addresses the challenge of paper-based ECG image
archives common in resource-limited healthcare settings
by developing a mobile-friendly diagnostic pipeline
capable of analyzing both ECG signals and scanned ECG
images. Experimental results show that ViT achieves the
best classification performance, with macro F1-scores of
0.99 and 0.81 on both public (Mendeley) and private (Tam
Duc Cardiometabolic) datasets, respectively. Furthermore,
the integration of Grad-CAM-based visualization

enhances interpretability, demonstrating strong potential
for scalable and cost-effective cardiac screening in
underserved healthcare environments.

The third paper, “New Local Search Strategy for the
Minimum s-Club Cover Problem” by Thanh Pham Dinh,
Tuan Anh Do, Son Nguyen Hung, and Thai Nguyen Duc,
introduces an innovative local search algorithm tailored for
integration within evolutionary multitask optimization
frameworks. The authors design a hybrid search strategy
that combines greedy and exhaustive mechanisms, where
the greedy component efficiently selects clubs, while the
exhaustive component optimizes vertex relocation
decisions. Experimental evaluations on DIMACS
benchmark datasets show that the proposed algorithm
delivers competitive performance, demonstrating its
potential as a robust component in hybrid evolutionary
approaches for complex network optimization problems.
The fourth paper, “Analysis of Behavioral Facilitation
Information During Disasters Based on Reader Attributes
and Personality Traits” by Akiyo Nadamoto, Kosuke
Wakasugi, Yu Suzuki, and Tadahiko Kumamoto,
examines how personality traits influence the perception
of behavioral facilitation messages on social media during
natural disasters. Using typhoon-related posts from X
(formerly Twitter), the study classifies messages into four
categories, including suggest, inhibition, encouragement,
and wish, and analyzes responses across the Big Five
personality  traits.  Results illustrate  consistent
interpretation patterns linked to personality and
demographics, offering insights for more targeted and
effective disaster communication.

We hope that readers will find this Special Issue a useful
collection of papers.

Guest Editors

Ide Ichiro

(ide@i.nagoya-u.ac.jp)
Nagoya University, Japan

Huynh Thi Thanh Binh

(binh.huynhthithanh@hust.edu.vn)
Hanoi University of Science and Technology, Vietnam

Tran Minh Triet

(tmtriet@fit.hcmus.edu.vn)
University of Science & John von Neumann Institute,
Hungary


https://doi.org/10.31449/inf.v49i3.

462 Informatica 49 (2025) 461-462 H.T.T Binh



https://doi.org/10.31449/inf.v49i3.10121

Informatica 49 (2025) 463-472 463

Context-Enriched Dynamic Graph Word Embeddings for Robust NLP

Applications

Truong X. Tran!, Ryan E. Himes?, Hai-Anh Tran3*

1School of Science, Engineering and Technology, Penn State Harrisburg, The Pennsylvania State University, Middletown,

PA 17057, United States

2School of Electrical Engineering and Computer Science, The Pennsylvania State University, State College, PA 16802,

United States

3School of Information and Communications Technology, Hanoi University of Science and Technology, 1 Dai Co Viet,

10000 Hanoi, Vietnam

E-mail: truong.tran@psu.edu, ryhimel@gmail.com, anhth@soict.hust.edu.vn

*Corresponding Author

Keywords: Natural language processing, deep learning, graph neural networks, word embeddings, text classification

Received: July 10, 2025

Understanding the contextual relationships between words is essential for effective natural language pro-
cessing (NLP). Our prior work, published in SOICT 2024, introduced a dynamic word embedding ap-
proach that integrates static embeddings with dynamic representations learned from a next-word predic-
tion model and enriched by an undirected graph capturing both syntactic and positional word relation-
ships. This hybrid embedding framework—comprising ELMo-Like Dynamic, ARMA Graph Dynamic, and
ARMA+ELMo Graph Dynamic variants—demonstrated promising results on standard text classification
tasks. In this extended study, we significantly broaden the experimental evaluation to validate the gen-
eralizability and effectiveness of our approach. We incorporate a wider range of NLP tasks—including
sentiment analysis, disaster tweet classification, topic categorization, spam detection, named entity recog-
nition, and intent classification—across multiple benchmark datasets. Comparative analysis against both
static embeddings (Word2Vec, GloVe, FastText) and transformer-based models (BERT, DistilBERT) shows
that our ARMA+ELMo Graph Dynamic variant consistently delivers competitive or superior performance.
Notably, our method achieves a classification accuracy of 93.2% on the AG News topic classification task
and an F1-score of 94.2% on the CoNLL-2003 named entity recognition benchmark—results that match or
exceed those of larger pretrained models. These findings reinforce the contextual richness and practical
utility of the proposed embedding framework across diverse NLP applications.

Povzetek: NLP Studija uvaja dinamicne grafne vektorje besed, ki zdruzijo ELMo in ARMA z grafi
sintakticno-pozicijskih odnosov, kar izboljsa klasifikacijo in zaznavanje entitet ter preseze staticne pristope,

konkurencno z BERT.

1 Introduction

Natural Language Processing (NLP) has seen substantial
advancements due to the development of effective word
embedding techniques. These embeddings map discrete
tokens to continuous vector spaces, enabling machines to
process and analyze human language. Traditional embed-
ding models such as Word2Vec [1] and GloVe [2] represent
words in fixed vector spaces, independent of their vary-
ing usage across different contexts. While these static em-
beddings capture general semantic relationships, they of-
ten fall short in modeling polysemy and nuanced contex-
tual dependencies—challenges that are crucial for complex
tasks such as sentiment classification, question answering,
and named entity recognition.

Contextual embeddings such as ELMo [3] and BERT [4]
address these limitations by producing word representa-

tions that are dependent on the surrounding context. These
models typically employ deep neural architectures to cap-
ture sequential or bidirectional dependencies. However,
they often overlook the syntactic structure of sentences and
tend to model context in a linear fashion. Incorporating syn-
tactic and positional dependencies through graph structures
can provide a richer and more structured representation of
context, particularly for long-range dependencies and non-
sequential word relationships.

In our previous work [5], presented at SOICT 2024, we
proposed a novel dynamic word embedding framework that
combines static word embeddings with dynamic features
extracted from deep next-word prediction models. To en-
hance contextual representation, we introduced an undi-
rected graph-based structure that integrates both depen-
dency parsing and word order information. This hybrid rep-
resentation allowed us to generate embeddings that evolve
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based on sentence context while preserving the semantic
stability of static embeddings. Three variants of our method
were proposed: ELMo-Like Dynamic, ARMA Graph Dy-
namic, and ARMA+ELMo Graph Dynamic, each incor-
porating different mechanisms for feature extraction and
graph integration.

In this extended work, we aim to rigorously validate the
effectiveness and generalizability of our embedding frame-
work across a wide range of NLP tasks and datasets. The
experimental evaluation is expanded by:

— Applying our models to additional tasks including
topic classification and domain-specific text analysis.

— Comparing with stronger baselines such as Fast-
Text [6] and BERT [4].

Our results demonstrate that the proposed dynamic
graph-based embeddings are not only competitive with but
in many cases outperform static and contextual baselines,
particularly in classification settings that benefit from ex-
plicit modeling of word relationships.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related work on word embedding and graph-
based models. Section 3 presents the details of our pro-
posed framework. Section 4 describes the datasets, tasks,
and expanded experimental evaluations. Section 5 provides
additional analyses and insights. Finally, Section 6 con-
cludes the paper and outlines potential directions for future
research.

2 Related work

2.1 Static word embeddings

Word embeddings have been fundamental to natural lan-
guage processing (NLP), transforming discrete textual data
into continuous vector spaces. Early models, such as
Word2Vec by Mikolov et al. [1], introduced efficient algo-
rithms to generate embeddings based on contextual word
co-occurrence. Specifically, the continuous bag-of-words
(CBOW) and skip-gram models created fixed embeddings
for words, capturing semantic relationships via linear con-
text windows. However, these embeddings are static and
fail to capture context-dependent meanings [2].

To further improve embedding quality, GloVe [2] in-
corporated global statistics of word occurrences and co-
occurrences, providing richer semantic representations than
Word2Vec. Nonetheless, like Word2Vec, GloVe embed-
dings remain context-invariant, limiting their effectiveness
in tasks involving polysemy and complex semantic con-
texts.

2.2 Dynamic and contextualized word
embeddings

Contextualized word embeddings emerged to address the
shortcomings of static models. ELMo [3] proposed

T.X. Tran et al.

deep contextualized embeddings derived from bidirec-
tional Long Short-Term Memory networks (Bi-LSTMs).
ELMo generates embeddings dynamically, conditioned
on sentence-level context, significantly improving perfor-
mance on various NLP tasks by addressing polysemy and
capturing nuanced semantics.

Further advancements came with transformer-based
models like BERT [4]. Utilizing self-attention mechanisms,
BERT captures context from both directions simultane-
ously, achieving superior results across a broad range of
NLP tasks, including question answering, sentiment analy-
sis, and named entity recognition. Despite their impressive
results, transformer-based embeddings such as BERT pri-
marily focus on capturing linear contextual dependencies,
largely ignoring explicit syntactic and positional relation-
ships among words.

2.3 Graph-based word embeddings

Graph-based models have gained traction due to their abil-
ity to represent complex relationships explicitly. Levy
and Goldberg [7] demonstrated that dependency-based em-
beddings, leveraging syntactic structures, significantly im-
prove representation quality. Subsequently, Graph Neu-
ral Networks (GNNs) became popular for capturing syn-
tactic and semantic relations in text. Jiang et al. [8] in-
troduced Graph Learning-Convolutional Network (GLCN)),
which generalized convolutional neural networks to graph
structures and showed promise in modeling structured tex-
tual data.

Recent approaches like ARMAConv [9] further refined
GNN architectures by integrating autoregressive moving
average (ARMA) filters. This enabled efficient capture of
long-range dependencies and robust representation of noisy
relationships. These methods typically employ directed de-
pendency edges. In contrast, our previous work [5] pro-
posed an undirected graph model combining consecutive
word relationships and dependency edges, which facilitated
better bidirectional contextual understanding.

2.4 Positioning our work

In our previous research [5], we introduced dynamic graph-
based word embeddings combining static embeddings and
dynamic contextual representations learned from next-
word prediction tasks. Unlike traditional static embed-
dings or purely transformer-based methods, our approach
integrates structural graph-based context explicitly with se-
quential context provided by recurrent architectures. The
resulting embedding framework (ELMo-Like Dynamic,
ARMA Graph Dynamic, ARMA+ELMo Graph Dynamic)
was validated on standard text classification tasks.

In this extended work, we significantly enhance the em-
pirical rigor and scope of our evaluations. We broaden the
set of evaluation tasks to include sentiment analysis, dis-
aster tweet classification, topic categorization, spam detec-
tion, named entity recognition, and intent classification—
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allowing us to assess the generalizability of our method
across diverse NLP applications. We also compare our
framework against stronger baselines, including FastText
and transformer-based models such as BERT and Distil-
BERT. The results consistently validate the robustness and
versatility of our proposed embedding approach.

3 Methodology

The proposal aims to generate contextually rich dynamic
word embeddings by combining static embeddings with
context-aware representations obtained from deep neural
network (DNN) models trained on next-word prediction
tasks. To further enrich these dynamic representations, we
incorporate a graph-based structure that explicitly captures
syntactic and positional relationships between words. The
overall approach involves three primary stages: graph con-
struction from text sequences, training of a next-word pre-
diction model, and the extraction and integration of dy-
namic embeddings.

3.1 Graph representation of word sequences

We start by converting a text sequence 1" = wy, ws, . .., W;
into an undirected graph G(T') = (V, E), explicitly rep-
resenting contextual relationships among words. Specifi-
cally, the vertex set V' contains embedding vectors corre-
sponding to individual words, and the edge set E captures
syntactic and positional relationships between words:

V={ve, |i€{l,2,....t}},

E = Consec(T") U Depend(T") O

Each vertex v,, represents the embedding vector of word
w € T. The set Consec(T') consists of edges that con-
nect pairs of consecutive words in the sequence, thereby
preserving the linear positional information crucial for se-
quential contexts. Specifically, for each pair of consecutive
words (w;, w;41), an undirected edge is established, explic-
itly capturing positional relationships.

The second component, Depend(T), incorporates syn-
tactic relationships obtained from dependency parsing. To
construct these edges, we employ a dependency parser
(e.g., SpaCy), which identifies grammatical relations be-
tween words in a sentence. Each pair of words connected
by a grammatical dependency is linked by an undirected
edge, reflecting syntactic associations such as subject-
object, modifier-head, and other dependency relationships.

Unlike conventional dependency graphs, which use di-
rected edges indicating grammatical directionality, our
model utilizes undirected edges. This choice facilitates cap-
turing bidirectional syntactic relationships, ensuring that in-
formation can flow equally in both directions within the
neural network model. As a result, our graph representa-
tion provides richer contextual signals to downstream em-
bedding learning models.
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Figure 1: The ELMo-like baseline (left), ARMA (middle),
and ARMA+ELMo (right) models for next word predic-
tion.

For instance, consider the sentence: “The student read
the book.” Dependency parsing identifies relationships
such as “student” as the subject of “read” and “book” as the
object of “read”. Our undirected graph connects these pairs
symmetrically, allowing contextual features of “student”
and “book” to influence each other effectively through the
intermediate node “read”.

The combined positional and syntactic edges result in a
more comprehensive and nuanced graph representation, ef-
fectively enhancing the contextual understanding of each
word within the sequence. This richer graph structure sup-
ports our downstream embedding models in learning more
effective and contextually meaningful word embeddings.

3.2 Next-word prediction model

The next-word prediction step involves training a DNN
model to predict the subsequent word in a sequence, given
its preceding context. Initially, input words in each se-
quence are transformed into static embeddings, such as
those generated by the Word2Vec model. These embed-
dings provide stable semantic anchors which serve as input
to our prediction model. Subsequently, the neural model
leverages the previously constructed graph representation
(as detailed in the prior subsection) to further enrich the
learned contextual representations.

Formally, given a word sequence T' = wy, wo, . . ., Wy,
our model is trained to maximize the log-likelihood of
correctly predicting each word w; based on the contex-
tual information encapsulated in the graph representation
G(wy,...,w;—1). This objective is represented mathemat-
ically as:

1 t
max - ;logp(wi | Glwr, ... wiz1)) @
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To realize this, the neural network computes the probabil-
ity of the next word w; by evaluating the similarity between
the embedding vector of w; and the embeddings of words
represented in the contextual graph G. Higher similarity
indicates greater contextual relevance, thus enhancing pre-
diction accuracy. Specifically, we define this probability
through a softmax function over embedding similarities:

Sy v exp(u], )
. awi—l)) =

p(w; | G(wy, .. =
' ZkeW eXp(U];eri)

A3)

where v,,,, 1s the embedding vector of the predicted word
w;, V represents the set of vertex embeddings present in the
context graph, and W denotes the complete set of embed-
dings for all vocabulary words.

To train this next-word prediction model, we utilize the
Wikipedia Sentences dataset, which comprises a large cor-
pus of sentence-level textual data. To ensure robust and
meaningful predictions, we preprocess the dataset metic-
ulously by expanding contractions, removing punctuation
and numeric values, converting text to lowercase, and elim-
inating duplicates. We further limit the vocabulary to fre-
quent words (occurring more than ten times), ensuring com-
putational efficiency without sacrificing representational
richness. This preprocessing step results in a vocabulary
of approximately 189,000 unique words.

Each sentence in the corpus is subsequently transformed
into multiple context-target training pairs, wherein each
word within the sentence serves sequentially as a predic-
tion target, given its preceding context. Consequently, our
final dataset for model training contains around 138 million
context-target pairs, providing ample diversity and context
variations to effectively train the neural network.

Through this comprehensive training process, the result-
ing prediction model learns deep contextual relationships
between words, thus laying the groundwork for extract-
ing meaningful and contextually sensitive dynamic embed-
dings.

3.3 Dynamic embedding extraction

Following the successful training of our next-word predic-
tion models, we extract dynamic embeddings from the in-
termediate layers of these models. This step is crucial as it
enables us to capture context-dependent nuances and varia-
tions in word usage across different textual scenarios, going
beyond the limitations of purely static embeddings.

To perform dynamic embedding extraction, we identify
and isolate context-sensitive representations from the inter-
nal neural network layers. Specifically, for models employ-
ing recurrent architectures (e.g., Bi-LSTMs), we utilize the
hidden states generated by each layer. For models involv-
ing graph neural network components (e.g., ARMAConv),
we extract node-level embedding representations resulting
from the graph convolutional operations. These intermedi-
ate representations inherently encode rich contextual infor-
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Figure 2: The process of extracting word embeddings
from ELMo-like baseline (left), ARMA (middle), and
ARMA+ELMo (right)

mation due to their training objective of predicting subse-
quent words.

More explicitly, consider the following extraction proce-
dure for each model variant:

— ELMo-Like Dynamic Embedding: Dynamic em-
beddings are derived by combining outputs from mul-
tiple Bi-LSTM layers (Left figures in Fig. 1 and
2). We perform a summation of these intermediate
hidden-state outputs from each layer, subsequently
passing them through a non-linear activation function
(such as hyperbolic tangent, tanh). This aggregation
ensures the embedding captures hierarchical contex-
tual information from different abstraction levels.

— ARMA Graph Dynamic Embedding: Dynamic em-
beddings are directly obtained from the output node
representations produced by the ARMAConv graph
layer (Middle figures in Fig. 1 and 2). These node-
level embeddings explicitly capture syntactic and po-
sitional contexts encoded through the graph struc-
ture. Subsequently, these node embeddings are passed
through a tanh activation to further refine their repre-
sentational quality.

— ARMA+ELMo Graph Dynamic Embedding: For
this hybrid variant, dynamic features are created by
combining outputs from both the ARMAConv layer
and multiple Bi-LSTM layers (Right figures in Fig. 1
and 2). Specifically, we aggregate node embeddings
from the ARMAConv output with sequential embed-
dings from Bi-LSTM layers, followed by a non-linear
transformation using a tanh activation. This combined
embedding effectively integrates both sequential and
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graph-based contextual insights, resulting in a more
comprehensive dynamic representation.

Finally, to form the complete dynamic embedding, we
concatenate these dynamically learned contextual features
with the original static embeddings (e.g., Word2Vec embed-
dings). This step creates a hybrid embedding representa-
tion that retains the foundational semantic information pro-
vided by static embeddings while enriching it with contex-
tually aware dynamics. Formally, the final embedding vec-
tor U finq for each word is defined as:

VUfinal = [Ustatic; Udynamic] (4)

where vg44tic denotes the static embedding vector (such
as those from Word2Vec), and vgynamic represents the
newly obtained dynamic embedding vector.

By adopting this hybrid embedding extraction approach,
our methodology benefits from robust semantic stability
alongside the flexibility and context-awareness necessary
for addressing a wide range of NLP tasks effectively.

3.4 Proposed variants

To comprehensively evaluate our framework, we introduce
three model variants differing primarily in their neural ar-
chitectures and integration of graph-based context:

— ELMo-Like Dynamic: Employs a two-layer Bi-
LSTM structure similar to ELMo. Dynamic embed-
dings are generated from the combined outputs of both
Bi-LSTM layers.

— ARMA Graph Dynamic: Incorporates the ARMA-
Conv layer, a GNN structure specifically designed to
handle graph-based textual data. Dynamic embed-
dings are extracted directly from the ARMAConv out-
put.

— ARMA+ELMo Graph Dynamic: Integrates AR-
MAConv with the ELMo-like Bi-LSTM architecture,
combining graph-based and sequential contexts. The
dynamic features are obtained by merging outputs
from both ARMAConv and Bi-LSTM layers.

4 Experiments and results

This section presents an expanded empirical evaluation of
our proposed dynamic graph-based embedding framework.
In addition to replicating the experiments from our previ-
ous study [5], we broaden the evaluation to include mul-
tiple new NLP tasks, additional datasets, and modern em-
bedding baselines. The goal is to rigorously examine the
effectiveness, generalizability, and practicality of our ap-
proach across a wide spectrum of language understanding
tasks.
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4.1 Experimental setup

All experiments are conducted using Python and Tensor-
Flow/Keras frameworks. For graph-based components, we
utilize the Spektral library [10]. Static embeddings are
generated using pre-trained Word2Vec and GloVe mod-
els, while contextual baselines (e.g., BERT, FastText) are
sourced from HuggingFace Transformers and Gensim. All
models are trained using the Adam optimizer with a learn-
ing rate of 0.001 and a batch size of 64.

4.1.1 Diverse NLP tasks and datasets

To comprehensively evaluate our embeddings, we consider
six different NLP tasks, each with distinct characteristics
and challenges:

— Sentiment Analysis: We employ the Emotion dataset
[11], consisting of text labeled with six emotions: joy,
sadness, anger, fear, love, and surprise.

— Disaster Tweet Detection: The dataset comprises
tweets labeled as disaster-related or not [12]. This task
assesses embedding performance on noisy, short, and
informal text.

— Topic Classification: We utilize the AG News dataset
[13], containing news articles classified into four ma-
jor categories: World, Sports, Business, and Sci-
ence/Technology.

— Spam Detection: For this binary classification task,
we use the SMS Spam Collection dataset [14], com-
posed of SMS messages labeled as spam or ham (non-
spam).

— Named Entity Recognition (NER): The CoNLL-
2003 dataset [15] is selected to test our embeddings
in a structured prediction context, where entities are
labeled as Person, Organization, Location, and Mis-
cellaneous.

— Intent Classification: We leverage the SNIPS dataset
[16], comprising user queries labeled according to
their intended actions, providing insights into the gen-
eralization of our embeddings in dialogue systems.

Each dataset is partitioned into standard training, valida-
tion, and testing sets as recommended by the original au-
thors. Table 1 summarizes key statistics of each dataset.

In subsequent subsections, we present detailed evalua-
tion results and analyses for each task and dataset, compar-
ing our approach against various baseline models.

4.1.2 Baseline comparison

To rigorously validate the effectiveness of our proposed
dynamic embeddings, we compare our approach against
multiple widely-used embedding methods. These baselines
span both static and contextual embedding paradigms:
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Table 1: Summary of NLP tasks and datasets used for expanded evaluation
Dataset Task Classes  Total Samples
Emotion [11] Sentiment Analysis 6 20,000
Disaster Tweets [12] Binary Classification 2 7,613
AG News [13] Topic Classification 4 120,000
SMS Spam [14] Spam Detection 2 5,574
CoNLL-2003 [15] Named Entity Recognition 4 22,137 sentences
SNIPS [16] Intent Classification 7 14,484
— Static Embeddings:

— Word2Vec [1]: A widely-used static embedding
model that captures semantic relationships based
on linear context windows.

— GloVe [2]: Utilizes global word co-occurrence
statistics, producing embeddings effective in
capturing global semantic relationships.

— FastText [6]: Enhances static embeddings by in-
corporating subword information, making it ro-
bust to out-of-vocabulary words and morpholog-
ically rich languages.

— Contextual Embeddings:

— BERT [4]: A transformer-based model that gen-
erates context-aware embeddings by considering
bidirectional sentence context, setting state-of-
the-art results in various NLP tasks.

— DistilBERT [17]: A lightweight and compu-
tationally efficient variant of BERT, retaining
much of its performance while being faster to
train and deploy.

Each baseline embedding is evaluated using the same
neural architecture and hyperparameter settings as our
dynamic embedding models. Performance comparisons
across different NLP tasks are presented in subsequent sub-
sections, providing comprehensive insights into the relative
strengths and limitations of our embedding approach.

4.2 Sentiment classification results

We first evaluate our embeddings on sentiment classifica-
tion using the Emotion dataset [11], containing texts labeled
with six distinct emotions: joy, sadness, anger, fear, love,
and surprise. We compare our dynamic graph embeddings
with both static (Word2Vec, GloVe, FastText) and contex-
tual (BERT, DistilBERT) baselines. Four neural classifiers
(CNN, Bi-LSTM, CNN+Bi-LSTM, ARMAConv) are em-
ployed for each embedding type.

Table 2 summarizes the classification accuracy for each
embedding and classifier combination. Our proposed dy-
namic embeddings (particularly the ARMA+ELMo Graph
Dynamic variant) consistently outperform static baselines
and demonstrate competitive performance compared to
strong contextual embeddings.

Table 2: Sentiment classification accuracy (%) for vari-
ous embedding and classifier combinations on the Emotion
dataset. Bold indicates the best performance in each col-

umn.
Embedding CNN  Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 80.60 92.40 91.15 90.50
GloVe [2] 80.70 92.50 89.35 89.50
FastText [6] 82.45 92.80 90.80 91.20
BERT [4] 88.30 93.20 92.45 91.80
DistilBERT [17] 87.80 92.95 92.10 91.55
ELMo-Like Dynamic (Ours) 87.75 92.45 91.70 90.55
ARMA Graph Dynamic (Ours) 86.50 92.55 91.40 90.05
ARMA+ELMo Graph Dynamic (Ours)  89.05 93.15 92.65 92.10

We also examine the learning behavior across embed-
dings through validation accuracy curves shown in Fig. 3.
Our dynamic embeddings (particularly ARMA+ELMo
Graph Dynamic) achieve higher initial accuracy and con-
verge more quickly, illustrating improved training effi-
ciency and robustness to overfitting compared to static em-
beddings.
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Figure 3: Validation accuracy curves during training on
sentiment classification with different embeddings using
Bi-LSTM classifier.

The results indicate clear advantages for contextu-
ally enriched dynamic embeddings in capturing subtle
emotional nuances compared to static approaches. Al-
though transformer-based embeddings such as BERT re-
main strong competitors, our ARMA+ELMo Graph Dy-
namic embeddings achieve comparable or superior accu-
racy across classifiers, suggesting their suitability in captur-
ing complex contextual and syntactic relations critical for
sentiment analysis tasks.
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4.3 Disaster tweet classification results

We next evaluate our embeddings on the task of disaster
tweet classification, utilizing the dataset provided by the
Kaggle Natural Language Processing with Disaster Tweets
challenge [12]. This binary classification task involves
distinguishing tweets describing actual disasters from non-
disaster tweets.

Table 3 summarizes classification accuracies achieved
by each embedding method across different neural archi-
tectures. Again, our dynamic graph-based embeddings
exhibit strong performance, closely rivaling transformer-
based methods.

Table 3: Disaster tweet classification accuracy (%) for vari-
ous embedding and classifier combinations. Bold indicates
the best performance in each column.

Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 75.11 77.35 76.03 75.25
GloVe [2] 74.66 75.71 74.85 75.38
FastText [6] 76.10 78.00 77.20 76.85
BERT [4] 79.90 81.50 80.70 80.30
DistilBERT [17] 79.20 80.85 80.20 79.95
ELMo-Like Dynamic (Ours) 77.45 79.15 78.35 77.89
ARMA Graph Dynamic (Ours) 77.85 79.65 78.80 78.35
ARMA-+ELMo Graph Dynamic (Ours) ~ 80.05 81.10 80.85 80.55

Fig. 4 illustrates the validation accuracy curves obtained
during training. The dynamic graph embeddings, particu-
larly ARMA+ELMo Graph Dynamic, exhibit rapid initial
improvement and efficient convergence compared to static
embeddings, highlighting their effectiveness in capturing
complex contextual signals from short, noisy texts.
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Figure 4: Validation accuracy curves during training on
disaster tweet classification using the Bi-LSTM classifier
across different embeddings.

The task of disaster tweet classification presents unique
challenges due to short text length, informal language, and
noisy data. Despite these challenges, our proposed dy-
namic embeddings consistently perform better than tra-
ditional static embeddings and remain competitive with
transformer-based contextual embeddings. These results
reinforce the robustness and adaptability of our method, es-
pecially in real-world text classification scenarios involving
noisy data.
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4.4 Topic classification and spam detection
results

We evaluate the performance of our embeddings on two ad-
ditional classification tasks: topic classification using the
AG News dataset [13] and spam detection using the SMS
Spam Collection dataset [14]. These tasks test our embed-
dings’ ability to handle diverse textual structures, ranging
from formal news articles to informal SMS messages.

Table 4 reports the classification accuracies across var-
ious embeddings and neural architectures for both tasks.
Our proposed dynamic graph embeddings maintain strong
performance, consistently outperforming static embed-
dings and achieving results comparable to transformer-
based models.

The performance improvements observed with our dy-
namic graph embeddings indicate their ability to effectively
capture both semantic and syntactic patterns across diverse
text types. In the topic classification task, our embeddings
nearly match or exceed the performance of transformer-
based models. Similarly, for spam detection, dynamic em-
beddings significantly outperform static ones and yield re-
sults highly competitive with BERT-based baselines. These
findings highlight the robustness and adaptability of our ap-
proach across both formal and informal textual domains.

4.5 Named entity recognition (NER) results

To evaluate the effectiveness of our embeddings in struc-
tured prediction tasks, we apply them to Named Entity
Recognition (NER) using the CoNLL-2003 dataset [15].
This task involves identifying and categorizing named en-
tities in text into predefined categories: Person, Organiza-
tion, Location, and Miscellaneous.

NER performance is measured using the F1-score, which
balances precision and recall. Table 5 presents the F1-
scores for different embeddings across four neural models.
Our dynamic graph-based embeddings achieve competitive
results compared to transformer models, particularly when
used with the Bi-LSTM and ARMAConv classifiers.

NER requires models to effectively capture both local
context and long-range dependencies in sequences. As
shown in Table 5, our proposed ARMA+ELMo Graph
Dynamic embeddings outperform all static baselines and
closely match the performance of DistilBERT across all
classifier types. Although BERT achieves the highest F1-
scores overall, the performance gap between BERT and our
dynamic models is relatively narrow—especially with the
Bi-LSTM architecture, where ARMA+ELMo Graph Dy-
namic reaches an F1-score of 94.2% compared to BERT’s
94.8%.

This confirms that combining dynamic sequence model-
ing with syntactic graph representations enables strong per-
formance in structured prediction tasks. Our embeddings
offer a compelling trade-off between model complexity and
accuracy, making them well-suited for use in environments
where deploying large transformer models may not be fea-
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Table 4: Classification accuracy (%) for topic classification and spam detection tasks. Bold indicates the best performance

in each column.

Topic Classification

Spam Detection

Embedding CNN  Bi-LSTM CNN+Bi-LSTM ARMAConv | CNN  Bi-LSTM CNN+Bi-LSTM ARMACony
Word2Vec [1] 885 893 89.1 88.9 962 968 965 963
GloVe [2] 88.8 89.5 89.3 89.0 965 969 96.7 96.5
FastText [6] 89.7 902 89.9 89.8 970 974 97.2 97.0
BERT [4] 924 936 93.1 92.9 984 989 98.7 98.6
DistilBERT [17] 918  93.0 9.7 925 980 986 98.4 98.3
ELMo-Like Dynamic (Ours) 903 912 908 90.6 975 980 97.7 975
ARMA Graph Dynamic (Ours) 907 915 91.0 90.8 976 982 97.9 97.7
ARMA+ELMo Graph Dynamic (Ours) 925 93.4 93.2 93.0 983 988 98.7 98.6

Table 5: Fl-score (%) for Named Entity Recognition on the CoNLL-2003 dataset. Bold indicates the best result in each

column.
Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 88.1 90.2 89.7 88.9
GloVe [2] 88.5 90.4 89.9 89.1
FastText [6] 89.2 91.0 90.4 90.0
BERT [4] 93.6 94.8 94.4 94.2
DistilBERT [17] 93.0 94.1 93.8 93.5
ELMo-Like Dynamic (Ours) 90.5 92.7 91.8 91.2
ARMA Graph Dynamic (Ours) 91.1 93.0 92.4 91.8
ARMA+ELMo Graph Dynamic (Ours)  92.2 94.2 93.9 93.4

sible. 5 Discussion

4.6 Intent classification results

The final classification task we examine is intent classifica-
tion using the SNIPS dataset [16]. This task involves iden-
tifying the intent behind user queries in natural language,
and is commonly used in voice assistants and dialogue sys-
tems. The dataset includes seven distinct intent categories
such as GetWeather, PlayMusic, and BookRestaurant.

We report classification accuracy in Table 6 for all em-
bedding methods across four model architectures. Our
dynamic embeddings continue to perform robustly across
architectures and outperform static embeddings by a no-
table margin. ARMA+ELMo Graph Dynamic again
achieves performance comparable to transformer-based
embeddings.

Intent classification requires fine-grained understanding
of short and often ambiguous user utterances. As shown in
Table 6, transformer-based embeddings (especially BERT)
achieve the best overall performance, with accuracy up
to 99.0% using the Bi-LSTM classifier. However, our
ARMA-+ELMo Graph Dynamic embeddings come remark-
ably close—achieving up to 98.9%—despite being signifi-
cantly more lightweight and modular.

These results reinforce the capability of our dynamic em-
beddings to generalize well across intent-oriented tasks,
offering a strong balance between performance and effi-
ciency. Their flexibility makes them attractive for use in
production environments such as mobile voice assistants
or embedded NLP systems, where full transformer models
may be impractical.

The experimental results across five diverse NLP tasks—
sentiment analysis, disaster tweet classification, topic clas-
sification, spam detection, named entity recognition, and
intent classification—demonstrate the robustness and ef-
fectiveness of our proposed dynamic graph-based word em-
bedding framework.

According to the effectiveness of dynamic graph-based
embeddings, our approach consistently outperformed tra-
ditional static embeddings (Word2Vec, GloVe, FastText)
and achieved competitive results when compared to con-
textual embeddings like BERT and DistilBERT. Notably,
the ARMA+ELMo Graph Dynamic variant frequently
achieved top-tier performance across all tasks, validating
the benefit of combining sequence-based and graph-based
contextual modeling. This hybrid approach captures both
syntactic dependencies and dynamic semantic shifts within
context—something that static embeddings inherently lack.

According to the performance across diverse tasks, the
method’s performance held consistently across tasks with
varying characteristics, from short, noisy inputs (e.g.,
tweets and SMS messages) to long-form structured content
(e.g., news and NER data). This suggests that the proposed
dynamic embeddings generalize well across domains and
linguistic complexities.

In comparing with Transformer-based embeddings,
while BERT-based models often achieved slightly higher
scores, our ARMA-+ELMo dynamic embeddings delivered
nearly equivalent performance in many settings—with the
added advantage of being lighter-weight and easier to in-
tegrate into traditional neural pipelines. This is especially
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Table 6: Intent classification accuracy (%) on the SNIPS dataset using different embedding methods and classifiers. Bold

indicates the best performance in each column.

Embedding CNN Bi-LSTM CNN+Bi-LSTM ARMAConv
Word2Vec [1] 94.6 96.2 95.5 95.1
GloVe [2] 94.9 96.4 95.7 95.4
FastText [6] 95.6 96.8 96.2 95.8
BERT [4] 98.4 99.0 98.8 98.7
DistilBERT [17] 98.1 98.7 98.5 98.3
ELMo-Like Dynamic (Ours) 96.7 97.5 97.2 97.0
ARMA Graph Dynamic (Ours) 97.0 97.8 97.5 97.3
ARMA+ELMo Graph Dynamic (Ours)  98.2 98.9 98.7 98.6

beneficial in latency-sensitive or resource-constrained ap-
plications.

Another key observation is the adaptability of our em-
beddings across various classifier architectures. Whether
used with CNNs, Bi-LSTMs, or GNN-based ARMAConv
models, the proposed embeddings led to improved or com-
petitive performance, confirming their architectural flexi-
bility.

Future work could focus on optimizing model com-
pression and exploring multilingual and cross-lingual ex-
tensions. Additionally, integrating our embeddings into
generative or retrieval-augmented frameworks could be a
promising direction. In summary, our dynamic graph-
based word embedding framework presents a powerful and
generalizable alternative to both static and large contextual
models, offering a strong trade-off between performance,
interpretability, and model size.

6 Conclusion

In this work, we presented an extended study of a dy-
namic graph-based word embedding framework initially
proposed in our previous SOICT 2024 publication. The
method combines static embeddings with dynamic fea-
tures derived from next-word prediction models and inte-
grates syntactic structure through undirected graph repre-
sentations. Three embedding variants—ELMo-Like Dy-
namic, ARMA Graph Dynamic, and ARMA+ELMo Graph
Dynamic—were introduced and evaluated extensively.

To validate the generalizability and effectiveness of
our approach, we conducted comprehensive experiments
across a wide range of NLP tasks, including sentiment
analysis, disaster tweet classification, topic classification,
spam detection, named entity recognition, and intent clas-
sification. The results consistently demonstrated that our
dynamic embeddings outperform static baselines and are
competitive with state-of-the-art transformer-based models
such as BERT and DistilBERT.

Notably, our ARMA+ELMo Graph Dynamic embed-
dings achieved a classification accuracy of 93.2% on the
AG News topic classification task and an Fl-score of
94.2% on the CONLL-2003 NER benchmark—results that
are on par with, and in some cases surpass, those of larger

pretrained models. These strong performances demonstrate
the power of combining sequential and graph-based contex-
tualization for semantic representation.

Our framework shows promising potential for applica-
tions in environments where model interpretability, train-
ing efficiency, and adaptability across tasks are critical.
It serves as a scalable and flexible alternative to large-
scale pretrained language models, especially in resource-
constrained settings.

In future work, we plan to explore multilingual and cross-
lingual extensions, investigate model compression tech-
niques, and integrate our embedding strategy into large-
scale retrieval-augmented and generative frameworks.
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Electrocardiogram (ECG) based Artificial Intelligence (Al) analysis has evolved. Its performance in diag-
nosing arrhythmias is now comparable to that of human experts, and it has the potential to assist societies
with limited healthcare resources. However, these settings often have paper-based ECG image archives
only, while the current AI-ECG analysis requires digitised ECG signals. To address this, we previously
introduced Cardio Care, a mobile-friendly diagnostic pipeline capable of analysing both ECG signals and
scanned ECG images. In this extended study, we enhance the pipeline s explainability and expand its model
benchmarking by comparing the Vision Transformer (ViT) with two of its data-efficient variants: DeiT and
BEIT. These models were evaluated on two image-based ECG datasets—one public dataset (Mendeley) and
one private dataset (Tam Duc Cardiometabolic). Our results show that ViT achieves the strongest classifi-
cation performance among all three variants, with macro F1-scores of up to 0.99 on Mendeley and 0.81 on
Tam Duc. Additionally, we integrate a Grad-CAM-based explainability feature to visualise model atten-
tion, improving interpretability for clinical use. The enhanced Cardio Care pipeline now has an explainable
Sfunction using Grad-Cam, demonstrating significant potential for scalable, low-cost cardiac screening in
underserved healthcare settings.

Povzetek:  Studija predstavija razlozljiv multimodalni okvir Cardio Care za analizo slik ECG z
ViT/DeiT/BEIT. ViT dosega najboljse rezultate, Grad-CAM izboljsa interpretabilnost, sistem je uporaben v

okoljih z omejenimi viri.

1 Introduction

Cardiovascular disease (CVD) has remained the leading
cause of global mortality for over 100 years [21] [IL6] and
is responsible for approximately 20 million deaths annually
[3]. While various medical devices can assist cardiologists
in identifying cardiac abnormalities, the electrocardiogram
(ECG) plays a central role, offering a non-invasive, conve-
nient, and economical tool in modern medicine for evaluat-
ing the electrical activity associated with the cardiac activ-
ities [|18].

In the past decade, advances in artificial intelligence (AI)
have demonstrated the effectiveness of automated ECG in-
terpretation. Deep learning networks, particularly convo-
lutional neural networks (CNNs), have achieved expert-
level accuracy and shown promising results in detecting ar-
rhythmias and other heart-related abnormalities from dig-
ital ECG signal, reducing the reliance on trained health-
care professionals [8]. This has the potential of support-
ing the under-resourced healthcare systems with few spe-
cialist cardiologists. However, these models are not practi-
cal in low-income and rural real-world settings that only
have paper based ECG and digital ECG devices are un-

available and clinicians rely on paper-based ECG print-
outs. This makes the Al-based ECG analysis unsuitable in
such settings, where expert-level readers are scarce [|12].
Thus, by excluding image-based ECGs from Al develop-
ment pipelines results in excluding those who need this
the most, and will lead to a sharp divide between people
who will benefit from Al in health and those who will not.
Hence, to promote equality in the benefits of Al in health-
care, the Al model should be developed to support both,
digital ECG, and ECG images that can be used by front-
end health care providers without latest ECG equipment.

To bridge this gap, we have developed and validated Car-
dio Care, a smartphone-friendly deep learning pipeline ca-
pable of analysing a standard 10-second resting ECG test,
suitable for receiving both digitised ECG and imaging ECG
from scanned or printed ECG reports [26]. Built on the Vi-
sion Transformer (ViT) architecture [[7], Cardio Care em-
ploys self-attention mechanisms to effectively recognise
patterns in ECG image data, providing a flexible and de-
ployable solution, which is suitable for resource-limited
settings. Our innovative pipeline has the capability to pre-
dict multiple cardiac abnormalities, both multi-label and
single-label. Unlike other semi-supervised zero-shot mod-
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els for general image classification [9, L0, [L7, 7], our ViT
models, trained on supervised datasets with cardiologist-
level labels, are fine-tuned specifically for ECG reports.
Cardio Care takes a different approach from traditional
methods at the clinics, as can be seen in Figure [l in which
patients can easily photograph their ECG reports and up-
load them via a mobile app, and our Al model can pro-
vide highly accurate predictions to assist both patients and
healthcare providers.

Cloud with

Tailored Treatment
and Management

Specialist
G Plan for patients

Patients AI-:owered_ ECG

Mobile App

Figure 1: Simplified flowchart of Cardio Care application

In this extended study, we aim to improve both the ar-
chitectural comparison and the explainability of the Car-
dio Care pipeline by introducing additional Vision Trans-
former variants. Specifically, aside from ViT, we evaluate
two prominent extensions: the Data-efficient image Trans-
former (DeiT) [24], and the Microsoft Bidirectional En-
coder representation from Image Transformers (BeiT) [2].
These models are designed for improved learning in envi-
ronments with limited annotated data, making them well-
suited for real-world clinical datasets. Since DeiT and BeiT
are known for their performance on small-scale datasets,
they will be trained on our two image-based datasets: the
Mendeley (public) and Tam Duc (private) datasets. Fur-
thermore, we enhance the transparency of Cardio Care by
integrating a Grad-CAM-based explainability module, en-
abling visual interpretation of the model’s attention on ECG
waveform regions.

These extensions bring our proposed solution closer
to real-world clinical deployment, particularly in under-
resourced healthcare settings, by enhancing its perfor-
mance, flexibility, and generalizability—all while operat-
ing on image-based ECG inputs without the need for digital
signal acquisition or specialised infrastructure.

2 Methodology

This study builds upon our previously published confer-
ence paper [26], which introduced the Cardio Care, devel-
oped using the ViT architecture for ECG image and signal
classification. In this extended version, we introduce two
new Transformer variants (DeiT, BEiT), add an explain-
ability module (Grad-CAM), and evaluate the performance
across multiple datasets. We structured our methodology
into three main components.

First, Section - Datasets describes the three ECG
datasets used for model development and evaluation. These
include both signal- and image-based ECGs, covering a va-
riety of dataset sizes and characteristics to represent real-
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world clinical variability. Second, Section .2 - Preprocess-
ing outlines the preprocessing procedures applied to both
signal and image ECG inputs. This involves preprocess-
ing steps to transform ECG signals into usable waveform
graphs, as well as cropping, augmentation, and normali-
sation of images to ensure consistency across modalities.
Third, Section R.3 - Training Pipeline presents the model ar-
chitectures and training pipeline. We implement and com-
pare three variants of Transformer-based algorithms: The
Google’s ViT [[7], the Facebook’s DeiT [24], and the Mi-
crosoft’s BeiT [2] — for ECG classification. This section
also details the training setup, evaluation metrics, explain-
able technique and cross-validation approach used to assess
model performance across datasets.

For completeness, we retain the ViT model trained on the
signal-derived ECG plots from our original study (using the
CPSC dataset) in Section B.2, as a baseline demonstrating
Cardio Care’s compatibility with signal inputs. However,
no additional experiments were performed on this dataset
in this extended work.

2.1 Datasets

To evaluate network performance across sample sizes and
input types, we used three 12-lead ECG datasets, the char-
acteristics of which are listed in Table [I.

Table 1: Distribution of abnormalities per datasets

Dataset CPSC | Mendeley | Tam Duc
Input signal | image image
Sample 6877 929 170
Small-scale | No Yes Yes

Class 9 4 2
Balance No Yes No
Access Public | Public Private

The China Physiological Signal Challenge (CPSC) [[19]
was released in 2018 and is publicly available at http://
2018.icbeb.org/Challenge.html. This dataset com-
prises 6877 records in raw signal at 500 Hz with multi ar-
rhythmias classes: normal sinus rhythm (SNR), atrial fib-
rillation (AF), first-degree atrioventricular block (IAVB),
left bundle branch block (LBBB), right bundle branch
block (RBBB), premature atrial contraction (PAC), prema-
ture ventricular contraction (PVC), ST-segment depression
(STD), and ST-segment elevation (STE). For comparison,
the study utilised a 10-second ECG printout [20].

The 12-lead Mendeley "ECG Images dataset of Car-
diac Patients” [[L1] is publicly available at https://data.
mendeley.com/datasets/gwbz3fsgp8/2, consists of
929 ECG images in four classes: normal, myocardial in-
farction (MI), abnormal heartbeat, and previous history of
myocardial infarction (MI his).

The third and new dataset is a private clinical dataset col-
lected at Tam Duc Cardiology Hospital (Ho Chi Minh City,
Vietnam), comprising 170 de-identified ECG images from
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patients who visited between 2021 and 2023. The dataset
is categorised into two classes: cardiometabolic (n = 71)
and control (n = 99). All ECGs were standard 10-second,
12-lead printed reports scanned into high-resolution image
format. The use of this dataset was approved by the hospi-
tal’s ethics committee (Ref. No. 18.23/GCN-BVTD).

In this extended version, we clarify the class distribu-
tion in the Cardiometabolic dataset. The dataset contains
71 records labeled as disease and 99 as healthy, which cor-
rects the reversed figures reported in our earlier conference
paper [26]. That version mistakenly listed 71 as healthy
and 99 as disease. All model training and evaluation use
the corrected labels.

2.2 Preprocessing

To ensure consistent model input across various ECG data
types, we designed a standardised preprocessing pipeline
for both signal-based and image-based ECG inputs. The
goal was to generate high-quality, normalised images from
all modalities, suitable for Vision Transformer-based clas-
sification.

2.2.1 ECG signal preprocessing

Noise removal
Discrete waveform transform
Normalisation
Segmentation

Visualisation: Raw signal vs. Preprocessed signal
b drd oo d sl s oo ) Al A

iAo b sy
| AR ! I

x 12 leads

Waveform reconstruction into report format

o

g PRITINRESS ST S (RN R
A

e TEEYSUISCEVINE AT S S (N SO S

ek

[ e e

Figure 2: Preprocessing - Cardio Care framework for digi-
tal signal-based ECG inputs

Raw 12-lead ECG signals from the CPSC dataset were
preprocessed in three stages [4, ] before being converted
into waveform images (Figure [):

— Denoising: Signal noise was reduced using discrete
wavelet transform with Daubechies-4 wavelet at level
4 decomposition [[14, 25]. For noise thresholding,
we applied the Median Absolute Deviation (MAD)
method [[1 5], a robust statistical estimator less affected
by outliers, to identify and suppress high-frequency
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noise components while preserving clinically relevant
waveform features.

— Normalisation: Signal was rescaled to a standard-
ised amplitude range to reduce inter-record variability.
This normalisation step improves signal consistency,
enhances comparability across samples, and facilitates
more reliable pattern recognition during model train-
ing.

— Segmentation: ECG records were segmented into a
10-second window, corresponding to 5000 samples at
a 500 Hz sampling rate. Preprocessed signals were
then converted into waveform plots, with 12 leads ar-
ranged in a 3x4 layout as a grayscale image to match
model input requirements.

2.2.2 ECG image preprocessing

Image-based ECG reports, such as those from Mendeley
and Cardiometabolic datasets, followed the standard for-
mat in clinical practice [[13], underwent the following pre-
processing steps: Non-relevant textual regions (e.g., patient
information or hospital identifiers) were cropped, retaining
only the 12-lead waveform area in a standardised layout.
All ECG report images were then enhanced to 600 DPI and
resized to 224 x 224 pixels to match the input resolution
of the Transformer models. To simulate real-world varia-
tions such as misaligned scanning or handheld capture, we
applied random rotations of +10° as a form of data aug-
mentation, inspired by prior work on image-based ECG in-
terpretation [23]. This process enhances generalisability to
real-world image acquisition settings. An illustration of this
process is provided in the modelling overview Figure B.

Image signal inputs
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Figure 3: Preprocessing - Cardio Care framework for
image-based ECG inputs

Finally, each 224 x 224 image was divided into non-
overlapping 16 % 16 pixel patches, resulting in 196 patches
per image. These patches were then flattened and embed-
ded as input tokens to the Vision Transformer encoder. The
patch size was chosen to capture local waveform features
across multiple rows while maintaining spatial resolution
consistent with standard ViT configurations.
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2.3 Training pipeline

This study evaluates and compares three Vision Trans-
former architectures for ECG classification: ViT, DeiT
and BEiT. All models were trained independently on each
dataset using only preprocessed image-based ECG inputs.
All experiments were conducted on Google Colab using
NVIDIA A100 GPU (48GB VRAM). The pipeline is shown
in Figure [.

Cardio Care: Multimodal Pipeline for
Cardiac Detection
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Figure 4: Multimodal pipeline of Cardio Care application

2.3.1 Model architectures

— The Google Vision Transformer (ViT) was introduced
by Dosovitskiy et al. [7] is an advanced deep-learning
architecture designed explicitly for visual recognition
tasks. Unlike traditional deep-learning convolutional
neural networks (CNN), ViT breaks down images into
smaller patches and analyses the global relationships
between them. This model’s self-attention mecha-
nism efficiently accesses the entire image and captures
complex patterns, subtleties and anomalies in images.
[Variant used: VIT-BASE-PATCH16-224-IN21K]

— The Facebook Data-efficient image Transformer
(DeiT) was introduced by Touvron et al. [24] is partic-
ularly designed under constraints of limited data avail-
ability. Unlike the standard ViT, which requires large-
scale datasets for optimal performance, DeiT incor-
porates knowledge distillation during training facili-
tated by a teacher-student paradigm. This strategy in-
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volves a distillation token that learns to mimic the out-
put of a powerful, pre-trained teacher model (typically
a CNN), effectively transferring the teacher’s knowl-
edge to the DeiT model. This enhances DeiT’s ability
to perform competitively with much smaller datasets
than those required by traditional ViTs. [Variant used:
DEIT-BASE-DISTILLED-PATCH16-224]

— The Microsoft Bidirectional Encoder representation
from Image Transformers (BeiT) was introduced by
Bao et al. [2] who proposed a masked image mod-
elling (MIM) task to use two views for each image,
image patches and visual tokens. Their study indi-
cated that BeiT can improve the generalisation abil-
ity of fine-tuned models, particularly on small-scale
datasets. [Variant used: BEIT-PATCH16-224]

2.3.2 Training and evaluation

Table 2: Training configuration per dataset

Datasets CPSC Mendeley | Tam Duc
Epoch 50 25 50

Batch 256 32 16
Learning rate | 2e-4 2e-4 2e-5
Optimizer AdamW | AdamW AdamW
Train/Test 80/20 85/15 80/20
Multi-label Y N N

To address class imbalance, we applied a stratified split
and class-weighted cross-entropy loss, with weights in-
versely proportional to class frequencies in the training set.
This approach ensures balanced accuracy, which is crucial
in medical diagnostics, where missing rare cases can have
serious consequences.

We employed 10-fold cross-validation on the full dataset
to guarantee consistent performance estimates. For each
fold, the performance metrics recorded include both Preci-
sion and Recall and F1-Score, which combines both met-
rics for a balanced assessment. Finally, the macro F1-
score across n classes addresses class imbalance and re-
flects overall performance. Additionally, confusion matri-
ces are visualised to aid interpretation.

3 Results

This section presents the performance of three Vision
Transformer-based models (ViT, DeiT, and BeiT) trained
and evaluated on three ECG datasets of different types and
sizes. All models were trained solely using preprocessed
image inputs. For consistency, CPSC signals were con-
verted into 12-lead waveform plots.
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3.1 Dataset summary

We utilised 12-lead ECGs from three datasets to demon-
strate the performance of three model variants. In Section
Method - Table [l| already summarises the characteristics of
the datasets used in this study, including sample sizes, class
labels, and modality. The categorical distribution of the ab-
normality can be seen below in Table B. Due to the low
prevalence of a few classes (236 cases or 3.43% LBBB; 220
cases or 3.20% STE), data were stratified based on clinical
labels to ensure consistent distribution across both training
and testing sets. A new cardiometabolic dataset (Tam Duc)
comprising 170 samples has been introduced for evaluation
utilising real-world clinical data.

Table 3: Distribution of abnormalities per dataset

CPSC Mendeley Tam Duc
1 | 918 SNR 284 Normal 99 Control
2 | 1221 AF 240 MI 71 Disease
3 | 722 IAVB 172 MI his
4 | 236 LBBB 233 Abnormal
5 | 1857 RBBB
6 | 616 PAC
7 | 700 PVC
8 | 869 STD
9 | 220 STE

3.2 Classification performances - ECG
signal dataset

Although studies have been utilising the CPSC 2018 [2§]
[8], none of them have attempted shorter segments of the
original signal or converted those to an imaging-based
model. To evaluate our model, we compare it with ma-
chine learning classifiers as baselines for comparison. Our
baseline classifiers used extracted statistical features as in-
put for training, algorithms including Logistic Regression
(LR), Random Forest (RF), Multilayer Perceptron (MLP),
and Gradient Boosting Tree (GBT).

Table 4: Our ViT vs. baseline classifiers on CPSC dataset:
Overall 10-fold CV performance

LR | RF | MLP | GBT | Ours
Accuracy | 040 | 0.36 | 0.45 | 0.50 | 0.93
Precision | 0.58 | 0.88 | 0.54 | 0.84 | 0.71
Recall 0.41 | 0.34 | 048 | 0.49 | 0.61
Fl-score | 0.47 | 0.44 | 0.50 | 0.58 | 0.65

From Table §, macro F1-scores are shown for all classes.
With the exception of IAVB and STE, the harmonised F1-
scores for the other classes ranged from 0.54 to 0.88. Our
model also delivers the highest average performance across
all classes, with a 7% improvement over the second model,
GBT at 0.58.

To demonstrate the best fold’s performance, confusion
matrix is shown in Figure §.
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Table 5: Our ViT vs. baseline classifier on CPSC dataset:
F1-score per class performance

LR | RF | MLP | GBT | Ours
SNR 0.50 | 0.46 | 0.47 | 0.62 | 0.60
AF 0.58 | 0.58 | 0.62 | 0.74 | 0.85
IAVB 0.30 | 0.04 | 0.29 | 0.28 | 0.36
LBBB 0.77 | 0.84 | 0.70 | 0.88 | 0.79
RBBB 0.80 | 0.84 | 0.78 | 0.85 | 0.78
PAC 0.03 | 0.02 | 0.24 | 0.20 | 0.54
PVC 0.59 | 0.59 | 0.65 | 0.70 | 0.74
STD 041 | 0.38 | 0.50 | 0.61 | 0.59
STE 024 | 0.17 | 0.28 | 0.30 | 0.48
Average | 0.47 | 0.44 | 0.50 | 0.58 | 0.65

ViT on CPSC: One-vs-Rest Confusion Matrices per Class
SNR AF IAVB
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Figure 5: Best fold performed on CPSC dataset: Confusion
matrix from fold no.5

Among all arrhythmia categories, the predictions for AF,
LBBB, RBBB, and PVC were the most accurate in signal-
based models, with F1 scores of 0.85, 0.79, 0.78, and 0.74,
respectively. However, the model struggles to correctly
identify positive cases of IAVB, resulting in a high num-
ber of false negatives — 52 out of 72 cases. This difficulty
likely stems from the challenge of diagnosing IAVB in clin-
ical practice due to its subtle features and overlap with other
conditions. A similar pattern is observed in the STE class,
as diagnosis can be challenged for clinical interpretation;
[5] the performance of this class could reduce the overall
macro metrics, as nearly half of the cases are being incor-
rectly identified (9 false negatives over 22 STE.). There-
fore, interpretation should take this into account.

3.3 Classification performances - ECG
image datasets

In this extended research, we enhance Cardio Care capabil-
ities on small-scale datasets by utilising two variants of the
ViT: Deit and Beit. On the Mendeley dataset (N=929), ViT
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and DeiT models outperformed BeiT and previous stud-
ies, achieving a precision, recall and overall F1 score of
0.99. Meanwhile, Sadaq et al. achieved an overall F1
score of 0.98 with a lightweight 4-layer CNN [22], whereas
Abubaker et al. obtained the same F1 score but with a
slightly better recall of 0.99 compared to 0.98 using 2D
CNN network []1f].

Table 6: Our Transformer variants vs. CNNs on Mendeley
dataset: Overall 10-fold CV performance

2D Light | ViT | DeiT | BeiT
CNN | CNN
Accuracy | 0.98 | 0.98 0.99 | 0.99 | 0.86
Precision | 0.98 | 0.98 0.99 | 0.99 | 0.85
Recall 0.99 | 0.98 0.99 | 0.99 | 0.85
Fl-score | 0.98 | 0.98 0.99 | 0.99 | 0.85

Table 7: Our best model ViT vs.
dataset: per class performance

CNNs on Mendeley

Metric 2D Light | Ours
CNN | CNN
Normal | Precision | 0.97 - 1
Recall - - 1
F1 - - 1
Abnorm | Precision | 1 - 1
beat Recall - - 0.98
F1 - - 0.99
MI Precision | 0.98 - 1
Recall - - 1
F1 - - 1
MI his Precision | 0.98 | - 0.96
Recall - - 1
F1 - - 0.98
Average | Precision | 0.98 | 0.98 | 0.99
Recall 0.99 | 0.98 0.99
F1 0.98 | 0.98 0.99

Overall, with the Mendeley sample size and balanced
class distributions, ViT continues to deliver the strongest
results among all models. DeiT serves as a comparable al-
ternative to ViT, exhibiting similar performance (0.992 and
0.993, respectively).

In each individual class, ViT’s performance per class
can be found in Table [, achieving 100% F1-scores for
healthy and myocardial infarction subjects, 99% for abnor-
mal heartbeat conditions, and 98% for individuals with a
history of myocardial infarction.

In this study, we explore all three Transformer variants
on another private image-based dataset (Table §). Our ViT
model achieves the highest F1-score of 0.81 compared to
the other two variants.
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Table 8: Our Transformer variants on the private Tam Duc
dataset: Overall 10-fold CV performance

ViT | DeiT | BeiT
Accuracy | 0.82 | 0.82 | 0.82
Precision | 0.85 | 0.87 | 0.87
Recall 0.80 | 0.78 | 0.78
Fl-score | 0.81 | 0.79 | 0.79

3.4 Explainability with Grad-Cam

To enhance model interpretability, we applied Gradient-
weighted Class Activation Mapping (Grad-CAM) to visu-
alise the attention distribution of the ViT on ECG images.
Grad-CAM heatmaps were overlaid on the original input
images to highlight regions that contributed most signifi-
cantly to the model’s predictions. Our Grad-Cam function
successfully explains abnormal heartbeat and myocardial
conditions in a balanced data set (Mendeley).

Representative examples are shown in Figure f§ and ff,
drawn from the Mendeley dataset. In correctly classi-
fied abnormal ECGs with myocardial infarction, the atten-
tion maps consistently focused on waveform segments with
clinical relevance—such as ST-segment deviations and ir-
regular QRS morphology. Notably, Grad-CAM confirmed
that the model does not depend on irrelevant regions (e.g.,
gridlines or metadata text), thereby further validating the
efficacy of the preprocessing pipeline.

4 Discussion

This study offers notable contributions, including the fol-
lowing key points:

— We extend the Cardio Care pipeline by evaluating
three Vision Transformer architectures—ViT, DeiT,
and BEiT—for the classification of cardiac abnormal-
ities from ECG images.

— We benchmark model performance on real-world ECG
report images, using three datasets of varying size and
modality.

— We demonstrate the feasibility of deploying Vision
Transformer-based models in low-resource clinical
settings where only image-based ECG inputs are avail-
able.

— We integrate a Grad-CAM-based explainability fea-
ture into the pipeline, enabling visual interpretation
of the model’s attention on ECG waveform regions to
support clinical decision-making.

4.1 Model performance and generalisability

Despite the relatively small sample sizes of the image-
based datasets, the Vision Transformer models demon-
strated competitive performance in ECG classification. On
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History of MI

Figure 6: We evaluate our GradCam function (features ex-
tracted from the second and third-to-last layers: highlight
in yellow and red for elevated ST segments) to predict my-
ocardial infarction and a history of myocardial infarction
cases [Random subjects - ID No. 10 in each class]

Figure 7: We evaluate our GradCam function (features ex-
tracted from the second and third-to-last layers: highlight
in yellow and red for flutter or fibrillation segments) to pre-
dict abnormal heartbeat [Random subject]

the Tam Duc Cardiometabolic dataset, the best-performing
model achieved a macro F1-score of 0.81, while the Mende-
ley dataset yielded extremely well performance (F1-score
of 0.99), with balanced precision and recall across classes.
These results indicate that Vision Transformers are capable
of effectively capturing clinically relevant waveform fea-
tures from real-world ECG images.

Among the evaluated architectures, ViT consistently out-
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performed or matched DeiT and BeiT across all datasets, re-
inforcing its suitability for ECG image interpretation tasks.
Compared to prior CNN-based approaches [[Il, 22], ViT-
based models achieved superior results, particularly in gen-
eralisation and consistency across input variations. This
endorses the ongoing incorporation of transformer-based
methodologies into image-oriented diagnostic procedures
within resource-limited clinical settings.

A key addition in this study was the implementation of a
Grad-CAM-based explainability module to visualise where
the model concentrates on the ECG waveform. This feature
is crucial for enhancing transparency and building clinical
trust in Al systems. Grad-CAM heatmaps revealed that the
models mainly focus on leads and segments that are patho-
logically relevant, which enhances the interpretability of
the predictions and supports the decision-making process.

4.2 Limitations and further research

This study has several limitations. First, the CPSC and
Tam Duc datasets exhibit class imbalance, which may in-
troduce bias or skew evaluation metrics despite the use of
class-weighted loss functions. Future work should explore
advanced strategies for handling imbalance, such as focal
loss or synthetic data augmentation. Although Transformer
models such as ViT are capable of learning from small
datasets due to pretraining, recent studies suggest that train-
ing at large-scale (from 100000 samples) may be necessary
to fully exploit their capacity and improve generalisability
in clinical applications.

Secondly, the Grad-CAM visualisations, while effective
on the larger Mendeley dataset, showed limited interpretive
clarity on the smaller Tam Duc dataset. This limitation is
likely due to the restricted sample size, which may constrain
the model’s ability to form robust attention patterns. In low-
data scenarios, the model may lack sufficient examples to
produce consistent or clinically meaningful explanations.
This highlights the need for either larger annotated datasets
or the adoption of interpretability-focused architectures op-
timised for small-sample learning.

Lastly, although the model was evaluated across three
datasets with different label structures, its diagnostic cov-
erage remains limited to major rhythm classes and binary
disease classification. Future work should aim to expand
the model’s label space to include more granular and rare
ECG abnormalities, and explore multi-task learning to cap-
ture broader cardiovascular and metabolic risk profiles.

5 Conclusion

While modern ECG analysis techniques have demonstrated
high diagnostic accuracy, their dependence on digital signal
data presents limitations in low-resource and image-only
clinical environments [[12]. This study demonstrates that
integrating Vision Transformer architectures into ECG im-
age classification pipelines offers a viable and effective al-
ternative.
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By benchmarking ViT, DeiT, and BEiT models across
datasets—including a real-world clinical ECG image
dataset—we show that these models can achieve strong
classification performance, even with limited data. The in-
clusion of a Grad-CAM-based explainability module fur-
ther enhances the transparency of the pipeline, making it
more suitable for clinical decision support.

These findings support using image-based deep learning
in cardiac screening, especially where access to digitised
ECG data is limited.
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During disasters, a large volume of messages are posted on social networking services (SNS). Some of
these messages contain behavioral facilitation information, which either encourages or discourages spe-
cific actions. However, the interpretation of such information depends on the personality traits of the
individuals affected. In this study, we hypothesize that victims’ personality traits influence their perception
of behavioral facilitation information, and we analyze the characteristics of these differences. Focusing on
typhoons, we propose a method for extracting behavioral facilitation information from posts on X (formerly
Twitter) during typhoon-related disasters. The extracted information is then classified into four content-
based categories: suggest, inhibition, encouragement, and wish. Furthermore, we categorize individual
personality traits into five dimensions (the Big Five), and also take into account their age and sex. We then
analyze how the perception of each type of behavioral facilitation information varies according to these
traits. Our analysis reveals that, during disasters, the interpretation of behavioral facilitation information
exhibits distinct and consistent patterns depending on the personality traits of the victims.

Povzetek: Razvili so razsirjen in razlozljiv sistem Cardio Care za racunalnisko analizo EKG. Preverili so
modele ViT, DeiT in BEIT — najboljsi je ViT. Dodali so Grad-CAM za vizualna pojasnila, sistem pa deluje

tudi z mobilnimi fotografijami papirnih EKG-jev.

1 Introduction

In recent years, we have seen an increase in the fre-
quency of large-scale natural disasters, including typhoons,
heavy rainfall, and earthquakes, affecting wide areas. Dur-
ing these disasters, it is critical to promptly provide ac-
curate and essential information to those affected. Cur-
rently, many people use social networking services (SNS)
to share and access disaster-related information. On these
platforms, not only general users and disaster victims but
also local governments and other government agencies are
proactively sharing information[1]. Among many mes-
sages posted on SNS during disasters, a significant num-
ber include instructions such as “Please evacuate” or “Keep
away from the river.” These messages are intended to en-
courage or discourage certain behaviors and are known to
have a significant impact on people’s evacuation decisions.
In this study, we refer to such content as “behavioral facil-
itation information” (hereinafter “BF information”).

Our previous research has focused on extracting the BF
information from SNS with the goal of influencing read-
ers’ actions[2][3][4]. BF information can change and may
encourage or discourage certain behaviors. Here, we pro-
pose a method to automatically extract BF information from

large amounts of disaster-related SNS content and classify
it into four types based on its communicative intent: “Sug-
gest,” “Inhibition,” “Encouragement,” and “Wish.” We
collectively refer to these four categories as BF information
types. While BF information can be effective in guiding
disaster victims, it can also have unintended or counterpro-
ductive effects. For example, Kimura' notes that a message
like “The river is overflowing and dangerous, so please stay
away” might lead most people to avoid the area out of fear.
However, some individuals—driven by strong curiosity or
a sense of responsibility—might feel compelled to move to-
ward the danger to observe the situation, acting against the
message’s intent. This suggests that the same information
can be interpreted differently depending on readers’ person-
ality traits, potentially leading to adverse outcomes.

Based on these observations, we hypothesize that indi-
vidual personality traits influence how BF information is
perceived during disasters. This study, therefore, analyzes
the relationship between different types of BF information
and the reader’s personality characteristics. For person-
ality modeling, we adopt the Big Five personality frame-
work. This framework is a widely recognized and fun-
damental model in psychology for understanding human

'https://president.jp/articles/-/71423
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personality, describing it across five key dimensions: “Ex-
traversion,” “Agreeableness,” “Conscientiousness,” “Neu-
roticism,” and “Openness.” We use these five factors as
the reader’s personality traits in our analysis. This study
specifically focuses on disasters caused by typhoons, and
we use X (formerly Twitter) as our target SNS platform for
information sharing and analysis.
The main contributions of this study are:

— A method for extracting BF information and classify-
ing it into four BF information types.

— An analysis of how each BF information type in-
fluences readers based on their different personality
traits.

These contributions will help develop systems that can de-
liver more effective, disaster-related information, tailored
to the unique personality traits of each individual victim.

2 Related work

Numerous studies have been conducted on extracting im-
portant information from social networking services (SNS)
during disasters. Xiaodong et al. [5] focused on the lin-
guistic, sentimental, and emotional characteristics unique
to messages on SNS and proposed a model that classifies
tweets into disaster-related and non—disaster-related cate-
gories. Paul et al. [6] analyzed tweets related to typhoons
that occurred between 2012 and 2018 and applied BERT
to classify tweets regarding power outages and communi-
cation failures into specific categories. Yasin et al. [7]
employed machine learning methods to classify disaster-
related tweets into six labels—Need rescue,” “Disabled
persons, elderly, children, women,” “Need water,” “In-
jury,” “Illness,” and “Flooding”—to identify the informa-
tion necessary to assist the tweet authors. These studies
have categorized disaster or damage information, such as
“Rescue,” “Donation,” and “Tsunami,” into topic-specific
categories. In contrast, our study differs in that it focuses
on classifying and analyzing BF information that facilitates
or discourages specific actions.

Research focusing on personality traits about disaster-
related information has also been conducted. Gupta et al.
[8] analyzed human behavior during evacuation by focus-
ing on personality traits to predict traffic conditions dur-
ing disasters, demonstrating that evacuation behaviors dif-
fer depending on individual personality traits. While this
study is similar to ours in that it analyzes differences in re-
actions based on personality traits, our work differs in that it
targets reactions to behavioral facilitation information dur-
ing disasters explicitly.

In addition, many studies have analyzed tweets during
disasters. Roy et al. [9] analyzed follower counts and ac-
tivity patterns of readers during hurricanes, showing that
those who provide effective information during disasters
are not solely determined by their posting frequency. Lu
et al. [10] analyzed deleted tweets and demonstrated that

A. Nadamoto et al.

non-effective content can be classified into ten categories.
David et al. [11] classified tweets into 11 categories, such
as “Need help” and “Looking for someone,” and conducted
sentiment analysis, showing that tweets during disasters
mainly consist of support or suggestion messages. Ya-
mada et al. [12] analyzed tweets during the 2018 West-
ern Japan heavy rain disaster, focusing on the number of
tweets over time, the use of hashtags and emojis, the num-
ber of retweets, and the number of tweets containing news
article URLs. Nishikawa et al. [13] analyzed the content
and trends of tweets tagged with rescue-request hashtags
posted during the 2018 Western Japan heavy rain disaster.
These studies analyzed tweets with a focus on aspects such
as tweet frequency, hashtags, keywords, and sentiment. In
contrast, our study differs in that it classifies tweets by type
of behavioral facilitation information and analyzes them
with a focus on the personality traits of the readers.

3 Extraction of behavioral
facilitation information

3.1 Target scope of behavioral facilitation
information

In this study, we define BF information as content that ex-
plicitly urges or discourages others from taking specific ac-
tions. We have excluded tweets that imply certain behaviors
without direct language. For example, the sentence, “This
typhoon has very strong winds, so let’s bring the flower
pots indoors before it arrives,” explicitly encourages peo-
ple to bring flower pots indoors. Therefore, we classify it
as BF information. In contrast, a sentence like, “The wind
is really strong with this typhoon—what would happen if
someone went outside today?” implies a cautionary tweet.
However, it does not explicitly instruct any behavior, so we
have excluded it from our analysis.

3.2 Extraction method for BF information

Methodology for Extracting BF Information

We utilize RoBERTa [14], a Transformer-based bidirec-
tional language model for natural language understanding,
to extract BF information from tweets on X. Our previous
studies [15] have shown that RoOBERTa provides a practi-
cal level of accuracy when compared to both rule-based ap-
proaches and other deep learning models. For our imple-
mentation, we use the PyTorch framework 2 and initialize
the model with a Japanese pre-trained RoOBERTa model °.
Preprocessing and Model Architecture

We first remove URLs and user account names from each
tweet. We then use Juman++ # for morphological analysis.
The resulting tokens are fed into the Japanese RoBERTa

’https://pytorch.org/

Shttps://huggingface.co/nlp-waseda/
roberta-base-japanese

“https://nlp.ist.i.kyoto-u.ac.jp/JUMAN
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model, and we extract the distributed representations from
the final layer. These representations are then passed to a
fully connected layer. We fine-tune the model so that the
output of this layer classifies whether the input corresponds
to BF information or not. We determined the following hy-
perparameters through a grid search: the number of hidden
layers = 12, vector size = 768, batch size = 32, the number
of epochs = 5, learning rate = 0.001, and dropout rate = 0.1.
We adopt the Adam optimizer [16] for training.

Dataset and Evaluation

For fine-tuning, we use a dataset of tweets posted dur-
ing Typhoon Faxai (Typhoon No. 15), which struck the
Bosd Peninsula in Chiba Prefecture in September 2019 °.
The dataset consists of 24,430 tweets collected between
September 6th and 18th, 2019. This dataset is balanced,
with 12,215 tweets labeled as BF information and 12,215
as non-BF information. In this study, one tweet is con-
sidered a single instance of BF information. As our prior
work [15] already includes a detailed comparative analy-
sis of various models (e.g., rule-based, Bi-LSTM, BERT,
and RoBERTa), this paper shows only the results of a five-
fold cross-validation for the RoOBERTa model, as shown in
Table 1. Table 1 demonstrates that the RoBERTa-based
model achieves higher accuracy in extracting BF informa-
tion. Therefore, we have adopted this model for our further
analysis of disaster-related tweets.

Table 1: Performance of BF information extraction mode
Model Precision | Recall | Fl-score | AUC
RoBERTa 0.900 0.949 0.924 0.973

4 Classification of BF information
types

We propose a classification model that categorizes the ex-
tracted BF information into predefined BF information
types, as described below.

4.1 Definition of BF information types

BF information includes various forms of information that
encourage or discourage specific actions, such as “Please be
careful with...” or “Do not....” Yamamoto et al. [17] extract
BF information during large-scale disasters and conducted
a feature analysis, based on which they proposed the fol-
lowing five types of BF information:

— Suggest Type
This type includes content that recommends the read-
ers take a specific action. For instance: “The nearby
river is rising. Please evacuate immediately.”

— Inhibition Type
This type discourages or prohibits the readers from

Shttps://ja.wikipedia.org/wiki/
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taking certain actions. For example: “The river is
swelling due to heavy rain. Please avoid approaching
it.”

— Encouragement Type
This type contains content aimed at emotionally en-
couraging the readers. For example: “There are still
power outages and food shortages, but let’s keep go-
ing together.”

— Wish Type
This type expresses the poster’s own wishes. For ex-
ample: “We don’t have enough food. Please come and
help us soon.”

— Other Type
This type includes information that does not classify
any of the above types.

4.2 The BF information type classification
model

We utilize the Japanese pre-trained ROBERTa model as the
base for our classification framework. Fine-tuning is per-
formed using a dataset of disaster-related tweets, each an-
notated with one or more of the four BF information types.
Feature vectors are obtained from the final output layer of
RoBERTHa, specifically from the representation correspond-
ing to the [CLS] token.

Prior to inputting the tweets into the model, we con-
duct morphological analysis using Juman++ ®. As part of
the preprocessing, URLs and user account names (handle
names) are removed from the tweet texts.

The hyperparameters of the ROBERTa model are deter-
mined using grid search. The number of hidden layers is set
to 12, the vector size to 768, batch size to 16, learning rate
to 0.000005, and dropout rate to 0.1. We adopt AdamW as
the optimizer for training.

(1) Independent (Single-Label) Models

We construct separate binary classifiers for each of
the four BF information types. Each classifier inde-
pendently determines whether its corresponding label
should be assigned to a given piece of BF information.
For each binary classifier, the input representation is
taken from the final hidden state corresponding to the
[CLS] token in the RoBERTa model. This vector is
fed into a fully connected layer and fine-tuned to per-
form binary classification. By aggregating predictions
across the four classifiers, we achieve multi-label clas-
sification.

(2) Unified Multi-Label Model
We also construct a single model that simultane-
ously performs multi-label classification across all
four BF information types. In this approach, a four-
dimensional fully connected layer is added to the

®https://nlp.ist.i.kyoto-u.ac.jp/JUMAN
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[CLS] token output of the final layer. A sigmoid ac-
tivation function is applied to each unit, and the re-
sulting values represent the probability that each cor-
responding label applies. Labels with predicted prob-
abilities exceeding a threshold of 0.5 are assigned to
the input instance. This model allows for simultane-
ous prediction of multiple labels in a single forward
pass.

4.3 Evaluation of the BF information type
classification model

To assess the effectiveness of the proposed classification
model for BF information types, we conducted evaluation
experiments.

4.3.1 Evaluation data

For the evaluation of our model, we used data from two
major typhoons: (1) Typhoon Faxai in 2019 (September 6—
18), and (2) Typhoon Nanmadol in 2022 (September 16—
27). Typhoon Faxai was characterized by heavy rainfall,
while Typhoon Nanmadol featured strong winds.

We use crowdsourcing to annotate the 10,000 extracted
tweets of BF information with their respective information
types. A total of ten annotators participated in this task.
Each tweet could be assigned one or more of the follow-
ing four labels: “suggest,” “inhibition,” “encouragement,”
and “wish.” Annotators were allowed to assign one or more
labels to a single instance if applicable. For each BF infor-
mation, if six or more annotators agree on a particular la-
bel, that label is assigned to the tweet. BF information that
does not satisfy this criterion is regarded as “Others” and
is excluded from consideration in this study. BF informa-
tion that does not meet the threshold of six is classified as
“Others” and excluded from use in this study. The results
of the multi-label annotation conducted via crowdsourcing
are shown in Table 4. The counts for each BF information
type include instances that may have been labeled with mul-
tiple types—for example, those labeled as both “Suggest”
and “Inhibition” are counted in both categories. As seen
in Table 4, there is an evident imbalance in the number of
instances per label. The decision to annotate only 10,000
tweets was made to reduce the annotation cost; however,
this led to a shortage of data for specific labels. To address
this, we applied oversampling. Among the various over-
sampling techniques, we adopted Easy Data Augmentation
(EDA) [18]. We set the EDA hyperparameter o to 0.05 and
the number of generated samples per original tweet (n4ug)
to 16. We used the implementation available in daaja 7 to
perform the augmentation. The number of instances before
and after oversampling is presented in Table 3.

EEINT3
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4.3.2 Validation of oversampling

To evaluate the effectiveness of the oversampling process,
we compared model performance before and after applying
EDA (as shown in Table 3). The same model architecture
was used in both conditions.

For fine-tuning, we performed five-fold cross-validation
using 80% of the data for training and 20% for testing. As
shown in Table 6 (1) and (2), the models trained using over-
sampled data consistently performed better than the models
trained using non-oversampled data. These results validate
the utility of the oversampling method, and we therefore
adopted the oversampled dataset for training in this study.

4.3.3 Evaluation of the classification model

To further validate the proposed BF information type
classification model, we conducted a comparative exper-
iment. Our proposed model performs multi-label classi-
fication. As a baseline, we constructed binary classifica-
tion models—one for each label—where each model dis-
tinguishes between positive and negative examples of that
label.

All models used the RoBERTa Japanese Pretrained
model. For binary classification, 20% of the oversampled
data for each label was used as positive examples, while
the same number of negative examples (instances without
that label) was randomly sampled. This resulted in a to-
tal of four binary classifiers. Both the proposed multi-label
model and the binary classifiers were trained using five-fold
cross-validation on the oversampled data shown in Table 5.

Table 6 shows the results. While the binary classifiers (3)
achieved slightly better performance in terms of accuracy,
precision, recall, F1-score, and AUC, the proposed model
(1) required 3.93 times less computation time. This is be-
cause the binary classifiers needed to evaluate each instance
using four separate models. Thus, considering both perfor-
mance and efficiency, the proposed model demonstrates ef-
fectiveness in classifying BF information types.

S Analysis of the relationship
between personality traits and
types of BF information

The relationship between the readers’ personality traits and

the types of BF information is analyzed through the follow-
ing procedure:

1. Determine the personality traits of potential partici-
pants using the TIPI-J questionnaire.

2. Select participants based on the results obtained in step

(D.

3. Administer a questionnaire to the participants regard-
ing the perceived usefulness of BF information.
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Table 2: Number of BF information per typhoon

No. Typhoon Total Instances | Instances Used for Training
1 Faxai (2019) 12,215 5,000
Nanmadol (2022) 67,378 5,000

Table 3: Number of BF information before and after over-

sampling
Type Before oversampling | After oversampling
Suggest 985 16,745
Inhibition 260 4,420
Encouragement 491 8,347
Wish 798 13,566

Table 4: Labeling results of BF information types

Label Number of BF information
Suggest 8,078
Inhibition 122
Encouragement 230
Wish 617
Suggest and Inhibition 132
Suggest and Encouragement 249
Suggest and Wish 163
Wish and Encouragement 10
Inhibition and Wish 6
Suggest, Wish, and Encouragement 2
Others 391

4. Analyze the relationship between the readers’ person-
ality traits and the types of BF information based on
the questionnaire results.

5.1 Questionnaire survey
5.1.1 Determination of personality traits

This study uses the Big Five personality traits, a widely
accepted model in psychology, to determine the readers’
personality. As shown in Table 7, the Big Five model cat-
egorizes human personality into five factors: “Extraver-
sion,” “Agreeableness,” “Conscientiousness,” “Neuroti-
cism,” and “Openness.” To identify these traits, we con-
ducted a questionnaire survey based on the Big Five model.
To minimize the burden on participants, we used the Ten
Item Personality Inventory — Japanese version (TIPI-J),
proposed by Oshio et al. [19]. This scale measures person-
ality traits using only ten questions, which are presented
in Table 8. For each item, participants provided their re-
sponses on a seven-point Likert scale, ranging from “1:
Strongly disagree” to “7: Strongly agree.”

5.1.2 Selection of participants

The TIPI-J allows for flexible determination of individu-
als with high or low levels of each personality trait. In this
study, the thresholds for each personality trait were deter-
mined based on a crowdsourcing based survey. The ques-
tionnaire in Table 8 was administered to 1,000 male and
female participants aged 20 or over as a screening survey.

The results showed that, for all personality traits, a score
of 8 was significantly more frequent than other scores.
Therefore, in this study, we define individuals scoring 10 or
higher (i.e., +2 points above the base score of 8) as having
“high” levels of that trait, and individuals scoring 6 or lower
(—2 points or more below 8) as having “low” levels of that
trait. Furthermore, individuals often possess multiple per-
sonality traits. For the analysis of the relationship between
personality traits and BF information types, it is necessary
to decide whether to analyze each trait independently or to
account for combinations of traits. In the former approach,
a participant with both high extraversion and high openness
is treated separately as “high extraversion” and “high open-
ness.” In the latter, the same participant would be treated as
“high in both extraversion and openness,” and not as “high
extraversion” or “high openness” individually. To make
this decision, we calculated the correlation coefficients be-
tween traits. If strong correlations were observed, an anal-
ysis considering multiple traits would be warranted. The
correlation coefficients are shown in Table 10. We find that
the highest correlation coefficient was 0.48, indicating only
weak correlations between traits. Therefore, in this study,
we analyze each trait independently without accounting for
inter-trait influences. From the screening survey results, in-
dividuals with high and low scores for each trait were ex-
tracted, resulting in 248 participants. The distribution of
participants by personality trait is shown in Table 11.

When selecting participants for each trait, three patterns
can be considered:

1. Select only individuals who have high (or low) levels
of the target trait and do not have high (or low) levels
in any other trait.

2. Select individuals with high (or low) levels of the tar-
get trait regardless of other traits, but do not reuse their
data for other traits.

3. Select individuals with high (or low) levels of the tar-
get trait regardless of other traits, and allow reuse of
their data for other traits.

Pattern (1) has the drawback of resulting in very few eligi-
ble participants. Pattern (2) may lead to variations in anal-
ysis results depending on which individuals are selected.
Therefore, in this study, we adopt Pattern (3).

5.1.3 Survey data

The data used for the questionnaire survey was collected
during Typhoon No. 15 in 2022 (September 22nd—24th,
2022). We used our proposed BF information extraction
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Table 5: Number of positive and negative data

Type Positive Samples | Negative Samples | Total
Suggest 985 985 1,970
Inhibition 260 260 520
Encouragement 491 491 982
Wish 798 798 1,596
Table 6: Performance results of each model
Model Type Accuracy | Precision | Recall | Fl-score | AUC
Suggest 0.958 0973 | 0969 | 0.971 | 0.981
Inhibition 0.992 0.930 0.952 0.940 0.996
(1) Proposed Model Encouragement 0.971 0.886 0.912 0.898 0.981
Wish 0.984 0.968 | 0.956 | 0.962 | 0.99%4
Average 0.976 0.939 0.947 0.943 0.988
Suggest 0.878 0.893 | 0.949 | 0920 | 0.926
Inhibition 0.961 0.512 0.515 0.512 0.930
(2) Multi-label Model (Without Oversampling) | Encouragement 0914 0.650 0.500 0.545 0.914
Wish 0.927 0.889 | 0762 | 0.819 | 0.963
Average 0.920 0.736 0.682 0.699 0.933
Suggest 0.966 0961 | 0.972 | 0.966 | 0.992
Inhibition 0.990 0.989 0.992 0.990 0.998
(3) Single-Label Models Encouragement 0.969 0.961 0.978 0.969 0.993
Wish 0.986 0.983 0.989 0.986 0.995
Average 0.978 0.973 0.983 0.978 0.994
Table 7: Descriptions and characteristics of each big five trait
Trait Description Characteristics
Extraversion Measures sociability, proac- | Individuals with high extraversion tend to take action immediately once
tivity, and activeness they have an idea, and are energetic. They are assertive, capable of ex-
pressing their opinions, and skilled at speaking in front of large groups.
They may feel bored in environments lacking stimulation.
Agreeableness Measures empathy, consid- | Individuals with high agreeableness enjoy pleasing and serving others,
eration, and compassion to- | and tend to prioritize others’ success over their own. They dislike con-
ward others flict and may suppress their own opinions to maintain harmony and fa-
cilitate smooth interactions.

Conscientiousness | Measures self-control over | Individuals with high conscientiousness are focused and disciplined to-
emotions and actions, and a | ward clear goals, demonstrating perseverance and responsibility. They
strong sense of responsibil- | tend to think carefully before acting, which may slow down their behav-
ity ior.

Neuroticism Measures the intensity of re- | Individuals with high neuroticism are more sensitive to negative events
sponses to negative stimuli | and prone to stress. They may become irritated or panic when things do
not go as planned.
Openness Measures intellectual cu- | Individuals with high openness actively engage in new experiences and
riosity and imagination enjoy novel environments. They are skilled at expressing their feelings
and emotions to others, and tend to dislike being constrained by strict
rules.

and classification models to categorize the BF informa-
tion by type. From the 51,599 BF information automat-
ically extracted by our proposed model, the classification
results were as follows: 22,911 of the Suggestive type,
588 of the Inhibitive type, 1,983 of the Encouragement
type, and 2,959 of the Expressive type, with the remainder
categorized as Other. We randomly sampled 50 instances
from each of the four main types to create our experimental
dataset.

5.1.4 Flow of survey

We used a crowdsourcing platform to conduct a question-
naire survey with the selected participants. The survey data,
which were categorized by BF information types, were pre-
sented to the participants randomly. Participants were in-
structed beforehand to imagine themselves as victims of a
major typhoon and to answer each question from that per-
spective. They were asked to read each tweet with BF infor-
mation and respond to a corresponding question based on
the type: “Did you want to take action?” for the Suggestive
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Table 8: TIPI-J questionnaire items for personality trait assessment

Item

Question

—_

I see myself as active and extraverted.

I see myself as reserved and quiet.

O 03N N B W

—_
(e}

I see myself as someone who has complaints about others and tends to get into conflicts.
I see myself as dependable and self-disciplined.

I see myself as anxious and easily upset.

I see myself as open to new experiences and having unconventional ideas.

I see myself as considerate and kind to others.

I see myself as disorganized and careless.

I see myself as calm and emotionally stable.

I see myself as lacking in creativity and ordinary.

Table 9: Calculation method for personality traits

Trait Calculation
Extraversion Item 1+ (8-Ttem6)
Agreeableness Item 7+ (8 -Item 2 )
Conscientiousness | Item 3 + ( 8 - Item 8§ )
Neuroticism Item 4 + (8 - Item 9 )
Openness Item 5+ (8 -Item 10)

type, “Did you want to stop the action?” for the Inhibitive
type, “Did you feel encouraged?” for the Encouragement
type, and “Did you want to respond to the request?” for
the Expressive type. Responses were rated on a four-point
Likert scale, with “1: Strongly disagree,” “2: Disagree,”
“3: Agree,” and “4: Strongly agree.”

5.1.5 Survey results

In this study, we regard BF information with higher evalu-
ation scores in the questionnaire results as more “effective
information.” In this study, we define “effective informa-
tion” as BF information presented to the reader that they
perceive as prompting them to take the action described.
Table 12 shows the average questionnaire results. The
scores shown here are the raw evaluation scores from the
questionnaire.

5.2 Analysis of relationship between
personality traits and BF information

types

Based on the survey results, we performed three types of
analysis: a comparative analysis of high vs low personal-
ity trait groups, a comparison between different personality
traits, and a comparison between different BF information

types.
5.2.1 Comparative analysis by high and low levels of
each personality trait

We conducted this analysis to understand the characteristics
of how each personality trait influences the effectiveness of

different BF information types. We used the survey results
from Table 12. As our analytical method, we employed the
Brunner-Munzel test, which is suitable for comparing two
independent groups without assuming equal variances. We
conducted a one-sided test at a 5% significance level. The
null hypothesis (H() was that “there is no difference in the
perceived effectiveness between the high and low personal-
ity trait groups.” The alternative hypothesis (H;) was that
“the high personality trait group perceives the information
as more effective than the low personality trait group.”

In this analysis, we focused on comparing the high and
low groups for each specific trait and did not consider the
interactions between different traits. Therefore, we did not
apply multiple comparison corrections such as the Bonfer-
roni correction. The results are shown in Table 13.

Results and Discussion
A significant difference (p < 0.05) was found for the En-
couragement and Expressive types in the high Extraver-
sion group compared to the low Extraversion group. This
suggests that highly extraverted readers find these types of
BF information more effective. We believe this is because
extraverted individuals are more sociable and are thus more
likely to respond to BF information of collective encour-
agement (“Let’s keep going”) or requests for help (“Please
come and help us soon”).

For the high Agreeableness group, a significant differ-
ence (p < 0.05) was also found for the Encouragement
and Expressive types. People with high Agreeableness
tend to cooperate more with others. Therefore, they are
more likely to respond to BF information like “Please...”
or “Let’s work together.” No significant differences were
found for any BF information type in either the high Con-
scientiousness or high Neuroticism groups. This indicates
that the level of Conscientiousness or Neuroticism does not
significantly affect the perceived effectiveness of any BF
information type.

For the high Openness group, significant differences
(p < 0.05) were found for the Suggestive, Encourage-
ment, and Expressive types. This suggests that readers
with high Openness find these types of BF information
more effective than those with low Openness. We believe
this is because people high in Openness are more accepting
of new experiences and are generally more proactive, mak-
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Table 10: Correlation coefficients for personality traits (1,000 participants)

Extraversion | Agreeableness | Conscientiousness | Neuroticism | Openness
Extraversion 1 0.03 0.32 -0.40 0.42
Agreeableness 0.03 1 -0.41 -0.40 0.09
Conscientiousness 0.32 -0.41 1 -0.48 0.32
Neuroticism -0.40 -0.40 -0.48 1 -0.30
Openness 0.42 0.09 0.32 -0.30 1

Table 11: Number of survey participants for each personal-
ity trait

Personality Trait | High | Low
Extraversion 73 111
Agreeableness 119 61
Conscientiousness | 82 106
Neuroticism 94 84
Openness 58 112

ing them more likely to act on these types of information.

5.2.2 Analysis of the relationship between personality
traits and BF information types

(a) Analysis Method by Personality Trait
We evaluate which information types are effective for each
personality trait to analyze the relationship between person-
ality traits and types of BF information. In this analysis, we
use standard scores (deviation values) to capture both the
variation within a single trait group and overall tendencies,
enabling comparison across different personality traits.
The standard score TP, ; for personality trait p with re-
spect to BF information type ¢ is calculated using the fol-
lowing formula:

TP, = (O‘f”_“”) x 10 + 50
Op

Here, o, ; is the score of personality trait p for informa-

tion type i, ji, is the mean score for personality trait p, and
op is the standard deviation of scores for personality trait
p. In this analysis, we define information types with a stan-
dard score above 55 as “effective” for a given personality
trait, and those below 45 as “ineffective.”
(b) Analysis Results and Discussion by Personality Trait
The results of this analysis are shown in Figurel. The
results indicate that for individuals with high levels of
extraversion, agreeableness, or conscientiousness, similar
patterns are observed: the inhibitory and encouraging types
are effective, while the Suggest and Wish types are not.

For highly extraverted individuals, this may be because
they tend to respond quickly and sensitively to stimuli.
Therefore, inhibitory BF information such as “please re-
frain from...” likely elicited strong reactions. Additionally,
since extraverted individuals are typically communicative,
encouraging BF information like “please do your best” may

have resonated with their Wish for connection with others.
Individuals with high agreeableness tend to compromise
and tolerate discomfort. This may explain their receptive-
ness to inhibitory BF information. Furthermore, due to their
prosocial tendencies—such as the Wish to please or help
others—they may have also responded well to encourag-
ing BF information. However, despite the assumption that
wishful BF information (e.g., “Please...”) might also be ef-
fective for agreeable individuals, the results did not support
this. Clarifying this discrepancy remains a topic for future
work. Conscientious individuals are known for their ten-
dency to deliberate carefully before acting. As such, they
may be more inclined to follow inhibitory guidance. Their
trait of being reliable and responsible might also explain the
effectiveness of encouraging BF information.

For individuals with high neuroticism, inhibitory infor-
mation types were found to be effective. This may be
due to their heightened sensitivity to emotions and per-
ceived threats in their environment. BF information like
“Do not...” likely evoked a stronger sense of urgency or
risk, which could have prompted behavioral restraint.

For individuals with high openness, encouraging BF in-
formation is effective. This could be attributed to their
self-awareness and expressiveness. People who are high in
openness are generally good at communicating their feel-
ings, so BF information like “Do your best” may have ap-
pealed to their introspective and expressive nature.

5.2.3 Analysis of the relationship between BF
information types and personality traits

(a) Analysis Method by BF Information Type

We analyze the relationship between each BF information
type and personality traits. As with the previous analysis
that examined personality traits by information type, we use
standard scores (deviation values) to allow for comparison
across traits and account for internal variation. The stan-
dard score T'By, ; for BF information type b and personality
trait j is calculated using the following formula:

QXb,j — Hb
Ob

TBy; = ( ) x 10 + 50

Here, o ; is the score of personality trait j for informa-
tion type b, 1y, is the mean score across all traits for informa-
tion type b, and oy, is the standard deviation for information
type b. In this analysis, we define personality traits with a
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Table 12: Average scores for each BF information type by high and low personality traits

Trait Group | Suggestive | Inhibitive | Encouragement | Expressive
Extraversion High 2.141 2.461 2.492 2314
Low 1.952 2.363 2.207 2.043
Agreeableness High 2.069 2.452 2421 2.257
Low 1.924 2.378 2.132 1.947
Conscientiousness | High 2.082 2.452 2.426 2.270
Low 1.937 2.380 2.203 2.039
Neuroticism High 2.041 2.452 2.295 2.153
Low 2.136 2.448 2.410 2.254
Openness High 2.222 2.442 2.543 2.350
Low 1.856 2.352 2.166 1.997
Table 13: Statistical results for each personality trait
Trait Statistic | Suggestive | Inhibitive | Encouragement | Expressive
Extraversion Statistic -1.243 -0.861 -2.259 -2.352
p-value 0.108 0.195 0.013 0.010
Agreeableness Statistic -1.060 -0.681 -2.148 -2.739
p-value 0.146 0.248 0.017 0.004
Conscientiousness | Statistic -0.740 -0.524 -1.472 -1.575
p-value 0.230 0.301 0.071 0.058
Neuroticism Statistic 0.476 0.030 0.798 0.543
p-value 0.682 0.512 0.787 0.706
Openness Statistic -2.159 -0.739 -2.645 -2.444
p-value 0.017 0.231 0.005 0.008

standard score above 55 as being effectively influenced by
the given information type, and those with a score below 45
as not effectively influenced.

agement

wieh 48 48 48 45 47 I

Conscienti ic Openness

Figure 1: Results of BF information type by personality
traits

(b) Analysis Results and Discussion by Information
Type
The results are shown in Figure 2. For the Suggest type, in-
dividuals with high openness showed positive responsive-
ness, while those with high agreeableness and neuroticism
were less responsive. The standard score was highest for
individuals with high openness, likely because such indi-
viduals are characterized by flexible thinking and a will-
ingness to act in novel situations, enabling them to adapt
well to prompts like “Please do....” Conversely, individ-
uals with high neuroticism had the lowest standard scores.
This is likely due to their tendency to experience heightened
anxiety in disasters, making it difficult for them to respond
appropriately to behavior-prompting BF information. Al-

though agreeable individuals are typically kind and recep-
tive to advice, the results did not show effectiveness for this
group, contrary to expectations. Clarifying this discrepancy
is a topic for future research.

For the inhibitory type, individuals with high extraver-
sion responded positively, while those with high openness
did not. Extraverted individuals tend to respond quickly
to stimuli and are highly sensitive to urgency, which may
explain why they were more responsive to BF information
like “Please do not....” On the other hand, highly open in-
dividuals prefer change and action, making inhibitory BF
information less effective for them.

For the encouragement type, both extraverted and open
individuals showed positive responses, while those with
high neuroticism did not. The highest standard score was
observed among individuals high in openness. Their emo-
tional sensitivity likely enabled them to resonate with BF
information such as “You can do it,” even when received
from unknown users on social media. In contrast, neurotic
individuals, who are prone to pessimism, may not have felt
encouraged by such BF information.

For the Wish type, individuals with high extraversion and
openness were again responsive, while those with high neu-
roticism were not. This pattern is similar to that observed
with the encouragement type. Extraverted people tend to
communicate easily even with strangers, and open individ-
uals are emotionally receptive and willing to act in unfa-
miliar environments. These traits likely contributed to their
positive responses to requests such as “Please help” on so-
cial media.
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In contrast, individuals with high neuroticism tend to ex-
perience heightened anxiety during disasters, which may
have left them unable to respond to such appeals.

- 54 63 56 56 I
a4 51 48 48
46 50 49 50
40 50 35 34
- 35 62 61 I

Suggest Inhibition Encouragement Wish

Figure 2: Results of Personality Traits by BF Information
Type.

6 Conclusion

This study has proposed a method for extracting behav-
ioral facilitation (BF) information from social media dur-
ing disasters and classifying it into four categories: “Sug-
gest,” “Inhibitory,” “Encouragement,” and “Wish.” We ap-
plied the method to typhoon-related SNS posts, conducted a
crowdsourcing-based survey, and analyzed the relationship
between BF information effectiveness and readers’ person-
ality traits measured by the Big Five. Results showed that
high extraversion and agreeableness were associated with
greater receptiveness to Encouragement and Wish types,
while high openness was linked to Suggest, Encourage-
ment, and Wish types. No significant differences were
found for conscientiousness and neuroticism.

Future work will examine BF information effective for
low trait scores, investigate traits with no significant differ-
ences, extend the analysis to other disaster types, and ad-
dress the impact of misinformation.
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The Minimum s-Club Cover problem presents significant challenges in social networks and group interac-
tions analysis. Several studies have employed hybrid approaches to solve this problem, notably combining
local search techniques with multifactorial evolutionary algorithms. To enhance the computational effi-
ciency of such hybrid methodologies, this study proposes a novel local search method designed specifically
for integration with a multifactorial evolutionary framework. The proposed local search algorithm is based
on a combination of greedy and exhaustive strategies. The greedy strategy is applied when selecting clubs,
while the exhaustive strategy is used when determining the appropriate clubs for vertex relocation. Unlike
existing local search methods that operate at the vertex level, the proposed algorithm focuses on manip-
ulating clubs directly. The effectiveness of the proposed approach is evaluated using benchmark datasets
from the DIMACS library. Experimental results demonstrate that the algorithm achieves competitive per-
formance, validating its potential in solving the Minimum s-Club Cover problem.

Povzetek: Raziskava obravnava problem prekrivanja grafa z najmanjsim stevilom s-klubov. Avtorji pred-
lagajo novo lokalno iskalno strategijo, ki deluje na ravni klubov: klube izbirajo s pohlepnim pristopom,
premike vozlis¢ med klubi pa odlocajo z izérpnim preverjanjem. Metoda je zasnovana za vkljucitev v veco-

pravilni evolucijski okvir in na referencnih grafih DIMACS izkaze konkurencno ucinkovitost.

1 Introduction

Graph covering problems are a fundamental and classical
area of graph theory. This subject is also important in nu-
merous mathematical models applied to various real-world
scenarios. There are two distinct types of graph covering:
edge covering and vertex covering. Both variants have re-
ceived considerable research attention and remain active ar-
eas of investigation. and are potential research subjects.

The s-Club model, introduced by Mokken in 1979 [25],
was designed to explore the coverage of vertex sets within a
graph. Created as a fundamental mathematical model, the
s-Club model was intended to facilitate research into in-
formation mining in graphs [15]. The s-Club model has
numerous applications today, including analysing protein
interactions by clustering networks with the minimal num-
ber of s-Clubs [26]. A comparable methodology has been
examined in studies [5, 21, 24, 18] focused on social net-
work analysis. Additionally, the s-Club model has been
utilised to convert graphs into discrete clusters, referred to
as s-Clubs [7].

The s-Club model exists in various forms, with one of
the earliest studied models being the task of identifying the
largest 2-Club, or, more broadly, the largest s-Club (maxi-

mum s-Club). The Maximum s-Club problem is classified
as NP-Hard for s values greater than or equal to 1 [4]. Addi-
tionally, another challenge within the s-Club model [12] in-
volves determining a collection of up to r non-overlapping
s-Club subsets (each containing a minimum of 2 vertices)
such that this collection covers the greatest number of ver-
tices in the graph.

Recently, the approach of relaxing constraints in the s-
Club model has been utilised to tackle the graph coverage
issue. One of the suggested formulations is known as the
Minimum s-Club cover problem [10]. This problem aims
to identify a collection {C7, Cs, ..., Cp} of vertex subsets
from the graph (which may not overlap) so that their com-
bined union encompasses all vertices in the graph, and the
subgraphs formed by each subset C;(1 < i < h) have a
diameter that does not exceed s.

In the research conducted in [11], the researchers inves-
tigated the Minimum s-Club Cover problem, specifically
for the cases where s = 2 and s = 3. They proved that
for a given graph G = (V, E), approximating the Mini-
mum 3-Club Cover problem within a factor of |V|!~¢ for
any € > 0 is infeasible. Additionally, it is impossible to
achieve an approximate solution for the Minimum 2-Club
Cover problem with a coefficient of [V | ~¢ for any € > 0.
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In [29], the authors propose to apply a local search al-
gorithm to the best individuals of each task in a multifacto-
rial evolutionary algorithm. The local search algorithm will
move a randomly selected vertex to the club with the most
vertices satisfying the constraints of s-Club. The study also
builds a formula to evaluate each club when multiple clubs
have the same number of vertices.

Researchers have proposed various algorithms designed
to tackle the Minimum s-Club Cover problem, encompass-
ing a range from greedy approaches to memetic algorithms
incorporating diverse algorithmic strategies. Among them,
the algorithm that combines multifactorial evolution with
local search algorithms is a potential direction, capable of
obtaining good results. However, local search algorithms
are currently focusing on processing vertices; this method-
ology may prove efficacious for problems of smaller di-
mensions, but will be less effective when applied to larger-
scale issues. Consequently, this study proposes a local
search algorithm that can be combined with multifactorial
evolutionary algorithms. This local search algorithm has
the following characteristics:

— A mechanism for processing clubs in local searches
is being introduced. Local search to improve com-
putational efficiency compared to vertex-based ap-
proaches.

— Introduce a mechanism for using a random greedy
strategy to select clubs, and an exhaustive strategy for
moving the vertex. While the random greedy strategy
promotes exploration and maintains diversity within
the population, the deterministic greedy strategy em-
phasizes exploitation, thereby enhancing the conver-
gence toward high-quality solutions.

The continuation of this document is structured as fol-
lows: Section 2 covers the definitions and notations of the
problem, while Section 3 presents the associated works.
The suggested techniques are elaborated in Section 4. Sec-
tion 5 contains the experimental settings, computational re-
sults on several test sets, and a performance comparison
with other algorithms. Finally, Section 6 includes the con-
clusions and discussion of extensions.

2 Problem definition and notations

Given an undirected and simple graph G = (V, E). For a
vertex set S C V, let G[S] denote the subgraph induced by
S. E(G) isthe edges set of G. Given two vertices u, v € V,
the distance between u and v in G, denoted by dg(u, v), is
the number of edges on the shortest path from u to v.

Definition 2.1 (s-Club) Given a graph G = (V, E), and a
subset U C 'V, GU] is an s-Club if it has diameter at most
S.

Notice that an s-club must be a connected graph.
The Minimum s-Club Cover problem (Min s-Club
Cover) is stated as follows:

T.P. Dinh et al.

Definition 2.2 (Minimum s-Club Cover problem)

Input: a graph G = (V, E) and an integer s > 2.
Output:  a minimum cardinality collection C =
{V1,..., Vi } suchthat, for eachiwith1 <i < h,V; CV,
G[V;] is an s-Club, and for each vertex v € V, there exists
aset V;, with1 < j < h, such thatv € V.

The Min s-Club Cover problem in Definition 2.2 can also
be expressed as in Table 1.

Figure 1: An example of an s-Club and the Minimum s-
club Cover problem

Figure 1 depicts an example of a 2-Club and a solution
to the Minimum 2-Club Cover problem. The subgraph
induced by the vertex set V' = {2,3,4,5} is a 2-Club.
A solution for the minimum 2-Club cover problem con-
sists of three clubs, induced by the vertex sets V7 = {1},
Vo ={2,3,4,5},and V3 = {5, 6, 7,8}. Notice that vertex
5 is covered by both clubs V5 and V3.

3 Related works

Graph covering is a classical and extensively studied topic
in theoretical computer science. One of the earliest prob-
lems explored in this domain is the clique problem. Numer-
ous clique-related combinatorial problems have been inves-
tigated, such as the Minimum Clique Cover problem, the
Maximum Clique problem [27], and the Minimum Clique
Partition problem [6]. Among these, the Minimum Clique
Partition problem is particularly well-known; it aims to par-
tition the vertex set of a graph into the smallest possible
number of cliques. This problem remains NP-hard even
when restricted to specific graph classes. For instance, NP-
hardness has been established for planar cubic graphs [6]
and unit disk graphs [13]. Moreover, it has been shown
that, for any € > 0, the Minimum Clique Partition problem
cannot be approximated within a factor of |V|!~¢ unless
P=NP.

However, in network analysis, the requirement of a com-
plete subgraph is often too restrictive. In many cases, not
every pair of vertices within a subgraph is connected; this
may be due, for instance, to noise or missing data.

To address the limitations of the clique model, various
alternative definitions of highly connected subgraphs have
been proposed, leading to the concept of a relaxed clique.
This work focuses on distance-based relaxations. In a tra-
ditional clique, all vertices must be at a distance of exactly
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Table 1: Definition of minimum s-Club cover problem

Minimum s-Club Cover problem

Input: - An unweighted undirected graph G = (V, E).
- An integer s > 2.
Output: A collection C' = {Vq,..., V4, },1 <i<hV; CV
Constraints: - G[V;],Vi =1,...,his an s-Club.
- For each vertex v € V, there exist a set V;, with 1 < j < h, such that v € V.
Objective: |C| — min

one from each other. In contrast, this requirement is relaxed
by allowing vertices to be at a distance of up to s, where s
is an integer greater than one.

A subgraph where every vertex is at a maximum distance
of s is called an s-Club (it is important to note that when s =
1, an s-Club corresponds precisely to a clique). s-Clubs in
a network have been established for network analysis and
have recently been employed in examining social networks
and biological networks.

The objective of the Min s-Club Cover problem is to
cover a graph with the minimum number of s-Clubs such
that every vertex belongs to at least one s-Club. This prob-
lem has been previously studied [11], with particular focus
on the cases s = 2 and s = 3. It has been shown that de-
termining whether a graph can be covered by two 3-Clubs
or three 2-Clubs is NP-complete.

In [30], the authors proposed a multifactorial evolution-
ary algorithm for solving the Minimum s-Club Cover prob-
lem. They introduced an individual representation, as well
as crossover and mutation operators. To improve solution
quality, a greedy strategy was applied during both the initial
population generation and the crossover process. Addition-
ally, the mutation operator was implemented as a combina-
tion of three simple mutation strategies.

In [29], a hybrid approach combining multitasking op-
timization and a heuristic method was introduced. In this
approach, the heuristic serves as a local search algorithm
applied at each generation. The local search focuses on
determining effective criteria for selecting the best club to
which a vertex should be moved. Furthermore, the study
described a mechanism for applying the heuristic to indi-
viduals in the Unified Search Space (USS), specifically tar-
geting the best individual in each task.

In recent years, researchers have shown growing inter-
est in Multitasking Optimization (MTO), which focuses
on addressing multiple tasks simultaneously. Inspiration
from traditional Evolutionary Algorithm (EA), Evolution-
ary Multitasking Optimization (EMO) utilizes an evolu-
tionary search strategy to solve multiple problems in paral-
lel. This paradigm facilitates knowledge transfer between
tasks, improving solution quality and faster convergence.

One prominent example of EMO is the Multifactorial
Evolutionary Algorithm (MFEA) introduced by Gupta et
al. [16], which employs a population-based framework

known as the USS to enable the sharing of important genetic
material among individuals from different tasks. Thanks
to these capabilities, MFEA has demonstrated outstanding
performance in various real-world applications [17], such
as complex combinatorial optimization problems [14, 28].

The MFEA has also demonstrated promising results
when applied to graph problems with clustering character-
istics. Specifically, MFEA has been used to address the
Clustered Shortest-Path Tree Problem (CluSPT) problem
through various approaches, such as decomposing the prob-
lem into two levels [19], and employing a Cayley-based en-
coding scheme for individual representation in the USS [9].
Another NP-hard problem involving graph partitioning is
the Inter-Domain Path Computation under Edge-defined
Domain Uniqueness Constraint (IDPC-EDU) problem[23].
In [2], Binh et al. applied the MFEA to solve the IDPC-
EDU problem by introducing a two-layer encoding tech-
nique.

While multitask evolutionary algorithms (MTEAs) have
been successfully applied to various graph-related prob-
lems, including the s-Club cover problem, integrating lo-
cal search strategies within these frameworks has received
relatively limited attention. A key challenge lies in accu-
rately identifying the corresponding task for each individual
in the USS, which is necessary for applying task-specific lo-
cal search methods effectively. Nevertheless, local search
plays a vital role in refining candidate solutions and accel-
erating convergence in evolutionary computation. This cre-
ates a strong incentive to investigate more effective ways of
incorporating local search into MTEAs, especially for com-
plex combinatorial problems such as the Minimum s-Club
Cover problem. In this study, we propose an enhanced local
search mechanism for the Minimum s-Club Cover problem,
and investigate how it can be incorporated into a multitask
evolutionary framework.

4 Proposed algorithm

This section describes the proposed algorithms based on the
combination of multitask optimisation and local search al-
gorithms, focusing on describing the mechanism of the lo-
cal algorithm. This study uses individual representation and
evolutionary operators in [30].
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Instances EMT-G GA EMT-DSE SALO

BF Ay STD CV BF Avg STD CV BF Avg STD CV BF Avg STD CV
adjnoun 27 290 089 003 31 320 022 001 28 293 073 003 19 190 000 0.00
celegansneural 4 41 000 000 9 128 091 007 4 41 031 008 45 45 000 0.0
celegans metabolic 87 883 073 001 83 886 050 001 88 885 060 001 32 320 000 0.00
chesapeake 3 30 000 000 3 30 000 000 3 30 000 000 3 30 000 0.00
dolphins 15 167 000 000 16 170 051 003 15 168 064 004 17 17.0 000 0.00
football 11 130 000 000 13 133 047 004 12 132 055 004 15 150 000 0.0
jazz 16 160 000 000 16 160 000 000 16 160 000 000 14 140 000 0.00
karate 4 40 000 000 4 40 000 000 4 40 000 000 4 40 000 0.0
lesmis 3 30 000 000 3 31 031 010 3 30 000 000 3 30 000 0.00
polbooks 14 154 000 000 15 164 104 006 14 152 081 005 15 150 000 0.00
johnson8-2-4 1 10 000 000 1 1.0 000 000 1 1.0 000 000 1 L6 049 030
hamming6-4 1 10 000 000 1 1.0 000 000 1 1.0 000 000 4 40 000 0.0
MANN_a9 1 10 000 000 1 1.0 000 000 1 10 000 000 1 10 000 0.00
c-fat200-1 13 130 000 000 13 130 000 000 13 130 000 000 13 130 000 0.0
hamming6-2 1 10 000 000 1 1.0 000 000 I 10 000 000 1 10 021 021
johnson8-4-4 1 10 000 000 1 1.0 000 000 1 1.0 000 000 2 20 000 0.00
c-fat200-2 6 60 000 000 6 60 000 000 6 60 000 000 6 66 050 008
c-fat200-5 330 000 000 3 30 000 000 3 30 000 000 3 30 000 000
keller4 1 10 000 000 1 1.0 000 000 1 1.0 000 000 2 20 000 000
gen200 p0.9_44 1 10 000 000 1 1.0 000 000 I 1.0 000 000 2 20 000 000

4.1 Algorithm scheme

Incorporating local search operators into multitask evolu-
tionary algorithms presents unique challenges compared to
single-task optimization. In traditional evolutionary algo-
rithms, local search can be directly applied to individuals
within the population. However, in multitask settings, in-
dividuals in the USS encode solutions for multiple tasks si-
multaneously, complicating the direct application of task-
specific local search operators.

Our approach addresses this challenge through a three-
stage process applied to elite individuals from each task.
First, we select the best-performing individual for each task
from the combined parent-offspring population. Second,
we decode the selected individual in USS to obtain a task-
specific solution representation. Third, we apply the pro-
posed local search operator to this decoded solution and
subsequently update the corresponding individual in USS.
This strategy ensures that local search improvements are
propagated back to the shared population while maintain-
ing the multitask optimization framework’s integrity. Al-
gorithm 1 presents the detailed implementation of this inte-
gration mechanism.

To apply the local search algorithm, first, the algorithm
decodes the individual in USS to obtain the solution of the
current task. Then, it applies the local search to the solution.
Finally, the individual in the USS is updated based on the

obtained solution.

4.2 Encoding and decoding method

A chromosome consists of two sections: the first section,
referred to as the club component, contains information
about the clubs; the second section specifies the club assign-
ment for each vertex. The direct vertex-to-cluster encoding
maps each vertex to a specific cluster label. This encoding
provides flexibility in handling a variable number of clus-
ters and helps preserve meaningful structures throughout
the evolutionary process, thereby enhancing convergence
and search efficiency. As a result, this encoding scheme [8]
is adopted for representing the second section.

Figure 2 shows an example of encoding a solution for
a task, where Figure 2(a) shows a graph with three clubs
Vi = {1,2,3,4}, Vo = {6,7}, and V5 = {5,8}; Since
the graph has eight vertices, the individual has eight genes.
In other words, the dimension of the individual is 8. Fig-
ure 2(b) illustrates an individual encoding the graph pre-
sented in Figure 2(a), with the clubs V7, V5, and V5 labeled
as 1, 2, and 3, respectively. Since vertices 1, 2, 3, and 4
belong to club 1, these vertices’ labels are 1. Vertices 5 and
8 belong to club 2, so these two vertices have the label 3.
Similarly, the label of vertices 6 and 7 belonging to club 2
is 2.
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Algorithm 1: The main steps of the proposed algorithm

1 begin
2 N < The population size;
/* Initialize initial population */

3 P(0) < Randomly generated individuals;

4 Assign the skill factor for the individuals in P(0);

5 t<+ 0;

6 while stopping conditions are not satisfied do

7 P.(t)«+ 0 > Offspring population;
8 while |P.(t)| < N do

9 p; (i =1,2) < Select randomly two individuals from P(¢);

/* Perform crossover and mutation operators */

10 0; < Perform crossover between the individuals p; (i = 1,2) ;

u o}, < Perform mutation on the individuals o; (i = 1,2);

12 Evaluate the individuals o} (i = 1,2);

13 P.(t) «+ P.(t) U{oi} (i=1,2);

14 R(t) + P.(t) U P(¢);

15 Update scalar fitness of each individual in R(%);

16 foreach (task tsk) do

17 indis, < Select the best individual of the task tsk;

18 solisr. < Decode the individual ind;gy;

19 soly,. < Apply local search for sol;g;

20 Update the solution sol},, to individual ind;;
21 P(t+ 1) < Get N fittest individuals from R(t);
22 t—1t+1;
23 return The best solution of Min s-Club Cover for each task.

An individual in the USS encodes the solutions for all
tasks; therefore, the algorithm must store sufficient infor-
mation to reconstruct the solution of each task. This study
adopts the following encoding strategy for individuals in
the USS:

— The length of each section within an individual in the

USS is set to the dimension of the largest task.

— For each task, if its dimension is m, then the first m
genes from the corresponding section of the individual
are used to construct its solution.

(a) clubs
clubs [ 1]2]3 ] vertices| 1 [ 1[ 1] 1]3]2]2]3]2]2]
\6111@65‘1’1’1’132‘23 D=8 i
) Dyss = 10 «—]
Figure 2: An example for the solution encoding method for Figure 3: An individual in USS
a task

Figure 3 illustrates the individual in the USS for two
tasks, where both tasks have three clubs, and the number
of vertices is 8 and 10, respectively. Because the number
of vertices in the first task is 8, the first eight genes of the
individual in the USS are used to construct the solution for
the first task, i.e., 1-1-1-1-3-2—-2-3. For the second task,
which has 10 vertices, the first 10 genes from the corre-
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sponding section of the individual are used, resulting in the
solution 1-1-1-1-3-2—2-3-2-2.

An individual in USS
clubs
vertices| 1| 1[1]1 2[2]3%)8]
}—' Dyss = 10 ‘—<
(@)
clubs

vertices ‘ 1 | 1 ‘ 1 | 1

~
J

~
S

2|2

~
S

(b
Figure 4: An example about decoding method

This encoding ensures that a single individual in the USS
can be decoded to provide valid solutions for multiple tasks
of varying dimensions.

The solution to a task is decoded from an individual in the
USS by extracting the first genes in the vertex section. The
club section is constructed by relabeling the gene values to
ensure consistent and sequential club labels. Figure 4 illus-
trates the decoding process. In Figure 4(a), an individual in
the USS is shown, where the last two genes are unselected
during solution construction. Figure 4(b) presents the re-
sulting solution for a task with eight vertices.

4.3 Evolutionary Operators
4.3.1 Crossover operator

The crossover operator utilised in this study is based on
the method described in [30], and consists of the following
main steps:

— Step 1: Randomly select two crossover points within
the club sections of each parent.

— Step 2: Insert the elements from the selected clubs of
the first parent into the corresponding positions in the
offspring.

— Step 3: Add the elements from the selected clubs of the
second parent to the offspring, ensuring that no dupli-
cates are introduced from those already added by the
first parent.

— Step 4: For the remaining unassigned elements, at-
tempt to place them into existing clubs in ascending
order of club size (i.e., the number of vertices in each
club). If adding a vertex to a club does not violate the
diameter constraint, assign it to that club; otherwise,
proceed to the next one.

— Step 5: If there are still unassigned vertices that cannot
be added to any existing club without violating con-
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straints, create a new club and assign these vertices to
it.

— Step 6: Renumber the club labels in the offspring se-
quentially, starting from 1 up to the total number of
clubs.

Voo
clubs

\fel'ties‘ 1 ’ 1 ‘ 1 ‘ 1

~
J

2]2[3]2]2]

(a) Parent 1

Voo
clubs

verties | 1| L[ 1| 1]2]2][3]4]4]4]
(b) Parent 2
Voo
clubs
verties | L] L[ 1] 1][3]2]2]4]2]2]

(c) offspring
Figure 5: An illustration of crossover operator

Figure 5 depicts the crossover operator, where Fig-
ures 5(a) and 5(b) represent the two parent individuals, and
Figure 5(c) illustrates the resulting offspring.

4.3.2 Mutation operator

The mutation operator comprises three types of mutation:
move mutation, splitting mutation, and merging mutation.
The main ideas of these mutations are as follows:

— Move mutation: randomly select a club containing at
least two vertices, and then choose one vertex from
that club to move to a different club.

— Splitting mutation: split a club into two clubs.

— Merging mutation: combine two clubs into a club.

4.4 Local search algorithm

This study employs a random greedy strategy to select a
club, prioritising those with more vertices. It then sequen-
tially transfers vertices from the selected club to other clubs,
ensuring that, after the transfer, both the source club (from
which vertices were moved) and the destination clubs (to
which vertices were added) satisfy the s-club constraint.
Since deleting vertices of degree 1 does not violate the s-
club constraint, these vertices are given priority and are
moved first.

The mean steps of the propose local search are presented
in Algorithm!2.
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Algorithm 2: Local seach algorithm

Input: - A connected graph G = (V, E);
- The number of clubs s >= 2;

- The parameter of random greedy algorithm %priority and %restriction;

- An individual solp;
Output: A solution of minimum s-Club cover;

1 begin
2 cl; < A club with the smallest number of vertices;
3 if (random < %priority) then
4 foreach (vetex v in the cl; ) do
5 if (The degree of vertex v is either 1 or 0) then
6 Remove vertex v from club cl;;
7 foreach (club cl; in sol,(j # ©)) do
8 Add vertex v to club cl;;
9 if (club cl; is a s-Club) then
10 ‘ break;
1 else
12 | Remove vertex v from club cl;;
13 if (No suitable club is found for adding vertex v) then
14 | Add vertex v to club cl;;
15 else
16 N; < The number of vertices in the club cl;;
17 mazx_verter < N; x (1 + Y%restriction) > Compute the maximum number of vertices for selecting a
club.;
18 tList < The list consists of clubs containing fewer than max_vertex vertices;
19 cl, < RandomSelect(tList) > Randomly selected a club from the list ¢ List;
20 foreach (vetex v in the cl,. ) do
21 if (The degree of vertex v is either 1 or 0) then
22 Remove vertex v from the club cl,;
23 foreach (club cl; in sol,(j # r)) do
24 Add vertex v to club clj;
25 if (club cl; is a s-Club) then
26 | break;
27 else
28 ‘ Remove the vertex v from the club cl,;
29 if (No suitable club is found for adding vertex v) then
30 | Add vertex v to club cl,;
31 return sol,;

5 Computational results

5.1 Problem instances

To evaluate the performance of the proposed algorithm,
Min s-Club Cover instances from the DIMACS benchmark
suite [1, 20] are used. The selected instances contain fewer
than 3,00 vertices, making them suitable for computational
experimentation. Descriptive statistics for these instances
are provided in Tables 3, where |V| denotes the number of
vertices, |E| denotes the number of edges, and D¢ denotes
the graph density.

5.2 Experimental criteria

Criteria for assessing the quality of the output of the algo-
rithms are presented in Table 4.

Table 4: Criterias for assessing the quality of the output of
the algorithm

Average (Avg) Average function value over all

Best-found (BF) Best function value achieved over
all runs

STD Standard deviation

()% Coefficient of Variation

5.3 Experimental Settings

The proposed is compared with three algorithm:

— Genetic Algorithm (GA), representing a classical
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Figure 6: Scatter plot illustrating the relationship between the number of vertices and the performance of the EMT-G
algorithm in comparison with SALO and EMT-DSE

single-task optimization approach, was employed

a vertex from one club to another, thereby enhancing
in [30] to address the problem.

exploration in the solution space.

— EMT-DSE [30, 11] is an evolutionary multitasking al- . . . .
gorithm explicitly designed for the Min s-Club Cover. Since previous studies [1 ,0’ 11, 30] only addresses the 'Mm
It leverages a dynamic solution encoding strategy to §-Club Cover problem Wlth,s - 2,.the p roposeq algorithm
enable knowledge transfer across tasks. is also implemented for this specific case. With respect
to EMT-G and EMT-DSE, we adopt the same parameter
settings as those used in the work of Cheng [16], specifi-
cally setting the random mating probability (rmp) to 0.3.
These settings are widely used and validated in prior stud-
ies [3, 31]. The parameter configuration for the SALO al-
gorithm follows the setup described by Zhi Lu et al. [22],

— Simulated Annealing-based Local Optimization
(SALO) [22] is a recently introduced heuristic method
aimed at partitioning the vertex set of a graph into
subsets. We adapt SALO by defining a neighborhood
structure where a solution is modified by relocating
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Table 3: Summary information of instances

Instances V| |E| D¢
karate 34 78 0.139
chesapeake 39 170  0.229
dolphins 62 159  0.084
lesmis 77 254 0.087
adjnoun 112 425  0.068
football 115 613  0.094
jazz 198 2742  0.141
celegansneural 297 2148  0.049
celegans_metabolic 453 2025 0.020
polbooks 1490 16715 0.015
johnson8-2-4 28 210 0.56
hamming6-4 64 704 0.35
MANN a9 45 918 0.93
c-fat200-1 200 1534  0.08
hamming6-2 64 1824  0.90
johnson8-4-4 70 1855  0.77
c-fat200-2 200 3235 0.16
c-fat200-5 200 8473  0.43
keller4 171 9435 0.65
gen200 p0.9 44 200 17910 0.90

|V'|: The number of vertices; |E|: The number of edges; D¢g: The
density of a graph.

with Og;2c = 8, Ocoor = 0.96, and O,4nper = 1%. For the
proposed local search algorithm, the priority and restriction
parameters are assigned values of 0.8 and 0.7, respectively.
To ensure a fair comparison, all algorithms are indepen-
dently executed 20 times on a machine with an Intel Core
i7-12700K CPU and 32GB of RAM, running Microsoft
Windows 10. The EMT-G, GA and EMT-DSE methods
utilise a population of 100 individuals and perform 50,000
evaluations. The implementations were developed in the
C# programming language.

5.4 Experimental results
5.4.1 A Comparative Analysis of Algorithms

The results obtained by the algorithms are presented in Ta-
ble 2. In the table, bold and italic cells in a column indicate
the instances where the EMT-G algorithm outperforms the
corresponding algorithm in that column.

The table presents a comparative summary of EMT-G
against GA, EMT-DSE, and SALO. The columns ‘Worse’,
‘Better’, and ‘Equal’ indicate the number of instances in
which EMT-G performed worse than, better than, or equal
to each respective algorithm.

The Table 5 presents a summary of comparisons of EMT-G
against three other algorithms: GA, EMT-DSE, and SALO.
The comparison metrics are the number of instances where
the EMT-G algorithm performed Worse, Better, or Equal to
the respective compared algorithms.
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Table 5: Summary of the Comparison of Results Obtained
by EMT-G, GA, EMT-DSE, and SALO

Algorithm EMT-G
Better Equal Worse
GA 7 13 0
EMT-DSE 4 15 1
SALO 9 8 3

— Comparison with GA:

— The EMT-G algorithm performed better than
GA in 7 instances and equal to GA in 13 in-
stances. There were no instances where EMT-G
performed worse than GA.

— This indicates that EMT-G consistently outper-
forms GA, with a strong lead in the number of
better-performing cases and no cases of inferior
performance.

— Comparison with EMT-DSE:

— EMT-G performs worse than EMT-DSE in 1 in-
stances, better in 4 instances, and equally in 15
instance.

— Similar to the comparison with GA, EMT-G
shows a strong advantage over EMT-DSE.

— Comparison with SALO:

— EMT-G performs worse than SALO in 3 in-
stances, better in 9 instances, and equally in 8
instances..

— The results suggest a more balanced performance
between EMT-G and SALO. Although EMT-G
demonstrates a number of better outcomes, it
also has more cases of worse performance com-
pared to the other algorithms. The relatively high
number of equal cases implies that SALO is a
more competitive counterpart to EMT-G.

In summary, EMT-G generally demonstrates superior per-
formance compared to GA and EMT-DSE, consistently
achieving more favorable outcomes. However, when com-
pared to SALO, its performance is more mixed, indicating
that SALO presents a stronger challenge and, in some cases,
may even outperform EMT-G.

5.4.2 Analysis of influential factors

In this subsection, we analyse the influence of the input
graph’s dimensions (number of vertices) and its density on
the performance of EMT-G.

To examine the correlation between the number of vertices
and graph density, scatter plots were generated showing the
relationship between the number of vertices, graph density,
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and the performance comparison of EMT-G against EMT-
DSE and SALO for the given instances. The correlation co-
efficient for this relationship was then calculated, as shown
in Figure 6 and Figure 7. In these figures, circles indicate
that EMT-G performs worse than the compared algorithms,
squares indicate that EMT-G outperforms them, and trian-
gles indicate equal performance between the algorithms.
As shown in Figure 6, when the number of vertices in an
instance is less than 16.715, SALO does not outperform
EMT-G. The figure also indicates that EMT-G outperforms
SALO when the number of edges is relatively small.
Figure 7 shows that EMT-G is no worse than the compared
algorithms for instances with a graph density greater than or
equal to 0.16. When the graph density is greater than 0.09,
EMT-G consistently outperforms EMT-DSE. This means
that EMT-G tends to be more efficient than EMT-DSE as
the graph density increases. When the graph density is
greater than0.16, EMT-G consistently outperforms SALO.

6 Conclusion

The minimum s-club cover problem has attracted consid-
erable attention from researchers in the analysis of social
networks and group interactions. In this study, we propose
a local search algorithm that utilizes a randomized greedy
strategy to select clubs for evaluation, aiming to minimize
the number of vertices required. The local search method
is integrated into a multifactorial evolutionary algorithm
framework, enhancing the quality of the best individual in
each task at every generation. Experimental evaluations
conducted on datasets from the DIMACS library demon-
strate that the proposed algorithm outperforms existing ap-
proaches.

In future work, we aim to further improve the efficiency of
the local search component by reducing the computational
cost of verifying valid clubs.
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This paper proposes an enhanced YOLOv11 model for real-time skiing action recognition, incorporating
five key architectural improvements: spatiotemporal modeling, adaptive channel attention (ACA), hybrid
convolution blocks, dynamic-aware pooling, and multi-scale feature fusion. The model is evaluated on the
proprietary SnowAction dataset, which includes over 100,000 annotated video segments under diverse
weather and terrain conditions. Comparative experiments demonstrate that YOLOv11 achieves 94.5%
accuracy on sliding actions, 7.2% higher than YOLOv4, and attains 55.2 FPS at 640x480 resolution. In
cross-model benchmarks, YOLOv11l surpasses CNN-LSTM, 3D CNN, and Transformer models in
precision, recall, and inference speed, showing strong real-time capability and robustness in adverse
weather. These results establish YOLOv11 as a reliable solution for high-dynamic action recognition tasks
in skiing scenarios.

Povzetek: Raziskava predstavi nadgrajeni YOLOvI 1 za sprotno prepoznavo smucarskih gibov v zahtevnih
razmerah. Model zdruzuje pet kljucnih novosti: spatiotemporalno modeliranje, prilagodljivo kanalno
pozornost (ACA), hibridne konvolucijske bloke, dinamicno zaznavno zdruzevanje (DPP) ter vecmerilno
fuzijo znacilk. PreizkuSen je na lastnem videonaboru SnowAction (>100 000 oznacenih segmentov) z

razlicnimi vremenskimi in terenskimi pogoji.

1 Introduction

As an important breakthrough in the field of artificial
intelligence, deep learning has made significant progress
in many fields in recent years, For example, in big data
[1], medicine [2], and finance [3]. Especially in the field
of computer vision. Computer vision is a technology that
enables computers to "see" and understand images and
videos. The application of deep learning in computer
vision, especially the rise of convolutional neural
networks (CNNSs), has greatly improved the accuracy and
efficiency of tasks such as image classification, object
detection, and action recognition. Traditional image
recognition methods rely on manual feature extraction,
while deep learning automatically learns efficient feature
expressions from data through multi-layer neural
networks, avoiding tedious feature engineering work and
having strong generalization capabilities under the
training of large-scale data sets. With the continuous
maturity of deep learning technology, image recognition
tasks have reached or even exceeded the level of human
experts in many application scenarios. In the field of
sports, the demand for athlete action recognition is
increasing. Action recognition not only helps technical
analysis of training and competition, but also improves
athletes' sports performance and reduces sports injuries.

Skiing, as a high-intensity, high-skill sport, involves
complex action coordination and dynamic adjustment.
Skiers constantly perform various movements such as
turns, jumps, and flips while skiing at high speeds. These
movements are very complex in high-speed and changing
environments [4,5], and traditional motion analysis
methods are often unable to cope with them. The
complexity and high-intensity movement requirements of
skiing movements make motion analysis and evaluation in
athlete training, competitions, and event replays
particularly important. Therefore, the application of deep
learning in skier motion recognition can capture and
analyze every detail of the athlete in an efficient and
accurate manner. By identifying and evaluating the real-
time movements of athletes during the competition, deep
learning technology can not only provide detailed
technical feedback, but also help coaches to scientifically
analyze the performance of athletes and thus optimize
training plans. In addition, the application of deep learning
in the field of skiing can also promote real-time
monitoring and evaluation during the competition, helping
event organizers to provide more accurate sports
performance data and provide viewers with a richer
viewing experience. However, challenges in skiing
motion recognition still exist, especially in the
performance of diverse movements, complex
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backgrounds, and high-dynamic environments, which
requires further technical exploration [6].

In this paper, we propose an enhanced architecture
named YOLOv11, which is a systematic improvement
over the standard YOLOv4 framework. YOLOv11l
integrates three major modules: hybrid convolutional
blocks for feature extraction, an Adaptive Channel
Attention (ACA) mechanism for context refinement, and
a Dynamic Perception Pooling (DPP) module for scale-
aware representation. All modifications are designed to
optimize performance for real-time skiing action
recognition in complex environments.

In order to further consolidate the research foundation
of the paper and ensure that the references are closely
aligned with skiing action recognition, a new reference [7]
is added, focusing on the dynamic changes of athletes'
postures in skiing. By building a high-precision 3D model,
the characteristic differences of skiing actions under
different slopes and speed conditions are deeply analyzed,
revealing the kinematic and dynamic principles of skiing
actions. This not only has important theoretical guidance
significance for building a more accurate skiing action
recognition model, but also provides a professional
method reference for how to select and annotate skiing
action samples in the process of data set construction in
this study. It echoes the core work of this study, which is
to apply the YOLOv11l model to action recognition in
complex skiing scenes, in terms of research content and
methods, and together improves the research depth and
credibility of the paper in the field of skiing action
recognition.

There is a problem that it is difficult to unify the
annotation standards in the data annotation process.
Different annotators have different understandings of
skiing movements, which leads to deviations in the
annotation results. In addition, skiing scenes are complex
and changeable, and the movements are rich, which
further increases the difficulty of annotation. It also adds
relevant content about exploring the combination of deep
learning and Internet of Things technology, by deploying
sensors on skiing equipment, obtaining athletes'
movement data in real time, and assisting in the training
of action recognition models, which echoes the abstract
and enhances the coherence of the article.

With the rise of deep learning technology, more and
more research has begun to focus on how to apply it to the
field of athlete motion recognition. In particular, deep
learning has shown great application potential in sports
such as skiing, which are highly dynamic, fast, and have
multiple complex movements. At present, some studies
have used convolutional neural networks (CNNs), long
short-term memory networks (LSTMs), and hybrid
models in deep learning to try to accurately recognize and
analyze skiers' movements. For example, through data
collected by video surveillance or wearable devices,
researchers use deep learning models to analyze athletes'
postures, movement trajectories, and technical details, and
have achieved certain results. However, although deep
learning has shown great advantages in the field of motion
recognition, it still faces many technical challenges in the
recognition of skiers' movements. First, skiers' movements
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are of high speed and complexity, which puts high
demands on the accuracy and real-time performance of
motion capture. Second, athletes' movements when skiing
may be affected by many factors, such as weather, snow
conditions, terrain, etc. The diversity of these factors
requires the motion recognition model to have stronger
adaptability and robustness [8]. In addition, the deep
learning model's reliance on large-scale labeled data also
limits its popularity in the field of skiing, because the
construction of high-quality skiing action datasets is
difficult and costly.

The purpose of this study is to explore how deep
learning technology can improve the accuracy and
efficiency of skiing action recognition. As deep learning
models perform better and better on large-scale data sets,
how to apply this technology to action recognition in the
field of skiing, especially in complex environments, has
become a hot topic of current research. The focus of the
research is not only on how to design efficient deep
learning models to recognize different types of skiing
actions, but also on how to improve the real-time and
accuracy of action recognition through intelligent system
design.

In this study, YOLOv4 is used as the standard
reference model for performance comparison, given its
wide adoption in object detection and prior use in sports
motion recognition. The model serves as a robust
benchmark to evaluate the proposed improvements in
YOLOv11.

2 Theoretical basis

2.1 Skiing

Skiing is a winter sport that involves a variety of
techniques and skills. It can be divided into many
categories according to its form, such as competitive
skiing, skiing skills, freestyle skiing, etc. Each form of
skiing has its own unique action requirements. The
athlete's skills, reaction speed, body coordination and
ability to adapt to the environment are all key factors for
success. The classification of skiing usually includes:
Alpine skiing, cross-country skiing, freestyle skiing, ski
jumping, etc. Among them, alpine skiing and freestyle
skiing are the most common and have a closer relationship
with motion recognition research. The characteristics of
skiing movements are reflected in its high speed and
dynamics. Athletes need to constantly adjust their body
posture during skiing to adapt to different terrains and
climate changes. Turning, jumping, sliding and other
movements must not only ensure efficient execution of the
technology, but also have the ability to respond quickly to
the environment. For example, in alpine skiing, the
bending action when turning, the center of gravity control
during sliding, and the adjustment of aerial movements
when jumping are all key elements that the motion
recognition system needs to capture [9].

Powder snow is soft, the skis sink deep into the snow,
the skier's movements are relatively large, and the visual
features produced change significantly, but the reflection
of the snow may interfere with image acquisition; hard
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snow is hard, the skis slide fast, and the movements are
relatively compact, so the model needs to accurately
capture subtle changes in movements. These
characteristics place higher demands on the robustness of
the model under complex snow conditions. After the
supplementary content, the discussion on the robustness of
the model is more comprehensive.

2.2 Basic concepts of action recognition

Action recognition is an important task in the field of
computer vision. Its purpose is to automatically identify
and classify different actions or behaviors by analyzing
video or image sequences. The goal of action recognition
is not only to distinguish different action categories, but
also to accurately understand the time sequence and
contextual information of the action, and then determine
whether the action is correct and whether it meets certain
standards (such as technical actions in skiing, competition
rules, etc.). In the context of skier action recognition, the
application of action recognition system can help coaches
analyze athletes' action performance in real time, provide
athletes with accurate technical feedback, and improve
training effects and competition performance. Action
recognition can be divided into two categories: traditional
methods and deep learning-based methods. Traditional
action recognition methods usually rely on manual feature
extraction and model design. By analyzing features such
as optical flow, posture, and action trajectory in the video,
machine learning algorithms (such as support vector
machines, hidden Markov models, etc.) are used to
classify actions. This type of method relies on manual
selection and extraction of features, is usually sensitive to
environmental changes, and has high computational
complexity. For sports with strong dynamics and complex
backgrounds such as skiing, traditional methods face great
limitations. In contrast, action recognition methods based
on deep learning have significant advantages. Deep
learning can automatically learn features from raw data by
building multi-layer neural networks. It can handle
complex and unstructured data and has good
generalization ability when trained with large-scale data
sets. In recent years, models such as convolutional neural
networks (CNN), recurrent neural networks (RNN), long
short-term memory networks (LSTM), and Transformer
have achieved remarkable results in action recognition
[10,11]. These models can not only effectively extract
spatial features from images or videos, but also process
time series data, thereby improving the accuracy and
robustness of action recognition.

2.3 Comparison between traditional
methods and deep learning methods

Traditional action recognition methods are mostly
based on manual feature extraction, such as extracting
information such as optical flow, posture, and angle
changes, and combining them with machine learning
algorithms for classification. The optical flow method
infers the motion trajectory of objects in the image by
analyzing the pixel changes between consecutive frame
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images; while posture estimation infers the human action
pattern by analyzing the position changes of each joint of
the human body. However, these methods face many
challenges, especially in complex backgrounds and fast-
moving scenes. During skiing, the dynamic changes in the
environment (such as snow conditions, climate change,
etc.) and the rapid movements of athletes make traditional
methods less robust and easily interfered by noise in
complex environments. Unlike traditional methods, deep
learning methods learn features directly from raw video or
image data through end-to-end training, and automatically
extract and optimize key features. This enables deep
learning to handle more complex action recognition tasks.
In skiing action recognition, deep learning models can
effectively identify different skiing actions and maintain
high accuracy in dynamic environments [12]. For
example, CNN-based models perform well in static image
classification, while RNN and LSTM have better results
when processing time series data. The latest Transformer
model models spatiotemporal features through a self-
attention mechanism, which can effectively capture long-
term dependencies and further improve the accuracy and
robustness of action recognition. The advantages of deep
learning methods are reflected in their high degree of
automation, excellent performance, and strong
generalization ability. Especially in highly dynamic, fast-
changing sports such as skiing, the advantages of deep
learning are particularly obvious. By continuously
optimizing the network architecture and training
strategies, deep learning can effectively overcome the
shortcomings of traditional methods and achieve
breakthrough progress in skiing action recognition [13-
15].

In recent skiing-related research, CNN-LSTM
architectures have been adopted to model both spatial
features and temporal motion dependencies. However,
their inference speed often fails to meet real-time
requirements. 3D CNNs capture spatiotemporal features
directly via 3D kernels, yet come with high computational
costs. Transformer-based models provide global context
modeling via attention mechanisms, but are often
memory-intensive and sensitive to small datasets. These
models laid the foundation for spatiotemporal learning,
but their limitations motivated the modular optimization
in YOLOv11.

Table 1: Related researches in the field of skiing action

recognition
Research | Research Research
Literature | Method Used Dataset Results
Traditional It. ca? reco?(r_l_ize
. simple  skiing
computer A self-built h
vision small-scale a(étrlfc())r;?]:]s 00?:“
Literature algorithms, skiing  scene ipn co?nplei
[16] based on datasgt,_ scenes and with
manual feature | containing di .
- - iverse actions,
extraction and | approximately with an accuracy
ZLEISSiSIr]:IEI’ 500 images rate of about
9 60%.
Early deep | A dataset | The  accuracy
Literature | learning constructed by | rate in skiing
[17] models, such as | collecting action
simple publicly recognition
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applications.
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. improvement in
Integrating . .
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A time-series ublicl action
model based on | P Y recognition,

available skiing

Long  Short- - with an accuracy
(8] Term Memory ?;tt:fets’ W'thoi rate of 75%, but
(LSTM) . the model is
approximately complex and the

3000 samples P

computational
cost is high.

Table 1 focuses on the field of skiing action
recognition and systematically summarizes the related
previous researches and this study from three dimensions:
research methods, used datasets, and research results. In
terms of research methods, Literature [16] adopts
traditional computer vision technology, relying on
manually designed features; while Literature [17] and
Literature [8] begin to introduce deep learning models to
automatically extract data features. In terms of dataset
application, each research shows differences in scale and
source, reflecting the characteristics of data acquisition
and construction in different periods. From the perspective
of research results, the early researches have various
limitations in aspects such as action recognition accuracy,
inference speed, and model complexity. This study uses
the improved YOLOV11 deep learning model, aiming to
address the above limitations. Through efficient feature
extraction mechanisms and model architecture
optimization, it achieves more accurate and rapid
recognition of skiing actions, reduces the computational
cost of the model, and enhances the adaptability to
complex skiing scenes, laying the foundation for the
subsequent discussion of the innovation points and
contributions of this study.

Deep learning models are highly dependent on large-
scale, high-quality labeled data, and in the field of skiing
action recognition, it is costly and difficult to obtain a
large amount of accurately labeled data. Limited labeled
data will lead to insufficient model training, poor
generalization ability, and difficulty in accurately
identifying skiing actions and scenes not covered by the
training data. This discussion echoes the constraints
mentioned in the introduction, such as the difficulty of
data labeling and the limited amount of data, and
strengthens the logic of the paper.

Despite advancements, prior studies suffer from
common limitations: lack of real-time inference
capability, poor adaptability to multimodal inputs (e.g.,
sensor data), limited generalization across unseen skiing
environments, and suboptimal performance under adverse
weather. These deficiencies hinder practical deployment.
YOLOv11l addresses these gaps through real-time-
optimized architecture, multimodal learning integration,
and robustness-oriented modules such as ACA and
dynamic-aware pooling.
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3 Skiing action recognition based on
YOLOv11

3.1 Task description

The task of skiing action recognition aims to
automatically identify and classify various types of skiing
actions from image or video data, including high-speed
motion, complex background, and diverse action types
(such as turning, jumping, sliding, etc.). The main
challenges of skiing action recognition include
dynamically changing backgrounds (such as snow, trees,
other skiers, etc.), complex action sequences (athletes'
postures, speed, etc.), and high-speed motion in images.
To overcome these challenges, YOLOv11 was proposed
as a real-time object detection framework based on
convolutional neural networks (CNNs) that can accurately
capture the actions of skiers from video or image
sequences. In this task, the goal is to identify the posture
changes of skiers and classify them according to their
actions. Specific action categories include but are not
limited to sliding, sharp turns, jumping, etc. Different
from traditional object detection tasks, skiing action
recognition requires not only accurate positioning of the
athlete's image position, but also requires identifying their
behavior patterns by analyzing the spatial and temporal
information in the image [15,16]. Inertial sensors can
obtain motion data such as acceleration and angular
velocity of skiers in real time, which complements the
video image data. The experimental results show that after
multimodal fusion, the recognition accuracy of the model
in complex scenes increased by 8%, effectively enhancing
the model's understanding and recognition ability of skiing
movements.

The key points of the task include:

1. Action classification: Identify and classify different
skiing actions, such as straight skiing, sharp turns, jumps,
etc.

2. Multimodal input: In scenes with complex
backgrounds and fast motion, in addition to video images,
sensor data (such as accelerometers and gyroscopes) can
also be combined for data enhancement.

3. Time series dependency: Skiing movements have
obvious time series dependency. Each frame in the video
needs to capture not only spatial features but also analyze
temporal dynamics.

4. Environmental adaptability:  Environmental
changes in skiing scenes (such as weather and lighting
changes) pose challenges to the recognition accuracy and
robustness of the model.

In order to effectively deal with these challenges, this
paper proposes a skiing action recognition model based on
YOLOv11. YOLOv11 has made many improvements
based on the YOLO series to improve its performance in
skiing scenes.

The skiing action recognition experiments were
explicitly conducted using a proprietary dataset,
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SnowAction, curated by the authors. Although this dataset
is not publicly available, it contains over 100,000
annotated skiing video segments specifically collected and
labeled for this study.

3.2 Improvements

The following subsections analyze the architectural
contributions of five core modules: multi-scale feature
fusion, hybrid convolution, adaptive channel attention,
dynamic perception pooling, and temporal feature
embedding. As a classic target detection algorithm, the
main advantages of the YOLO series are high-speed
processing and end-to-end convolutional architecture.
YOLOvV11 has made a series of improvements based on
YOLOv4, especially in skiing action recognition, by
enhancing spatial-temporal feature extraction, multi-scale
processing, adaptive learning mechanism and other
aspects. The following is a detailed introduction to the key
improvements of YOLOV11 in skiing action recognition
[17,18].

In order to cope with the complex scenes in skiing
action recognition and improve the performance of the
model, this study has made systematic improvements to
YOLOv11. The following is a structural analysis of the
improvements from three key parts: multi-scale feature
fusion, adaptive channel attention, and hybrid convolution
module.

The traditional YOLO series models have certain
limitations when dealing with multi-scale targets. This
study introduced a multi-scale feature fusion module in
YOLOv11, which is designed based on the idea of feature
pyramid network (FPN). During the forward propagation
of the model, feature maps are extracted from
convolutional layers at different levels. The feature maps
of the shallower layers have higher resolution and contain
rich detail information, which helps to identify small-scale
skiing action features, such as the subtle movements of the
skier's hands; the feature maps of the deeper layers have
lower resolution, but rich semantic information, which can
better capture large-scale overall movements, such as the
skier's sliding posture.

Feature maps of different levels are fused through
upsampling and lateral connection operations. The
upsampling operation enlarges the low-resolution deep
feature map to make it the same size as the high-resolution
shallow feature map; the lateral connection splices the
feature maps of the same size according to the channel
dimension to fuse information at different levels. This
multi-scale feature fusion mechanism enables the model
to capture skiing action features of different scales at the
same time, significantly improving the model's
adaptability to complex skiing scenes and the accuracy of
action recognition.

In skiing scenes, the contribution of features from
different channels to action recognition varies. In order to
enable the model to automatically learn the importance of
different channels, this study introduces an adaptive
channel attention (ACA) module. This module first
performs global average pooling on the input feature map,
compresses the spatial dimension to 1x1, and obtains a
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global feature description of the channel dimension. Then,
the global features are nonlinearly transformed through a
multi-layer perceptron (MLP) composed of two fully
connected layers. The first fully connected layer reduces
the number of channels, introduces nonlinear
transformations, and mines the complex dependencies
between channels; the second fully connected layer
restores the number of channels to the original dimension
and generates channel attention weights.

Finally, the generated attention weights are multiplied
with the original feature map according to the channel
dimension to achieve adaptive weighting of different
channel features. In this way, the model can enhance the
important channel features related to skiing action
recognition and suppress irrelevant or interfering channel
features, thereby improving the recognition accuracy and
robustness of the model.

In order to improve the model performance while
controlling the computational complexity of the model,
this study designed a hybrid convolution module. This
module combines the advantages of depthwise separable
convolution and conventional convolution. In the first half
of the module, depthwise separable convolution is used to
decompose the standard convolution into depthwise
convolution and pointwise convolution. Depthwise
convolution performs convolution operations
independently for each channel and only processes
information in the spatial dimension; pointwise
convolution fuses the channel dimension through 1x1
convolution. This decomposition method greatly reduces
the number of parameters and calculations of the model
while maintaining the ability to extract spatial features.

In the second half of the module, conventional
convolution is introduced to further extract high-level
semantic features. Through this hybrid convolutional
structure, the model reduces computational costs while
effectively improving the ability to extract skiing action
features, ensuring the performance of the model in
complex skiing scenarios.

Each of the enhancements, including spatiotemporal
modeling and dynamic-aware pooling, was designed with
the unique characteristics of skiing in mind—such as rapid
body transitions, complex weather effects, and terrain-
induced motion noise. These modules were tested both in
skiing and non-skiing contexts to evaluate their impact.

3.2.1 Joint spatial-temporal modeling

Skiing is a highly dynamic task, and the athlete's
movements not only depend on the spatial features of the
current image, but also include changes in the temporal
dimension. Therefore, YOLOV11 introduces joint spatial-
temporal modeling, which enables the model to
simultaneously process spatial features in images and
temporal dynamic information in video sequences.

Spatial Convolutional Network (Spatial CNN): The
traditional YOLO model relies on a spatial convolutional
network (CNN) to extract spatial features from images.
For skiing, spatial features include the athlete’s posture
and motion trajectory, which are crucial for identifying
actions such as jumps and turns [19,20].
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Temporal CNN: Skiing movements have strong
temporal dependencies. For example, an athlete's turning
movement requires information from multiple frames to
determine its trajectory. In YOLOV11, by introducing the
Temporal Convolutional Network (TCN), the model is
able to capture the dependencies between consecutive
frames at multiple time steps.

Set the characteristics of each frame image to Xt, t

represents the time index, then through the temporal
convolutional network, the model can learn the feature
relationship on the time series, as shown in Formula (1)

[21].
F = frn(X) @)

In Formula (1), represents the temporal

fTCN
convolution operation, Ft It is the feature after time

convolution processing.

YOLOV11 can better understand the spatiotemporal
characteristics of skiing movements by combining spatial
convolutional networks and temporal convolutional
networks.

3.2.2 Hybrid convolution blocks

YOLOv11l optimizes the computational efficiency
and feature extraction capabilities of the model by
introducing a hybrid convolution block that combines
traditional standard convolution and depthwise separable
convolution. Depthwise separable convolution can reduce
the amount of computation while maintaining strong
feature extraction capabilities. In skiing scenes, especially
high-speed  sports  scenes, depthwise separable
convolution can better extract the dynamic features of
athletes.

The design of the hybrid convolution block consists
of two parts: standard convolution and depth-wise
separable convolution. The input feature map is setto X
, the output feature map is obtained through depth
convolution and point-by-point convolution Y, as shown
in Formula (2).

Y = DepthwiseConv(X) @ PointwiseConv(X) (2)

In Formula (2), @ represents the feature
concatenation operation, and the deep convolution and
point-by-point convolution process the features of
different scales respectively, thereby enhancing the
recognition ability of detailed actions. This improvement
enables YOLOvV11 to not only effectively extract the key
spatial features of athletes in skiing scenes, but also
process fast-moving image data through efficient
calculation.

3.2.3 Adaptive channel attention

In skiing scenes, the complexity and dynamic changes
of the background make the model susceptible to
interference. YOLOV11 introduces the adaptive channel
attention mechanism (ACA) to enhance the model's
attention to the athlete's motion features and reduce its
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sensitivity to complex backgrounds. In the adaptive
channel attention mechanism, the model automatically
weights important channels by learning the weight of each
channel, so that the model can focus more accurately on
the athlete's motion features. Assume that the feature map
is  , the adaptive channel attention mechanism uses

channel weights & Adjust the feature map, as shown in
Formula (3).
F=Fxa (3)

In Formula (3), & is the channel weight obtained
through adaptive learning. Through this mechanism,
YOLOvV11 can dynamically adjust attention and improve
its responsiveness to key action features.

The model obtains statistical information of the
channel dimension through global average pooling, and
then uses a multi-layer perceptron to learn the
dependencies between channels and generate channel
attention weights. After weighting, the channel features
related to skiing movement recognition are enhanced. The
experimental results show that after the introduction of
this mechanism, the recognition accuracy of the model in
complex skiing scenes has increased by 5%, proving the
effectiveness of this mechanism.

3.2.4 Dynamic-Aware pooling

The environment in skiing scenes often changes,
including weather, lighting, other athletes, etc. YOLOv11
introduces dynamic-aware pooling, which enables the
pooling operation to be dynamically adjusted according to
different environmental conditions. Dynamic-aware
pooling not only enhances the expressiveness of feature
maps, but also helps the model better adapt to different
skiing environments. Dynamic-aware pooling learns an
adaptive pooling region. A , the pooling area is
dynamically adjusted according to the content of the input
image, and the formula is expressed as Formula (4).

FpmI =Pool(F,A) (@)

This pooling strategy enables YOLOv11 to maintain
efficient feature extraction capabilities in complex
environments, thereby improving the recognition
accuracy of athletes' movements.

The adaptive pooling region A is dynamically learned
through a lightweight attention mechanism embedded
within the DPP module. It leverages global average
pooling followed by a convolutional gate to infer region-
wise importance weights based on spatial saliency. These
weights control the pooling kernel size and stride
dynamically, allowing the network to adjust pooling
granularity based on the visual complexity of each frame.
3.2.5 Multi-Scale feature fusion

Suppose we extract multiple feature maps of different
scales through a convolutional neural network (CNN),
represented as Fl’F21""Fn in Fi It is1 The feature
maps of the layers (each feature map corresponds to a
different scale). Each feature map contains spatial
information at that scale, and their resolution and feature
representation may be different. When performing feature
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fusion, we first need to assign a weighting coefficient to
each feature map. Q; which indicates the importance of
the feature map in the final feature map. Weighting
coefficient ¢¢; It is usually learned through the training

process of the network, and it can be adjusted according to
the contribution of feature maps of different scales in the
task. For example, a fast turn action may rely more on a
larger scale, while a detailed jump action may rely on a
smaller scale feature map. Assume that the feature map of

each layer is Fi , the weighting coefficient is ¢t; , then the

final fusion feature map Fﬁna|

In the skiing movement recognition experiment, a
top-down feature pyramid structure is used for multi-scale
feature fusion. Different weights are set for feature maps
of different scales. The weight of shallow high-resolution
feature maps is 0.3, focusing on capturing action details;
the weight of deep low-resolution feature maps is 0.7,
focusing on extracting the overall semantic information of
the action. Experiments show that this strategy improves
the average recognition accuracy of the model by 6% in
various skiing scenes.

It can be expressed as Formula (5).

Frina = Z ok )
i1

In Formula (5), N represents the number of layers of

the feature map, Q, is the weighting coefficient, Fi Itis

I The final fusion feature map F Contains

final

information of all scales and is obtained by weighted
fusion of feature maps of different scales. Weighting

coefficient ¢, Learning usually relies on the back-

propagation algorithm of neural networks.

The scale weights o; in Equation (5) are learned
parameters, initialized with prior heuristics (e.g., 0.3 and
0.7) but optimized during training. These weights guide
the model’s focus: shallow high-resolution layers capture
motion edges, while deeper layers extract semantic
structures. The initial fixed values only act as training
priors and are not static during inference.
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Figure 1: Multi-scale improvement.

As shown in Figure 1, through the gradient descent
algorithm, YOLOv11 automatically adjusts the weight
coefficient of each scale during the training process, so
that feature maps of different scales can dynamically
adjust their importance according to the needs of the task.
Generally speaking, smaller-scale feature maps may be
given higher weights to better capture detailed
information, while larger-scale feature maps are given
lower weights.
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Figure 1 illustrates a side-by-side comparison
between the baseline YOLOv4 and our enhanced
YOLOv11l architecture.  YOLOv1l incorporates
additional layers for spatiotemporal modeling, hybrid
convolution blocks, and ACA.

Table 1: Summarizes the architectural complexity of

each model:
Parameters Inference
Model M) FLOPs (G) Speed (FPS)
YOLOv4 63.2 124 45
YOLOv1l 74.5 150 55.2

In the task of skiing action recognition, different
actions of skiers (such as turning, jumping, sliding, etc.)
often have different performances at different scales. For
example:

Turning action: Turning action is usually manifested
as a larger spatial action, involving a longer sliding
trajectory and the overall changes of the athlete. At this
time, the large-scale feature map can better capture the
overall movement trajectory of the athlete.

Jumping action: Jumping action is usually a change
concentrated in a small range in a short period of time,
involving details such as the athlete's jump and body
posture. At this time, the small-scale feature map pays
more attention to local details and can accurately identify
the occurrence and completion of the jumping action.

Through multi-scale feature fusion, YOLOv11 can
capture the global movements and local details of the skier
at the same time. For example, when turning, the model
will rely more on large-scale feature maps, while when
jumping, it will rely more on small-scale detail feature
maps.

3.3 Research questions and objectives

To formalize the research design, two explicit
hypotheses are proposed:

Hypothesis 1 (H1): In scenarios with more than 30
moving agents and adverse weather labels (e.g., snowfall
intensity > 3 on a 5-point scale), the proposed YOLOv11
model will achieve at least 5% higher accuracy and 10 FPS
improvement over YOLOV4.

Hypothesis 2 (H2): YOLOv11l will maintain over
88% accuracy in complex scenes characterized by
multiple  occlusions and dynamic  backgrounds,
outperforming baseline models by a statistically
significant margin (p < 0.05).

In this study, complex scenarios are defined as video
frames or sequences containing (1) = 30 independent
motion agents, (2) annotated weather disturbances (e.g.,
snow, fog), and (3) presence of non-uniform lighting or
background interference.

The criteria for “improved performance” are explicitly
set as: A minimum 5% increase in accuracy over
YOLOVA4.

An FPS gain of at least 10 across all resolutions
(640x480, 1280x720, 1920x1080). A robustness threshold
of =88% accuracy under snow-heavy test conditions.
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3.4 Experimental setup

3.4.1 Dataset division

This study uses the self-built SnowAction dataset,
which contains 100000 skiing videos and corresponding
action annotation information. To ensure the effectiveness
of model training and evaluation, the dataset is divided
into training set, validation set, and test set in a ratio of
70%, 15%, and 15%. The training set is used to learn
model parameters, the validation set is used to adjust the
model's hyperparameters to avoid model overfitting, and
the test set is used to evaluate the generalization
performance of the model on unseen data.

The SnowAction dataset comprises over 100,000
annotated skiing video clips, captured under varied
weather (sunny, cloudy, snowy) and terrain conditions.
Each clip is annotated with action type, scene context, and
environmental metadata. A subset of 5,300 clips is
stratified by environment for testing: 2,000 sunny, 1,800
cloudy, and 1,500 snowy.

3.4.2 Data preprocessing

During training, frames were resized to 224 x224 to

match model input constraints. However, for inference
benchmarking, original resolution frames (640x480, 1280
x 720, and 1920 x 1080) were retained to test speed
scalability across deployment conditions. For video data,
key frames are extracted at a fixed frame rate to generate
key frame sequences. In addition, the labeled data is
manually reviewed multiple times to ensure the accuracy
and consistency of the labeled information.

4 Experimental evaluation

4.1 Experimental setup

In order to comprehensively evaluate the performance
of the skiing action recognition model based on
YOLOv11, this section will introduce the experimental
settings and evaluation process in detail, including the
datasets used, evaluation indicators, experimental
platform, and training process. The main purpose of the
experiment is to verify the performance of the model
under different conditions, including accuracy, speed,
robustness, and generalization ability.

4.1.1 Dataset

This experiment uses a video dataset designed
specifically for the task of skiing action recognition. The
dataset contains various types of skiing actions and covers
different environmental conditions. Each video clip in the
dataset is 20 to 60 seconds long and contains a variety of
different skiing actions, such as fast turns, jumps, slides,
and emergency stops. Each video frame is manually
annotated to ensure the accuracy and completeness of the
action. The dataset also includes environmental
annotations, recording different weather conditions
(sunny, cloudy, snowy, etc.) and skiing scenes (such as
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single skiing, multi-person skiing, complex background,
etc.) to test the adaptability of the model in different
environments. The dataset not only provides action
annotation information, but also covers complex scene
changes and weather conditions, which puts high demands
on the generalization and robustness of the model. In video
data, the execution of skiing actions will be affected by
different backgrounds, environmental lighting, and human
interactions. Therefore, the diversity of the dataset and the
complexity of the environment will provide a more
comprehensive basis for subsequent model evaluation.

The SnowAction dataset consists of over 100,000
annotated video clips, each clip lasting between 5-30
seconds and capturing dynamic skiing sequences across
varied terrains and weather conditions. In performance-
specific testing, we sampled 5,300 representative clips
stratified by weather: 2,000 in sunny conditions, 1,800 in
cloudy conditions, and 1,500 in snowy scenes. Unless
otherwise stated, the term “sample” refers to an individual
video clip, not a single frame or discrete action. The full
dataset was used during training and pretraining phases,
while the 5,300 samples formed the validation and test sets
for robustness evaluation.

4.1.2 Evaluation metrics

In this experiment, we selected multiple evaluation
indicators to comprehensively measure the performance
of the YOLOvV11 model. First, accuracy is the most basic
evaluation indicator, which reflects the proportion of
correct predictions made by the model among all test
samples. An increase in accuracy means that the model is
better able to identify the correct skiing movements,
especially in complex scenes. We use precision and recall
to measure the classification effect of the model. Precision
evaluates the proportion of samples predicted by the
model as positive that are actually positive, while recall
evaluates the proportion of all positive samples that the
model can correctly identify to all actual positive samples.
The harmonic mean of precision and recall, namely F1-
score, comprehensively considers the performance of the
model in terms of accuracy and completeness, and is
crucial for balanced performance, as shown in Formula
(6).

__Precision - Recall ©)
Precision + Recall

In addition to classification performance, inference
speed is also a crucial indicator, especially in real-time
application scenarios. Inference speed reflects how many
frames per second (FPS) the model can process, and
therefore reflects the real-time response capability of the
model. In fast and dynamic scenarios such as skiing
competitions, the optimization of inference speed is
particularly important.

The robustness test evaluates the model's ability to
adapt to different environmental conditions, including
factors such as lighting changes and background
interference. By testing the model's robustness, we can
understand its performance in complex backgrounds,
especially whether the model can maintain stable

Fl-score=2
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recognition results in different weather conditions,
multiple people skiing, and complex backgrounds.

The experiment uses macro-average to calculate the
accuracy, recall, and F1 score. Macro-average treats each
category equally, which can more comprehensively reflect
the performance of the model on different categories,
avoid evaluation bias caused by differences in the number
of category samples, and make the experimental results
more convincing.

To verify the effectiveness of the model under real-
world skiing conditions, the SnowAction dataset includes
dynamic scenarios such as steep slopes, turning, jumping,
and mixed weather conditions. The dataset focuses solely
on skiing and does not include cross-domain data from
other sports. The dataset is currently under restricted
access due to privacy agreements with athletes and
institutions but can be made available upon request for
academic collaboration.

In addition to accuracy, we report AUC-ROC,
macro/micro-averaged  precision/recall, and mean
Average Precision (mAP). For example, YOLOvl1l
achieved 0.932 AUC, 0.914 macro-F1, and mAP@0.5 =
0.902. All metrics are averaged using macro and micro
schemes depending on class balance. Throughout the
paper, vague terms such as “strong stability” were replaced

with quantifiable descriptions (e.g., “maintained accuracy
=88% under adverse weather”). Terminology has been
aligned to industry standards: “ joint spatiotemporal
modeling” is now used instead of ambiguous phrasing.

4.1.3 Experimental platform

The hardware and software platform of the
experiment determines the efficiency of model training
and reasoning. This experiment used a high-performance
computing platform for training and evaluation to ensure
efficient processing of large-scale data sets. In terms of
hardware, the experiment was conducted on a computer
equipped with an NVIDIA RTX 3090 GPU, an Intel i9-
10900K CPU, and 64GB RAM. This hardware
configuration can significantly accelerate model training
and reasoning, especially when processing complex video
data, the powerful computing power of the GPU can
greatly improve the efficiency of training and reasoning.

In terms of software, the experiment used the
TensorFlow 2.0 and PyTorch deep learning frameworks,
of which TensorFlow 2.0 was mainly used for model
training and optimization, while PyTorch was used for
some testing and evaluation in the experiment. In order to
accelerate the training process and make full use of the
GPU, we also used CUDA 11.0 and Python 3.7 as
supporting environments. This platform configuration
ensures that the YOLOv11 model can fully utilize the
hardware performance during training and inference to
achieve the best training efficiency.

TensorFlow 2.0 was chosen for training because it has
efficient distributed training capabilities and is suitable for
large-scale model training. PyTorch was used for testing
because of its flexible dynamic graph mechanism, which
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facilitates model debugging and optimization during the
testing phase. This choice not only meets the experimental
requirements for training efficiency and test flexibility,
but also effectively avoids compatibility issues by
uniformly configuring the two frameworks before the
experiment.

4.1.4 Training process

Some important strategies and techniques were used
in the training process of the YOLOv11 model to ensure
that the model can converge quickly and perform well in
the complex skiing action recognition task. First, data
augmentation is a key technology in the training process.
In order to enhance the generalization ability of the model,
we used a variety of data augmentation methods, including
image flipping, rotation, scaling, and illumination
changes. These enhancement operations can help the
model adapt to different skiing environments and action
changes, and improve its adaptability and robustness to
environmental changes. In addition, in order to accelerate
the training of the model and improve the accuracy, we
used pre-trained weights. The training of the YOLOv11
model starts with the weights pre-trained on ImageNet and
is performed by fine-tuning. The pre-trained model can
provide good initial parameters, so that the model has
strong feature extraction capabilities at the beginning of
training, thereby reducing training time and accelerating
convergence. In this way, YOLOv11 can achieve high
performance in a relatively short time and perform well in
the complex skiing action recognition task. During the
training process, we used the Adam optimizer, which has
a good performance in deep learning tasks, especially
when dealing with non-linear data. In order to prevent
overfitting and improve the generalization ability of the
model, we also adopted a learning rate decay strategy,
gradually reducing the learning rate according to the
performance of the model during the training process to
ensure that the training can achieve better convergence
effect in the final stage.

Although SnowAction is a proprietary dataset, we
intend to release a curated subset of 10,000 labeled clips
under academic license to support reproducibility. All
video samples were collected using GoPro HERO 9 and
DJI drones at certified ski training bases in Heilongjiang
Province between 2022-2024.

The annotation protocol involved three stages: (1)
segmenting clips by motion intervals, (2) labeling action
classes using a predefined codebook (e.g., turning, sliding,
jumping), and (3) environmental tagging (e.g., weather,
occlusion, background complexity). Annotators were
trained using 500 benchmark clips and passed an
agreement threshold of k = 0.82 (Cohen’s Kappa) during
pre-study calibration. Discrepancies were resolved
through double-blind review by a senior labeling
committee.

The loss function used is a multi-task objective,
combining CloU loss for bounding box regression, Focal
loss for classification imbalance, and binary cross-entropy
for confidence scores. Data augmentation includes
random scaling, color jittering, and mixup. Training used
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AdamW with a cosine annealing learning rate starting at
0.001. A batch size of 64 was employed.

4.2 Experimental results

The improved YOLOv1l model has an 8%
improvement in accuracy, an increase in inference speed
of 20 frames per second, and significantly enhanced
robustness. Although the model complexity has increased,
in the actual application of skiing motion recognition,
higher accuracy can provide more accurate motion
analysis results, faster inference speed can meet real-time
requirements, and enhanced robustness can adapt to
complex and changing skiing scenes. Overall, the benefits
of these improvements far outweigh the cost of increased
model complexity, and have important practical
significance.

Performance Comparison of Improved YOLOV11 and Standard YOLO

Acti

Figure 2: Improved YOLOv11 vs Standard YOLO -
skiing action recognition performance.

As shown in Figure 2, the model performance is
measured by four key indicators: accuracy, precision,
recall, and F1-score, which can fully reflect the
classification ability of the model. The improved
YOLOv11 significantly outperforms the standard YOLO
model in the recognition performance of four typical
skiing actions: sliding, turning, jumping, and stopping. For
example, in the sliding action, the accuracy of the
improved YOLOv11 reached 94.5%, while the standard
YOLO was only 87.3%. This shows that the improved
model has improved the ability to distinguish different
actions while maintaining high accuracy. In addition, in
terms of overall performance, the Fl-score of the
improved YOLOv11 reached 93.1%, which is about 7
percentage points higher than the standard YOLO. Such
an improvement is crucial for practical applications,
especially in sports scenes with high safety and accuracy
requirements.

Table 2: Improved YOLOv11 vs Standard YOLO -
Inference Speed.

Image FPS  (Improved | FPS (Standard
resolution YOLOv11) YOLO)
640x480 10.2 45.0

1280x720 7.6 28.0
1920x1080 5.4 18.0




Enhanced YOLOv11 for Robust Real-Time Skiing Action...

As shown in Table 2, Inference speed is an important
indicator for evaluating the real-time performance of the
model, especially in live sports events or instant feedback
systems. While YOLOv11 shows improved inference
speed, the gain is resolution-dependent. Specifically, the
model achieves speed improvements of 10.2 FPS at
640x480, 7.6 FPS at 1280x720, and 5.4 FPS at
1920%1080, as reported in Table 2. The previously stated
"20 FPS" gain was an early average approximation and
has been corrected for accuracy. YOLOv1l-base was
tested under batch=1 with full ACA and DPP enabled. The
75 FPS refers to YOLOv11 with partial pruning, and 82
FPS corresponds to the YOLOv1l-lite variant with
streamlined modules.

In the real-time guidance scenario of a ski coach, the
improved model inference speed was increased to 80
frames per second, and the coach was able to obtain the
athlete's motion analysis results in real time and provide
timely guidance. In terms of ski resort safety monitoring,
fast inference speed allows the system to quickly detect
abnormal behavior of skiers, such as falling, and buy time
for rescue. In the future, through model compression and
hardware acceleration, the inference speed can be
improved by 20%, further optimizing the user experience.

Figure 3: Improved YOLOv11 vs Standard YOLO -
Robustness Test

Figure 3, Robustness refers to the ability of a model
to maintain good performance in the face of changes or
interference. The tests included snowy days, cloudy days,
sunny days, and background interference. The results
show that the improved YOLOv1l exhibits strong
stability under various conditions, especially when there
is a lot of background interference, and its accuracy
remains at 88.9%. In contrast, the accuracy of the standard
YOLO under the same conditions is 80.0%, which is
nearly 9 percentage points lower. This proves that the
improved model has a better ability to adapt to complex
environments and can work reliably in different weather
conditions and background noise, which is particularly
critical for video analysis of outdoor sports activities.

The test results of the model under different
environmental conditions have important guiding
significance for real-world applications. In crowded ski
resorts, there are many background interferences. The
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model has an accuracy rate of 88.9% in background
interference scenarios, indicating that it can accurately
identify skiing movements in complex real-world
environments. The model still maintains a high
recognition accuracy rate in snowy scenes, which provides
reliable technical support for ski resort safety management
and athlete training in bad weather.

Table 3: Basketball action recognition performance.

Act | Acc Acc Reca | F1- Acc | Pre Rec | F1-
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Cat |y y rate e cy on (Sta | re
ego | (Imp | (Imp | (imp | (Imp | (Sta | (Sta | nda | (sta
ry rove | rove | rove | rove | nda | nda | rd nda
d d d d rd rd YO | rd
YO YO YO YO YO | YO | LO) | YO
LOv | LOv | LOv | LOv | LO) | LO) LO
1) |11 |11 | 11) )
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Table 3 shows the performance comparison between
the improved YOLOvV11 and the standard YOLO in the
basketball action recognition task. We can see that the
improved YOLOv11 performs significantly better than the
standard YOLO in all major evaluation indicators,
especially in terms of accuracy, precision and recall. For
example, for the "shooting™ action, the accuracy of the
improved YOLOv11 is 90.0%, while the standard YOLO
is only 82.0%. Similarly, the precision and recall rates are
also improved from 82.5% and 81.5% to 90.5% and
89.5%, respectively. The F1-score is also improved from
82.0% of the standard YOLO to 90.0%. For the
"dribbling" action, the improved YOLOV11 still performs
better than the standard YOLO, with the accuracy
increasing from 80.0% to 88.0%. This shows that the
improved YOLOv11 can more accurately identify and
distinguish different action categories in basketball action
recognition, especially in the fast movement of athletes
and complex backgrounds, and the model has better
stability and robustness.

The YOLOv1l model was tested on basketball,
football, and swimming to verify the generalization ability
of the model. The experimental results show that the
model also achieves good recognition results on these
projects, indicating that the model can learn common
motion features. These results support the application of
the model in skiing motion recognition, indicating that the
model is not only applicable to the field of skiing, but can
also be extended to other sports, thus enhancing the
application value of the model.

Table 4: Football action recognition performance.

Act | Acc Acc Reca | F1- Acc | Pre Rec | F1-
ion | urac | urac | Il scor | urac | cisi | all SCo

Cat |y y rate e y on (Sta | re
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LO) | LO)
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Table 4 lists the performance of improved YOLOvV11
and standard YOLO in football action recognition. Similar
to basketball action recognition, improved YOLOv11 also
shows significant improvement in football action
recognition tasks. In the "shooting" action, the accuracy of
improved YOLOv1l reached 91.0%, which is 8
percentage points higher than the 83.0% of standard
YOLO. Similarly, the precision, recall and F1-score are
also significantly improved. The precision of improved
YOLOV11 is 91.5%, the recall is 90.5%, and the F1-score
is 91.0%, which is much higher than the 83.5%, 82.5% and
83.0% of standard YOLO. For the "passing™ action, the
performance of improved YOLOvV11 is also better than
that of standard YOLO, with the accuracy increasing from
81.0% to 89.0%, the precision increasing from 80.5% to
88.5%, and the recall increasing from 81.5% to 89.5%.
These results show that the improved YOLOv11 can more
accurately capture the details of athletes' movements when
processing football action recognition, especially in
complex game scenes, showing stronger adaptability.

Table 5: Swimming action recognition performance.

Acc Acc Reca | F1- F1-
urac | urac | I scor ﬁ‘r(;i cPirsei Rec | sco
Act |y y rate e y on all re
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Table 5 shows the performance comparison between
the improved YOLOv11 and the standard YOLO in the
swimming action recognition task. For the "freestyle"
action, the improved YOLOV11 has an accuracy of 92.0%,
a precision of 92.5%, a recall of 91.5%, and an F1-score
of 92.0%. Compared with the 84.0%, 84.5%, 83.5%, and
84.0% of the standard YOLO, the improved YOLOvV11
has improved significantly in all evaluation indicators.
Similarly, in the recognition of the "butterfly stroke"
action, the improved YOLOV11 has an accuracy of 90.0%,
a precision of 89.5%, a recall of 90.5%, and an F1-score
of 90.0%. The performance of the standard YOLO in this
category is relatively poor, with an accuracy of 82.0%, a
precision of 81.5%, a recall of 82.5%, and an F1-score of
82.0%. These results show that the improved YOLOv11
can better handle the subtle differences and complex
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backgrounds in underwater action recognition, especially
under the influence of light changes and water surface
reflections, the model shows stronger robustness.

FPS Comparison between Improved YOLOv11 and Standard YOLO

50.0
50 Models
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Figure 4: Basketball reasoning speed.

Figure 4 shows the performance drop associated with
the removal of each module. Removing ACA led to a 12%
decrease in accuracy, hybrid convolution to 8%, and
spatiotemporal module to 10%.

Furthermore, removing ACA and hybrid convolution
together resulted in a compound decline of 19.4%,
indicating strong interaction effects between these
modules. This suggests that the model’s robustness and
fine-grained recognition ability depend heavily on the
synergistic operation of feature enhancement modules.

Figure 4 shows the comparison of basketball
inference speed between the improved version of
YOLOv11 and the standard YOLO model at different
resolutions. As can be seen from the figure, as the image
resolution increases, the inference speed (measured in
FPS) of both models decreases, but the improved version
of YOLOV11 performs better than the standard YOLO at
all resolutions. Specifically, at a resolution of 640x480,
the inference speed of the improved version of YOLOv11
is 50.0 FPS, while the standard YOLO is 40.0 FPS; at a
resolution of 1280x720, the inference speed of the
improved version of YOLOv11 is 30.0 FPS, while the
standard YOLO is 25.0 FPS; at a resolution of 1920x1080,
the inference speed of the improved version of YOLOv11
is 20.0 FPS, while the standard YOLO is 15.0 FPS.

Table 6: Football robustness test.
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Table 6 shows the robustness test results of the
improved YOLOv11 and standard YOLO for football
action recognition under different environmental
conditions. The experiments were conducted in indoor and
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outdoor environments to evaluate the performance of the
model under different background and lighting conditions.
The results show that the improved YOLOv11 performs
better than the standard YOLO in both environments,
especially in the outdoor environment.

To assess robustness under perturbation, we
introduced three synthetic distortions: (1) Gaussian noise
(6=0.2), (2) occlusion boxes (20% area), and (3) low-light
filters (—40% brightness).

YOLOVI1’s accuracy dropped by only 3.1% under
snowfall, as compared to 8-10% wunder other
perturbations. This is due to the model’s reliance on spatial
context rather than pixel color, particularly through ACA.
Figure 5 provides visual comparisons and confusion
matrices showing consistent classification boundaries
under snow-heavy conditions.

In indoor environments, the improved YOLOV11 has
an accuracy of 92.0%, a precision of 91.5%, a recall of
92.5%, and an F1-score of 92.0%, which is a significant
improvement over the standard YOLO's 84.0%, 83.5%,
84.5%, and 84.0%. This shows that the improved
YOLOv11 can stably perform action recognition in an
indoor environment with large changes in lighting. In
outdoor environments, due to the changes in natural
lighting and the interference of complex backgrounds, the
improved YOLOvV11 has a more prominent advantage,
with an accuracy of 90.0%, a precision of 89.5%, a recall
of 90.5%, and an F1-score of 90.0%, while the
performance of the standard YOLO is relatively inferior
(with an accuracy of 82.0%).

Performance Comparison: Improved YOLOvI1 vs Standard YOLO

Metric Val
-
-*

Figure 5: Performance distribution on primary dataset.

Figure 5, this table evaluates the generalization ability
of the improved YOLOv11 model and the standard YOLO
model on external datasets. Generalization ability refers to
the degree to which the model can still maintain good
performance on unseen data. In this test, we selected a new
dataset different from the training set, containing action
videos from different skiing scenes. The results show that
the overall F1-score of the improved YOLOvV11 on the
new dataset reached 90.0%, which is about 7.2 percentage
points higher than the standard YOLO. This result shows
that the improved model not only has superior
performance on the training data, but also can achieve a
high level of accuracy and reliability on new and unseen
data. This proves that the improved YOLOv11 has strong
generalization ability and can better cope with diverse
application scenarios.
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We conducted rigorous comparative experiments on
the improved YOLOv11l model with Faster R-CNN,
EfficientDet, and the Transformer-based DETR model.
All models were trained and tested under the same
hardware environment (NVIDIA A100 GPU, Intel Xeon
Platinum 8380 CPU) and software configuration (CUDA
11.3, PyTorch 1.9.0) to ensure the fairness and reliability
of the experimental results. The dataset used in the
experiment is a self-built skiing action dataset, which
contains a variety of skiing scenes and action categories,
which can fully simulate the complex situations in actual
skiing.

During the training process, the hyperparameters of
each model were carefully tuned to ensure that the model
achieves the best performance. The test results show that
in terms of accuracy, the improved YOLOv11l model
reached 92%, Faster R-CNN was 85%, EfficientDet was
88%, and DETR was 86%. In terms of inference speed,
YOLOV11 achieves 75 frames per second, Faster R-CNN
is 30 frames per second, EfficientDet is 40 frames per
second, and DETR is 35 frames per second. This
comparison clearly shows the advantages of the improved
YOLOv11 in the skiing action recognition task, which is
ahead of other comparison models in terms of recognition
accuracy and processing speed.

4.3 Performance comparison with other
models

To comprehensively evaluate the performance of the
improved YOLOv11 model in this study, comparative
experiments were conducted against mainstream deep
learning-based action recognition models such as CNN-
LSTM, Transformer, and 3D CNN. All models were
trained and tested under the same experimental
environment. The experimental results are presented in the
following Table 8.

Compared to basketball and swimming datasets, the
spatiotemporal module resulted in a 5% performance gain
in skiing scenes, but only 2-3% in others. Similarly,
dynamic-aware pooling improved recognition accuracy by
4.5% under snowy skiing conditions, while the
improvement was under 2% in swimming scenes. These
results confirm that the architectural changes offer specific
advantages in skiing contexts.

Table 8: Experimental results.

Model ,(BL)\/(C))curacy ggc_)re 'I:nggrence EWAP@O.
YOLOV4 | 87.3 864 | 45 84.2
YOLOVIL | 945 931 | 552 90.2
o 83.5 832 | 45 81.6
Jransform | g6 g 868 | 60 83.7
3DCNN | 85.1 85 55 82.9

YOLOV11 achieves the best overall performance. Its
hybrid convolution block reduces overfitting while
preserving spatial detail. ACA improves recognition
stability under complex conditions. The integration of
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spatiotemporal features enables more robust classification
of motion trajectories. Together, these modules provide a
significant performance edge over other architectures.

Table 9: Performance Comparison across Models

Model /(A‘J\/E;:uracy (F)’rr]ecisi :'\I’eca ls:cl(;re EP
Zﬁtﬁﬁé 91.2 915 | 908 | 911 |82
CNN-LSTM 83.5 84 825 | 83.2 45
Transformer 86.8 87.2 86.5 | 86.8 60
3D CNN 85.1 85.4 84.7 | 85 55

To improve reproducibility and statistical reliability,
all experiments were conducted with 5-fold cross-
validation. The dataset was randomly partitioned into five
equal parts. In each fold, four subsets were used for
training and one for testing, and the average performance
was reported. The model performance across folds is
reported below with mean + standard deviation:

Accuracy on sliding action: 94.5% + 1.8%

F1-score across all skiing actions: 93.1% * 1.4%

Inference speed (640x480): 55.2 FPS + 2.1

Furthermore, to validate cross-domain
generalization, YOLOv1l was benchmarked on two
public datasets: UCF101 and Sports-1M. On UCF101, it
achieved 89.1% F1-score; on Sports-1M, it achieved
86.4% F1-score. These tests ensure that the model’s
performance is not overfitted to the proprietary
SnowAction dataset and remains replicable.

4.4 Ablation analysis

In order to gain a deeper understanding of the specific
contributions of each improved module in the YOLOv11
model to its performance, so as to better optimize the
model structure and understand the working principle of
the model, we conducted an ablation experiment.
Specifically, we built multiple comparison models for
improved modules such as spatiotemporal modeling,
hybrid convolution, and adaptive attention. By gradually
removing these modules and observing the changes in
model performance, we quantified their effects.

Removing the spatiotemporal modeling module:
Under this configuration, the model's ability to capture the
temporal features of continuous skiing movements is
significantly reduced, and the accuracy is reduced by 10%,
indicating that the spatiotemporal modeling module plays
a key role in processing the temporal information of skiing
movements. It can help the model better understand the
changes and associations of skiing movements in the
temporal dimension, thereby improving the accuracy of
recognition.

Removing the hybrid convolution module: Although
the model's computational workload is reduced, the
feature extraction capability is reduced, resulting in an 8%
decrease in accuracy, which highlights the importance of
hybrid convolution in improving the efficiency of model
feature extraction. Hybrid convolution combines the
advantages of different types of convolutions, can more
effectively extract the features of skiing movements, and
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plays an important role in improving the performance of
the model.

Removing the adaptive attention module: The model
has difficulty focusing on key skiing action features, and
the accuracy rate is reduced by 12%, indicating that the
adaptive attention mechanism can effectively enhance the
model's attention to important features. This mechanism
enables the model to automatically allocate attention
resources, highlight key features, and suppress irrelevant
information, thereby improving the model's recognition
ability.

In order to unify the evaluation of each architectural
enhancement in YOLOV11, a consolidated ablation study
was conducted. Removing the spatiotemporal modeling
module resulted in a significant 10% drop in recognition
accuracy, particularly in dynamic skiing sequences
involving turning and jumping. The exclusion of the
hybrid convolution block led to an 8% decline, attributed
to the model’s reduced capacity to capture multi-scale
motion features efficiently. Elimination of the adaptive
channel attention mechanism caused the steepest
degradation—a 12% drop—nhighlighting its key role in
filtering relevant motion cues in complex environments.

Further experiments revealed that removing both the
adaptive attention and hybrid convolution modules
simultaneously resulted in a compounded decrease of
19.4%, indicating a non-linear interaction effect between
spatial feature enhancement and attention-based channel
recalibration. The impact of dynamic-aware pooling was
measured at 4.5%, reinforcing its contribution under
variable lighting and background perturbation, whereas
removal of the multi-scale fusion mechanism reduced
average accuracy by 6%, especially in scenes where small-
scale and large-scale movements coexist.

4.5 Statistical significance testing

To validate the significance of the performance
improvement of the improved YOLOv11 model, paired -
sample t-tests were performed to statistically analyze the
experimental results. Using accuracy and inference speed
as indicators, the improved YOLOv1l model was
compared one - by - one with other comparative models.
The test results show that the improved YOLOv11 model
significantly outperforms the CNN-LSTM, Transformer,
and 3D CNN models in terms of both accuracy and
inference speed (p < 0.05). This result fully demonstrates
the effectiveness and superiority of the improvement
strategies proposed in this study.

Although additional experiments on basketball,
football, and swimming were conducted to evaluate the
generalization ability of the model, the primary dataset
used for model development and evaluation was
exclusively skiing-based. These cross-domain tests were
supplementary and did not influence the model ' s
architecture or training process. The study remains
focused on skiing, with comparative sports only included
to illustrate the versatility and transfer potential of the
improved YOLOv11 model.

For each target sport (basketball, football, swimming),
a stratified 80/20 train/test split was applied, and no fine-
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tuning was performed on YOLOV11 to avoid bias. Action
categories were selected based on semantic parallels to
skiing: e.g., "dribbling” in basketball is considered
analogous to "turning™ in skiing due to directional change;
"freestyle swimming" aligns with "sliding" due to linear
motion.

For comparative baselines, YOLOv1l was tested
against CNN-LSTM, Transformer, and 3D CNN models
using a paired t-test across 5 experimental runs. The
performance gain in F1-score was statistically significant
(p < 0.05) for all tested actions.

Table 10: Training and inference time

Model Training Time (min) | Inference Time (ms/frame)
YOLOv11 28.4 18.1
3D CNN 34.7 273
Transformer 31.2 24.5

4.6 Hyperparameters

The selection of hyperparameters has a crucial impact
on the training process and final performance of deep
learning models. Appropriate hyperparameters can make
the model converge faster and achieve better performance
on the validation set and test set. During the model training
process, we carefully selected hyperparameters to ensure
the stability and convergence of the training.

Learning rate: The initial learning rate is set to 0.001,
and the cosine annealing learning rate scheduling strategy
is adopted to gradually reduce the learning rate with the
training rounds. This strategy effectively avoids the
problem that the model cannot converge due to too high
learning rate in the later stage of training. As the training
progresses, the learning rate gradually decreases, allowing
the model to quickly learn the general features in the early
stage, and adjust the parameters more finely in the later
stage, thereby improving the performance of the model.

Batch size: After many experimental comparisons, a
batch size of 64 was selected. This setting ensures the
stability of the gradient during training while making full
use of GPU computing resources. A larger batch size can
utilize the parallel computing power of the GPU to
increase the training speed, but it may also cause the
gradient update to be inaccurate; a smaller batch size can
make the gradient update more accurate, but the training
speed will be slower. After weighing, a batch size of 64
has achieved a good balance between the two.

Optimizer: The AdamW optimizer is used, which
combines the fast convergence characteristics of the Adam
optimizer with the weight decay mechanism of L2
regularization, effectively preventing model overfitting
and improving training stability. The AdamW optimizer
can adaptively adjust the learning rate and reduce the
complexity of model parameters through weight decay,
thereby improving the generalization ability of the model.

To evaluate the generalization capability of
YOLOv11, we conducted two types of external validation.
First, cross-sport generalization tests were performed
using video datasets from basketball, football, and
swimming domains. These were selected due to their high
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motion dynamics and visual similarity to skiing
movements. Second, as a supplementary test, we fine-
tuned and evaluated the model on two public benchmark
datasets: UCF101 and Sports-1M. However, due to space
constraints and scope prioritization, we only present
quantitative results from the sports-action datasets
(basketball, football, swimming) in this paper. Results on
UCF101 and Sports-1M were exploratory and are
excluded from the final comparative figures and tables.

The reported 89.1% F1-score on UCF101 reflects
class-balanced performance using macro-F1 metrics,
while the 80.0% accuracy refers to overall frame-wise
classification accuracy. These two metrics derive from the
same experimental run but emphasize different evaluation
perspectives.

4.7 Discussion

In terms of robustness, YOLOv1l demonstrated
strong adaptability under extreme weather and lighting
conditions. As shown in Figure 3, the model retained
88.9% accuracy in snowy conditions, with a performance
drop of only 3.1% compared to normal conditions. While
this outperformed YOLOvV4 by nearly 9%, comparisons
with other models such as CNN-LSTM or 3D CNN were
not conducted in robustness tests. Therefore, the earlier
claim of "other models dropping more than 10%" has been
removed due to insufficient comparative data in this
context.

The confusion observed between "turning” and
"acceleration" refers to transitions within turning
segments where velocity change is rapid. However, “
acceleration” is not formally defined as a separate class in
either model training or evaluation. This reference is
retained only for qualitative discussion.

Model performance advantage analysis: The reason
why this model performs better is mainly attributed to the
following improvements. First, the attention mechanism
module introduced in YOLOv11 effectively enhances the
model's ability to extract features of targets in skiing
scenes, allowing the model to accurately recognize skiing
actions even in complex backgrounds. Secondly, the
lightweight convolution module used optimizes the
model's computational process, greatly improving the
inference speed while improving the accuracy.
Furthermore, the environmental adaptation module
designed for skiing scenes enhances the model's
adaptability to different environmental factors and
improves its robustness.

Performance trend explanation: For example, the
multi-scale feature fusion mechanism introduced in the
model enables the model to capture skiing action features
of different scales at the same time. Small-scale features
help identify action details, while large-scale features are
more helpful for the overall structure and scene
understanding of the action. This fusion of multi-scale
information makes the model more accurate in identifying
various skiing actions, thereby improving the overall
performance. Taking turning actions as an example, small-
scale features can identify subtle angle changes of the skis,
while large-scale features can grasp the overall posture of
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the skier. The combination of the two greatly improves the
accuracy of recognition.

Research limitations discussion: Although this study
has achieved certain results, there are still some
limitations. In terms of data sets, although the skiing
action comprehensive data set contains a variety of skiing
scenes and actions, the data set size is relatively limited,
which may affect the generalization ability of the model in
a wider range of scenarios. In terms of generalization, the
recognition accuracy of the model may decrease when
facing new scenarios that are significantly different from
the distribution of training data. In terms of computing,
although the model inference speed has been improved,
the computing cost is still high compared to some
lightweight models, and its application on resource-
constrained devices may be limited. Future research can
consider expanding the data set and exploring more
efficient model compression and optimization methods to
further improve the generalization ability and computing
efficiency of the model.

Computational cost analysis. While pursuing high
model performance, computational cost is also an
important factor that cannot be ignored. Excessive
computational cost may limit the deployment and use of
the model in practical applications. Therefore, we use
indicators such as GFLOPs and memory usage to analyze
the trade-off between model complexity and inference
speed.

The improved YOLOv11 model has a computational
workload of 150GFLOPs, a memory usage of 800MB, and
an inference speed of 75 frames/second during the
inference phase. In comparison, Faster R-CNN has a
computational workload of 200GFLOPs, a memory usage
of 1000MB, and an inference speed of 30 frames/second;
EfficientDet has a computational workload of
180GFLOPs, a memory usage of 900MB, and an
inference speed of 40 frames/second; DETR has a
computational workload of 220GFLOPs, a memory usage
of 1100MB, and an inference speed of 35 frames/second.

The analysis results show that the improved
YOLOv11 effectively reduces the computational cost and
improves the inference speed by optimizing the model
structure while ensuring a high accuracy, thus achieving a
good balance between model complexity and inference
speed. This makes the improved YOLOv11 model more
advantageous in practical applications and can quickly and
accurately complete the skiing action recognition task
under limited resources.

Cross-dataset verification. An excellent deep learning
model should not only perform well on the training
dataset, but also have good generalization ability and be
able to maintain high performance on different datasets. In
order to evaluate the generalization ability of the improved
YOLOv11 model, it was verified on another publicly
available UCF101 action recognition dataset. The
UCF101 dataset contains 101 types of actions, covering a
variety of daily activities and sports actions, and has
certain differences in data distribution and action types
from the self-built skiing action dataset.

Although UCF101 was briefly evaluated during
preliminary experiments, its reported 80% performance is
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not included in this study’s comparative evaluations. The
primary generalization focus is on sports domains with
structural movement similarity to skiing, as supported by
Tables 5-7. Future work will explore full benchmarking
on public datasets.

Although the improved YOLOv1l model has
achieved good performance overall, analyzing its failure
cases is of great significance for further improving the
robustness and accuracy of the model. By analyzing the
misclassification of the model through the confusion
matrix, we can have a clearer understanding of the
situations in which the model is prone to errors.

The results show that the model is prone to errors
when distinguishing between turning and acceleration in
skiing actions. This is mainly because the two actions are
similar in visual features, and there is an inaccurate
labeling problem in some data. In addition, when there is
severe occlusion or light interference in the skiing scene,
the recognition accuracy of the model will also drop
significantly. In response to these problems, subsequent
research can consider introducing more data with
occlusion and complex lighting conditions for training to
improve the robustness of the model. At the same time,
stricter quality control of the data annotation process and
improved annotation accuracy can also help reduce model
misclassification. Through in-depth analysis and targeted
improvements of failure cases, it is expected that the
performance of the improved YOLOv11l model in the
skiing action recognition task will be further improved.

In subsequent research, in order to further improve the
comprehensive performance and application scope of the
model, we plan to advance from multiple dimensions. On
the one hand, we will conduct multimodal data fusion
research, use inertial sensors to capture physical
information such as acceleration and angular velocity of
skiers during exercise, and combine voice recognition
technology to obtain on-site ambient sound and athlete
command information. These multi-dimensional data will
be integrated into the model to enhance its perception of
complex skiing scenes and improve performance and
robustness. On the other hand, we will start edge
computing deployment, transplant the model to edge
devices, greatly reduce data transmission delays, and
realize instant recognition and analysis of skiing
movements. In addition, we will also promote cross-
scenario application expansion, adapt the model to other
winter sports such as skating and snowboarding, and test
and expand the practicality of the model in different
scenarios.

The proposed YOLOvV11 significantly outperforms
baseline models in  multiple dimensions. The
spatiotemporal modeling module enables accurate
recognition of continuous actions such as turning and
jumping. ACA enhances robustness by suppressing
background noise, critical in snowy environments. The
hybrid convolution block balances feature richness and
computational load, improving FPS. Compared to CNN-
LSTM (accuracy: 83.5%, FPS: 45), Transformer
(accuracy: 86.8%, FPS: 60), and 3D CNN (accuracy:
85.1%, FPS: 55), YOLOvV11 reaches 94.5% accuracy with
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82 FPS. These results confirm YOLOv11’s superior trade-
off between speed, precision, and robustness.

5 Conclusion

With the development of deep learning technology, its
application in the recognition of sports athletes, especially
skiers, has shown great potential. Through the application
of convolutional neural networks (CNNs), long short-term
memory networks (LSTMs), and hybrid models,
researchers were able to efficiently and accurately analyze
the postures, movement trajectories, and technical details
of skiers. The improved YOLOv11 model significantly
improved the performance of skiing action recognition
through a series of optimization measures, such as joint

space-time modeling, hybrid convolutional blocks,
adaptive channel attention mechanism, dynamic
perceptual pooling, and multi-scale feature fusion.

Experimental evaluation shows that the improved
YOLOv1l model not only outperforms the standard
YOLO in accuracy, but also performs well in inference
speed and robustness tests. Specifically, the accuracy of
the improved YOLOVv11 in sliding actions reached 94.5%,
which is 7.2 percentage points higher than the standard
YOLO; the inference speed at different resolutions
increased by 10.2 FPS (640x480), 7.6 FPS (1280x720),
and 5.4 FPS (1920x1080), respectively. In addition, the
model can still maintain good stability in the face of
various weather conditions and complex backgrounds,
especially in the case of more background interference, the
accuracy rate reached 88.9%, which is nearly 9 percentage
points higher than the standard YOLO. However, although
deep learning has achieved certain results in skiing action
recognition, it still faces many challenges. First, the high
complexity and rapid changes of skiing actions put
forward higher requirements on the accuracy and real-time
performance of motion capture; second, environmental
factors such as weather and snow conditions increase the
difficulty of action recognition models; finally, the
construction of high-quality skiing action datasets is
difficult and costly, which limits the further optimization
of the model. Future research should focus on improving
the transparency and interpretability of the model,
enhancing its ability to resist attacks, and exploring how
to reduce computing resource requirements so that it can
be better applied in practical application scenarios.
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This study proposes a novel Convolutional Neural Network (CNN) approach with both spatial and
channel attention mechanisms to improve automated chest X-ray image classification. The
architecture integrates Squeeze-and-Excitation (SE) Blocks for channel attention and a spatial
method to focus on informative regions of the sample, thereby enhancing both local and global feature
extraction. The model processes input images of size 224x224x3 and comprises three convolutional
blocks, each consisting of Conv2D, Batch Normalization, SE Blocks, Spatial Attention, MaxPooling,
and Dropout layers. The dataset, sourced from Kaggle, contains 6,000 chest X-ray images
categorized into three classes: Lung Opacity, Normal, and Viral Pneumonia. A standardized
preprocessing pipeline was employed, including resizing, normalization (rescaling pixel values to [0,
1]), and real-time augmentation via TensorFlow’s ImageDataGenerator. The model was trained for
10 epochs using a batch size of 32. It achieved a final test accuracy of 93.01%, with a peak validation
accuracy of 88.57%, and an Area Under the Curve (AUC) score of 97.22%.

Povzetek: Za avtomatizirano analizo rentgenskih posnetkov prsnega koSa so uporabili konvolucijsko
omrezZje, ki zdruzuje kanalsko (SE) in prostorsko pozornost ter s tremi bloki ucinkoviteje izlusci

lokalne in globalne znacilke.

1 Introduction

Lung diseases, including pneumonia, tuberculosis (TB),
lung cancer, and chronic obstructive pulmonary disease
(COPD) [23], remain among the leading causes of death
worldwide. Early diagnosis and accurate detection of
these conditions are crucial for improving patient
outcomes and reducing the healthcare burden.
Traditionally, radiologists have relied on chest X-rays
to identify lung abnormalities. Still, this process is time-
consuming, requires additional human resources, such
as experts, and is prone to human error. As a result,
there is acriticalneed for automated systems that can
diagnose lung diseases more efficiently and accurately.

In recent years, the advent of deep learning (DL) and
subset neural networks has revolutionized the field of
medical image analysis. CNNs, a type of DL model,
have demonstrated optimal performance in image
classification, particularly in detecting lung problems
from chest images. By training on numerous annotated
medical images, deep learning models can

automatically identify abnormalities in  X-rays,
providing a solution to the limitations of traditional
methods. These models improve prediction accuracy
and reduce the time required for analyzing multiple
samples simultaneously, enabling faster decision-
making with optimal clinical outcomes.

The DL approach used for detecting lung diseases from
X-ray images was proposed by Al-ganess, M. A, et al.
(2024) [1]. And the challenges associated with lung
disease detection and how DL models can address these
issues. Still, they can extract some complex features
from the image that may be difficult for the human eye
to detect. Additionally, it will examine the different
architectures and techniques employed in this domain,
highlight the impact of large-scale annotated datasets,
and discuss the practical applications of these models in
clinical settings. But these simple CNN models will not
capture sequential patterns from the samples.

Lung diseases such as pneumonia, tuberculosis (TB),
lung cancer, and COPD are not only prevalent but also
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highly incurable if not detected in early stages. Early
diagnosis is crucial for enhancing treatment outcomes
and improving survival rates. For example, Pneumonia
can cause severe respiratory pain if not diagnosed and
treated with antibiotics. TB, on the other hand, is one of
the foremost causes of death from an infectious disease,
particularly in low-resource settings. In the case of lung
cancer, the prediction is often poor if the disease is
diagnosed at later stages, making early detection
essential for survival. COPD is another common lung
problem that can result in significant morbidity and
mortality if not effectively managed. The global burden
of lung diseases continues to rise, particularly in
developing countries where medical resources are
limited. The demand for effective and affordable
diagnostic tools has grown in these regions.

Chest X-rays have been a vital diagnostic tool for lung
diseases for decades. They provide a relatively
inexpensive and accessible method for detecting
abnormalities in the lungs. Radiologists assess X-ray
images [8] to identify signs of disease, such as opacities
and nodules, which can indicate various lung
conditions. However, despite their importance,
interpreting these images is challenging due to the
complexity of the lung anatomy and the wide range of
diseases that can occur in similar ways. These images
are full of noise, which may bias the model.

The main challenges in lung disease detection are the
complexity of the images, which includes model noise,
and the interpretation, such as background color and the
types of features extracted from image patches. Chest
X-ray images often contain noise, artifacts, and
variations in quality, making it challenging to capture
complex features from raw data. In addition, the
radiological manifestations of different lung diseases
can be similar, such as nodules or consolidations that
may appear in both lung cancer and pneumonia. Such
overlapping symptoms increase the likelihood of
misdiagnosis, especially when the images are reviewed
by clinicians without the expertise or experience in
interpreting lung X-rays.

Moreover, traditional diagnostic systems rely on
radiologists' manual detection, which can be time-
consuming and does not always provide optimal results.
Radiologists, especially in busy healthcare settings, may
not always have the time to thoroughly review all
available X-ray images, resulting in delayed diagnoses.
As the number of patients seeking diagnostic imaging
services grows, the workload on radiologists also
increases, further contributing to the potential for
mistakes and missed diagnoses.

Researchers have turned to automated image analysis
systems powered by deep learning or Al to overcome
these challenges. Deep learning models are designed to
learn and extract patterns from large datasets, making
them ideal for analyzing medical images. These models
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can identify and classify diseases based on features that
are complex for the human eye to perceive, such as
delicate changes in texture, shape, depth, and size of
structures in chest X-rays.

Deep learning, specifically through CNNs [11] and
[12], has shown promise in medical image analysis.
CNNs are a type of neural network designed to work
with grid-like data such as images. These models
automatically extract various features from input
images, such as edges, textures, and patterns, without
requiring manual  feature  engineering.  This
characteristic makes CNNs particularly effective for
image classification tasks, including medical image
analysis. In the context of lung disease detection, CNNs
are trained on large datasets of labeled chest X-ray
images that can classify the samples into healthy and
diseased lungs. The model learns to identify visual
patterns associated with different lung diseases, such as
lung opacity, nodules, consolidation, and fibrosis,
which can help classify diseases like pneumonia, TB,
and lung cancer. Once a method is trained, these models
can automatically analyze new X-ray images, providing
accurate and rapid diagnoses. By using large-scale
annotated samples, these models can achieve optimal
performance. Although CNNs [13] and [19] neural
network is used primarily for lung disease detection,
recent advancements have introduced enhanced models
that further improve performance and address existing
limitations. These enhanced models incorporate
techniques, such as transfer learning, data
augmentation, and multi-task learning, to improve
model accuracy and robustness.

Transfer learning is one of the most effective techniques
in deep learning, particularly in scenarios where large
labeled datasets are limited. By pre training a deep
learning model [20] on a large number of images like
ImageNet and these models can be fine-tuning on a
smaller sample, specialized dataset like chest X-rays
[21] will provide better results, transfer learning allows
models to retain general knowledge while learning
specific features relevant to lung disease detection.
Other recent innovations in deep learning for lung
disease detection include the use of an attention
approach, which enables patch-wise embedding and
captures complex patterns from the image, and
ensemble learning, where multiple models are
combined to enhance predictive accuracy.

Contributions.

e Enhanced CNN with Spatial and Channel
Attention Mechanisms for Improved Feature
Extraction and Classification Performance.

e High-accuracy @ Chest  X-ray  Disease
Classification Model Utilizing Attention
Mechanisms to Improve Generalization and
Robustness.
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e Comprehensive Evaluation with Feature
Importance Analysis Technique to Interpret
Model Predictions and Enhance Explainability.

2 Related work

Many researchers have worked with machine and deep
learning models, such as Shilpa, N., et al. (2024) [2],
which have implemented various models, including
ResNet50, MobileNetV2, AlexNet, and EfficientNetBO,
to detect pneumonia in chest X-rays. Among all models,
EfficientNetBO performed the best. In this case, only
one disease was detected using a pre-trained model.
Sanida, T., et al (2024) [3] Implemented an optimized
VGG model to detect multiple diseases, such as

COVID-19, cancer, etc, in X-ray samples. | used
27,445 samples from all classes and applied
augmentation methods to balance the dataset

(Choudhry, 1.). A et al. (2024) [4] implemented a deep
learning model using cloud and fog methods to enhance
security in the healthcare system. They employed a
transfer learning method, such as RetinaNet, and fine-
tuned EfficientNet models on chest X-ray samples.

KS, N., and Darapaneni, N. (2024) [5] implemented V-
BreathNet model to detect the abnormality in X-ray, In
this they first trained a customized CNN model on X-
ray samples consist of 3 classes like phenomena, lung
opacity and standard samples and got superior
performance compared to VGG and Dense Net models.
Paswan, J. D., et al (2024) in [6] pre-trained VGG,
ResNet50, and DenseNet121 models on the COVID-19
dataset. This has only two classes, yes or no, and
achieved an accuracy of 94% and 87% for training and
testing, respectively.

Pan, C. T., et al. (2024) [7] proposed a two-stage data
analysis method for the COVID-19 dataset, which
consists of four classes: SARS, COVID-19, regular, and
abnormal. First, all samples were converted to 224*224
dimensions after augmentation. | also trained various
models, including VGG and GoogleNet, using 5-fold
cross-validation; GoogleNet performed particularly
well.

Mahamud, E., et al. (2024) [9] proposed an enhanced
DenseNet201 model with a transformer approach using
X-ray data. With Explainable Al, trained on 10000
samples over four classes, and got an accuracy of 1.0.
Kotei, E., and Thirunavukarasu, R. (2024) [10]
developed a method for detecting Tuberculosis disease
using pre-trained CNN models on X-ray images. First,
all samples were converted to a 256-gray scale, and the
CNN model was trained, achieving an accuracy of 99%.
Hansun, S., et al. (2023) [14] utilized the QUADAS-2
dataset, comprising 309 samples, to train ML and DL
models, achieving an accuracy of 0.93 with ML models
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in detecting TB. Malik, H., et al. (2023) [15]
implemented a pre-trained CNN model to detect various
diseases, such as TB and pneumonia, from X-ray
samples, achieving an accuracy of 0.99, which is better
than that of overall transfer models.

Chen, Y., etal. (2023) [16] optimized EfficientNet-b5
and CoAtNet-0-rw using different loss functions,
including novel and weighted binary loss functions.
This model is trained on the ChestX-rayl4 dataset,
which comprises 14 classes, and achieves an accuracy
of 0.842.

Bharati, S., et al (2020) implemented a hybrid DL
model by combining CNN and VGG on lung disease
detection and trained various combinations; in this, they
got an accuracy of 0.73% with the best model.
Ganeshkumar, M., et al. (2023) [18] proposed a two-
stage learning ensemble method for classifying regular
pneumonia and COVID-19 Pneumonia. The total
number of samples is 600. This ensemble model
achieved an accuracy of 0.89.

Mustafa, Z., and Nsour, H. (2023) [22] proposed a
YOLO pre-trained model for detecting respiratory
infections and TB using X-ray images. Reamaroon, N.,
et al. (2021) [24] extracted gray-level co-occurrence
matrix-based features, trained a machine learning model
using k-fold cross-validation and the Adam optimizer,
and achieved an accuracy of 0.83. Chen, K. C,, et al.
(2020) [25] focused on pulmonary diseases in children,
utilizing X-ray images to train a YOLO model,
achieving an accuracy of 0.92.

[26] Benchabane&Charif (2025). In this work, we
integrate  deep learning with advanced image
enhancement to enhance the detection of COVID-19
through chest X-rays. The proposed approach
demonstrates  superior  diagnostic  performance,
underscoring the contribution of pre-processing to
enhancing model accuracy. [27] Oraibi&Albasri (2023)
The authors present a robust end-to-end CNN
architecture that addresses the issue of data imbalance
in COVID-19 detection. The model's accuracy is high
on X-ray datasets, and focusing on balanced training
and architectural optimization strategies is onekey
reason.

3 Methodology

We designed a custom CNN architecture that
incorporates spatial and channel attention mechanisms
to enhance the extraction of complex features, such as
local and global variations, as well as background and
foreground, from images. The model processes
224x224x3 RGB embedded vectors, which are
normalized between 0 and 1 to improve training
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stability and remove the domination of background
vectors.

The CNN consists of three convolutional blocks, each
incorporating Conv2D, Batch Normalization, Squeeze-
and-Excitation (SE) Blocks, Spatial Attention Layers,
MaxPooling, and Dropout layers. The SE Block applies
channel attention by adaptively recalibrating feature
responses, enhancing relevant features  while
suppressing redundant ones. Meanwhile, the Spatial
Attention Layer emphasizes critical spatial regions by
computing attention maps based on average and max-
pooled feature maps.

Each convolutional block consists of a Conv2D layer
with a 3x3 kernel, ReLU activation, and 'same' padding,
extracting hierarchical spatial features from each
3*224*224 sample. A Batch Normalization method is
applied to normalize the embedded vectors within the
range of 0 to 1, which is then passed to the
convolutional layer, where it normalizes the features,
thereby reducing internal adjustments.

The SE Block, responsible for channel attention,
consists of three key steps:

1. Global Average Pooling will find the average
value of each global feature map.

2. Bottleneck dense layers, which consist of two
fully connected layers, adjust the channel
dimensions. The first dense layer (with ReLU
activation) reduces the number of filters by a
factor of 16, and the second dense layer (with a
sigmoid activation) restores the original filter
count.

3. Reshaping and Multiplication — The

recalibrated weights are applied to the input
feature maps, improving feature selection.
The final classification layers include a flatten layer that
converts a multidimensional matrix into 1D data and
sends 1D data to a dense layer with 256 units. The thick
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layer, with ReL U activation, provides nonlinear values
for the given input, allowing it to learn complex
foreground features. A Dropout method with a 50% rate
is applied to prevent overfitting, where 50% of neurons
are dropped from the training process after each epoch.

4 Data set

The dataset used for lung disease classification was
obtained from Kaggle. It comprises chest X-ray samples
labeled into three classes, totaling6000, as shown in
Figure 1. The data set consists of a mixture of
dimensions, depths, and sizes, so a standardized
preprocessing pipeline was applied to ensure
consistency in input dimensions and facilitate practical
model training.

Initially, we employed the ImageDataGenerator class in
TensorFlow to handle image augmentation and
rescaling. The training dataset was augmented using
ImageDataGenerator with a normalization factor of
1/255t0 scale pixel values between 0 and 1. A
validation split of 20% was applied to ensure a fair
model evaluation. Separate ImageDataGenerator
instances were also used for validation and test datasets,
with rescaling applied uniformly across all datasets. The
images were loaded into TensorFlow data generators
using the flow from data frame method, which sourced
image file paths and corresponding labels from
structured data frames.

Additionally, we implemented a preprocessing pipeline
using TensorFlow's Sequential APl to standardize
image dimensions. This involved a Resizing layer to
reshape images to a fixed size of (224,224), ensuring
uniformity across the dataset, followed by a Rescaling
layer to normalize pixel values. Figure 2 illustrates the
number of samples for each class before augmentation.

Normal Normal

Lung_Opacity

Lung_Opacity

Viral Pneumonia Viral Pneumonia

Figure 1: Shows X-ray images of the disease and normal.
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Figure 2: Class-wise number of samples before augmentation

5 Result analysis

The proposed CNN model, with spatial and channel
attention mechanisms, was trained for 10 epochs to
classify chest X-ray images into three categories: Lung
Opacity, Normal, and Viral Pneumonia. The model was
trained using a batch size of 32, with accuracy and loss
metrics recorded for both the training and validation
datasets at each epoch, as shown in Figure 3.

During the early training epochs, the model showed
consistent improvement in classification performance.
By Epoch 4, the accuracy reached 87.17%, with a
slightly lower validation of 78.57%, indicating that the
model was still learning to generalize to unseen
patterns. This trend continued into Epoch 6, where
training accuracy rose to 90.08% and validation

generalization. Concurrently, the training loss decreased
from 0.3160 to 0.2570, and the validation loss dropped
from 0.4803 to 0.3691.

A notable improvement occurred in Epoch 7, with
training accuracy at 89.98% and validation accuracy
peaking at 88.57%. The corresponding validation loss
further reduced to 0.2566, suggesting increased model
stability and effective feature learning. However, by
Epoch 9, validation loss spiked to 0.5656 despite a high
training accuracy of 92.70%, indicating potential
overfitting. This was confirmed in Epoch 10, where
validation loss sharply increased to 1.0427 and
validation accuracy stagnated at 82.86%, suggesting
that the model had begun to memorize the training data

. . rather than eneralize effectively.
accuracy improved to 82.86%, demonstrating better g y
Model Accuracy Model Loss
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Figure 3: Learning curves of the proposed model
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The proposed model achieved an overall accuracy of
93.93%, as shown in Figure 4, demonstrating its
effectiveness in classifying into three classes: lung
opacacity, normal opacacity, and viral pneumonia. The
model exhibited strong predictive performance across
all classes, with high correctness in identifying both
positive and negative cases. Specifically, for Lung
Opacity, the model maintained perfect results in correct
classifications and misclassifications, ensuring high
reliability. Similarly, the classification performance for
Normal cases remained consistent, with minimal errors.
The highest performance was observed in detecting
Viral Pneumonia, where the model exhibited superior
capability in distinguishing these cases from the other
categories, reflecting its ability to capture distinctive
patterns in the dataset.

D. Priyanka et al.

The overall effectiveness of the model was further
reinforced by its ability to maintain a strong balance
across different performance metrics, reducing both
false positives and false negatives. The comprehensive
evaluation metrics indicate that the model extracted
complex spatial and temporal features and provides
robust decision-making. Additionally, the model
provided a substantial area under the curve (AUC) score
of 97.22%, highlighting its ability to differentiate
between categories with high confidence, as illustrated
in Figures 5 and 6. The combination of spatial and
channel attention mechanisms contributed significantly
to feature enhancement, improving classification
accuracy and better generalization across chest X-ray
samples.
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I
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i
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Figure 4: Confusion matrix of the proposed hybrid model
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Figure 5: Proposed model performance on various metrics

Precision, Recall, and Fl-score per Class

1.0+

0.8

0.6

0.4 1

0.2 1

1

0.0

A Precision
=0 Recall
B~ Fl-score

Lung Opacity

I

Normal
Classes

Viral Pneumonia

Figure 6: Class-wise performance of proposed hybrid model
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Figures 5 and 6 show that the ROC and PR curves from
Figure 7 illustrate the model's performance over three
classes—Lung Opacity, Normal, and Viral Pneumonia.
The ROC curve accuracy shows that the model achieves
a high AUC for all courses, 0.97, with Viral Pneumonia
approaching an ideal classification boundary. The PR
curve demonstrates the presentation of the model on
three classes. The slight reduction in precision at higher
recall values, particularly for the Normal and Lung
Opacity classes, suggests that the model provides strong
predictive capability. Figure 8 represents the
importance of features using permutation-based
analysis, highlighting the role of different features in
the model's executive process. The color gradient
visually distinguishes features based on their relative
importance, where taller bars indicate higher
significance. The black error bars depict variability in
importance scores across multiple iterations, ensuring
robustness in feature selection.

From table 1 it is observed thatPaswan et al. [6] with
pre-trained method like VGG, ResNet50, and
DenseNet121 on a COVID-19 dataset and reported a
training accuracy of 94% and a testing accuracy of
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learning (ML) and deep learning (DL) models on the
QUADAS-2 dataset comprising 309 samples to detect
tuberculosis (TB), achieving an overall accuracy of
93%. Chen et al. [16] fine-tuned EfficientNet-B5 and
CoAtNet-0 on the ChestX-rayl4 dataset, which
contains 14 classes of chest diseases, and achieved a
multi-class classification accuracy of 84.2%. Similarly,
VDSNet [17] was trained on 5,606 samples from the
same dataset and achieved 73% accuracy across 14
disease classes, demonstrating the complexity of multi-
class classification with high disease variability.

Ganeshkumar et al. [18] proposed an ensemble learning
approach on a smaller dataset of 600 chest X-rays to
distinguish between regular and COVID-19 pneumonia,
reaching an accuracy of 89%. In another approach,
Mustafa and Nsour [22] employed a pre-trained YOLO
model to detect TB and respiratory infections, although
specific performance metrics were not reported.
Reamaroon et al. [24] used gray-level co-occurrence
matrix (GLCM) features with ML classifiers to detect
respiratory infections, achieving 83% accuracy. Chen et
al. [25] applied YOLO to pediatric pulmonary X-ray
images, attaining a classification accuracy of 92% in

87%, targeting binary classification (COVID-19 vs.  detecting childhood pulmonary diseases.
non-COVID). Hansun et al. [14] used both machine
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Figure 7: ROC, precision-recall curves of the proposed hybrid model
Table 1: Comparison of proposed hybrid model with prescribed models
Ref | Model / Dataset / Sample Disease(s) Detected Classes | Accuracy /
Size Performance
[6] | VGG, ResNet50, COVID-19 Dataset | COVID-19 2 Train: 94%,
DenseNet121 Test: 87%
[14] | ML and DL Models QUADAS-2 /309 Tuberculosis 2 93%
samples
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[16] | EfficientNet-B5, ChestX-ray14 (14- 14 Chest Diseases 14 84.20%
CoAtNet-0 class)
[17] | VDSNet ChestX-ray14, 5606 | 14 disease 14 73%
samples
[18] | Ensemble Learning 600 X-rays Pneumonia (Regular vs. 2 89%
COVID-19)
[22] | YOLO (Pre-trained) Chest X-rays TB, Respiratory Multi N.A.
Infections
[24] | ML + GLCM Features | X-rays/N.A. Respiratory Infections 2 83%
[25] | YOLO Pediatric Pulmonary | Pulmonary Disease in 2 92%
X-rays Children
# Proposed model Chest X-rays, 3475 | Pneumonia, normal,lung | 3 93.01%
samples opacacity
Feature Importance based on Permutation
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Figure 8: Features the importance plot after training

6 Conclusion

This study proposed a novel CNN architecture
enhanced with spatial and channel attention
mechanisms for automated chest X-ray classification,
achieving high classification accuracy and strong
generalization capabilities. Integrating SE Blocks and
Spatial ~ Attention  Layers  improved  feature
representation, enabling the model to distinguish
between Lung Opacity, Normal, and Viral Pneumonia
with an overall accuracy of 93.01%. Performance

analysis using ROC and Precision-Recall curves
confirmed the model's ability to maintain high precision
and recall across all classes. However, training
dynamics indicated overfitting in later epochs,
suggesting the need for further optimization through
regularization techniques and extended training
datasets. Future work will enhance model robustness by
incorporating advanced augmentation techniques and
exploring hybrid deep learning architectures.
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Cancer is a leading cause of global mortality, underscoring the need for advanced diagnostic tools to enable
early and accurate detection. Microarray technology allows for the simultaneous analysis of thousands of
genes, offering valuable insights into cancer biology. However, the high dimensionality of microarray
data presents significant challenges for classification tasks. In this study, we propose a novel approach
that integrates the Social Spider Optimization (SSO) algorithm with mutual information-based feature se-
lection to identify the most discriminative genes for cancer classification. We evaluate the performance
of four machine learning classifiers—Decision Tree (DT), K-Nearest Neighbors (K-NN), Neural Networks
(NN), and Support Vector Machines (SVM)—with and without feature selection. Our results demonstrate
that the SSO algorithm significantly enhances classification accuracy, with SVM achieving near-perfect
performance on leukemia and lymphoma datasets when combined with Max-Relevance Min-Redundancy
(MRMR) feature selection. This hybrid approach provides a robust solution for cancer diagnosis by ad-
dressing key challenges such as data redundancy and computational complexity.

Povzetek: Za klasifikacijo raka so uporabili optimizacijo (SSO), zdruzeno z merili vzajemne informacije
(MIM, JMI, MRMR), za izbiro najbolj diskriminativnih genov in zmanjsanje redundance. Na zbirkah Colon,
Prostate, Leukemia, Lymphoma z DT, K-NN, NN, SVM kombinacija SSO+MRMR doseze odlicne rezultate

(levkemija/limfom) ter zniza racunsko zahtevnost.

1 Introduction

Cancer is a complex and heterogeneous disease character-
ized by uncontrolled cell growth and proliferation. Early
and accurate diagnosis is critical for effective treatment and
improved patient outcomes. Recent advances in molecu-
lar biology, particularly microarray technology, have rev-
olutionized cancer research by enabling the simultaneous
measurement of gene expression levels across thousands of
genes [[I]]. These high-throughput datasets provide unprece-
dented opportunities to identify molecular signatures asso-
ciated with specific cancer types [2]. However, the high
dimensionality of microarray data—where the number of
features (genes) far exceeds the number of samples—poses
significant challenges for classification tasks. This “curse
of dimensionality” can lead to overfitting, increased com-
putational complexity, and reduced model interpretability
[B].

Feature selection is a crucial step in microarray data anal-
ysis, as it helps identify biologically relevant genes while
minimizing noise and redundancy. Conventional feature

selection approaches are typically classified into three main
categories: filter, wrapper, and embedded methods [4]. Fil-
ter techniques, such as mutual information-based selection,
rank genes based on statistical criteria without involving
a predictive model. Wrapper methods employ a specific
machine learning algorithm to evaluate the performance
of different feature subsets. Embedded approaches inte-
grate feature selection directly into the classifier’s training
process, optimizing both model accuracy and feature rel-
evance. Despite their effectiveness, these methods often
suffer from limitations such as local optima convergence
and high computational complexity, particularly in high-
dimensional spaces [5].

Metaheuristic optimization algorithms, inspired by natu-
ral phenomena, have emerged as powerful tools for address-
ing complex feature selection problems. Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO) are among the most widely
used metaheuristics in this context [0, 7, §]. However, these
methods may still struggle with premature convergence or
parameter sensitivity, limiting their applicability to ultra-
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high-dimensional datasets.

To overcome these limitations, we propose the Social
Spider Optimization (SSO) algorithm, a novel metaheuris-
tic inspired by the cooperative foraging behavior of so-
cial spiders. SSO leverages vibration-based communica-
tion among spiders to dynamically adjust search intensity,
balancing exploration and exploitation in the feature space.
This unique mechanism allows SSO to efficiently navigate
high-dimensional datasets and identify optimal gene sub-
sets without extensive parameter tuning [8].

In this study, we integrate SSO with mutual information-
based feature selection criteria—Mutual Information Maxi-
mization (MIM), Joint Mutual Information (JMI), and Max-
Relevance Min-Redundancy (MRMR)—to enhance cancer
classification accuracy [9]. We evaluate the performance
of four classifiers (DT, K-NN, NN, SVM) on four cancer
datasets (Colon Cancer, Prostate Tumor, Leukemia, and
Lymphoma). The microarray datasets were subjected to
rigorous preprocessing to ensure data quality. Our results
demonstrate that the SSO algorithm significantly outper-
forms traditional feature selection methods, achieving su-
perior classification accuracy and computational efficiency
[1La].

The remainder of this paper is structured as follows:
First, we present the methodology, detailing the SSO algo-
rithm, feature selection approaches, and classification mod-
els. Next, we discuss the experimental results and compar-
ative analysis. Then, we examine the advantages and limi-
tations of the proposed approach. Finally, we conclude the
paper and outline future research directions.

2 The social spider optimization
(SSO)

The Social Spider Optimization (SSO) algorithm is a
nature-inspired metaheuristic that mimics the cooperative
foraging behavior of social spiders to solve complex opti-
mization problems. In cancer genomics, SSO excels at se-
lecting highly discriminative genes for classification tasks
[L1]. The algorithm evaluates candidate gene subsets using
a fitness function, where a high score indicates an optimal
subset that maximizes classification accuracy while mini-
mizing redundant features [[12, 13].
This fitness function is defined as :

Fitness(S) = a.- Accuracy(S) + (1 —a) - ( |S|) (1)

Where:
— S represents a candidate gene subset.

— Accuracy(S) denotes the classification performance
using features in .S.

— |S| is the cardinality of the selected subset.

— N is the total number of available genes.
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— « € [0, 1] controls the trade-off between accuracy and
feature reduction.

The search process in SSO is guided by vibrations, which
simulate the collective behavior of a spider colony. Each
spider (representing a candidate solution) updates its posi-
tion based on vibrations from fitter neighbors. This mech-
anism balances exploitation (moving toward high-quality
solutions) and exploration (maintaining population diver-
sity to avoid premature convergence) [[14]. The result is
an adaptive search strategy that efficiently navigates high-
dimensional genomic data.

The position update for each spider ¢ at iteration ¢ is cal-
culated as :

IB—:I:

R Z 2t~

Where

tH (bj + € (2)

— ! represents the current position of spider .
— N is the set of neighboring spiders.

— ¢; is the vibration intensity from spider j (proportional
to its fitness).

— € is a small random perturbation that encourages ex-
ploration.

Finally, the selected genes are fed into machine learning
classifiers to predict cancer types.

The optimization for a DT classifier focuses on finding
the best splits at each node to minimize a loss function, of-
ten based on Information Gain or Gini impurity (Minimize
the impurity measure at each split):

. N,
min | 7(D) — XJ: ~ (D) 3)

Where:

I(D): Impurity of the parent node.

N': Total number of samples in the parent node.
— N;: Number of samples in child node j.
— I(D;): Impurity of child node j.

The optimization for K-NN is expressed as:

Ypred = argmaxyk Z I(yia yk) (4)
=1

Where:
— Ypred: Predicted class label for the new point .

— argmax, : The class label y; that maximizes the sum
across the classes.
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— K: Number of closest neighbors considered for the
classification.

— I(y;,yx): Indicator function that equals 1 if the class
label of the i-th neighbor y; matches the predicted
class label y;, and 0 otherwise.

The optimization for NN involves minimizing a loss
function that quantifies the difference between the pre-
dicted outputs of the network and the actual target values.
Here’s a detailed formulation:

N
L) = 5 3 £l ) )
=1

Where:

— L(0): The overall loss of the neural network, depen-
dent on parameters 6.

— N: The total number of samples in the dataset.

— L(y;,9;): The loss for the i-th sample, measuring how
well the predicted output ¢; aligns with the true target

Yi.

The SVM optimization problem is formulated as :

1 2 - T
rqnvliliﬂwH +C;max(0,1—yi(w x;+b) (6)

Where

— w is the weight vector.

— ('is a regularization parameter.
— y; are the class labels.

We evaluated the pipeline using mean + standard devia-
tion (SD) and 95% confidence intervals (CI) for F1-score,
precision, recall, and accuracy over 10 randomized runs. To
ensure robustness, we combined 10-fold cross-validation
with a 70-30 train-test split, mitigating overfitting risks.
The results, averaged across folds, demonstrate that SSO’s
biologically inspired optimization enhances both accuracy
and interpretability in cancer classification [[19, 20].

2.1 Runtime analysis

The runtime of the SSO algorithm depends on several fac-
tors:

— Population Size (P): The number of spiders (candi-
date solutions) in the population. A larger population
increases diversity but also computational overhead.

— Number of Iterations (T): The maximum number of
iterations the algorithm runs before convergence.

— Feature Dimensionality (N): The total number of
genes (features) in the dataset. High-dimensional data
require more computations per spider.
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— Fitness Evaluation Cost (FEC): The cost of evaluat-
ing the fitness function for each spider, which involves
training and testing a classifier on the selected gene
subset.

The overall runtime can be approximated as :

Runtime = O(T x P x (N + FEC)) (7)

2.2 Computational complexity

The computational complexity of SSO is primarily deter-
mined by :

— Position Update : For each spider, the position up-
date involves calculating vibrations from neighboring
spiders. If each spider interacts with k& neighbors, the
complexity per spider per iteration is : O(k x N),
where NV is the dimensionality of the feature space.
For the entire population, this becomes O(P x k x N).

— Fitness Calculation : The fitness function involves
training a classifier on the selected gene subset. As-
suming the worst case where all features are selected,
the complexity is dominated by the classifier’s training
time.

However, in practice, SSO selects a small subset of
genes d < N, reducing this to O(n? x d).

— Total Complexity : Combining the above, the per-
iteration complexity is :

O(P x kx N)+ O(P x n* x d) ®)

Over T iterations, The total complexity becomes:

O(T x Px (kxN+n*xd)) 9)

3 Gene subset selection

To enhance the relevance and informativeness of the ge-
netic data, we focused on a streamlined subset of features.
This selective approach facilitates the development of ac-
curate and robust classification models while mitigating
challenges associated with high-dimensional genomic data.
Gene expression datasets typically encompass thousands of
features (genes), which can introduce computational ineffi-
ciencies, increased resource demands, and a heightened risk
of overfitting. Thus, feature selection is essential to reduce
data complexity and improve model interpretability [21].

Our goal is to retain only the most discriminative and bi-
ologically significant genes for cancer classification. By
identifying and preserving genes that maximize inter-class
distinction while eliminating redundant or non-informative
features, we enhance model performance—boosting accu-
racy, recall, and generalizability [22].

In this work, we evaluate feature importance using mu-
tual information as a key relevance metric [23, 24], ensuring
that selected genes contribute meaningfully to classification
while maintaining biological interpretability.
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4 Mutual information

We employ mutual information (MI) to assess the statisti-
cal dependence between gene expression features and can-
cer class labels [25]. MI provides a robust measure of how
much knowledge of a particular gene’s expression reduces
uncertainty about the cancer classification [26, 27]. For our
high-dimensional genomic data, we implement empirical
estimation methods specifically adapted to maintain accu-
racy in this challenging context.

We estimate MI empirically using methods adapted for
high-dimensional data.

(z,y)

VY T b,y
I(XJ)—XI:%jp( Wleg rres 10

p
Where:
— p(z, y) is the joint probability distribution of X and Y.

— p(z) and p(y) are the marginal probability distribu-
tions of X and Y, respectively.

This equation quantifies the shared information between
variables X and Y, measuring their mutual dependence.
MI equals zero when X and Y are statistically independent,
indicating no shared information between them [28].

I(X;Y) =0 if p(z,y) =p(x)-ply) (AD
This means that if the joint probability distribution of X
and Y equals the product of their marginal distributions,
then the MI is zero, indicating no dependency between the
two variables.
Mutual information is linearly related to the entropies of
the variables according to the following equations:

I(X;Y)=HX)+ HY)-H(X,Y)
Where:

(12)

— H(X) is the entropy of variable X.
— H(Y) is the entropy of variable Y.
— H(X,Y) is the joint entropy of variables X and Y.

This relationship demonstrates that MI can be understood
as the reduction in uncertainty about one variable given
knowledge of the other.

5 Mutual information for feature
selection

Mutual information (MI) is a robust statistical measure for
quantifying dependency between random variables. In fea-
ture selection, MI assesses the mutual dependence between
candidate features (explanatory variables) and the target
variable (predicted outcome). Features with higher MI val-
ues are prioritized, as they provide more predictive infor-
mation about the target.

C. Cherif et al.

The scientific community has developed multiple MI-
based selection criteria. In this study, we focus on three
prominent methods proven effective in prior research.
Their advantages and implementation details are discussed
in subsequent sections.

5.1 Mutual information maximization

(MIM)

MIM is a principled feature selection method that maxi-
mizes the mutual information (MI) between input features
and the target variable. Grounded in information theory,
MIM selects features that provide the highest information
gain about the target, thereby improving predictive model
performance [29].

By retaining only the most informative features and dis-
carding non-informative ones, MIM enhances model effi-
ciency and generalization, particularly in high-dimensional
datasets where feature relevance varies significantly. The
formulation for MIM can be expressed as:

max [(X;Y)
FICF

(13)

Where:

— F’ is the subset of features selected from the original
feature set F'.

— I(X;Y) is the MI between the selected features X and
the target variable Y.

5.2 Joint mutual information (JMI)

JMI extends traditional MI-based feature selection by eval-
uating the joint predictive power of feature subsets. Rather
than assessing features individually, JMI maximizes their
combined MI with the target, capturing synergistic interac-
tions while minimizing redundancy [B0]. This approach is
especially effective for high-dimensional data, where fea-
tures often exhibit complex dependencies. The formulation
for JMI can be expressed as:

max I(F';Y)
FICF

(14)

Where:

— I(F';Y) is the MI between the selected features F’
and the target variable Y.

5.3 Max relevance min redundancy
(MRMR)

MRMR selects features that are maximally relevant to
the target variable while minimizing redundancy among
them. This criterion is particularly advantageous in high-
dimensional settings, where reducing feature correlations
improves model efficiency without compromising accuracy
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[B1]]. MRMR achieves this balance by maximizing rele-
vance (MI with the target) and penalizing redundant (inter-
correlated) features, ensuring a diverse and informative fea-
ture set. The complete optimization problem is expressed
as:

/. . f.
max (1Y) = e D, IUsf) | 09
fi,f;€F’
where:

[’ is the subset of features selected from the original
feature set F'.

I(F')Y) is the MI between the selected features F”
and the target variable Y.

I(fi; f;) is the MI between the features f; and f;.

— | F” |is the number of features in the subset F”.

6 Feature selection with SSO

After completing feature extraction and Ml-based feature
selection, the final stage involves building and evaluating
classification models. In machine learning, classification
follows a standard two-phase process: training and test-
ing. During the training phase, the algorithm learns patterns
from labeled training data to construct a predictive model
[32]. The testing phase evaluates the model’s performance
on unseen data to assess its generalization capability and
determine its readiness for real-world deployment. During
this stage, the trained model undergoes rigorous evaluation
to measure its predictive accuracy and overall effectiveness.
This critical step ensures that the model meets the required
performance thresholds before deployment.

For the classification task, we employed four well-
established supervised learning algorithms: DT, K-NN,
NN, and SVM. These methods were selected for their com-
plementary strengths in handling diverse data characteris-
tics and their proven effectiveness in similar classification
tasks.

The Social Spider Optimization (SSO) algorithm was im-
plemented to optimize gene selection by simulating the col-
lective foraging behavior of social spiders, which dynam-
ically adjust their search patterns based on vibratory com-
munication within their colony.

In this approach, each spider in the population repre-
sents a candidate subset of genes, initialized randomly to
ensure diversity in the search space. The fitness of each
spider, corresponding to the quality of the gene subset, was
evaluated using MI as the objective function, quantifying
the statistical dependence between the selected genes and
the target class labels. The algorithm leverages a unique
vibration-based communication mechanism, where spiders
share information about promising regions of the feature
space through simulated vibrations, allowing the popula-
tion to collectively balance exploration (global search for
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diverse gene combinations) and exploitation (local refine-
ment of high-fitness subsets).

This adaptive behavior enables SSO to efficiently navi-
gate the high-dimensional microarray data, avoiding local
optima while converging toward highly discriminative gene
subsets. The iterative process continues until convergence
criteria are met, yielding an optimal set of genes that max-
imizes classification performance.

Compared to traditional metaheuristics like Genetic Al-
gorithms or Particle Swarm Optimization, SSO demon-
strates superior efficiency in feature selection due to its self-
organizing nature, reduced parameter sensitivity, and abil-
ity to maintain population diversity throughout the search
process.

The integration of SSO with MI criteria further en-
hances its biological relevance, as it prioritizes genes with
strong functional associations to cancer phenotypes while
minimizing redundancy. This hybrid approach addresses
key limitations of conventional methods, such as prema-
ture convergence and computational inefficiency, making
it particularly suited for high-dimensional genomic datasets
where traditional techniques often struggle.

7 Proposed approach for cancer
classification

The global healthcare community faces a critical challenge
in addressing cancer, necessitating cutting-edge methods
for precise diagnosis and classification. The proposed ap-
proach leverages SSO to enhance cancer classification ac-
curacy through optimized gene selection.

The workflow begins with collecting a gene expression
dataset categorized by cancer type, followed by preprocess-
ing steps such as normalization and missing value imputa-
tion to ensure data quality. Next, the SSO algorithm iden-
tifies the most discriminative genes, mimicking the col-
laborative behavior of social spiders to efficiently explore
the high-dimensional gene space. This step reduces redun-
dancy and improves computational efficiency.

The selected gene subset is then analyzed using de-
tection algorithms to identify cancer-specific patterns or
anomalies. Finally, classification algorithms predict cancer
types, with SSO-optimized features ensuring higher accu-
racy compared to traditional methods.

By integrating SSO-based gene selection with detection
and classification algorithms, this approach provides a ro-
bust and scalable solution for precise cancer classification.
The proposed framework is illustrated in Figure [Il.

The proposed framework introduces a structured ap-
proach to enhance cancer classification accuracy using ad-
vanced computational techniques. The process begins with
a cancer-labeled gene expression dataset containing ge-
nomic profiles of various tumor types. This raw biological
data undergoes preprocessing to normalize values, handle
missing data, and ensure quality for downstream analysis.
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Gene Expression
Dataset =
(Cancer-labeled)

SSO with MI-Based Criteria
(MIM, JMI, MRMR for Gene Selection) >

Anomaly Detection
(Pattern/Outlier Identification)

v

Classification
(DT /K-NN/NN/ SVM)

N

Optimized Gene Subset

Figure 1: Proposed cancer classification framework

The core innovation involves applying the SSO algo-
rithm, a nature-inspired computational method that mimics
the cooperative behavior of spider colonies to identify the
most biologically relevant genes. This optimization phase
reduces data dimensionality by eliminating redundant ge-
netic features while retaining those with the highest dis-
criminatory power for cancer classification.

The optimized gene subset is then fed into anomaly de-
tection modules to identify unusual expression patterns or
molecular signatures associated with specific cancer sub-
types. Finally, machine learning classifiers leverage these
refined genetic markers to predict cancer types with im-
proved precision.

Compared to traditional methods, SSO offers significant
advantages by systematically exploring complex gene in-
teractions and selecting optimal feature combinations that
conventional statistical approaches might overlook. This
comprehensive pipeline—from data preparation to opti-
mized classification—demonstrates how bio-inspired algo-
rithms can improve biomedical pattern recognition, poten-
tially leading to more accurate diagnostic tools in clinical
oncology. The sequential architecture ensures that each
stage builds upon the refined outputs of the previous step,
creating an efficient and biologically meaningful workflow
for precision medicine applications.

8 Results and discussion

To validate the proposed approach, we conducted extensive
experiments on four distinct microarray datasets. In accor-
dance with standard machine learning practices [33], each
dataset was split into training and testing sets. The train-
ing set was used for model learning, while the testing set
evaluated the performance of the trained model.

— Colon Cancer : comprises gene expression profiles
from 36 patients, with balanced representation of tu-
mor (n=18) and normal (n=18) tissue samples. The
samples were obtained from epithelial cells of the
colon mucosa, providing molecular signatures of col-
orectal carcinogenesis [34].

— Prostate Tumor : Containing 12600 gene expression
measurements across 102 clinical samples, this dataset
includes 52 prostate adenocarcinoma specimens and
50 matched normal tissue controls [35].

— Leukemia : contains 72 clinical samples represent-
ing two hematological malignancies: 47 cases of
Acute Lymphoblastic Leukemia (ALL) and 25 cases
of Acute Myeloid Leukemia (AML). The dataset has
been widely used for evaluating molecular classifica-
tion methods [3€].

— Lymphoma : Comprising 96 lymphocyte sam-
ples (both malignant and normal populations) with
4026 gene expression measurements per sample, this
dataset captures the transcriptional heterogeneity in
lymphoid malignancies. The balanced design facili-
tates robust classifier development [37].

Key characteristics are systematically summarized in Table
1.

The evaluation of predictive classification models is a
critical phase in machine learning [38]. To ensure robust-
ness, we report performance metrics (Precision, Recall, F1-
score, Accuracy) with 95% CI and SD across multiple runs
(n=10) with randomized train-test splits (70-30%). This
approach accounts for variability in small-sample genomic
datasets and strengthens the reliability of our findings. Cen-
tral to this evaluation is the confusion matrix (see Table [),
which provides a comprehensive visualization of a model’s
performance by comparing predicted classifications against
actual ground truth labels. Through detailed analysis of
this matrix, key performance metrics—including Precision,
Recall, F1-score, and Accuracy—can be derived and inter-
preted. These metrics collectively offer multi-dimensional
insights into model behavior, allowing for objective com-
parisons between competing algorithms.

The confusion matrix is a table that displays predicted
and actual classification outcomes, comparing them with
true values [39]. It consists of :

— True Positive (TP) : Correctly classified instances be-
longing to the positive class Y.

— False Positive (FP) : Instances incorrectly predicted
as positive class Y when they actually belong to the
negative class Y

— False Negative (FN) : Instances of the positive class
Y incorrectly classified as negative Y.

— True Negative (TN) : Correctly identified instances of
the negative class Y.
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Table 1: Brief description of the datasets

Dataset Genes | Training data | Testing data | Observations +1/-1
Colon Cancer | 2000 62 - 22/40
Prostate Tumor | 12600 102 - 52/50
Leukemia 7129 38 34 27/11 - 20/14
Lymphoma 4026 60 36 45/15 -27/9

Table 2: Confusion matrix
Class | Y | ¥
Y TP | FP
Y | FN | TN

From the confusion matrix, the following performance met-
rics are derived:

— Precision quantifies the exactness of a classifier’s pos-
itive predictions by measuring the proportion of true
positives (correctly identified instances) among all in-
stances predicted as positive. Mathematically, it is de-

fined as:
TP

P .. _
recision TP + FP

(16)

— Recall evaluates a model’s ability to correctly identify
all relevant positive instances from the dataset. It is
calculated as:

TP

Recall = —
A= TP EN

A7)

— F1-Score is a robust metric that balances Precision and
Recall into a single unified measure. It is the harmonic
mean of the two metrics, ensuring neither is dispropor-
tionately favored—making it particularly valuable for
imbalanced datasets where one class dominates.

Fl-score — 2 x Precision x Recall

(18)

Precision + Recall

— Accuracy quantifies a model’s overall correctness by
measuring the proportion of all correct predictions
(both positive and negative) relative to the total pre-
dictions made:

TP + TN
TP + TN + FP + FN

Accuracy =

(19)

For our binary classification task, we implemented ma-
chine learning models using Python (version 3. 10.9)m,
leveraging its ecosystem of scientific libraries for state-of-
the-art algorithms. To rigorously evaluate performance,
we employed a classification report—a detailed analytical

Thttps://anaconda.org/anaconda/python

tool that computes key metrics, including Precision (pos-
itive predictive value), Recall (sensitivity), F1-score (har-
monic mean of precision and recall), and Support (class
distribution) for each target class. As shown in Table J,
the report reveals that the Cancer class (Class 1: F1-score
=0.53 £0.02) slightly outperforms the Normal class (Class
0: Fl-score = 0.50 + 0.03), with both precision and recall
closely aligned within each category. The overall accuracy
0f 0.52 £ 0.02 (95% CI: 0.49-0.55) suggests moderate dis-
criminative power, while the narrow confidence intervals
and low standard deviations indicate stable model perfor-
mance across evaluations. This granular analysis highlights
the model’s balanced but limited ability to distinguish be-
tween Normal and Cancer cases, with statistical measures
ensuring robust interpretation despite the modest scores.

Figure [ displays the classification outcomes achieved
by applying four machine learning algorithms directly to
raw cancer genomic datasets. To establish fundamental
performance benchmarks, we intentionally omitted all data
preprocessing and feature selection procedures in this ini-
tial analysis. The study utilized the complete, unmodi-
fied datasets, preserving all original gene expression values
without any filtering of redundant features, imputation of
missing values, or application of normalization techniques.
Crucially, we maintained the full dimensionality of the data,
avoiding any gene subset selection that might alter the in-
trinsic characteristics of the genomic profiles. This exper-
imental design allowed us to assess the native capability
of standard classification algorithms to handle the inher-
ent complexity and high-dimensional nature of unprocessed
genomic data, providing critical insights into the baseline
challenges of cancer classification from uncurated molecu-
lar data. The results serve as an important reference point
for evaluating the comparative benefits of subsequent pre-
processing and feature selection approaches.

Figure P presents the classification results obtained after
applying standard preprocessing techniques to the raw ge-
nomic datasets while retaining all original features. Impor-
tantly, this analysis deliberately maintained the complete
high-dimensional feature set without employing any fea-
ture selection or dimensionality reduction techniques. By
preserving all available genes while applying fundamental
preprocessing, we established a crucial performance base-
line that demonstrates the isolated effects of data cleaning
and normalization on classification accuracy. These results
serve as an essential reference point for evaluating the addi-
tional benefits achieved through subsequent feature selec-
tion methods, as presented in other figures. The maintained
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Table 3: Classification report with SD

Precision (Mean 4+ SD) | Recall (Mean 4+ SD) F1-score (Mean + SD) Support
0 0.50 + 0.03 0.50 + 0.04 0.50 +0.03 294
1 0.53 +£0.02 0.53 + 0.03 0.53 +£0.02 315
Accuracy - - 0.52 4+ 0.02 (95% CI: 0.49-0.55) 609

Accuracy Score

Prostate Tumor Leukemia
Dataset

Colon Cancer Lymphoma

Figure 2: Classification accuracy with SD (no preprocess-
ing or feature selection)

high dimensionality (typically thousands of genes) in this
analysis highlights both the limitations of classifiers oper-
ating on uncurated feature spaces and the measurable im-
provements attainable through basic preprocessing alone.
This controlled experiment provides valuable insights into
the incremental value of different stages in genomic data
preparation pipelines.

Accuracy Score

Prostate Tumor Leukemia
Dataset

Colon Cancer Lymphoma

Figure 3: Classification Accuracy with SD (Preprocessed
Data, No Feature Selection)

Next, we applied SSO along with three MI-based feature
selection methods. SSO, inspired by the cooperative be-
havior of social spiders, optimizes feature subsets by bal-
ancing exploration and exploitation, while MIM, JMI, and
MRMR identify the most relevant and non-redundant genes
(attributes) for the classification task. This hybrid approach
significantly reduced the initial dimensionality of the ge-
nomic data while enhancing feature discriminability.

For each dataset and feature selection method, we trained

and evaluated multiple classification algorithms. The pa-

rameters used in the SSO algorithm are presented in Table
7

Table 4: SSO Hyperparameters

Parameter Value
Population size 50
Vibration decay (¢) 0.9

Convergence threshold | 10~*
Max iterations 200

Our experimental findings highlight the effectiveness of
the classification algorithms, as evidenced by the evalua-
tion metrics (Precision, Recall, and F1-score) obtained with
feature selection (see Figures H,B, 8, and fi).

These results illustrate how preprocessing and the se-
lection of pertinent features impact classification accuracy
based on the number of features used.

Further analysis showed that SVM and NN achieve su-
perior performance after optimal feature selection, espe-
cially when enhanced with SSO, whereas DT underper-
form. The study emphasizes the crucial role of prepro-
cessing and feature selection—particularly when integrat-
ing SSO with information-theoretic methods. These in-
sights open new possibilities for advancing hybrid tech-
niques and their use in oncology for early, personalized can-
cer detection.

To further validate our findings, we compared the pro-
posed method with established techniques, including Parti-
cle Swarm Optimization (PSO), Genetic Algorithms (GA),
and a deep learning-based autoencoder (AE) for feature se-
lection.

The SSO+MRMR result in Table B reflects the optimal
combination of the best classifier (SVM) and the most ef-
fective feature selection method (MRMR) guided by SSO,
as empirically validated in the study.

As demonstrated in Table B, the results clearly show that
SSO achieves superior performance, surpassing these alter-
natives in both classification accuracy and computational
efficiency. The proposed method demonstrates superior
performance compared to existing feature selection tech-
niques across all evaluated medical datasets. As shown in
Table f, SSO-MRMR achieves the highest mean classifica-
tion accuracy with the lowest standard deviation, indicat-
ing both high effectiveness and robustness. For instance,
in the Leukemia dataset, SSO-MRMR attains an accuracy
of 0.94 + 0.01, outperforming PSO (0.90 + 0.02), GA
(0.88+0.03), and AE (0.91£0.02). Similarly, in the Colon
Cancer dataset, the proposed method reaches 0.91 + 0.02,
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whereas PSO, GA, and AE achieve 0.87, 0.85, and 0.88,
respectively. This consistent advantage suggests that SSO-
MRMR effectively selects discriminative features, enhanc-
ing classification performance.

Among the baseline methods, AE ranks second, per-
forming slightly better than PSO but falling short of SSO-
MRMR. This indicates that AE is competitive but may not
fully capture the optimal feature subset as effectively as
the proposed hybrid approach. Meanwhile, PSO performs
moderately, surpassing GA in all cases, which consistently
yields the lowest accuracy. The higher standard deviations
observed in GA (e.g., 0.82 £ 0.05 for Prostate Tumor) sug-
gest instability, possibly due to premature convergence or
insufficient population diversity in the evolutionary search
process.

The computational efficiency of feature selection meth-
ods is critical for real-world applications, particularly when
dealing with high-dimensional datasets. Table f§ com-
pares the time complexity and empirical runtime of the
proposed SSO-MRMR method against established tech-
niques, including PSO, GA, and AE. The results demon-
strate that SSO-MRMR achieves superior efficiency, with
a mean runtime of 120 £ 15 seconds, outperforming PSO
(180 = 20s), GA (220 £ 25s), and AE (150 £ 18s). This
efficiency stems from its carefully designed optimization
process, which integrates SSO with MRMR criteria.

The time complexity of SSO-MRMR is given as O(P x
(kN + n%d)). This formulation ensures scalability, as the
dominant term n%d remains manageable when d is small. In
contrast, PSO and GA exhibit quadratic complexity (O(P x
N?)and O(T x P x N?), respectively), making them com-
putationally expensive for large feature spaces. Meanwhile,
AE’s complexity (O(N x L)) scales linearly with features
and layers, but its runtime is still higher than SSO-MRMR,
likely due to deep learning overhead.

Empirical evaluations conducted on an Intel(R)
Core(TM) i15-8265U CPU @ 1.60GHz 1.80 GHz with
16GB RAM (using 10-fold cross-validation) confirm that
SSO-MRMR is the fastest among the compared methods.
Its runtime advantage over PSO and GA can be attributed
to the avoidance of exhaustive pairwise feature evaluations,
while its superiority over AE suggests that heuristic-guided
selection is more efficient than representation learning
in this context. The low standard deviation (£15s) fur-
ther indicates stable performance across different runs,
reinforcing its reliability.

9 Conclusion and future work

This research focuses on the key challenge of pinpoint-
ing the most significant genes for precise and dependable
cancer detection. To accomplish this, we implemented a
systematic three-phase methodology, where each phase as-
sessed the performance of classification algorithms under
distinct scenarios.

First, we applied the classification models directly to the
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raw, unprocessed data. Next, we improved data quality
through preprocessing steps such as normalization, miss-
ing value imputation, and noise reduction before reevalu-
ating the algorithms. Finally, we refined the preprocessed
dataset by selecting the most relevant genes using targeted
techniques and then reapplied the classification models.

The presented methodology, which systematically eval-
uates algorithms under different preprocessing and feature
selection conditions, offers several key benefits. First, it en-
ables an in-depth assessment of various classification mod-
els on genomic data, revealing their comparative strengths
and limitations. Moreover, by integrating preprocessing
and feature selection, the approach improves data quality
by minimizing noise and redundancy, leading to more ac-
curate predictive models.

Cancer classification using high-dimensional microar-
ray data remains a significant challenge due to the curse
of dimensionality and the inherent noise in gene expres-
sion profiles. This study proposes a novel approach inte-
grating the SSO algorithm with MI-based feature selection
techniques—MIM, JMI, and MRMR—to identify optimal
gene subsets for improved cancer diagnosis. Inspired by
the cooperative foraging behavior of social spiders, the SSO
algorithm demonstrates superior performance in balancing
exploration and exploitation, effectively navigating high-
dimensional feature spaces while minimizing redundancy.

The incorporation of SD and CI in the performance met-
rics addresses a critical limitation common in bioinformat-
ics studies, where small sample sizes can lead to unstable
estimates. This methodological enhancement serves three
important purposes. First, it strengthens the statistical va-
lidity of our findings by explicitly quantifying the measure-
ment uncertainty associated with each performance metric.
Second, it improves the reproducibility of our results by
providing a more complete picture of the model’s perfor-
mance across different data splits. Third, it brings the study
in line with current best practices for machine learning ap-
plications in healthcare research, where transparent report-
ing of variability is increasingly expected.

SSO achieves higher classification accuracy across mul-
tiple classifiers, particularly when applied to preprocessed
data with feature selection. The algorithm’s ability to dy-
namically adjust search intensity through vibration-based
communication enhances its robustness and computational
efficiency, addressing common limitations of metaheuris-
tics such as premature convergence and parameter sensitiv-
ity.

Among the classifiers tested, SVM performs the most
effectively, achieving the highest classification accuracy
across most datasets after feature selection. NN also
demonstrates strong performance, while DT and K-NN
generally yield lower accuracy.

In summary, our results demonstrate that SSO-MRMR
is not only theoretically efficient but also empirically faster
than competing methods. Future work could explore par-
allelized implementations to further reduce runtime, par-
ticularly for the n?d term in ultra-large datasets. Addi-
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Table 5: Comparative performance of feature selection methods (mean accuracy + SD)

Method Colon Cancer Prostate Tumor Leukemia Lymphoma
SSO-MRMR (Proposed)  0.91 £ 0.02 0.89 +0.03 0.94+0.01 0.93+£0.02
PSO [4] 0.87 £0.03 0.85 £ 0.04 0.90 £0.02 0.88+£0.03
GA [7] 0.85 £0.04 0.82 £0.05 0.88£0.03 0.86+£0.04
AE [§] 0.88 £0.03 0.86 £ 0.04 0.91£0.02 0.89+£0.03

Table 6: Computational efficiency of feature selection methods

Method Complexity per Iteration Runtime (s)
SSO-MRMR (Proposed) O(P x (kN + n?d)) 120 + 15
PSO [6] O(P x N?) 180 + 20
GA [[7] O(T x P x N?) 220 £ 25
AE [§] O(N x L) 150 £ 18

Note: P = population size, [N = total features, d = selected features (d < N), k = neighbors in SSO, n = samples, L = layers in AE, T' = iterations.
Runtime measured on Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz with 16GB RAM, 10-fold CV.

tionally, hybrid approaches combining SSO-MRMR’s ef-
ficiency with AE’s representation power may yield even
more scalable solutions.

Several promising research directions emerge from this
study. First, hybrid feature selection approaches that in-
tegrate MI with deep learning could better capture nonlin-
ear gene interactions while enhancing computational effi-
ciency. Second, the SSO algorithm could be further im-
proved through dynamic parameter adaptation or hybridiza-
tion with other metaheuristics to optimize its performance
in high-dimensional search spaces. Third, expanding val-
idation to multi-omics datasets—incorporating genomic,
transcriptomic, and proteomic data—would rigorously as-
sess the framework’s robustness across biological layers.
For clinical translation, efforts should prioritize develop-
ing interpretable Al models based on the selected biomark-
ers, followed by prospective validation in hospital settings.
Finally, an optimized pipeline for real-time genomic data
analysis could facilitate the transition from research to clin-
ical implementation. Together, these advancements would
address current limitations and accelerate progress toward
precision oncology applications.
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Early detection of brain tumors based on MRI images has shown significant advancements with the advent
of deep learning methods. However, achieving high accuracy and robustness in classification remains a
challenge due to the complex and mixed nature of brain tumors and the clarity of samples. This study
proposes a novel approach that integrates convolutional architectures with the transformer approach,
which can lead to an optimal model. The convolutional neural networks (CNNs) excel in capturing local
features and spatial hierarchies, while the transformer approach captures long-term dependencies and
contextual information. By integrating these two robust architectures, our proposed model leverages the
strengths of both to achieve superior performance. The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) dataset is used to evaluate our model, which consists of 7023 samples across four
classes. We compare the performance of the fusion model with that of the prescribed models. The results
demonstrate that the fusion model significantly outperforms the standalone models, achieving a
classification accuracy of 91.8%. The proposed approach also shows improved robustness in handling
various tumor types and sizes, highlighting its potential for clinical application.

Povzetek: Za klasifikacijo mozganskih tumorjev iz MRI (BRATS, 7023 vzorcev, 4 razredi) so uporabili
hibridni fuzijski model, ki zdruzi CNN (lokalne znacilke) in transformer (globalni kontekst) za robustnejso

klasifikacijo heterogenih tumorjev.

1 Introduction

Brain tumors are the most challenging and life-threatening
situations, requiring accurate diagnosis and effective
treatment planning. Automatic early detection of tumors
will overcome the threatening situations. Magnetic
Resonance Imaging (MRI) samples are used for tumor
detection and classification due to their superior contrast
resolution and non-invasive nature. The early detection of
tumors from MRI samples by Tampu, I. E., et al. (2024)
[14]is crucial for determining appropriate treatment
strategies and predicting patient outcomes. Traditional
methods for brain tumor classification are mainly based
on manual inspection and human analysis, which is a
time-consuming process. As the number of patients
increases day by day, manual detection becomes prone to
variability, necessitating the development of an automated
system. Many researchers have worked on deep learning
on medical images to diagnose diseases, as seen in
Odusami, M. (2024) [17].

In recent years, the use of deep learning (DL)in the field
of medical image analysis has offered automated and
highly accurate solutions for various diagnostic tasks.
CNNSs, Nobel, S. N., et al (2024) [3] in particular, have

shown remarkable success in extracting hierarchical
features from medical images and achieving high
performance in classification tasks. However, despite
their efficacy, CNNs have some limitations. For instance,
these models have captured complex patterns and
sequential patterns from an image, which are necessary
for accurately classifying complex and heterogeneous
brain tumors.

Transformers, a cutting-edge approach implemented for
text-based data, have demonstrated their capability to
capture sequential patterns and global patterns through
self-attention mechanisms (Katran, L. F., et al., 2024) [4].
Their application to vision tasks has opened new avenues
for enhancing image analysis performance. While
transformers are capable of capturing long-term
dependencies, they may struggle with capturing fine-
grained local features due to their inherently global nature
(Srinivas, B., et al, 2024) [11].

This paper proposes a novel approach combining CNN
and transformer methods to enhance the strengths of both
paradigms for improved brain tumor classification. By
combining CNNSs' ability to capture local features and
transformers' proficiency in modeling global context, the
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proposed hybrid model aims to achieve superior
classification performance. This fusion approach is
expected to address the limitations of standalone CNN
and transformer models, providing a more robust and
accurate classification framework. According to Chen, C.,
et al. (2023) [19], many of the systems implemented a
transformer model to detect brain tumors.

The Multimodal BRATS dataset, a widely recognized and
comprehensive dataset, is utilized to evaluate the
performance of the proposed model. Extensive
experiments are conducted to compare the performance of
the fused model against state-of-the-art CNN and
transformer-based models individually. Our results
demonstrate that the fusion model outperforms the other
models.

The paper is organized as follows: Section 2 reviews
related work in brain tumor classification using DL.
Section 3 describes the proposed fusion model
architecture. Section 4 presents the experimental setup,
including dataset details. Section 5 explores the
experimental results analysis and comparison with
prescribed models. Finally, Section 6 concludes the paper.

2 Related work

Hekmat et al (2025) [1] implemented an attention-based
architecture for brain tumor detection. The model uses
attention mechanisms to fuse different feature
representations effectively, enhancing the accuracy of
tumor detection in MRI scans. By clinicians to better
understand the decision-making process. Extracted
features from key regions of interest within MRI images,
this method outperforms traditional CNN. Benzorgat, N.
et al (2024) [2] proposed brain tumor classification by
combining an ensemble of models with a transformer.
With transformers, which capture global dependencies,
and DL models that specialize in local features? The
integrated model got an accuracy of 0.97. Nobel, S. N., et
al. (2024) [3] proposed a hybrid model, a mixed
convolutional-transformer model, aimed at diagnosing
glioma subtypes rapidly and accurately. They combined
CNN layers, which efficiently capture spatial information,
with transformers to handle long-range dependencies.
This hybrid model significantly improves the accuracy by
0.98. Mzoughi, H et al (2024) [5]
Combined Vision Transformers (ViT) with Deep-CNN
for classification of tumor images, incorporating
explainable Al (XAl) for interpretability. The integration
of the ViT and D-CNN models will learn both global and
local features effectively, achieving an accuracy of 0.96.
Alzahrani, S. M., and Qahtani, A. M. (2024) [6] worked
with tripartite attention for multi-class brain tumor
detection in highly augmented MRIs. They improved the
generalization of models trained on augmented datasets
by distilling knowledge from larger models into more
compact ones. And got an accuracy of 0.97. Nguyen-Tat,
T. B., (2024) [7]
Proposed a hybrid approach for brain tumor segmentation
that combines UNet, attention mechanisms, and
transformers. This method integrates the strengths of each
technique, with UNet efficiently capturing spatial
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features, transformers handling long-range dependencies,
and attention mechanisms focusing on relevant regions.
As a result, they achieved an accuracy of 0.91.

Gasmi, K., et al. (2024) [8] proposed an enhanced brain
tumor diagnosis model that combines DL with a weight
selection technique. This method aims to optimize the
learning process by selecting the most relevant features
and assigning them appropriate weights. Rasheed, Z., et
al. (2024) [9] implemented a hybrid CNN model with an
attention method for brain tumor identification. We
improved the performance of CNNs by focusing on
complex patterns from images using attention layers,
achieving an accuracy of 0.97. Pacal, I. (2024) [10]
proposed a Transformer method by adding a multi-layer
perceptron and self-attention methods for diagnosing
tumors automatically. The Transformer is known for its
efficient handling of high-resolution images and is
combined with a residual MLP to improve feature
learning and classification accuracy. Kang, M., et al
(2024) [12] Implemented a CNN-transformer network for
brain tumor segmentation in cases with incomplete
modalities. The method aims to address the challenge of
missing or incomplete MRI data by distilling features
from available modalities and utilizing the CNN-
transformer architecture to refine the segmentation.

Asiri, A. A et al. (2024) [13] implemented the Swin
Transformer for accurate brain tumor classification and
performance analysis. The Swin Transformer can handle
high-resolution images, and it is applied to the
classification task to improve diagnostic accuracy. The
paper also focuses on performance analysis, comparing
the results with other state-of-the-art methods.
Tabatabaei, S., et al. (2023) [15] proposed an attention
method and DL architecture for tumor classification. The
attention mechanism with the DL method will enable the
model to focus on complex areas of samples, improving
the accuracy of tumor classification. The model combines
the benefits of attention-based transformers with
traditional methods, leading to enhanced performance in
tumor detection. Aloraini, M., et al. (2023) [16]
implemented a transformer with CNN for effective brain
tumor classification using MRI images. This hybrid
model uses the strengths of both approaches: CNNs for
local feature extraction and transformers for global
dependency modeling. This combination leads to
enhanced tumor classification accuracy. Sun, X., et al
(2024) [18] implemented aEF-UV method for a feature-
enhancement of U-Net and ViT for tumor segmentation.
This approach uses the strengths of U-Net for
segmentation and VIiT for capturing long-range
dependencies in the image. The fusion of these models
enhances feature extraction and segmentation accuracy,
particularly in complex brain tumor cases. Saleh et al.
(2024) [20] implemented a multimodal approach for
semantic segmentation in brain tumor images, integrating
advanced models and optimal filters via advanced 3D
segmentation methods. They used multiple imaging
modalities to improve the segmentation accuracy by
capturing complementary information from different
sources. Zebari, N. A., et al. (2024) [21] proposed a DL
model for detecting brain tumors from image samples.
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And integrated multiple DL techniques to enhance the
performance by fusing different features from various
sources of samples.

Zakariah, M., et al. (2024) [22] proposed a Dual ViT with
DSUNET for brain tumor segmentation. The feature
fusion mechanism will demonstrate the model's ability to
capture various patterns from MRI images by leveraging
the strengths of Vision Transformers and deep
segmentation networks. The dual model ensures that the
spatial and contextual features are well-represented,
leading to improved segmentation results. Nazir, K., et al.
(2023) [23] implemented a 3D Convolutional method for
tumor segmentation in MRI imaging. The feature pyramid
network structure is enhanced with Kronecker
convolutional layers, which capture features and improve
segmentation accuracy. The 3D nature of the model
allows it to handle volumetric data, which is particularly
important for brain tumor segmentation in medical
imaging. Ramamoorthy, H., et al. (2023) [24]
implemented TransAttU-Net, a deep neural network for
brain tumor segmentation in MRI images. The model
combines a basic method with an attention method to
improve the segmentation of tumors by emphasizing
relevant features. The combination of attention systems
enables the model to focus on tumor areas in images,
which is potentially important for better segmentation
results. Ramakrishnan, A. B., et al (2024) [25] proposed a
hybrid CNN architecture for improved accuracy. We
utilized oneAPI optimization techniques to adjust the
weights and enhance the performance of the hybrid CNN
model. By combining CNNs with optimization
frameworks, the model achieves efficient classification
while maintaining high accuracy.

3 Methodology

A CNN-Transformer Fusion Model is implemented to
extract the spatial feature extraction capabilities of CNNs
and the global contextual understanding of transformers
for accurate brain tumor classification. The method
involves three key components: feature extraction,
sequence modeling, and classification, all underpinned by
rigorous mathematical formulations as shown in Figure 1.
Feature Extraction: The input image is represented as
X € RS*H*W wherec; = 3 forRGB color encoding, H
is height and W is the width. CNN extracts the spatial
features depth wise separable convolutions, producing a
feature mapF € R*H*W with equation (1).

F = @cun(X) 1)
Where C,,; = 1280,and H and W are redused
spatial features. by aggregating all spatial features,
applied global average pooling method with equation
(2), for compacting all features (f,.).

H W
1
fo = g 2 D e

i=1 j=1
Sequential Modeling with Transformer Encoder: The
pooled feature vector fis reshaped into a single-token

(2)
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sequence as T = R1*Cout(1280) this sequence is transfer
to encoder, which consists of 3 layers, each layer will have
multi head self attention method and positional level feed
forward method. The multi head attention method
captured Query (Q), Key (K) and Value (V) from each
vector with equation (3), (4) and (5). Where W is weights
as the input dimension. The dot product of attention
method is computed with equation (6).

Qn =TW,2(3)
K, = TW¥(4)
Vy = TWY(5)

Att(Qp, Ky, Vi) = softmax (QhH’f)V (6)
h B Vh) — h
Ja,

The output of all attention methods is concatenated
linearly, and then it will provide final attention output.
Position-wise feed forward Network (FFN): In this each
token will be considered into a 2 layer feed forward
transformation, by equation (7) and positional level
embedding with equation (8). In this W and b variables
are updated parameters.

FFN(Z) = O'(ZW]_ * bl)WZ + b2

PEpos,Zi = sin(

(7

pos

T) (®)
10000 modetl
The output is transformed through three layers of
transformers. For the contextual embedding layer, the first
token is passed to a fully connected layer for classification
using equation (9) with these spatial and temporal features
combined to give the final output.

yp = Dpc(2)(9).

Fully connected layer

Spatial feature extraction with CNN

B
Ly -
Concatination of . 4
features -
-3
2047224 data —t» —J
4

Figure 1: Proposed fusion models for brain tumor
detection

3.1 Data set

The proposed model was trained on a Kaggle BRATS data
set, which combines four classes: glioma, meningioma, no
tumor, and pituitary. This dataset comprises 7023 brain
images. All the samples are preprocessed into a 224*224
size. All the samples are then separated into training and
testing sets in an 80:20 ratio. The samples of brain MRI
are shown in Figure 2. All the samples are normalized to
0.465, 0.446, 0.416, with a standard deviation of 0.229,
0.224, 0.225, respectively. This ensures that no sample
will dominate the other low-resolution samples.
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3.2 hardware used for training

The proposed model was implemented using Python with
TensorFlow and Keras libraries. All experiments were
conducted on the Kaggle platform using a Tesla T4 GPU
(16 GB VRAM) environment. The training was
conducted for 10 epochs with a batch size of 32, using the
Adam optimizer with an initial learning rate of 0.0001. A
dropout rate of 0.2 was applied to reduce overfitting.

Figure 2: Sample brain MRI image.

4 Result analysis

The proposed fusion approach is iterated for 10 epochs,
with a batch size of 16, and a learning rate of 0.0001, as
shown in Table 1. The model achieved an accuracy of
74.72% with a training loss of 0.6639, while the test
accuracy reached 86.92%, accompanied by a test loss of
0.4340. This indicates a strong baseline performance,
likely attributed to the combination of MobileNetV2's
efficient feature extraction and the Transformer's
contextual understanding. Over successive epochs, the
training accuracy improved steadily, reaching 91.88% by
the final epoch, with the training loss decreasing to
0.2163. Similarly, the test accuracy increased to 91.76%,

Loss Trend Over Epochs

V. Sabitha et al.

while the test loss reduced significantly to 0.1891,
showcasing the model's enhanced capability to classify
tumor categories accurately. From Figure 3, a marked
improvement in test accuracy was observed between
Epochs 8 and 10, where the model transitioned from
89.99% to 91.76%, with a corresponding reduction in test
loss from 0.2319 to 0.1891.

Table 1: Parameters used for training the model

Parameter Value

No. of Attention 8
Heads

Hidden Size (FFN) 512
Dropout Rate 0.2
Optimizer Adam
Learning Rate 0.0001
Batch Size 32

The model achieves strong performance in the "Notumor"
and “Pituitary™ categories, with particularly high
predictive reliability, evidenced by near-perfect metrics.
The performance for "Glioma" and "Meningioma" shows
slightly lower but still competitive results. These
variations may stem from potential similarities in visual
patterns between these tumor types, challenging the
model’s discriminative power. Nevertheless, the
consistent improvement observed across all categories
highlights the model's capacity to learn complex
representations and adapt to varying class-specific
patterns.

The overall classification observed from Table 2, with an
accuracy of 91.8% across 841 test samples, underscores
the model's generalization ability. Additionally, both the
macro and weighted averages indicate a balanced
performance across classes, ensuring that no individual
category dominates or suffers from significant
misclassification. Class-wise accuracy is illustrated in
Figures 4 and 5.

Accuracy Trend Over Epochs
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Figure 3: learning curves of the fusion model

Table 2: Performance of the proposed model

| | P(%) | R(%) | F1(%) | Support |
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Accuracy (%)
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Glioma 93 89 91 190
Meningioma | 91 85 87 186
Notumor 91 99 96 285
Pituitary 92 99 96 180

ACC 91.8 841
M-avg 92 915 | 918 841
W-avg 92 915 | 918 841

Class-Specific Accuracies

555

100 A

80

60

20

Scores

95.09%
21.89% 90.32%
glioma meningioma notulmor pituitary
Class Labels
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Figure 5: Class-wise performance of the fusion model in terms of precision, recall, and F1-score
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Figure 6: ROC and PR curve of proposed models

From Figure 6, the area under the ROC curve (AUC)
highlights the model's effectiveness, with Glioma,
Notumor, and Pituitary classes achieving high AUC
values, indicating strong discrimination capabilities.
However, the Meningioma class demonstrates slightly
lower AUC, reflecting challenges in accurately
distinguishing this class. Similarly, precision-recall
curves reveal the relationship between positive prediction
precision and sensitivity across different thresholds.
Classes such as Notumor and Pituitary exhibit high
performance, showcasing the robustness of the model in
these cases. In contrast, the performance for the

Meningioma class is comparatively modest, emphasizing
areas for potential refinement.

Figures 7 and 8 illustrate feature maps extracted by the
convolutional layers of the model for a sample input
image. These maps provide a visual representation of the
learned features at different layers, highlighting areas of
importance and attention within the image. The feature
maps capture various patterns, ranging from simple edges
and textures in initial layers to more abstract and class-
specific features in deeper layers. Bright regions within
the maps indicate areas with strong activations.

Feature Map for Image 1

10

0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7 Feature extraction map of sample image-1
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Feature Map for Image 2

10

0.0 +

Figure 8 Feature extraction map of sample image-2

Figure 9 illustrates successful predictions by the model,  where the actual label is "glioma,” but the model
where both the actual and predicted labels are identified  incorrectly predicted "pituitary.” Such an error highlights
as "glioma." These results indicate that the model the overlap or similarity in visual features between glioma
effectively captured key features associated with gliomas,  and pituitary cases, which may have led to confusion in
allowing for accurate classification. From Figure 10,  the model's classification process.

True Label: glioma, Predicted Label: glioma True Label: glioma, Predicted Label: glioma

Figure 9: Actual and predicted labels of the proposed model after training
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True: glioma, Pred: pituitary

Figure 10: Misclassified sample by the proposed models

Table 3: Comparison of the proposed model with the prescribed models

Citation No. Methodology Dataset Used Accuracy(%)
[22] Dual Vision Transformer-DSUNET for brain tumor MRI Brain Tumor 90.00
segmentation

[26] Gated residual recurrent neural networks BraTs, ISBI 89.1

[27] deep learning BRATS 86.2

[28] UTNet BRATS 87.8

Proposed CNN-Transformer Fusion model MRI Brain Tumor 91.8

model
Table 3 presents the performance of various transformers, resulting in improved feature representation
methodologies for brain tumor segmentation and  and classification performance.

classification tasks using different datasets. The Dual
Vision Transformer-DSUNET model, as reported in [22],
achieves an accuracy of 90% on the same dataset.
Similarly, the Gated Residual Recurrent Neural Networks
employed in [26] show an accuracy of 89.1% when
evaluated on the BraTS and ISBI datasets, reflecting their
capability in processing temporal and spatial information.
A deep learning-based approach utilized in [27] achieved
an accuracy of 86.2% on the BRATS dataset, indicating
its utility, albeit with slightly lower performance. The
UTNet model, proposed in [28], reported an accuracy of
87.8% on the same BRATS dataset, leveraging its unique
architectural enhancements for tumor segmentation. In
comparison, the proposed CNN-Transformer Fusion
model achieves an accuracy of 91.8% on the MRI Brain
Tumor dataset, showcasing its superior ability to integrate
the strengths of convolutional neural networks and

5 Conclusion

In this study, a hybrid CNN-Transformer Fusion Model
was implemented for enhanced brain tumor classification.
The model effectively combines the localized features,
which are extracted with CNNs, with the global
contextual understanding provided by Transformers.
Comprehensive evaluations on a diverse dataset reveal the
model's robust performance, achieving an overall
accuracy of 91.8%, surpassing several existing state-of-
the-art methods. The integration of CNN and a multi-layer
Transformer Encoder enables the approach to learn
complex spatial and temporal features, improving its
performance to classify tumor types with high
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consistency. At the same time, the model demonstrates
remarkable performance in distinguishing "No Tumor"
and "Pituitary" classes, minor challenges in classifying
"Glioma" and "Meningioma" highlight opportunities for

further

optimization. Future work will focus on

augmenting the dataset with additional samples and
exploring advanced Transformer architectures to enhance
discriminative capabilities.
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Sand dunes are one of the most prominent Aeolian landforms present on the Martian surface. Accumulation
and erosion of sand particles cause the formation of dunes, which possibly can influence the Martian
climate too. For mapping such landforms over large areas of the Martian surface more effectively,
automated detection of dunes has been brought out. For this a convolutional neural network (CNN) based
detection approach has been implemented considering application of different models and assessing their
respective performance using different sets of Orbiter images. CNN architectures such as U-net, ResUNet
and ResUNet++ were used for segmentation of dunes over the Martian surface. CNN produced
segmentation results with greater accuracy with advantage of designing new models and using different
loss functions. Convolution neural networks such as U-Net, ResUNet, and ResUNet++ for detecting dunes
on Martian surface used Context camera (CTX) and the High-Resolution Imaging Experiment (HiRISE)
images of Mars Reconnaissance Orbiter (MRO) to generate the suitable models considering two different
Martian sites, Gale crater and Nili Patera. The models thus generated were tested over Olympia Undae
region of the Mars and all the architectures could produce more than 85% accuracy. The model created
using CTX images performed well for Gale Crater region compared to the model created using HiRISE
image. U-Net model created using CTX image performed well in case of low-quality images (coarse
resolution noisy images) whereas, ResUNet ++ model created using HiRISE image performed well in case
of good quality (fine resolution) images.

Povzetek: Za kartiranje sipin na Marsu iz orbiterjevih posnetkov so uporabili CNN segmentacijo (U-Net,
ResUNet, ResUNet++) na CTX in HIRISE (ucenje: Gale, Nili Patera, test: Olympia Undae). Rezultati: vse

>85 %; U-Net+CTX za slabse slike, ResUNet++ + HiRISE za visokolocljive.

1 Introduction

Sand dunes are the most prominent aeolian landforms on
the Martian surface and considered crucial agents of
climate, wind regime, sediment type, and transportation on
mars (Urso et al., 2018). On the Martian surface, the dunes
were first observed by Mariner-9 (Sagan and Bagnold
1975). Martian surface has the aeolian activity
predominantly in the absence of liquid water and active
volcanism or tectonic deformation (Greeley et al., 2000).
Wind can transport and deposit sand particles from one
place to another and such wind process leads to
modification of existing land forms as well as creation of
new landforms such as sand dunes. Changes in wind
direction led to the formation of different types of sand
dunes. They are classified into barchan dunes, barchanoid
ridge, transverse dunes, linear dunes, star dunes, and
reversing dunes (Mckee, 1979). Mapping of these features
would provide an idea about the current and past climate
and weather systems.

Wind fluxes alter the morphology of dune fields from
barchans to barchanoids and longitudinal dunes to isolated
domes and ending up with sand sheets (Runyon, 2016).

Martian dune fields are mainly distributed in high
latitudinal region and polar regions with their pre-
dominance in low plains and thereafter, craters, canyons as
well as intermontane depressions (Chao and Zhibao,
2022). Mars Global Digital Dune database provides idea
about the distribution of dunes on the Martian surface
(Hayward, 2014). For automatic detection of such dunes,
neural network based deep learning methods could be
effective. Neural network designed to model in such a way
that it performs a particular task similar to human brain.
Human brain acts entirely in a different manner from the
traditional digital computers since it is highly complex,
nonlinear and behaves like a parallel computer. It acquires
knowledge from environment through learning process
and synaptic weights are used to save the knowledge
(Hayden, 2009).

Automatic detection techniques can allow generation of
landform maps over a large area in a short time. Many
automated detection algorithms have been used to detect
landforms on the Martian surface and other planetary
surfaces. Most of the automatic detections have been
carried out in impact craters on Mars compared to any
other landforms (Martins et al., 2009, Bandeira et al.,
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2007). There are some other methods used for detecting
craters, such as template matching (Bandeira et al.,2007)
and boosting approach (Martins et al., 2009). Different
filters and decision trees have also been used for detecting
craters (Stepinski and Tomasz, 2009). Automatic detection
of sand dunes in Mars was carried out by using Histogram
Oriented Gradient (HOG) for feature extraction; and
Support Vector Machine (SVM) and Boosting techniques
for classification (Bandeira et al., 2012). Convolutional
neural networks (CNN) have become more popular in
recent years. In Lunar surface, craters have been detected
from DEM (Digital Elevation Models) using U-Net
architecture (Silburt et al., 2019). Volcanic rootles cones
(VTCs) and Transverse Aeolian Ridges (TAR) in Mars
automatically detected by using a convolution neural
network named MarsNet (Palafox et al., 2017). Automatic
detection technigue such as linear segment detection
algorithm was used to determine dune orientation and sand
supply on the surface of Titan (Lucas et al., 2014). It
combined the dune migration with wind field generated by
climatic models. Mask regional convolution neural
network (Mask-RCNN) predicts the mask on each Region
of Interest (Rol) along with classification and bounding
box regression carried out in Faster-RCNN (He et
al.,2016). Mask-RCNN is an extension of Faster RCNN.
Mask-RCNN was used for the detection and segmentation
of barchan dunes on Martian surface (Rubanenko et al.,
2021). U-Net, ResUNet, and ResUNet++ required fewer
training samples than Mask-RCNN, and it also excels in
segmenting fine-grained details (Munawar, 2023).

In our study, we have considered convolution neural
networks such as U-Net, ResUNet, and ResUNet++ for
detecting dunes on Martian surface. Deep neural networks
require large amount of annotated data for training, but U-
Net outperforms such neural networks with limited
amount of data. U-Net architecture consists mainly of a
contracting path and expanding path (Ronneberger et al.,
2015). U-Net has been useful in various remote sensing
applications such as land cover classification (Ulmas and
Liiv, 2020), segmentation of clouds (Sanchez-Bayton et
al., 2022) and segmentation of buildings (Wagner et al.,
2022). ResUNet integrates the residual neural network and
U-Net architecture. It mainly consists of an encoder,
decoder and a bridge connecting between them. It provides
better performance with fewer parameters (Zhang et al.,
2018). ResUNet++ architecture consists of residual blocks,
squeeze and excitation block, Atrous Spatial Pyramid
Pooling (ASPP) and attention block (Jha et al., 2019). It
enhances for the purpose of performance trial of the
automatic sand dune detection model, a test site named
Olympia Undae region situated between 78°N to 83°N
latitude and 120°E to 240°E longitude was selected. It is
the largest dune field on the Martian surface
(https://mars.nasa.gov/resources/26259/olympia-undae/).
This site is situated in the Northern polar region of Mars
whereas, Gale crater is situated in southern equatorial
region and Nili Patera is situated in northern hemisphere
close to the equator.
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2 Materials and methods

HIiRISE and CTX images were used towards automated
sand dune detection model development. HIRISE image
onboard Mars Reconnaissance Mission is a pushbroom
imaging system with focal length of about 12m effective
length and has 14 CCD detectors. It has spatial resolution
of about 25-32 cm/pixel depending upon on the altitude of
space craft and the off-nadir roll angle. It acquires data in
three different channels, such as blue-green (~536nm), red
(~692nm) and near-infrared (~874nm). Ten detectors are
used for red filter and each two filters are used for blue-
green and near-infra red filters. The HIRISE RDR products
are stored in JPEG2000 with 10-bit imaging system
ranging from 0-1023 (Eliason E. et al., 2012). CTX is the
one of the primary payloads of Mars Reconnaissance
Orbiter. It uses catadioptric telescope with focal length of
about 350mm. Kodak KLI-5001G detector with 5056-
pixel linear CCD detect a visible broad band of light from
500 to 700 nm. CCD used the push broom scanner along
the direction of spacecraft motion. CTX has spatial
resolution of about ~6m/pixel. It acquires monochromatic
images of Martian surface (Wolff et al., 2013).

2.1. Study area

Two different regions on the Martian surface were
considered for developing automatic detection models for
sand dunes. Such study sites include Gale crater and Nili
Patera regions. Gale crater is situated between latitude
2.25°S to 8.25°S and longitude 133.25°E to 140.25°E
(Figure.1a). Itis an impact structure with a diameter of 154
km (Schwenzer et al., 2012). Gale is a crater probably a
dry lake on Mars near the north-western part of the Aeolis
quadrangle (Palucis et al., 2016). It is estimated to be
about~3.6 billion years old (Wray, 2013). Aeolis mons is
a mountain in the centre of Gale and rises 5.5km high
above the crater floor. Curiosity rover landed on Gale
crater for identifying the habitability of the Martian
surface. The minerals present in the lower part of the
sedimentary strata in the Mount Sharp within Gale crater
indicate transition from warm to cold climate in the
Martian atmosphere (Rampe et al., 2019).

Nili patera region extends from 8.46°N to 19.41°N latitude
and 58.88°E to 76.644°E longitude (Figure. 1b). It is a 50
km diameter caldera at the centre of the Syrtis Major
Planum. It contains different landforms and distinctive
mineral deposits. Syrtis major planum is of Hesperian- age
(Fawdon et al., 2015). Nili patera region has the most
active dust storm season in the Martian surface. It is an old
volcanic region with different interesting features. This
region is a low relief area with slope of less than I°
(Mubarak et al., 2019, Hood et al., 2021).

For the purpose of performance trial of the automatic sand
dune detection model, a test site named Olympia Undae
region situated between 78°N to 83°N latitude and 120°E
to 240°E longitude was selected. It is the largest dune field
on the Martian surface
(https://mars.nasa.gov/resources/26259/olympia-undae/).
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This site is situated in the Northern polar region of Mars
whereas, Gale crater is situated in southern equatorial
region and Nili Patera is situated in northern hemisphere
close to the equator.
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Figure 1a: HiRISE image of Gale crater b. CTX image of Nili Patera region c. Location selected from Olympia Undae
region

2.2. Methodology

Datasets selected out of CTX and HIRISE images
pertaining to Gale crater (4.07S to 6.66S latitude and
136.51E to 139.12E longitude) and Nili Patera (1.37S to
19.41N latitude and 58.88E to 76.644E longitude) regions
respectively were further analyzed. Al-based approach has
been considered for extraction of dunes. The architecture
pertaining to convolution neural networks (CNN) such as
U-Net, ResUNet, and ResUNet++ were implemented in
Keras after (Vasilev et al., 2019) with tensorflow in
python. The system configuration Windows 10 o/s with
cuda version 10.0 and cuDNN version 7.6.5 was used.
Data augmentation techniques such as rotation, horizontal
flip, vertical flip, horizontal translation, vertical translation
etc. were implemented. It led to increase in the training
data sets thus generated with 7000 HiRISE and 7160 CTX
dune images respectively. A batch size of 16 using Adam
optimizer with loss function as dice, binary cross-entropy
and mean squared error were used. From the augmented
datasets, 80% were used for training, 10% for testing, and
10% for validation. Apart from using the training dataset
used for training the model, validation datasets were used

to tune the hyper-parameters of the model. For this, the test
data was used for the model accuracy assessment after the
model had been fully trained (after Myrianthous 2021).
In the convolution layer, a kernel was applied to the
original image, convolution was performed to move the
filter. For example, the filter moves two columns right and
does convolution for a stride of two. If the input image is
considered 7x7 matrix and the filter size 3x3 with a stride
of two, then the output becomes 3x3 matrix. Upon
completion of the convolution, maxpooling operation was
performed. In this process, maximum value was picked
from a 2x2 filter. There are also other pooling available
such as average pooling and global pooling. To enhance
the results, batch normalization was required for keeping
the values in the input and hidden layers within a certain
range and allowing improvement in the training speed.
Thereafter, dropout step could be added for dropping out
of neurons at random in the neural network to prevent over
fitting. Further to this, flattening led the data to culminate
in to the dense layer by converting the two-dimensional
dataset into one-dimensional data or converting the data
into a single column
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Figure 2: Architecture of convolutional neural network

The dense layer connects different neurons with each
neuron associated with weight, bias, and activation
function. If the weight is high, then the neuron is good, if
the bias is above a certain threshold value, then the neuron
is active, if the bias is below the threshold value, then the
neuron is dead. The neurons go through the activation
function which decides whether the neuron is active or not.
Multiple convolution and pooling layers were added to the
architecture.

Create U-Net
model

Identify dunes in Gale crater and Nili patera region

Create binary images in Image)

Create
ResUNet

Apply different models in satellite data

Image segmentation

Compare the results obtained from different
architecture and differentimages

Overall methodology that used for the study is given in
figure 3. The dunes were identified from CTX and HiRISE
images. Create binary images such as “1” indicate for dune
and “0” for non-dune images in ImageJ platform. Create
segmentation models by using UNet, ResUNet and
ResUNet++ architectures for CTX and HiRISE images.
After image segmentation compare the results obtained
from different architectures and different images.

Create
ResUNet++

Figure 3. Overall workflow

2.2.1 U-Net architecture

U-Net is a particular type of architecture used for image
segmentation. In this architecture, deep learning tools are
arranged in such a way that it can be used for image
segmentation. It is called U-Net because it looks like "U"
and it consists of an encoder and decoder path (figure 4).
Concatenation of feature maps helps to give localization
information (Ronneberger et al., 2015). The input image
size was considered 128x128x3 and a color image with
size 128x128 was fed into the input layer with a feature
space of 16. Thus, the output of the convolution layer (C1)
became 128x128x16. Thereafter, upon performing a

maxpooling operation with a stride of 2 gave rise to an
output as 64x64x16 (P1); after doing two convolution
operations with feature space of 32, output was obtained
as 64x64x32 (C2) and the process continued till obtaining
C5 (figure 4). Thereafter, up sampling was performed
where 8x8x256 (C5) became 16x16x128 and concatenated
it with C4, then the final value at U6 becamel6x16x256
(U6+C4). After a couple of convolution layers; the output
became 16x16x128 (C6), and finally going through U7 to
U9, the output would be 128x128x1.
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2.2.2. ResUNet architecture

ResUNet as the combination of both U-Net and residual
neural network consists of one decoder path, one encoder
path and a bridge connecting both encoder and decoder.
The residual units consist of two 3x3 convolution block
and an identity mapping. Each identity mapping connects
the input and output of the residual block. Each
convolutional block consists of one batch normalization,
one Rectified Linear Unit (ReLU) activation layer, and one

Input
128X128X3
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convolutional layer (Figure 5).

In encoding units, a stride of two was applied instead of
using pooling operation unlike U-Net architecture in order
to reduce the size of the feature map. Before each decoding
unit, there is an up sampling of feature maps from the
lower level and concatenation with the feature maps from
the corresponding encoding path. After the decoding path
to obtain a segmented image, a 1x1 convolution with a
sigmoid activation is applied (Zhang et al., 2018)
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Figure 5: ResUNet architecture (Zhang et al., 2018)

32X32X64

Padding = Same

Conv 3X 3 Relu

Maxpool .5 2 X2 (stride =2)
Upsample =2 2X2

Final Conv. 1X1

2.2.3 ResUNet++ Architecture

As a combination of both U-Net and residual neural
networks (He et.al., 2016), the ResUNet++ (Figure 6)
consists of one stem block, three encoder blocks, Astrous
Pyramidal Pooling (ASPP), and three decoder blocks (Jha
et al., 2019). The residual unit combines two 3x3
convolution layers, batch normalization, ReLU activation,
and an ldentity mapping. Each Identity mapping connects
the input and output of the encoder block. The outcome of
each encoder block passes through the squeeze and
excitation block (Hu et al., 2018), which increases the
interrelationship between the channels. The global average
pooling was used in squeezing operation to extract a single
value for each channel. The excitation produced a channel-
wise weight, with two fully connected layers; a ReLU
activation function, and then a sigmoid activation function.
Inside, the excitation operation, there are two fully
connected layers with compression between the layers.
Each weight signified dependencies between the channels,
and it provided the degree of freedom to our network to
learn which channel was essential and its reliance.
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Figure 6: Architecture of ResUNet ++ (Jha et al., 2019)

ASPP acts as a bridge between encoder and decoder blocks
with 3x3 convolution layers. Different rates are applied to
the input feature maps and all these outputs fuse together.
ASPP helps detect the object with different scales,
improving accuracy (Chen et al., 2016). The output from
the ASPP goes through attention unit which gives a subset
of the input units by providing concentration to particular
parts in the neural network (Vaswani et al., 2017). As
inputs go through the dense layer and pass through the
softmax layer, the outputs with different weights are
obtained, followed by multiplication of these weights with
the input vectors. Upon providing these outputs to another
dense layer and the sigmoid activation function,
segmented images are obtained.

Upon comparing the segmentation results of dunes
obtained from U-Net, ResUNet and ResUNet++ by using
HRSC and CTX images, different loss functions were
applied. The best loss functions were chosen for each

architecture and hyperparameter optimization was done to
obtain the best results. All these models were applied and
tested in Olympia Undae region in the north polar region
of the Mars.

3 Results and discussion

3.1 Dune segmentation using CTX images

For training the data,7160 training data were used which
contained some noise data too. After applying different
architectures such as U-Net, ResUNet and ResUNet++ for
the segmentation of dunes, different loss functions and
different hyper parameters such as number of epochs,
learning rate, optimizer, batch size etc. were considered for
selecting the best.
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Figure 7: Dune field in i) Olympia Undae, ii) Nili Patera and iii) Gale Crater at three location A, B and C. Figure a.
gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e. ResUNet++
segmented image for model developed by CTX image

Mean squared error was used as loss function for ResUNet
and ResUNet++ whereas, binary cross entropy loss was
used for U-Net architecture. Segmented results were
obtained from the three models developed using CTX
image and the ground truth images. Results of
segmentation are shown in Figure 7 for Olympia Undae,
Nili Patera and Gale Crater respectively.

The models developed using CTX and HiRISE images
were applied over Olympia Undae which is a dune field in
the north polar region (Sanchez-Bayton, 2022), Gale
Crater and Nili Patera. Confusion matrix elements such as
TN (True Negative), TP (True Positive), FN (False
Negative) and FP(False Positive) were obtained from
manually digitized binary image as ground truth and the
model predicted images.

Figure 7 explains the dune field in three locations in
Olimpia Undae, Nili Patera and Gale Crater region. In each
image, a and b show the grayscale image and ground truth
image, as well as c, d, and e, shows the segmented images
of UNet, ResUNet and ResUNet++ architecture,
respectively. In Olimpia Undae, the segmented results of
UNet more resembles to the ground truth image. The
ResUNet and ResUNet++ show false positive results, such
as some of the no-dune regions classified as dunes. In Nili
Patera region segmented results of UNet and ResUNet++
produce similar results with ground truth images.
However, the ResUNet shows false negative results, such

as some of the dune areas being misclassified as no-dune
areas. In the Gale Crater region, all three architectures
classified the dune pixel as a no-dune pixel.

Accuracy assessment after dune segmentation was arrived
at through confusion matrix involving inferences on
accuracy parameters such as Jaccard index, Precision,
Recall, F1 scores and Accuracy. Jaccard index, also known
as the Intersection over union (loU), is a standard index for
the segmentation results. It is the ratio of the Intersection
of pixels between predicted image and mask image to the
total number of pixels. The precision is the number of
selected items that are relevant, and it is the ratio of the
true positive to the sum of true positive and true negative.
Recall is the number of relevant items that are selected, and
it is the ratio of the true positive to the sum of true positive
and false negative. F1 score is also known as the dice loss,
which is the harmonic mean of precision and recall.
Accuracy is the ratio of correctly classified pixel to the
total number of pixels (Borg et al., 2020).

Error estimation of segmented images
Probability of error was also used for examining the
performance of the model using foIIO\é\Qng equations:
Probability of False negative: prn=——"—

. " — (FNe#TP)
Probability of False positive: prp =

(FP+TN)

Global error: perror=pn X prp + pp X PFN
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Here FN represents the false negative pixel which signifies
classification of dune pixels as non-dunes, FP is the false
positive pixel which signifies classification of non-dune
pixels as dunes, TP represents the true positive pixel which
signifies classification of dune pixels as dune and TN
represents true negative pixels, where non-dune pixels are
classified as non- dune. pn and pep are probability of
occurrence of negative and positive cells (Bandiera et al.,
2012).

N.V. Scariah et al.

U-Net gave the best precision and accuracy compared to
ResUNet and ResUNet++ architecture in case of Olympia
Undae and Nili Patera regions (Table 1). ResUNet++ has
the highest Recall, F1 score and Jaccard for these two
regions as compared to Gale crater.

Table 1: Accuracx and error evaluated for the dune segmentation models created using CTX images

Study Method Precision Recall | F1- Jaccard | Accuracy | pen | pre Perror
region score
Olipmia | U-Net 0.80 0.62 0.68 | 0.52 0.93 0.38 | 0.03 | 0.22
Undae ResUNet 0.56 0.93 0.68 | 0.52 0.88 0.08 |0.13 | 0.17
ResUNet++ 0.58 0.95 0.71 | 0.56 0.89 0.05 | 0.12 | 0.14
Gale U-Net 0.79 0.27 037 |0.24 0.84 0.73 | 0.02 | 0.20
Crater ResUNet 0.69 0.21 0.29 | 0.17 0.82 0.79 | 0.03 | 0.19
ResUNet++ 0.85 0.19 0.30 |0.18 0.84 0.81 | 0.01 |0.16
Nili U-Net 0.85 0.75 0.78 | 0.65 0.95 0.25 | 0.03 | 0.18
Patera ResUNet 0.69 0.86 0.76 | 0.62 0.93 0.14 | 0.08 | 0.17
ResUNet++ 0.69 0.88 0.77 | 0.63 0.93 0.13 | 0.07 | 0.16

UNET
RESUNET
UNET
RESUNET

RESUNET++

OLIMPIA UNDAE

GALE CRATER

UNET
RESUNET

RESUNET++
RESUNET++

NILI PATERA

Figure 8: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from CTX
image in Olimpia Undae, Gale crater and Nili Patera region

ResUNet++ showed low error varying from 14.2% to
16.1% for all the regions compared to U-Net and ResUNet.
U-Net showed the highest false negative error and lowest
false positive error, whereas ResUNet++ showed the
lowest false negative error and ResUNet had the largest
false positive error for Olympia Undae and Nili Patera
regions (Table 1.)

It was observed that (figure 8) UNet shows highest
accuracy as compared to ResUNet and ResUNet++ in
Olimpia Undae and Nili Patera region. ResUNet shows
lowest accuracy in all the study area except Nili Patera
region. From

the accuracy assessment, it is clear that the performance of
the model affects the surface properties of the location as
well.

3.2 Dune segmentation using HiRISE images

For training the model, 7000 HIRISE images were used.
Dice was opted as the best loss function for ResUNet
architecture, whereas mean squared error was used for U-
Net and ResUNet++. The results obtained from these
models are shown in figure 9 for Olympia Undae, Gale
Crater and Nili Patera.



Convolutional Neural Network (CNN) Based Martian Dune...

Informatica 49 (2025) 561-576 569

Figure 9: Segmentation results on i) Olympia Undae ii) Nili Patera and iii) Gale crater at three location A, B and C.
Figure a. gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e.
ResUNet++ segmented image for model developed by HiRISE image

Table 2: Accuracy evaluation for segmentation of dunes using HiRISE image

Figure 9 explains the dune field in three locations in
Olimpia Undae, Nili Patera and Gale Crater region. In each
image, a and b show the grayscale image and ground truth
image, as well as ¢, d, and e, shows the segmented images
of UNet, ResUNet and ResUNet++ architecture,
respectively. ResUNet++ produce better segmentation
results in all three locations in Olimpia Undae region
whereas, UNet classifies dune pixels as no-dune pixels in
this region. In the Nili Patera region, ResUNet
segmentation results resemble the ground truth image,
whereas UNet and ResUNet++ models classify no-dunes
as dunes. In Gale Crater region, the dunes were not
properly segmented. UNet classified some of the no-dune

Study region Method Precision Recall | F1- Jaccard | Accuracy | pen PFP Perror
score
OlympiaUndae U-Net 0.84 0.53 0.62 0.47 0.92 047 | 0.02 |0.22
ResUNet 0.79 0.80 0.77 0.63 0.94 0.20 | 0.04 | 0.17
ResUNet++ 0.71 0.87 0.78 0.64 0.93 0.13 | 0.06 | 0.17
Gale crater U-Net 0.46 0.70 0.55 0.39 0.79 0.30 | 0.19 | 0.33
ResUNet 0.86 0.27 0.36 0.24 0.85 0.73 | 0.02 | 0.18
ResUNet++ 0.90 0.20 0.31 0.19 0.84 0.80 | 0.01 | 0.16
Nili Patera U-Net 0.74 0.69 0.71 0.57 0.93 0.31 | 0.04 |0.22
ResUNet 0.89 0.66 0.73 0.60 0.95 0.34 | 0.02 |0.18
ResUNet++ 0.80 0.77 0.78 0.65 0.95 0.23 | 0.03 | 0.19

pixels as dunes as well as ResUNet and ResUNet++
classified some of the dune pixels as no-dune pixels.
ResUNet and ResUNet++ architecture showed the highest
accuracy for all the regions. ResUNet++ exhibited the
highest recall, F1-score and Jaccard compared to U-Net
and ResUNet architecture for Olympia Undae and Nili
Patera regions (Table 2).

ResUNet++ shows low error of about 16.6% and 15.5 %
for Olympia Undae and Gale crater regions as compared
to other models (Table 2.). U-Net showed the highest error
for all three regions.
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Figure 10: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from
HiRISE image in Olimpia Undae, Gale crater and Nili Patera region

It was observed that (figure 10) ResUNet shows the
highest accuracy as compared to UNet and ResUNet++ in
the Olimpia Undae and Nili Patera region. UNet shows the
lowest accuracy in all the study areas except the Nili Patera
region. All the architectures produce satisfactory results
except UNet in Gale Crater, as it is one of the most wind-
active regions on Mars.

3.3 Synthesis of dune segmentation achieved

For dune detection using Al, the data were trained in
NVIDIA GeForce 940MX GPUs. To avoid overfitting,
early stopping was used in the keras callbacks. In the early
stopping process, the training process was stopped when
the validation dataset started to decay, which meant
validation loss started to increase or accuracy decreased.
Most of the models reached a plateau at nearly the
10™epoch.

The best results were saved for each epoch and Adam
optimizer was used for all the architectures. This is one of
such studies, probably the first, for dune segmentation over
the Martian surface using U-Net, ResUNet and
ResUNet++ utilizing CTX and HiRISE data.

From the analysis it was clear that ResUNet++ had the
high Recall/completeness in Olympia Undae and Nili
Patera regions for model created by both HiRISE and CTX
images as compared to U-Net and ResUNet models.
Completeness of the model is denoted by Recall which is
a measure of correctly classified positive samples by the
model. Recall doesn’t consider the negative samples
classified as positive. Precision denotes the true detection
among all the detection. U-Net showed the lowest false

positive rate for both CTX and HIRISE based
segmentation for all the study regions. U-Net exhibited
high Fl1-score and Jaccard index for the segmentation
model created using CTX image for Gale crater and Nili
Patera regions, whereas ResUNet++ had high F1-score and
Jaccard index for the segmentation model created using
HiRISE image for Olympia Undae and Nili Patera regions.
Jaccard index and F1 score was helpful in assessing quality
of the model. ResUNet++ model produced the best quality
dune segmented image for model created using HiRISE
image for Olympia Undae and Nili Patera regions. UNet
produced high quality segmented images for model created
using CTX image for Gale Crater and Nili Patera regions.
As a whole, U-Net produced the better segmentation
results from model created using CTX images. Whereas in
case of models created using HiRISE images, ResUNet++
produced better results.

Accuracy obtained from U-Net, ResUNet and ResUNet++
models derived both from CTX and HiRISE image was
high (more than 85%) for Olympia Undae and Nili Patera
as compared to the results obtained from deep learning
(82.01%) by (Azzaoui,.et al.,2019).

Even minor features were delineated using ResUNet++
model developed using HIiRISE images but in other
models, the minor features turned out to be grouped. Some
small dune features were not detected in U-Net
architecture whereas, such features were detected in
ResUNet and ResUNet++. The U-Net model could
segment the linear dune features more accurately
compared to small barchans and barchanoid dunes.
ResUNet and ResUNet++ models could segment all the
features with high accuracy.
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methods
Table 3: Comparison of proposed and existing methods with suitable
metrics
Matrics UNet, ResUNet, ResUNet++ Other architecture

Dice coefficient

Higher value

Segnet, FCN have lower accuracy
but DeepLabv3+ and PSPNet have
higher accuracy

UNet

IoU ResUNet++ has higher IoU value | DeepLabv3+ performs better than
followed by ResUNet and UNet U-Net and ResUNet

Precision ResUnet++ has higher precision DeepLabv3+ and PSPNet have
same precision as ResUNet

Recall Higher recall value SegNet and FCN have lower recall
value as well as SegNet and FCN
have same recall value as ResUnet

F1 Score ResUNet++ has higher F1 score | SegNet and FCN have lower F1

value followed by ResUNet and | score value.

The comparison of proposed segmentation architectures,
such as UNet, ResUNet, and ResUNet++, with existing
architectures like SegNet, FCN, DeepLabv3+, and PSPNet
has been shown in Table 3. The results obtained from
different architectures (UNet, ResUNet, and ResUNet++)
that were used in this study were compared with the results
obtained from other existing architectures (Zhao P. et.al.,
2025, Lu A. et.al., 2024, Gupta D., 2023). UNet, ResUNet
and ResUNet++ shows better results as compared to other
models. DeepLabv3+ and PSP Net show significantly
reliable results.

4 Conclusion

Different convolutional neural network architectures such
as U-Net, ResUNet and ResUNet++ were used for the
segmentation of dunes over the Martian surface. Different
batch sizes, optimizers and loss functions were analyzed to
select the best combination. A batch size of sixteen, Adam
optimizer, and loss functions such as binary cross-entropy,
dice loss and mean squared error were used.

After analyzing all the architectures, it was found that
these architectures could produce satisfactory results of
about 80% accuracy. The model created using CTX
images performed well for Gale Crater region compared to
the model created using HiRISE image. U-Net model
created using CTX image performed well in case of low-
quality images (coarse resolution noisy images) whereas,
ResUNet ++ model created using HIRISE image
performed well in case of good quality (fine resolution)
images. The model created using CTX image showed low
probability of error compared to the model created using
HIiRISE image. Therefore, model complexity and
overfitting are related to each other. If the model is very
complex, it affects the overfitting of the model. Due to this,
the model fits in the noise in the data rather than the
feature.

The wind direction affects the orientation of dunes
dominantly found on the Martian surface as a result of

prominent aeolian activity. The temporal changes of such
dune landforms over large areas can be analyzed by the
automatic segmentation technique. Thus, we can obtain
greater insights about the wind patterns prevalent over the
regions of study. For analyzing dune migration rate over a
period of time, we need to detect dune and non-dune
features. Al based models generated in this study has
potential of automated detection of the above features and
help in understanding the dune migration phenomenon.
Availability of dataset was the main problem that was
faced during this study. High resolution HiRISE image has
less coverage as it is not covering all the dune field regions
in Martian surface. Even though CTX has larger coverage
as compared to HiRISE data, it is not covering all the dune
fields in Martian surface. Less number of training data set
also affect the model accuracy.
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This paper introduces the Data Quality Enhancement and Analytics (DQEA) Framework to enhance data
quality in social media analytics by leveraging advanced data analytics tools. Departing from the previous
BDMS approach, the DQEA framework addresses data quality issues such as noise, bias, and
incompleteness using modern data analytics techniques. The efficacy of the framework is validated
through features tested against human coders on Amazon Mechanical Turk, achieving an inter-coder
reliability score of 0.85, indicating high agreement. Furthermore, two case studies with a large social
media dataset from Tumblr were conducted to demonstrate the effectiveness of the proposed content
features. In the first case study, the DQEA framework reduced data noise by 30% and bias by 25%, while
increasing completeness by 20%. In the second case study, the framework improved data consistency by
35% and overall data quality score by 28%. Comparative analysis with state-of-the-art models, including
Random Forest and Support Vector Machines (SVM), showed significant improvements in data reliability
and decision-making accuracy. Specifically, the DQEA framework outperformed the Random Forest
model by 15% in accuracy and 20% in true positive rate, and the SVM model by 10% in error rate
reduction and 18% in reliability. Overall, the DQEA framework demonstrated a 22% improvement in
data quality metrics compared to existing solutions. These quantizative metrics validate the framework’s
ability to enhance data quality in social media analytics which provides a robust solution for addressing
critical data quality challenges. This research contributes to the field of business intelligence by offering
a comprehensive and effective framework that can be easily integrated into existing data analytics
workflows, ensuring more reliable and accurate decision-making processes based on social media data.
The results underscore the potential of advanced data analytics tools in transforming social media data
into a valuable asset for organizations, highlighting the practical implications and future research
directions in this domain.

vev v

Povzetek: Za analitiko druzbenih omrezij so uporabili okvir DOEA (ciScenje, integracija, transformacije
z orodji SQL/Spark/Tableau) namesto BDMS; validiran z MTurk (ICC 0,85). Rezultati: hrup —30 %,
pristranost —25 %, popolnost +20 %, konsistentnost +35 %, skupna kakovost +28 %, proti modelom: RF
+15 % natancnost, +20 % TPR; SVM —10 % napak, +18 % zanesljivost; skupno +22 % kakovostnih
metrik.

Introduction

information that does not contribute to meaningful

The proliferation of social media platforms in recent years
has transformed the way individuals and organizations
communicate, share information, and engage with their
audiences. Platforms such as Facebook, Twitter,
Instagram, and Tumblr have become integral parts of daily
life, generating vast amounts of user-generated content.
This content provides a rich source of data that can be
analyzed to gain insights into public opinion, consumer
behavior, market trends, and more. However, despite the
immense potential of social media data, the quality of this
data is often compromised by various factors such as
noise, bias, and incompleteness, posing significant
challenges to researchers and analysts [1-6]. Noise in
social media data refers to irrelevant or extraneous

analysis. This can include spam, off-topic posts, and
duplicate content, which can distort analytical outcomes
and lead to erroneous conclusions. Bias in social media
data arises from the inherent subjectivity and varying
perspectives of users, as well as the algorithms that curate
content [7-10]. This can result in skewed datasets that do
not accurately represent the broader population or
phenomena being studied. Incompleteness, another
critical issue, occurs when datasets lack sufficient data
points or have missing information, leading to gaps in
analysis and unreliable results. Addressing these data
quality issues is crucial for ensuring the reliability and
validity of insights derived from social media analytics
[11-14]. Traditional approaches to enhancing data quality,
such as Business Decision Management Systems
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(BDMS), have been employed to mitigate these
challenges. However, these methods often fall short due to
their reliance on predefined rules and manual
interventions, which may not scale effectively with the
dynamic and voluminous nature of social media data [15-
19]. There is a pressing need for innovative frameworks
that can systematically improve data quality while
leveraging the capabilities of modern data analytics tools.
In response to this need, this paper introduces the Data
Quality Enhancement and Analytics (DQEA) Framework,
a novel approach designed to enhance the quality of social
media data through advanced data analytics techniques.
Unlike traditional methods, the DQEA Framework utilizes
a combination of automated data processing, integration,
and transformation techniques to address noise, bias, and
incompleteness more effectively [20-25]. The framework
is implemented using state-of-the-art data analytics tools
such as SQL, Tableau, and Apache Spark, which offer
robust capabilities for data manipulation, visualization,
and large-scale processing. The DQEA Framework
incorporates several key components aimed at improving
data quality. First, it employs sophisticated data cleaning
techniques to filter out noise and irrelevant content,
ensuring that the remaining data is pertinent and
meaningful. These techniques include the use of pattern
recognition, keyword filtering, and statistical methods to
identify and remove unwanted information. Second, the
framework addresses bias by integrating data from
multiple sources and applying normalization techniques to
mitigate the effects of subjective perspectives and
algorithmic curation. This helps to create a more balanced
and representative dataset. Third, the framework tackles
incompleteness by employing data integration and
transformation methods that fill gaps in the data and
ensure consistency across different datasets. This includes
techniques such as data imputation, interpolation, and the
use of external data sources to supplement missing
information. To validate the efficacy of the DQEA
Framework, we conducted a series of evaluations using a
large social media dataset from Tumblr. The framework's
performance was measured through a series of metrics,
including accuracy, true positive rate, error rate, and
overall data quality score. Features extracted from the
dataset were tested against human coders on Amazon
Mechanical Turk, achieving an inter-coder reliability
score of 0.85, which indicates a high level of agreement
and validates the accuracy of the framework's outputs.
Additionally, two case studies were conducted to
demonstrate the practical application and effectiveness of
the proposed content features. In the first case study, the
DQEA Framework was applied to a dataset focused on
consumer sentiment analysis. The results showed a 30%
reduction in data noise, a 25% reduction in bias, and a 20%
increase in data completeness, highlighting the
framework's ability to enhance the quality of sentiment
analysis outcomes. In the second case study, which
focused on trend analysis, the framework improved data
consistency by 35% and increased the overall data quality
score by 28%, demonstrating its effectiveness in
generating reliable insights from social media trends.
Comparative analysis with state-of-the-art models,
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including Random Forest and Support Vector Machines
(SVM), further underscored the advantages of the DQEA
Framework. The framework outperformed the Random
Forest model by 15% in accuracy and 20% in true positive
rate, and the SVM model by 10% in error rate reduction
and 18% in reliability. Overall, the DQEA Framework
demonstrated a 22% improvement in data quality metrics
compared to existing solutions, validating its robustness
and effectiveness in enhancing social media data quality.
The contributions of this research are significant for the
field of business intelligence, offering a comprehensive
and scalable solution for improving data quality in social
media analytics. By integrating advanced data analytics
tools, the DQEA Framework provides a practical
approach that can be seamlessly incorporated into existing
workflows, ensuring more reliable and accurate decision-
making processes. The findings of this research
underscore the potential of leveraging modern data
analytics techniques to transform social media data into a
valuable asset for organizations, providing actionable
insights that drive strategic decisions. Furthermore, this
study highlights the importance of continuous innovation
in Data Quality Enhancement methods, paving the way for
future research that explores new techniques and tools to
further improve the reliability and validity of social media
analytics. In conclusion, the DQEA Framework represents
a significant advancement in the field of social media Data
Quality enhancement. By addressing the critical
challenges of noise, bias, and incompleteness through
advanced data analytics techniques, this framework offers
a robust solution that enhances the reliability and accuracy
of insights derived from social media data. The validation
of the framework through human coders and real-world
case studies, along with comparative analysis with state-
of-the-art models, demonstrates its effectiveness and
practical applicability. This research contributes to the
ongoing efforts to improve data quality in social media
analytics, providing a valuable resource for researchers,
analysts, and organizations seeking to leverage the power
of social media data for informed decision-making.

Motivation

The rapid proliferation of social media platforms has led
to an unprecedented surge in user-generated content,
making social media data an invaluable asset for
researchers, businesses, and policymakers. However, the
utility of this data is often compromised by quality issues
such as noise, bias, and incompleteness. Noise can distort
analytical outcomes, bias can skew interpretations, and
incompleteness can leave critical gaps in analysis.
Traditional methods, such as Business Decision
Management Systems (BDMS), often rely on predefined
rules and manual interventions, which are not scalable or
effective for the dynamic nature of social media data.
There is a pressing need for innovative frameworks that
can systematically enhance data quality using modern data
analytics tools. This motivation drives the development of
the Data Quality Enhancement and Analytics (DQEA)
Framework, which aims to address these challenges and
improve the reliability and accuracy of social media
analytics.
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Obijectives

1.To create the DQEA Framework that leverages
advanced data analytics tools to systematically
enhance the quality of social media data.

2.To mitigate noise, bias, and incompleteness in social
media datasets using automated data processing,
integration, and transformation techniques.

3.To implement the DQEA Framework using state-of-
the-art data analytics, and validate its efficacy through
quantitative metrics.

4.To validate the extracted features against human
coders on Amazon Mechanical Turk, ensuring high
accuracy and reliability.

5.To demonstrate the practical application and
effectiveness of the framework through two case
studies using a large social media dataset from Tumblr.

6.To benchmark the DQEA Framework against
established models like Random Forest and Support
Vector Machines (SVM), showcasing its superiority in
enhancing data quality.

Contributions

1. The introduction of the DQEA Framework represents
a significant advancement in the field of social media
Data Quality Enhancement. It offers a novel approach
that leverages modern data analytics tools to address
critical data quality issues.

2. By incorporating automated data cleaning, integration,
and transformation techniques, the DQEA Framework
effectively reduces noise, mitigates bias, and fills data
gaps, ensuring higher data quality.

3.The framework’s features are rigorously validated
against human coders on Amazon Mechanical Turk,
achieving a high inter-coder reliability score of 0.85,
which underscores the accuracy and reliability of the
framework.

4. Through two case studies with Tumblr data, the DQEA
Framework demonstrates practical improvements in
data quality metrics, including a 30% reduction in
noise, a 25% reduction in bias, and a 20% increase in
completeness.

5. Comparative analysis with state-of-the-art models like
Naive bayes and SVM shows that the DQEA
Framework outperforms these models in key metrics,
with a 15% improvement in accuracy, a 20% increase
in true positive rate, a 10% reduction in error rate, and
an 18% boost in reliability.

6. The framework’s implementation using advanced data
analytics tools ensures that it is scalable and can be
seamlessly integrated into existing workflows,
providing a robust solution for organizations seeking
to leverage social media data for informed decision-
making.

7.This research significantly contributes to the field of
business intelligence by offering a comprehensive
framework that enhances the quality of social media
analytics, ensuring more reliable and accurate insights
that drive strategic decisions.
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2 Literature review

The literature on data quality enhancement in social media
analytics underscores the pervasive challenges of noise,
bias, and incompleteness inherent in social media data,
along with the evolving methods and limitations in
addressing these issues. Traditional approaches like
Business Decision Management Systems (BDMS) have
been foundational but often struggle with the dynamic and
unstructured nature of social media content. Berardi et al.
(2011) explored hashtag segmentation and text quality
ranking to improve data relevance and accuracy,
highlighting initial efforts to structure and filter social
media data effectively. Singh and Verma (2022) proposed
an effective parallel processing framework for social
media analytics, aiming to enhance scalability and
processing speed but faced challenges in maintaining data
integrity across distributed environments. Mustafa et al.
(2017) employed machine learning to predict cricket
match outcomes based on social network opinions,
demonstrating the potential of predictive analytics but
noting the variability in data quality and sentiment
analysis accuracy. Singh et al. (2020) investigated Twitter
analytics for predicting election outcomes, illustrating the
application of sentiment analysis in political forecasting
but acknowledging the complexity of contextual
interpretation and bias mitigation. Krouska et al. (2017)
conducted a comparative evaluation of sentiment analysis
algorithms over social networking services, revealing
discrepancies in accuracy and robustness across different
platforms and data types. Yu et al. (2020) developed a
method to predict peak time popularity based on Twitter
hashtags, showcasing advancements in predictive
modeling but recognizing limitations in data volume and
real-time data processing capabilities.

Despite these advancements, several challenges
persist in current approaches to social media data quality
enhancement. One major challenge is noise, which
includes spam, irrelevant content, and misinformation that
can skew analysis results and hinder decision-making
processes. Traditional methods often struggle to filter out
such noise effectively, relying on manual interventions or
simplistic rule-based systems that may not adapt well to
evolving content patterns and user behaviors. Another
critical challenge is bias, stemming from the subjective
nature of user-generated content and algorithmic biases in
content curation and recommendation systems. Biases can
lead to skewed datasets that do not accurately represent the
diversity of opinions and perspectives within social media

platforms, impacting the reliability of analytical
outcomes. Incompleteness poses a third significant
challenge, characterized by missing data points,

incomplete profiles, and gaps in temporal or spatial
coverage. These gaps limit the scope and reliability of
analyses, especially in longitudinal studies or when
comparing data across different platforms. Moreover, the
scalability and processing speed of existing frameworks
often struggle to cope with the volume and velocity of
social media data streams, hindering real-time analysis
and decision-making capabilities. Ensuring the integrity
and consistency of data across distributed environments
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remains a persistent challenge, as does the need for robust
validation mechanisms to verify the accuracy and
reliability of extracted insights.

To address these challenges, the proposed Data
Quality Enhancement and Analytics (DQEA) Framework
leverages advanced data analytics techniques to enhance
social media data quality systematically. Unlike
traditional methods, the DQEA Framework integrates
automated data processing, machine learning algorithms,
and natural language processing techniques to tackle
noise, bias, and incompleteness effectively. By
automating data cleaning, integration, and transformation
processes, the framework reduces manual intervention and
improves scalability. The integration of supervised and
unsupervised learning algorithms enables robust
sentiment analysis, trend detection, and predictive
modeling, thereby enhancing the reliability and accuracy
of insights derived from social media data.

3 Proposed methodology

The methodology of this study entails comprehensive
data collection from Tumblr, focusing on gathering a
substantial volume of diverse user-generated content. The
dataset includes a variety of content types such as text
posts, images, videos, and multimedia interactions,
ensuring a broad representation of user activities and
content formats. Data collection adheres to ethical
guidelines, with data sourced from public profiles and
posts, respecting user privacy and platform terms of
service. The collection spans a defined temporal period of
one year, from January 2023 to December 2023, to capture
longitudinal trends and seasonal variations in user
behavior and content generation. Geographic focus is on
English-language posts globally, enabling analysis of
linguistic nuances and regional trends within the dataset.

The Data Quality Enhancement and Analytics
(DQEA) Framework integrates advanced technologies
and tools to facilitate efficient processing, analysis, and
validation of social media data:

1. Data Integration and Preprocessing: Data integration
techniques are employed to merge heterogeneous data
sources into a unified dataset. Preprocessing involves
cleaning the data to remove noise, spam, and irrelevant
content using natural language processing (NLP)
techniques for text analysis and image processing
algorithms for multimedia content.

2.Machine Learning Algorithms: Supervised and
unsupervised machine learning models, such as
Random Forest for sentiment analysis and clustering
algorithms for trend detection, are utilized. These
models extract meaningful features from the data to
enhance data quality metrics and derive actionable
insights.

3.Big Data Processing Frameworks: Apache Spark is
utilized for distributed data processing, enabling
scalability and real-time analytics capabilities. This
framework handles large volumes of data efficiently,
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supporting both batch and streaming data processing
modes.

4.Natural Language Processing (NLP): Advanced NLP
techniques, including sentiment analysis, named entity
recognition, and topic modeling, are employed to
analyze textual data and uncover semantic relationships
and trends within the dataset.

3.1 Data collection and integration layer

The Data Collection and Integration Layer within the
DQEA Framework is pivotal in aggregating and
harmonizing diverse social media content sourced
primarily from platforms like Tumblr. This layer employs
structured processes and advanced techniques to uphold
data integrity and consistency, thereby enhancing the
quality and usability of the collected data.

Data Extraction:

Data extraction involves retrieving comprehensive
datasets from Tumblr using robust methods such as API
queries and web scraping techniques. The framework
adheres to platform guidelines to responsibly access
publicly available data, ensuring compliance with legal
and ethical standards.

Data Cleaning:

Upon extraction, the collected data undergoes
rigorous cleaning processes designed to mitigate noise,
spam, and irrelevant content that may distort subsequent
analyses. Natural Language Processing (NLP) technigues
are leveraged for textual data, including:

e Tokenization: Breaking down text into tokens or
words.
e Stop Word Removal: Filtering out common
words that do not contribute to the meaning.
e Stemming: Reducing words to their base or root
form to normalize variations.
For multimedia content like images, noise reduction
algorithms are applied to enhance clarity and remove
artifacts, thereby improving visual data quality.

Data Integration:

Integration involves merging heterogeneous data
sources into a cohesive and standardized dataset suitable
for analysis. Techniques such as data normalization and
transformation ensure consistency in data structure and
format across different content types. The process can be
formalized with formulas such as:

Integrated Data = Merge(D1,D2, ...,Dn)

Where D1,D2,....Dn represent individual datasets
from various sources.

3.2 Data preprocessing and feature extraction

The Data Preprocessing and Feature Extraction layer
within the DQEA Framework is dedicated to transforming
raw data into a structured format suitable for analysis. This
critical stage involves a series of techniques and
algorithms aimed at improving data quality and
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facilitating meaningful insights from social media content.
Figure 1 shows the overall architecture of the work.

Data Collection

Data Preprocessing
and Feature Extraction

(Tumblr API'Web scraping)

Data Cleaning Text Preprocessing Image Processing
(NLP, Image Processing) (Tokenization, Stemming, etc.) (Feature Extraction)

Data Integration
(Heterogeneous sources)

Feature Extraction
(TE-IDF, Image Features)

Sentiment Analysis
(Classifiers: SVM, Naive Bayes)

Topic Modeling Entity Recognition Validation Visualization
(LDA, NMF) (SpaCy, NLTK) and Verification and Reporting Layer
Inter-Coder Benchmark Dashboard Creation
Reliability Metrics (Tableau, Power BI)

Automated
Reporting

Figure 1: Overall architecture of the proposed
DQEA

Text Preprocessing:
Textual data undergoes several preprocessing steps to
standardize and enhance its analysis readiness:

Tokenization:
Tokenization breaks down raw text into individual tokens,
typically words or phrases. It forms the foundation for
subsequent text processing tasks:

Tokens(t) = split(t)

Stemming and Lemmatization:

Stemming reduces words to their root forms, while
lemmatization ensures words are transformed to their base
dictionary form:

Stem(w) = stemmer(w)
Lemma(w) = lemmatizer (w)

Text Normalization:

Normalization standardizes text by removing
punctuation, special characters, and converting text to
lowercase:

Normalize(t) = lower(t)

Feature Representation (TF-1DF):

TF-IDF quantifies the importance of a term within a
document or corpus. It combines term frequency (TF) and
inverse document frequency (IDF):

TF(t,d) = _ Ma
Yted Md

| D |
IDF(t,d) = log <|{d €D:ite d}|>
TF — IDF(t,d D) = TF(t,d) X IDF (t,D)

Where:
e n.4is the frequency of term t in document d.
e |DJ is the total number of documents in the

corpus D.
e |{deD:ted}| is the number of documents

containing term t within the corpus D.
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3.3 Machine learning and NLP Layer

The Machine Learning (ML) and Natural Language
Processing (NLP) layer of the DQEA Framework is
integral for deriving meaningful insights from social
media data. By employing supervised and unsupervised
learning algorithms, this layer enhances capabilities in
sentiment analysis, topic modeling, and entity recognition,
enabling sophisticated analysis of social media content.

Sentiment Analysis

Sentiment analysis involves determining the
sentiment or emotion expressed in textual data. This
process is crucial for understanding public opinion,
customer feedback, and social trends. In the DQEA
Framework, machine learning classifiers such as Naive
Bayes and Support Vector Machines (SVM) are utilized
for predicting sentiment scores.

Naive Bayes Classifier: The Naive Bayes classifier is
based on Bayes' theorem, assuming independence
between features. It calculates the probability of each
sentiment given the features in the text and assigns the
sentiment with the highest probability:

n
‘ 1P(xi ly)

1

y = arg max, P(y)

Where:

e ¥ isthe predicted sentiment.

e P(y) is the prior probability of sentiment y.

e P(xily) is the likelihood of feature xi given
sentiment y.

Support Vector Machine (SVM):
SVM is a powerful classifier that finds the hyperplane
separating different classes with the maximum margin.
For sentiment analysis, SVM maps input text features to a
higher-dimensional space and determines the optimal
separating hyperplane:
y =sign(w-x +b)

Where:
¥ is the predicted sentiment.
w is the weight vector.
X is the feature vector.
b is the bias term.

Sentiment analysis is often broken down into several
steps. Initially, text data undergoes preprocessing to clean
and standardize the input. This includes tokenization,
stop-word removal, and stemming or lemmatization. Once
preprocessed, features are extracted from the text,
commonly using techniques like TF-IDF or word
embeddings such as Word2Vec or GloVe.

Topic Modeling
Topic modeling is an unsupervised learning technique
used to uncover latent topics in a collection of documents.
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Two popular methods are Latent Dirichlet Allocation
(LDA) and Non-negative Matrix Factorization (NMF).

Latent Dirichlet Allocation (LDA):

LDA assumes that documents are mixtures of topics and
that topics are distributions over words. It uses a
generative probabilistic model to discover these topics:

B p(wlzd)p(zld)
- p(wld)

p(zldw)

Where:

e p(z|d,w) is the probability of topic z given
document d and word w.

e p(wlzd) is the probability of word w given
topic z and document d.

e p(z|d) is the probability of topic z given

document d.

e p(wld) is the probability of word w given
document d.

In LDA, each document is represented as a

distribution over topics, and each topic is represented as a
distribution over words. The algorithm iteratively updates
these distributions to maximize the likelihood of the
observed data. This approach allows for the discovery of
hidden thematic structures within large text corpora,
enabling better organization and understanding of the
content.

Non-negative Matrix Factorization (NMF): NMF
factorizes the document-term matrix V into two lower-
dimensional matrices W and H such that:
V =~ WHV
Where:

¢ V is the document-term matrix.

¢ W is the document-topic matrix.

o H is the topic-term matrix.

This factorization reveals latent topics in the
documents. Unlike LDA, which is probabilistic, NMF is a
matrix decomposition method that seeks to represent the
original data as a product of two non-negative matrices.
The non-negativity constraint leads to a parts-based
representation, which is often more interpretable.

Entity Recognition

Named Entity Recognition (NER) identifies and
classifies entities in text into predefined categories such as
names of persons, organizations, locations, etc. NER
algorithms are essential for extracting structured
information from unstructured text data.

SpaCy NER: SpaCy provides a pre-trained NER
model that can recognize various entities in text. The
model processes the text and labels entities using the BIO
(Begin, Inside, Outside) tagging scheme. This scheme is
effective in identifying contiguous sequences of words
that form entities. For instance, in the sentence "Apple Inc.
is releasing a new iPhone," SpaCy can tag "Apple Inc." as
an organization and "iPhone" as a product.
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NLTK NER: NLTK also offers tools for NER,
including pre-trained models and the ability to train
custom NER models using annotated corpora. NLTK's
NER uses a combination of rule-based and statistical
methods for entity recognition. It can be particularly
useful in educational settings and for prototyping.

Algorithm: DQEA Framework for Social Media
Data Quality Enhancement

Input:
Raw social media data from Tumblr (text, images,
multimedia)
Predefined feature extraction parameters
Human coder validation data from Amazon
Mechanical Turk

Output:

Enhanced social media data quality

Extracted features (sentiment scores, topics, named
entities)

Visualized reports and interactive dashboards

Step 1: Data Extraction
Use Tumblr API or web scraping methods to
collect data.
Extract diverse content types including text,
images, and multimedia.

Step 2: Data Cleaning

Tokenization: Split text into individual tokens.

Stop-word  removal:  Remove common  but
insignificant words.

Lemmatization/Stemming: Reduce words to their
base or root form.

Apply image processing algorithms:

Noise reduction: Use filters to remove noise from
images.

Image resizing: Normalize image dimensions.

Step 3: Data Integration
Merge heterogeneous data sources into a unified
dataset.
Ensure consistency and remove duplicates.

Step 4: Text Preprocessing

Further clean text data:

Lowercase conversion: Standardize text to lowercase.

Punctuation  removal: Remove  unnecessary
punctuation.

Step 5: Feature Extraction
Extract textual features:
Compute  TF-IDF  (Term
Document Frequency) for each term.
N

TF — IDF (t,d)TF (¢, d) X log 5=

Where TF(t,d) is the term frequency of term t in
document d.

Frequency-Inverse

N is the total number of documents.
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DF(t) is the document frequency of term t.
Extract image features:
o Use Convolutional Neural Networks
(CNNs), such as ResNet.
o Generate feature vectors from pre-
trained models.

Step 6: Sentiment Analysis

Use Naive Bayes Classifier:
n

y =arg max, P(y) P(xily)
i=1
Use Support Vector Machine (SVM):
¥ =sign(w-x +b)

Step 7: Topic Modeling
Apply Latent Dirichlet Allocation (LDA):
_p(wlz,d)p(zld)

p(zldw) w1 d)
Apply Non-negative Matrix Factorization
(NMF):

o V=WHV

Step 8: Entity Recognition

Use SpaCy and NLTK for Named Entity Recognition
(NER):

Label entities using BI1O tagging scheme.

Step 9: Validation
Validate features against human coders on
Amazon Mechanical Turk.
Calculate inter-coder reliability scores.

Step 10: Benchmarking
Compare model performance against benchmark
models.
Metrics include precision, recall, F1-score.

Step 11: Visualization

Use interactive dashboards to visualize:
Sentiment distributions.
Topic trends.
Extracted entities.

Step 12: Reporting
Generate detailed reports.
Facilitate data-driven
processes.

decision-making

End of Algorithm

The proposed DQEA Framework algorithm is
meticulously designed to enhance the quality of social
media data, focusing on platforms such as Tumblr. The
algorithm is divided into several layers, each dedicated to
specific tasks to ensure the data's integrity and reliability.
Initially, the Data Collection and Integration Layer
extracts diverse content types using Tumblr API or web
scraping techniques. This raw data undergoes rigorous
cleaning through NLP techniques, including tokenization,
stop-word removal, and lemmatization for text, while
image processing algorithms manage noise reduction and
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normalization for visual content. The result is a consistent
and unified dataset free from duplicates. In the Data
Preprocessing and Feature Extraction Layer, further text
preprocessing occurs with techniques such as lowercase
conversion and punctuation removal. Feature extraction
employs TF-IDF for textual data to measure the
importance of terms within documents, and Convolutional
Neural Networks (CNNs) like ResNet for deriving feature
vectors from images. This preparation sets the stage for
the Machine Learning and NLP Layer, which utilizes
supervised algorithms like Naive Bayes and Support
Vector Machines (SVM) for sentiment analysis, and
unsupervised techniques such as Latent Dirichlet
Allocation (LDA) and Non-negative Matrix Factorization
(NMF) for topic modeling. Named Entity Recognition
(NER) is performed using tools like SpaCy and NLTK.

4 Results and discussion

The DQEA Framework was tested using a large
dataset obtained from Tumblr, and its performance was
validated against human coders from Amazon Mechanical
Turk. The dataset comprised over 100,000 posts,
including text, images, and multimedia content. The
implementation environment included Python for data
processing, NLP, and machine learning tasks, with
libraries such as Pandas, Scikit-learn, SpaCy, and
TensorFlow. Python served as the core programming
language for implementing the DQEA Framework due to
its versatility and robust support for data analytics and
machine learning. Key libraries instrumental in the
implementation included:

Sentiment Analysis Performance

The sentiment analysis models—Naive Bayes, SVM,
and DQEA (Proposed)—operate on textual data extracted
from Tumblr. Tumblr serves as the primary data source,
containing a diverse range of user-generated content
including blog posts, comments, and multimedia captions.
Users on Tumblr express their opinions, emotions, and
reactions on various topics using informal language,
memes, and multimedia content. The models analyze this
data to categorize sentiments into positive, negative, or
neutral categories, enabling organizations to understand
public sentiment and user reactions within the unique
context of Tumblr's content dynamics.

The sentiment analysis was evaluated using precision,
recall, and F1-score metrics. The results are compared
against traditional approaches such as Naive Bayes and
SVM as in table 1 and figure 2.

Table 1: Sentiment analysis performance

Model Precision | Recall F1-
Score

Naive 0.81 0.78 0.79

Bayes

SVM 0.84 0.80 0.82

Random 0.86 0.82 0.84

Forest
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E_BDMS N/A

DQEA 0.89 0.86 0.87
(Proposed)
E BDMS N/A N/A 0.86

Sentiment Analysis Performance

0.87
0.84

0.79

F1-Score

025

Model

Figure 2: Sentimental analysis performance

Table 3 presents the sentiment analysis performance
of various models, including Naive Bayes, SVM, the
proposed DQEA Framework, and the previous E-BDMS
approach. Notably, the E-BDMS approach does not have
values for precision and recall (denoted as N/A) because
the E-BDMS approach was primarily evaluated and
reported using the F1-Score metric alone in the context of
managing consumer feedback and control periods, rather
than specifically focusing on sentiment analysis metrics
like precision and recall. Despite this, the F1-Score of the
E-BDMS approach stands at 0.86, which is marginally
lower than the DQEA Framework’s F1-Score of 0.87. The
DQEA Framework excels in sentiment analysis with
precision and recall values of 0.89 and 0.86, respectively,
outperforming Naive Bayes and SVM models
significantly. Naive Bayes achieved a precision of 0.81
and recall of 0.78, resulting in an F1-Score of 0.79, while
SVM performed better with a precision of 0.84, recall of
0.80, and an F1-Score of 0.82. This comparison highlights
the superior and well-rounded performance of the DQEA
Framework in sentiment analysis, demonstrating
improvements over both traditional models and the
previous E-BDMS approach.

Topic Modeling Performance

The topic modeling performance was evaluated using
coherence scores, which measure the semantic similarity
between high-scoring words in a topic. Textual data from
Tumblr posts was used for topic modeling.

Table 2: Topic Modeling Performance

Model Coherence Score
LDA 0.48
NMF 0.52
DQEA (Proposed) 0.63

Coherence Scores by Model
0.63

0.52

e
A

Model
[ paEA (Proposed)

LDA
NMF

Coherence Score

4
N

0.0

DQEA (Proposed)  LDA NMF
Model

Figure 3. Topic modeling performance

Table 2 presents the topic modeling performance
evaluated through coherence scores for different models:
LDA, NMF, and the proposed DQEA framework. These
scores gauge how effectively each model extracts coherent
and interpretable topics from a dataset sourced exclusively
from Tumblr as in figure 3. Higher coherence scores
indicate that the topics are more coherent, making them
easier to understand and more useful for analysis.

N
1
Coherence Score = N Z coherence(Ti)

I=1

Where T; is the set of top words in topic iii, and NNN
is the total number of topics.

The DQEA Framework achieved a coherence score of
0.63, significantly outperforming both LDA and NMF,
which recorded coherence scores of 0.48 and 0.52,
respectively. This indicates that the topics generated by
the DQEA Framework are more coherent and meaningful
compared to those generated by LDA and NMF. The
improvement in coherence score for the DQEA
Framework can be attributed to its sophisticated
preprocessing and feature extraction techniques. By
leveraging advanced data cleaning methods and validating
features against human coders, the DQEA Framework
ensures that the data fed into the topic modeling
algorithms is of high quality. This results in more accurate
and interpretable topics. LDA, with a coherence score of
0.48, tends to produce topics that are somewhat less
interpretable due to its reliance on the Dirichlet
distribution, which can sometimes lead to overlapping
topics. NMF, with a slightly better coherence score of
0.52, provides an improvement over LDA by factorizing
the document-term matrix into distinct topics, but it still
falls short compared to the DQEA Framework.

Table 3 evaluates the Named Entity Recognition
(NER) performance of three models: SpaCy, NLTK, and
the proposed DQEA framework. NER is crucial for
extracting and categorizing entities such as names,
organizations, and locations from unstructured text data,
specifically sourced from. SpaCy and NLTK are
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established NER tools known for their robustness in entity
detection across various domains. The DQEA framework
introduces enhancements tailored for Tumblr data,
including optimized preprocessing techniques and model
configurations aimed at improving entity recognition
accuracy. The precision, recall, and F1-score metrics
quantify the effectiveness of each model in correctly
identifying entities within Tumblr posts as in figure 4. The
higher scores achieved by the DQEA framework
compared to SpaCy and NLTK indicate its superior
performance in capturing and categorizing entities
accurately from Tumblr content.

Table 3: NER performance

Model Precision | Recall | F1-Score
SpaCy 0.85 082 |0.83
NLTK 0.80 0.77 0.78
DQEA(Proposed) | 0.88 0.85 0.86
e-BDMS N/A N/A 0.85
Performance Metrics by Model
0.86 .5 oss 988y o5
0.78 0.77 0.
0.75
« 0.50 Metric
g [ F1-score
o - Precision
@ D Recall
0.25
0.00
DQEA (Proposed) NLTK SpaCy

Model

Figure 4. NER performance evaluation

Table 3 details the Named Entity Recognition (NER)
performance of various models, including SpaCy, NLTK,
the proposed DQEA Framework, and the previous E-
BDMS approach. The E-BDMS approach has N/A for
precision and recall because, similar to its sentiment
analysis evaluation, it was primarily assessed using the
F1-Score metric for different contexts and applications
rather than specifically for NER tasks. Despite this, the E-
BDMS approach achieved an F1-Score of 0.85, which is
slightly lower than the DQEA Framework’s F1-Score of
0.86. The DQEA Framework outperformed SpaCy and
NLTK significantly, achieving precision and recall values
of 0.88 and 0.85, respectively. In contrast, SpaCy achieved
a precision of 0.85 and recall of 0.82, resulting in an F1-
Score of 0.83, while NLTK had a precision of 0.80, recall
of 0.77, and an F1-Score of 0.78. These results underscore
the superior performance of the DQEA Framework in
NER tasks, providing a more accurate and effective
solution compared to traditional models and the previous
E-BDMS approach.
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Precision
Precision is the ratio of correctly predicted positive
observations to the total predicted positive observations. It
is an important metric when the cost of false positives is
high.
True Positives

Precision = — —
True Positives + False Positives

The DQEA Framework achieved a precision of 0.88,
outperforming SpaCy and NLTK, which recorded 0.85
and 0.80, respectively. This indicates that the DQEA
Framework is more effective in correctly identifying
entities without falsely labeling irrelevant data as entities.

Recall
Recall is the ratio of correctly predicted positive
observations to all the observations in the actual class. It

is crucial when the cost of false negatives is high.
True Positives

Recall =
True Positives + False Negatives

The DQEA Framework demonstrated a recall of 0.85,
compared to 0.82 for SpaCy and 0.77 for NLTK. Higher
recall signifies that the DQEA Framework is more
proficient at identifying all relevant entities within the
dataset.

F1-Score

The F1-score is the weighted average of precision and
recall, providing a balance between the two. It is
particularly useful when there is an uneven class
distribution.

Precision X Recalll
F1 — Score =2 X

Precision + Recal

CNN Analysis

Deep Neural Networks (DNNs), specifically
Convolutional Neural Networks (CNNs) like ResNet,
were employed to analyze image features extracted from
multimedia content within the dataset. Table 4
summarizes the results obtained from CNN analysis:

Table 4: CNN analysis results

Model Accurac | True Sensitivit | Specificit
y Positiv | y y
e Rate

CNN 0.92 0.88 0.87 0.93
(ResNet)
CNN 0.88 0.85 0.84 0.90
(VGG16)
CNN 0.91 0.87 0.86 0.92
(Inceptio
n)

The CNN models integrated into the DQEA

framework achieved high accuracy and true positive rates
in classifying images extracted from social media posts.
These results demonstrate the effectiveness of CNNs in
enhancing multimedia content analysis within the context
of social media data analytics. Table 5 shows the overall
performance metrics.
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Table 5: Overall performance metrics

Metric Naive SVM LDA NMF SpaCy | NLTK DQEA
Bayes (Proposed)

Sentiment  Analysis | 0.79 0.82 N/A N/A N/A N/A 0.87
(F1)

Topic Modeling N/A N/A 0.48 0.52 N/A N/A 0.63
(Coherence)

NER (F1) N/A N/A N/A N/A 0.83 0.78 0.86

CNN N/A N/A N/A N/A N/A N/A 0.92

The results clearly indicate that the DQEA  scores. Table 7 presents the specific improvements

Framework significantly enhances the quality and
reliability of social media data analytics. The sentiment
analysis component outperformed traditional models such
as Naive Bayes and SVM, achieving higher precision,
recall, and F1-scores. This improvement can be attributed
to the robust feature extraction and preprocessing
techniques employed in the framework.

In  topic modeling, the DQEA Framework
demonstrated superior performance with a coherence
score of 0.63, indicating that the extracted topics were
more semantically meaningful and coherent compared to
those obtained using LDA and NMF. This is likely due to
the effective integration of advanced feature extraction
methods and unsupervised learning algorithms.

Case Studies and Validation

The DQEA framework was rigorously validated
through two case studies focused on enhancing data
quality metrics in social media analytics. In Case Study 1,
significant improvements were observed in data noise
reduction (30%), bias mitigation (25%), and data
completeness enhancement (20%). Case Study 2
emphasized improving data consistency (35%) and overall
data quality scores (28%). Additionally, the framework's
features underwent validation against human coders on
Amazon Mechanical Turk, achieving a high inter-coder
reliability score of 0.85, highlighting its accuracy and
reliability in generating insights comparable to human
judgment. The DQEA framework was evaluated through
two comprehensive case studies aimed at enhancing data
quality metrics in social media analytics. In the first case
study, significant improvements were observed across key
data quality parameters. Table 6 summarizes the
quantitative improvements achieved.

Table 6: Data quality metrics improvement in case

study 1
Metric Improvement
Data Noise -30%
Bias -25%
Completeness +20%

These results demonstrate the DQEA framework's
effectiveness in reducing noise and bias while enhancing
data completeness, thereby addressing critical challenges
in social media data analytics.

In the second case study, the focus shifted towards
improving data consistency and overall data quality

achieved:

Table 7: Data consistency and overall quality
improvement in case Study 2

Metric Improvement
Data Consistency +35%
Overall Quality Score +28%

The substantial enhancements in data consistency and
overall quality underscore the framework's capability to
streamline data integration processes and improve the
reliability of insights derived from social media datasets.

5 Conclusion

This research has presented a comprehensive
framework, the Data Quality Enhancement in Social
Media Analytics (DQEA), designed to address significant
challenges in analyzing Tumblr data. The framework
integrates advanced data analytics techniques with
machine learning and natural language processing (NLP)
algorithms to enhance data quality, sentiment analysis,
topic modeling, and named entity recognition (NER).
Through empirical evaluations, it was demonstrated that
the DQEA framework outperforms existing methods such
as SpaCy and NLTK in terms of precision, recall, and F1-
score metrics across sentiment analysis and NER tasks.
Moreover, the framework achieved higher coherence
scores in topic modeling, indicating its effectiveness in
uncovering meaningful topics within Tumblr datasets.
Comparatively, the DQEA framework also showed
improvements over the Enhanced Business Decision
Management System (E-BDMS) approach. While the E-
BDMS achieved an F1-score of 0.86 in sentiment analysis
and NER tasks, the DQEA framework slightly
outperformed it with an Fl-score of 0.87 in sentiment
analysis and 0.86 in NER. These results highlight the
DQEA framework's capability to improve decision-
making processes by providing more accurate insights
from social media data. By leveraging state-of-the-art
techniques and customizing them for Tumblr-specific data
characteristics, the DQEA framework not only enhances
analytical capabilities but also contributes to advancing
research in social media analytics. Future directions for
this work include expanding the framework's applicability
to other social media platforms, refining algorithms for
even greater accuracy, and exploring real-time data
processing capabilities to keep pace with dynamic social
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media content. This continued development will further
solidify the framework's role in advancing the field of
social media analytics and providing valuable insights for
decision-making in various contexts.
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Even with the tremendous advancements in medical technology, the most laborious and complex work
that doctors still have to do is segment tumors. Radiologists most commonly employ magnetic resonance
imaging (MRI) to examine interior human body parts without dissecting them, although manual
inspection is time-consuming and wastes valuable work hours. Since it might lead to early diagnosis,
effective automated sorting of brain cancers from MRI images is crucial, reduce errors in work hours,
propagate automation in tumor removal, and aid in treatment decision-making. Computer-aided image
analysis can also be a potential solution for early disease detection, such as cancer or tumors. This paper
seeks to emphasize the strategies in light of these challenges. For physicians, identifying tumors in the
brain is still a highly challenging and lengthy procedure. despite the tremendous advancements in
medical technology. Early and comprehensive brain tumor detection may result in higher survival rates
since it enables effective and efficient treatment. Enhanced efficiency and consistent precision could come
from the computerized recognition and categorization of brain tumors. However, it is well recognized
that the strategy and picture modality have an impact on the accuracy performance of automatic
detection and classification technigques. The latest detection methods are reviewed in this work along with
their benefits and drawbacks.

Povzetek: Za kiasifikacijo in segmentacijo mozganskih tumorjev iz MRI je narejen pregled AI-heuristicnih
pristopov (CNN, DL) z poudarkom na predobdelavi (izenacevanje histogramov), izbiri znacilk in

primerjavi metod; sintetizira kljucne naborcke

(BRATS, OASIS, TCIA, IBSR ...). Izpostavi

prednosti/slabosti ter smeri nadaljnjega razvoja za zanesljivejso avtomatizacijo.

1 Introduction

We still don't entirely grasp how the brain of human’s
functions, despite it having the most complicated organ.
In the event that there is an anomaly, its effects are also
unclear and vary from person to person. A tumor is the
most hazardous of these abnormalities. There are two
stages to a tumor: benign and malignant. Benign types
are less dangerous since they are not invasive and, once
eliminated from the body, do not constitute a threat;
malignant types, on the other hand, are constantly
returning and are thus categorized as cancerous. The
only way to enhance a tumor patient's prognosis is to
identify and classify the tumor in its early stages. For a
while, manual examination was the accepted method
for identifying tumors in magnetic resonance imaging.
Many works regarding detection and classification have
been proposed recently due to advancements in sensory
and image processing technology. A variety of
approaches, including picture  categorization,
equalization of histograms, choosing features, removal,
categorization, and picture improvement. As the cancer
cells proliferate, a lump of tissue called a tumor is

created. Naturally, body cells divide and get substituted
by fresh cells. The presence of malignant and other
tumors considerably disrupts this stage.

Tumor cells proliferate and do not die like healthy cells
do, even if the body does not need them. As more cells
are added to the bulk throughout this phase, the cancer
continues to spread. One term for a primary brain tumor
that is rapidly spreading is "glioma." Glial tissue, from
which gliomas grow, supports and nurtures the cells
that carry messages from the brain to various body
areas. Benign and malignant (cancerous) brain tumors
are the two varieties. Body growths that are benign and
incapable of spreading to neighbouring tissue have been
identified as not malignant tumors. They are unlikely to
return and can be totally removed. Excruciating agony,
irreparable brain damage, and death are all possible
outcomes of benign brain tumors. They don't spread to
nearby tissue. There are no limits to malignant brain
tumors. Their rapid development and ability to extend
across the brain or spinal cord beyond their original
location can strain the brain.
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2 Brain tumor detection

According to the data, brain tumors account for the
greatest fatality rate worldwide. Symptoms include
mood swings, slurred speech, blood clots, weakness,
uncontrolled walking, hormonal changes, and vision
loss. The research claims that brain tumors are the
world's greatest cause of death.

Hormonal fluctuations, blood clots, weakness,
uncontrollably walking, slurred speech, loss of eyesight,
and mood swings are some of the symptoms. The type
of tumor is determined by its location, and an accurate
diagnosis can preserve the patient's life [1]. Benign
tumors are benign growths that do not have the ability
to spread to nearby tissue and are not malignant. They
can be eliminated entirely, and they are not likely to
come back. Benign brain tumors can result in death,
severe discomfort, and long-lasting brain damage, but
they do not spread to nearby tissue. There are no clear
boundaries for malignant brain tumors. They have the
capacity to proliferate rapidly, raising intracranial
pressure, and to disperse throughout the brain or spinal
cord beyond their initial site. A malignant brain tumor
seldom spreads to other parts of the brain.
Technological advancements have the capacity to
impact all facets of human existence. The medical
industry is a prominent illustration of how technology
has advanced human civilization.

Technology-assisted treatment of brain tumors,
which are among the most prevalent and fatal diseases
worldwide, is the main topic of this article. Every year,
a significant number of people lose their lives to brain
tumors. Over 700,000 Americans currently have
primary brain tumors, according to the "brain tumor"
website, and this number rises by an additional 85,000
every year. Both medication and artificial intelligence
have been used to overcome this issue.

For the diagnosis of brain cancer, magnetic
resonance imaging (MRI) is the most widely used
method. In the processing of images and medical
imaging, magnetic resonance imaging (MRI) is also
commonly used for recognizing changes in different
body parts. In order to identify present problems in the
field and propose future directions, we conducted a
thorough examination of prior attempts to apply
different deep learning algorithms to MRI data. One of
the subdivisions of deep learning that has shown
exceptional performance in evaluating medical images
is CNN. Consequently, our investigation focused on
processing medical images, namely brain MRI data, and
looked at a number of CNN configurations.

For children under 20, brain tumors rank as the
following most frequent cause of cancer-related
mortality and the fifth most common cause in those
aged 20 to 39, according to statistics from the Central
Brain Tumor Registry of the United States (CBTRUS).
A primary brain tumor often requires a 60-year-old
diagnosis. A brain or CNS tumor will also be diagnosed
in roughly 3540 children under the age of 15 in 2020,
according to the statistics [2] For humans, a brain tumor
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is a major therapy. A tumor is an abnormal brain cell
development. Two kinds of tumors are distinguished.
Malignant tumors are those that are cancerous, whereas
benign tumors are those that are not. Inevitably,
because of their quick growth, ability to spread. To
greater cortical and lumbar regions, as well as the
potential for death, malignant brain tumors are the main
reason for concern. The prompt identification of a
tumor is essential for its treatment; there are a number
of methods for diagnosing this condition, but doctors
first use imaging methods since they allow them to see

the tumor immediately.
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Figure 1: The structure of this survey

[ Conclusion

/

3 Techniques in brain tumor

detection

We go over the subjects that are connected to the
study's theme in this portion. The significance of
segmentation and classification in medical pictures is
examined first, in addition to the difficulty of
identifying brain malignancies in MRI pictures.

Our second area of study is artificial intelligence,
namely machine learning, deep learning, and neural
networks. Third, we incorporate CNN for image
processing and look at some applications of deep
learning in medical imaging.

In image processing methods, picture segmentation
and classification are used to divide the ROI. Image
segmentation and classification are essential for
comprehending, analysing, interpreting, and extracting
characteristics  from  images. Medical image
segmentation is a method for separating the image into
distinct areas or parts or establishing the region of
interest (ROI).
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3.1 Segmentation and classification with

MRI images

MRI Image Division and Classification When a brain
tumor's precise location is unknown, it may be
evacuated improperly or insufficiently, which
encourages the tumor's growth and spread. The chance
of dying rises under certain situations. This problem can
be avoided or mitigated by using methods for analysing
images. Techniques for processing MR scans might be
entirely computerized, partially automated, or manual.
Completely automated or partially automated
procedures are faster and more accurate than manual
ones in medical image processing. Furthermore,
because medical issues involve human life and expert
opinions are crucial, further study is still needed to
establish a completely automated and efficient
classification. Researchers have proposed several
methods to build these knowledge bases and so improve
the performance of tumor detection systems.

In neurology, magnetic resonance imaging (MRI) is a
commonly employed and flexible way of imaging the
brain's minute traits and other cranial structures. MRI
may indicate fundamental vascular problems alongside
blood flow.

An MRI scan can also help and benefit other brain-
related disorders like dementia [14], Parkinson's disease
[13], and Alzheimer's disease [12]. MRI images were
also used to examine the impact of COVID-19 on tissue
in the brain in [15][16], along with numerous other
disorders. Various datasets are offered for training and
testing. Table 1[20] contains typical datasets for MR
segmentation of images.

Table 1: MR image collections that are accessible

Ref. No | Dataset Description Features
In tandem with the
. MICCAI 2012 and
The Brain _Tumor 2013 conferences,
Segmentation Challenge Il Gavaliiame]
(BRATS) uses data from neu)r/al -
2012 to 2020 and is always
[17]- : (FCNN) and
BRATS focused on evaluating new e
[19] o . conditional random
and existing techniques for A
. S fields (CRF) are
brain tumor segmentation in utilized in the
multimodal MR images. .
segmentation of
brain tumors.
Over 2000 MR sessions are
gathered from many active
investigations through the Alzheimer's disease
[20]- WUSTL Knight ADRC and : :
OASIS . : diagnostic.
[21] are included in an open
access series of imaging
studies.
The public can obtain a P?:(;Let?gﬁ gggcfga d
large collection of cancer P
[22]- . and neck cancer
TCIA images from the Cancer L "
= Imaging Archive (TCIA) prediction. Bram_
’ tumor segmentation.
The brain dissection
repository on the internet. .
[61,[25] Its objective is to promote :\rﬂn? :Segr:der;lt(e:}::)n of
[26] IBSR the assessment and scrag in
' development of ping
segmentation techniques.
[27]- Brain Web It is a database of simulated CNN-based 3D MR
[29] brains. image restoration,
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MRI noise reduction,
and CNN-based
brain volume and
cerebrospinal fluid
segmentation

Access to picture archives is
provided by the National
Biomedical Imaging
Archive, which contains in
vivo images relevant to the
biomedical research
belonging, business, and
university.

Network for

[30] NBIA Parametric Imaging

Anyone may view PET and
MRI scans of both healthy

The and damaged brains on the I 2 iz i

neurons are used to

[31]- Whole Harvard Whole Brain Atlas,
[32] Brain and this website has dozens E)r(;ﬁd iﬁit;;es from
Atlas of actual images of the P ’
brain.
The MICCAI 2018
Ischemes Stroke Lesion .
Segmentation Challenge Segmemung s_troke
7], ISLES features a fresh dataset with gnd brain lesions
[33] independently

103 stroke patients that
matches expert
segmentations.

This issue may be partially resolved by an automated
model; for example, we can apply the object detection
and abnormality approaches. The effectiveness of
automated techniques is restricted to knowledge
databases due to a lack of expertise. Numerous
computerized techniques along with information bases
have been developed by researchers to increase the
efficacy of malignancy detection tools [25][26].

3.2 Deep learning approaches

Multi-level representation machine learning approaches
have been shown via deep learning. It has several
layers, each of which receives a representation from a
previous level as input. Using this structure, it is
possible  to  learn  exceedingly = complicated
characteristics and inferences.

Due to its many uses in a variety of fields,
including pattern identification, anomaly detection,
object or image detection, and natural language
processing, deep learning has been gaining a lot of
attention lately. Deep learning may be very helpful for
applications such as natural language processing,
pattern identification, anomaly detection, and image
detection. The three distinct subgroups of artificial
intelligence (Al) are convolutional neural networks
(CNNs), pre-trained unsupervised networks (PUNS),
and recurrent/recursive neural networks (RNNSs).

Learning deeply in the medical field provides
physicians with the means to make better decisions and
more accurate diagnoses and treatments.

3.3 Complexes of neurons

In order to find patterns in large amounts of data,
neurons are sets of algorithms that mimic how the brain
of humans works. Neural networks (NNs) and deep
learning (DL) have outperformed conventional
techniques in object recognition in recent years.

Given their powerful representational skills and
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increasing prominence in modeling abstract notions,
NNs may be able to acquire intricate hierarchical
representations of images.

They are quite good at extrapolating data that has never
been seen before. This characteristic enables them to
identify a wide variety of items whose appearances also
differ significantly [24] NNs provide neuroscientists a
novel method for understanding complicated behaviors
and varied brain activity in neural systems [33]. The
ability to train neural networks end-to-end and their
ability to powerfully generalize previously unseen data
are two of its advantages.

3.4 Learning through machine learning

A logical extension of computer science and statistics is
machine learning. Internal components of machine
learning parameters are independently tuned to promote
learning. To create feature extractors, machine learning
techniques  [64][65][66][67] require  meticulous
engineering and domain knowledge expertise: This led
to the creation and introduction of a convolution neural
network (CNN) by Yann LeCun [27][28] that is capable
of learning to derive elements.

The domain is medical imaging has experienced a
notable transformation due to the advancements in
machine learning and soft computing techniques [44].
The selection of data attributes that machine learning
techniques are used to affects how effective the
techniques are.

Machine learning is clearly useful for extracting
radiomic information from photos, as Lambin initially
noted in [45]. They discussed the limitations of solid
cancer, despite its enormous promise for medical
imaging and feature extraction. Radiomics tackles this
issue by extracting many image characteristics from
radiography images; nevertheless, additional validation
in multicentric settings and in the laboratory is still
required. Typically, radiomic characteristics determine
a single scalar value that represents the full three-
dimensional (3D) tumor volume. An example of a
useful classifier is a decision tree. Results that can be
fed into the classifier are linked to specific qualities.
ML pinpoints the key elements that result in the greatest
level of prediction ability.

4 Literature survey

A summary of recent medical studies on identifying
tumors is given in this section. Medical image
processing includes the classification of images for the
purpose of identifying and identifying abnormalities
based on magnetic resonance imaging. [3] presents the
key characteristics of the various forms of brain tumors
as well as the segmentation and classification methods
that are useful for detecting a variety of brain diseases.
For MR images, this study presents the most relevant
guidelines, practices, constraints, strategies, and
preferences. The reviews in [51] provides the creation
of a computerized method for the detection of brain
tumors using MRI utilizing artificial neural networks;
feature extraction is advised for the image segmentation
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methods gathered for this study. The recommended
approach produced the greatest results (99% accuracy
and 97.9% sensitivity) in tests. Article [52] suggests an
artificial intelligence learning-based approach to
identifying tumors in the brain. To extract attributes
based on texture, the grey level co-occurrence matrix
(GLCM) is utilized. The categorization technique
considers 212 samples of brain MR images and uses the
Naive Bayes machine learning method with opinion. In
[53], the tumor identification potential of the CNN-
based planned division method is explored. To detect
cancers from MRI images, classification via SVM is
done by employing the MATLAB software.

A summary of tumor identification methods and
procedures based on findings from medical imaging is
available in [54]. Using BraTS 2015, an entirely
computerized approach for brain tumor identification
and localization with U-Net-based deep convolution
networks has been presented in [55]. In this study, the
brain sectioning of tumors model that does not require
contact between people is presented.

Accurate segmentation was achieved in [56] by
combining deep learning and manually created features
for photo segmentation using the grab-cut technique. In
[57], an automated technique It is designed to extract
and classify tumors from MRIs using features selection
and marker-based watershed segmentation. The most
challenging example of brain tumor was diagnosed by
the investigators using deep CNN in Ref. [9]. Their
database has 1258 MRI pictures from 60 different
patients that were produced with MATLAB software.
96% of the study's data were credible.

Cognitive imaging techniques provide plenty of ideas
for improving picture data exchange across different
systems [58]. Radiologists may now more accurately
identify benign and dangerous malignancies from MRI
pictures of breast lesions thanks to artificial intelligence
[59]. More accurate patient identification by
radiologists thanks to Al may enhance the prognosis
and treatment plan for those patients.

A high-performance method was created in [60] to
identify and describe the existence of a disc rip on a
knee MRI scan. The literature on radiomics, or artificial
intelligence (Al), and all types of medical imaging
modalities for the oncological and non-oncological uses
of conventional medicine is summarized in [61].

A broad overview of MRI image processing and
analysis using deep learning is provided in [62]. In [63],
a deep learning algorithm is combined with an end-to-
end training methodology to create a deep learning
method that can accurately detect breast cancer from
screening mammograms. The key ideas of deep
learning for the interpretation of medical images are
explained in [39].

Convolutional neural networks' possible direct use
to brain tumor tissue segmentation was examined by
Darko Zikic et al. [26]. The issue is that for every point
that needed categorization, the network received multi-
channel intensity data from a tiny region. To take
scanner variations into consideration, the input data was
pre-processed using only standard intensity. The CNN
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output did not undergo any post-processing. In their
survey [27], Jose Bernal et al. looked at CNN
techniques, concentrating on MRI image interpretation
structures, pre-processing, data preparation, and post-
processing phases. They investigated novel approaches
and the creation of multiple CNN design.

In [8], Amin Kabir et al. developed a methodology
based on the integration of CNN with biological
algorithms. They suggested employing flagging as a
team approach to quietly categorize distinct stages of
gliomas based on MRI scans in order to decrease the
variety of prediction error. Jin Liu and Min Li [1]
introduced the idea of dividing brain tumors using
strategies and provided preprocessing techniques for
applications such object recognition, registration, and
MRI-based sectioning of brain tumors. False positives
are successfully eliminated by the 3D completely linked
dependent random field employed in [7]. They also
proposed a 3D CNN architecture for automated lesion
segmentation.

In order to encourage deep neural networks to
acquire stronger multifaceted features, the dual-force
training technique was suggested in [28]. Roughly
totally convolutional network with an adjustable input
size that enables efficient inference and learning while
producing an output of a similar size is the central idea
of [29]. To segment and evaluate images slice per slice,
Havaei et al. [4], for instance proposed using FCNN. In
an effort to solve the issue of class imbalance, a
multiple stages training program was also suggested.
Multimodal brain tumor image segmentation was
demonstrated by Menz et al. [19]. This approach may
be classified as discriminative or generative. For 3D-
based deep learning components, Fritscher et al. [12]
introduced a CNN with three convolutional passes.
displayed a multi-modal picture DCNN. [13]. Three
different designs were proposed, each with a different
patch (input) size" Using a patch technique for brain
tumor segmentation also shown that the parabolic
determine and patch measurement had an impact on the
outcomes.

With two adjustments, this model's efficiency is
similar to that of the U-Net CNN the field of
architecture: (1) From one network stage to the next,
feature mappings are assigned via element-wise
summation and (2) it combines multiple segmentation
maps made at different sizes [23]. Based on medical
imaging data, the Hand and brain MRIs are subjected to
a CNN-based method using multifaceted filters in [34].
Along with two changes to an existing CNN
architecture, strategies to overcome the aforementioned
issues are also examined. This model might be the best
in both ischemic stroke lesion segmentation (ISLES)
and BraT$S 2015.

Since segmentation as well as the hardest and most
crucial are classification. image processing subjects for
brain tumor research, they are the focus of this survey.
The technique of breaking up a single image into
multiple parts is called segmentation. Segmentation can
also be carried out based on functional regions, tissue
kinds, etc. Tumor segmentation is accessible in three

Informatica 49 (2025) 589-600 593

different types: completely automatic, semi-automated,
and manual. In a completely automatic technique, all
work is done by computers; often, this approach is
coupled with artificial intelligence, which makes use of
CAD systems and machine learning algorithms.
Medical picture analysis and recognition are automated
by machine learning. Since clustering employs group
data that meet certain similarity requirements, it is the
most popular unsupervised segmentation technique for
brain tumors. MRI picture segmentation requires
automated methods since MRI scans generate a lot of
data. Before being segmented, images need to be pre-
processed  for  specific  segmentation  goals.
Preprocessing includes a number of procedures, such as
intensity, normalization, de-noising, and skull-stripping.
Often, segmentation is done by hand, which limits
the ability to undertake an objective qualitative
evaluation and is time-consuming and difficult for
radiologists. The subjective opinions and experiences of
the judges constitute the foundation of the manual
sorting process. It may therefore contain mistakes. In
practice, therefore, it is very desirable to have fully
automated and accurate brain tumor segmentation
systems. For medical imaging to monitor the expansion
or shrinkage of tumors in patients during treatment,
segmentation is crucial.
Additionally, during surgery and tumor volume
assessments, it can be used to identify areas that contain
tumors. Many of the methods employed for
neurological tumor categorization, including support
vector machines (SVM), fuzzy c-means (FCM), k-
means, Markov random fields (MRF), Bayes, and
artificial neural networks (ANN), are based on
classification or clustering techniques.
Computational and discriminatory models are the two
types of brain tumor segmentation models. The
foundation of predictive models is domain-specific
information regarding the appearance of tumorous and

healthy  tissues.  Generative models  comprise
conditional random fields and Markov random fields
(MRF).

CNN is one of the neural networks that may
directly learn the link between segmentation labels and
picture intensities, obviating the necessity for domain
expertise [19]. In a pattern classification setting, these
models are capable of handling the segmentation
problem. Because deep convolutional neural networks
(DCNNs) can learn information on their own and give
complicated function mapping, they are used in
complex image processing. This method comes in two
varieties: patch-based and end-to-end. The path-based
technique feeds the network patches, which are usually
odd and fixed size, with the class of the central pixel as
the output.

One type of conventional neural network is the
multilayer perceptron (MLP). Using a perceptron for
each input is one of MLP's drawbacks, which leaves it
uncontrollable for images with a lot of weight. Another
problem is the discrepancy between MLP's response to
input (images) and its modified form. Since spatial
information is lost when a picture is flattened into one,
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MLPs are not a viable choice for image processing.
Convolutional neural networks are among the most
successful deep learning techniques for image analysis
to date, and they have significantly improved the field
of image processing.

When it comes to solving difficult machine learning
problems, (CNNs/ConvNets) have  advanced
significantly. One of the main classes of neural
networks is CNN. CNN image classifiers look at
incoming photos and divide them into categories like
cats and dogs. CNN is tasked with reducing the size of
a picture to facilitate processing without compromising
any of the crisp features required for a precise
prediction. CNN does a great job of analyzing images
and recognizing features. CNN is necessary for many
deep neural network applications. As demonstrated by
their recent impressive achievement of visual analysis
tasks, including recognizing and segmenting of
pictures, CNNs may be able to automatically identify
the most valuable characteristics in images. These
neural layers—the kernel, pooling, fully connected, and
Soft-Max functions—process every data input. A CNN
stream in its entirety that analyses an input image and
classifies items according to values is displayed in Fig.
1. CNN is made up of several layers that alter their
input slightly using convolution filters. The three core
layers of a convolutional network are convolutional
(sets of learnable filters), pooling (used to minimize
image size and prevent overfitting), and fully connected
(used to merge spatial and channel data). Fig. 1
displays the CNN layers. The majority of these
networks' layers make use of convolution operators.
CNNs have been employed in recent years to segment
Deep brain anatomical characteristics, cerebral
microbleeds, and lesions associated with MS. Since
thousands of MRI pictures of various sorts and quality
are utilized for diagnosis, CNN is employed to classify
images of brain tumors because it can reduce high
computing expenses.

CNN has the capacity to further reduce the
dimensions and automatically extract features. CNN has
done a good job at utilizing massive brain structures for
medical picture analysis. Statistical algorithms, also
known as convolutional networks, have swiftly
emerged as the preferred technique for interpreting
medical images.

Table 2: CNN Modalities analysis
Ways of
Training
and Testing

Scheme Dataset Achievement

2015 Parallel convolutional

BRATS TS pathways provide an effective

and 2015 Y multi-scale processing solution

ISLES for huge image contexts.

2017 Excellent quality attributes

BRATS Two-force with multiple levels were

and 2015 learned via dual force training.

BRATS

2013 enabled more sophisticated
Using CNN-based segmentation

BRATS . .

and 2015 patches methpr_is_ for brain MRI images

BRATS by utilizing 3x3 kernels.

PEEEY ImageNet  Using

obtained highest-1 and highest-
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DCNN LSVRC patches 5 failure rates of 37.5% and
2010 17%, respectively.
BRATS T1,T1lc, T2 Combining_ _Conditional
2013 and FLAIR Random Fields with FCN to
images segment brain tumors.
BRATS T1,T1lc, T2 As demonstrated at MICQAI
and FLAIR 2013, a novel CNN design
2013 : :
images increased speed and accuracy.
BRATS T1,Tic, T2 Combining Conditional
2013 & and FLAIR Random Fields with FCN to
2016 images Segment Brain Tumors
Enhance FCN and brain tumor
BRATS segmentation filters to enable
Rely on [Elk] Sl @ [H automatic  subcortical brain
FCN area segmentation.
ISBR and
ABIDE categorized subcortical brain
a7 End to End areas automatically using FCN
different and 3D convolutional filters.
sites)

The most popular CNN designs are ZFNet, VGGNet,
GoogLeNet LeNet, AlexNet, and ResNet, they are put
into practice via CNN. The most often used CNNs for
image segmentation are U-Net, SegNet, and ResNet18
[18].

Yann LeCun created LeNet, the first popular instance of
a network of convolutions, in the 1990s [19]. For
instance, the LeNet architecture is employed for
decoding zip codes and digits. One of the LeNet models
that can recognize a single character with 99.2%
accuracy is LeNet-5, a CNN model with five layers.

Table 3: Different CNN architectures are examined [5]
Architecturg

s Layers Advantages Disadvantages
Larger, stronger layers Sometimes )
. overestimation occurs,
LeNet-5 7Layers are required to process ity built-i
higher quality images. N tERR (S I8 Ul I
" | way to prevent this.
A extremely quick Soon after, using huge
8 Lavers downsampling of the convolution filters
Y intermediate (5x5) is discouraged
AlexNet 60M . .
representations using | because they are not
Parameters .
maxpooling layers and | deep enough compared
convolutions to other methods.
enhanced image
e Because feature maps
classification rate are not split between
ZFNet 8 Layers VERELEDY Wi two GPUs, there are
compared to the 2012 many connections
ILSVR champion
AlexNet between layers.
In order to provide the
network a greater
22layers 4- width and depth,_ the It somewhat difficult to
ILSVRC2014 winners .
GoogleNet | 5M manage due of its 138
arameters reduced the amount of million attributes
P parameters from 60 ’
million (AlexNet) to 4
million.
The
optimal
number of
layers It is now the most Has 138 million
VGGNet between popular choice for parameters, making it
11 and 19 feature extraction from| somewhat difficult to
is 16. photos. manage.
138M
parameters
The network learns the
difference to an Overfitting would
identity mapping increase testing but
ResNet 152 layers (residual); if the decrease training error;

identify is nearer the
optimal, the
convergence is faster.

it is less complex than
VGGNet.
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The first widely used convolutional network was the
AlexNet, created by Alex Krizhevsky [16]. With eight
major layers altogether, AlexNet's initial five layers are
convolutional layers and its final three levels are fully
linked layers. ReLU is utilized in order to improve
AlexNet's speed and accuracy. Microsoft Research
introduced the ResNet, or residual neural network, in
[17]. In ResNet, layers are reformulated while learning
functions. As network depth increases, residual
networks become more accurate and are simpler to
optimize. GoogleNet has 22 layers and was created by
Szegedy etal. [10]. It is far more in-depth than AlexNet.
AlexNet has sixty million parameters, whereas
GoogleNet has four million. Inception-v4 is one of the
most popular GoogleNet versions. A comparison of
CNN designs is shown in Table 2, and a number of
examples of medical CNN architectures are shown in
Table 3.

Table 4: CNN's design and its goals [8].

Accuracy

Tensorflow detection of brain

99%
tumors
LeNet-5
Sort the brain o_f an Alzheimer's 96.85%
patient.
X-ray of lung nodules in the chest 64.86%
AlexNet ;
Thyroid U.Itrasou.nd Image 90.8%
Diagnosis
Skin lesion taxonomy 96.86%
VGGNet-16 Categories of brain tumors
84%
o 0
GoogleNet Ide-n-tlfy!ng Prostate-Cancer 95%
Classification of thyrpld nodules 98.29%
on ultrasound pictures
ResNet X-ray of lung nodules in the chest 68.92%
Category of brain tumors 89.93%
0,
Diagnosis of pancreatic tumors eI
The developments and obstacles
ZefNet facing deep learning's edge )

reconfigurable platforms in the
future

A variety of postprocessing techniques were suggested
in order to refine the prediction results of CNNs in
network designs. Architecture of CNN and their targets
are tabulated in Table 4. For example, 3D-CRF was
selected in [7] for postprocessing, which reduces each
voxel's Gibbs energy to correct segmentation findings.
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Table 5; CNN methods in medical domain [11].

Testing

sample Achievement

Features Methods Accuracy

Improving the
performance of
fine tuning and 98.29%
argumenting the

image samples

Can remodel the

current, time-

consuming and

non reproducible -

Type, size,

shape, DCNNand  Thyroid
tumor googleNet nodules
features

Size, tumor
features,
doughnut

FCN, VGG- Colorectal
16, U-Net tumors

shaped manual
lesion segmentation
method.
ResNet18, Ezsgzt;i:gth
REMIsas . weighted loss
. ResNet52 Pancreatic .
Type, size " r— fun(_:tlon method  91%
Inception- achieves the best
ResNet results to classify
tumors
Possible
togeneralize this
method to
. Alzheimer’s predict different
;?f:e’ S ﬁm::gd disease stages of 96.85%
classification Alzheimer’s
disease for
different age
groups.
JR/elellole | Transfer . . Higher
image learning and (si||:1ISnSiI:iSCIaOt?OS . performance than ~ 96.86%
lesions Alex-net existing methods
VGGNet
IGEGE it i Prostate cancer  Cnanced 95%
lesion, type [EGEREN] prediction

DCNN

Showed that
accuracy
obtained by
CNN on
BreaKHis dataset
was improved

Textures AlexNet Breast Cancer

Furthermore, based on the voxel intensities and tumor
area volume, Havaei [4] provided precise forecasts that
are out of the ordinary in areas around the skull. In [16],
a more intricate post-processing pipeline that depends
on the volume of the anticipated region, the voxel
intensity, and other factors is provided. For the purpose
of pulmonary nodule identification, Setio et al. [17]
employed multi-view convolutional networks, using a
network architecture made up of multi-stream 2D
CNNeE.

Breast cancer is the second leading cause of cancer-
related mortality in the United States. Breast cancer
mortality is decreased with mammography screening.
CNN Medical methods in medical domain collected and
tabulated in Table 5. To increase guessing accuracy in
mammography screening, the CAD system is utilized.
Convolutional layers make up the input of a
contemporary CNN, whereas one or more fully
connected (FC) layers make up the output. VGG and
residual (Resnet) networks were compared to CNN
techniques in the Shen et al. [63] research. With an
emphasis on  reliability and  categorization
enhancements, this table presents a variety of models
and performance metrics that highlight current
developments in machine learning-based brain cancer
diagnosis.
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To reduce the characteristics chart, a visual
geometry group (VGG) block stacks several 3 ~ 3
convolutional layers using 2 x max pooling. The
performance of the final classifiers depends on how
well the patch classifier’s function. Colorectal cancer
(CRC) is the third most common cancer diagnosed [28].

M. S. Prasad et al.

MRI has specific benefits when it comes to determining
the precise location of tumors in cancer of the colon.

In order to extract features from an image of a
colorectal tumor, the primary model utilized in [30] was
VGG-16. Five side-output blocks were utilized for data
categorization and localization. Table 6 discusses CNN

Deep Learning

Hybrid Deep Learning

Transfer Learning

Random Forest (RF)

Support Vector Machine
(SVM)

Ensemble Learning

UNet Architecture

Graph Neural Network

(GNN)

Federated Learning

Convolutional Neural

Network (CNN)

CNN +
Neural
(RNN)

Recurrent
Network

VGG16, ResNet50

RF Classifier

SVM Classifier

Bagging and Boosting
(XGBoost)

Deep Neural Network
(DNN) - UNet

GNN Model

Collaborative
Learning

Deep

BRATS Dataset

BRATS 2020

BRATS Dataset

Local
Dataset

Hospital

Public Brain MRI

Dataset

Multi-center MRI
Data

BRATS 2022

BRATS 2023

Multiple MRI

Datasets

techniques in medicine.
Table 6: Current brain cancer detection research

Accuracy: ~92%

Accuracy: 93%

Accuracy: ~95%

Accuracy: ~90%

Accuracy: 85-88%

Accuracy: 94%

Dice Score: 0.87

Accuracy: ~92%

Accuracy: ~91%

When it comes to automatically segmenting and
classifying brain cancers from MRI scans, CNNs
perform admirably.

Combining CNN for feature extraction and RNN
for temporal analysis, enhancing tumor detection
in dynamic brain MRls.

Pretrained  models  fine-tuned  for  tumor
classification using smaller datasets, reducing
training time.

Effective in distinguishing between tumor and
non-tumor regions, but less effective with high-
dimensional data.

Works well for binary classification (benign vs
malignant), but struggles with multi-class
problems.

Improves robustness and reduces overfitting by
combining multiple machine learning algorithms.

Highly effective for segmentation tasks,
especially in capturing complex tumor shapes and
boundaries.

GNN models better capture the spatial
relationships in brain tumor data, enhancing
segmentation accuracy.

Protects patient privacy by training models across
different institutions without sharing data.



A Review on Artificial Intelligence Based Heuristic...

5 Conclusion

One of the biggest issues facing modern society is
protecting people from known ailments like brain tumors.
The latest technological advancements in medical
imaging have been influenced by deep learning and other
artificial intelligence techniques. Large datasets that are
used to train algorithms to detect abnormalities can be
reliably analyzed thanks to these methods. Artificial
neural networks (ANNSs) are a common type of machine
learning model used in image processing applications like
segmentation and classification.

Other sophisticated CNN models have also been
suggested for related applications. Since the objective of
image processing techniques is to recover contaminated
and abnormal regions from magnetic resonance imaging
(MRIs), segmentation is a crucial step. When it comes to
pinpointing the exact site of tumors in colon cancer, MRI
offers particular advantages. VGG-16 was the main
model used in [30] to extract characteristics from a
picture of a colorectal tumor. Five side-output blocks
were used to localize and categorize the data. CNN
approaches in medicine are included in Table 6.

We looked more closely into CNN, examining its various
designs and applications in medical imaging. Based on
our research, we were able to pinpoint the domain's
current issues and provide a list of possible future
directions for this topic. This paper focused on the
outcomes of different CNN architectures used in medical
image processing.
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A neurodegenerative disorder called Parkinson’s disease (PD) is identified at the increasing loss of
neurons that produce dopamine in the substantia nigra region of human brain. It significantly impairs
motor and non-motor functions, thereby diminishing the overall quality of life in affected individuals. A
novel framework is proposed for detecting early stage of PD, employing Deep Neuro-Fuzzy System
(DNFS) optimized with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Data utilized
for this analysis are extracted from 16 image slices showing striatal uptake content in the striatum, named
as volume-containing DaTscan image slices (VCDIS) taken from the database called Parkinson’s
Progression Markers Initiative (PPMI). The shape and texture characteristics of segmented VCDIS are
utilized as features which are combined with Striatal biding ratio (SBR) to distinguish Healthy Individuals
(HI) from early-stage PD (EPD). The dataset includes values of 620 DaTscan images with SBR values:
430 from EPD cases and 190 from HI. The effectiveness of the framework is evaluated using 70:30 and
80:20 split ratios, based on metrics such as accuracy, loss, F1 score, precision, and recall. The DNFS-
PSO model is presented an impressive accuracy of 98.77% and an error rate of 0.0199 for the chosen
features using a 70:30 data split. The outcomes of the proposed model potentially aid clinicians in prompt
diagnosis.

Povzetek: Za zgodnje odkrivanje Parkinsonove bolezni iz SPECT (DaTSCAN) je uveden globoki sistem
(DNFS), ki zdruzi CNN-izbor znacilk in fuzzy-pravila, optimizirana s PSO in GA, na 16-slojnih VCDIS

(PPM]I). Znacilke: oblika/tekstura + SBR.

1 Introduction

Parkinson’s Disease (PD) is an advanced neurological
disorder impairing the central nervous system (CNS) at
the degeneration of dopaminergic neurons within
substantia nigra in the midbrain. It leads to a considerable
reduction or complete depletion of dopamine, a
neurotransmitter essential to regulate motor control and
coordinate communication between the brain and the
limbs. PD is generally recognized as a age-related
disorder, with an estimated global prevalence of
approximately 1% among individuals over the age of 55
[1-4].

Motor and non-motor symptoms are the clinical indicators
to identify PD. Tremors, shuffled gait, stooped posture,
Freezing of Gait (FoG), dysphonia, and bradykinesia are
categorized as the primary motor symptoms. Whereas
anosmia affecting the sense of smell, fatigue, disrupted
sleep patterns, fluctuations in body weight, alterations in
mood and cognitive function, coronary artery

complications, as well as digestive tract problems are non-
motor symptoms which become apparent only in the later
stages. As these symptoms are not found in the early stage
of individuals, detecting PD in its early stage (EPD) is
exceptionally challenging [5]. To address this, a novel and
resourceful approach is required to discriminate between
HI and EPD [6-8], and being done using Single Photon
Emission Computed Tomography (SPECT) images which
are known as DaTscan images [8].

DaTscan image slices are employed to quantitatively
measure dopamine transporter levels in putamen and
caudate regions of the brain, providing a comprehensive
assessment. Traditionally, trained radiologists have
performed standard examination for assessing DaTscan
images. These images are taken from Parkinson’s
Progression Markers Initiative (PPMI) database. The
database is an international and multicenter database that
tracks the disease, its progression and conducts regular
assessments of patients to identify new biomarkers that
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assist experts in diagnosing the disease [9]. Thus, these
images significantly help in identifying EPD.

The methods of identifying EPD with the help of SPECT
images initially rely on Visual Inspection (VI) of the
striatum’s appearance. This approach is time-consuming
and lacked reliability, with experts often differing in their
observations, leading to variability in both individual and
collective findings. VI offers around 5% of false rate in
diagnosing DaT scan Images [10]. Efforts to enhance
disease identification are accelerated by extracting
features from a 2D slice and subsequently from averaged
image slices that achieves 97% of accuracy [11]. Later,
changes in DaT content and striatum shape during the
early stages are monitored through investigation of 3D
images consist of 91 slices [12]. However, the complexity
of 3D image investigation received limited attention from
clinical practitioners, prompting the necessity of simpler
and more accurate technique for EPD identification.
Anita et al. [13] suggested a simplified model to address
the above said diagnostic challenges, utilizing 12 image
slices of a SPECT image as a single slice and records
98.23% of classification accuracy. However, this method
falls short in effectively diagnosing EPD, as it leaves
several slices that are essential for capturing the complete
shape and structure of the striatum. Hence, a novel
approach is introduced recognizing a set of sixteen slices
(slices 34 to 49) as a 2D slice (2D) that capture the entire
shape of the striatum to enhance the diagnostic accuracy
and model simplicity.

Furthermore, image processing techniques, including
preprocessing, segmentation, and feature extraction, have
significantly aided to the clinical experts in disease
diagnosis. The extracted features are utilized to identify
neural disorders by categorizing individuals using
Machine Learning (ML) algorithms. Though, the
performance of ML algorithms like Extreme Learning
Machine (ELM), Support Vector Machine (SVM) and
Artificial Neural Network (ANN) offers appreciable
results, it is greatly influenced by the presence of
redundant and irrelevant features in the dataset, leads to
over-fitting issues. To enhance the performance, it is
essential to eliminate these unnecessary attributes and
choose optimal subsets of features which in turn reduces
the over fitting issues. Hence, the hybrid intelligence
algorithm called Deep neural fuzzy system (DNFS) [14]
has been proposed to learn the deep relationships between
the features for the first time in diagnosing EPD.

DNFS, a part of Artificial Intelligence (Al), integrates the
adaptive learning capabilities of Deep Neural Networks
(DNNs) with the reasoning power of Fuzzy system
addressing challenges particularly in handling nonlinear,
imprecise and high dimensional data [15,16]. Its
effectiveness extends in the realm of medical image
analysis and classification [17]. Aversano developed a
deep learning model hybridization with a fuzzy layer that
process the data from various feet sensors of PD patients.
The fuzzy layer aids in managing uncertainty and
imprecision in the sensor data and offers the classification
accuracy of 85.83% due to presence of more parameters
[18]. To enhance diagnostic accuracy, a CNN is applied to
shape, texture features, and SBR for optimal feature
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selection. Additionally, the fuzzy system generates rules,
which are further optimized using PSO and GA.

Here are the key contributions of the proposed model.

1. An innovative method for the early identification
of PD with the help of SPECT images is presented.
Out of 91 slices in each SPECT image, only the 16
image slices (34 to 49) exhibit a rich striatal uptake
content. Therefore, those image slices are
specifically selected to enhance the diagnostic
accuracy [13] as they provide a comprehensive
analysis of the striatum’s shape. Consequently, the
substantial performance in recognizing EPD is
achieved utilizing biomarkers like SBR values,
shape and texture attributes of VCDIS.

2. The DNFS is applied for the first time to diagnose
early PD which utilizes shape, texture features and
SBR values as inputs for the framework. However,
the traditional frameworks encounter challenges
related to predefined rule sets in fuzzy system (FS)
and fixed model size in Convolutional neural
networks (CNN). To address these challenges, the
DNFS integrates a Convolutional Neural Network
(CNN) with a Fuzzy System (FS) in a dynamic
framework. In this architecture, the CNN selects
the most prominent features, the Fuzzy System
formulates the rule sets, depending on the nature of
the input data.

3. Particle swarm optimization (PSO) and Genetic
algorithm (GA) are used by Deep neuro fuzzy
system for optimizing dynamic fuzzy rules that
ensures effective and relevant rule alone in learning
process. These optimized rules are performing a
significant role in diagnosing EPD by reducing
redundant data and conflicting fuzzy rules. By
deriving the most effective fuzzy rule sets through
GA and PSO, the system aims to minimize
classification errors and support early, accurate
diagnosis of PD.

The following sections are systematized as: Section 2
offers operational workflow of this novel model,
accompanied by a diagrammatic representation. Also
delve into the preprocessing, segmentation, and feature
extraction algorithms employed, as well as introduce the
DNFS, PSO and GA algorithms utilized in the framework.
Section 3 discusses the results and comparative analyses.
Finally, Section 4, offers conclusions.

2 Methodology overview

The proposed system’s procedural workflow, as depicted
in Figurel, involves the extraction of features such as
shape and texture features, that include area, entropy,
mean, correlation, and sharpness estimation from VCDIS.
Additionally, Striatal Binding Ratio (SBR) values from
different brain regions-Putamen_R (Pu_R), Caudate R
(Ca_R), Putamen_L (Pu_L), and Caudate L (Ca_L)-are
combined with shape and texture features to form the
complete feature set. CNN selects the most important
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features from this set. The FS then frames rules based on
the input data, and these rules are optimized using Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA)
to improve classification accuracy.

2.1 Study cohort in detail

Diagnosis of EPD relies on the analysis of VCDIS and the
calculation of SBR values. The image slices and SBR
values are obtained from PPMI database. It contains
SPECT images categorized into two groups: Early
Parkinson’s Disease (EPD) and Healthy Individuals (HIs),
as determined by expert evaluation [11]. In total, 620
images are collected for research purposes, with 190 from
HIs and 430 from EPD patients. EPD patients are selected
based on a mean tstandard deviation of Hohen and Yahr
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stage (H&Y) of 1.50 £ 0.50 (criteria 1 and 2 of Hoehn and
Yahr Scale)

The reliability and consistency of the images in the
database are ensured as they were preprocessed. The
preprocessing steps include iterative image reconstruction
to enhance the robustness of the images. Subsequently, the
images’ anatomical alignment is made standardized
through the application of spatial normalization and
attenuation correction [19]. As a result of these
preprocessing steps, the processed images have
dimensions of 91x109x91 cubic voxels, each with a width
of 2mm, following the DICOM format. To calculate the
SBR values, the slices with the highest uptake regions are
averaged and following formula is used.

SBR = (Pu_L+ Ca_L+Pu_R+Ca_R) -1

occipital region

@)

Image Acquisition from PPMI |

!

]

J

Extract features form 16
Imageslices
Mean
Entropy
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{

SBR values form PPMI
Database
Caudate Left (Ca_L)
Caudate Right (Ca R)
Putamen Left (Pu_L)
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| Feature extraction using CNN |

!
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il

| Classification |

Figure 1: Operational sequence of Deep Neuro-Fuzzy system

2.2  Selection procedure for rich striatal

uptake image slices

DaTscan or SPECT images are acquired when a drug
(radiopharmaceutical) binds specifically to the dopamine
transporters in the brain. Each captured DaTscan image
contains ninety-one slices, ranging from the bottommost
to the top of the brain as shown in Figure 2. Among these
slices, only few are relevant for identifying PD. Those
most significant slices are alone selected for the
investigation of the present work that exhibit high specific
uptake content. The remaining slices, where striatal uptake
content gradually diminished to nearly imperceptible
levels are omitted.

This approach aligns with the guidelines set forth by the
Society of Nuclear Medicine (SNM) [20] and enhances
the ability to identify the presence of disease. Building
upon the recommendations of SNM, Prashanth et al. [21]
specifically averaged slices numbered from 34 to 49 and
identified them as having high striatal uptake.
Subsequently, Anita et al. further refined this selection by
selecting 12 slices as a single 2D slice from this range to
develop an accurate diagnostic system for EPD. To
improve upon this prior system, proposed system has
chosen 16 slices, as showed in Figure 3. These 16 image
slices provide valuable three-dimensional information
derived from 2D image slices, offering a simpler yet more
effective technique compared to the 12 VRIS [13]. Since
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EPD has a direct impact on the size of the striatum, the
proposed work opted for VCDIS because they maintain
the continuity of the striatum’s shape.
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Figure 2: Ninety-one SPECT Image Slices of HI

2.3 Image Preprocessing and segmentation boundaries by taking into account the average noise in
The preprocessing method utilized here is a bilateral filter, ~ neighbouring pixels. The mathematical expression that
which aims to enhance the striatum’s appearance while  characterizes this filter’s behavior at a given input pixel
simultaneously improving its edge definition. The filter ~ location, denoted as ‘x,” can be described as follows
achieves this by calculating the combined weights of

neighbouring pixels. The intensity of the pixels and their — 1 (
spatial distance from one another are used to calculate () = EZYGN(")e
these weights. This filter effectively retains the image’s

(X2-Y2) ) (—I(XZ—YZ))
e

2xsigma_d?2/ p\2+sigma_r2

@)
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Figure 3: Selected slices of rich striatal uptake image
slices

The weights corresponding to the spatial and intensity
domains are represented by the parameters ‘sigma r’ and
‘sigma_d’, respectively, in the equation. N(x) represents
the spatial relationship between adjacent pixels in the
image, and a constant "C" is also utilized for
normalization. The formula for this normalization
constant, ‘C’ could be

( (x2-v2) ) ( 1(x2 Y2)>
C = ZyEN(x) e 2+sigma_d?2 e 2xsigma_r? (3)

This equation has been effectively employed to achieve
consistent and well-defined edges in the image, as it helps
in reducing noise [22]. The goal here is to isolate regions
of high intensity from the surrounding areas in the image,
particularly focusing on segmenting the striatum from the
background based on intensity. To achieve this, a
straightforward segmentation method is applied, known as
thresholding. This technique simplifies the process of
extracting the region with high striatal uptake while
minimizing the impact of noise outside this region. The
DaT (Dopamine Transporter) content within the striatum
exhibits a gradient from lower intensity in the putamen to
higher intensity in the caudate within the VCDIS.
Therefore, VCDIS are employed with a specific threshold
value (separate value for EPD and HI) to accurately
segment the image. The region of interest is represented
as ‘1,” while the remainder of the image is marked as 0,
according to the binary representation produced by this
segmentation [19].

2.4 Feature extraction

The primary objective of feature extraction is to obtain
quantitative information for distinguishing HI from EPD
cases. The link between grayscale levels in an image and
the striatum's morphology changes results change of
dopamine levels within the striatum. The shape is changed
from a "comma" to a "dot" by this transition.
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Consequently, the texture and shape characteristics are
proven to be effective discriminators between the
anatomical structures of HI and EPD. To achieve this
discrimination, various features, including mean, area,
entropy, correlation, and sharpness estimation are
computed from the VCDIS [19, 21, 22]. These features are
derived from the binary images and are quantified using
the equations provided in Table 1

2.5 The Concept of DNFS

Table 1: The detailed description of the shape and texture
features used

Features Formula
Mean — Z(l J)
uuy) =
Correlation Y (i, ])mj
o2
Entropy -sum (p *log2 (p))

Area A=Y P;;
Sh?}I’P@SS S% — S, Sx- The ratio of distinct
Estimation (sharp) pixels to pixels found at the

edges.
SBR (Pu_L+ Ca_L+Pu R+Ca R/
occipital region) — 1

Where, p — Probability of the gray level, N - pixels’
number, ¢ - standard deviation, yu - mean value

Deep Neuro-Fuzzy Systems (DNFS) represent a better
version of the Adaptive Neuro-Fuzzy Inference System
(ANFIS) and the Deep Neuro-Fuzzy Inference System
(DNFIS). DNFS integrates the learning capabilities of
artificial neural networks with the interpretability and
reasoning power of fuzzy logic, forming a hybrid system
adept at handling time-varying, dynamic, and non-
stationary data more effectively [23]. As an advanced
hybrid Artificial Intelligence (Al) model, DNFS combines
Fuzzy Logic (FL) with Deep Learning (DL) across
multiple stages to address complex classification tasks in
the diagnosis of EPD. This integration allows the system
to extract and utilize deep, high-level features from
various forms of medical data while preserving the
semantic transparency and rule-based structure of fuzzy
systems [24].

In the context of PD diagnosis, DNFS operates using nine
input features like mean, entropy, correlation, sharpness
estimation, area, and SBR values from left and right
putamen (Pu_L, Pu_R) and caudate (Ca_L, Ca_R). The
system yields a single binary output indicating whether the
person is suffering from PD or not. The dynamic nature of
DNFS enables it to adaptively frame its system structure
in response to the characteristics of the input dataset. This
adaptability  contributes to enhanced diagnostic
performance, particularly in identifying EPD, where
subtle and non-linear patterns may otherwise be difficult
to detect using conventional models.

The key conceptual structure of DNFS is stated below.
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25.1 Input layer:

The input layer combines shape, texture features like
mean, entropy, correlation, area, sharpness estimation and
the SBR values. Hence, it is named as multimodal dataset
which is given to Convolutional Neural Network (CNN)
for capturing hidden relationships between the features.

2.5.2  Feature Selection using CNN:

CNN is incorporated here to learn and select meaningful
temporal and spatial correlations of the features
automatically. It also eradicates noises present in the data.
CNN uses two stages of Convolutional layer of filter size
32 and 64, kernel size 3 and the activation function RELU
is chosen in such a way that it selects most prominent
features from the dataset. A max pooling layer with a pool
size of 2 is used to reduce spatial dimensions and eliminate
redundant information, while a dropout layer is employed
to prevent overfitting by randomly deactivating neurons
during training. The sigmoidal activation function is final
layer of DNFS that is utilized to convert the features into
non-linear representations or classifying the features.

2.5.3  Fuzzification or Fuzzy Layer:

This layer plays an important role in interpreting the input
dataset. It maps the shape, texture features and SBR values
into fuzzy linguistic terms (e.g. low, medium and high)
and makes human-understandable decisions for
diagnosing EPD. The Gaussian membership function
(GMF) is used for providing a smooth transition between
membership degrees. The mathematical expression of
GMF is given as

_ (x—c)2

p@) = e = (4)

Where X, ¢, 6 denote input value, mean value and standard
deviation of the inputs respectively

254  Rules sets:

DNFS uses data to create "if-then" fuzzy rules
with the help of FS. These rules verbally express the
connections between certain features (mean, area, and
SBRvaluesof Pu_L,Pu_R, Ca_L, and Ca_R) and outputs
(whether or not the person has PD). FS frames sample
rules as:

IF Area is x;and Mean isx2 and Ca_L isx3and Ca_R i
x4 and Pu_L is x5 and Pu_R is x6 THEN q =01

IF Area isy; and Mean isy2 and Ca_L isy3 and Ca_R is
y4 and Pu_L isy5and Pu_Risy6, THEN g =02
where X1, X, ... and y1, y2.... are fuzzy sets and 01, 0y, ...
are constants [25].

The algorithms GA and PSO are used to optimize the
fuzzy rule sets for accurate calculation of the EPD by
minimizing  classification errors, redundant and
conflicting rules. In order to improve the rules’
interpretability, classification accuracy, and redundancy,
the fuzzy rule layer of DNFS uses PSO and GA. These
algorithms ensure that the generated rules are the most
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effective in distinguishing EPD from HI. The conceptual
procedure of both the algorithms is given below.

(a) Procedure for Genetic Algorithm

The GA follows an evolutionary approach to refine fuzzy
rules in DNFS workflow. The procedure begins with an
initial population of arbitrarily made rule sets that are
assessed using a fitness function. The selection method
picks the most optimized rule sets, which then undergo
crossover to generate combinations of new fuzzy rule,
preserving crucial forms among the features. In addition,
mutation is utilized to prevent the algorithm being stuck
with local optima. This iterative process continues until a
maximum convergence is met. By optimizing fuzzy rules
and membership functions, GA enhances decision-making
in DNFS, leading to more exact and reliable PD diagnosis.
The Conceptual procedure portrays in Figure4.

Creates set of fuzzy rules as Population

Evaluates the fitness of each rule

Selects the best fuzzy rules

Exchanges two parent rules to create a
new rule.

Changes the rules randoml

Replaces worst-performing rules with
new rules

®
o
0
o
©
Q

Repeat steps 2-5 until the rules stabilize
Figure 4: Conceptual procedure for GA

ga) (b) Rule Optimization using PSO

PSO is employed for optimizing fuzzy rules to enhance
classification accuracy of EPD diagnosis. It is a
population-based algorithm that draws inspiration from
fish and bird swarm intelligence. The work flow of PSO is
depicted in Table.2

Table 2: The overall work flow of PSO

Step 1 | Initialize the Swarm

Step 2 | Evaluate Fitness of Each Rule

Step 3 | Identify Best Rules

Step 4 | Update Velocity & Position of Rules by
adjusting rule parameters

Step S | Update Rules & Repeat

Step 6 | Select Optimized Rules [26]
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255 Aggregation and Defuzzification Layer

Each fuzzy rule generates a fuzzy set based on the selected
features. The aggregation layer combines multiple fuzzy
sets to generate a final fuzzy output. The Weighted
Average Aggregation (WAA) method is applied in
diagnosing EPD due to its capability of considering the
strength of all rules and handling the noise, uncertainty of
the dataset. WAA computes a weighted sum of all the
fuzzy rule and its mathematical equation is given as

X(0;.0;)
Tuny = E552 ®
where a; and w; denotes membership value and weightage
of the fuzzy rule.

The aggregated fuzzy output is transformed into a clear
number value by the final defuzzification layer, indicating
whether or not the patient has EPD. It provides the output
with the help of Centre of Gravity (CoG) that produces the
most stable and accurate diagnosis by handling
overlapping fuzzy sets well. The CoG is expressed as

Y o).y
= ZeO 6
2= 5w ©)

where o(y) and y; denotes membership value, and
discrete output value.

Table 3: Parameters of particle swarm optimization
(PSO)and genetic algorithm (GA)

Parameter Typical Value
range
Genetic Algorithm
Population Size 20
Mutation Rate 0.2
Crossover Rate 0.7
Selection Method Tournament
Selection, size =3
Number of Generations 1000

Particle Swarm Optimization

Swarm Size 20
Inertia Weight (w) 0.5
Cognitive Coefficient (c1) 1.5
Social Coefficient (c2) 1.5
Velocity Limits (Vmax) 0.7

Number of Iterations 1000

To determine whether the patient has the disease or not,
the threshold value (0.5) is applied to the defuzzification
output. To make generalization between the chosen
features and a single output, the DNFS classification
model’s workflow adjusts the GMF's hyperparameter. The
training and testing datasets are separated into 70:30 and
80:20 sections.

Jothi S. et al.

With the stopping condition set at 1000, the
hyperparameters of optimization algorithms like GA and
PSO are selected based on refined through empirical
testing to ensure stable convergence and high
classification accuracy as shown in table 3. And the Table
4 provides the pseudo code for the DNFS classification
process.

Table 4; Training procedure for DNFS

1. Load VCDIS and extract the features like shape,
texture and SBR values.

2. Frame DNFS classification model

Select the prominent features using CNN

Define membership function to the features

Frame rules automatically using FS for features

Optimize the rules using GA/PSO.

Aggregate the fuzzy rules

defuzzification

Estimate the performance indicators (Loss,

Accuracy, F1-Score, Recall, Precision)

g. Classify effectively EPD from HI

Po0 o

and perform

—h

3 Results and discussions

3.1 Image processing

The bilateral filter, which preprocesses the VCDIS,
evaluates performance using sigma_d (spatial) and
sigma_r (intensity) as the two parameters. To identify the
ideal filter parameter values, an analysis [27] is carried
out. According to this research, sigma_d is between 1.5
and 2.0. In this study, image edges are preserved by using
a value of 1.5. However, a lesser number, such as 0.1, is
selected because sigma_r changes greatly with noise
levels. For the processed image to be accurate, the
parameter values are essential. The processed (filtered)
VCDIS for both HI and Early PD are shown in Figure 5(ii)
and (v), which show variations in dopamine transporters.
In EPD, the content of the dopamine appears decreased to
be like a dot or like a circular within one side of the
striatum, but in HI, it appears comma-shaped.

Initially, in EPD, the content of dopamine is notably
absent in the putamen, corresponding to regions with low
intensity values. Subsequently, the caudate also
experiences a loss of DaT content. The suggested
approach uses a thresholding technique to segregate these
high-intensity regions, starting from the left side of the
striatum and working its way to the right. To ensure
objectivity in the segmentation process, a normalizing
process is done before thresholding [28]. The average and
standard deviation (SD) of the threshold values is
determined to be 2.1e4+0.5 for EPD and 1.8e4+0.7 for HI
after careful assessment. The VCDIS histogram values are
used as the basis for selecting these threshold values. The
segmented images, shown in Figure5 (iii) and (vi), exhibit
a substantial distinction between EPD and HI when
compared to prior research [13]
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(vi)
Figure 5: The original, processed, and segmented VCDIS for EPD (i, ii, iii) and HI (iv, v, vi)

Table 5: Average and SD values of the features

EPD HI
Features
Average SD Average SD p level

Area 240.000 70.440 385.689 30.854 0.01
Mean 466.257 51.508 688.136 12.885 0.00
Correlation 0.542 0.082 0.682 0.055 0.03
Entropy 0.174  0.082 0.195 0.031 0.02
Sharpness Estimation 12.828 5.766 15.182 1.811 0.00
Ca_R 1.984  0.611 2.933 0.604 0.03
Ca L 1.994  0.600 2.967 0.618 0.03
Pu_R 0.856  0.397 2.119 0.582 0.01
Pu L 0.822  0.375 2.116 0.573 0.02

p denotes the significant level of EPD and HI(p<0.05).

3.2 Extraction of feature

It is clear that EPD is typified by a decrease in DaT
content, which causes the striatum—more especially, the
putamen and caudate regions—to shrink. As the DaT
content decreases, the natural shape, which resembles a
comma, changes to a smaller, dot-like or circular look in
EPD. This transformation enables quantitative
measurement of the striatal areas. The VCDIS texture
features show how the gray levels interact. Shape and
texture extracted features include mean, area, correlation,
entropy, and sharpness estimation. SBR values are also
included to improve classifier performance. Table 5 shows
the average and SD values of features for Hl and EPD. The

table highlights important deviations between HI and EPD
features, suggesting higher performance in accurate
classification and easier processing, which is confirmed
by the p-value of HI and EPD, which is less than 0.05 and
falls within a 5% acceptance level.

The striatal area (comprising putamen and caudate) is
notably smaller in EPD compared to HI, measuring
240.000 and 385.689 respectively. These measurements
underscore substantial changes in EPD. Features that
show higher values in HI but lower values in EPD include
mean, area, entropy, and correlation. This indicates
significant differences between features linked to shape
and texture, which eventually improves classification
accuracy.
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Table 6: The Linguistic terms and its values of selected features

Features Low Medium High
Area 126.38 t0 200.12 202.36 to 299.37 300.75 to 661.31
Mean 183.75 to 349.50 350.12 to 448.75 450.00 to 661.37
Ca L 0.51t02.28 2.29t0 3.42 3.43t04.61
Ca R 0.36 to 2.00 2.01 t0 3.00 3.01 to 4.96
Pu L 0.34 to 1.97 1.98 to0 2.49 2.50to 3.52
Pu R 0.29 to 1.09 1.10 to 2.06 2.07 t0 2.99
3.3 Performance of DNFS framework with score, precision, and recall values (MeantSD) of

optimized algorithms

DNFS procedure starts with selecting the most prominent
features using simple two stage CNN model. The model
learns non-linear relationships among the data and selects
the most optimized features such as Area, Mean, Ca_L,
Ca R, Pu_L and Pu_R. These selected features are
utilized further for diagnosing EPD. These features are not
varying sharply; but gradually. Hence, these gradual
transitions are captured by GMF and gives the realistic or
linguistic terms like low, medium and high as given in
Table.6

Table 7: The fuzzy rule for diagnosing early stage PD

IF Area is Low AND Pu_L is Low AND Pu_R is Low
THEN it is Early PD.

IF Ca_L is High AND Ca_R is High AND Pu_L is
Medium AND Pu_R is Medium THEN it is HI

IF Mean is Low AND Pu_L is Low THEN it is Early PD
IF Ca_L is Low AND Ca_R is Low AND Mean is Low
THEN itis Early PD

IF Area is High AND Mean is High AND Ca_L is High
AND Ca_R is High THEN it is Normal

The linguistic terms like low, medium and high values of
the features are utilized for framing fuzzy rules using
GMF. The average number of fuzzy rules framed are
18.2+2.3. Some of the fuzzy rules are given in Table. 7.
These rules are optimized using GA and PSO.

The DNFS-PSO and DNFS-GA models are created and
run separately to predict EPD. The redundant rules
removed from the rule sets are 12.6%, 7.4% for DNFS-
PSO and DNFS-GA respectively. 70% and 80% of the
data are utilized for training the models with 1000
iterations, and the remaining portion is used for testing.
Table 8 displays the average (Mean) performance metrics
over 1000 iterations of the developed DNFS-PSO and
DNFS-GA for various learning rates of 0.001, 0.01, and
0.1 in terms of accuracy, loss, F1 score, precision, and
recall. A detailed look at table 8 shows that the best model
for EPD prediction is DNFS-PSO, with accuracy, F1-

98.77+1.02%, 0.99+0.12, 1.040.01, and 0.99+0.10 for the
splitting ratio of 70:30 and learning rate of 0.01
respectively. With a splitting ratio of 70:30 and a learning
rate of 0.01 for detecting EPD, DNFS with PSO provides
the best results in terms of loss, accuracy, precision, recall,
and F1-score. Figure 6 and 7 shows the performance graph
(1000 iterations) of two optimization algorithms, DNFS-
GA and DNFS-PSO models, for learning rates 0.001, 0.01,
and 0.1 for 70:30 and 80:20.

With a loss of 0.0199, the DNFS-PSO model offers the
lowest. According to the performance metrics, the
suggested DNFS augmented with PSO is more effective
than DNFS-GA at diagnosing PD. The model accurately
predicts the negative (HI) and positive (EPD) cases in
categorizing Hl and EPD, as indicated by the precision and
recall values of 1.0+0.01, and 0.99£0.10 respectively.
When the learning rate is 0.01 the model does well. An
excessively high learning rate (0.1) can cause uncertainty,
whereas 0.001 is too small causes sluggish convergence.
Therefore, in the proposed study, the learning rate is set at
0.01 based on empirical method. The table demonstrates
that both DNFS-PSO and DNFS-GA achieved
commendable diagnostic accuracy. Additionally, the
statistical significance of both frameworks is confirmed,
as the p-values for p1 (70:30 split) and p2 (80:20 split) are
below 0.05.

The system’s performance is measured by comparing it to
machine learning and optimization techniques and it
displays the extreme level of accurate accuracy across all
the networks, as demonstrated in Table 9. This new
method's diagnostic accuracy is strongly linked to the
earlier research. To minimize bias, variation, and
overfitting, the suggested method uses 10000 iterations
and an optimum methodology for selecting features,
producing reliable and consistent results. For specialists in
differentiating between EPD and HlI, this method is easy
to use and practical, and it eventually produces better
results than the systems discovered in the literature. In
addition, the proposed model offers best performance due
its dynamic nature in framing rule sets and self-adapting
model.
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Table 8: The Averaged performance Results of DNFS-PSO and DNFS-GA

Splitting Ratio 70:30 Splitting Ratio 80:20
Evaluation
Metrics DNFS-GA DNFS-PSO DNFS-GA DNFS-PSO - -
Training Testing Training Testing Training Testing Training Testing
Learning Rate: 0.001
Loss 0.1769 0.1342 0.1897 0.1654 0.1897 0.1051 0.1887 0.1754 0.04 0.05
Accu. (%) 97.85 98.310 98.390 98.310 95.970 98.80 98.230 98.31 0.04 0.04
F1-Score 0.9636 0.9887 0.9735 0.9888 0.9315 0.9967 0.9735 0.9812 0.03 0.04
Precision 0.975 0.9924 0.9821 0.9851 0.9714 1.070 0.9721 0.9751 0.04 0.03
Recall 0.9298 0.9850 0.9649 0.9825 0.8947 0.9934 0.9630 0.9825 0.05 0.05
Learning Rate: 0.01
Loss 0.2633 0.2444 0.0013 0.0199 0.0209 0.0536 0.0195 0.0019 0.03 0.02
Accu. (%) 94.93 97.32 99.92 98.77 99.80 98.11 99.14 97.99 0.01 0.03
F1-Score 0.9247 0.9524 0.9925 0.99 0.9967 0.9867 0.9825 0.9880 0.03 0.05
Precision 0.8824 0.9259 0.9831 1.0 0.9935 1.0 0.9831 0.9985 0.02 0.04
Recall 0.9712 0.9804 0.9825 0.99 1.0 0.9737 0.9825 1.0 0.04 0.02
Learning Rate: 0.1
Loss 0.0116 0.0045 0.0034 0.0677 0.0885 0.0562 0.0287 0.0016 0.04 0.05
Accu. (%) 97.31 98.16 99.82 98.19 97.58 98.60 98.66 98.79 0.03 0.04
F1-Score 0.96 0.9892 0.9995 1.0 0.9565 0.9765 0.9895 0.999 0.04 0.03
Precision 1.0 0.9793 1.0 1.0 0.9706 0.9835 1.0 0.999 0.04 0.03
Recall 0.9231 0.9792 0.9925 1.0 0.9429 0.9642 0.9775 0.999 0.03 0.04
Learning_Rate : 0.001 Learning Rate: 0.01 Learning_Rate : 0.1
Accuracy over Epochs Accuracy over Epochs Accuracy over Epochs
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Figure 7: Performance plot for DNFS PSO for the splitting ratio of 70: 30
Table 9: Comparative analysis of the literature
S. No. Details Methodology used Performance (%)
1 Anita et al [13] VRIS with RBF-ELM 98.23
2 El-Hasnony et al. [15] Fog-based ANFIS+PSOGWO model 87.50
3 Balasubramanian K et al [16] | Modified glow worm swarm optimization algorithm 95.00
(M-GSO)
4 Prashanth et al. [21] Averaged single image slice with SVM 97.29
6 Proposed Work DNFS -PSO 98.77

4 Discussion

The proposed DNFS framework, optimized using PSO
and GA, demonstrates high accuracy in detecting Early
Parkinson’s Disease (EPD) using VCDIS images.
Bilateral filtering with 6_d= 1.5 and 6_r = 0.1 effectively
reduces noise while preserving edge details. Thresholding
and normalization  techniques enable accurate
segmentation of dopamine-rich regions, revealing clear
morphological differences between EPD and HI,
particularly in the putamen and caudate.

Feature extraction based on shape, texture, and SBR
values highlights significant statistical differences (p <
0.05) between the two classes. A two-stage CNN selects
key features, which are converted into linguistic terms
using GMF and refined through fuzzy rule optimization
via PSO and GA.

Among the models, DNFS-PSO achieves superior
performance, with 98.77+£1.02% accuracy, 0.99+0.12 F1-
score, and minimal loss of 0.0199 at a learning rate of 0.01
and 70:30 data split. Performance graphs confirm the
model’s robustness and stability. The results validate the
framework’s effectiveness in early-stage PD detection and
classification.

5 Conclusion

Parkinson’s disease (PD) is a crippling neurological
condition that significantly lowers a person's quality of
life. The progressive loss of dopamine-producing neurons
in the mid-region of the brain, which is the hallmark of
PD, emphasizes the importance of early detection and
treatment. To improve prediction accuracy and enable
early intervention, researchers are always experimenting
with different approaches and technology. A major
breakthrough in the field of EPD diagnosis is represented
by the novel prediction framework of the proposed study,
which combines Deep Neuro-Fuzzy Systems (DNFS)
with Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA). Using loss, accuracy, precision, recall,
and Fl-score as performance metrics, this model was
thoroughly assessed using Volume Containing DaTscan
Image Slices (VCDIS) from the Parkinson's Progression
Markers Initiative (PPMI). With an impressive 98.77%
classification accuracy and low error rates, the study's
findings are incredibly encouraging. Crucially, this
performance  outperforms previously — documented
classification techniques in the body of current research,
confirming the DNFS-PSO model's capacity to forecast
Parkinson's disease in its early stages. This study
represents a significant milestone in the quest to improve
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the early identification and management of Parkinson’s
Disease. In the future, a range of diverse techniques and
optimizations will be employed to achieve superior
performance
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This paper proposes a hybrid forecasting framework combining ARIMA and LSTM to predict real-time
electricity supply and demand, aiming to capture both linear-seasonal patterns and nonlinear
fluctuations. A cloud-native platform with microservice architecture is constructed to support high-
concurrency data processing and elastic resource allocation. Experimental results show that the hybrid
model reduces average prediction deviation by 12.5% compared to traditional methods, with 92.3%
accuracy. The cloud platform achieves 73% higher processing efficiency under 1000 concurrent
requests than traditional systems, providing technical support for real-time electricity market
operations. At the same time, the cloud computing system proposed in this project has the scalability
to realize massive transaction data. At the same time, it can realize real-time response to massive
transaction data. This provides important support for the effective operation of China's power market.

Povzetek: Za napovedovanje povprasevanja elektricne energije je razvit hibridni model ARIMA—-LSTM,
kjer ARIMA zajame linearno/seasonalno komponento, LSTM pa nelinearne ostanke, vpet v oblacno-

native mikroservisno arhitekturo z elasticnimi viri za visoko socasnost.

1 Introduction

With the rapid development of real-time trading
technology, the supply and demand relationship of the
power grid is becoming increasingly close. Through
effective regulation of power supply and demand, the
dynamic regulation of power generation and power
consumption by power generation entities according to
real-time electricity prices is realized. Since electricity
demand is affected by many factors such as seasons,
climate, and economic activities, it is subject to great
fluctuations and uncertainties. Accurate forecasting of
the supply and demand relationship of the power grid is
the key to ensuring the smooth and orderly operation of
the power market. Some scholars have proposed a real-
time power demand forecasting method based on time
series analysis. With the rise of emerging industries such
as big data and cloud computing, new forecasting
systems based on big data are gradually being replaced.
Cloud native systems, with their high concurrency and
scalability, can achieve instant response to a large
amount of market information. This lays a solid
foundation for the realization of intelligent power grid
management.

Since existing research results cannot adapt well to

the characteristics of seasonal changes, reference [1] uses
the ARIMA model to model the power system. This
study proposes a new method based on ARIMA to predict
the dynamic changes of the power market.
However, the existing research methods often cannot
cope well with market price changes caused by multiple
factors for complex and nonlinear data. Reference [2] uses
LSTM to predict the power grid load, thereby overcoming
the medium- and long-term correlation problem of the
power grid. Researchers use the "storage" mechanism of
LSTM itself to better grasp the long-term trend of the
power market. The research results show that the long
short-term memory model has good application prospects
for nonlinear data, especially in the prediction of short-
term power market. However, this algorithm relies
heavily on massive historical data, which makes its
learning cost high and has limitations for sudden market
fluctuations. Reference [3] proposed a new method for
electricity price forecasting using multiple single
prediction models. Scholars used this method to establish
an electricity price forecasting method. This model
combines the advantages of several different algorithms,
which greatly improves stability. Especially in the face of
complex market environments, it can perform better.
However, due to its large amount of calculation, it
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requires a lot of computing resources and computing
power. In order to overcome the inability of existing
power market price forecasting models to meet the needs
of massive data, some scholars have studied an
expandable method. Cloud computing technology can
dynamically allocate computing resources to meet the
real-time forecasting requirements of the power market
for data. However, the software system currently
developed has problems such as a single calculation
method, inability to make good use of time series
characteristics, and inability to improve forecast
accuracy.

This project integrates time series forecasting
methods with cloud native technology to build an
efficient and accurate real-time power demand
forecasting system [4]. This paper first designs a real-
time power demand forecasting method based on time
series models such as ARIMA and LSTM, and conducts
in-depth research on the characteristics and applicability
of various methods. Secondly, the supply and demand
forecasting system for cloud computing environment is
studied to realize the dynamic allocation and real-time
processing of massive data. The system adopts a
structure based on "container” and "micro”, which makes
it highly scalable and flexible. In this way, it adapts to
the changing requirements of real-time power grid.

2 Design of time series prediction

algorithm
2.1 Analysis of power supply and demand
data characteristics

The supply and demand relationship of electricity
consumption has obvious characteristics such as
seasonality, periodicity, and randomness. Seasonality
refers to the seasonal law of electricity consumption [5].
That is, the peak of electricity consumption is in winter
and summer. Its cycle is mainly reflected in the change
of daily electricity consumption, mainly in the difference
between weekdays and weekends; while randomness
refers to the irregular changes in electricity demand
caused by emergencies (such as weather, emergencies,
etc.). Common data preprocessing includes sliding mean
and exponential smoothing. In these cases, the moving
average smoothing can be expressed by the following
equation:

St = % i=ton+1 Xi @

S; is the smoothing value at time t, x; represents the
actual data at the i time point, and n represents the size
of the moving window. Smoothing operations can
eliminate short-term fluctuations in the system and
enhance the stability of the system.

To denoise the noise, wavelet analysis, Fourier
analysis, etc. are usually used. Wavelet analysis is a
multi-scale signal processing method [6]. It can process
signals in multiple frequency bands to filter out high-
frequency signals. After noise processing, the obtained
curve can better reflect the change law of actual power
load.
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2.2 Design of ARIMA model

The ARIMA model is defined as an autoregressive
integrated moving average model with parameters
(p,d, q), where:

e p: Order of autoregressive terms

e d: Degree of differencing for stationarity

. q : Order of moving average terms

The mathematical formulation is:

¢(B)(1 — B)*y, = 6(B)e; )

where B is the backshift operator, ¢(B) =1 —

¢1B — - —¢,B? is the autoregressive polynomial,

6(B)=1+6,B+--+6,B9 is the moving average
polynomial, and €, is white noise.

For seasonal adjustment, the SARIMA model
(p,d,q)(P,D,Q)_S is adopted with seasonal period S (set to
24 for daily seasonality in this study). Its formulation:

¢(B)P(B5)(1 - B)*(1 - B5)"y; = 6(B)O(B%)¢; (3)

where ®(B5) and ©(B%) are seasonal autoregressive

and moving average polynomials of order P and Q,
respectively [7].

2.3 Design of LSTM model

The LSTM network architecture in this study consists of:

. Input layer: 128 neurons (corresponding to 24 -
hour historical load features)

. Hidden layers: 2 LSTM layers with 64 and 32
neurons, respectively

. Dropout rate: 0.2 (to prevent overfitting)

e Output layer: 1 neuron (predicted residual
value)

Key training parameters:

. Learning rate: 0.001 (optimized via grid search)

. Batch size: 32

. Epochs: 100 (with early stopping if validation
loss plateaus for 10 epochs)

. Optimizer: Adam

*  Loss function: Mean Squared Error (MSE)

2.4 Design of hybrid model

The existing modeling methods based on neural networks
cannot effectively solve the current demand and supply
problems. Especially when faced with a large amount of
information with different characteristics, conventional
statistics and deep learning methods have their own
advantages. This paper constructs a composite prediction
method that integrates ARIMA and LSTM to realize the
respective advantages of the two in each period [8]. The
main idea of this method is to use ARIMA to characterize
the linear and seasonal changes in the time series, and use
LSTM to describe the nonlinear changes of the data. This
project intends to use the ARIMA model to make a
preliminary linear forecast of the observed data, and use
this forecast value as a sample, and use LSTM to correct
the forecast value.
The hybrid model workflow:
»  Linear component extraction: Use SARIMA(
2,1,1)( (1,1, 1) 24 to model linear-seasonal
trends, generating primary forecast Y a ¢
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. Residual calculation: €, = ¥, — Yariv A

. Nonlinear correction: Train LSTM on residuals
to predict &,

*  Final forecast: ¥, = Yarmmat + €:

Model evaluation metrics include:

. Root Mean Squared

/%Z?:l e — Pe)?

*  Mean Absolute Error (MAE): %Z?:l lve — 9¢l
*  Mean Absolute Percentage Error (MAPE):
~iy [P % 100%
t

Error (RMSE):

—yn
n&t=1

3 Cloud native platform architecture
design
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Accurately forecasting the supply and demand
relationship under real-time trading conditions is an
important part of ensuring the smooth and effective
operation of the power grid. For this reason, a "cloud
native" model of power supply and demand is proposed
[9]. The system adopts a variety of methods such as
containerization, microservice structure, and self-
expansion. It has strong elasticity and can adapt to the
changing power market requirements.

3.1 Flow calculation and real-time
forecasting

Real-time performance is very important in power

generation systems. Using cloud computing technology,

the entire process from acquisition to forecast results is

completed. Figure 1 shows the data processing flow.
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Figure 1: Data stream processing and real-time prediction process.

At present, there are still many problems in the
collection of supply and demand data in China's power
market. This system adopts a message queuing
mechanism such as Apache Kafka to realize the real-time
transmission of various information. The streaming
process architecture is mainly for the real-time
processing of streaming data. This architecture ensures
that the data is processed and predicted when it is
generated, thereby reducing the data latency [10]. The
core of real-time forecasting is the rapid response to the
market. The system adopts multi-layer buffering
technology to improve the reading rate of the system.
This project intends to adopt time series prediction
methods such as ARIMA and LSTM to realize the
prediction of dynamic changes in demand and supply.
The platform gives full play to the efficient computing
function of the cloud to realize real-time warning of high
concurrency of the power grid.

3.2 Microservices and containerized
deployment

This project proposes a dynamic time series analysis
method based on object-oriented. Each time series
prediction algorithm is encapsulated into a separate
document container. In order to ensure the consistency of
the algorithm, the model can work in multiple physical
or virtual environments. This paper proposes a new

container-based computing method, that is, it supports
multiple computing instances to execute simultaneously
on multiple nodes to meet large-scale marketing needs
[11]. Among them, data acquisition, data processing,
prediction algorithm and other parts realize their own
functions. They communicate through REST API or
information queue, so that the coupling degree between
modules is low. Its advantage is that it has strong
flexibility, allowing developers to upgrade a module
without interfering with other functions. The
microservice architecture also supports the parallel
operation of multiple versions, which is convenient for
A/B testing and performance comparison of algorithms.
The platform uses CI/CD pipeline technology to complete
the automatic configuration of the module. Whenever a
developer modifies it, the CI/CD pipeline will
automatically generate a new container image. Then
configure it to the Kubernetes cluster. This method greatly
reduces the time for update iterations while ensuring high
availability and stability.
The cloud-native platform's distributed computing
model follows:
e Scalability metric: R(t) = A(t) X S, where A(t) is
request arrival rate, S is average service time
. Load balancing algorithm: Weighted round-robin
based on node CPU/memory usage ( < 70%
threshold)
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. Fault  tolerance:  Active-standby  container

redundancy with Raft consensus protocol

*  Latency constraint: End-to-end processing <
500 ms (99th percentile)

3.3 Flexible expansion and resource
allocation

The supply and demand relationship in the real-time
power generation system is a dynamic process, which
requires the system to be able to expand flexibly and
meet the computing requirements of different time
periods to a certain extent [12]. The cloud-native
architecture can realize real-time dynamic adjustment of
business needs through autonomous expansion and
resource allocation to ensure efficient work under peak
conditions. At the same time, it can also ensure that
resource loss is reduced under low load conditions.

Automated expansion: Cooper can automatically
expand according to load. When a large amount of
market data is found, more containers will be
automatically opened to share these additional operations
[13]. This expansion is instantaneous and can ensure
system performance under high load. As the load
decreases, Kubernetes will automatically reduce the
system occupation and thus reduce operating costs.

Resource Scheduling: The resource scheduler in
Kubernetes can process different tasks at different times.
For example, for abnormal changes in the operation of
the power grid, additional scheduling is required to
ensure its real-time performance [14]. According to the
computing needs of each functional module, the
memory, CPU, and network bandwidth are reasonably
configured. This makes full use of existing hardware
resources.

Flexible storage and network optimization: The
cloud-native architecture uses a distributed storage
architecture to flexibly expand data storage space. In
order to adapt to the increasing requirements for power
supply and demand information, the system can
dynamically expand storage capacity. By utilizing the
optimal characteristics of the network, high-bandwidth
and low-latency data transmission is guaranteed to
achieve real-time forecasting of the power grid.

4 Experiments and evaluation

This paper designs a series of simulation experiments.
The test results show that this method has good
performance in terms of processing speed, scalability,
and forecast accuracy.

4.1 Experimental cases and experimental

cases

The dataset includes:
*  Source: Real-time trading data from 5 regional
power grids in Yunnan (2019-2023)
e Granularity: 15-minute intervals (96 data
points/day)
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*  Total size: 6.8 million records

. Features:  Historical load, temperature,
humidity, holiday flags, GDP growth rate

Preprocessing:

. Missing values imputed via KNN interpolation

*  Outliers removed using 3¢ criterion

. Normalization: Min-max scaling to [0,1]

. Partitioning: 70% training, 20% validation,
10% testing [15]

4.2 Platform performance evaluation

This project intends to evaluate it from three perspectives:
data processing speed, system throughput and scalability.
This ensures its fast and stable operation in a real power
grid environment.

4.2.1 Data processing speed

The cloud native system uses a streaming architecture to
realize the processing of real-time data, and the speed of
its processing is related to the real-time performance of
the entire system [16]. This paper verifies the data
analysis speed of the system under various load
conditions through multiple experiments. Table 1 shows
the data transfer rate on the platform under different
numbers of parallel requirements.

Table 1: Platform data processing speed

comparison.

Number of Processing Traditional
. platform

concurrent speed of this processing
requests platform (n/s) speed (n/s)
100 1500 900
500 7000 4500
1000 13000 7500

As shown in Table 1, the computing efficiency of the
cloud computing system proposed in this paper is much
faster than that of conventional systems under high
concurrency conditions, especially for 1,000 concurrent
requests, its computing efficiency is 73% faster than that
of conventional systems.

4.2.2 System throughput

The system throughput is the data transmission that the
platform can perform in each period. Under high load
environment, the system throughput will directly affect
the stable operation of the system. Table 2 compares the
system throughput performance of various timing
prediction algorithms based on the platform.

Table 2: Comparison of system throughput of
different prediction algorithms.

Prediction algorithm Throughput
0

ARIMA 12000

LSTM 15000

Hybrid algorithm used in this 18000

paper
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The simulation test proves that this method gives full
play to the advantages of ARIMA and LSTM, and
significantly improves the processing capacity of the
system.

4.2.3 Elastic expansion capability

The scalability of Kubernetes can continuously increase or
decrease the sample of the container as the storage scale
changes, thereby ensuring efficient operation during the
busy operation cycle [17]. Figure 2 shows the display
effect under various load conditions. X is the number of
parallel requests, and Y is the response speed of the entire
system. Through adaptive expansion technology, the
response speed when processing high concurrent requests
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is reduced. This ensures high efficiency under high load
conditions [18].

This paper proves the performance of various time
series prediction methods in a cloud-native environment
through testing. Many experimental results show that this
method and the constructed cloud computing system have
obvious advantages in real-time power demand and
demand forecasting [19]. Table 3 shows the accuracy of
real-time power demand forecasting using the ARIMA
model, LSTM and the combined algorithm provided in
the article [20]. Compared with the individual methods,
the accuracy of this method is significantly improved by
more than 5 percentage points.

Traditional Platform
~m~ Cloud Native Platform (Proposed)
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Figure 2: Platform elastic expansion effect curve.

Table 3: Comparison of prediction accuracy of different prediction algorithms.

Algorithm Accuracy (%) | RMSE | MAE | MAPE (%)
ARIMA 85.2 234.5 189.2 | 8.7
LSTM 87.5 201.3 165.7 | 1.5
Hybrid (Ours) | 92.3 145.8 1124 | 52
Informer 89.7 187.2 1526 | 6.8
N-BEATSx 90.5 176.3 143.1 | 6.1

In order to compare the convergence of each mode,
the paper gives the curves of each mode changing over
time. Figure 3 shows the results of the average moving
average method, short-term Many memories method,
and mixed mode. Hybrid model achieves stable
convergence after 15 epochs (final loss: 0.082+0.005).
ARIMA loss plateaus at 0.213+0.012, LSTM at
0.156+0.008.

ARIMA Loss
®- LSTM Loss
0.6 — = Hybrid Model Loss
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Figure 3: Loss convergence curves with 95%
confidence intervals.

Statistical test (t-test, p<0.01) confirms hybrid model's
significantly lower loss [21].

The cloud computing system proposed in this paper
can still maintain high computing efficiency when facing
many concurrent requests. Figure 4 shows the processing
capacity under various load conditions, with the X-axis
being the number of parallel requests and the Y -axis being
the number of requests per second [22].
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Figure 4: Processing capacity of the platform under
different loads.

5 Conclusion

This project intends to build a set of time series
forecasting methods suitable for real-time demand and
supply of China's power grid, and build a cloud source
forecasting system for actual needs. By integrating
multiple time series forecasting methods such as ARIMA
and LSTM, the seasonal and trend changes in power
market demand can be better grasped, thereby improving
the accuracy of supply and demand. Simulation
experiments show that the model in this paper can adapt
well to different market environments, and its forecast
accuracy is 12.5% lower than that of traditional methods.
The cloud-native forecasting platform constructed in this
paper has high flexibility and scalability. The system can
well adapt to the real-time data processing requirements
in the real-time power grid environment. The system has
the characteristics of scalability and high concurrency,
can respond quickly to market changes, and can update
forecasts and data in a timely manner.
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In power grid dispatching and planning, the accuracy of electricity demand plays a vital role in the
safety and economy of the power grid. In view of the problems existing in the current load
forecasting of the power grid, a long-term and short-term hybrid model is studied to improve the
accuracy and robustness of load forecasting. This project intends to combine the advantages of
Seq2Seq model in time series analysis with ARIMA's advantages in stability to effectively solve the
supply and demand relationship in long and short cycles. First, considering the nonlinear
characteristics of power demand in the power market, a hybrid modeling framework based on
optimality is constructed. It is optimized using methods such as genetics and particle swarms.
Secondly, the constructed model is empirically analyzed using simulation experiments, and it is
found that the constructed method has excellent accuracy on multiple time scales. Especially in the
volatile power market environment, it has better robustness and adaptability. After precise data
verification, the average error rate of short-term prediction of this model is within 5%, and within
7% in the longer period.

Povzetek: Za napovedovanje obremenitev elektroenergetskih sistemov so razvili Seq2Seq—ARIMA,
kjer Seg2Seq zajame nelinearne odvisnosti na kratkih in dolgih horizontih, ARIMA pa stabilizira
linearno-sezonske komponente; hiperparametri (vkljucno z uteZjo zlivanja) so optimizirani z
genetskim algoritmom in PSO. V simulacijah model izkazuje visoko robustnost v volatilnem trznem

okolju.

1 Introduction

Accurately forecasting the amount of electricity in the
power grid in the power market environment is the key
to realizing power grid dispatching and planning.
Accurate load forecasting is an important means to
ensure the safety of the power grid, economic operation,
and reasonable allocation of electric energy. In the face
of increasing electricity consumption and the
transformation of new energy structures, accurately
forecasting the changes in power grid load is a major
challenge facing current power grid research. Although
the classic time series forecasting method works well in
some applications, it still has certain limitations for
dynamic changes in the power market and medium- and
long-term changes in power consumption demand.
Therefore, in order to improve the accuracy and
adaptability of demand forecasting, researchers have
introduced various correction and fusion methods.
Reference [1] uses ARIMA to predict the electricity
consumption in my country's power market, and uses its
past development laws to effectively overcome the
problems existing in the previous electricity demand

forecasting. However, the ARIMA method cannot well
meet the requirements of nonlinearity and non-
stationarity. Reference [2] uses support vector machine
(SVR) to model the electricity demand in the power
market. By using kernel functions and optimal solutions,
the prediction ability of power grid load changes is
effectively improved. However, its analysis ability of
large time series changes is limited, and it cannot realize
real-time forecasting of power grid load. Reference [3]
uses LSTM to realize the modeling of long-term
dependence of the power market, which can well meet the
needs of the short-term market, but it still has a large error
for the needs of the long-term market.

In addition, in recent years, research has increasingly
mixed different models to fully utilize the advantages of
various models. Reference [4] proposed a hybrid model
based on LSTM and support vector machine (SVM). By
weighted fusion of the prediction results of the two, the
model solved the problem that a single model performed
poorly in certain specific scenarios. However, the model
was more complicated in parameter tuning. Reference [5]
used the Seq2Seq model to forecast electricity demand in
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the power market. The encoder-decoder structure
effectively captured the temporal characteristics of
demand data, solving the problem that traditional models
were difficult to simultaneously handle short-term and
long-term demand forecasting. However, the Seq2Seq
model still has certain prediction errors when dealing
with complex demand fluctuations in the power system
[6].

This paper establishes a new method for forecasting
electricity demand in the medium- and long-term power
market. The time series analysis of Seq2Seq data is
integrated with the classical time series analysis method to
establish a new method that can consider both long and
short time series analysis. The Seq2Seq model is used to
characterize the time series of changes in market supply
and demand, and the ARIMA model is established to
improve the stability of market supply and demand
changes. At the same time, the constructed model is
optimized using methods such as genetics and particle
swarms to ensure the accuracy of the constructed model in
practical applications [7].

2  Design of long-term and short-

term hybrid model
2.1  Principle and application of Seq2Seq

model

The Seq2Seq model was originally used for machine
translation tasks. Its core is to process variable-length
input and output sequences through an encoder and
decoder architecture [8]. In power market electricity
demand forecasting, the Seq2Seq model is also suitable
for converting historical demand data for a period into
demand forecast results for a period in the future. The
encoder gradually compresses the input sequence into a
fixed-length context vector through a series of neural
network layers, and then the decoder uses the vector to
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generate a prediction sequence [9].

In power market electricity demand forecasting, the
Seq2Seq model can handle complex time series
dependencies in historical demand data and generate
forecast results for future demand. For example, given the
hourly electricity demand data of the power market in the
past week, the Seq2Seq model can predict the electricity
demand of the power market in the next week by learning
the patterns in the sequence. The demand changes in the
power system are usually characterized by short-term
fluctuations and long-term trends. The encoder of the
Seq2Seq model can capture short-term changes, while the
decoder can generate smooth long-term demand forecast
results.

The Seq2Seq model architecture in this study adopts
3 layers for both encoder and decoder. The RNN cells
used are LSTM, which are more suitable for capturing
long-term dependencies in time series data compared to
GRU. The activation function in the hidden layers is
ReL U, and the output layer uses linear activation. The
input sequence length is set to 168 hours (one week) and
the output sequence length is 168 hours for long-term
forecasting and 24 hours for short-term forecasting. The
objective function of the power market electricity demand
forecast is to minimize the prediction error L:

N
1
L= Ntz Ge = o2 &

=1

¥¢ is the predicted value of the model, and y,is the
actual value. The model parameters 8 and ¢ are
optimized through back propagation, and the accuracy of
demand forecasting is finally improved [10]. The input
demand time series enters the encoder layer and is
processed by multiple layers of neural networks to
generate a context vector. The decoder then uses this
vector to gradually generate the output sequence. The
specific structure is shown in Figure 1:

1 2 Input
01 00 00 0 0 Encoding
?7? ?7? Encoder LSTM
03 03 03 Output
03 03 03 03 03 03 RepeatveCtor
?77? ?? Decoder LSTM
I [ ST QOutput
0000 X 00 01 TimeDistributed (dense)
2 <end> Result

Figure 1: Architecture of Seq2Seq model

The encoder consists of 3 LSTM layers with 128
hidden units each. The decoder also has 3 LSTM layers
with 128 hidden units each. The input sequence of length

168 is processed by the encoder to generate a context
vector, which is then used by the decoder to produce the
output sequence of length 24 (short-term) or 168 (long-
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term). ReLU activation functions are used in the hidden
layers, and linear activation in the output layer.

2.2 Combination of traditional model and

deep learning model

Although neural networks represented by deep neural
networks such as LSTM and Seq2Seq have better
performance in solving nonlinear time-varying problems,
some special time series, such as ARIMA, can still capture
linear changes well. For this reason, a new method based
on the fusion of ARIMA and Seq2Seq is proposed [11].
The combination of ARIMA and Segq2Seq models is
implemented through weighted averaging. The final
prediction result y5,, is calculated as:

Vtinal = & X Pseqrseq T (1 — @) X Parima (2)

« is the weight coefficient, ranging from 0 to 1, which
is optimized through the genetic algorithm to minimize the
prediction error.

First, the parameter tuning process of the ARIMA and
Seq2Seq models is complex, especially when dealing with
large-scale demand data, the computational cost is high.
Second, the hybrid model needs to coordinate the
optimization of the two parts of the model during training,
which puts higher requirements on the algorithm design.
In addition, in some specific demand scenarios, a single
deep learning model such as the Seq2Seq model may be
accurate enough, while the introduction of the hybrid
model increases the model complexity [12].

3  Optimization algorithm design and

model tuning
3.1  Selection of optimization algorithm

Genetic algorithm simulates the biological evolution
process and gradually optimizes the objective function
through selection, crossover and mutation operations. In
the long-term and short-term mixed model of power
market demand forecasting, genetic algorithm is mainly
used for hyperparameter optimization, such as learning
rate, number of hidden layer nodes, sequence length, etc.
The goal of genetic algorithm is to minimize the fitness
function through multiple generations of evolution and
finally find the optimal parameter combination. Its
mathematical expression is:
fG) = minL(6) 3)
f(x)is the objective function, 6 is the parameter
combination, and L(0)is the loss function, usually the
mean square error (MSE). The optimization process
iterates until the fitness function converges or the preset
stopping condition is reached.

The Particle Swarm Optimization (PSO) algorithm
exhibits superior computational efficiency and rapid
convergence when applied to the hyperparameter tuning
of hybrid models. It is particularly well-suited for
addressing optimization tasks involving continuous
parameters. PSO's ability to efficiently navigate large
search spaces makes it an ideal choice for optimizing
complex model configurations, ensuring  quick
convergence to optimal or near-optimal solutions in
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scenarios requiring continuous parameter adjustment. This
makes the algorithm highly effective in handling intricate
optimization challenges, contributing to the enhancement
of model performance in diverse applications [13]. Genetic
algorithms and PSO algorithms can effectively search in
the parameter space, and by gradually adjusting
hyperparameters, the model can achieve optimal
performance when dealing with electricity demand
forecasting in the power market. The optimization
objective function is:
L(O) =~y G = ye)? @)
¥, is the model prediction value, y, is the actual
value, and the goal of the optimization algorithm is to find
the optimal hyperparameter 8 while minimizing the loss
function.

The objective function for the genetic algorithm (GA)
in optimizing the weight coefficient « and
hyperparameters of the hybrid model is:

minimizeL(a, Oseqrseq » OARIMA ) = %thv—l Phinal — Ye)*
(5)

subject t0 0 < a <1, and Osegrseq » Oarima Within
their respective parameter spaces. For the particle swarm

optimization (PSO) algorithm, the objective function for
optimizing the hyperparameters of the Seq2Seq model is:

o 1 . 2
mlnlmlzeL(GSquSeq) = Nz%v—l (ySquSeq - yt) (6)
Where 6g.,, seq includes learning rate, number of

hidden layer nodes, etc.

3.2 Automatic tuning method of model
parameters

The setting of hyperparameter values has a great influence
on the effect and convergence rate of the algorithm.
Among them, hyperparameter values include learning
rate, number of hidden layer nodes, regularization
coefficient, etc. In the electricity demand forecast of the
power market using short-term and long-term mixed
modes, how to select hyperparameters is extremely
critical. Since the electricity consumption data in the
power market often shows obvious short-term
fluctuations and long-term change trends, modeling it
should not only consider its impact on short-term
changes, but also its impact on long-term changes.
Therefore, in the modeling process, how to use the
optimal method to adaptively adjust the hyperparameters
to achieve the best forecasting results is an extremely
important topic [14].

This paper proposes an adaptive optimization method
based on genetic algorithm. The algorithm is based on the
difference of the group and ensures the maximum
convergence speed of the algorithm. The particle swarm
optimization strategy is adopted to improve the efficiency
of optimization solution. This method uses the movement
of particle swarms in various parameter spaces to achieve
gradual approximation of the optimization problem, so
that this method has shown good results in hybrid
modeling of power load. The best hyperparameter
combination is gradually found based on the properties of
the initial values and the optimization strategy in different
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hyperparameter spaces [15]. For example, in the forecast
of power demand in a hybrid power market, this method
achieves adaptability to complex and changeable power
grid loads by real-time adjustment of the network
learning rate and the number of hidden layer nodes,
thereby improving the accuracy and reliability of the
forecast.
0" = arg rgleig L(6) (7
6~ is the optimal parameter combination, L(6)is the
loss function, and @ is the hyperparameter space. The
optimization algorithm searches for © and finally finds
the parameter 6*that minimizes the loss function. The
algorithmic flowchart of the genetic algorithm for
hyperparameter optimization is as Table 1:

Table 1: Hyperparameters considered, their ranges,
and selected optimal values

Hyperparameter Range Optimal
Value

Learning rate 0.001-0.1 0.01

Number of hidden 32-256 128

layer nodes (encoder)

Number of hidden 32-256 128

layer nodes (decoder)

Sequence length 72-336 168

(input)

Sequence length 12-48 24

(output, short-term)

Sequence length 120-216 168

(output, long-term)

Regularization 0.0001- 0.001

coefficient 0.01

Weight coefficient 0-1 0.7

1. Initialize a population of hyperparameter

combinations randomly within the specified ranges.

2. Evaluate the fitness of each individual in the
population using the objective function (prediction
error).

3. Select the individuals with higher fitness for
reproduction.

4.  Perform crossover and mutation operations to
generate offspring.

5.  Replace the worst-performing individuals in the
population with the offspring.

6. Repeat steps 2-5 until the stopping condition
(maximum number of generations or convergence) is
met.

7. Output the best hyperparameter combination found.
The particle swarm optimization algorithm starts by

initializing a particle swarm with random positions and
velocities within the parameter space. For each particle,
its fitness is evaluated using the objective function, and
its personal best position is set as the current position if
the fitness is better. The global best position is then
determined among all personal best positions. The
algorithm proceeds in a loop until the stopping condition
is met: for each particle, its velocity is updated using the
formula v; =w-v; +cl-r1-(pbest ; —x;) +c2-
r2 - (gbest — x;) (where w is the inertia weight, c1 and
c2 are acceleration coefficients, r1 and r2 are random
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numbers between 0 and 1, v; is the velocity of particle
i,x; is the position of particle i, pbest; is the personal
best position of particle i, and gbest is the global best
position), and its position is updated as x; = x; + v;.
After evaluating the fitness of the new position, the
personal best and global best positions are updated if
necessary. Finally, the global best position is outputted.

4 System simulation and result
analysis

In the electricity demand forecasting of the power market,
the design of the long-term and short-term hybrid model
needs to be verified and optimized through system
simulation. This paper evaluates the performance of the
proposed model through simulation experiments, aiming
to verify its accuracy and stability in the electricity
demand forecasting of the power market [16]. The
simulation experiment includes the construction of the
simulation environment, the selection and preprocessing
of the data set, and the performance comparison of
various models in different scenarios. A variety of
evaluation indicators are used to analyze the performance
of the model.

4.1 Introduction to simulation

environment and data set

The data for this experiment comes from the historical
electricity market demand data set of Yunnan Province,
China, which contains hourly electricity market demand
information from 2018 to 2022. This data set records the
changes in electricity demand on working days and non-
working days, and has obvious seasonal and cyclical
fluctuation characteristics.
Before using these data for model training, they need
to be preprocessed. The preprocessing steps include:
. Missing data handling: Missing values are filled
using linear interpolation.
. Normalization: Min-max scaling is applied to
scale the data to the range [0,1] using X,om =
—Xmin_ where x is the original data, x,.;, and

Xmax ~Xmin
Xmax are the minimum and maximum values of
the data set, respectively.

e Outlier detection and removal: Outliers are
detected using the Z-score method ( |Z] > 3)
and replaced with the mean value of the
neighboring data points.

The simulation experiment in this article is carried
out in the Python programming environment, and the
model is mainly built using the TensorFlow and Keras
frameworks.

4.2 Model performance evaluation

During the simulation process, this paper compares the
performance of four types of models: the traditional
ARIMA model, the LSTM model based on deep learning,
the Seq2Seq model proposed in this paper, and the hybrid
model of Seq2Seq and ARIMA. In addition, a
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Transformer-based model is also included as a baseline
for comparison. The experiment designed two scenarios:
short-term demand forecasting (1 hour to 24 hours
forecasting) and long-term demand forecasting (24 hours
to one week forecasting).

Table 2: Evaluation results of each model under
short-term demand forecasting.

Model type MSE RMSE | MAE
ARIMA 0.025 0.158 0.132
LSTM 0.019 | 0.138 0.104
Transformer 0.017 0.130 0.100
Seq2Seq 0.015 0.122 0.092
Hybrid 0.013 0.114 0.085
(Seq2Seq+ARIMA)

As can be seen from Table 2, the hybrid model
performs better than other models in short-term demand
forecasting, and its MSE, RMSE and MAE values are
lower than those of the other models.

Table 3: Evaluation results of each model under
long-term demand forecasting.
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LSTM 0.02 | 0.148 0.126
Transformer (2).02 0.141 0.120
Seq2Seq 8.01 0.131 0.110
Hybrid 3.01 0.122 0.102
(Seq2Seq+ARIMA | 5

Rainy LRIMA 0.03 | 0.176 | 0.150
LSTM (1).02 0.158 0.133
Transformer 3.02 0.152 0.128
Seq2Seq (3).01 0.138 0.115
Hybrid (9).01 0.130 | 0.108
(Seq2Seq+ARIMA | 7
)

Model type MSE RMSE | MAE
ARIMA 0.035 0.187 0.162
LSTM 0.029 | 0.170 0.141
Transformer 0.026 0.161 0.135
Seq2Seq 0.022 | 0.148 0.120
Hybrid 0.020 | 0.141 0.112
(Seq2Seq+ARIMA)

The long-term demand forecast results in Table 3
show that the hybrid model also performs best in long-
term forecasting, especially when dealing with complex
long-term fluctuations, the model shows stronger
stability and adaptability.

Table 4 shows the performance of each model under
various meteorological factors, especially in adverse
meteorological environments such as rainy weather, the
hybrid model has better stability and adaptability. The
hybrid model consistently outperforms other models
across different weather conditions, with the lowest MSE,
RMSE, and MAE values, indicating its strong ability to
handle the impact of meteorological factors on power
demand.

To confirm the statistical significance of the
improvements achieved by the hybrid model, paired t-
tests are conducted between the hybrid model and each of
the other models. The results are shown in Table 5, where
the p-values are all less than 0.05, indicating that the
improvements are statistically significant.

Table 5: Paired t-test results between the hybrid
model and other models

Compared p-value p-value
Table 4: Comparison of performance of each model Model (short-term) (long-term)

under different weather conditions. ARIMA 0.002 0.001
Weather | Model Type MSE | RMS | MA LSTM 0.015 0.012
condition E E Transformer 0.028 0.025
s Seq2Seq 0.035 0.031
Sunny ARIMA 0.02 | 0.167 0.145
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Figure 2: Simulation results of short-term demand forecasting.

The x-axis represents time (hours), and the y-axis
represents load (MW). The actual load is shown as a solid

line, while the predicted loads of the Seq2Seq model,
LSTM model, ARIMA model, Transformer model, and
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hybrid model are shown as dashed lines with different

colors. The hybrid model's prediction curve is closest to
the actual load curve, with the smallest deviation.

As can be seen from Figure 2, the prediction results of

the hybrid model are closest to the actual demand trend,

Long-term Demand Forecasting (24 h-168 h)
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followed by the Seq2Seq model, then the Transformer
model, the LSTM model, while the ARIMA model has a
large deviation.

Seq2Seq [N 1 ’
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150 175

Figure 3: Simulation results of long-term demand forecasting.

The x-axis represents time (hours), and the y-axis
represents load (MW). The actual load is shown as a solid
line, and the predicted loads of various models are shown
as dashed lines with different colors. The hybrid model
maintains high accuracy even in the long-term forecasting,
with stable performance. Figure 3 shows the performance

of each model in long-term demand forecasting. Like short-
term forecasting, Seq2Seq also performs significantly
better than other models in long-term forecasting,
especially when forecasting time periods with large
fluctuations, the performance is more stable.

Demand Forecasting under Different Weather Conditions
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Figure 4: Demand forecast results under different weather conditions.

The left subfigure shows the forecast results under
sunny weather, and the right subfigure shows the forecast
results under rainy weather. The x-axis represents time
(hours), and the y-axis represents load (MW). The hybrid
model's prediction curve is smoother and closer to the
actual demand changes in both weather conditions,
demonstrating its strong adaptability. Figure 4 shows the
demand forecast results wunder different weather
conditions. Seq2Seq still performs better than other
models under complex weather conditions such as cloudy
weather, and the prediction curve is smoother and closer
to the actual demand changes.

5 Conclusion

This study constructs a hybrid Seq2Seq-ARIMA model
for power system load forecasting, optimized by
metaheuristic algorithms (genetic algorithm and particle
swarm optimization). The model integrates the advantages
of Seq2Seq in capturing nonlinear time series
dependencies and ARIMA in describing linear trends, and
realizes adaptive adjustment of hyperparameters through
optimization algorithms, thereby improving the accuracy
and robustness of load forecasting.

Through simulation experiments, it is verified that the
hybrid model has excellent performance in both short-

term and long-term load forecasting. Compared with
ARIMA, LSTM, Transformer, and single Seq2Seq models,
the hybrid model has lower MSE, RMSE, and MAE values.
The average error rate of short-term prediction is within
5%, and within 7% in the longer period. Statistical tests
confirm that the improvements are statistically significant.
In addition, the hybrid model shows good stability and
adaptability under different weather conditions.

However, this study also has certain limitations. The
model's computational complexity is relatively high, which
may affect its application in real-time forecasting scenarios
with strict time constraints. In future research, we will
focus on optimizing the model's structure to reduce
computational complexity while maintaining forecasting
accuracy. In addition, we will expand the dataset to include
more regions and longer time series to further verify the
generalization ability of the model.
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