
Volume 17 Number 4 December 1993 ISSN 0350-55S

Informatica
An International Journal of Computing
and Informatics

Special Issue: Multistrategy Learning
Guest Editor: Gheorghe Tecuci

The Slovene Society Informatika, Ljubljana, Slovenia!

Informatica

An International Journal of Computing and Informatics

1 >. Subscription Information

Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer, Autumn, and
Winter (4 issues per year) by the Slovene Society Informatika, Vozarski pot 12, 61000
Ljubljana, Slovenia. ;

I
The subscription rate for 1993 (Volume 17) is

- DEM 50 (US$ 34) for institutions,
- DEM 25 (US$ 17) for individuals, and
- DEM 10 (US$ 4) for students
plus the mail charge DEM 10 (US$ 4).
Claims for missing issues will be honored free of charge within six months after the
publication date of the issue.

~&TEX Technical Support: Borut Znidar, DALCOM d.o.o.

Stegne 27, 61000 Ljubljana, Slovenia.

Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrezje 11, Ljubljana, Slovenia.'

Printed by Biro M, d.o.o., Zibertova 1, 61000 Ljubljana, Slovenia.

; Orders for subscription may be placed by telephone or fax using any major credit card. Please
call Mr. R. Murn, Department for Computer Science, Jozef Stefan Institute: Tel (+386) 61
1259 199, Fax (+386) 61 219 385, or use the bank account number
50100-620-133-27620-5159/4 (LB 50101-678-51841 for domestic subscribers only).

f According to the opinion of the Ministry for Informing (number 23/216-92 of March 27,
C 1992), the scientific journal Informatica is a product of informative matter (point 13 of the
: tariff number 3), for which the tax of traffic amounts to 5%.

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarcic)

Slovene Society for Pattern Recognition (Franjo Pernus)
Slovenian Artificial Intelligence Society (Matjaz Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)

Referees: ,
D. Abel, M. Bohanec, M. Bonac, M. Drobnic, B. Filipic, J. Fiirnkranz, G.K. Gupta,
M.A. Jenkins, A. Karalic, M. Kljajic, M. Kovacic, J. Lenarcic, B. Likar, B. Litow,
D. Mladenic, I. Mozetic, M. Presern, M. Rihar, B. Robic, I. Savnik, I. Sega, T. Szuba,
M. Tamiz, G. Trinidad, O. de Vel.

The issuing of the Informatica journal is financially supported by the Ministry for Science and
Technology, Slovenska 50, 61000 Ljubljana, Slovenia.

PROFILE

Informatica 17 (1993) 325

The readers of Informatica will probably ascer-
tain that the choice of profiles is quite diverse con-
cerning the positions and careers of our editors.
I must confess that my and the editors choice
for certain profiles is intuitive and simultaneously
spontaneous. We search for excellence in individ-
uals. In this choice, the international (geograph-
ical), generational, and disciplinary-field balance
may play a significant role.

Some of our editors are well-situated, but some
are neither supplied with the basic research in-
frastructure nor living suitability. As researchers
they persist in their profession irrespective of the
obstacles and misunderstanding of their research
communities. In Eastern Europe and also in the
West, some of them are left to themselves, with-
out public support. But, the only important is-
sue is their scientific achievement which may al-
ready impact the present research and technology
generations or will have an impact in the future.
Regarding this point, the intuition of choosing in-
dividuals for this column of Informatica is very
challenging.

Professor Gheorghe Tecuci belongs to the
younger generation of researchers and his profes-
sional position is in harmonic accordance with
his professional achievements. He is already a
member of the national academy of sciences, cos-
mopolitan, and holds a leading position in the
field of machine learning and knowledge acquisi-
tion. In this respect he might be a real pattern
for the coming research generations—particularly
in the fields which concern modern artificial intel-
ligence, knowledge methodologies and technolo-
gies, and even more the postmodern science and
technology of the informational.

It is a great pleasure to present the profile of
professor Tecuci to the readers of Informatica to-
gether with his introductory article entitled "Mul-
tistrategy Approaches to Learning: Why and
How" and a group of five articles being edited by
him. In this manner, the readers of Informatica
will obtain the best insight and comprehension of
the field professor Tecuci is leading.

In this issue of Informatica, for the first time,
the so-called thematic groups of articles are pre-
sented. In the next Volume 18 (1994), in Infor-
matica, several other thematic groups will be pub-

lished concerning modern fields of logic, compu-
tation, artificial intelligence and, hopefully, also
the critics (and crisis) of computer science and
informational treatment of knowledge. In this re-
spect, I believe, the readers and contributors of
Informatica will not be disappointed. Informat-
ica will also proceed from its quarterly issuing of
the journal to a bimonthly one. All this will re-
quire greater activity and help from our editors.

Gheorghe Tecuci

Gheorghe Tecuci, a full member of the Romanian
Academy since September 1993, is Associate Pro-
fessor of Computer Science at George Mason Uni-
versity in Fairfax, Virginia, U.S.A., and Director
of the Romanian Academy Center for Machine
Learning, Natural Language Processing and Con-
ceptual Modeling.

He received the M.S. degree in Computer Sci-
ence from the Polytechnic Institute of Bucharest
in 1979, graduating first among all the Computer
Science students at the Polytechnic Universities of
Romania. He received two Ph.D. degrees in Com-
puter Science, one from the University of Paris-
South, in July 1988, and the other from the Poly-
technic Institute of Bucharest, in December 1988.

Between 1979 and 1990 Tecuci was a researcher
and project leader at the Research Institute for
Informatics in Bucharest, Romania, where he de-
veloped many of the skills that are essential for
a successful researcher. During the summers
of 1986-1990 he worked at LRI, University of
Paris-South, as a research director of a joint re-
search program of the Romanian Academy and
the French National Research Center, and in Fall
1990 he joined the faculty of the Computer Sci-
ence Department of the George Mason University.

In March 1991, Tecuci was elected correspond-
ing member of the Romanian Academy and be-
came a full member in September 1993. Tecuci
has published over 60 scientific papers. He is one
the founders of the field of multistrategy learning
which represents a new stage in the evolution of
machine learning.

Tecuci has developed one of the first multi-
strategy learning systems, DISCIPLE, which syn-

326 Informatica 17 (1993) G. Tecuci

ergistically integrates explanation-based learning,
learning by analogy, empirical inductive learning,
and learning by questioning the user. Many im-
portant concepts in machine learning and knowl-
edge acquisition have originated from research
on DISCIPLE [Ph.D. Thesis, University of Paris-
South, 1988]. Besides multistrategy learning, one
could also mention adaptive learning (which is
illustrated by DISCIPLE's ability to adapt its
behavior to the features of the learning task),
the usefulness of plausible explanations and over-
generalizations in learning and knowledge acqui-
sition, and plausible version spaces as a sym-
bolic representation of uncertainty. For his work
on DISCIPLE, Tecuci received the prize "Traian
Vuia" of the Romanian Academy, in 1987. A pa-
per on DISCIPLE [International Journal of Ex-
pert Systems, 1 (1): 39-66, (1987)] has also been
included in "Readings in Machine Learning and
Knowledge Acquisition", a book from the well-
known Morgan Kaufmann's series which collects
the best papers from each field of artificial intel-
ligence.

More recently, Tecuci has introduced the con-
cept of a plausible justification tree as a gener-
alization of the concept of explanation, and as a
framework for the integration of different types
of inference. He has also introduced the concept
of inference-based generalization, showing that
there is a special type of generalization associated
with each type of inference. Based on these new
concepts, Tecuci has developed a general frame-
work for multistrategy learning [Machine Learn-
ing, 11 (2-3): 129-153, (1993)] which dynamically
integrates the elementary building blocks of the
single-strategy learning methods (i.e., deduction,
analogy, abduction, generalization, specializa-
tion, abstraction, concretion, etc.). The learning
method MTL-JT (Multistrategy Task-adaptive
Learning by Justification Trees), developed in
this framework, integrates deeply and dynami-
cally explanation-based learning, determination-
based analogy, empirical induction, constructive
induction, and abduction, depending of the fea-
tures of the learning task. It also behaves as any
of these single-strategy learning methods when-
ever the applicability conditions of such a method
are satisfied.

Tecuci has also made important contributions
to the integration of machine learning and knowl-

edge acquisition. He has developed NeoDIS-
CIPLE which represents a general approach to
the automation of knowledge acquisition. This
approach is based on several powerful ideas
like understanding-based knowledge extension,
knowledge acquisition through plausible inference
and multistrategy learning, consistency-driven
concept elicitation, and plausible version spaces
[IEEE Transactions on Systems, Man and Cyber-
netics, 22 (6): 1444-1460 (1992); Knowledge Ac-
quisition 4 (4), (1993)]. Other research contribu-
tions of Tecuci are in the areas of expert systems,
advanced robotics, compiler generation, and the
application of graph theory to vision and to the
analysis of electrical circuits.

Tecuci is the co-editor of "Machine Learning:
A Multistrategy Approach", which is the first
comprehensive book on this topic, as well as the
forth volume in the series of classical books "Ma-
chine Learning". Previous volumes were co-edited
by R.S. Michalski, J.G. Carbonell, T.M. Mitchell
and Y. Kodratoff. Tecuci was the program chair-
man and a co-organizer of several workshops on
new research directions in artificial intelligence:
the First International Workshop on Multistrat-
egy Learning (MSL-91, Harpers Ferry, West Vir-
ginia), the Second International Workshop on
Multistrategy Learning (MSL-93, Harpers Ferry,
West Virginia), and the IJCAI-93 workshop Ma-
chine Learning and Knowledge Acquisition: Com-
mon Issues, Contrasting Methods and Integrated
Approaches (Chambery, France).

Tecuci was also a tutorial speaker on Multi-
strategy Learning at the two most important ar-
tificial intelligence conferences, the International
Joint Conference on Artificial Intelligence (Cham-
bery, France, 1993) and the National Conference
of the American Association for Artificial Intelli-
gence (Washington D.C., 1993). He is the guest
editor of this special issue of Informatica on mul-
tistrategy learning, and of a special issue of the
Knowledge Acquisition Journal on the integra-
tion of machine learning and knowledge acqui-
sition. He served the scientific community as
program chairman, program committee member,
organizer, member of the editorial board, or re-
viewer of several conferences, journals, and pub-
lishers. He speaks four languages, Romanian, En-
glish, French, and Italian.

Edited by A.P. Zeleznikar

Informatica 17 (1993) 327

MULTISTRATEGY APPROACHES TO LEARNING:
WHY AND HOW

Gheorghe Tecuci
Center for Artificial Intelligence, Department of Computer Science,
George Mason University, Fairfax, VA 22030, U.S.A.,
and
Center for Machine Learning, Natural Language Processing and Conceptual Modelling,
Romanian Academy, Bucharest, Romania
tecuciQcs.gmu.edu

Keywords: case-based reasoning, machine learning, multistrategy approach, single-strategy learning

Machine Learning is concerned with developing
systems which are able to improve themselves by
learning from an external source of information
(e.g. a teacher or a collection of data) or from
their own experience.

Research in this area can be traced back to the
beginning of Artificial Intelligence. However, it is
in the last several years that Machine Learning
has greatly expanded and diversified.

Most machine learning research has been con-
cerned with single strategy learning methods
which illustrate basic forms of learning. Exam-
ples of single-strategy learning are:

— empirical inductive learning from examples,
which consists of learning the definition of a
concept by comparing positive and negative
examples of the concept in terms of their sim-
ilarities and differences, and inductively cre-
ating a generalized description of the similar-
ities of the positive examples;

— explanation-based learning, which consists of
learning an operational definition of a con-
cept by proving that an example is an in-
stance of the concept and by deductively gen-
eralizing the proof;

— learning by analogy, which consists of learn-
ing new knowledge about an entity by trans-
ferring it from a similar entity;

— case-based reasoning and learning, which
consists of using past experiences to deal with
new situations and then extending and im-
proving the descriptions of these experiences;

— abductive learning, which consists of hypoth-
esizing causes based on observed effects;

- reinforcement learning, which consists of up-
dating the knowledge, based on feedback
from the environment;

- genetic algorithm-based learning, which con-
sists of evolving a population of individu-
als over a sequence of generations, based on
models of heredity and evolution;

- neurai network learning, which consists of
evolving a network of simple units to achieve
an input-output behavior based on a simpli-
fied model of the brain's dendrites and axons.

Single-strategy learning methods have been
successfully used to build adaptive intelligent
agents. However, each such method, taken sep-
arately, has a limited applicability because it re-
quires a special type of input and background
knowledge, and it only learns a specific type of
knowledge.

For instance, an empirical inductive learning
system needs many input examples in order to
learn, but does not require much prior knowledge.
On the other hand, an explanation-based learn-
ing system can learn from only one example, but
it needs complete prior knowledge. Many real-
world learning situations are such that the learner
has more than one example, but not enough to
successfully apply an empirical inductive learning
strategy. However, the learner usually has more
prior knowledge than needed by empirical induc-
tion, but not enough for applying an explanation-
based learning strategy. /•

This comparison can easily be extended to the
other single-strategy approaches to learning. For
instance, a learning by analogy system could learn
additional features of some input entity only if it

328 Informatica 17 (1993) G. Tecuci

has a similar entity in the knowledge base. Sim-
ilarly, an abductive learning system could learn
new knowledge about an input situation only if it
has causal knowledge that could explain the sit-
uation. Moreover, each of these single-strategy
learners produces a different (and often comple-
mentary) result.

The complementary nature of the requirements
and results of the single-strategy learning meth-
ods naturally suggests that by properly integrat-
ing them, one could obtain a synergistic effect in
which different strategies mutually support each
other, and compensate for each other's weak-
nesses. As a result, one may build a multistrategy
learning system that is applicable to a wider spec-
trum of problems.

There are several general frameworks for the de-
sign of multistrategy learning systems.

One such framework consists of a global control
module, and a toolbox of single strategy learn-
ing modules, all using the same knowledge base.
The control module analyzes the relationship be-
tween the input and the knowledge base and de-
cides which learning module to activate.

Another framework consists of a cascade of sin-
gle strategy learning modules, in which the output
of one module is an input to the next module.

Yet another framework consists of integrating
the elementary inferences (like deduction, anal-
ogy, abduction, generalization, specialization, ab-
straction, concretion, etc.) that generate the in-
dividual learning strategies, and thus achieving a
deep integration of these strategies.

Early multistrategy learning research has often
been limited to the integration of empirical in-
ductive learning and explanation-based learning.
Besides integrating a greater range of learning
strategies, current research in multistrategy learn-
ing addresses the utilization of learning goals and
the adaptation of the learner to the learning task.

This special issue of Informatica contains up-
dated versions of papers that have been selected
from among those presented at the Second In-
ternational Workshop on Multistrategy Learning,
organized by George Mason University, in May

1993. The papers are representative of the cur-
rent research by leading researchers in multistrat-
egy learning.

Gordon and Subramanian present a multistrategy
learning method for designing and refining knowl-
edge for autonomous agents.

The method combines two complementary
strategies, deductive concretion (a form of
explanation-based learning) and inductive refine-
ment (by a genetic algorithm).

First, high-level advice provided by a human is
deductively operationalized in all possible ways,
resulting in a set of operational rules for the au-
tonomous agent.

Then these rules are inductively refined by a
genetic algorithm, producing a set of better rules
for the agent.

The two main advantages of this multistrat-
egy learning method are a high convergence rate
(due to the operationalized advice which biases
the genetic algorithm into a favorable region of
the search space) and robustness (due to the ge-
netic algorithm-based learning).

Ram and Santamaria present a multistrategy
learning system for robot navigation (called
SINS), which combines case-based reasoning and
reinforcement learning.

The case-based reasoning component of SINS
perceives the robot's environment and retrieves
an appropriate case which recommends parameter
values for the control system of the robot.

The reinforcement learning component of SINS
updates the content of a case to reflect the current
experience.

Extensive experiments show that SINS is able
to achieve the same level of performance as
non-adaptive systems acting in environments for
which they have been optimized. Moreover, SINS
is able to achieve this level of performance au-
tonomously, and can cope with sudden changes
in the characteristics of the environment.

Widmer presents a multistrategy learning method
for predicting numeric values. The method,
which is implemented in the system IBL-SMART,
combines multistrategy symbolic concept learning
and numeric instance-based learning (which is a
form of case-based reasoning and learning).

MULTISTRATEGY APPROACHES Informatica 17 (1993) 329

The multistrategy symbolic concept learner
uses deductive and inductive specialization opera-
tors to learn rules for partitioning a set of training
examples into different instance spaces.

The prediction of a numeric value associated
with a new instance takes place in two stages. In
the first stage, IBL-SMART determines the sym-
bolic rule which covers the new instance and hence
the corresponding instance space. In the second
stage, the instance-based learner predicts the nu-
meric value of the new instance based on the value
of the nearest neighbor in the instance space.

The most important advantage of this multi-
strategy approach is that it provides a way of us-
ing qualitative domain knowledge for predicting
precise numeric values.

Baffes and Mooney address the general problem
of theory refinement which consists of improving
an incomplete and/or incorrect rule base of a clas-
sification system to correctly classify a set of input
training examples.

The system EITHER, which combines deduc-
tion, abduction and empirical induction, showed
that multistrategy learning from theory (the rule
base) and data (the input examples) gives bet-
ter results than single strategy learning from data
alone (i.e. learning the rule base only from exam-
ples).

This paper presents NEITHER which is a ma-
jor revision of EITHER. NEITHER extends the
representation of the rule base to include M-of-N
rules, and also improves significantly the speed of
learning.

Finally, Hieb and Michalski present a new knowl-
edge representation formalism, dynamic inter-
laced hierarchies (DIH), that is specially devel-
oped to facilitate the performance of the basic in-
ferential learning strategies, deduction, induction
and analogy.

The idea is to represent the knowledge in the
form of concept hierarchies and traces that link
nodes of different hierarchies. Within this repre-
sentation the basic inferential operations such as
generalization, abstraction, similization, as well
as their opposites, specialization, concretion and
dissimilation, could be performed by modifying
the traces in different ways.

The goal of DIH design is to provide a foun-

dation for developing multistrategy learning sys-
tems that could adapt their learning strategy to
the learning task characterized by a learner's in-
put, knowledge and goal.

These five papers illustrate only a few representa-
tive approaches to multistrategy learning. Other
approaches are presented in the papers from the
following bibliography.

Besides developing ' multistrategy
learning methods and systems, research in multi-
strategy learning is also concerned with the analy-
sis and comparison of different learning strategies
(which identify their capabilities and limits) and
with human learning (which is intrinsically multi-
strategy).

Through its research goals, multistrategy learn-
ing contributes to the unification of the entire field
of machine learning, and is one of the field's most
significant new developments.

References

[1] Buchanan B., and Wilkins D. (Eds.), Read-
ings in Knowledge Acquisition and Learning:
Automating the Construction and the Im-
provement of Programs. Morgan Kaufmann,
San Mateo, CA, (1992).

[2] Kodratoff Y., and Michalski R. S. (Eds.),
Machine Learning: An Artificial Intelligence
Approach, III. Morgan Kaufmann, San Ma-
teo, CA, (1990).

[3] Michalski, R.S, and Tecuci, G. (Eds.), Pro-
ceedings of the First International Work-
shop on Multistrategy Learning. Organized
by George Mason University, Harpers Ferry,
WV, November 7-9, (1991).

[4] Michalski, R.S, and Tecuci, G. (Eds.), Pro-
ceedings of the Second International Work-
shop on Multistrategy Learning. Organized
by George Mason University, Harpers Ferry,
WV, May 26-29, (1993).

[5] Michalski R.S. and Tecuci G. (Eds.), Ma-
chine Learning: A Multistrategy Approach,
IV. Morgan Kaufmann, San Mateo, CA,
(1993).

330 Informatica 17 (1993) G. Tecuci

[6] Shavlik J., and Dietterich T. (Eds.), Read-
ings in Machine Learning. Morgan Kauf-
mann, San Mateo, CA, (1990).

[7] Tecuci G., DISCIPLE: A Theory, Methodol-
ogy and System for Learning Expert Knowl-
edge. These de Docteur en Science, Univer-
site de Paris-Sud, France, (1988).

[8] Tecuci G., Plausible Justification Trees:
a Framework for the Deep and Dynamic
Integration of Learning Strategies. Ma-
chine Learning Journal, vol.11, pp.237-261,
(1993).

Informatica 17 (1993) 331-346 331

A MULTISTRATEGY LEARNING SCHEME FOR AGENT
KNOWLEDGE ACQUISITION

Diana Gordon
Naval Research Laboratory, Code 5514
Washington D.C. 20375
gordonQaic.nrl.navy.mil
AND
Devika Subramanian
Department of Computer Science
Cornell University
Ithaca, NY 14853
devikafics.Cornell.edu

Keywords: multistrategy learning, advice taking, compilation, operationalization, genetic algorithms

Edited by: Gheorghe Tecuci

Received: May 26, 1993 Revised: October 8, 1993 Accepted: October 15, 1993

The problem of designing and refining task-level strategies in an embedded multiagent
setting is an important unsolved question. To address this problem, we have devel-
oped a multistrategy system that combines two learning methods: operationalization of
high-level advice provided by a human and incremental refinement by a genetic algo-
rithm. The first method generates seed rules for finer-grained refinements by the genetic
algorithm. Our multistrategy learning system is evaluated on two complex simulated
domains as well as with a Nomad 200 robot.

1 Introduction ing their tasks, by interacting with the environ-
ment. Agent knowledge acquisitionis desirable for

The problem of designing and refining task-level t h e s a m e r e a s o n s t h a t knowledge acquisition for
strategies in an embedded multi-agent setting e x P e r t s y s t e m s is" l t i s e a s i e r f o r a u s e r to P r°-
is an important unsolved question. To address v i d e Wgh-level knowledge about the world and the
this problem, we have developed a multistrat- t a s k t h a n to P r o v i d e knowledge at a lower level of
egy learning system that combines two learn- d e t a i L T h e l a t t e r is well-known to be a costly,
ing methods: operationalization of high-level ad- tedious, and error-prone process. Although agent
vice provided by a human, and incremental re- knowledge acquisition is desirable, it is very dif-
finement by a genetic algorithm (GA). We de- ficult (fo r t h e a S e n t) ' as is knowledge acquisition
fine advice as a recommendation to achieve a f o r e x P e r t systems. The additional challenge for
goal under certain conditions. Advice is consid- a S e n t knowledge acquisition comes from the fact
ered to be operationalized when it is translated t h a t t h e knowledge must be dynamically updated
into stimulus-response rules directly usable by the ^ t h e a S e n t t h r o u S h i t s interactions with the en-
agent. Operationalization generates seed rules for vironment.

finer-grained refinements by a GA. T h e r e a r e t w o b a s i c a p p r o a c n e s to construct-

The long term goal of the work proposed here ing agents for dynamic environments. The first
is to develop task-directed agents capable of act- decomposes the design into stages: a paramet-
ing, planning, and learning in worlds about which ric design followed by refinement of the parame-
they do not possess complete information. These ter values using feedback from the world in the
agents refine factual knowledge of the world they context of the task. Several refinement strate-
inhabit, as well as strategic knowledge for achiev- gies have been studied in the literature: GAs

332 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

[21], neural-net learning [3], statistical learning
[13], and reinforcement learning [14]. The sec-
ond, more ambitious, approach [7, 30] is to ac-
quire the agent knowledge directly from exam-
ple interactions with the environment. The suc-
cess of this approach is tied to the efficacy of the
credit assignment procedures, and whether or not
it is possible to obtain good training runs with a
knowledge-impoverished agent.

We have adopted the first approach. The di-
rection we pursue is to compile an initial para-
metric agent using high-level strategic knowl-
edge (e.g., advice) input by the user, as well as
a body of general (not domain-specific) spatial
knowledge in the form of a Spatial Knowledge
Base (SKB). The SKB contains qualitative rules
about movement in space. Example rules in our
SKB are If something is on my side, and I
turn to the other side, I will not be
facing it and If I move toward something
it will get closer. This SKB is portable be-
cause it is applicable to a variety of domains
where qualitative spatial knowledge is important.
A similar qualitative knowledge base was con-
structed by [18] for the task of pushing objects
in a plane. Since the knowledge provided to our
agent is imperfect (incomplete and incorrect), our
agent refines the knowledge using a GA by di-
rectly interacting with the world.

First we describe our deductive advice opera-
tionalization process and the nature of the pa-
rameterization adopted for our agent. Then we
describe the inductive (GA) refinement stage and
compare our multistrategy approach with one
that is purely inductive. Before we present the
details of the method, we characterize the class of
environments and tasks for which we have found
this decomposition of an agent design into an ini-
tial parametric stage and subsequent refinement
stage to be effective.

- Environment characteristics: Complete mod-
els of the dynamics of the environment in
the form of differential equations or difference
equations, or discrete models like STRIPS
operators, are unavailable. An analytical de-
sign that maps the percepts of an agent to
its actions (e.g., using differential game the-
ory or control theory) in these domains is
thus not possible. Even if a model were avail-
able, standard analytical methods for deriv-

ing agents are extensional and involve explo-
ration of the entire state space. They are in-
applicable here because the domains we con-
sider have of the order of a hundred million
states.

Task characteristics: Tasks are sequential de-
cision problems: payoff is obtained at the end
of a sequence of actions and not after individ-
ual actions. Examples are pursuit-evasion in
a single or multi-pursuer setting and navigat-
ing in a world with moving obstacles. The
tasks are typically multi-objective in nature:
for instance for pursuit-evasion, the agent
needs to minimize energy consumption while
maximizing the time till capture by the pur-
suers.

Agent characteristics: The agent has imper-
fect sensors. Imperfections occur in the form
of noise, as well as incompleteness (all as-
pects of the state of the world cannot be
sensed by our agent, a problem called per-
ceptual aliasing in [32]). Stochastic differ-
ential game theory has methods for deriving
agents with noisy sensors, but it requires de-
tailed models of the noise as well as a detailed
model of the environment and agent dynam-
ics.

The action set of the agents and the values
taken on by sensors are discrete and can be
grouped into equivalence classes. This is the basis
for the design of the parametric agent. A similar
intuition underlies the design of fuzzy controllers
that divide the space of sensor values into a small
set of classes described by linguistic variables.

In domains with characteristics such as those
just described, human designers typically derive
an initial solution by hand and use numerical
methods (usually very dependent on the initial
solution) to refine their solution. Our ultimate
objective is to automate the derivation of good
initial solutions by using general knowledge about
the environment, task, and agent characteristics
and thus provide a better starting point for the
refinement process. We begin with the SKB and
advice.

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 333

2 Compiling Advice

Our operationalization method compiles high-
level domain-specific knowledge (e.g., advice) and
spatial knowledge (SKB) into low-level reactive
rules directly usable by the agent. The compi-
lation performs deductive concretion [16] because
it deductively converts abstract goals and other
knowledge into concrete actions. An important
question is why we adopt a deductive procedure
for the operationalization of advice. At this time,
we are able to generate good parametric designs
with deductive inference alone. We expect that
as we expand our experimental studies to cover
more domains, the incompleteness of the SKB will
force us to adopt more powerful operationaliza-
tion methods.

The advice compilation problem can be stated
as follows:

Given:

- Strategic advice of the form: Set of States —>
achieve (Goal), which recommends that Goal
be achieved (be made to hold in the world)
whenever the agent finds itself in a state that
matches the antecedent of the advice. Note
that there is no requirement that the set of
states in the antecedent be directly perceiv-
able. The agent may have to plan to acquire
the information needed to determine whether
or not it is in the specified set of states.

- Qualitative factual knowledge about the do-
main in the form of a description of a Set of
States.

- A qualitative theory with information of the
following types:

(1) Domain-specific rules. a. A set
of domain-specific terminological mappings
that define terms needed for interpreting the
advice: these mappings are of the form Set
of states —y Set of states and are vocabulary
conversion rules, b. A set of state transi-
tion rules that represent the dynamics of the
world: these mappings are of the form Set of
states x A —• Set of states, where A is the
set of actions, c. A set of rules for predicting
other agent's actions: these mappings are of
the form Set of States x A —»• A. These rules
are special to multi-agent domains.

(2) A general qualitative theory of movement
(SKB). This is a common subpart of the do-
mains that we consider here. Therefore it
need not be reintroduced by the user for each
new domain. The SKB is of the form Set of
states x AM —* Set of states, where AM is
the subset of actions A that involve move-
ment.

- The operational sensors P and actions A of
the agent. A detailed agent design involves
finding a mapping from the sense history P*
of the agent to A. This is usually simplified
to be of the form 2P —> A so that only current
percepts determine the next action. The map
need not be deterministic. Indeed, in the GA
architecture, which is our target architecture,
the agent map is non-deterministic.

Find: An operational mapping 2P —> A from
the sensors to the effectors of the agent such that
the map implements the provided strategic ad-
vice. By this we mean that the map tests the
conditions under which the recommended goal is
to be achieved, and the action sequence it gener-
ates in the world places the agent in a state in
which the goal is achieved.

In summary, advice tells the agent to achieve
a goal under specified conditions. Facts, domain-
specific rules, a general theory of movement, and
a list of what is operational are all required for
interpreting this advice and compiling it into an
operational form.

As an example, consider the problem of an
agent that tries to evade a pursuing adversary,
(For a more detailed description of this problem,
see Section 4.3.) We assume the adversary is ini-
tially faster than the agent, though it is less ma-
neuver able. Both the adversary and the agent
lose speed as they turn, and the adversary's speed
loss is permanent. The agent and the adversary
can sense each other's instantaneous position and
velocity to within some specified accuracy. Al-
though these are facts of the problem, they are
initially unknown to the agent.

The strategic advice offered by a human expert
for this problem is the following: if the adver-
sary's speed is high, then try to slow down the
adversary; if the adversary's speed is low, then
avoid the adversary. In this example the precon-
ditions of the advice involve predicates that the

334 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

agent can sense; however it needs to pin down
the semantics of high and low. The goals to be
achieved are: slow down the adversary in the one
case, and avoid the adversary in the other. These
are not directly implement able using a single ac-
tion from A. We need to devise a plan to realize
these goals using knowledge about the domain,
including knowledge about movements. These
plans form the initial parametric design with high
and low being two of the parameters whose ranges
need to be learned by interaction with the envi-
ronment. An example SKB rule that is used to
compile our advice is:

IF bearing(agent,adversary) = right AND
turn(agent) = left

THEN heading(adversary,agent) ^ headon.

Heading (X ,Y) refers to the direction of motion
of Y relative to X, and bearing (X.Y) refers to
the direction of Y relative to X. This SKB rule
states that an agent no longer faces an adversary
when it turns away from it. Turn is an operational
action.

To compile the advice, we also need terminolog-
ical mappings that define terms such as avoid. An
example definition needed to compile our advice
is:

IF range(X.Y) # close AND
heading(Y,X) ^ headon
THEN avoids{X, Y).

Avoids(X, Y) means X avoids Y. Factual knowl-
edge is also required for compilation, e.g.,

Moving(agent).
Moving(adversary).

From our advice, the set of operational sensors
and effectors, and our qualitative theory, compila-
tion results in a set of operational sensor-effector
mappings. The set of all these operational sensor-
effector mappings is what we consider to be a re-
active plan (agent map). A portion of the reactive
plan that implements our advice, and is the prod-
uct of our compilation procedure, is shown below.

IF speed(adversary) = high AND
range(agent.adversary) = close

THEN turn(agent) = hard
IF speed(adversary) = high AND

range(agent,adversary) -£ close AND

bearing(agent,adversary) = lef t
THEN turn(agent) = left
IF speed(adversary) = high AND

range(agent,adversary) ^ close AND
bearing(agent,adversary) = right

THEN turn(agent) = right
IF speed(adversary) = low AND

bearing(agent,adversary) = right
THEN turn(agent) = left
IF speed(adversary) = low AND

bearing(agent,adversary) = lef t
THEN turn(agent) = right

This is a fairly complex plan. It implements the
strategic advice in the following manner: when
the adversary's speed is high, the agent moves to-
ward the adversary and makes a hard turn when
it is close enough. Since the adversary is chas-
ing the agent, this plan will cause the adversary
to turn hard, which then causes the adversary to
permanently lose speed. If the adversary is mov-
ing slowly, the agent simply stays out of its way.
In this section we present an algorithm that gen-
erates plans of this form starting from high level
advice and a qualitative domain theory.

Our compilation algorithm is tailored for situ-
ations in which the execution of plans, but not
the learning of plans, is highly time-critical. We
assume the advice provided is operationalized im-
mediately, though it need not be applied immedi-
ately. We precompile all high-level knowledge into
an operational form because the agent will apply
it in a time-critical situation. In our approach, ad-
vice and SKB rules have nonoperational elements,
and the compilation process results in rules that
are fully operational.

The compilation algorithm, shown in Figure 1,
uses two stacks: a GoalStack and an (operational
condition) OpCondStack. Four types of knowl-
edge are initially given to the compiler: advice,
facts, nonoperational rules (abbreviated nonop
rules), which include domain-specific rules and
the SKB, and the set of operational sensors and
actions. The output from compilation is a set of
op rules directly usable by the agent, i.e., opera-
tional. Advice has the form:

<IF cond AND . . . AND cond THEN> ACHIEVE
goal.

Facts have the form:

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 335

Predicate (Xi, Xn)

Nonop rules have the form:

IF cond AND
THEN goal.

AND cond <AND action>

The set of operational sensors and actions are pre-
sented to the agent as a list.

Anything in angle brackets is optional. The
portion preceding the THEN is the rule antecedent,
and the portion following the THEN is the rule con-
sequent. A nonop rule consequent is a single goal.
The syntax for a goal is function(Xi,.. .,Xn)
= / / value or predicate (Xi , . . .,Xn). Each X,-
is an object (e.g., an agent). The syntax for a
cond (condition) or action in the rule antecedent
is the same as for goals.

Although advice has a similar syntax to nonop
rules, its interpretation differs. Advice recom-
mends achieving the given goal under the given
conds. A nonop rule, which is needed to com-
pile this advice, states that the given goal will be
achieved if the given conds (and action) occur.
Compilation results in stimulus-response op rules
of the form:

IF cond AND . . . AND cond THEN action.

The conditions of an op rule are sensor values de-
tectable by the agent. The action can be per-
formed by the agent.

Our compilation algorithm in Figure 1 takes
advice and backchains through the SKB and user-
provided nonop rules until an operational action
is found. Once an operational action is found,
it pops back up the levels of recursion, attaching
operational conditions along the way, to form a
new reactive agent op rule. To prevent cycles,
the last nonop rule used in step 3 is marked as
"used" so that it will not be used again.

Let us examine a simple example of how this
algorithm operates, as shown in Figures 2 and 3.
Consider the advice which advocates avoiding the
adversary when the adversary's speed is low.

Pushadvice on GoalStack: goal followed by
conditions.

Initialize OpCondStack to be empty and invoke
Compile(GoalStack,OpCondStack).

Procedure Compile (GoalStack,
OpCondStack)
if GoalStack is not empty then

g <— pop(GoalStack);
case g:

1. g is an operational condition:
Push(g, OpCondStack);
Compile(GoalStack,
OpCondStack);

2. g matches a fact:
Compile(GoalStack,
OpCondStack);

3. g is nonoperational:
foreach nonop rule R{ whose
consequent matches g do

Push(antecedent(.R,),
GoalStack);
Compile(GoalStack,
OpCondStack);

4. g is an operational action
Form a new op rule from the
contents of
OpCondStack and g;
Clear OpCondStack;

else Clear OpCondStack;

Figure 1: Algorithm for operationalizing advice

Figure 3 shows this algorithm in operation.
Note that stacks grow downward. The algorithm
begins by pushing the advice goal, followed by
the advice condition, on the GoalStack. It then
calls procedure Compile, which moves the advice
condition to the OpCondStack because it is op-
erational. The advice goal is not operational. In
our example, the advice goal can be unified with
the goal of SKB RULEl, which states

IF speed(adversary) = low THEN
ACHIEVE heading(adversary,agent)

IF bearing(agent.adversary) = right AND
turn(agent) = left

headon THEN heading(adversary,agent) ^ headon.

Figure 2 shows how SKB nonop rules match
this advice for backchaining, thereby creating an
"and" tree. Anything preceded by a "*" is oper-
ational.

The condition and action of RULEl are pushed on
the GoalStack. Because the condition of RULEl
is operational, it is moved to the OpCondStack.
Note that if this condition had not been oper-

336 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

ADVICE

SKB RULE 1 SKB RULE 2

Figure 2: Graph of example. A is short for agent, V for adversary, br for bearing and hd for heading.

ational, our compilation algorithm would have
searched for all nonop rules whose consequents
unify with this nonoperational condition. Further
backchaining would have continued until opera-
tional conditions were found.

At this point, the action of RTJLE1 is at the
top of the GoalStack, and it is operational, so
we can create an op rule. The conditions from
the OpCondStack are added to the action. This
creates an op rule that states

IF speed(adversary) = low AND
bearing(agent,adversary) = right

THEN turn(agent) = left

Both stacks are cleared. The algorithm (see Fig-
ure 2) continues similarly to generate a second op
rule from SKB RULE2 that states

IF speed(adversary) = low AND
bearing(agent, adversary) =

THEN turn(agent) = right
left

Next, we apply a conversion from qualitative to
quantitative op rules. The rules are given default
quantitative ranges. For example, if speed has
two values, slow and fast, we bisect the range of
all possible values into two subranges. Then, we
allow the system to improve this initial choice of
quantitative ranges by using a GA to refine the
initial ranges while interacting with the environ-
ment.

3 Executing and Refining
Advice

The system we use to refine and apply the op
rules derived from our compiled advice is the
SAMUEL reactive planner [7]. We have chosen
SAMUEL because this system has already proven
to be highly effective for refining rules on com-
plex domains [7, 25]. SAMUEL adopts the role of
an agent in a multiagent environment in which it
senses and acts. This system has two major com-
ponents: a performance module and a learning
module. Section 4.2 explains how performance
interleaves with learning in our experiments.

The performance module, called the Compet-
itive Production System (CPS), interacts with a
simulated or real world by reading sensors, setting
effector values, and receiving payoff from a critic.
CPS performs matching and conflict resolution
on the set of op rules. This performance module
follows the match/conflict-resolution/act cycle of
traditional production systems. Time is divided
into episodes: the choice of what constitutes an
episode is domain-specific. Episodes begin with
random initialization and end when a critic pro-
vides payoff. At each time step within an episode,
CPS selects an action using a probabilistic voting
scheme based on rule strengths. All rules that
match (or partially match - see [7]) the current
state bid to have their actions fire. The actions
of rules with higher strengths are more likely to

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 337

GoalStack OpCondStack
hd(V,A)^headon
*speed(V)=low

GoalStack OyCondStack
hd(V,A)^headon

*speed(V)=lo v

GoalStack OyCondStack
*turn(A)=left *speed(V)=lc>Jv
*br(A,V)=right

GoalStack OyCondStdck
*turn(Aj=righ?speed(V)=lo< v
*br(A,Vj=left

GoalStack OyCondStacK
*turn(A)=left *speed(V)=lo

*br(A,V)=rig

GoalStack OyCondStack
*turn(A)=right"speed(V)=lo' v

*br(A,V)4left

Figure 3: Example of compilation algorithm

fire. If the world is being simulated, then after
an action fires, the world model is advanced one
simulation step and sensor readings are updated.

CPS assigns credit to individual rules based
on feedback from the critic. At the end of each
episode, all rules that suggested actions taken
during this episode have their strengths incremen-
tally adjusted to reflect the current payoff. Over
time, rule strengths reflect the degree of useful-
ness of the rules.

SAMUEL's learning module is a genetic algo-
rithm. GAs are motivated by simplified models of
heredity and evolution in the field of population
genetics [8]. GAs evolve a population of individu-
als over a sequence of generations. Each individ-
ual acts as an alternative solution to the problem
at hand, and its fitness (i.e., potential worth as a
solution) is regularly evaluated. During a gener-
ation, individuals create offspring (new individu-
als). The fitness of an individual probabilistically
determines how many offspring it can have. Ge-
netic operators, such as crossover and mutation,
are applied to produce offspring. Crossover com-
bines elements of two individuals to form two new
individuals; mutation randomly alters elements of
a single individual. In SAMUEL, an individual is

a set of op rules, i.e., a reactive plan. In addi-
tion to genetic operators, this system also applies
non-genetic knowledge refinement operators, such
as generalize and specialize, to op rules within a
rule set.

The interface between our compilation algo-
rithm and the SAMUEL system is straightfor-
ward. The output of our compilation algorithm is
a set of op rules for the SAMUEL agent. Because
the op rules may be incomplete, a random rule
is added to this rule set. The random rule rec-
ommends performing a random action under any
conditions. The final rule set, along with CPS
and the GA learning component for improving the
rules, is our initial agent.

4 Evaluation

We have not yet analyzed the cost of our compi-
lation algorithm. The worst case cost appears to
be exponential in the sizes of the inputs to the
algorithm because the STRIPS planning problem
can be reduced to it. In the future, we plan to in-
vestigate methods to reduce this cost for complex
realistic problems. Potential methods include: (1)

338 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

attaching a likelihood of occurrence onto advice,
which enables the agent to prioritize which advice
to compile first if time is limited, (2) tailoring the
levels of generality and abstraction of the advice
to suit the time available for compilation (e.g.,
less abstract advice is closer to being operational
and therefore requires less compilation time), and
(3) generating a parallel version of the algorithm.

We have evaluated our multistrategy approach
empirically. We focus on answering the following
questions:

1. Will our advice compilation method be effec-
tive for a reactive agent on complex domains?

2. Will the coordination of multiple learning
techniques lead to improved performance
over using any one learning method? In par-
ticular, we want the GA to increase the suc-
cess rate of the compiled advice, and the ad-
vice to reduce the convergence rate of the
GA. Success and failure have domain-specific
definitions (see Sections 4.3 and 4.4). The
convergence rate is defined as the time taken
to ascend to a given success rate. A reduced
convergence rate is useful when learning time
is limited.

3. Can we construct a portable SKB?

4.1 Domain characteristics

To address our questions, we have run experi-
ments on two complex problems: Evasion and
Navigation. Our choice of domains is motivated
by the results of Schultz and Grefenstette, who
have obtained large performance improvements
by initializing the GA component of SAMUEL
with hand-coded op rules in these domains [25].
Their success has inspired this work: our objec-
tive is to automate their tedious manual task, and
the work described here is one step toward the
goal.

Both problems are two-dimensional simulations
of realistic tactical problems. However, our sim-
ulations include several features that make these
two problems sufficiently complex to cause dif-
ficulties for more traditional control-theoretic or
game-theoretic approaches [7]:

— A weaA' domain model: The learner has no
initial model of other agents or objects in the

domain. Most control-theoretic and game-
theoretic models make worst case assump-
tions about adversaries. This yields poor de-
signs in the worlds we consider because we
have statistical rather than worst case adver-
saries.

— Incomplete state information: The sensors
are discrete, which causes perceptual alias-
ing: a many-to-one mapping from actual
states to perceived states.

- A large state space: The discretization of the
state space makes the learning problem com-
binatorial. In the Evasion domain, for in-
stance, over 25 million distinct feature vec-
tors are observed.

— Delayed payoff: The critic only provides pay-
off at the end of an episode. Therefore a
credit assignment scheme is required.

- Noisy sensors: Gaussian noise is added to all
sensor readings. Noise consists of a random
draw from a normal distribution with mean
0.0 and standard deviation equal to 5% of
the legal range for the corresponding sensor.
The value that results is discretized accord-
ing to the defined granularity of the sensor.
A 5% noise level is sufficient to slightly de-
grade SAMUEL's performance.

4.2 Experimental design

Two sets of experiments are performed on each of
the two domains. Perception is noise-free for the
first set, but noisy for the second. The primary
purpose of the first set is to address our ques-
tion about the effectiveness of our advice com-
pilation method alone, without GA refinement.
Facts, nonop rules, advice, and the set of opera-
tional sensors and actions are given to the com-
piler and the output is a set of op rules. The
random rule is added to the op rules and this
rule set is given to SAMUEL's CPS module to be
applied within the simulated world model. The
baseline performance with which these rules are
compared is the random rule alone. These exper-
iments measure how the success rate of the com-
piled rules compares with that of the baseline as
problem complexity increases, where the success
rate is an average over 1000 episodes. Statistical

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 339

significance of the differences between the curves
with and without advice are presented. Signifi-
cance is measured using the large-sample test for
the differences between two means.

The primary purpose of the second set of ex-
periments is to address our question about the
effectiveness of the multistrategy approach (com-
pilation followed by GA refinement). We used the
same set of op rules (i.e., the output of the com-
piler) for this second set of experiments as was
used for the first set of experiments. This rule
set, plus the random rule, becomes every individ-
ual in SAMUEL's initial GA population, i.e., it
seeds the GA with initial knowledge. The base-
line performance with which these rules are com-
pared is SAMUEL initialized with every individ-
ual equal to just the random rule. In either case,
GA learning evolves this initial population. In
other words, we compare the performance of ad-
vice seeding the GA with GA learning alone (i.e.,
random seeding). Random seeding produces an
initially unbiased GA search; advice initially bi-
ases the GA search - hopefully into favorable re-
gions of the search space.

In this second set of experiments, performance
of the agent in the environment interleaves with
GA refinement. SAMUEL runs for 100 genera-
tions using a population size of 100 rule sets. Ev-
ery 5 generations, the best (in terms of success
rate) 10% of the current population are evaluated
over 100 episodes to choose a single plan to rep-
resent the population. This plan is evaluated on
1000 randomly chosen episodes and the success
rate is calculated. This entire process is repeated
10 times and the final success rate, averaged over
all 10 trials, is found. The curves in our graphs
plot these averages. For this set of experiments,
statistical significance is measured using the two-
sample £-test, with adjustments as required when-
ever the F statistic indicates unequal variances.

We add sensor noise, as defined in Section 4.1,
for this second set of experiments because GAs
can learn robustly in the presence of noise [7].
Two performance measures are used: the success
rate and the convergence rate. The convergence
rate is defined as the number of GA generations
required to achieve and maintain an n% success
rate, where n is different for each of the two do-
mains. The value of n is set empirically.

4.3 Evaluation on the Evasion
problem

Our simulation of the Evasion problem is partially
inspired by [4]. This problem was introduced in
Section 2. The problem consists of an agent that
moves in a two-dimensional world with a single
adversary pursuing the agent. The agent is con-
trolled by SAMUEL, and the adversary is con-
trolled by a simple set of rules. The agent's ob-
jective is to avoid contact with the adversary for
a bounded length of time. Contact implies the
agent is captured by the adversary. The prob-
lem is divided into episodes that begin with the
adversary approaching the agent from a random
direction. The adversary initially travels faster
than the agent, but is less maneuverable (i.e., it
has a greater turning radius). Both the agent and
the adversary gradually lose speed when maneu-
vering, but only the adversary's loss is perma-
nent. An episode ends when either the adver-
sary captures the agent (failure) or the the agent
evades the adversary (success). At the end of each
episode, a critic provides full payoff for successful
evasion and partial payoff otherwise, proportional
to the amount of time before the agent is cap-
tured. The strengths of op rules that fired are
updated in proportion to the payoff.

The agent has the following operational sensors:
time, last agent turning rate, adversary speed, ad-
versary range, adversary bearing, and adversary
heading. The agent has one operational action:
it can control its own turning rate. For further
detail, see [7].

In our experiments, we provide the following
domain-specific knowledge to the agent:

FACTS:
Chased-by(agent,adversary).
Moving(agent).
Moving(advers ary).

DOMAIN-SPECIFIC NQNOP RULES:
IF chased-by(X ,Y) AND

range(X.y) = close AND
turn(X)=Z

THEN turn(F) = Z.
IF range(X.y) ^ close AND

heading(Y,X) ^ headon
THEN avoids (X ,Y).
IF turn(adversary) = hard
THEN decelerates(adversary).

340 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

ADVICE:
IF speed(adversary) = high THEN
ACHIEVE decelerates(adversary).
IF speed(adversary) = low THEN
ACHIEVE avoids(agent,adversary).

We also include knowledge of the agent's oper-
ational sensors and actions as facts. Ten SKB
nonop rules are used (they are instantiations of
the two rules described in English in the intro-
duction of this paper). Although room does not
permit listing them all, some examples are:

IF bearing(X.Y) = right AND
turn(X) = left

THEN heading(Y,X) ± headon.
IF bearing(X,Y) = left AND

moving(X) AND
turn(X) = lef t

THEN range(X.F) = close.

From our input and our SKB rules, the compila-
tion method of Section 2 generates op rules. The
sensor values of these rules are translated from
qualitative values to default quantitative ranges.
For example, bearing = left is translated into
bearing = [6. . 12], where the numbers corre-
spond to a clock, e.g., 6 means 6 o'clock. Every
new rule is given an initial strength of 1.0 (the
maximum). The final op rule set includes rules
such as1

IF speed(adversary) = [700..1000] AND
range(agent,adversary) = [0..750]

THEN turn(agent) = hard-left .

The total number of op rules generated from our
advice is 16.

We begin our experiments by addressing the
first question, which concerns the effectiveness of
our advice-taking method. We do not use the GA.
Problem difficulty is varied by adjusting a safety
envelope around the agent. The safety envelope is
the distance at which the adversary can be from
the agent before the agent is considered captured
by the adversary.

Figure 4 shows how the performance (averaged
over 1000 episodes) of these op rules compares

100$
Evasion Domain

1To generate a few of these rules, we used a variant of
our compilation algorithm. We omitted a description of
this variation for the sake of clarity. See [6] for details.

0 20 40 60 80 100 120 140 160 180 200
Increasing Problem Difficulty

Figure 4: Results on the Evasion domain without
GA refinement. Y axis denotes success rate.

with that of just the random rule. All of the dif-
ferences between the means are statistically sig-
nificant (using significance level a = 0.05). From
Figure 4 we see that from difficulty levels 80 to
120, the agent is approximately twice as success-
ful with advice than without it. This is a 100%
performance advantage. Furthermore, for levels
130 to 160, the agent is about four times more
effective with advice. For levels 160 to 200, the
agent is an order of magnitude more effective with
advice. We conclude that as the difficulty of this
problem increases, the advice becomes more help-
ful relative to the baseline. These results answer
our first question: our advice compilation method
is effective on this domain.

We address the second question about multi-
strategy effectiveness by combining the compiled
advice with GA refinement. Figure 5 shows the
results of comparing the performance of the GA
with and without advice. The safety envelope
is fixed at 100 (chosen arbitrarily) and noise is
added to the sensors. For this domain, the con-
vergence rate is the number of GA generations
required to maintain a 60% success rate.

Figure 5 shows that in a small amount of time
(approximately 10 generations), the GA doubles
the success rate of the advice rules. Furthermore,
the addition of advice produces a 3.5-fold im-
provement in the convergence rate over using a
GA with random initialization. The differences
between the means are statistically significant for
the first 65 generations, but not afterwards (a =

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 341

Evasion Domain

20 40 60
GA Generations

80 100

Figure 5: Results on the Evasion domain with the
GA. Y axis denotes success rate.

0.05).2 Apparently, the advice initially biases the
GA into a favorable region of the search space,
which improves the convergence rate over random
initialization. The convergence value, however,
does not appear to be higher with advice than
without it because eventually the performance of
the randomly initialized GA is roughly equivalent
to that of the GA seeded with advice.

4.4 Evaluation on the Navigation
problem

In the Navigation domain, our agent is again con-
trolled by SAMUEL in a two-dimensional simu-
lated world. The agent's objective is to avoid ob-
stacles and navigate to a stationary target with
which it must rendezvous before exhausting its
fuel (implemented as a bounded length of time
for motion). Each episode begins with the agent
centered in front of a randomly generated field
of obstacles with a specified density. An episode
ends with either a rendezvous at the target lo-
cation (success) or the exhaustion of the agent's
fuel or a collision with an obstacle (failure). At
the end of an episode, a critic provides full payoff

2These results differ from the results presented in [6].
This discrepancy results from an improvement in the initial
rule strengths. Future work will focus on studies analyz-
ing system sensitivity to parameter variations. Our initial
studies indicate that performance is more robust with re-
spect to changes in some parameters, e.g., variations in
the qualitative to quantitative mappings, than to changes
in others, e.g., the initial rule strengths.

if the agent reaches the target, and partial payoff
otherwise, depending on the agent's distance to
the goal.

The agent has the following operational sen-
sors: time, the bearing of the target, the bearing
and range of an obstacle, and the range of the
target. The agent has two operational actions:
it can control its own turning rate and its speed.
For further detail, see [24].

We provide the following domain-specific
knowledge (in addition to a list of operational sen-
sors and actions):

FACTS:
Moving(agent).

DOMAIN-SPECIFIC N0N0P RULES:
IF range(X,Y) ^ close AND

heading(Y ,X) ^ headon
THEN avoids(X ,Y).

ADVICE:
IF range(agent,obstacle) ^ close THEN
ACHIEVE range(agent.target) = close.
IF range(agent,obstacle) = close THEN
ACHIEVE avoids(agent,obstacle).
ACHIEVE speed(agent) = high.

The same 10 SKB nonop rules used for Evasion
are again used for this domain and are success-
ful in the compilation procedure. This confirms
the portability of our SKB for these two domains,
thus addressing our third question. Also, al-
though the definition of avoids was intended to be
domain-specific, it actually applies to both of our
domains. A total of 42 op rules are generated.3

Again, we address the first question by using
SAMUEL without the GA. We increase the prob-
lem difficulty on this domain by increasing the
number of obstacles. The success rate is an av-
erage over 1000 episodes. Without advice, the
success rate is 0% because this is a very difficult
domain. Figure 6 shows how we improve the suc-
cess rate to as much as 90% by using our advice
on this domain. We increase problem difficulty by
increasing the number of obstacles. At all but the
last few points, the differences between the means
are statistically significant (a — 0.05). When we

3 We were able to decrease the number of op rules to 9
by making one careful qualitative to quantitative mapping
choice.

342 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

Navigation Domain

0
0 10 20 30 40 50 60 70 80 90 100 0

Increasing Problem Difficulty

100

80<

60

40

20

o-

VVVT

-

-

+
' i

Navigation

V \ / v

+

+ +

+ + +

1

Domain
/ \ /v . J\ A A A

+ ,+-(- + + +
No Advice

i i

(<\ -A. A

+ -

-

-

-

20 40 60
GA Generations

80 100

Figure 6: Results on the Navigation domain with-
out GA refinement. Y axis denotes success rate.

vary the number of obstacles, performance follows
a different trend than for the Evasion domain. By
far the greatest benefit of the advice occurs when
there are few obstacles. The success rate is 90%
with advice and 0% without advice when there
is only one obstacle, for example. The advan-
tage drops as the problem complexity increases.
After difficulty level 80, the particular advice we
gave the agent no longer offers any benefit. For
this level of problem difficulty, different advice is
probably more appropriate.

Our experiments on both domains confirm that
our advice compiler can be effective, however,
they also indicate that the usefulness of advice
may be restricted to a particular range of situa-
tions. Another learning task, which we are cur-
rently exploring, would be to identify this range
and add additional conditions to the advice.

We address the second question by comparing
the performance of the GA with and without ad-
vice. Noise is added. Figure 7 shows the results.
All differences between the means are statistically
significant (a = 0.05). Here, the number of ob-
stacles is fixed at five (chosen arbitrarily). For
this domain, the convergence rate is the number
of GA generations required to maintain a 95%
success rate.

Figure 7 shows that the addition of advice
yields an enormous performance advantage on
this domain. Figure 7 also shows that given a
moderate amount of time (10 generations), the
GA provides a 10% increase in the success rate.

Figure 7: Results on the Navigation domain with
the GA. Y axis denotes success rate.

Furthermore, the addition of advice produces an
18-fold improvement in the convergence rate over
using GAs alone. Not only does advice improve
the convergence rate, but it also appears to im-
prove the level of convergence: after 80 genera-
tions, the GA with advice holds a 99% or above
success rate whereas after all 100 generations the
GA without advice still cannot get above a 97%
success rate.4

To further test our compilation method, we
have recompiled our Navigation advice into op
rules for a Nomad 200 mobile robot that is
equipped with very noisy sonar and infrared sen-
sors and can adjust its turning rate and speed.
The sensors are so noisy that the robot sometimes
mistakes two boxes four feet apart for a wall. The
op rules that result from compilation have not
been refined by the GA to develop a tolerance
to noise; therefore, this noise poses a severe chal-
lenge.

The op rules are linked to a vendor-provided
interface that translates the language of the
SAMUEL rules (e.g., IF asonar4 [17. .85]
THEN SET turn -400) into joint velocity and
servo motor commands. From high-level advice to
avoid obstacles and rendezvous with a goal point,
our method has compiled rules that enable the

4 On both this domain and the one described in the pre-
vious section, our results are for 100 GA generations. In
future work we plan to run the GA longer to determine
whether our conclusions hold over a longer time period.

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 343

robot to succeed approximately a third of the time
in avoiding three large boxes and reaching a goal
point on the other side of a room. The same SKB
rules are used for compilation. With the random
rule alone, it is extremely unlikely to successfully
complete this task. Our next step will be to refine
these robot rules using GAs within a simulation
of this actual domain.5

In conclusion, our multistrategy system offers
two advantages. First, it provides an initial boost
from seeding with high-level knowledge. On both
simulated domains we see a significant improve-
ment in the convergence rate - an order of mag-
nitude on the Navigation domain. Second, the
multistrategy system provides the robustness and
improvement gained from GA refinement. Refine-
ment yields a 10% increase in the success rate on
Navigation and a 100% increase on Evasion. The
fact that on both domains the advice biases the
GA into a favorable region and significantly im-
proves its convergence rate is very important in
complex domains where a GA approach alone may
not be feasible or may be very inefficient. Finally,
the effectiveness of our advice-taking method has
been confirmed on a robot with poor sensory ca-
pabilities.

To determine whether the presence of noise in-
fluences our conclusions, we have repeated our
experiments on the two simulated domains with
sensor readings that are not noisy. Although the
success rates differ slightly, our conclusions still
hold.

5 Related Work

This work relates most strongly to the following
topics in machine learning: advice taking, com-
bining projective and reactive planning, methods
for compiling high-level goals into reactive rules,
learning in fuzzy controllers, and multistrategy
learning. This work also relates to research in
differential game theory. We discuss each in turn.

5.1 Machine Learning

Advice taking has been considered by McCarthy
as early as 1958 [15] and later by Mostow [19] and

5We wish to use SAMUEL both to handle the noise and
because we had to manually refine the qualitative to quan-
titative mappings somewhat - SAMUEL could automate
this.

others. To date, research on assimilating advice in
embedded agents has been limited but encourag-
ing. Previous research has focused mainly on pro-
viding low-level knowledge. For example, Laird
et al. [11] and Clouse and Utgoff [3] have had
good success providing agents with information
about which action to take. Chapman gives his
agent high-level advice [2] . Our advice taker dif-
fers from Chapman's because it can operational-
ize advice long before the advice is applied and
because it refines the advice with a GA. Most im-
portant of all, our advice taking method is unique
because it involves a multistrategy approach that
couples a knowledge-intensive deductive precom-
pilation phase with an empirical inductive refine-
ment phase.

We assume that high-level knowledge is opera-
tionalized but not applied immediately. Methods
for operationalizing advice that will be applied
immediately include STRIPS-like planners [20]
and explanation-based learning (EBL) planners
e.g., [26]. A closely related system is Mitchell's
[17]. This system combines EBL projective plan-
ning with reactive planning. Our method for com-
piling goals is similar to that of EBL because it
uses the notion of operationally. It differs be-
cause we do not assume that the advice will be
applied immediately, and therefore our compila-
tion method has no current state on which to fo-
cus plan generation. All of the above-mentioned
methods create a projective plan to achieve a goal
from the current state. We precompile advice for
multiple possible states.

Because our method precompiles plans from
possible states rather than from a current state,
it is very similar to the methods of Schoppers [23]
and Kaelbling [9] for compiling high-level goals
into low-level reactive rules. Our method differs
from those of Schoppers and Kaelbling because it
includes the EBL notion of operationally. Also
unlike Schoppers and Kaelbling, we use a refine-
ment method following compilation.

Considerable prior work has focused on knowl-
edge refinement. Others have used GAs to refine
qualitative to quantitative mappings. For exam-
ple, Karr uses GAs to select fuzzy membership
functions for a fuzzy controller [10]. Lin, Mahade-
van and Connell, and Singh initialize their sys-
tems with modular agent architectures then refine
them with reinforcement learning [12], [14], and

344 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

[27]. Lin trains a robot by giving it advice in the
form of a sequence of desired actions. Mahadevan
and Connell initialize their reinforcement learner
with a prespecified subsumption architecture, and
Singh guides his reinforcement learner by giving
it abstract actions to decompose.

One of the most similar approaches to ours is
that of Towell and Shavlik [31]. They also cou-
ple rule-based input with a refinement method;
however, their refinement method is neural net-
works. This multistrategy system converts rules
into a network topology. The content of each rule
is preserved; therefore, the transformation is syn-
tactic. Our multistrategy system, on the other
hand, focuses primarily on semantic transforma-
tions that use qualitative knowledge about move-
ments in space to convert abstract goals into con-
crete actions. Ram and Santamaria [22] present
a multistrategy refinement scheme for a paramet-
ric agent performing a navigation task. In con-
trast with our genetic algorithms based approach,
their system acquires values for the defined pa-
rameters by using reinforcement learning. Dif-
ferent parameter value combinations are acquired,
for distinct environment subclasses. The interest-
ing feature of their system is the explicit identi-
fication of different environmental configurations
using case-based reasoning. The identification of
regularities in the environment occurs implicitly
in the genetic algorithms approach. The deduc-
tive compilation scheme (but not the refinement)
is in common with Mitchell et a/.'s derivation of
a strategy for pushing objects in a tray using a
qualitative theory of the process [18].

5.2 Differential game theory

Differential game theory is a branch of mathemat-
ical optimal control theory. It assumes that the
behavior of the controlled system can be mod-
eled as a system of ordinary differential equations
(ODEs). The evasion problem considered in this
paper is a typical example of a differential game.
In particular, the problem is two-person zero-
sum differential game with a constant terminal
time. Both the pursuer and the evader move in a
bounded rectangle in two dimensions. The evader
has to avoid getting to within a certain distance
of the pursuer for a certain length of time. In the
minimax formulation of the problem, the optimal
strategy of the evader is one that achieves its ob-

jective under the least favorable assumptions on
the motion of the pursuer.

Differential games are formulated mathemati-
cally by specifying the motion equations of the
pursuer and evader, the class of admissible con-
trols for both systems (which identifies the way
in which the pursuer and evader can change their
motions), and the target or goal functional. A
classic reference for this is [1]. The focus of
work in differential game theory is to identify
conditions under which optimal strategies for the
evader can be derived. This assumes complete
knowledge of the dynamics of the evader and pur-
suer, both of which are unavailable to us. The
theory would be more useful to us if it had a
qualitative counterpart which allowed us to de-
termine the existence of solutions to the evader's
problem from partial knowledge of the evader and
pursuer's dynamics.

6 Discussion

We have presented a novel multistrategy learn-
ing method for operationalizing and refining high-
level advice into low-level rules to be used by a re-
active agent. Operationalization uses a portable
SKB. An implementation of this method has been
tested on two complex domains and a Nomad 200
robot.

We have learned the following lessons:

1. Our advice compiler can be effective on com-
plex domains, and it will be important to
identify the regions of greatest effectiveness
for advice,

2. A portable SKB appears feasible, and

3. Coordinating a deductive learning strategy
(advice compilation) with an inductive learn-
ing strategy (GA refinement) can lead to
a substantial performance improvement over
either method alone.

This success, however, depends on the how the
advice biases the GA search. Future work will fo-
cus on identifying those characteristics of advice
that bias this search favorably. We will also focus
on further addressing our questions about perfor-
mance using different advice and alternative do-
mains (e.g., [28]).

A MULTISTRATEGY LEARNING SCHEME... Informatica 17 (1993) 331-346 345

Many other interesting directions are suggested
by our experimental results. At present we do
not consider the cost of incorporating advice. For
larger scale problems and situations where advice
is provided more frequently, the agent has to rea-
son about the costs and benefits of compiling ad-
vice at a given point in time. Classical issues in
trading off deliberation time for action time are
relevant here.

Another issue for future study is the problem
of operationalization theory incompleteness. For
example, our SKB was sufficiently complete for
both domains but had it not been, we would have
been faced with the problem of supplementing
this knowledge base with additional rules. We
are considering an approach like that used in the
DISCIPLE system [29] to elicit advice and learn
rules for operationalizing the advice.

We have chosen the GA method for refinement
because it was readily available to us. A compari-
son of a neural network and other approaches with
our current GA approach, on the problems stud-
ied here, will provide valuable insights into the
tradeoffs between different refinement strategies.
We believe that multistrategy learning systems of
the future must have a bank of operationaliza-
tion and refinement methods at their disposal and
have fast methods for selecting them. We have
chosen a specific breakdown of effort between the
advice compilation and refinement phases. How
this coordinates with our choice of problem do-
mains and refinement schemes is another question
for future study.

Acknowledgements

We appreciate the helpful comments and sug-
gestions provided by Bill Spears, Alan Schultz,
Connie Ramsey, John Grefenstette, Alan Mey-
rowitz. We would especially like to thank John
Greffenstette for generously allowing us to use the
SAMUEL system upon which our system is built.

References

[1] Basar, T. and G. Olsder, Dynamic Noncoop-
erative Game Theory. New York: Academic
Press, 1982.

[2] Chapman, D., Vision, instruction and action.
Ph.D. thesis. MIT, 1990.

[3] Clouse, J. and P. Utgoff, A teaching method
for reinforcement learning. In Proc. of the
Ninth International Workshop on Machine
Learning, 1992.

[4] Erickson, M. and J. Zytkow, Utilizing ex-
perience for improving the tactical manager.
In Proc. of the Fifth International Workshop
on Machine Learning, 1988.

[5] Gordon, D. and D. Subramanian, A multi-
strategy learning scheme for assimilating ad-
vice in embedded agents. In Proc. of the Sec-
ond International Workshop on Multistrategy
Learning, 1993.

[6] Gordon, D. and D. Subramanian, Assimilat-
ing advice in embedded agents. Unpublished
manuscript, 1993.

[7] Grefenstette, J., Ramsey, C, and A. Schultz,
Learning sequential decision rules using sim-
ulation models and competition. Machine
Learning, Volume 5, Number 4, 1990.

[8] Holland, J. Adaptation in Natural and Arti-
ficial Systems. University of Michigan Press:
Ann Arbor, 1975.

[9] Kaelbling, L., Goals as parallel program
specifications. In Proc. of the Seventh Na-
tional Conference on Artificial Intelligence,
1988.

[10] Karr, C, Design of an adaptive fuzzy logic
controller using a genetic algorithm. In Proc.
of the Ninth International Conference on Ge-
netic Algorithms, 1991.

[11] Laird, J., Hucka, M., Yager, E., and C. Tuck,
Correcting and extending domain knowledge
using outside guidance. In Proc. of the Sev-
enth International Conference on Machine
Learning, 1990.

[12] Lin, L., Programming robots using reinforce-
ment learning and teaching. In Proc. of the
Ninth National Conference on Artificial In-
telligence, 1991.

346 Informatica 17 (1993) 331-346 D. Gordon and D. Subramanian

[13] Maes, P. and R. Brooks, Learning to coor-
dinate behaviors. In Proc. of the Eighth Na-
tional Conference on Artificial Intelligence,
1990.

[14] Mahadevan, S. and J. Connell, Automatic
programming of behavior-based robots us-
ing reinforcement learning. In Proc. of the
Ninth National Conference on Artificial In-
telligence, 1991.

[15] McCarthy, J., Mechanisation of thought pro-
cesses. In Proc. Symposium, Volume 1, 1958.

[16] Michalski, R., Inferential learning theory as
a basis for multistrategy task-adaptive learn-
ing. In Proc. of the Eighth International
Workshop on Multistrategy Learning, 1991.

[17] Mitchell, T., Becoming increasingly reactive.
In Proc. of the Eighth National Conference
on Artificial Intelligence, 1990.

[18] Mitchell, T., Mason, M., and A. Chris-
tiansen, Toward a learning robot. CMU
Technical Report, 1987.

[19] Mostow, D. J., Machine transformation of
advice into a heuristic search procedure. In
R. Michalski, J. Carbonell, and T. Mitchell
(Eds.), Machine Learning: An Artificial In-
telligence Approach (Vol. 1). Tioga Publish-
ing Co., Palo Alto, CA., 1983.

[20] Nilsson, N., Principles of Artificial Intelli-
gence. Tioga: Palo Alto, 1980.

[21] Odetayo, M. and D. McGregor, Genetic al-
gorithm for inducing control rules for a dy-
namic system. In Proc. of the Third Inter-
national Conference on Genetic Algorithms,
1989.

[22] Ram, A. and J.C. Santamaria, A multi-
strategy case-based and reinforcement learn-
ing approach to self-improving reactive con-
trol systems for autonomous robotic naviga-
tion. In Proc. of the Second International
Workshop on MultiStrategy Learning, 1993.

[23] Schoppers, M., Universal plans for reac-
tive robots in unpredictable environments.
In Proc. of the Sixth National Conference on
Artificial Intelligence, 1987.

[24] Schultz, A. and J. Grefenstette, Using a
genetic algorithm to learn behaviors for au-
tonomous vehicles. In Proc. of the Navigation
and Control Conference, 1992.

[25] Schultz, A. and J. Grefenstette, Improving
tactical plans with genetic algorithms. In
Proc. of the IEEE Conference on Tools for
AI, 1990.

[26] Segre, A., Machine Learning of Robot As-
sembly Plans. Kluwer: Boston, 1988.

[27] Singh, S., Scaling reinforcement learning al-
gorithms by learning variable temporal reso-
lution models. In Proc. of the Ninth Interna-
tional Workshop on Machine Learning, 1992.

[28] Subramanian, D. and S. Hunter, Some pre-
liminary studies in agent design in simulated
environments. Unpublished manuscript,
1993.

[29] Tecuci, G. Cooperation in knowledge base re-
finement. In Proc. of the Ninth International
Workshop on Machine Learning, 1992.

[30] Tesauro, G., Temporal difference learning of
backgammon strategy. In Proc. of the Ninth
International Workshop on Machine Learn-
ing, 1992.

[31] Towell, G. and J. Shavlik, Refining symbolic
knowledge using neural networks. In Proc. of
the Eighth Workshop on Machine Learning,
1991.

[32] Whitehead, S. and D. Ballard, Learning to
perceive and act by trial and error. Machine
Learning, Volume 7, Number 1, 1991.

Informatica 17 (1993) 347-369 347

MULTISTRATEGY LEARNING IN REACTIVE CONTROL
SYSTEMS FOR AUTONOMOUS ROBOTIC NAVIGATION

Ashwin Ram and Juan Carlos Santamarfa
College of Computing, Georgia Institute of Technology,
Atlanta, Georgia 30332-0280, U.S.A.

Keywords: Robot navigation, reactive control, case-based reasoning, reinforcement learning, adap-
tive control

Edited by: Gheorghe Tecuci

Received: October 15, 1993 Revised: November 6, 1993 Accepted: November 14, 1993

This paper presents a self-improving reactive control system for autonomous robotic
navigation. The navigation module uses a schema-based reactive control system to
perform the navigation task. The learning module combines case-based reasoning and
reinforcement learning to continuously tune the navigation system through experience.
The case-based reasoning component perceives and characterizes the system's environ-
ment, retrieves an appropriate case, and uses the recommendations of the case to tune
the parameters of the reactive control system. The reinforcement learning component
refines the content of the cases based on the current experience. Together, the learn-
ing components perform on-line adaptation, resulting in improved performance as the
reactive control system tunes itself to the environment, as well as on-line case learn-
ing, resulting in an improved library of cases that capture environmental regularities
necessary to perform on-line adaptation. The system is extensively evaluated through
simulation studies using several performance metrics and system configurations.

1 Introduction

Autonomous robotic navigation is denned as the
task of finding a path along which a robot can
move safely from a source point to a destination
point in an obstacle-ridden terrain, and executing
the actions to carry out the movement in a real or
simulated world. Several methods have been pro-
posed for this task, ranging from high-level plan-
ning methods to reactive control methods.

High-level planning methods use extensive
world knowledge and inferences about the envi-
ronment they interact with (Fikes, Hart & Nils-
son, 1972; Sacerdoti, 1975; Georgeff, 1987; Maes,
1990). Knowledge about available actions and
their consequences is used to formulate a detailed
plan before the actions are actually executed in
the world. Such systems can successfully per-
form the path-finding required by the navigation
task, but only if an accurate and complete rep-
resentation of the world is available to the sys-
tem. Considerable high-level knowledge is also

needed to learn from planning experiences (e.g.,
Mostow & Bhatnagar, 1987; Minton, 1988; Segre,
1988; Hammond, 1989). Such a representation is
usually not available in real-world environments,
which are complex and dynamic in nature. To
build the necessary representations, a fast and ac-
curate perception process is required to reliably
map sensory inputs to high-level representations
of the world. A second problem with high-level
planning is the large amount of processing time
required, resulting in significant slowdown and the
inability to respond immediately to unexpected
situations.

Situated or reactive control methods have been
proposed as an alternative to high-level planning
methods (Brooks, 1986; Kaelbling, 1986; Payton,
1986; Arkin, 1989). In these methods, no plan-
ning is performed; instead, a simple sensory rep-
resentation of the environment is used to select
the next action that should be performed. Ac-
tions are represented as simple behaviors, which
can be selected and executed rapidly, often in real-

348 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

time. These methods can cope with unknown and
dynamic environmental configurations, but only
those that lie within the scope of predetermined
behaviors. Furthermore, such methods cannot
modify or improve their behaviors through expe-
rience, since they do not have any predictive capa-
bility that could account for future consequences
of their actions, nor a higher-level formalism in
which to represent and reason about the knowl-
edge necessary for such analysis.

We propose a self-improving navigation system
that uses reactive control for fast performance,
augmented with multistrategy learning methods
that allow the system to adapt to novel environ-
ments and to learn from its experiences. The sys-
tem autonomously and progressively constructs
representational structures that aid the naviga-
tion task by supplying the predictive capability
that standard reactive systems lack. The repre-
sentations are constructed using a hybrid case-
based and reinforcement learning method without
extensive high-level reasoning. The system is very
robust and can perform successfully in (and learn
from) novel environments, yet it compares favor-
ably with traditional reactive methods in terms
of speed and performance. A further advantage
of the method is that the system designers do
not need to foresee and represent all the possi-
bilities that might occur since the system devel-
ops its own "understanding" of the world and its
actions. Through experience, the system is able
to adapt to, and perform well in, a wide range
of environments without any user intervention or
supervisory input. This is a primary characteris-
tic that autonomous agents must have to interact
with real-world environments.

This paper is organized as follows. Section 2
presents a technical description of the system, in-
cluding the schema-based reactive control com-
ponent, the case-based and reinforcement learn-
ing methods, and the system-environment model
representations, and places it in the context of
related work in the area. Section 3 presents sev-
eral experiments that evaluate the system. The
results shown provide empirical validation of our
approach. Section 4 concludes with a discussion
of the lessons learned from this research and sug-
gests directions for future research.

2 Technical Details

2.1 System Description

The Self-Improving Navigation System (SINS)
consists of a navigation module, which uses
schema-based reactive control methods, and an
on-line adaptation and learning module, which
uses case-based reasoning and reinforcement
learning methods. The navigation module is re-
sponsible for moving the robot through the envi-
ronment from the starting location to the desired
goal location while avoiding obstacles along the
way. The adaptation and learning module has two
responsibilities. The adaptation sub-module per-
forms on-line adaptation of the reactive control
parameters being used in the navigation module
to get the best performance. The adaptation is
based on recommendations from cases that cap-
ture and model the interaction of the system with
its environment. With such a model, SINS is able
to predict future consequences of its actions and
act accordingly. The learning sub-module moni-
tors the progress of the system and incrementally
modifies the case representations through experi-
ence. Figure 1 shows the SINS functional archi-
tecture.

The main objective of the learning module is to
construct a model of the continuous sensorirnotor
interaction of the system with its environment,
that is, a mapping from sensory inputs to appro-
priate behavioral (schema) parameters used for
reactive control. This model allows the adapta-
tion module to control the behavior of the navi-
gation module by selecting and adapting schema
parameters in different environments. To learn
a mapping in this context is to discover environ-
ment configurations that are relevant to the navi-
gation task and corresponding schema parameters
that improve the navigational performance of the
system. The learning method is unsupervised and
uses a reward that depends on the similarity of the
observed mapping in the current environment to
the mapping represented in the model combined
with a more traditional punishment signal. This
causes the system to converge towards those map-
pings that are consistent and beneficial over a set
of experiences.

The representations used by SINS to model
its interaction with the environment are initially
under-constrained and generic; they contain very

MULTISTRATEGY LEARNING .. . Informatica 17 (1993) 347-369 349

Robot Agent

Perceiver

Learning and
Adaptation
Module

.. Adaptation I
I Modulo

Schema

Parameters

Sensory

Inputs

Navigation
Modulo

Motor

Outputs

Actuator

Environment

Figure 1: System architecture

little useful information for the navigation task.
As the system interacts with the environment, the
learning module gradually modifies the content of
the representations until they become useful and
provide reliable information for adapting the nav-
igation system to the particular environment at
hand.

The learning and navigation modules function
in an integrated manner. The learning module
is always trying to find a better model of the in-
teraction of the system with its environment so
that it can tune the navigation module to per-
form its function better. The navigation mod-
ule provides feedback to the learning module so
it can build a better model of this interaction.
The behavior of the system is then the result of
an equilibrium point established by the learning
module which is trying to refine the model and
the environment which is complex and dynamic
in nature. This equilibrium may shift and need
to be re-established if the environment changes
drastically; however, the model is generic enough
at any point to be able to deal with a very wide
range of environments.

We now present the reactive module, the repre-
sentations used by the system, and the methods
used by the learning module in more detail.

2.2 The Navigation Module

The navigation module, which uses schema-based
reactive control methods, is based on the AuRA
architecture (Arkin, 1989). The module consists
of a set of motor schemas that represent the in-
dividual motor behaviors available to the system.
Each schema reacts to sensory information from
the environment, and produces a velocity vec-
tor representing the direction and speed at which
the robot is to move given current environmen-
tal conditions. The velocity vectors produced by
all the schemas are then combined to produce a
potential field that directs the actual movement
of the robot. Simple behaviors, such as wander-
ing, obstacle avoidance, and goal following, can
combine to produce complex emergent behaviors
in a particular environment. Different emergent
behaviors can be obtained by modifying the sim-
ple behaviors. This allows the system to interact
successfully in different environmental configura-
tions requiring different navigational "strategies"
(Ram, Arkin, Moorman, h Clark, 1992).

A detailed description of schema-based reac-
tive control methods can be found in Arkin
(1989). In this research, we used three motor
schemas: AVOID-STATIC-OBSTACLE, MOVE-TO-

GOAL, and NOISE. AVOID-STATIC-OBSTACLE di-

rects the system to move itself away from detected
obstacles. MOVE-TO-GOAL schema directs the
system to move towards a particular point in the

350 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

terrain. The NOISE schema makes the system
move in a random direction; it is used to escape
from local minima and, in conjunction with other
schemas, to produce wandering behaviors. Each
motor schema has a set of parameters that control
the potential field generated by the motor schema.
In this research, we used the following parameters:
Obstacle-Gain, associated with AVOID-STATIC-

OBSTACLE, determines the magnitude of the re-
pulsive potential field generated by the obstacles
perceived by the system; Goal-Gain, associated
with MOVE-TO-GOAL, determines the magnitude
of the attractive potential field generated by the
goal; Noise-Gain, associated with NOISE, deter-
mines the magnitude of the noise; and Noise-
Persistence, also associated with NOISE, deter-
mines the duration for which a noise value is al-
lowed to persist.

Different combinations of schema parameters
cause different .behaviors to be exhibited by the
system (see figure 2). Traditionally, parameters
are fixed and determined ahead of time by the
system designer. However, on-line selection and
modification of the appropriate parameters based
on the current environment can enhance naviga-
tional performance, as in the ACBARR system
(Ram, Arkin, Moorman & Clark, 1992). SINS
adopts this approach by allowing schema param-
eters to be modified dynamically. However, in
ACBARR, schema modification information is
supplied by the designer using hand-coded cases.
Our system, in contrast, can learn and modify its
own cases through experience. The representa-
tion of our cases is also considerably different and
is designed to support reinforcement learning.

2.3 The System-Environment Model
Representation

The navigation module in SINS can be adapted to
exhibit many different behaviors. SINS improves
its performance by learning how and when to tune
the navigation module. In this way, the system
can use the appropriate behavior in each environ-
mental configuration encountered. The learning
module, therefore, must learn about and discrim-
inate between different environments, and asso-
ciate with each the appropriate adaptations to be
performed on the motor schemas. This requires
a representational scheme to model, not just the
environment, but the interaction between the sys-

tem and the environment. However, to ensure
that the system does not get bogged down in ex-
tensive high-level reasoning, the knowledge repre-
sented in the model must be based on perceptual
and motor information easily available at the re-
active level.

SINS uses a model consisting of associations be-
tween sensory inputs and schema parameters val-
ues. Each set of associations is represented as
a case. Sensory inputs provide information about
the configuration of the environment, and schema
parameter information specifies how to adapt the
navigation module in the environments to which
the case is applicable. Each type of information
is represented as a vector of analog values. Each
analog value corresponds to an estimate of a quan-
titative variable (a sensory input or a schema pa-
rameter) over a window of time. A vector repre-
sents the trend or recent history of such estimates
of a variable. A case models an association be-
tween sensory inputs and schema parameters by
grouping their respective vectors together. Fig-
ure 3 shows an example of this representation.

This representation has three essential prop-
erties. First, the representation is capable of
capturing a wide range of possible associations
between.sensory inputs and schema parameters.
Second, it permits continuous progressive refine-
ment of the associations. Finally, the represen-
tation captures trends or patterns of input and
output values over time. This allows the system
to detect patterns over larger time windows rather
than having to make a decision based only on in-
stantaneous values of perceptual inputs.

In this research, we used four input vectors
to characterize the environmental and discrimi-
nate among different environment configurations:
Obstacle-Density provides a measure of the oc-
cupied areas that impede navigation; Absolute-
Motion measures the activity of the system;
Relative-Motion represents the change in mo-
tion activity; and Motion-Towards-Goal spec-
ifies how much progress the system has actually
made towards the goal. These input vectors are
constantly updated with the information received
from the sensors.

We also used four output vectors to represent
the schema parameter values used to adapt the
navigation module, one for each of the schema pa-
rameters (Obstacle-Gain, Goal-Gain, Noise-

MULTISTRATEGY LEARNING .. . Informatica 17 (1993) 347-369 351

9fwUm w«h oon«tafit •etom pvtmktn

Hfi ofcaacl^pta md tow go^pln •fe*nUoM<c<»gata«fid muta

Figure 2: Typical navigational behaviors of different tunings of the reactive control module. The figure
on the left shows the non-learning system with high obstacle avoidance and low goal attraction. On
the right, the learning system has lowered obstacle avoidance and increased goal attraction, allowing
it to "squeeze" through the obstacles and then take a relatively direct path to the goal.

Sensory [nputs .

Obstacle Density

Absolute Motion

Relative MoliOQ

Motion Towards Goal

Association'

Control Outputs -

Obstacle Gain

Goal Gain

Noise Gain

Noise Persistence

0 1 2 3

Figure 3: Sample representations showing the time history of analog values representing sensory
inputs and control outputs. Associations between sensory inputs and control outputs are arranged
vertically, and the sequence of associations over time is arranged horizontally. Each case in the system
is represented in this manner, as is the current on-going navigational experience of the system.

352 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

Gain, and Noise-Persistence) discussed earlier.
The values are set periodically according to the
recommendations of the case that best matches
the current environment. The new values remain
constant for a "control interval" until the next
setting period.

The choice of input and output vectors was
based on the complexity of their calculation and
their relevance to the navigation task. The in-
put vectors were chosen to represent environment
configurations in a generic manner but taking into
account the processing required to produce those
vectors (e.g., obstacle density is more generic than
obstacle position, and can be obtained easily from
the robot's ultrasonic sensors). The output vec-
tors were chosen to represent directly the actions
that the learning module uses to tune the naviga-
tion module, that is, the schema parameter values
themselves. s

2.4 The On-Line Adaptation And
Learning Module

This module creates, maintains, and applies the
case representations used for on-line adaptation of
the reactive module. The objective of the learning
method is to detect and discriminate among dif-
ferent environment configurations, and to identify
the appropriate schema parameter values to be
used by the navigation module, in a dynamic and
an on-line manner. This means that, as the sys-
tem is navigating, the learning module is perceiv-
ing the environment, detecting an environment
configuration, and modifying the schema param-
eters of the navigation module accordingly, while
simultaneously updating its own cases to reflect
the observed results of the system's actions in var-
ious situations.

The method is based on a combination of ideas
from case-based reasoning and learning, which
deals with the issue of using past experiences to
deal with and learn from novel situations (e.g., see
Hammond, 1989; Kolodner, in press), and from
reinforcement learning, which deals with the is-
sue of updating the content of system's knowledge
based on feedback from the environment (e.g., see
Sutton, 1992). However, in traditional case-based
planning systems (e.g., Hammond, 1989) learn-
ing and adaptation requires a detailed model of
the domain. This is exactly what reactive plan-
ning systems are trying to avoid. Earlier attempts

to combine reactive control with classical plan-
ning systems (e.g., Chien, Gervasio, & DeJong,
1991) or explanation-based learning systems (e.g.,
Mitchell, 1990) also relied on deep reasoning and
were typically too slow for the fast, reflexive be-
havior required in reactive control systems. Un-
like these approaches, our method does not fall
back on slow non-reactive techniques for improv-
ing reactive control.

To effectively improve the performance of the
navigation task., the learning module must find a
consistent mapping from environment configura-
tions to control parameters. The learning mod-
ule captures this mapping in the learned cases,
each case representing a portion of the mapping
localized in a specific environment configuration.
The set of cases represents the system's model
of its interactions with the environment, which is
adapted through experience using the case-based
and reinforcement learning methods. The case-
based method selects the case best suited for a
particular environment configuration. The rein-
forcement learning method updates the content of
a case to reflect the current experience, such that
those aspects of the mapping that are consistent
over time tend to be reinforced. Since the naviga-
tion module implicitly provides the bias to move
to the goal while avoiding obstacles, mappings
that are consistently observed are those that tend
to produce this behavior. As the system gains
experience, therefore, it improves its own perfor-
mance at the navigation task. Additionally, the
reinforcement learning method uses a punishment
signal to reject mappings that are not beneficial
to the system.

Each case represents an observed regularity be-
tween a particular environmental configuration
and the effects of different actions, and prescribes
the values of the schema parameters that are ap-
propriate (as far as the system knows based on its
previous experience) for that environment. The
learning and adaptation module performs the fol-
lowing tasks in a cyclic manner: (1) perceive and
represent the current environment; (2) retrieve a
case whose input vector represents an environ-
ment most similar to the current environment;
(3) adapt the schema parameter values in use by
the reactive control module by installing the val-
ues recommended by the output vectors of the
case; and (4) learn new associations and/or adapt

MULTISTRATEGY LEARNING Informatica 17 (1993) 347-369 353

do

{
/* PERCEIVE: Update input vectors */
current .environment = perceiveQ;

if (end of control interval)
then {

/* LEARN: Decide whether to reinforce or explore */
if (outcome was good)

then {
reinforcejschemas (previous-case,

current jenvironment);
/* LEARN: Decide if case should be extended */
if (prediction is good and at end of sequence)

then
extend_case (previous_case);

}
else

explore_schemas (previousjcase);

/• RETRIEVE: Retrieve best case */
best_case = retrieve_bestjcase(current-environment);

/* LEARN: Decide if a new case should be created */
if (bestjcase is not a good match)

then
bestjcase = create-case (currentjenvironment);

/* ADAPT: Modify current set of schema parameters
*/

adapt_schemas (best_case);

/* Wait until next cycle */
previousjcase = best .case;

/* Move robot using the current set of schema parameters */
execute();

}
while (not (goal reached or maximum number of steps
exceeded))

Table 1: SINS algorithm

existing associations represented in the case to re-
flect any new information gained through the use
of the case in the new situation to enhance the
reliability of its predictions.

The overall algorithm is shown in table 1.

The perceive function constructs and main-
tains a representation of the current environmen-
tal situation by reading the robot's sensors and
updating the input and output vectors accord-
ingly. This results in a set of J — 4 input vec-
tors E input., one for each sensory input j, and
K = 4 output vectors EoutputJc, one for each out-
put vector k as described earlier. Then, every
control interval T, the learning and adaptation
module performs two main functions: It adapts
the schema parameters currently in use by the re-

active control module so that it performs better
in the new environment, and it learns useful se-
quences of associations between environment sit-
uations and schema parameters.

Schema parameters are adapted using the
retrieve_best_case and adapt_schemas func-
tions. In the retrieve_best_case function, the
case most similar to the current environment
situation is selected by matching the environ-
ment's input and output vectors Einput>, Eoutputfc

from the perceive step against the correspond-
ing input and output vectors C"p u t j , C?utputfc of
the cases Cn in the system's memory (see fig-
ure 4). The best matching case C"be3t and the
position of the best match pbest are handed to
the adapt_schemas function, which modifies the
schema parameter values currently in use based
on the recommendations C"u,epitj (pbes, + 1) from
the output vectors of the case.

Finally, the learning and adaptation module de-
cides how to utilize information from the current
experience with the best case in order to improve
its case library. The system learns in three dif-
ferent ways: by improving the content of the case
that was just used in order to make it more re-
liable, by creating a new case whenever the best
case retrieved is not good enough, or by extend-
ing the length of the case in order to build up
longer sequences of associations. The contents of
a case are improved by the reinforce_schemas
function, which reinforces the suggestions of the
case if these suggestions led to a favorable out-
come over the last control interval, and by the
explore_schemas function, which uses random
exploration to try out other schema parameter
values if the suggested set of values did not prove
useful. The outcome is evaluated by monitoring
the behavior of the robot over the last control
interval; collisions are undesirable, as is lack of
movement.

One difference between our methods and tradi-
tional reinforcement learning is that SINS is try-
ing to maximize consistency in "useful" behaviors
as determined by a reward signal, whereas tra-
ditional reinforcement learning tries to maximize
the expected utility the system is going to receive
in the future as determined by the reward signal
(cf. Watkins, 1989; Whitehead k Ballard, 1990).
In schema-based reactive control navigation, it is
inherently a good idea to modify schema parame-

354 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

recent past
current
time

Current
Environment
Configuration
Representation

Input
Vectors

Output .
Vectors

Case length(IQ)

Environment length (lp) n t ' '

..Time

Case
Environment
Configuration
Representation

Input
Vectors

Output .
Vectors

H

F\>

. prediction

. Tuning
sequence

• i t

Figure 4: Schematic representation of the match process. Each graph in the case (below) is matched
against the corresponding graph in the current environment (above) to determine the best match,
after which the remaining part of the case is used to guide navigation (shown as dashed lines).

MULTISTRATEGY LEARNING ... Informatica 17 (1993) 347-369 355

ters in an on-line fashion; however, not all modifi-
cations are equally good since some may cause the
robot to collide with obstacles or not to move at
all. SINS uses the reward signal to decide whether
to reinforce a behavior or to explore alternative
behaviors; reinforcement, when chosen, is used to
reinforce behaviors that are consistent across ex-
periences. Thus, in addition to external outcome,
consistency is used as an "internal" reward signal
for the reinforcement learning method.

Furthermore, traditional reinforcement learn-
ing assumes that the outcomes of the system's ac-
tions are known; it learns which actions to execute
to maximize a reward. In SINS, the outcomes of
what corresponds to "actions" (the adaptations to
be performed on the navigation module) are not
known; part of the learning task is to discover the
sequences of environmental situations are likely to
result from a given sequence of adaptations and,
in turn, which adaptations are appropriate in dif-
ferent situations. Thus, SINS is learning a model
of its sensorimotor interaction with the environ-
ment (represented as a set of cases) at the same
time as it is learning to improve its navigational
performance through on-line adaptation of its re-
active control schemas.

In addition to modifying its cases, SINS can
also extend its cases and learn hew cases. In or-
der to decide which kind of learning to perform
in a given situation, SINS uses a relative similar-
ity criterion to judge the appropriateness of the
best matching case in the current situation. This
determination is based on statistical information
about the quality of match in prior applications
of the case as compared to the quality of match in
the current situation. If the best matching case
is not as similar to the current environment sit-
uation as it has been in previous situations, the
case is probably inappropriate for this situation;
thus, it is better to learn a new case to represent
what is probably a new class of situations. If this
occurs, SINS uses the create_new_case function
to create a new case based on the current experi-
ence and add it to the case library. To determine
whether to create a new case, SINS compares the
current match with the mean match plus the stan-
dard deviation of the matches over the past uti-
lizations of the case. This ensures that new se-
quences of associations are created only when the
available sequences of associations already cap-

tured in the case library do not fit the current
environment.

The third kind of learning is carried out by the
extend_case_size function, which extends the
length of a case whenever the best case makes an
accurate prediction of the next environment sit-
uation and there are no more associations in the
sequence. This allows the system to increase the
length of the sequence of associations only when
it is confident that the sequence of the case ac-
curately predicts how the environment changes if
the suggested schema parameters are used. To
estimate this confidence, the predicted values are
matched with the actual environmental parame-
ters that result; if this match-is better than the
mean match, the case is extended. Intuitively (as
before), if the case predicts the current situation
better than it predicted the previous situations
that it was used in, it is likely that the current sit-
uation involves the very regularities that the case
is beginning to capture; thus, it is worthwhile ex-
tending the case so as to incorporate the current
situation. Alternatively, if the match is not quite
as good, the case should not be modified because
doing so would take it away from the regularities
it has been converging towards.

Since the reinforcement formulae are based on
a relative similarity criterion, the overall effect of
the learning process is to cause the cases to con-
verge on stable associations between environment
configurations and schema parameters. Stable as-
sociations represent regularities in the world that
have been identified by the system through its ex-
perience, and provide the predictive power neces-
sary to navigate in future situations. The assump-
tion behind this method is that the interaction
between the system and the environment can be
characterized by a finite set of causal patterns or
associations between the sensory inputs and the
actions performed by the system. The method
allows the system to learn only the causal pat-
terns that the reward utility identifies as useful
and to use them to modify its actions by updat-
ing its schema parameters as appropriate. Useful
causal patterns are those that do not cause robot
collisions or do not cause the robot to stop.

Genetic algorithms may also be used to mod-
ify schema parameters in a given environment
(Pearce, Arkin, k Ram, 1992). However, while
this approach is useful in the initial design of the

356 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

navigation system, it cannot change schema pa-
rameters during navigation when the system faces
environments that are significantly different from
the environments used in the training phase of
the genetic algorithm. Another approach to self-
organizing adaptive control is that of Verschure,
Krose, and Pfeifer (1992), in which a neural net-
work is used to learn how to associate conditional
stimulus to unconditional responses. Although
their system and ours are both self-improving
navigation systems, there is a fundamental dif-
ference on how the performance of the navigation
task is improved. Their system improves its nav-
igation performance by learning how to incorpo-
rate new input data (i.e., conditional stimuli) into
an already working navigation system, while SINS
improves its navigation performance by learning
how to adapt the system (i.e., the navigation
module) itself. Our system does not rely on new
sensory input, but on patterns or regularities de-
tected in perceived environment. Our learning
methods are also similar to Sutton (1990), whose
system uses a trial-and-error reinforcement learn-
ing strategy to develop a world model and to plan
optimal routes using the evolving world model.
Unlike this system, however, SINS does not need
to be trained on the same world many times, nor
are the results of its learning specific to a particu-
lar world, initial location, or destination location.

We now present a detailed description of and
the mathematical formulas used in the perception,
matching, adaptation, and learning tasks.

2.4.1 Perception

The objective of the perceive function is to gen-
erate an accurate description of the current en-
vironment situation. It performs this task by
shifting the previous values in each input and
output vector one position back in time1 and
then calculating the current values for each input
vector Einputj.(0),j = 1,...,J and output vector
Eou,putfc(0),A: = l,...,K, where 0 is the current
position in time. The current values for the in-
put vectors are based on the robot's sensors, and
the current values for the output vectors are just
the respective values of the schema parameters
suggested in the previous control interval. The

vectors are updated at the end of each control
interval of time T.

To update the input vectors, the system moni-
tors the values of the robot's sensors Sensory cor-
responding to each input vector Einput>. The sen-
sors are monitored at each time step over the past
control interval; these sensor readings are then av-
eraged to yield the new value for the correspond-
ing input vectors. Thus, the input vectors in the
environment representation are updated using the
following formula:2

Einputy(i) =
E i n p u t j(i-1)
^=°_ r Sensor^)

T

if i > 0

if i = 0

1 This is implemented using a circular buffer which does
not requires copying each of the values from one cell to the
next.

where Sensorj(ra) is the sensory input that
corresponds to the input vector Einpu,. (sensed
obstacles for Obtacle-Density, distance trav-
eled for Absolute-Motion, relative position for
Relative-Mot ion, and normal relative position
for Motion-Towards-Goal), and t ranges over
each robot step since the last control interval.

2.4.2 Retrieval and Matching

The function retrieve_best_case is responsible
for selecting a case from the case library that
best matches the current environment situation.
The case similarity metric is based on the mean
squared difference between each of the vector val-
ues of the case over a trending window, and the
vector values of the environment. The best match
window is calculated using a reverse sweep over
the time axis p similar to a convolution process to
find the relative position that matches best. Each
case Cn in the case library is matched against
the current environment using exhaustive search,
which returns the best matching case C b e " along
with the relative position pbe8, of the match (see
figure 4). After retrieving the best case, the mean
and variance of the case's statistical match history
are updated; these will be used later to calculate
the relative similarity criterion during learning.

The case similarity metric SM of a case C at
position p relative to the environment E is a value
that indicates the similarity between the sequence
of associations encoded in the case to the sequence
of associations in the current environment situa-
tion starting at position p. The lower the value

2Note that i counts back in time (i.e., t = 0 is the
current time and t > 0 is the recent past.)

MULTISTRATEGY LEARNING .. . Informatica 17 (1993) 347-369 357

of the case similarity metric, the more similar
the sequences of associations. The case similar-
ity metric formula calculates a weighted sum of
the squared difference between the corresponding
vectors of the case and the environment. For the
SM to be valid, p must lie between 0 and lc-3

SM(E,C, p) =

K min(p,lE)

k

(E i n p u l j(0-C i n p u l>-Q)2

- I))

A : = l t = 0

The best case is obtained by matching each case
C™ in the case library at all the positions p and se-
lecting the pair (nbe3t,pbeat) that yields the lowest
SM. Formally, this can be expressed as:

K.s, ,Pbe,, |min(SM(E,Cn ,p)) , Vn, 0 < p < /c»-}

Each case C maintains a statistical record of the
similarity metrics it has produced in the past,
which is updated every time the case is retrieved
as the best case. The mean (CsMmein) and vari-
ance (CsMv«) °f the case similarity metric as well
as the number of times the case has been used
(CU3ed) are updated using standard formulae in
descriptive statistics:

... + SM

Cuaed - 1
new CSMvar = — CSMvar

-f(new

new Cused =' Cused + 1

2.4.3 Adaptation

The best matching case Cnbeat is used to adapt
the schema parameter values currently in use by
the reactive control module. The values of out-
put vectors for the next association C"b

tp
s
utfc after

position phest are used to determine the new set
of schema parameters values Parameter^ until
the next control interval. Since learning tends to
reinforce those associations that are consistently

observed over several experiences, the new set of
schema parameters can be expected to cause the
robot to move safely and the next environment
configuration that results from the movement can
be expected to be the one predicted by the as-
sociation. Since output vectors directly represent
schema parameters, adaptation is a straightfor-
ward operation:

Parameter^ =

2.4.4 Learning

Vfc =

In addition to perceiving the environment, re-
trieving the best matching case, and adapting
the schema parameters being used by the reactive
control module, SINS must also learn by updat-
ing its case library based on its current experience.
Three types of learning are possible: modification
of the associations contained in a case, creation of
a new case based on the current experience, and
extension of the size of a case to yield associa-
tions over larger time windows. Modification of
case contents, in turn, can be of two types: rein-
forcement of the associations contained in the case
based on a successful experience, and exploration
of alternative associations based on an unsuccess-
ful experience.

SINS decides which kind of learning to perform
using a relative similarity criterion which deter-
mines the quality of the best match. The match
value of the best case, based on the case simi-
larity metric, is compared with the match values
of the case in previous situations in which it was
used. If the current match is worse than the mean
match value by more than a standard deviation,
the case (although still the best match) is consid-
ered to be too different from the current situation,
since it has been a better match to other situa-
tions in the past. In this case, the create .case
function is invoked to create a new case contain-
ing a sequence of associations formed by copying
the values of the sequence of associations in the
current environmental representation:

We used Wj = u>* = 1.0 (i.e., input and output vectors
all contribute equally in the similarity metric.)

If, on the other hand, the best case matches
the current situation well, it is likely that the cur-
rent situation is representative of the class of sit-
uations that that case is beginning to converge

358 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamarfa

towards. If the case provides good recommenda-
tions for action, its recommendations should be
reinforced; if not, its recommendations should be
modified. In SINS, collisions with obstacles and
lack of movement are undesirable by definition of
the navigation task. A set of schema parameters
is considered beneficial if using it does not lead
to an undesirable outcome. The objective of the
learning functions is to improve the accuracy of
prediction of the system's cases and, in turn, to
discover those schema parameter values that re-
sult in environmental situations that are benefi-
cial for the robot.

If the best case recommends a set of schema pa-
rameters that are not beneficial to the robot, the
explore_schemas function is used to modify the
case such that it suggests a different set of schema
parameters in similar circumstances in the future.
Specifically, the output vectors C^'^ik(pbe!lt + 1)
associated with the environment situation follow-
ing the best match position pbeat are modified in
a random manner since the current values are not
useful to the system. The small random changes
allow the system to explore the space of possible
schema parameters in a controlled manner. These
changes are defined by the following formula:

p = min(l, a collisions +

c^Ow +1) =

+ p r a n d o m (m i n C ^ , k , m a x C ^ ' S t k) ,
VA; = 1,...,K

where p is a "reject" value that determines the
extent to which the current recommendations
should be taken into account when determining
the modified values. A value of p = 0 specifies
that the value of the output vector should be left
unchanged, and a value of p = 1 specifies that the
value of output vector should be replaced com-
pletely by a new random value in the allowable
range. In any given learning cycle, the value of
p depends on a and /?, which represent the im-
portance of avoiding collisions and moving, re-
spectively. In this paper, we used a = 0.5 and
/9 = 1.0.

If, on the other hand, the schema parameters
suggested by the best matching case produce de-
sirable results, the reinforce_schemas function
is invoked. This function updates the case by
making it more like the current environmental sit-

uation, so as to produce the same recommenda-
tions in similar situations in the future. This re-
inforcement is done using the following formulae:

Vi = 0,...,pbest

Vi = 0 , . . . , j w

= t'+l V^output/t \Pbest V
/-i"besl (j\\
^outputfc^jj)

VA; = 1,...,K

where A determines the learning rate (0.9 in the
cuurent version of SINS).

Finally, the extend _case function extends the
sequence of associations contained in a case. The
decision to extend a case is also based on a sta-
tistical relative similarity criterion. If the case's
predictions C"b",V(j»be8, + 1) are similar to the re-
sulting environment situation within a standard
deviation from the mean predictive similarity, and
the case does not have more associations in the
sequence (that is, it cannot provide a next set of
schema parameters), then the case is extended by
duplicating the last association of the case:

... + 1),

best T^-"outputjj(Pbeat "I"

The net result of these learning procedures is
to cause the cases in the system's case library
to converge towards regularities in the system's
interactions with its environment. The system
learns useful sequences of schema parameters for
different environment situations; these are used to
guide navigation and, in turn, are updated based
on navigational outcomes so as to improve the re-
liability of their predictions in similar situations
in the future.

3 Evaluation

We evaluated the methods presented above us-
ing extensive simulations across a variety of dif-
ferent types of environment, performance crite-
ria, and system configurations. The objective of
these experiments was to measure the qualitative
and quantitative improvement in the navigation

MULTISTRATEGY LEARNING .. . Informatica 17 (1993) 347-369 359

performance of SINS (denoted "sins" in the fig-
ures), and to compare this performance against
several non-learning schema-based reactive sys-
tems (the "static" systems) that do not change
schema parameters and a system that changes
its schema parameter values randomly after every
control interval (the "random" system). Further-
more, rather than simply measure improvement in
performance in SINS by some given metric such as
"speedup," we were interested in systematically
evaluating the effects of various design decisions
on the performance of the system using several
different metrics. To achieve this, we designed
several experiments, which can be grouped into
four sets as discussed below.

3.1 Experiment Design

The systems were tested on randomly generated
environments consisting of rectangular bounded
worlds. Each environment contains circular ob-
stacles, a start location, and a destination loca-
tion, as shown in figure 2. Figure 5

shows an example runs of two of the static sys-
tems, the random system, and the SINS system
on a typical randomly generated world. The lo-
cation, number, and radius of the obstacles were
randomly determined to create environments of
varying amounts of clutter, defined as the ra-
tio of free space to occupied space. 15% clutter
corresponded to relatively easy worlds and 50%
clutter to very difficult worlds. We tested the ef-
fect of three different design parameters in the
SINS system: max-cases, the maximum number
of cases that SINS is allowed to create; max-size,
lc, representing the maximum number of associ-
ations in a case; and control-interval, T, which
determines how often the schema, parameters in
the reactive control module are adapted.

We used three non-adaptive systems for com-
parison. These systems were identical to the un-
derlying navigation module in SINS, but used
different fixed sets of schema parameter values.
The "staticH" system used a hand-coded set that
we designed manually by watching the behavior
of the system on both 15% and 50% cluttered
worlds. The "staticl5" and "static50" systems
used the schema parameter values reported in
Ram, Arkin, Moorman, and Clark (1992), which
were hand-optimized through extensive trial and
error to 15% and 50% cluttered worlds, respec-

tively. As discussed below, SINS performed as
well as the staticl5 system on 15% cluttered
worlds and the static50 system on the 50% clut-
tered worlds; furthermore, SINS reached this level
of performance autonomously and, unlike the
static systems which were optimized only for a
specific clutter, was robust across sudden changes
in clutter.

We used six estimators to evaluate the naviga-
tion performance of the systems. These metrics
were computed using a cumulative average over
several hundred test worlds to factor out the in-
trinsic differences in difficulty of different worlds.
Percentage of worlds solved indicates in how many
of the worlds posed the system actually found a
path to the goal location. The optimum value is
100% since this would indicate that every world
presented was successfully solved. Average steps
per world indicates the average of number of steps
that the robot takes to terminate each world;
smaller values indicate better performance. Aver-
age distance per world indicates the total distance
traveled per world on average; again, smaller val-
ues indicate better performance. Average ac}V-aK

distance per world indicates the ratio of the to-
tal distance traveled and the Euclidean distance
between the start and end points, averaged over
the solved worlds. The optimal value is 1, but
this is only possible in a world without obstacles.
Average virtual collisions per world indicates the
total number of times the robot came within a
pre-defined distance of an obstacle. Finally, av-
erage time per world indicates the total time the
system takes to execute a world on average.

The data for the estimators was obtained after
the systems terminated each world. This was to
ensure that we were consistently measuring the
effect of learning across experiences rather than
within a single experience (which is less signif-
icant on worlds of this size anyway). The ex-
ecution is terminated when the navigation sys-
tem reaches its destination or when the number
of steps reaches an upper limit (1000 in the cur-
rent evaluation). The latter condition guarantees
termination since some worlds are unsolvable by
one or both systems.

In this paper, we discuss the results from the
following sets of experiments:

— Experiment set 1: Evaluation of the effect of
our multistrategy case-based and reinforce-

360 Informatica 17 (1993) 347-369 A. Ram k J.C. Santamaria

2 0.30 1.00 1.10 0
1000 Cont*Ot» 13 O f t 310.73 Db«t«cl«» 0.00 Motion O.OO To Gfvl O.OO

B I.00 1.00 1.10 0
297 Contwit* 70 Dial 173,39 0*>»t»ctf 0.00 Hotlni 0,00 To Co*I O.OO

ui* I.OO Dlr»rtlO» 179.5713

Hol i*Ptr i i» tenc* Noii«Galn CD«lC»Ln Ob.1*ctC*lr» C u m n t e a i *
4 0.30 1.57 0,69 0

5tfpa 106 Cpntwtt 9 DiBt 91.SO Ob»t.*cl«« 0.00 Hntton 0.00 To Coal 0.00
.76 0.70 18

To Co^l 0.3*0

1.00 Direction -128.378

Figure 5: Sample runs of the staticl5 (top left), static50 (top right), random (bottom left), and SINS
(bottom right) systems on a randomly generated world. The robot starts at the black box (towards
the lower right side of the world) and tries to navigate to the white box. The graphs near the top of
each figure show the values of each schema parameter over time.

MULTISTRATEGY LEARNING Informatica 17 (1993) 347-369 361

ment learning method by comparing the per-
formance of the SINS system against the
static and random systems.

- Experiment set 2: Evaluation of the effect
of the parameters of the case-based reason-
ing component of the multistrategy learning
system.

- Experiment set 3: Evaluation the effect of
the control-interval parameter, which de-
termines how often the adaptation and learn-
ing module modifies the schema parameters
of the reactive control module.

- Experiment set 4: Evaluation of the effect of
changing environmental characteristics, and
evaluation of the ability of the systems to
adapt to new environments and learn new
regularities.

3.2 Discussion of Experimental
Results

The results in figures 6 through 10 show that SINS
does indeed perform significantly better than its
non-learning counterparts. To obtain a more de-
tailed insight into the nature of the improvement,
let us discuss the experimental results in more de-
tail.

Experiment set 1: Effect of the multistrat-
egy learning method. We first evaluated the
effect of our multistrategy case-based and rein-
forcement learning method by comparing the per-
formance of the SINS system against the static
and random systems. SINS was allowed to learn
up to 10 cases (max-cases = 10), each of max-
size = 10. Adaptation occurred every control-
interval = 4 steps.

Figure 6 shows the results obtained for each
estimator over 200 randomly generated worlds.
Each graph compares the performance on one es-
timator of each of the five systems, SINS, staticH,
staticl5, static50, and random, discussed above.
Figure 6 shows the results obtained for each esti-
mator over the 200 worlds with 50% clutter. The
best configuration of SINS, which could learn up
to 10 cases of maximum size 10 and with a control
interval of 4, was selected to do the comparison.
As shown in the graphs, SINS performed as well
as or better than the other systems with respect to

five out of the six estimators. Table 2 and 3 show
the final improvement in the system after all the
worlds with 15% and 50% clutter, respectively.
For example, table 3 shows that SINS success-
fully navigates 100% of the worlds, the same as
the static50 system optimized for 50% cluttered
worlds, with 27% fewer virtual collisions. Al-
though the non-learning system was 85% faster in
time, the paths it found required the same number
of steps. On average, SINS' solution paths were
about the same length as those of the static50 sys-
tem; however, it should be noted that the static50
system was customized for 50% cluttered worlds,
whereas SINS improved its performance regard-
less what type of environment was dealing with.
The static50 system did not perform as well in
15% cluttered worlds; although the staticl5 sys-
tem did better, SINS compared favorably with
that system in those worlds. Another important
result is that SINS improved the performance in-
dependently of the initial values for the schema
parameters; for example, when initialized with
the same schema parameters as the staticH sys-
tem, it was able to achieve performance far supe-
rior to the staticH system, and comparable with
or better than the staticl5 system in 15% clut-
tered worlds and the static50 system in 50% clut-
tered worlds.

The average time per world was the only es-
timator in which the self-improving system per-
formed worse. The reason for this behavior is
that the case retrieval process in SINS is very
time consuming. However, since in the physical
world the time required for physical execution of
a motor action outweighs the time required to se-
lect the action, the time estimator is less critical
than the distance, steps, and solved worlds esti-
mators. Furthermore, as discussed below, better
case organization methods should reduce the time
overhead significantly.

The experiments also demonstrate also our as-
sumption about the utility of adapting schema pa-
rameter values in reactive systems: the number
of worlds solved by the navigation system is in-
creased by changing the values of the schema pa-
rameters even in a random fashion, although the
random changes lead to greater distances trav-
eled. This may be due to the fact that random
changes can get the system out of "local min-
ima" situations in which the current settings of

362 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

Percenlage of worlds solved

i i—

I I

400

350

300 •

2S0

200

ISO

Avenge steps per world

0 20 40 60 80 100 120 140 160 180 200
Number of worlds

100

"ttaUcSO"
Tslaticli"
•tandem"" -— •

0 20 40 60 80 100 120 140 160 180 200
Number of worlds

Average distance per world Average actual/optimal distance prr world

80

60
20 40 60 80

Number of worlds

i
100 120 140 16() 180 200

I "siiiic50,
"stalicll";

1...."random" : — -j

i I 1 L J.._ - L 1 i I
20 40 60 80 100 IX) 140 160 180 200

Number of worlds

Average collisions per world
2500

2000

1500

Aveope lime per world

1000

20 40 60 80 100 120 140 160 180 200
Number of worIds

0 P̂ 40 60 80 100 120 140 160 180 200
Number of worlds

Figure 6: Cumulative performance results on 50% cluttered worlds.

MULTISTRATEGY LEARNING Informatica 17 (1993) 347-369 3 6 3

Average steps per world Average collisions per world

case40
case30

CO5620
case 10

case40
case 30

case20
case 10

Figure 7: Effect of max-cases and max-size on 15% cluttered worlds.

Average steps per world Average collisions per world

350

., cose40
7 case30
' case20
case 10

case40
case30

case20
case 10

Figure 8: Effect of max-cases and max-size on 50% cluttered worlds.

364 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

400

350

300

250

200

ISO

100

50

Average steps per world Average collisions per world

r

1 [1

V
-A :' ~

'• " " 7

I
1
!
j
t

11 ~t—

i

!

- " 1 1 1

j "contiol61
! "coiiuol8'i —
ti

i

i

i

—

„

1

0 20 40 60 80 100 120 140 160 180 200
Numher of worlds

0 20 40 60 80 100 120 140 160 180 2O0
Number of worlds

Figure 9: Effect of control-interval on 50% cluttered world with max-cases=20 and max-size=15.

Percentage of worlds solved
Average steps per world
Average distance per world
Average ac. t-ual, distance° optimal
Average virtual collisions
Average time per world, ms

staticl5
99.5%
69.1
49.9
1.23

0.85
57

staticSO

100%
106.4
71.8

1.76

1.53
90

staticH

98.5%
108.5
49.8
1.22

3.99
210

random

99%
73.8
56.5

1.39

2.66
94

SINS
99.5%
68.9
51.5

1.27

0.62
513

Table 2: Final performance results for 15% cluttered worlds.

its parameters are inadequate. However, consis-
tent changes (i.e., those that follow the regulari-
ties captured by our method) lead to better per-
formance than random changes alone.

Experiment set 2: Effect of case parame-
ters. This set of experiments evaluated the ef-
fect of two parameters of the case-based reason-
ing component of the multistrategy learning sys-
tem, that is, max-cases and max-size. The pa-
rameter control-interval was held constant at
4, while max-cases was set to 10, 20, 30 and 40,
and max-size was set to 5, 10, 15 and 20. All
these configurations of SINS, and the static and
random systems, were evaluated using all six esti-
mators on 200 randomly generated worlds of 15%
and 50% clutter. Figures 7 and 8 show the re-
sults for two of the estimators, average steps and
average virtual collisions.

AH configurations of the SINS system navigated
successfully in a comparable or larger percent-

age of the test worlds than the static systems.
Regardless of the max-cases and max-size pa-
rameters, SINS could solve most of the 15% and
50% cluttered worlds. As before, the graphs show
that SINS' performance was comparable to that of
the staticl5 system in 15% cluttered worlds, and
to the static50 system in 50% cluttered worlds.
Thus, even if SINS is initialized with a poor set
of schema parameter values, it can discover a good
set of values and improve upon its initial perfor-
mance.

Our experiments revealed that, in both 15%
and 50% cluttered worlds, SINS needed about 40
worlds to learn enough to be able to perform suc-
cessfully thereafter using 10 or 20 cases. However,
with higher numbers of cases (30 and 40), it took
more trials to learn the regularities in the environ-
ment. It appears that larger numbers of cases re-
quire more trials to train through trial-and-error
reinforcement learning methods, and furthermore
there is no appreciable improvement in later per-
formance. The max-size parameter has an ap-

MULTISTRATEGY LEARNING ... Informatica 17 (1993) 347-369 365

100
Percentage of world* solved

50 100 150 200 250 300 350 400
Number of worlds

220

200

180 I

Average steps per world

150 200 250
Number of worlds

350 400

Avenge distance per world Avenge actual/optimal distance per world

100 150 200 250
Number of worlds

300 350 400 50 100 150 200 250 300 350 400
Number of worlds

Avenge collisions per world
1800 r

i
1600 I—•

1400 \

1200

1000 h

800

600

400

200

Average time per world

50 100 150 200 250 300 350 400
Number of worlds

150 200 250
Number of worlds

300 350 400

Figure 10: Effect of a sudden change in environment (after the 200th world).

366 Informatica 17 (1993) 347-369 A. Ram &; J.C. Santamaria

Percentage of worlds solved
Average steps per world
Average distance per world

Average a c ,<iua l
l distance° optimal

Average virtual collisions
Average time per world, ms

staticlS
85.5%
272.7
127.1
3.12

24.1
584

static50

100%
143.6
103.8

2.55

14.4
350

staticH

82%
315.5
126.2

3.10

48.1
1400

random

100%
141

113.7

2.79

13.7
413

SINS

100%
141.9
107.2

2.63

10.7
1375

Table 3: Final performance results for 50% cluttered worlds.

preciable effect on the performance for different
environments. While in the 15% cluttered worlds,
the best performance is obtained with cases of size
5, in 50% cluttered worlds, the best performance
occurs with cases of size 15. The reason for this
is that complex worlds (i.e., 50% cluttered) re-
quire longer sequences of associations to ensure
real progress. With shorter sequences of associa-
tions, there is a high probability that the system
will get into a cycle that consists of going in and
out of a local minimum point.

As observed earlier in experiment set 1, SINS
requires a time overhead for case-based reasoning
and thus loses out on the average time estimator.
Due to the nature of our current case retrieval
algorithm, the time required for case retrieval in-
creases linearly with max-cases and with max-
size.

Experiment set 3: Effect of control inter-
val. This set of experiments evaluated the ef-
fect of the control-interval parameter, which
determines how often the adaptation and learn-
ing module modifies the schema parameters of the
reactive control module, max-cases and max-
size were held constant at 20 and 15, respectively,
while control-interval was set to 2, 4, 6 and 8.
All systems were evaluated using all six estima-
tors on 200 randomly generated worlds of 50%
clutter. The results are shown in figure 9.

Although all settings of control interval resulted
in improved performance through experience, the
best and worst performance in terms of percent-
age of worlds solved was obtained with control-
interval set to 4 and 8, respectively. For low
control-interval values, we expect poorer per-
formance because environment classification can-
not occur reliably. We also expect poorer per-
formance for very high values because the sys-

tem cannot adapt its schema parameters quickly
enough to respond to changes in the environ-
ment. Other performance estimators also show
that control-interval = 4 is a good setting.
Larger control-intervals require less case re-
trievals and thus improve average time per world;
however, this gets compensated by poorer perfor-
mance on other estimators.

Experiment set 4: Effect of environmental
change. This set of experiments was designed
to evaluate the effect of changing environmental
characteristics, and to evaluate the ability of the
systems to adapt to new environments and learn
new regularities. With max-cases set to 10, 20,
30 and 40, max-size set to 15, and control-
interval set to 4, we presented the systems with
200 randomly generated worlds of 15% clutter fol-
lowed by 200 randomly generated worlds of 50%
clutter. The results for average steps and average
virtual collisions are shown in figure 10.

The results from these experiments demon-
strate the flexibility and adaptiveness of the learn-
ing methods used in SINS. Regardless of param-
eter settings, SINS was very robust and contin-
ued to be able to navigate successfully despite
a sudden change in environmental clutter. Af-
ter the 200th world, it continued to solve 100%
of the worlds presented to it, with only mod-
est deterioration in steps, distance, virtual col-
lisions, and time in the more cluttered environ-
ments. The performance of the static systems, in
contrast, deteriorated in the more cluttered en-
vironments, with the exception of static50 which
was designed for such environments. The static50
started to improve in 50% worlds as compared to
the 15% worlds where it was not performing as
well as staticl5. As can be seen from the graphs,
SINS performed as well as staticl5 in the first 200

MULTISTRATEGY LEARNING Informatica 17 (1993) 347-369 367

worlds, and then as well as static50 in the next 200
worlds; furthermore, it achieved this level of per-
formance even when it was initialized with non-
optimized schema parameters. This result also
suggests that the regularities that SINS captures
in its cases encode strategic knowledge for navi-
gation that is generally applicable across different
types of environments. The performance of the
random system does not deteriorate too badly but
it was not the best in either of the two types of
worlds.

Summary: These and other experiments show
the efficacy of the multistrategy adaptation and
learning methods used in SINS across a wide
range of qualitative metrics, such as flexibility of
the system, and quantitative metrics that mea-
sure performance. The results also indicate that
a good configuration for practical applications is
max-cases = 20, max-size = 15, and control-
interval = 4, although other settings might be
chosen to optimize particular performance esti-
mators of interest. These values have been deter-
mined empirically. Although the empirical results
can be explained intuitively, more theoretical re-
search is needed to analyze why these particular
values worked best.

4 Conclusions

We have presented a novel method for augmenting
the performance of a reactive control system that
combines case-based reasoning for on-line param-
eter adaptation and reinforcement learning for on-
line case learning and adaptation. The method
is fully implemented in the SINS program, which
has been evaluated through extensive simulations.

The power of the method derives from its abil-
ity to capture common environmental configura-
tions, and regularities in the interaction between
the environment and the system, through an on-
line, adaptive process. The method adds consid-
erably to the performance and flexibility of the
underlying reactive control system because it al-
lows the system to select and utilize different be-
haviors (i.e., different sets of schema parameter
values) as appropriate for the particular situa-
tion at hand. SINS can be characterized as per-
forming a kind of constructive representational
change in which it constructs higher-level rep-

resentations (cases) from low-level sensorimotor
representations (Ram, 1993).

In SINS, the perception-action task and the
adaptation-learning task are integrated in a
tightly knit cycle, similar to the "anytime learn-
ing" approach of Grefenstette & Ramsey (1992).
Perception and action are required so that the
system can explore its environment and detect
regularities; they also, of course, form the basis
of the underlying performance task, that of nav-
igation. Adaptation and learning are required to
generalize these regularities and provide predic-
tive suggestions based on prior experience. Both
tasks occur simultaneously, progressively improv-
ing the performance of the system while allowing
it to carry out its performance task without need-
ing to "stop and think."

Although SINS integrates reinforcement learn-
ing and case-based reasoning, its algorithms are
somewhat different from the standard algorithms
used in these areas. One of the main differences
between traditional reinforcement learning and
SINS is with respect to the action model used by
the system. While in reinforcement learning the
action model is given along with the definition of
the system, in SINS it is learned through experi-
ence. One open issue in this respect is how to use
this action model once it has been learned or while
it is in the process of being learned. In SINS, the
action model is represented as sequences of asso-
ciations. In our current implementation, the sys-
tem always uses the sequence of associations most
similar to the current environment, but other im-
plementations may select different sequences ac-
cording to other criteria. One such criterion we
are currently exploring is selecting the sequence
of associations that is likely to result in a desired
environmental configuration. This would enable
SINS to behave in a goal-oriented fashion while
still staying within a reactive framework (see also
Maes, 1990).

In contrast to traditional case-based reason-
ing methods which perform high-level reasoning
in discrete, symbolic problem domains, SINS is
based on a new method for "continuous case-
based reasoning" in problem domains that involve
continuous information, such as sensorimotor in-
formation for robot navigation (Ram & Santa-
mari'a, 1993). There are still several unresolved
issues in this research. The case retrieval process

368 Informatica 17 (1993) 347-369 A. Ram & J.C. Santamaria

is very expensive and limits the number of cases
that the system can handle without deteriorating
the overall navigational performance, leading to
a kind of utility problem (Minton, 1988). Our
current solution to this problem is to place an
upper bound on the number of cases allowed in
the system. A better solution would be to de-
velop a method for organization of cases in mem-
ory; however, conventional memory organization
schemes used in case-based reasoning systems (see
Kolodner, in press) assume structured, nominal
information rather than continuous, time-varying,
analog information of the kind used in our cases.

Another open issue is that of the nature of the
regularities captured in the system's cases. While
SINS' cases do enhance its performance, they are
not easy to interpret. Interpretation is desirable,
not only for the purpose of obtaining of a deeper
understanding of the methods, but also for possi-
ble integration of higher-level reasoning and learn-
ing methods into the system.

Despite these limitations, SINS is a com-
plete and autonomous self-improving navigation
system, which can interact with its environ-
ment without user input and without any pre-
programmed "domain knowledge" other than
that implicit in its reactive control schemas. As
it performs its task, it builds a library of experi-
ences that help it enhance its performance. Since
the system is always learning, it can cope with
major environmental changes as well as fine tune
its navigation module in static and specific en-
vironment situations. The system benefits from
the tight integration of multiple learning strate-
gies that support and complement each other, and
the on-line use of the learned knowledge in guid-
ing the performance task.

Acknowledgements

We would like to thank Ron Arkin for his con-
tributions to this research and for providing the
AuRA robot simulator, Paul Rowland for his help
with replicating the results presented in this pa-
per, and George Tecuci for his comments on an
early draft of this paper.

References

[1] R.C. Arkin, Motor Schema-Based Mobile

Robot Navigation. The International Journal
of Robotics Research, 8(4), 92-112, (1989).

[2] R. Brooks, A Robust Layered Control Sys-
tem for a Mobile Robot. IEEE Journal of
Robotics and Automation, RA-2(1), 14-23,
(1986).

[3] S.A. Chien, M.T. Gervasio, and G.F. De-
Jong, On Becoming Decreasingly Reactive:
Learning to Deliberate Minimally. In Birn-
baum, L. & Collins, G. (editors), Proceed-
ings of the Eighth International Workshop
on Machine Learning, 288-292, Chicago, IL,
(1991).

[4] R.E. Fikes, P.E. Hart, and N.J. Nilsson,
Learning and Executing Generalized Robot
Plans. Artificial Intelligence, 3, 251-288,
(1972).

[5] M. Georgeff, Planning. Annual Review of
Computer Science, 2, 359-400, (1987).

[6] J.J. Grefenstette and C.L. Ramsey, An Ap-
proach to Anytime Learning. In Sleeman, D.
and Edwards, P. (editors), Machine Learn-
ing: Proceedings of the Ninth International
Conference, 189-195, Aberdeen, Scotland,
(1992).

[7] K.J. Hammond, Case-Based Planning:
Viewing Planning as a Memory Task. Aca-
demic Press, Boston, MA, (1989).

[8] L. Kaelbling, An Architecture for Intelligent
Reactive Systems, Technical Note 400, SRI
International, (1986).

[9] J.L. Kolodner, Case-Based Reasoning, Mor-
gan Kaufmann, San Mateo, CA, (in press).

[10] P. Maes, Situated Agents can have Goals.
Robotics and Autonomous Systems, 6, 49-
70, (1990).

[11] S. Minton, Learning Effective Search Con-
trol Knowledge: An Explanation-Based
Approach, PhD thesis, Technical Report
CMU-CS-88-133, Carnegie-Mellon Univer-
sity, Computer Science Department, Pitts-
burgh, PA, (1988).

MULTISTRATEGY LEARNING Informatica 17 (1993) 347-369 369

[12] T.M. Mitchell, Becoming Increasingly Reac-
tive. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 1051-
1058, Boston, MA, (1990).

[13] J. Mostow and N. Bhatnagar, FAILSAFE —
A Floor Planner that uses EBG to Learn
from its Failures. In Proceedings of the Tenth
International Joint Conference on Artificial
Intelligence, 249-255, Milan, Italy, (1987).

[14] D. Payton, An Architecture for Reflexive Au-
tonomous Vehicle Control. In Proceedings of
the IEEE Conference on Robotics and Au-
tomation, 1838-1845, (1986).

[15] M. Pearce, R. Arkin, and A. Ram, The
Learning of Reactive Control Parameters
through Genetic Algorithms. In Proceedings
of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 130-137,
Raleigh, NC, (1992).

[16] A. Ram, Creative Conceptual Change. In
Proceedings of the Fifteenth Annual Confer-
ence of the Cognitive Science Society, 17-26,
Boulder, CO, (1993).

[17] A. Ram, R.C. Arkin, K.. Moorman, and R.J.
Clark, Case-Based Reactive Navigation: A
Case-Based Method for On-Line Selection
and Adaptation or Reactive Control Param-
eters in Autonomous Robotic Systems. Tech-
nical Report GIT-CC-92/57, College of Com-
puting, Georgia Institute of Technology, At-
lanta, Georgia, (1992).

[18] A. Ram and J.C. Santamaria, Continuous
Case-Based Reasoning. In Leake, D.B. (ed-
itor), Proceedings of the AAAI Workshop
on Case-Based Reasoning, AAAI Press Tech-
nical Report WS-93-01, 86-93, Washington,
DC, (1993).

[19] E.D. Sacerdoti, A Structure for Plans and
Behavior, Technical Note 109, Stanford Re-
search Institute, Artificial Intelligence Cen-
ter. Summarized in P.R. Cohen and E.A.
Feigenbaum's Handbook of AI, Volume III,
541-550,(1975).

[20] A.M. Segre, Machine Learning of Robot As-
sembly Plans, Kluwer Academic Publishers,
Norwell, MA, (1988).

[21] R.S. Sutton, Integrated Architectures for
Learning, Planning, and Reacting based on
Approximating Dynamic Programming. In
Proceedings of the Seventh International
Conference on Machine Learning, 216-224,
Austin, TX, (1990).

[22] R.S. Sutton (editor), Special Issue on Re-
inforcement Learning. Machine Learning,
8(3/4), (1992).

[23] P.F.M.J. Verschure, B.J.A. Krose and R.
Pfeifer, Distributed Adaptive Control: The
Self-Organization of Structured Behavior.
Robotics and Autonomous Systems, 9, 181-
196,(1992).

[24] C.J.C.H. Watkins, Learning from Delayed
Rewards, PhD thesis, University of Cam-
bridge, England, (1989).

[25] S.D. Whitehead and D.H. Ballard, Active
Perception and Reinforcement Learning. In
Proceedings of the Seventh International
Conference on Machine Learning, 179-188,
Austin, TX, (1990).

Informatica 17 (1993) 371-385 371

COMBINING KNOWLEDGE-BASED AND INSTANCE-BASED
LEARNING TO EXPLOIT QUALITATIVE KNOWLEDGE

Gerhard Widmer
Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, and
Austrian Research Institute for Artificial Intelligence,
Schottengasse 3, A-1010 Vienna, Austria

Keywords: artificial intelligence, multistrategy learning, instance-based learning, knowledge-based
learning, qualitative knowledge, music

Edited by: Gheorghe Tecuci

Received: May 26, 1993 Revised: October 15, 1993 Accepted: October 28, 1993

The paper presents a. general learning method that integrates knowledge-based symbolic
learning with instance-based numeric learning. This combination is motivated by a
class of learning problems where the task is to predict a numeric target variable, and
where a qualitative domain theory is available. The method has been implemented in
a learning program named IBL-SMART. Its symbolic learning component is a multi-
instance plausible explanation algorithm that can use the qualitative domain knowledge
to guide its search, and the numeric component performs instance-based prediction of
the numeric target variables. The system has been applied to a complex problem from
the domain of tonal music. The application domain is briefly described, and some
experiments are presented to illustrate the power of the learning method.

1 Introduction rules as in classical EBL. It has become increas-
ingly clear, however, that in many domains, the

The advent of Explanation-Based Learning knowledge that is readily available is naturally in
(EBL) [11, 22] marked a great advance in machine qualitative, abstract form. Consider, for instance,
learning, as it stressed the importance of knowl- n u m e r i c learning tasks such as stock market pre-
edge for learning and provided a clear framework d i c t i o n or t h e prediction of the energy demand
for how knowledge could be used to improve learn- j n s o m e c j t y . y/Me it seems impossible to come
ing. At the same time, it was clear that many u p w j t n a p r e c ise model of the underlying pro-
interesting learning tasks are not amenable to cesses that would enable one to correctly predict
straight EBL, as it is not always possible to come (o r explain in an EBL sense) each observation, one
up with domain theories that are complete, con- c a n easily conceive of partial qualitative models
sistent, and also tractable. of these domains that would capture some impor-

Subsequently, a lot of research concentrated on tant underlying trends, biases, or dependencies
the imperfect theory problems that were already between relevant parameters,
identified by Mitchell et al. [22]: various ap-
proaches to learning from incorrect, incomplete, T h i s i n s i S h t h a s l e d t o a n u m b e r o f aP"
and/or intractable domain theories were investi- P r o a c h e s to l e a r n i n S w i t h <lu a l i t a t i ve do™ain the-
gated [3, 7, 8, 12, 14, 16, 18, 19, 23, 25, 27, 31, o n e s t h a t c o u l d b e s t be c h a r a c t e r i z e d as ' P l a u -
33, 36]. Also, methods for inductively refining or *™e Explanation-Based Learning' [9, 10, 30, 32,
extending incorrect and incomplete theories were *'
developed [2, 24, 34, 40]. Generally, research on such methods is guided

Most of these approaches assumed that the do- by the view that for any learning system, learning
main theory, whether incomplete or inconsistent entails trying to understand its inputs in terms
or otherwise deficient, was in the form of if-then- of its current knowledge [21, 29]. Trying to un-

372 Informatica 17 (1993) 371-385 G. Widmer

derstand, in this context, means trying to re-
late new incoming information (the training in-
stances) to the knowledge (domain theory) that
the learner already possesses. The result of such
an attempt at understanding is usually some kind
of explanation which shows how the training in-
put is consistent with the system's general knowl-
edge about the domain. In classical Explanation-
Based Learning [22], explanations are deductive
proofs of an instance being a member of the tar-
get concept. In domains with qualitative back-
ground knowledge, plausible inference methods [6]
can be used to construct plausible explanations.
Such explanation may be incomplete or more or
less uncertain, depending on the available knowl-
edge, but if they are at all sensible, they will allow
the learner to prefer certain generalizations over
others on the grounds of relative plausibility.

Most of the research dealing with qualitative
background knowledge and plausible explanations
so far has concentrated on single-instance expla-
nations, where one example is explained at a time,
and new examples may lead to incremental mod-
ification of learned concepts (e.g., [9, 10, 30, 38],
although the method presented in [30] can also use
several examples at once for inductive generaliza-
tion). The problem with this kind of approach
is obvious: if the available background knowledge
is very weak (i.e., incomplete or extremely ab-
stract), so will be the explanations based on it; in
the extreme case, one can 'explain' almost any-
thing if the plausible inference methods used are
sufficiently permissive. The weakness of plausible
explanations per se must be compensated by addi-
tional empirical support from the training data,
which means that plausible explanations should
also take into account the numbers and distribu-
tion of training examples satisfying various con-
ditions.

The particular learning problem that motivated
our research, which happens to come from the
realm of tonal music (see section 5), is a typical
case of a task for which we can relatively eas-
ily formulate a qualitative domain theory, but for
which no precise theory exists. In addition, the
chosen learning task presents another challenge,
which necessitated a new approach: the target
concepts to be learned are numeric, that is, the
task is to predict precise numeric values for some
target variables. The problem is that the ab-

stract, qualitative background knowledge cannot
be used to directly explain precise numeric obser-
vations. Still, we want a learner that can use the
knowledge to maximum effect.

This paper will present a general learning
model, and its realization in a system named
IBL-SMART, that was designed to deal with these
types of problems. The model consists of two
components, a symbolic and a numeric learner.
The symbolic learner, a non-incremental search-
based method, is itself a multistrategy learner
that integrates various forms of inference. It pro-
duces search trees that can be viewed as plau-
sible explanations of sets of training examples.
The search method that constructs these trees is
based on a well-known deductive-inductive learn-
ing algorithm [3]. For our system, the method has
been extended to utilize qualitative background
knowledge. Complementing this knowledge-based
learning algorithm, the second part of the model
is an empirical, instance-based component that
takes care of the numeric aspects of the learning
task.

The model provides a clear division between
a symbolic learning sub-task where qualitative
knowledge can naturally be incorporated, and
a numeric prediction task that is most natu-
rally handled by a numeric, interpolation-based
method. The main effect of the model is to
provide a way of utilizing abstract background
knowledge in numeric domains where the knowl-
edge cannot be directly related to the precise nu-
meric observations. The main contributions of
this work, then, are (1) a multi-instance plausi-
ble explanation algorithm using qualitative back-
ground knowledge; (2) a learning method that in-
tegrates such a plausible explanation component
with an instance-based learner; and (3) a working
system that learns complex concepts in a specific
domain and has already produced results that are
of interest to researchers in music theory and mu-
sicology [39].

2 The Learning Problem

The general scenario is supervised learning of nu-
meric target concepts. More precisely, the class
of learning problems we are interested in can be
denned as follows:

KNOWLEDGE-BASED ... LEARNING Informatica 17 (1993) 371-385 373

Given: a set E of training examples, described
in terms of a set of operational predicates
P, where we distinguish symbolic predicates
PS and numeric predicates (attributes) PN.
Thus, PSUPN = P. Also attached to each
example e € E is a numeric attribute T(e, v)
(the target attribute) with known value v.
(This replaces the classification in symbolic
supervised concept learning.) As v is a func-
tion of (the description of) the instance, we
will also write v — T(e). Note that so far,
there are no negative instances in this sce-
nario.

Find: a set of general rules that predict, for any
given object o described by predicates G P,
a numeric value v = T(o), based on the de-
scription of o. (As in symbolic concept learn-
ing, we might require these rules to be com-
plete (predict a value for every example) and
correct (predict the correct value for each ex-
ample) with respect to the training data (cf.
[20]). However, this may not be 100% desir-
able or feasible in every application domain.)

In addition, we assume that there is domain-
specific background knowledge (BK) relating the
target concept T(X, V) (or some abstractions of
T - see below) to some of the operational predi-
cates P in specific ways, possibly via some inter-
mediate non-operational predicates. This knowl-
edge might be in the form of rules, as in stan-
dard EBG domain theories [22] or in the form of
less precise, qualitative knowledge items as in [38].
The knowledge need not be correct or complete,
nor need it be quantitative and precise. An addi-
tional constraint then is to find solutions (rules)
that conform as closely as possible to BK while
also consistently describing the training data E.

The learning method we are going to introduce
in the next section includes a symbolic component
that.can utilize qualitative background knowledge
for generating plausible explanations. For that
method to be applicable, we need to make the
following assumptions:

1. We assume that there are some discrete,
qualitative sub-concepts T,(X) of the target
concept T(X, V) that can naturally be distin-
guished; a sub-concept is defined by a more
or less clearly distinguished subrange (inter-
val) of the function value V.

2. We further assume that it is these discrete
sub-concepts that are related to operational
predicates P by the available background

. knowledge BK.

3. Finally, we assume that examples of the dis-
crete sub-concepts 21,- can be distinguished
using the operational predicates P.

For example, in the energy demand pre-
diction task mentioned above, such subcon-
cepts might be extremely JLow (Demand) or
higher _than_capacity
(Demand); in our musical domain (see section 5),
there are natural qualitative subconcepts such as
crescendo(Note) and decrescendb(Note) (in-
crease or decrease, respectively, in loudness rela-
tive to the current level) or accelerando (Note)
and ritardando(Note) (increase or decrease in
tempo). x

The motivation for the first assumption is that
these discrete, qualitative, symbolic sub-concepts
will be the target concepts for the symbolic learn-
ing component. Each of the original training in-
stances will be assigned to one of the sub-concepts
Ti, depending on its value v = T(e), and the
symbolic learner will learn general rules for each
sub-concept. Note that in this way we also intro-
duce negative instances for each target concept T,-,
namely, all examples assigned to some Tj where
j ^ i. Assumptions (2) and (3) are needed to
guarantee that the background knowledge is ap-
plicable to the symbolic target concepts, and that
the symbolic learning task is solvable at all.

3 The General Learning Model

One simple way to approach the problem would
be to do instance-based learning [1] in the entire
description space spanned by all the available at-
tributes P, symbolic and numeric. That is, train-
ing instances would be stored along with their
complete descriptions. Of course, the symbolic
and numeric attributes would have to be normal-
ized to some standard scale so as to give equal

1The boundaries between these subconcepts will some-
times have to be defined somewhat arbitrarily. This is not
necessarily a problem, as the results of the symbolic learn-
ing component are not used for prediction, but only to find
sets of 'similar' instances for focussed interpolation. Sec-
tion 3 will make that clearer.

374 Informatica 17 (1993) 371-385 G. Widmer

importance to all attributes. The value v = T(o)
for some new object o would be predicted by some
nearest neighbor method in the space of stored
instances, possibly with some numeric interpo-
lation. (Various possible interpolation methods
are discussed in [17].) There are several prob-
lems with this approach. The main one concerns
the general sensitivity of IBL algorithms to irrel-
evant attributes (of which there are many in our
application). Second, the only way to integrate
available background knowledge into the learning
process is via the similarity metrics. This is cer-
tainly not the most natural way to express one's
domain knowledge. Moreover, instance-based ap-
proaches suffer from the problem that they do not
produce comprehensible concept descriptions. On
the other hand, it is clear that either some kind of
instance-based interpolation component or some
numeric regression method is needed to predict
precise values for the continuous target variable.

The solution adopted here is a general learning
model composed of two parts: a symbolic learn-
ing component that learns to distinguish different
types of situations and can utilize all the avail-
able domain knowledge, and an instance-based
component which stores the instances with their
precise numeric attribute values and can predict
the target value for some new object by numeric
interpolation over known instances. The connec-
tion between these two components is as follows:
each rule (conjunctive hypothesis) learned by the
symbolic learning component describes a subset of
the instances; these are assumed to represent one
particular subtype of the concept to be learned.
All the instances covered by a rule are given to
the instance-based learner to be stored together
in a separate instance space. P-redicting the target
value for some new object then involves matching
the object against the symbolic rules and using
only those numeric instance spaces (interpolation
tables) for prediction whose associated rules are
satisfied by the object. In this way, the system
learns several distinct instance spaces where dif-
ferent laws and regularities may apply. In fact,
different instance spaces may contain examples
with conflicting values. These spaces are thus
very specialized predictors, conditioned for par-
ticular types of situations.

More precisely, the target concepts for the sym-
bolic learning component are the discrete, qualita-

tive sub-concepts T{ mentioned in section 2. The
symbolic learner learns general rules that char-
acterize or discriminate between these discrete
classes. These rules may refer to both symbolic
and numeric predicates. The symbolic learner
tries to use all the available qualitative back-
ground knowledge. The result produced by this
component is a set of general rules that group the
examples into clusters by assigning them to dif-
ferent sub-classes of the target concept.

The numeric, instance-based component takes
the original training instances E as clustered by
the symbolic learner, and creates a separate in-
stance space from each cluster. Instances are
stored with all their numeric attributes and with
their precise numeric target values. The dimen-
sions of such an instance space are thus defined
by the numeric attributes PN. For some new ob-
ject o, the target value v = T(o) can then be pre-
dicted by selecting the appropriate instance space
(by using the generated symbolic rules as filters),
and applying some numeric interpolation method
over the stored instances. As only the numeric
attributes are used by the instance-based compo-
nent (the rules learned by the symbolic learning
component are assumed to contain all the rele-
vant symbolic information), some straightforward
interpolation scheme can be used.

The most important feature of the model as
a whole is that it provides a natural entry point
for the available domain knowledge. The assump-
tions spelled out in section 2 naturally define a
symbolic learning task, to which we can apply any
learning algorithm that can utilize the available
knowledge. An additional advantage is that the
symbolic component produces explicit symbolic
rules, which can be inspected and interpreted by
humans.

4 The system IBL-SMART

The general method has been implemented in a
system named IBL-SMART. In accordance with
the model, IBL-SMART consists of two compo-
nents. The system has been tested with a class
of complex musical problems (see section 5). As
it turned out, there is a lot of general knowledge
(derived from various theories of tonal music) that
is relevant to the learning task and can readily be
provided, but large parts of this knowledge are

KNOWLEDGE-BASED . . . LEARNING Informatica 17 (1993) 371-385 375

only qualitative and approximate. Thus, IBL-
SMART'S symbolic learning component has been
specifically designed to be able to use qualitative
background knowledge.

The name IBL-SMART derives from the two
main components: IBL stands for Instance-Based
Learning [1] and characterizes the numeric com-
ponent, and SMART is a tribute to the ML-SMART

algorithm [3], which provided some of the ideas for
the main search strategy of the symbolic learner.

4.1 The qualitative domain theory

A domain theory to be used by IBL-SMART is
similar in structure to the 'classical' domain theo-
ries as used in Explanation-Based Generalization
(EBG) [22]. It is a hierarchy of statements re-
lating non-operational predicates (including the
target concepts) to more operational, specific con-
ditions. However, these statements may describe
relations of various strength and specificity:

Strict (deductive) rules: As in EBG, the do-
main theory may contain strict deductive
rules of the form Q : - P i , P 2 , . . . that spec-
ify sufficient conditions (Pi,P2, • • •) for some
(non-operational) predicate Q to be true.

Directed qualitative dependencies: A state-
ment of the form q+(A,B) can be para-
phrased as "the values of attributes A and
B are positively proportionally related" or
"high (or low) values of A tend to produce
high (or low) values of B, all other things be-
ing equal". Negative dependency q-(A,B)
is denned analogously. Such statements are,
of course, restricted to functional predicates
(i.e., attributes) that assign values to objects.
Obviously, this type of knowledge is less pre-
cise and logically weaker than strict rules.
In particular, it does not permit deductive
reasoning. Similar types of knowledge items
have been proposed in [20] and [6] for plau-
sible reasoning and learning.

Undirected qualitative dependencies:
A statement depends_on(Q,[Pi,P2,...]) de-
notes an unspecific, undirected relation be-
tween the set of predicates Pi and the (non-
operational) predicate Q. Basically, it says
that the value (or truth value) of Q depends
somehow on the values (or truth values) of

the Pi, but we do not know the exact func-
tion that defines this dependency. A simi-
lar type of general knowledge items was de-
scribed in [4]. Also, such dependencies are
similar, but not identical to S. Russell's de-
terminations [28] (they need not exhaustively
list all the relevant factors that determine Q).
In the learning algorithm, they will be used
to focus the learner on sets of relevant pred-
icates or attributes.

In our musical application, by far the most
knowledge items in the domain theory are of the
qualitative type. Clearly, EBG is not possible
with such a weak theory. But the symbolic learner
can use the theory to guide the search for plausi-
ble generalizations via a kind of plausible reason-
ing [6].

4.2 The symbolic learning component

IBL-SMART'S symbolic learning component is
a non-incremental discrimination algorithm that
learns explicit symbolic rules in disjunctive nor-
mal form (DNF). Its basic search strategy is in-
spired by the ML-SMART framework [3]. The al-
gorithm performs top-down discrimination, inte-
grating and interleaving deductive and inductive
(plausible) operationalization steps. More specifi-
cally, the learner starts with a nonoperational def-
inition of the target concept (some discrete sub-
concept Ti) and performs stepwise operationaliza-
tion (specialization) by growing a heuristic best-
first search tree. Expressions (nodes of the tree)
are refined by operationalizing non-operational
predicates or by inductively adding new condi-
tions. A node becomes a leaf when it covers only
positive training instances; it then represents one
conjunct (rule) in the final learned DNF hypoth-
esis. The search terminates when a certain per-
centage of the positive examples are covered.

The behavior of the best-first search algorithm
is determined by two components: the available
search operators and the search strategy, includ-
ing the heuristic evaluation function that guides
the search. These are now described in turn.

The specialization operators

IBL-SMART makes use of a number of differ-
ent specialization operators to exploit the various
types of knowledge items in the domain theory:

376 Informatica 17 (1993) 371-385 G. Widmer

Deductive operationalization: If the expres-
sion to be refined contains a non-operational
predicate Q and there is a rule Q : -Pi,P2, • • •
in the domain theory, deductive operational-
ization creates a new expression by replac-
ing Q with its sufficient conditions Pi,P2,...
This is the standard EBG explanation oper-
ator [22].

Plausible discrimination based on q+ or q-:
Qualitative dependencies, while not permit-
ting deductive explanation steps, do provide
information about the influence of one at-
tribute to another, more abstract one, and
about the direction of that influence. Given
a non-operational expression B(X,b), where
b is a specific (qualitative) value, and know-
ing that q+(A,B), a plausible operationaliza-
tion step is to replace (or 'explain') B with
A. The algorithm creates successor nodes by
replacing B(X,b) with A(X,ai) for all values
ai appearing in positive instances covered by
the current node. Which of these 'explana-
tions' is most plausible and will be most likely
be expanded further is then determined by
the evaiuation function (see below). Basi-
cally, the evaluation function rates the de-
gree to which the particular values involved
match the direction of the underlying depen-
dency (+ or -) : knowing that q+(A,B), an op-
erationalization B(.)=b because A(.)=a will
be regarded the more plausible the more the
relative positions of b and a in their re-
spective domains agree: B(.)=high because
A(.)=high is rated as more plausible than
B (.) =high because A (.) =low (see also [38])?

Discrimination with general dependencies:
A statement depends_on(Q,[Pi,P2,...]) in-
dicates that an entire set of predicates
(Pl,P2,...) should be used in one operational-
ization step: successors of a node contain-
ing Q are created for all possible combina-

2In principle, q+(A,B) could represent any mono-
tonic function. However, we assume that the re-
lation is roughly linear. As the features involved
are only qualitative (usually with small domains like
{extremelyJLOB,.. . ,extremely_high}), that seems suffi-
cient. Assuming more complex relationships between such
crude features would seem to be missing the point.

tions of instantiations for the predicates Pi
occurring in some positive instances covered
by the node. Which of these refinements is
most plausible will then be determined em-
pirically by the evaluation function, which
takes into account the numbers of positive
and negative instances covered by an expres-
sion. Basically, adding several predicates in
one discrimination step permits IBL-SMART
to perform strictly constrained forms of look-
ahead, and helps overcome blindness effects
that would arise in purely step-wise special-
ization.

Empirical discrimination: When no knowled-
ge-based specialization step is possible for a
given expression, but the expression still cov-
ers some negative instances, IBL-SMART em-
pirically adds discriminating conditions—one
at a time—to the expression to exclude some
of the negative examples. For numeric at-
tributes, the system computes some best split
point and adds an inequality test (as it is typ-
ically done in decision-tree learners [13]).

The search strategy

Generally, given a some expression to refine or
specialize, IBL-SMART prefers those operators
that are based on the most specific knowledge.
Deductive operationalization is performed when-
ever possible, plausible discrimination steps are
considered next, and inductive specialization is
attempted only when no knowledge (rule or de-
pendency) is applicable to the current node.

Which node in the search tree is considered
most promising and is to be refined next is deter-
mined by the heuristic evaluation function H that
measures the relative 'goodness' of nodes. It takes
into account (1) the coverage of the current node,
i.e., the ratio positive / negative instances covered
by the expression; (2) the absolute number of pos-
itive instances covered (expressions covering more
positive examples are slightly preferred); and (3)
in the case of nodes derived via some directed
qualitative dependency, the degree of fit between
the values used in the discrimination step and the
direction of the influence (see above).

By taking into account both such inference-
dependent plausibility measures and information
about the numbers of instances covered by a node,

KNOWLEDGE-BASED .. . LEARNING Informatica 17 (1993) 371-385 377

Qualitative
domain theory \ \ . <r Training instances

^

Search tree:

cr—y c—y
Rulei\7 Rulo2\7 Ru

I * ° I I »

!> '. !̂ - •" Y'S-

Knowledge-based symbolic learner Instance-based numeric learner

Figure 1: Integration of knowledge-based symbolic learning and instance-based numeric learning in
IBL-SMART.

the search heuristic combines weak, imprecise
background knowledge with empirical informa-
tion from the training data, producing hypotheses
that tend to correspond to the background knowl-
edge as much as the data permits and overriding
the background knowledge if the data is in con-
flict with the knowledge. The search algorithm
thus realizes a tight and fine-grained integration
of deduction and more or less plausible inference.

In a sense, the search tree can be regarded as a
plausible explanation of the training instances: it
relates the training examples to the target concept
via the system's domain knowledge and, where
that is missing or inappropriate, via empirical ar-
guments.

4.3 The numeric instance-based
component

The symbolic learning component produces a con-
cept hypothesis for a discrete, qualitative sub-
concept T{ in the form of a DNF expression, where
each conjunct describes one particular subtype of
the sub-concept. For each of these conjuncts, i.e.,
for each leaf of the search tree, the instance-based
learner collects all the training instances covered
by the conjunct and builds an instance store in the
form of an interpolation table, using these exam-
ples. The output dimension (the dependent vari-
able) is the value of the numeric target function
V = T(X). The input dimensions (the indepen-
dent variables) are chosen to be all the numeric at-
tributes (C PN) that are shared by all instances
assigned to the instance store. (The reason for
this is that in our musical application, not all in-

stances may have defined values for all numeric
attributes).

When given a new instance for which to pre-
dict the value of the target variable, the system
matches the instance against all learned rules,
retrieves those instance spaces whose associated
rules are matched, and computes a value for the
instance's target value by linear interpolation be-
tween the two nearest neighbors in each of the
retrieved spaces. As all the dimensions of the ta-
bles are numeric, Euclidean distance is used as
the similarity measure. If the instance matches
more than one rule, and thus target values are
computed in several spaces, the target values are
simply averaged. Figure 1 summarizes the basic
structure of IBL-SMART.

5 An Application of
IBL-SMART: Learning
Expressive Interpretation

Expressive interpretation is the art of shaping a
piece of music by playing it not exactly as given
in the written score, but continuously varying
tempo, loudness, and other parameters during a
performance. Actually, when played exactly as
written, most pieces of music would sound utterly
mechanical and lifeless.

When viewed as a learning problem, the task
is to learn, from listening to recordings of known
pieces as played by some performer and compar-
ing them to the score of the pieces as actually
written, general rules that allow one to decide how
to play new melodies, i.e., when to increase or de-

378 Informatica 17 (1993) 371-385 G. Widmer

crease the loudness, when to speed up or slow
down, etc.

IBL-SMART was applied to two dimensions of
this learning problem, namely, dynamics (loud-
ness variations) and rubato (tempo variations).
In the following presentation, we will concentrate
on the dimension of dynamics.

The level on which examples and target con-
cepts are denned in our application is the level
of the individual note: each note in a piece is
an example, and the goal is to learn general
rules to decide how loud to play any note in
some new piece. Obviously, this concept is in-
herently numeric, as the task is to decide not just
whether or not to play some note louder or softer,
but exactly by how much. But there are two
discrete, qualitative sub-concepts that can nat-
urally be distinguished: crescendo (Note) and
decrescendo(Note), which are defined here to
mean that a note is to be played louder or softer,
respectively, than some standard level.3 These
are the target concepts T{ for the symbolic learn-
ing component. The precise amounts by which
the loudness is to be varied are numeric multi-
plication factors that are to be learned by the
instance-based component.

Training instances are derived from actual per-
formances of piano pieces recorded on an elec-
tronic piano via a MIDI interface. At the moment,
we are restricting ourselves to single line melodies
(with additional information about the underly-
ing harmonic structure of the piece). That is, the
input is a sequence of notes, described in terms of
various predicates, symbolic and numeric, and ac-
companied by explicit information about the de-
gree of crescendo or decrescendo that was applied
to it by the performer (the target variable).

The description language consists of predi-
cates that describe various features of a note and
structural features of its surroundings. There
are currently 41 operational predicates, of which
21 are symbolic (like followed_by_rest(Note))
and 20 are numeric (like duration(Note.X)).
Some of these predicates are computed by a pre-
processing component which performs a music-
theoretic analysis of the given piece in terms of

3 In standard music terminology, crescendo means an in-
crease of loudness with respect to the previous note. For
various reasons, we have adopted a somewhat different def-
inition for our musical system. To the learner this should
make no difference.

some relevant musical structures (e.g., phrases
and various types of patterns such as linear
melodic lines (ascending or descending), rhythmic
patterns, etc.). Many numeric attributes then de-
scribe the relative position of a note in a phrase
or in other types of patterns. Note that the num-
ber of attributes defined for a given note varies:
some notes occur in many patterns, others only
in some. So not all numeric attributes are defined
for every note.

The domain theory we have developed for
this problem is based in part on accepted the-
ories of music, and in part represents our per-
sonal hypothesis concerning the relation be-
tween the structure of music and its plausible
interpretations.4 For our presentation here, it suf-
fices to say that the domain theory is mainly in
the form of directed and undirected qualitative
dependency statements. It is a hierarchy of such
dependencies and some crisp rules. The top level
of the theory relates the phenomenon of loudness
variations to some abstract musical notions by a
set of dependencies like

depends_on(crescendo(Note,X),
[stability(Note.Y)]).

depends_on(crescendo(Note,X),
[goal_directedness(Note,Y)]).

depends_on(crescendo(Note,X),
[closure(Note.Y)]).

The first of these can be paraphrased as
"Whether crescendo should be applied to a note
(and it so, the exact amount X) depends, among
other things, on the musical stability Y of the
note," and analogously for the other ones.

Abstract notions like
s tabi l i ty , goal, directedness, and closure
are then again related to lower-level musical ef-
fects, all the way down to some surface features
of training instances, for example:

q+(metrical_strength(Note,X),
stability(Note.Y)).

q+(harmonic_stability(Note,X),
stability(Note,Y)).

"The degree of stability Y of a note
is positively proportionally related to

4This project also has a strong music-theoretic compo-
nent which cannot be discussed here. Readers interested
in the musicological aspects are referred to [39].

KNOWLEDGE-BASED ... LEARNING Informatica 17 (1993) 371-385 379

(among other things) the metrical
strength X of the note" etc.

where metrical_strength is a numeric and
harmonicstability is a symbolic attribute
(with a discrete, ordered domain of qualitative
values). Both are defined as operational.

Given this domain theory and some played
pieces,
the plausible explanation component learns mixed
symbolic/numeric rules that discriminate various
types of situations where a crescendo or a de-
crescendo occurs. Each rule describes a particu-
lar class of crescendo/decrescendo situations. The
IBL component then creates a numeric interpola-
tion table for each such rule and stores the in-
stances associated with the rule. The set of all
numeric attributes shared by all the instances cov-
ered by a rule defines the dimensions of the respec-
tive interpolation table.

6 Two experiments

The system has been tested with pieces from var-
ious musical epochs and styles (Bach minuets,
Chopin waltzes, even jazz standards). The follow-
ing sections present two small experiments that
show the typical behavior of IBL-SMART.

6.1 Bach minuets

In this experiment, we chose three well-known
minuets from J.S.Bach's Notenbiichlein fiir Anna,
Ma.gda.lena Bach as training and test pieces. The
beginnings of the three minuets are shown in Fig-
ure 2. All three pieces consist of two parts. The
second part of each piece was used for training:
they were played on an electronic piano by the
author, and recorded through a MIDI interface.
After learning, the system was tested on the first
parts of the same pieces. In this way, we combined
some variation in the training data (three different
pieces) with some uniformity in style (three pieces
from the same period and with similar character-
istics; test data from the same pieces as training
data, though different).

The training input consisted in 212 examples
(notes), of which 79 were examples of crescendo,
and 120 were examples of decrescendo (the rest
were played in a neutral way). The system learned

14 rules and, correspondingly, 14 interpolation ta-
bles characterizing crescendo situations, and 15
rules for decrescendo. Quite a number of in-
stances were covered by more than one rule. For
illustration, here is a simple rule for crescendo:

crescendo(Note,X) :-
metrical_strength(Note,S),
S > 4.0,
harmony_stability(Note,high) ,
previous_interval(Note,Il),
direction(Il,up),
next_interval(Note,I2),
direction(I2,down).

"Apply some crescendo to the current
note if
the metrical strength of the note is > 4
and the underlying harmony is stable
and the direction of the melody from
the previous to the current note is up
and the direction of the melody from the
current note to the next is down"

The quality of the learning results is not easy
to measure, as there is no precise criterion to de-
cide whether some performance is right or wrong.
Judging the correctness is a matter of listening.
Unfortunately, we cannot attach a recording to
this article so that the reader can appreciate the
results. Instead, Figure 3 depicts a part of one
of the training pieces (the second part of the first
minuet in G major as played by the author), and
also shows the performance created by the system
for a test piece (the first part of the same minuet)
after learning. The figures plot the relative loud-
ness with which the individual notes were played.
A level of 1.0 would be neutral, values above 1.0
represent crescendo (increased loudness), values
below 1.0 decrescendo.

The reader familiar with standard music nota-
tion may appreciate that there are strong similar-
ities in the way similar types of phrases are played
by the human teacher and the learner. Note, for
instance, the crescendo in lines rising by stepwise
motion, and the decrescendo patterns in measures
with three quarter notes. Note also the consistent
pattern of accents (loud notes) at the beginnings
of measures. Given the limited amount of train-
ing data, the degree of generalization achieved is
quite remarkable. In addition, an inspection of

380 Informatica 17 (1993) 371-385 G. Widmer

1] • • (

" i i rii=i=

r y |'T i i • • ^ ' -f—>==5-|
L,

nif—* •"s—'
M •- . ! ' !

1
4—,

Figure 2: Beginnings of three little minuets by J.S.Bach.

1.8

1.6

1.4

1.2

1

0.8

1 1

i i
7ZI...-.wLJ

.̂ L__̂ 1—

.jTrii

9 12 15
Time (beau)

21 24

Figure 3: Parts of a training piece as played by teacher (top) and test piece as played by learner after
learning (bottom).

KNOWLEDGE-BASED . . . LEARNING Informatica 17 (1993) 371-385 381

i.s

1.6

1.4

1.2

1

0.8

u1 i

r.-

i

' . . L ~ ~ J

x. L. 11 1 1
12

Time (beau)
15 21 24

Figure 4: Part of test piece as played after instance-based learning only.

the symbolic rules learned in this experiment re-
vealed that the system had re-discovered some
expression principles that had been formulated
years ago by music theorists (for more details, see
[39]). Results of similar quality were obtained in
experiments with music from other eras and styles
(again, see [39]).

6.2 The effect of knowledge

In order to verify the importance of the do-
main theory and generally the superiority of the
complete I B L - S M A R T system, experiments on
the same data were also performed with a sys-
tem restricted to instance-based learning only,
i.e., without the symbolic explanation compo-
nent. In these experiments, the system sim-
ply used all available training examples with all
their attributes (numeric and symbolic) to pre-
dict values (decide how to play new melodies)
by nearest-neighbor interpolation. The similar-
ity metric mapped all the numeric attributes to
a uniform scale between 0 and 1, and for sym-
bolic attributes, the distance was defined to be 0
in the case of a match and 1 otherwise. As not all
training instances share all numeric dimensions,
the system learned as many interpolation tables
as there were combinations of numeric attributes
occurring in the training data.

Figure 4 shows the result (the system's per-
formance on the same test piece) after learning
from the Bach minuets in this way. In this case,
18 rules for crescendo and 12 for decrescendo

were learned. There is a marked deterioration
in the resulting performance from learning with
knowledge (figure 3) to learning without knowl-
edge (figure 4). The differences are easily audible
(the performance sounds irregular and unfocused,
with no clear stress patterns except in measures
3 and 4), but can also be appreciated by looking
at the plots: the performance pattern of figure
4 is rather blurred, it lacks the regularity of fig-
ure 3. Obviously, the pure IBL learner does not
distinguish as well between relevant types of sit-
uations, and generalization does not always seem
to focus on musically sensible patterns. Similar
experiences were made in experiments with other
musical data sets.

These results highlight the role of the domain
knowledge: the learned symbolic rules have a fo-
cusing effect; they cluster those examples (pre-
dictors) together in distinct instance spaces that
are not just coincident ally similar, but can be ex-
plained in similar ways and thus seem to represent
significant sub-classes. The effect is more special-
ized prediction, structured according to domain
principles.

7 Discussion and Related
Work

In this paper, we have described a general class
of numeric learning problems and a learning
model that deals with these problems. The
model is composed of two parts - a symbolic,

382 Informatica 17 (1993) 371-385 G. Widmer

knowledge-intensive search algorithm and a nu-
meric, instance-based prediction method. Apply-
ing the model to a learning task requires defining
abstract sub-concepts T,, which introduces a nat-
ural distinction between a symbolic and a numeric
learning problem, and also produces negative in-
stances for the symbolic learner. All the available
(qualitative) background knowledge can then be
brought to bear on the symbolic learning problem.

The most important advantages of our method
are (1) that it can effectively use qualitative do-
main knowledge for learning precise numeric tar-
get functions; (2) that learning symbolic rules
for discrete sub-concepts partitions the space for
the instance-based prediction component; this re-
sults in specialized instance stores and very spe-
cific prediction behavior; and (3) as a side-effect,
that learning rules for discrete sub-concepts clus-
ters the examples around meaningful abstrac-
tions, which may be useful for other tasks.

There is an interesting parallel between our
method and the symbolic-numeric clustering al-
gorithm CSNAP that has recently been proposed
by Whitehall and Sirag [35]. CSNAP also learns
to predict numeric target attributes. It first uses
statistical criteria to cluster the examples into dis-
joint groups, and then searches for explanations
of these clusters in terms of symbolic descriptions.
In that process, instances may be moved between
clusters so as to permit more concise or more plau-
sible descriptions. The CSNAP approach is some-
what orthogonal to ours, but is guided by the
same motivation: to group the learning exam-
ples into clusters that are specialized predictors
and at the same time are similar with respect to
given background knowledge (or, more generally,
amenability to concise symbolic description).

The IBL-SMART learning method is related to
a number of other systems described in the lit-
erature. An important source of influence was
the work of G. DeJong [9, 10] on learning and
plausible reasoning. He had presented a system
that combined a very weak notion of plausible in-
ference over single cases with interpolation over
numeric target variables. Our approach departs
from his, among other things, in the variety of
types of background knowledge and in the use of a
heuristically guided, search-based, multi-instance
explanation algorithm that permits much more
control over the learning process. Not only does

this search introduce a strong notion of empiri-
cal plausibility by taking into account the distri-
bution of instances; the use of an explicit search
heuristic also makes it possible to exploit the qual-
itative knowledge contained in qualitative depen-
dencies (q+, q-) to compute the relative plausi-
bility of arguments. The best-first search is likely
to find explanations that are most plausible over-
all, both with respect to the knowledge and the
data. DeJong's system, on the other hand, simply
assumed that the syntactically simplest explana-
tion was also the most plausible one.

Another way of exploiting qualitative relation-
ships similar to q+ and q- (though in a more
process-oriented framework) has recently been
proposed in [5], where the known direction of the
qualitative dependencies is used to severely con-
strain the search space for an inductive learner.

There is also a close relation between I B L -
SMART and the work on plausible justification
trees by Tecuci [30]. In both cases, the goal
is a fine-grained integration of various types of
inference in the framework of creating plausible
explanations. IBL-SMART takes a more data-
driven approach, in that it learns from all the
instances at once and uses the statistical infor-
mation contained in the data (in addition to the
domain knowledge) to guide a heuristic search.
As noted, the basic search framework is related
to Bergadano and Giordana's method [3].

Generally, we see two main advantages in con-
structing plausible explanations from whole sets
of examples at once. The first is, of course, the
empirical support afforded by the data. All plau-
sible arguments have an implicit inductive com-
ponent, so it is really the actual observations that
lend more or less support to such arguments and
the generalizations that are drawn from them.

A second advantage of the multi-instance ex-
planation approach is that it suggests a natural
way to deal with certain types of noise in the
training data. IBL-SMART implements a sim-
ple noise handling mechanism. The search al-
gorithm incorporates two thresholds: the eval-
uation function accepts only nodes (conjuncts)
that cover some minimum number of positive in-
stances, and the termination criterion allows the
search to halt when a certain percentage (usually
less than 100%) of positive instances are covered.
Thus, the system can ignore rare instances that

KNOWLEDGE-BASED .. . LEARNING Informatica 17 (1993) 371-385 383

look like exceptions, but are really the result of
noise. By varying these thresholds, the system
can be tuned to the characteristics of different ap-
plication domains.5

The main disadvantage of the multi-instance
explanation approach is its non-incrementality.
Whether that is a problem depends on the par-
ticular application. Also, it is possible that, using
techniques similar to those in [37], IBL-SMART

could be made to learn incrementally without los-
ing too much in effectiveness.

Finally, remember that the system IBL-SMART

presented here is just one particular incarnation
of a more general approach. We have found it
convenient to use a best-first search algorithm as
the basis for the plausible explanation component,
as it constructs an explicit a search tree and al-
lows us to integrate various sources of knowledge
into the learning process via the search heuristic.
However, with appropriate modifications and ex-
tensions, other symbolic learners capable of utiliz-
ing incomplete and inconsistent knowledge - for
instance, FOCL [26] - might be used just as well
in this framework.

Similarly, more elaborate strategies could be
used in the instance-based component. Aha et al.
[1, 17] have described a number of instance-based
learning methods, both for symbolic classification
and for numeric prediction tasks, that could be
applied within a framework such as ours. Also,
available domain knowledge about the relative de-
gree of relevance of numeric attributes or about
the domains and typical values of numeric vari-
ables could be used to devise more sophisticated
similarity metrics, tailored to the particular ap-
plication. Given this generality, we may expect
the IBL-SMART approach to be applicable to a
wide variety of domains.

5In fact, the musical experiments described in the previ-
ous section were characterized very strongly by noise in the
data, originating from the author's imperfect piano tech-
nique, from the imprecise boundaries between the abstract
sub-concepts crescendo and decrescendoi and from impre-
cision inherent in the domain itself (there are simply no
100% laws as to how some passage must and will be played;
variation will invariably happen). The parameter settings
in the experiments reported in section 6 were as follows:
each leaf of the tree had to cover at least 5% of the pos-
itive training examples, and the search terminated when
80% of the examples were covered.

Acknowledgments

I would like to thank Robert Trappl for his sup-
port of this work. This research is sponsored in
part by the Austrian Fonds znr Forderung der
Wissenschaftlichen Forschung (FWF) under grant
P8756-TEC. Financial support for the Austrian
Research Institute for Artificial Intelligence is pro-
vided by the Austrian Federal Ministry for Sci-
ence and Research.

References

[1] D.W. Aha, D. Kibler and M.K. Albert,
Instance-Based Learning Algorithms. Ma-
chine Learning 6(1), pp. 37-66 (1991).

[2] P.T. Baffes and R.J. Mooney, Symbolic Re-
vision of Theories with M-of-N Rules. In
Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence
(IJCAI-93), Chambery, France, pp.1135-
1142 (1993).

[3] F. Bergadano and A. Giordana, A Knowl-
edge Intensive Approach to Concept Induc-
tion. In Proceedings of the Fifth Interna-
tional Conference on Machine Learning, Ann
Arbor, MI, pp. 305-317 (1988).

[4] F. Bergadano, A. Giordana and S. Ponsero,
Deduction in Top-Down Inductive Learning.
In Proceedings of the Sixth International
Workshop on Machine Learning, Ithaca,
N.Y., pp. 23-25 (1989).

[5] P. Clark and S. Matwin, Using Qualitative
Models to Guide Inductive Learning. In Pro-
ceedings of the 10th International Conference
on Machine Learning, Amherst, MA (1993).

[6] A. Collins and R.S. Michalski, The Logic of
Plausible Reasoning: A Core Theory. Cogni-
tive Science 13(1), pp. 1-49 (1989).

[7] A.P. Danyluk, Finding New Rules for Incom-
plete Theories: Explicit Biases for Induc-
tion with Contextual Information. In Pro-
ceedings of the Sixth International Workshop
on Machine Learning, Ithaca, N.Y., pp.34-36
(1989).

384 Informatica 17 (1993) 371-385 G. Widmer

[8] A.P. Danyluk, An Integration of Analytical
and Empirical Learning. In Proceedings of
the First International Workshop on Multi-
strategy Learning (MSL-91), Harpers Ferry,
W.VA., pp.191-206 (1991).

[9] G. DeJong, Explanation-Based Learning
with Plausible Inferencing. In Proceedings
of the Fourth European Working Session on
Learning (EWSL-89), Montpellier, France,
pp. 1-10 (1989).

[10] G. DeJong, Explanation-Based Control: An
Approach to Reactive Planning in Continu-
ous Domains. In Proceedings of the DARPA
Workshop on Innovative Approaches to Plan-
ning, Scheduling, and Control, San Diego,
CA, pp. 325-336 (1990).

[11] G. DeJong and R.J. Mooney, Explanation-
based Learning: An Alternative View. Ma-
chine Learning 1, pp. 145-176 (1986).

[12] T.E. Fawcett, Learning from Plausible Ex-
planations. In Proceedings of the Sixth In-
ternational Workshop on Machine Learning,
Ithaca, N.Y., pp. 37-39 (1989).

[13] U. Fayyad and K. Irani, On the Handling
of Continuous-Valued Attributes in Decision
Tree Generation. Machine Learning 8(1), pp.
87-102 (1992).

[14] N.S. Flann and T.G. Dietterich, A Study
of Explanation-Based Methods for Inductive
Learning. Machine Learning 4(2), pp. 187-
226 (1989).

[15] K.D. Forbus, Qualitative Process Theory.
Artificial Intelligence 24(1-3), pp. 85-169
(1984).

[16] J. Genest, S. Matwin, and B.Plante,
Explanation-Based Learning with Incom-
plete Theories: A Three-Step Approach.
In Proceedings of the Seventh International
Conference on Machine Learning, Austin,
Texas, pp. 286-294 (1990).

[17] D. Kibler, D.W. Aha and M.K. Albert,
Instance-based Prediction of Real-valued At-
tributes. Computational Intelligence 5, pp.
51-57 (1989).

[18] S. Mahadevan, Using Determinations in
EBL: A Solution to the Incomplete Theory
Problem. In Proceedings of the Sixth In-
ternational Workshop on Machine Learning,
Ithaca, N.Y., pp. 320-325 (1989).

[19] S. Mahadevan and P. Tadepalli, On the
Tractability of Learning from Incomplete
Theories. In Proceedings of the Fifth Interna-
tional Conference on Machine Learning, Ann
Arbor, MI, pp. 235-241 (1988).

[20] R.S. Michalski, A Theory and Methodol-
ogy of Inductive Learning. In R.S. Michal-
ski, J.G. Carbonell and T.M. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence
Approach, vol. I. Palo Alto, CA: Tioga
(1983).

[21] R.S. Michalski, Inferential Learning The-
ory as a Conceptual Basis for Multistrategy
Learning. Machine Learning 11(2/3), Special
Issue on Multistrategy Learning, pp. 111-151
(1993).

[22] T.M. Mitchell, R.M. Keller and S.T. Kedar-
Cabelli, Explanation-Based Generalization:
A Unifying View. Machine Learning 1(1), pp.
47-80 (1986).

[23] R.J. Mooney, Induction over the Unex-
plained: Using Overly-General Domain The-
ories to Aid Concept Learning. Machine
Learning 10(1), pp. 79-110 (1993).

[24] R.J. Mooney and D. Ourston, A Multistrat-
egy Approach to Theory Refinement. In Pro-
ceedings of the First International Work-
shop on Multistrategy Learning (MSL-91),
Harpers Ferry, W.VA., pp. 115-130 (1991).

[25] M.J. Pazzani, Integrated Learning with In-
correct and Incomplete Theories. In Proceed-
ings of the Fifth International Conference on
Machine Learning, Ann Arbor, MI, pp. 291-
297 (1988).

[26] M. Pazzani and D. Kibler, The Utility of
Knowledge in Inductive Learning. Machine
Learning 9(1), pp. 57-94 (1992).

[27] S. Rajamoney S. and G.F. DeJong, The Clas-
sification, Detection and Handling of Imper-
fect Theory Problems. In Proceedings of the

KNOWLEDGE-BASED .. . LEARNING Informatica 17 (1993) 371-385 385

10th International Joint Conference on Arti-
ficial Intelligence (IJCAI-87), Milano, Italy,
pp. 205-207 (1987).

[28] S.J. Russell, Analogical and Inductive Rea-
soning. Ph.D. thesis, Report STAN-CS-87-
1150, Stanford University, Stanford, CA
(1987).

[29] G. Tecuci, Learning as Understanding the
External World. In Proceedings of the First
International Workshop on Multistrategy
Learning, Harper's Ferry, W.VA, pp. 49-64
(1991).

[30] G. Tecuci, Plausible Justification Trees: A
Framework for Deep and Dynamics Integra-
tion of Learning Strategies. Machine Learn-
ing 11(2/3), Special Issue on Multistrategy
Learning, pp. 237-261 (1993).

[31] G. Tecuci and Y. Kodratoff, Apprenticeship
Learning in Imperfect Domain Theories, In
Y. Kodratoff and R.S. Michalski (eds.), Ma-
chine Learning: An Artificial Intelligence
Approach, vol. Ill, San Mateo, CA: Morgan
Kaufmann, pp. 514-552 (1990).

[32] G. Tecuci and R.S. Michalski, A Method for
Multistrategy Task-adaptive Learning Based
on Plausible Justifications. In Proceedings of
the Eighth International Workshop on Ma-
chine Learning, Evanston, HI., pp. 549-553
(1991).

[33] K. VanLehn, Learning One Subprocedure
per Lesson. Artificial Intelligence 31(1), pp.
1-41 (1987).

[34] B.L. Whitehall, S.C. Lu and R.E. Stepp,
Theory Completion Using Knowledge-Based
Learning. In Proceedings of the First Inter-
national Workshop on Multistrategy Learn-
ing (MSL-91), Harpers Ferry, W.VA., pp.
144-159 (1991).

[35] B.L. Whitehall and D.J. Sirag, Conceptual
Clustering of Events Using Statistical Split
Criteria. In Proceedings of the Second Inter-
national Workshop on Multistrategy Learn-
ing, Harper's Ferry, W.VA., pp. 166-179
(1993).

[36] G. Widmer, A Tight Integration of Deduc-
tive and Inductive Learning. In Proceed-
ings of the Sixth International Workshop on
Machine Learning, Ithaca, N.Y., pp. 11-13
(1989).

[37] G. Widmer, An Incremental Version of
Bergadano & Giordana's Integrated Learn-
ing Strategy. In Proceedings of the Fourth
European Working Session on Learning
(EWSL-89), Montpellier, France, pp. 227-
238 (1989).

[38] G. Widmer, Learning with a Qualitative Do-
main Theory by Means of Plausible Expla-
nations. In R.S. Michalski and G. Tecuci,
eds., Machine Learning: A Multistrategy
Approach, vol. IV. Los Altos, CA: Morgan
Kaufmann (1993).

[39] G. Widmer, Modeling the Rational Basis of
Musical Expression. Computer Music Jour-
nal (in press).

[40] D.C. Wilkins, Knowledge Base Refinement
as Improving ah Incorrect and Incomplete
Domain Theory. In Y. Kodratoff and R.S.
Michalski (eds.), Machine Learning: An Ar-
tificial Intelligence Approach, vol. Ill, San
Mateo, CA: Morgan Kaufmann, pp. 493-513
(1990).

Informatica 17 (1993) 387-397 387

EXTENDING THEORY REFINEMENT TO M-of-N RULES

Paul T. Baffes and Raymond J. Mooney
Department of Computer Sciences
University of Texas
Austin, Texas 78712-1188 USA

Keywords: artificial intelligence, multistrategy learning, theory refinement

Edited by: Gheorghe Tecuci

Received: May 26, 1993 Revised: October 15, 1993 Accepted: October 15, 1993

In recent years, machine learning research has started addressing a problem known as
theory refinement. The goal of a theory refinement learner is to modify an incomplete or
incorrect rule base, representing a domain theory, to make it consistent with a set of input
training examples. This paper presents a major revision of the EITHER propositional
theory refinement system. Two issues are discussed. First, we show how run time
efficiency can be greatly improved by changing from a exhaustive scheme for computing
repairs to an iterative greedy method. Second, we show how to extend EITHER to
refine M-of-N rules. The resulting algorithm, NEITHER (New EITHER^, is more than an
order of magnitude faster and produces significantly more accurate results with theories
that fit the M-of-N format. To demonstrate the advantages of NEITHER, we present
experimental results from two real-world domains.

1 Introduction rules. EITHER is inefficient because it computes
a potentially exponential number of repairs for

Recently, a number of machine learning systems each failing example. The new version, NEITHER

have been developed that use examples to revise (New EITHER), computes only the single best re-
an approximate (incomplete and/or incorrect) do- pair for each example, and is therefore much more
main theory [4, 11, 18, 3, 21, 7]. Most of these efficient,
systems revise theories composed of strict if-then
rules (Horn clauses). However, many concepts Also, because it was restricted to strict Horn-
are best represented using some form of partial clause theories, the old EITHER algorithm could
matching or evidence summing, such as M-of-N not produce as accurate results as a neural-
concepts, which are true if at least M of a set network revision system called KBANN on a do-
of N specified features are present in an exam- main known as the DNA promoter problem [18,
pie. There has been some work on the indue- 19]. Essentially, this is because some aspects
tion of M-of-N rules demonstrating the advan- of the promoter concept fit the M-of-N format,
tages of this representation [17, 9]. Other work Specifically, there are several potential sites where
has focused on revising rules that have real-valued hydrogen bonds can form between the DNA and a
weights [19, 6]. However, revising theories with protein; if enough of these bonds form, promoter
simple M-of-N rules has not previously been ad- activity can occur. EITHER attempts to learn this
dressed. Since M-of-N rules are more constrained concept by forming a separate rule for each poten-'
than rules with real-valued weights, they provide tial configuration by deleting different combina-
a stronger bias and are easier to comprehend. tions of antecedents from the initial rules. Since

This paper presents a major revision of the a combinatoric number of such rules is needed to
EITHER propositional theory refinement system accurately model an M-of-N concept, the gener-
a l , 12] that is significantly more efficient and ality of the resulting theory is impaired. The new
is also capable of revising theories with M-of-N NEITHER algorithm, however, includes the abil-

388 Informatica 17 (1993) 387-397 Baffes and Mooney

8 -

b -

b - •

c •<

c -

d -

e ^

1 -

9 -

b » c

d

- e

- f

9
h i i & |

k & l

m & n

o & p ft q

A / \
d e f

h I | k I m n o p q

example: f, I, n, q true; h, 1, k, m, o, p false.

A A A

A A A A A '\ A 't*
k lh l j m n h I | o q p k o q p

Figure 1: Partial proofs for unprovable positive
example. Unprovable antecedents are shown with
dotted lines.

ity to modify a theory by changing thresholds of
M-of-N rules. Including threshold changes as an
alternative method for covering misclassified ex-
amples was easily incorporated within the basic
EITHER framework.

To demonstrate the advantages of NEITHER,
we present experimental results comparing it to
EITHER and various other systems on refining the
DNA promoter domain theory. NEITHER runs
more than an order of magnitude faster than
EITHER and produces a significantly more accu-
rate theory with minor revisions that are easy
to understand. We also present results showing
NEITHER'S ability to repair faults in a theory used
to teach the diagnosis of shock to novice nursing
students. We show that NEITHER is able to re-
store significantly damaged theories to near per-
fect accuracy.

2 Theory Revision Algorithm

2.1 The EITHER Algorithm

The original EITHER theory refinement algorithm
has been presented in various levels of detail in
[11, 12, 10]. It was designed to revise proposi-
tional Horn-clause theories. For EITHER, a theory
is a set of prepositional Horn-clause rules such as

those shown in the top half of Figure 1. Each
theory is assumed to function as a classification
system whereby examples are labeled as belong-
ing to one of a given set of categories. Examples
are vectors of feature-value pairs listing the value
corresponding to each feature, as well as the cate-
gory into which the example should be classified.
As an illustration, one might imagine a diagnos-
tic theory for determining whether or not a given
product coming off an assembly line passes inspec-
tion. The categories for such a rule base might be
"pass" and "fail" and the examples would consist
of whatever measurements could be made on the
product as part of the inspection test.

In revising an incorrect theory, note that
EITHER can fix either overly-general or overly-
specific rules through a combination of deductive,
abductive and inductive techniques as shown in
Figure 2. An overly-general theory is one that
causes an example (called a failing negative) to
be classified in categories other than its own.
EITHER specializes existing antecedents, adds
new antecedents, and retracts rules to fix these
problems. An overly-specific theory causes an ex-
ample (called a, failing positive) not to be classified
in its own category. EITHER retracts and general-
izes existing antecedents and learns new rules to
fix these problems. Unlike other theory revision
systems that perform hill-climbing (and are there-
fore subject to local maxima), EITHER is guaran-
teed to fix any arbitrarily incorrect propositional
Horn-clause theory [10].

The basic algorithm used by EITHER for both
generalization and specialization is shown in the
top half of Figure 3. There are three steps. First,
all possible repairs for each failing example are
computed. Next, EITHER enters a loop to com-
pute a subset of these repairs that can be applied
to the theory to fix all of the failing examples.
This subset is called a cover. Repairs are ranked
according to a benefit-to-cost ratio that trades off
the number of examples covered against the size
of the repair and the number of new failing ex-
amples it creates. The best repair is added to
the cover on each iteration. Lastly, the repairs in
the cover are applied to the theory. If the appli-
cation of a repair over-compensates by creating
new failing examples, EITHER passes the covered
examples and the new failing examples to an in-

EXTENDING THEORY REFINEMENT .. . Informatica 17 (1993) 387-397 389

T T
Improvable
Positive
Examples

DEDUCE
Proofs of
Negative
Examples

ABDUCE

Partial
Proofs

Minimal Cover
and

Antecedent Retractor

Deleted
Rules

Ungener-
alizable
Rules

Minimal Cover
and

Rule Retractor

Undeletable
Rules

INDUCE

Generalized
Rules

1 T
New
Rules

Specialized
Rules

Figure 2: Block diagram of EITHER.

EITHER Main Loop

Compute all repairs for each example

While some examples remain uncovered

Add best repair to cover set

Remove examples covered by repair

end

Apply repairs in cover set to theory

N E I T H E R Main Loop

While some examples remain

Compute a single repair for each

example

Apply best repair to theory

Remove examples fixed by repair

end

Figure 3: Comparison of EITHER and NEITHER

algorithms.

duction component.1 The results of the induction
are added as a new rule when generalizing or as
additional antecedents when specializing.

The time consuming part of this algorithm is
the first step where all repairs for a given fail-
ing example are found. Figure 1 illustrates this
process for theory generalization where EITHER
is searching for leaf-rule antecedent deletions to
correct failing positive examples. A leaf rule is
a rule whose antecedents include an observable
or an intermediate concept that is not the conse-
quent of any existing rule. The upper half of the
diagram shows an input theory both as rules (on
the left) and as an AND-OR graph. The lower
half of the diagram shows a hypothetical failing
positive example and its partial proofs. A partial
proof is one in which some antecedents cannot be
satisfied. From these proofs there are four possi-
ble repairs which will fix the example, correspond-
ing to the four partial proofs. In each repair, the
dotted lines represent antecedents which cannot
be proved and must therefore be removed from
the given rule(s). Thus, for the leftmost partial
proof, h and j cannot be proved in the rule d <— h
& i & j, and m cannot be proved for rule f <— m
& n, so the repair for this partial proof is: delete
(h, j ,m) from their respective rules. Likewise, the
three other repairs are: delete (h . j .o .p) , delete
(k,m) and delete (k,o,p). Theory specialization
follows a similar process to return sets of leaf-rule
rule deletions which fix individual failing negative
examples.

2.2 Speeding Up EITHER

We have recently implemented a new version of
EITHER (NEITHER) that takes a different ap-
proach, as shown in the bottom half of Figure 3.
Two new algorithms form the basis for the dif-
ference between EITHER and NEITHER. First,
calculation of repairs is now achieved in linear
time. Second, all searches through the theory
(for deduction, antecedent deletion and rule dele-
tion) are optimized in NEITHER to operate in lin-
ear time by marking the theory to avoid redun-
dant subproofs. NEITHER abandons the notion of
searching for all partial proofs in favor of a greedy
approach which rapidly selects a single best re-
pair for each example. The three steps of the old

1 EITHER uses a version of I D 3 [13] for its induction.

390 Informatica 17 (1993) 387-397 Baffes and Mooney

EITHER algorithm can then be integrated into a
single loop (see Figure 3).

Rather than computing all partial proofs,
NEITHER works bottom-up, constructing a sin-
gle set of deletions. When multiple options exist,
NEITHER alternates between returning the small-
est option and returning the union of the options,
depending whether the choice involves an AND
or OR node. For generalization, deletions are
unioned at AND nodes because all unprovable an-
tecedents must be removed to make the rule prov-
able. At OR nodes, only the smallest set of dele-
tions is kept since only one rule need be provable.
For specialization, these choices are reversed. Re-
sults are unioned at OR nodes to disable all rules
which fire for a faulty concept. At AND nodes,
the smallest set of rule deletions is selected since
any single failure will disable a rule.

To illustrate how repairs are computed in lin-
ear time, refer again to Figure 1. The antecedent
deletion calculations for this example would be-
gin at the root of the graph, recursively calling
nodes b and c. Deletion for node b would then
recurse on nodes d and e. Since h, j and k are
false, node d returns (h , j) and node e returns
(k). When the recursion returns back to node b
a choice must be made between the results from
nodes d and e because the theory is being gen-
eralized and node b is an OR node. Since node
e requires fewer deletions, its deletions are cho-
sen as the return value for node b. Recursion for
node c follows a similar pattern: node f returns
(m), node g returns (o,p) and node c chooses the
smaller results from node f as its return value. Fi-
nally, nodes b and c return their values to node a.
Now, since node a is an AND node and the theory
is being generalized, the results from b and c are
combined. The final repair returned from node
a is delete (k,m). Thus the rule e <— k & 1 is
generalized to e «— 1, and the rule f <— m & n
is generalized to f <— n.

Note that this algorithm is linear in the size of
the theory. No node is visited more than once,
and the computation for choosing among poten-
tial deletions must traverse the length of each rule
at most once. The final repair is also minimum
with respect to the various choices made along the
way; it is not possible to find a smaller repair that
will satisfy the example with the given set of rules.
Of course, once a repair is applied to the theory it

will effect subsequent repair calculations because
the theory will change. Thus although each repair
is minimum with respect to the state of the the-
ory from which is was calculated, the total sum
of all repairs may not be minimum due to order-
ing effects. The only way to reach such a global
minimum is to do an exhaustive search which is
exponential in the size of the theory. This new al-
gorithm trades the complete information available
in the partial proofs for speed in computation.

2.3 Adding M-of-N Rules to NEITHER

Expanding NEITHER to handle M-of-N rules in-
volves both a change in the syntax and interpre-
tation of rules as well as a modification to the
types of revisions which can be made to a given
theory. With M-of-N rules, there are six types of
revisions. As before, antecedents may be deleted
or rules may be added to generalize the theory,
and antecedents may be added or rules deleted to
specialize the theory. The two new revisions are
to increase or decrease the threshold: decreasing
generalizes a rule and increasing specializes it.

To incorporate these two new revisions,
NEITHER must be changed in four places. First,
the computation of a repair for each failing ex-
ample must take thresholds into account. For
generalization, one need only delete enough an-
tecedents to make the rule provable; there is no
need to delete all false antecedents if the rule has
a threshold. For example, if the rule for e in Fig-
ure 1 had a threshold of 1 there would be no need
to delete k to prove this rule. A similar account-
ing for thresholds is required for computing rule
deletions for specialization. Note that during gen-
eralization the threshold of each rule from which
antecedents are deleted must be decreased by the
number of antecedents deleted to account for the
smaller size of the rule.

Second, NEITHER must compute threshold re-
pairs. Calculating threshold changes can be
done in conjunction with the computation of an-
tecedent and rule deletion repairs since it is di-
rectly related to how many of antecedents of a
rule are provable. For generalization, we change
the threshold to the number of antecedents which
are provable. In specialization, we set the thresh-
old to one more than the number of provable an-
tecedents.

Third, a mechanism must be provided for se-

EXTENDING THEORY REFINEMENT Informatica 17 (1993) 387-397 391

change
orig. rule

threshold -1
delete b

Generalization
resulting rule
a <- 2 of (b.c)
a <- 1 of (b.c)
a <— c

b

N
Y
N

c
N
Y
Y

be

Y
Y
Y

change
orig. rule

threshold +1
delete rule

Specialization
resulting rule
a *- 1 of (b,c)
a <- 2 of (b,c)
none

b

Y
N
N

c
Y
N
N

be

Y
Y
N

Table 1: Comparison of Revisions.

lecting between a threshold change and a dele-
tion. Effectively, this amounts to deciding which
type of revision to try first. The philosophy used
in NEITHER is to try the most aggressive changes
initially in the hopes that the resulting repair will
cover more examples. If the repair creates new
failing examples, the less ambitious repairs are
tried in turn with induction used as a last re-
sort. During generalization, more radical repairs
are those which create more general rules (i.e.,
rules which can prove more examples). In special-
ization, the opposite is true. As with EITHER, if
all changes result in new failing examples, the al-
gorithm falls back to induction to learn new rules
or add new antecedents.

Table 1 compares equivalent threshold and
deletion changes for generalization and special-
ization. The columns labeled with b, c and be
indicate whether the corresponding rule will con-
clude a when just b, just c or both b and c
are true. Note that in both cases, the thresh-
old change results in a more general rule. This
means that threshold changes should be tried be-
fore antecedent deletions during generalization,
but tried after rule deletions during specializa-
tion. This is because during generalization, the
most aggressive changes are those which general-
ize the most, but during specialization, the most
aggressive changes are those which generalize the
least.

Fourth and finally, the induction component of
NEITHER must be altered slightly to accommo-
date threshold rules. When the application of
a repair causes new failing examples to occur,
NEITHER resorts to induction as did EITHER. The
result of the induction cannot, however, simply be
added to the theory as before. Table 2 illustrates
the problem. The original rule shown can be used
to prove both the positive and negative examples,
and deleting this rule or incrementing its thresh-
old only prevents the positive example from being
proved. Assume that induction returns a new fea-

ture, d, which can be used to distinguish the two
examples (i.e., d is true for the positive example
but false for the negative example). Because the
original rule has a threshold, adding d directly will
still allow both examples to prove the rule. This
problem remains even if one tries to increment the
threshold in addition to adding d. Instead, the
rule must be split by renaming the consequent of
the original rule, and creating a new rule with the
renamed consequent and the results of induction
as the new rule's antecedent list.

3 Experimental Results

In the experiments which follow, there are two
versions of the NEITHER algorithm. The first has
only the speedup changes and is termed simply
NEITHER. The second includes M-of-N refine-
ments and is termed N E I T H E R - M O F N .

3.1 The DNA Promoter Domain

3.1.1 Experimental Design

We tested both NEITHER and N E I T H E R - M O F N

against other classification algorithms using the
DNA promoter sequences data set [20]. This data
set involves 57 features, 106 examples, and 2 cat-
egories. The theory provided with the data set
is supposed to recognize promoters in strings of
nucleotides. A promoter is a genetic region which
initiates the first step in the expression of an ad-
jacent gene transcription. However, the original
theory has an initial classification accuracy of only
50%. We selected this particular data set because
the original EITHER algorithm was outperformed
by other systems on this data due to the M-of-N
qualities required to reason correctly in this do-
main. In addition to testing EITHER, NEITHER

and N E I T H E R - M O F N , we ran experiments using
I D 3 [13], backpropagation [16] and RAPTURE [6]
(a revision system based on certainty factors). We

392 Informatica 17 (1993) 387-397 Baffes and Mooney

example features
b, c, d

orig. rule
a <- 1 of (b,c)

add to rule
a «- 1 of (b.c.d)
split rule
X «- 1 of (b,c)
a <- X,d

pos. example
b, -ic, d

pos. example
Y

pos. example
Y

pos. example
Y
Y

neg. example
b, C, -id

neg. example
Y

neg. example

L Y

neg. example
Y
N

tCama
93.00

Test Accuracy

1/
V •

li /•

11/'-''
f
1

/

•• •

.--••-"• — r" "°

p

-•' f

i
i
i

i
t

i

I
I

!

Table 2: Induced Antecedent Addition.

3.1.2 Results

EJTHER'"

Figure 4: DNA Test Set Accuracy.

also included data on the performance of KBANN

on this data set as reported in [20].
The experiments proceeded as follows. Each

data set was divided into training and test sets.
Training sets were further divided into subsets,
so that the algorithms could be evaluated with
varying amounts of training data. After training,
each system's accuracy was recorded on the test
set. To reduce statistical fluctuations, the results
of this process of dividing the examples, train-
ing, and testing were averaged over 25 runs. The
random seeds for the backpropagation algorithm
were reset for each run. Training time, and test
set accuracy were recorded for each run. Statis-
tical significance was measured using a Student
t-test for paired difference of means at the 0.05
level of confidence (i.e., 95% certainty that the
differences are not due to random chance).

The results of our experiments are shown in the
three graphs of Figures 4, 5 and 6. Figure 4 com-
pares the learning curves of the systems tested,
showing how predictive accuracy on the test set
changes as a function of the number of training ex-
amples. As can be seen NEITHER-MOFN'S perfor-
mance was significantly better than all other sys-
tems except RAPTURE and KBANN.2 RAPTURE

out-performed N E I T H E R - M O F N with small num-
bers of training examples but their accuracy was
comparable with larger inputs. NEITHER'S accu-
racy was on par with backpropagation, but was
lower than EITHER for small training sets and
higher than EITHER for large training sets. Note,
that Figure 4 is not direct comparison of NEITHER

and KBANN since the results reported were com-
piled from different subsets of the DNA promoter
sequences data set. I D 3 had significantly lower
accuracy than the other systems.

Figure 5 shows a comparison of training times.
Both NEITHER-MOFN and NEITHER were more
than an order of magnitude faster than backprop-
agation and EITHER. Only I D 3 ran faster than
NEITHER-MOFN.

We also collected data on the average com-
plexity of the revised theories produced by both
NEITHER and N E I T H E R - M O F N . Complexity was
measured as the total size; i.e., the total number
of all literals in the theory. The results are shown
in Figure 6. As can be seen from this graph,
NEITHER-MOFN not only produces less complex
resulting theories but also produces theories closer
in size to the original.

technically, the last difference between backpropaga-
tion and NEITHER-MOFN was only significant at the 0.1
level.

EXTENDING THEORY REFINEMENT Informatica 17 (1993) 387-397 393

Training Time (90 examples)
Concept Complexity

300,00 !29!?.

156.2

20.1

.!s.5

i
Backprop Either Rapture Nohhor Neithor-MolN 103

50 00 —

35 (XJ -

JO.CU —

25.00 —

10IX)

05 (XJ - -

imo —

woo -

MOT! -

8000 —

75.IK) -

70 0(1

/

_ _ _ _ _ _

Figure 5: DNA Training Time Comparison. Figure 6: DNA Concept Complexity.

3.1.3 Discussion

Many of our expectations were borne out by
the experimental results. Both NEITHER and
NEITHER-MOFN ran more than an order of
magnitude faster than EITHER due to the
optimized algorithms discussed in section 2.
NEITHER-MOFN'S increase in accuracy was also
expected since the new algorithm is able to con-
centrate on making M-of-N revisions directly.
Also, the fact that NEITHER-MOFN generates less
complex theories is not surprising, again because
it can directly modify threshold values rather
than create new rules. In short, by adding one
more operator to the generalization and special-
ization processes, NEITHER-MOFN is able to ac-
curately revise a theory known to be difficult
for symbolic systems, without having, to sacri-
fice the efficiency of a symbolic approach. Fi-
nally, the most comparable learning-curve results
from [20] would indicate that KBANN'S accuracy
in the promoter domain is about the same as
NEITHER-MOFN'S.

The most surprising result of the experiments
was the difference in accuracy between the orig-
inal EITHER algorithm and NEITHER. As stated
above, EITHER was more accurate with fewer
training examples, but its accuracy dropped off
relative to NEITHER as the number of exam-
ples increased. One possible explanation for this
behavior lies in the difference between how the

two systems compare potential revisions (see Fig-
ure 3). Recall that EITHER computes multiple
repairs for each example, but does so only once.
NEITHER, by contrast, computes one repair per
example each time through its main loop. As a
result, with fewer training examples, EITHER has
more potential revisions to examine, apparently
giving it an edge over NEITHER. Even though
NEITHER computes new repairs each time it iter-
ates, there may not be enough iterations to gen-
erate as rich a set of deletions as is done in one
step by EITHER. On the other hand, as the num-
ber of training examples grows, NEITHER under-
goes many more iterations, each computing new
repairs in light of any previous revisions. By con-
trast, EITHER computes its repairs for each exam-
ple independently, missing out on any interactions
which might occur when the revisions are applied
to the theory in a particular order. Capturing
these interactions may be one reason NEITHER

out-performs EITHER with large numbers of ex-
amples.

3.2 The Shock Diagnosis Domain

A second set of experiments was run to test
NEITHER'S ability to repair faulty theories. The
data for this experiment was borrowed from a
separate research project designed to test nursing
students retention of concepts for determining if
a patient is suffering from shock [8]. Each patient

394 Informatica 17 (1993) 387-397 Baffes and Mooney

hypovolemic <— shock disrupted-blood-volume
cardiogenic «— shock ineffective-pumping-action
vascular-tone <— shock disrupted-vascular-tone
shock <— 3 of ((pulse rising) (respiration rising)

(blood-pressure falling) (urine-output low)
(mental-status strained) skin-abnormal)

shock <— (patient pregnant) (symptoms blood-loss)
(mental-status strained) skin-abnormal

skin-abnormal <— (skin cool-clamy)
skin-abnormal <— (skin hot-flushed)
disrupted-blood-volume <— (symptoms fluid-loss)
disrupted-blood-volume <— (symptoms blood-loss)
ineffective-pumping-action <— (symptoms cardiac)
disrupted-vascular-tone <— (symptoms infection)
disrupted-vascular-tone <— (symptoms allergy)
disrupted-vascular-tone <— (symptoms neural)

Figure 7: Shock Domain Theory.

can be labeled in one of four ways: as suffering
from hypovolemic, cardiogenic, or vascular tone
shock, or as not in shock. A theory for diagnos-
ing shock was written using the definitions and
examples presented to the students and consulta-
tions with a medical expert. The final theory is
shown in Figure 7.

This data set was chosen for two reasons. First,
it represents another real-world domain which has
an M-of-N flavor (the "shock" concept in the the-
ory is represented using a threshold rule). Second,
NEITHER'S ability to refine theories in this domain
is the centerpiece of another of our research efforts
in student modeling [1]. In short, a student mod-
eling algorithm must be able to recover from a
variety of deviations from the correct theory in
order to be useful to a variety of students.

3.2.1 Experimental Design

The basic design of this experiment was to in-
troduce faults into the correct shock theory and
test how well NEITHER-MOFN could refine the re-
sult. The following five alterations were injected
into the theory with equal probability: antecedent
deletions, antecedent additions, rule deletions,
rule additions, and threshold changes. A modi-
fication factor was passed to the algorithm which
made the alterations indicating the percentage of
antecedents in the theory to be changed. Con-
sequently, a modification factor of 0.1 indicated
that roughly 10% of the antecedents in the the-

ory would be modified.
Data for training and testing was drawn from

a pool of 150 examples equally representative of
the three categories of shock. These 150 examples
were randomly generated using the correct theory.
For each category, 40 positive examples and 10
near-miss negative examples were created. Thus,
of the 150 total cases, 120 examples belonged to
one of the three categories of shock and 30 were
non-shock examples.

A three-phased experiment was run. In each
experiment, the 150 examples were first split ran-
domly into 100 training examples and 50 test ex-
amples. The original theory was then subjected
to three independent modifications of 0.1, 0.2
and 0.3. Each resulting theory was refined by
NEITHER-MOFN using the same 100 training ex-
amples. The theories were tested both before and
after refinement using the same 50 test examples.
This entire process was repeated 10 times, and the
results averaged. For comparison purposes, we
also ran the same training data through a propo-
sitional version of the FOIL inductive learner [14]
and tested the results using the same test data,
averaging the results of the 10 trials.

3.2.2 Results

Table 3 shows the results of the recovery experi-
ments. Note that the results for FOIL are identical
for each experiment since induction does not make
use of an input theory. In each of the three exper-
iments, NEITHER-MOFN was able to reconstruct
a theory to perfect or near perfect accuracy on the
test data. NEITHER-MOFN was also able to cre-
ate more accurate theories than induction alone.
Tests were also run using the non-threshold ver-
sion of NEITHER but the results were nearly iden-
tical to those reported for NEITHER-MOFN (there
was no statistically significant difference between
NEITHER and NEITHER-MOFN on this data).

3.2.3 Discussion

The results of Table 3 are largely what one would
expect for a good theory refinement algorithm. As
the theory deviated more and more from the orig-
inal, the performance of the altered theory on the
test data continued to decline. Likewise, the abil-
ity of NEITHER-MOFN to repair the theory de-
clined with increasingly altered theories, though

EXTENDING THEORY REFINEMENT .. . Informatica 17 (1993) 387-397 395

before refinement
after refinement
induction

0.1 modified theory
68.25
100.0
80.4

0.2 modified theory
50.25
94.0
80.4

0.3 modified theory
43.5
94.0
80.4

Table 3: Shock Test Set Accuracy.

only slightly. Yet in all cases, NEITHER-MOFN

was able to refine a wide variety of damaged
theories to a high level of performance on novel
test data. Additionally, NEITHER-MOFN was
able to create more accurate theories than induc-
tion alone by taking advantage of input theories
which were at least partly correct. Finally, though
N E I T H E R - M O F N was unable to exactly duplicate
the original theory in all cases, the refinements
made seemed reasonable in light of the alterations
made in the modified theories.

4 Related Work

Several researchers have developed methods for
inducing M-of-N concepts from scratch. CRLS
[17] learns M-of-N rules and out-performed
standard rule induction in several medical do-
mains. ID-2-of-3 [9] incorporates M-of-N tests
in decision-tree learning and out-performed stan-
dard decision-tree induction in a number of do-
mains. Both projects clearly demonstrate the ad-
vantages of M-of-N rules.

SEEK2 [5] includes operators for refining M-of-
N rules; however, its revision process is heuris-
tic and it is not guaranteed to produce a revised
theory that is consistent with all of the training
examples. NEITHER uses a greedy covering ap-
proach to guarantee that it finds a set of revisions
that fix all of the misclassified examples in the
training set. Also, unlike NEITHER, SEEK2 can-
not learn new rules or add new antecedents to
existing rules.

KBANN [19] revises a theory by translating it
into a neural network, using backpropagation to
refine the weights, and then retranslating the re-
sult back into symbolic rules. NEITHER'S sym-
bolic revision process is much more direct and,
from all indications, significantly faster. Al-
though KBANN'S results are referred to as M-
of-N rules, they actually contain real-valued an-
tecedent weights and therefore are not strictly M-
of-N. In addition, KBANN'S revised theories for

the promoter problem are also more complex in
terms of number of antecedents than the initial
theory [20], while NEITHER actually produces a
slight reduction. Therefore, NEITHER'S revised
theories are less complex and presumably easier
to understand. Finally, unlike KBANN, NEITHER

is guaranteed to converge to 100% accuracy on
the training data.

RAPTURE [6] uses a combination of symbolic
and neural-network learning methods to revise a
certainty-factor rule base [2]. Consequently, it
lies somewhere between NEITHER and KBANN on
the symbolic-connectionist dimension. As illus-
trated in the results, its accuracy on the promoter
problem is only slightly superior to NEITHER'S.

However, its real-valued certainty factors make its
rules more complex.

5 Future Work

The current version of NEITHER needs to be en-
hanced to handle a number of issues. We need to
incorporate a number of advanced features from
the original EITHER algorithm, such as construc-
tive induction, modification of higher-level rules,
and the ability to handle numerical features and
noisy data. Also, we could extend our methods
to handle negation as failure and incorporate the
ability to handle M-of-N rules into first-order the-
ory revision [15]. The inductive component of
NEITHER should be modified to produce thresh-
old rules directly, rather than symbolic rules. Fi-
nally, we need to perform a more comprehensive
experimental evaluation of the system.

6 Conclusions

This paper has presented an efficient proposi-
tional theory refinement system that is capable
of revising M-of-N rules. The basic framework is
a modification of EITHER [11]; however, the con-
struction of partial proofs has been reduced from

396 Informatica 17 (1993) 387-397 Baffes and Mooney

exponential to linear time and a method for re-
vising the thresholds of M-of-N rules has been in-
corporated. The resulting system runs more than
an order of magnitude faster and produces signifi-
cantly more accurate results in domains requiring
partial matching, such as the problem of recog-
nizing promoters in DNA.

Acknowledgments

This research was supported by the NASA Grad-
uate Student Researchers Program under grant
number NGT-50732, the National Science Foun-
dation under grant IRI-9102926, and a grant from
the Texas Advanced Research Program under
grant 003658144. We would like to thank Jude
Shavlik, Geoff Towell, and Marylin Murphy for
generously providing the DNA and Shock data
sets. Special thanks also to Chris Whatley for his
help implementing NEITHER and to Dr. Thomas
Baffes for his invaluable help in developing the
rules for the shock domain.

References

[1] P. Baffes and R. J. Mooney. Using theory re-
vision to model students and acquire stereo-
typical errors. In Proceedings of the Thir-
teenth Annual Conference of the Cognitive
Science Society, pages 617-622, Blooming-
ton, IN, 1992.

[2] G.G. Buchanan and eds. E.H. Shortliffe.
Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Program-
ming Project. Addison-Wesley Publishing
Co., Reading, MA, 1984.

[3] A. D. Danyluk. Gemini: An integration of
analytical and empirical learning. In Proceed-
ings of the International Workshop on Mul-
tistrategy Learning, pages 191-206, Harper's
Ferry, W.Va., Nov. 1991.

[4] A. Ginsberg. Theory reduction, theory revi-
sion, and retranslation. In Proceedings of the
Eighth National Conference on Artificial In-
telligence, pages 777-782, Detroit, MI, July
1990.

[5] A. Ginsberg, S. M. Weiss, and P. Politakis.
Automatic knowledge based refinement for

classification systems. Artificial Intelligence,
35:197-226, 1988.

[6] J. J. Mahoney and R. J. Mooney. Combin-
ing neural and symbolic learning to revise
probabilistic rule bases. In S.J. Hanson, J.C.
Cowan, and C.L. Giles, editors, Advances
in Neural Information Processing Systems,
Vol. 5, pages 107-114, San Mateo, CA, 1993.
Morgan Kaufman.

[7] S. Matwin and B. Plante. A deductive-
inductive method for theory revision. In
Proceedings of the International Workshop
on Multistrategy Learning, pages 160-174,
Harper's Ferry, W.Va., Nov. 1991.

[8] Marilyn A. Murphy and Gayle V. David-
son. Computer-based adaptive instruction:
Effects of learner control on concept learn-
ing. Journal of Computer-Based Instruction,
18(2):51-56, 1991.

[9] P. M. Murphy and M. J. Pazzani. ID2-of-3:
Constructive induction of M-of-N concepts
for discriminators in decision trees. In Pro-
ceedings of the Eighth International Work-
shop on Machine Learning, pages 183-187,
Evanston, IL, June 1991.

[10] D. Ourston. Using Explanation-Based and
Empirical Methods in Theory Revision. PhD
thesis, University of Texas, Austin, TX, Au-
gust 1991. Also appears as Artificial Intel-
ligence Laboratory Technical Report AI 91-
164.

[11] D. Ourston and R. Mooney. Changing the
rules: A comprehensive approach to theory
refinement. In Proceedings of the Eighth Na-
tional Conference on Artificial Intelligence,
pages 815-820, Detroit, MI, July 1990.

[12] D. Ourston and R. J. Mooney. Theory re-
finement combining analytical and empirical
methods. Artificial Intelligence, in press.

[13] J. R. Quinlan. Induction of decision trees.
Machine Learning, l(l):81-106, 1986.

[14] J.R. Quinlan. Learning logical definitions
from relations. Machine Learning, 5(3):239-
266, 1990.

EXTENDING THEORY REFINEMENT ... Informatica 17 (1993) 387-397 397

[15] B. Richards and R. Mooney. First-order the-
ory revision. In Proceedings of the Eighth In-
ternational Workshop on Machine Learning,
pages 447-451, Evanston, IL, June 1991.

[16] D. E. Rumelhart, G. E. Hinton, and J. R.
Williams. Learning internal representations
by error propagation. In D. E. Rumelhart
and J. L. McClelland, editors, Parallel Dis-
tributed Processing, Vol. I, pages 318-362.
MIT Press, Cambridge, MA, 1986.

[17] K. A. Spackman. Learning categorical deci-
sion criteria in biomedical domains. In Pro-
ceedings of the Fifth International Confer-
ence on Machine Learning, pages 36-46, Ann
Arbor, MI, June 1988.

[18] G. Towell and J. Shavlik. Refining symbolic
knowledge using neural networks. In Proceed-
ings of the International Workshop on Mul-
tistrategy Learning, pages 257-272, Harper's
Ferry, W.Va., Nov. 1991.

[19] G. Towell and J. Shavlik. Interpreta-
tion of artificial neural networks: Mapping
knowledge-based neural networks into rules.
In R. Lippmann, J. Moody, and D. Touret-
zky, editors, Advances in Neural Information
Processing Systems, volume 4. Morgan Kauf-
mann, 1992.

[20] G. G. Towell. Symbolic Knowledge and Neu-
ral Networks: Insertion, Refinement, and
Extraction. PhD thesis, University of Wis-
consin, Madison, WI, 1991.

[21] B. L. Whitehall, S. C. Lu, and R. E. Stepp.
Theory completion using knowledge-based
learning. In Proceedings of the International
Workshop on Multistrategy Learning, pages
144-159, Harper's Ferry, W.Va., Nov. 1991.

Informatica 17 (1993) 399-412 399

MULTITYPE INFERENCE IN MULTISTRATEGY
TASK-ADAPTIVE LEARNING: DYNAMIC INTERLACED
HIERARCHIES

Michael R. Hieb and Ryszard S. Michalski
Center for Artificial Intelligence
George Mason University, Fairfax, VA
hieb@gmu.edu and michalski@gmu.edu

Keywords: multistrategy learning, inferential theory of learning, knowledge transmutation, general-
ization, abstraction, similization

Edited by: Gheorghe Tecuci

Received: April 10, 1993 Revised: May 26, 1993 Accepted: October 16, 1993

Research on multistrategy task-adaptive learning aims at integrating all basic inferential
learning strategies—learning by deduction, induction and analogy. The implementation
of such a learning system requires a knowledge representation that facilitates perform-
ing a multitype inference in a seamlessly integrated fashion. This paper presents an
approach to implementing such multitype inference based on a novel knowledge repre-
sentation, called Dynamic Interlaced Hierarchies (DIE). DIH integrates ideas from our
research on cognitive modeling of human plausible reasoning, the Inferential Theory of
Learning, and knowledge visualization. In DIH, knowledge is partitioned into a "static"
part that represents relatively stable knowledge, and a "dynamic" part that represents
knowledge that changes relatively frequently. The static part is organized into type,
part, or precedence hierarchies, while the dynamic part consists of traces that link nodes
of different hierarchies. By modifying traces in different ways, the system can perform
different knowledge transmutations (patterns of inference), such as generalization, ab-
straction, similization, and their opposites, specialization, concretion and dissimilization,
respectively.

1 Introduction This paper presents basic ideas underlying a
knowledge representation proposed for the imple-
mentation of a MTL system and its use for imple-

The development of multistrategy learning sys- m e n t ing multitype inference. This representation,
terns requires a powerful and easily modifiable c a l l e d Dynamic Interlaced Hierarchies (DIH), in-
knowledge representation that facilitates mul- tegrates ideas from our research on modeling hu-
titype inference. This is particularly true in m a n p l a u s i b l e inference, the Inferential Theory of
the case of multistrategy task-adaptive learning Learning and the visualization of knowledge. DIH
(MTL) systems that integrate a whole range of encompasses many different forms of knowledge
inferential strategies, such as empirical indue- p f a c t S j r u l e S) d e p e ndencies, etc., and facilitates
tion, abduction, deduction, plausible deduction, k n o w l e d g e transmutations, described in the Infer-
abstraction, and analogy [11, 12, 16, 17]. A ential Theory of Learning (ITL) [13]. This paper
MTL system adapts a strategy or a combina- s h o w s h o w D f f l s u p p o r t s s e v e r a l b a s i c p a t t e r n s

tion of strategies to the learning task, defined by of k n o w l e d g e c h a n g e (transmutations), such as
the available input knowledge, the learner's back- generalization, abstraction, similization, and their
ground knowledge and the learning goal. A the- o p p o s i t e S) specialization, concretion and dissim-
oretical framework for the development of MTL i l i z a t i o I 1) r e spectively. These operations are per-
systems has been presented in [13].

400 Informatica 17 (1993) 399-412 M. Hieb k R. Michalski

formed on DIH traces, which correspond to well-
formed predicate logic expressions associated with
a degree of belief.

While our previous work has focused on the vi-
sualization of attribute-based representations for
empirical induction [19], DIH allows the visual-
ization of structural (attributional and relational)
representations. The underlying assumption is
that the syntactic structure for representing any
knowledge should reflect as closely as possible the
semantic relationships among the knowledge com-
ponents, and facilitate knowledge modifications
that correspond to the most frequently performed
inferences. An early implementation of this idea
was in the ADVISE system, which used three
forms of knowledge representation: relational ta-
bles, networks and rules [14].

The DIH approach assumes that a large part
of human conceptual knowledge is organized into
varjous hierarchies, primarily type, part and
precedence hierarchies (see Section 3 for an expla-
nation) . Such hierarchies reflect frequently occur-
ring relationships among knowledge components,
and make it easy to perform basic forms of infer-
ence.

The initial idea for DIH stems from the core
theory of human plausible reasoning [5, 4] The
theory presents a formal representation of vari-
ous plausible inference patterns observed in hu-
man reasoning.

DIH is more fully described in [8].

2 Relevant Research

The core theory of Plausible Reasoning presents a
system that formalizes various plausible inference
patterns and "merit parameters" that affect the
certainty of these inferences. This system com-
bines structural aspects of reasoning (determined
by knowledge structures) with parametric aspects
that represent quantitative belief and other mea-
sures affecting the reasoning process.

Various components of the "Logic of Plausible
Reasoning" have been implemented in several sys-
tems [1, 7, 9]. These implementations used var-
ious subsets of the inferences ("statement trans-
forms") described in the core theory to investigate
the parametric aspects of the theory. The im-
plementations demonstrated how the core theory
of plausible reasoning can be applied to various

domains. DIH specifies a broader set of knowl-
edge transmutations in a general and well-defined
knowledge representation. These transmutations
are part of a framework for both reasoning and
learning.

The organization of concepts into various hi-
erarchies has been proposed as a plausible struc-
ture for human semantic memory quite early [6].
The WordNet project at Princeton University, di-
rected by George Miller, concerns the implemen-
tation of an electronic thesaurus using such a
memory structure [3]. WordNet is a very large
lexical database with approximately 50,000 dif-
ferent word forms. WordNet divides the lexi-
con into various categories including nouns, verbs,
and modifiers (adjectives and adverbs). Signifi-
cantly, the nouns are stored in topical hierarchies
(both type and part hierarchies), lending support
to the DIH representation. However, while Word-
Net can be used as a source of DIH hierarchies, it
does not provide any inferential facilities.

Other relevant research includes the develop-
ment of the Common Knowledge Representation
Language (CKRL), done as part of an ESPRIT
project [15]. CKRL offers a language in which
knowledge can be exchanged between machine
learning tools and it uses the set of most common
representation structures and operators. While
CKRL's representation for multistrategy learn-
ing seeks to integrate the various representations
employed by several different learning programs
for communication of knowledge between the ma-
chine learning tools, our aim is to develop a repre-
sentation that facilitates an integration of learn-
ing and inference processes.

Semantic network knowledge representation
systems, such as the KL-ONE family [2], utilize a
large network of relationships between concepts,
intermixing different relationships. The hierar-
chies they use are tangled, in which a concept can
have more than one parent. As a consequence, im-
plementing knowledge transmutations, e.g., gen-
eralization, is not as easy as in DIH. DIH facil-
itates such transmutations because it uses only
single-parent hierarchies, representing a structur-
ing of a set of entities from a certain viewpoint.
In DIH, a concept can belong to different hier-
archies, reflecting the fact that a given concept
(or object) can usually be classified from several
different viewpoints.

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 401

The design of semantic networks is primarily
oriented toward facilitating deductive inference,
and is not usually concerned with knowledge vi-
sualization. The design of DIH is oriented toward
facilitating multitype inference and providing a
basis for the visual presentation of knowledge.
DIH also utilizes a hierarchy of merit parameters
to represent probabilistic factors associated with
plausible reasoning.

3 Basic Components of DIH

The theory of plausible reasoning postulates that
there are recurring patterns of human plausible
inference. To adequately represent these pat-
terns, one needs a proper knowledge represen-
tation. The DIH approach partitions knowledge
into a "static" part and a "dynamic" part. The
static part represents knowledge that is relatively
stable (such as established hierarchies of con-
cepts), and the "dynamic" part represents knowl-
edge that changes relatively frequently (such as
statements representing new observations or re-
sults of reasoning). The static part is orga-
nized into type hierarchies (TH), part hierarchies
(PH) and precedence hierarchies. Precedence hi-
erarchies include several subclasses, specifically,
measure hierarchies (MH), quantification hierar-
chies (QH) and schema hierarchies (SH). The dy-
namic part consists of traces that represent knowl-
edge involving concepts from different hierarchies.
Each trace links nodes of two or more hierarchies
and is assigned a degree of belief.

These hierarchies are composed of nodes rep-
resenting abstract or physical entities, and links
representing certain basic relationships among the
entities, such as "type-of", "part-of" or "pre-
cedes". In the "pure" form, these hierarchies are
single parent, that is, no node can have more than
one parent. The root node is assigned the name
of the class of entities that are organized into the
hierarchy from a given viewpoint.

A type (or generalization) hierarchy organizes
concepts in a given class according to the "type-
of" relation (also called a "generalization" or
"kind-of" relation). For example, different types
of "animals" can be organized into a "type" hier-
archy.

A part hierarchy organizes entities according to
a "part-of" relationship. For example, the world,

viewed as a system of continents, geographical
regions, countries, etc., can be organized into a
part hierarchy. While properties of a parent node
in the type hierarchy are inherited by children
nodes, this does not necessarily hold for a part
hierarchy. There are several different part rela-
tionships, which include part-component, part-
member, part-location and part-substance [18].

To represent relationships among elements of
ordered or partially ordered sets, a class of prece-
dence hierarchies is introduced. Hierarchies in
this class represent hierarchical structures of con-
cepts ordered according to some precedence rela-
tion, such as "A precedes B", "A is greater than
B", "A has higher rank than B", etc.

There are several subclasses of precedence hi-
erarchies. One subclass is a measure hierarchy,
in which leafs stand for values of some phys-
ical measurement, for example, weight, length,
width, etc., and the parent nodes are symbolic
labels characterizing ranges of these values, such
as "low", "medium", "high", etc. Figure 1 shows
a measure hierarchy of possible values of people's
height. Dotted lines indicate a continuity of val-
ues between nodes. Arrows indicate the prece-
dence order of the nodes. Another subclass hier-
archy is a belief hierarchy, in which nodes repre-
sent degrees of an agent's beliefs in some knowl-
edge represented by a trace.

Other subclasses of precedence hierarchies in-
clude a rank hierarchy and a quantification hierar-
chy. A rank hierarchy consists of values represent-
ing the "rank" of an entity in some structure, e.g.,
an administrative hierarchy or military hierarchy.
A quantification hierarchy consists of nodes that
represent different quantifiers for a set (An ex-
ample is shown in Figure 2). A quantification
hierarchy that is frequently used in commonsense
reasoning includes such nodes as "one", "some"
(both corresponding to the existential quantifier),
"most", and "all" (corresponding to the universal
quantifier).

Each hierarchy has a heading that specifies its
kind (TH, PH, MH, QH or SH) and the underly-
ing concept (or viewpoint) used for the creation
of the hierarchy. In addition, the type and part
hierarchies also have a top node that in the type
hierarchies stands for the class of all entities in the
hierarchical structure, and in the part hierarchies
for the complete object.

402 Informatica 17 (1993) 399-412 M. Hieb & R. Michalski

. . . (4'

Figure 1: A measure hierarchy of values characterizing people's height.

Schema hierarchies (or schema) are structures
that indicate which hierarchies are connected in
order to express multi-argument concepts or rela-
tionships. For example, the schema hierarchy for
the concept of "physical-object" can be <shape,
size>. This states that an attribute "shape" ap-
plies to any object that is a "physical-object"
(a node in the "physical-object" hierarchy), and
produces a shape value, which is a node in the
"shape" hierarchy. The schema hierarchy for the
concept of "giving" may be <giver, receiver, ob-
ject, time> that states that this concept involves
an agent that gives, an agent that receives, an
object that is being given, and the time when the
"giving" occurs. The agents, object and time are
elements of their respective hierarchies.

DIH also makes a distinction between struc-
tural and parametric knowledge. The structural
knowledge is represented by hierarchies and traces
that link nodes of different hierarchies. Paramet-
ric knowledge consists of numeric quantities char-
acterizing structural elements of knowledge. In
DIH, this knowledge is represented via precedence
hierarchies of merit parameters. The basic merit
parameter is a belief measure that characterizes
the "truth" relationship of a given component of
knowledge representation (a trace), as estimated
by the reasoning agent. Other merit parameters
include the forward and backward strength of a
dependency, frequency, dominance, etc. [5, 13].
In this paper, we will consider only one merit pa-
rameter, namely, the belief measure.

The theory of human plausible reasoning [5]
postulates that people rely primarily on the struc-
tural knowledge, and resort to parametric knowl-
edge when the "structural" reasoning does not
produce a unique result. They resist perform-
ing uncertain inferences based on only paramet-
ric knowledge, and they are not good at assigning
a degree of certainty to a statement based only
on the combination of the certainties of its con-

stituents, without taking into consideration the
meaning of the whole sentence. A reason for this
may be that there does not exist a normative
model for reasoning under uncertainty that is in-
dependent of the structural aspects of knowledge,
i.e., its meaning. Plausible reasoning about a
problem or question typically involves both struc-
tural and parametric knowledge components.

Nodes of a hierarchy are elementary units of the
DIH representation. Each node represents some
real or abstract entity—a concept, an object, a
process, etc. A given entity can be a node in mul-
tiple hierarchies, where each hierarchy structures
a set of entities from a different viewpoint. The
relevant viewpoint is determined by the context
of the discourse.

As mentioned earlier, the basic structures in the
DIH representation are hierarchies, nodes, traces
and schema. Our research on DIH demonstrates
that these structures provide a very natural en-
vironment for performing basic types of inference
on statements. The subsequent sections show how
these inferences are performed using the DIH rep-
resentation.

4 DIH Traces

To describe the DIH knowledge representation, let
us start by representing the following statement:
"It is certain that some power plants in New York
have mechanical failures." Figure 2 presents this
statement as a trace connecting nodes of five hi-
erarchies: "Process plants" and "Failure", both
type hierarchies; "Quantification", the quantifica-
tion hierarchy; "Location", a part hierarchy; and
"Belief measure" a measure hierarchy.

The interpretation of the trace is done on the
basis of the schema hierarchy shown in Figure 3.
The schema defines the universe of sentences that
can be generated using concepts of these hierar-
chies, ordered according to the schema.

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 403

TH - Process Plants

(Process Plant)

(Unlikely) (Probable

CD*--
(Nuclear ^ /^Hydro ^
ĵ power plant/ / ^power plant/

TH - Failure

, (Malfunction)

(Mechanical) (Electrical)

New York) (California

^Syracuse) (Buffalo

The trace representing the sentence consists of nodes linked by dotted lines. The arrows in the
trace indicate the argument (reference set) that is being described by the sentence. The
interpretation of the trace is given by schema hierarchy SH1 in Figure 3.

Figure 2: A DIH trace representing the sentence "It is certain that some power plants in New York
have mechanical failures."

The convention for the direction of arrows in a
trace is that they point from the nodes denoting
descriptive concepts to the argument node that
stands for the set (or individual) being described,
called a reference set. In this example, the set
being described is "Power plant" in the hierarchy
of Process Plants, thus the node representing it
is the argument node. Other nodes linked by the
trace represent descriptive concepts for the argu-
ment node. The belief measure takes values from
a belief hierarchy, and refers to the entire trace
rather than a single node, which is indicated by
the schema.

Using the formalism of the annotated predi-
cate logic [9], this trace can be interpreted as:
"(Some)x, [type(x) = Power plant) & [location(x)
= New York] & [failure(x) = mechanical]: Belief
= 1.0." This statement is a quantified conjunction
of several elementary statements. An elementary

statement expresses one property of the reference
node (set), for example, "Location(Power plant)
= New York."

In a formal expression of an elementary state-
ment, the reference set ("Power plant") is called
an argument, the predicate ("Location") is called
a descriptor, and the value of the descriptor
("New York") is called the referent. Thus, an
elementary statement is formally expressed in the
form "descriptor(argument) = referent".

In Figure 2, the square boxes contain the head-
ing of the hierarchy. The concept specified in the
heading is the general descriptor for the hierarchy.
The nodes in the hierarchy are possible values of
this descriptor.

The schema hierarchy, SHI, in Figure 3 is used
for the interpretation of the trace represented in
Figure 2. The heading indicates the type of hier-
archy (SH: Schema Hierarchy) and the reference

404 Informatica 17 (1993) 399-412 M. Hieb & R. Michalski

I Quantification

|SH - Process Plants

Belief Measure|

Figure 3: Schema hierarchy SHI.

set of the trace. Since the schema hierarchy is a
precedence hierarchy, a valid interpretation of the
schema requires each of the descriptors in order.
Thus the first element of the trace must be from
the quantification hierarchy, the second from the
failure hierarchy, the third from the location hi-
erarchy and the last from the hierarchy of belief
measures. This schema hierarchy is also utilized
for examples in Section 4.

Adding knowledge to the DIH representation is
done by creating hierarchies and specifying traces
that express statements involving nodes of differ-
ent hierarchies. To allow proper interpretation of
a trace, the schema is also specified by indicating
relevant descriptors and their order.

DIH allows one to represent complex forms of
knowledge, involving different kinds of quantifiers,
multi-argument predicates, different types of log-
ical operations on them, and to associate degrees
of belief with individual statements. A more com-
plete description of the DIH representation sys-
tem is given in [8].

5 Multitype Inference in DIH

The core theory of plausible reasoning introduced
in [5] gives four knowledge transmutation opera-
tors (also called transforms) P generalization, spe-
cialization, similization and dissimilization. The
Inferential Theory of Learning [13] specifies sev-
eral additional operators, of which abstraction
and concretion are incorporated into DIH. (In
[5] the abstraction and concretion transmutations
were called referent generalization and referent
specialization, respectively.)

Generalization (specialization) transmutations
extend (contract) the reference set. They are
done either by argument generalization (special-
ization) or by quantification generalization (spe-
cialization). Argument generalization is accom-
plished by moving above the node representing
the reference set in a type hierarchy. Quantifica-

tion generalization is accomplished by moving up
the quantification hierarchy.

Abstraction (concretion) transmutations de-
crease (increase) the amount of information about
the reference set. A way to accomplish such a
transmutation is by moving above the node in the
type or part hierarchy that corresponds to a value
of some descriptor in the sentence represented by
the trace.

Similization (dissimilization) transmutation is
done by replacing a node corresponding to the ref-
erence set (argument) or a descriptor value (ref-
erent) by a node at the same level of hierarchy,
which corresponds to a similar (dissimilar) con-
cept within the context of the given hierarchy. In
the case of dissimilization, the resulting trace is
linked with a negation node, because the gener-
ated inference is a negation of the original sen-
tence [13].

These transmutations can be given a simple
conceptual interpretation, if one assumes that
nodes at each level of hierarchy are ordered by
the relation of similarity, that is, nodes that cor-
respond to similar concepts (in the context of the
given hierarchy) are located near each other, and
nodes that correspond to dissimilar concepts are
placed far away from each other. Such an ar-
rangement is natural for precedence hierarchies.
In sum, similization and dissimilization transmu-
tations are performed by sideways node move-
ments, while generalization (specialization) and
abstraction (concretion) are performed by upward
(downward) node movements.

Table 1 lists all the above knowledge transmu-
tations, specifying their abbreviated name, the
relevant hierarchies, and the underlying infer-
ence type. The relevant hierarchies are the kinds
of hierarchies for which the transmutations are
valid. The various kinds of part hierarchies are
not shown, but are distinguished in DIH. Addi-
tional constraints are necessary in some kinds of
part hierarchies to maintain the validity of the

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 405

Transmutation
Argument Generalization
Argument Specialization
Quantification Generalization
Quantification Specialization
Abstraction
Concretion
Argument Similization
Argument Dissimilization
Referent Similization
Referent Dissimilization

Symbol
AGen
ASpec
QGen

• QSpec
Abs
Con
ASim
ADis
RSim
RDis

Relevant Hierarchies
Type, Part
Type, Part
Quantification
Quantification
Type, Part, Precedence
Type, Part, Precedence

. Type, Part
Type, Part
Type, Part, Precedence
Type, Part, Precedence

Inference Type
Deductive
Inductive
Inductive
Deductive
Deductive
Inductive
Analogical
Analogical
Analogical
Analogical

Table 1: Basic knowledge generation transmutations.

transmutation.
Figure 4 presents a schematic diagram illus-

trating how knowledge transmutations modify a
trace. A dotted line represents a link in a trace.
An arrow means that the trace is moving to a
new node in the indicated direction by perform-
ing the indicated transmutation. The quantifica-
tion transmutations operate over the entire trace,
rather than on a single node, as do the transfor-
mations involving the merit parameters.

One form of generalization transmutation
moves a node in the quantification hierarchy up-
ward, another form moves a node (argument) in
the type hierarchy upward. The "+" indicates a
strengthening of a merit parameter, or the move-
ment of the link to a node that is "higher" in
the particular merit parameter measure hierarchy.
The "P" indicates a weakening of the merit pa-
rameter, or the movement of the link down in the
hierarchy.

Moving a node in a trace in a manner that
corresponds to a deductive inference (Table 1)
produces a new trace (statement) with the same
truth status as the original trace. In the case of
node movement that corresponds to inductive or
analogical inference, the smaller the node move-
ment ("perturbation"), the more plausible the re-
sulting inference.

The Argument Generalization transmutation
represents a deductive inference. The abstrac-
tion operation is also deductive. In contrast, Ar-
gument Specialization, Quantification generaliza-
tion and Concretion are inductive, because they
produce traces (statements) that logically entail
the original traces (statements).

The above transmutations can be usually done
in a number of different ways, by moving to dif-
ferent alternative nodes. The plausibility of the
generated statements depends on additional merit
parameters, such as dominance, typicality, multi-
plicity, similarity, frequency, etc. [5]. These issues
will be the subject of future research.

6 Visualizing DIH-Based
Inference

This section illustrates several basic transmuta-
tions through a series of self-explanatory exam-
ples. These examples involve the same original
statement, represented as a trace in Figure 2.
Given the original statement, these transmuta-
tions generate new statements illustrated by DIH
traces in Figures 5 through 12.

-»• Input to Transmutation

•••• Output from Transmutation

Direction of Transmutation

The legend above is used for interpreting the
following figures. The input statement is the same
as that of Figure 2, without the belief measure
hierarchy. All of the examples are interpreted ac-
cording to the schema SHI shown in Figure 3.

There are two referents in the input statement.
The resulting statements (output) show the re-
sults of the given transmutation assuming that
there are no merit parameters that assist in the

406 Informatica 17 (1993) 399-412 M. Hieb & R. Michalski

QGcn

Q -

I
QSpcc

AGcn

A
R
D
Q
MP

Con

argument (standing for a set that is being described; the reference sel)
referent (a value of the descriptor that characterizes the argument)
descriptor
quantification
merit parameter (one or more merit parameters)
a link in a trace
moving a node in the direction of the arrow performs the indicated transmutation.

Figure 4: Diagram of knowledge transmutations in DIH.

specialization or concretion and that the similiza-
tion operator finds a single "most similar" node
using the descriptors given. The Background
Knowledge (BK) is the learner's prior knowledge
that is relevant to the learning process.

7 MTL-DIH System

The research on DIH aims at developing a repre-
sentation that will facilitate all basic inferential
strategies and knowledge transmutations to be
implemented in the multistrategy task-adaptive
learning system MTL-DIH.

Although issues related to the implementation
of an MTL system are beyond the scope of this
paper, we will briefly outline the basic ideas. We
have been pursuing two approaches, MTL-JT,
which builds a plausible justification tree to "un-
derstand" a user's input [17], and a second one,
MTL-DIH, based on DIH.

In the MTL-DIH approach, a learning strat-
egy is determined by analyzing the learning task.
This analysis relates the input information to the
learner's background knowledge and the learning
goal. The input information to the system is as-
sumed to be given in the form of logic statements.
It can be concept examples, concept descriptions,
rules or a combination of the above. The system

re- represents the input as a trace, or set of traces.
Background knowledge is the part of the learner's
prior knowledge that is relevant to the input and
the learning goal.

The learning goal specifies criteria characteriz-
ing knowledge to be learned. There are different
kinds of learning goals, such as to predict new in-
formation, to explain the input, to classify a fact
or concept instance, to create an abstract descrip-
tion from an operational one or conversely, to cre-
ate a problem solution or a plan. It is assumed
that the learning goal is determined by a teacher
or by the control module of the system.

The learning process involves determining the
type of relationship between the given input and
the background knowledge, and performing a se-
quence of knowledge transmutations, involving
input and background knowledge, to produce
knowledge satisfying the learning goal.

8 Summary and Future
Research

The DIH knowledge representation presented
serves as the basis for implementing multistrategy
task-adaptive learning. It builds upon ideas of the
Inferential Theory of Learning and the core the-
ory of plausible reasoning. Although it is closely

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 407

Input: Siiine power piants in New York have mechanical failures
BK: Indicated hierarchies
Output: All power plants in New York have mechanical failures

TH - Process Plants

(p-ocess Plant J

IQH - Quantification

(Chemical plant j \ (Food plant) (__ — "

•"Nuclear ^ f (H y d r o ^
, ; : w : r wia.it/ I power piynt,'

J (Electr ica l J

Figure 5: Inductive generalization based on quantification.

Input: Some power plants in New York have mechanical failures
BK: Indicated hierarchies
Output : One power plant in New York has a mechanical failure

power plant; i power plant/

(Mechanical) ^Electrical

Figure 6: Deductive specialization based on quantification.

408 Informatica 17 (1993) 399-412 M. Hieb k R. Michalski

Input: Some power plants in New York have mechanical failures
BK: Indicated hierarchies
Output: Some process plants in New York have mechanical failures

TH - Process Plants

(Process Plant J ^ - '..

AGen

(Chemical piant ") \ / (Food plant)

^Nuclear" \ / / ^ H y d r o ~ \
UowerDlantj: ^ ^power plant]

: /

/ / I TH - Failure

//. / /• \
: ^Malfunction^

2 ^~~m^S^"^^^~^^

(Mechanical

; ACen

1PH - Location I

(united States)

Figure 7: Deductive generalization based on the argument.

Input: Some power plants in New York have mechanical failures
BK: Indicated hierarchies
Output: Some Nuclear power plants in New York have mechanical failures

(Chemical plant ~) \ (food plant)

r, u MHydro i ASf*c\
P'any* ••••\power_plany- X

(Mechanical) (Electrical J

Figure 8: Inductive specialization based on the argument.

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 409

Input: Some power plants in New York have mechanical failures

BK: Indicated hierarchies

Output: Some power plants in New York have failures

TH • Process Piants

(Process Plant)

One) H Some I •{ Most) M All

(Chemical plant) \ (Food plant) ^- -~ ~~ ~

Mechanical j (Electrical J

Figure 9: Abstraction transmutation.

Input: Some power plants in New York have mechanical failures

BK: Indicated hierarchies .

Output: Some power plants in New York have component failures

|TH - Process Plants)

^Process Plant J

|QH - Quantification]

(Chemical plant) \ (food plant

(Powi PH - Location ,

(Lack of lubrication) ("component defect)

Figure 10: Concretion transmutation.

410 Informatica 17 (1993) 399-412 M. Hieb & R. Michalski

Input: Some power plants in New York have mechanical failures
B K : I n d i c a t e d h i e r a r c h i e s ;;
Output: Some chemical plants in New York have mechanical failures

(M e c h a n i c a l J C Electrical J

Figure 11: Argument similization transmutation.

Input: Some power plants in New York have mechanical failures
D K : I n d i c a t e d hierarchies

Output: Some power piants in California have mechanical failures

One) »(Some I M Most

cower plany I power plant/

Figure 12: Referent similization transmutation.

DYNAMIC INTERLACED HIERARCHIES Informatica 17 (1993) 399-412 411

related to the semantic network representation, it
represents a significantly different approach, and
contains many new ideas that make it particu-
larly useful for representing multitype inference.
These include the idea of dividing the knowledge
representation into a static part and a dynamic
part, the organization of knowledge in which ba-
sic forms of inference can be performed via simple
trace perturbations, and the introduction of var-
ious precedence hierarchies, such as the schema
hierarchy, the measure hierarchy, and the quan-
tification hierarchy.

The primary purpose of this paper was to
demonstrate how DIH supports several basic
knowledge generation transmutations, specifi-
cally, generalization, specialization, abstraction,
concretion, similization and dissimilization. The
first version of DIH has been implemented in
Smalltalk, and used as a tool for investigating the
interactive display and modification of traces in
hierarchies. The visual display of inference is par-
ticularly useful in situations that involve traces
connecting only a few hierarchies (that is, repre-
senting short sentences). To facilitate knowledge
visualization, the system has an option to present
traces with only a limited number of neighbor-
ing nodes, rather then connecting complete hier-
archies.

In DIH, the more knowledge structures there
are in background knowledge, the easier it is to
assimilate new knowledge, or to plausibly explain
input statements. DIH is an efficient, representa-
tion, because most knowledge modifications con-
sist of forming or changing traces, without affect-
ing the established hierarchies.

Many issues remain to be addressed in future
research. Among these issues are the representa-
tion of more complex forms of knowledgeQmutual
implications, various types of dependencies, tem-
poral and spatial knowledge, and the development
of methods for determining the affect of merit pa-
rameters on the reasoning process.

Acknowledgments

The authors thank Eric Bloedorn, Mark Burn-
stein, David Hille and Ken Kaufman for their
thoughtful comments on this paper.

This research was conducted in the Center for
Artificial Intelligence at George Mason Univer-

sity. The Center's research is supported in part by
the National Science Foundation under grant No.
IRI-9020266, in part by the Advanced Research
Projects Agency under the grant No. N00014-
91- J-1854, administered by the Office of Naval
Research and the grant No. F49620-92-J-0549,
administered by the Air Force Office of Scientific
Research, and in part by the Office of Naval Re-
search under grant No. N00014-91-J-1351.

References

[1] M. Baker, M.H. Burstein, and A.M. Collins,
Implementing a Model of Human Plausible
Reasoning. In Proceedings of the Tenth In-
ternational Joint Conference of Artificial In-
telligence, pp. 185-188, Morgan Kaufman,
Los Altos, CA (1987).

[2] R.J. Brachman, D.L. McGuinness, P.F.
Patel-Schneider, L.A. Resnick, and A.
Borgida, Living with CLASSIC: When and
How to Use a KL-ONE-Like Language. In
Principles of Semantic Networks - Explo-
rations in the Representation of Knowledge,
edited J.F. Sowa, Morgan Kaufmann, Los Al-
tos, CA (1991).

[3] R. Beckwith, C. Fellbaum, D. Gross, and
G.A. Miller, WordNet: A Lexical Database
Organized on Psycholingistic Principles. Us-
ing On-line Resources to Build a Lexicon.
edited U. Zernick, Erlbaum, Hillsdale, NJ
(1991).

[4] D. Boehm-Davis, K. Dontas, and R.S.
Michalski, A Validation and Exploration of
the Collins-Michalski Theory of Plausible
Reasoning. Reports of the Machine Learning
and Inference Laboratory, MLI 90-5, Center
for Artificial Intelligence, George Mason Uni-
versity, Fairfax, VA (1990).

[5] A. Collins, and R.S. Michalski, The Logic of
Plausible Reasoning: A Core Theory. Cogni-
tive Science, 13, pp. 1-49 (1989).

[6] A. Collins, and M.R. Quillian, How To Make
A Language User. In Organization of Mem-
ory, edited E. Tulving and W. Donaldson,
Academic, New York (1972).

412 Informatica 17 (1993) 399-412 M. Hieb k R. Michalski

[7] K. Dontas and M. Zemakova, APPLAUSE:
An Implementation of the Collins-Michalski
Theory of Plausible Reasoning. In Proceed-
ings of the Third International Symposium
on Methodologies for Intelligent Systems,
Torino, Italy (1988).

[8] M.R. Hieb, and R.S. Michalski, A Knowledge
Representation System Based on Dynamic
Interlaced Hierarchies: Basic Ideas and Ex-
amples. Reports of the Machine Learning and
Inference Laboratory, MLI 93-5, Center for
Artificial Intelligence, George Mason Univer-
sity, Fairfax, VA (1993).

[9] J. Kelly, PRS: A System for Plausible Rea-
soning. M.S. Thesis, Department of Com-
puter Science, University of Illinois, Urbana
(1988).

[10] R.S. Michalski, A Theory and Methodology
of Inductive Learning. In Machine Learning:
An Artificial Intelligence Approach, edited
R. S. Michalski, J. Carbonell and T. Mitchell,
TIOGA Publishing Co., Palo Alto, CA, pp.
83-134 (1983).

[11] R.S. Michalski, Towards a Unified Theory
of Learning: Multistrategy Task-adaptive
Learning. Reports of the Machine Learning
and Inference Laboratory, MLI 90-1, Center
for Artificial Intelligence, George Mason Uni-
versity, Fairfax, VA (1990).

[12] R.S. Michalski, Inferential Learning Theory
as a Basis for Multistrategy Task-Adaptive
Learning. First International Workshop on
Multistrategy Learning, pp. 3-18, Harpers
Ferry, West Virginia (1991).

[13] R.S. Michalski, Inferential Theory of Learn-
ing: Developing Foundations for Multistrat-
egy Learning. In Machine Learning: A Mul-
tistrategy Approach, Volume 4, edited R.S.
Michalski and G. Tecuci, Morgan Kaufmann,
Los Altos, CA (1993).

[14] R.S. Michalski, A.B. Baskin, C. Uhrik, T.
Channic, S. Borodkin, A.G. Boulanger, L.
Rodewald and R.E. Reinke, A Technical
Description of the ADVISE.l Meta-Expert
System that Integrates Multiple Knowledge
Representations and Learning Capabilities.

ISG 86-8, Department of Computer Science,
University of Illinois, Urbana (1986).

[15] K. Morik, K. Causse, and R. Boswell, A
Common Knowledge Representation Inte-
grating Learning Tools. First International
Workshop on Multistrategy Learning, pp. 81-
96, Harpers Ferry, West Virginia (1991).

[16] G. Tecuci and R.S. Michalski, A Method
for Multistrategy Task-adaptive Learning
Based on Plausible Justifications. In Machine
Learning: Proceedings of the Eighth Interna-
tional Workshop, edited L. Birnbaum and G.
Collins, Morgan Kaufmann, Los Altos, CA
(1991).

[17] G. Tecuci, An Inference-Based Framework
for Multistrategy Learning. In Machine
Learning: A Multistrategy Approach, Vol-
ume 4, edited R.S. Michalski and G. Tecuci,
Morgan Kaufmann, Los Altos, CA (1993).

[18] M.E. Winston, R. Chaffin and D. Herrmann,
A Taxonomy of Part- Whole Relations. Cog-
nitive Science, 11, pp. 4l'7-444 (1987).

[19] J. Wnek and R.S. Michalski, An Experi-
mental Comparison of Symbolic and Sub-
symbolic Learning Paradigms: Phase I -
Learning Logic-style Concepts. First Inter-
national Workshop on Multistrategy Learn-
ing, pp. 324-339, Harpers Ferry, West Vir-
ginia (1991).

Informatica 17 (1993) 413

Call for Papers

Distributed and Parallel Real Time Systems

Special Issue of INFORMATICA

Guest Editors:
Marcin Paprzycki, Janusz Zalewski
University of Texas-Perian Basin

We would like to invite papers for the Special Is-
sue of INFORMATICA, An International Journal of
Computing and Informatics published in English by
the Slovene Society Informatika and the Josef Stefan
Institute in Ljubjana, Slovenia.

The scope of the volume will encompass a variety
of issues associated with the recent developments in
the area of distributed and parallel real-time comput-
ing. Papers related to both hardware and software
aspects of cuncurrency will be considered. Their focus
should be on the timeliness and responsiveness aspects
(bounded response time) of respective solutions. Sam-
ple topics may include:

- multiprocessor buses and architectures

- real time aspects of local area networks

- message scheduling in distributed systems

- distributed and parallel operating systems

- task allocation and load balancing in real time

- interprocess synchronization and communica-
tion for real time

- specification and programming languages

- formal methods in specification and design

- debugging of distributed real-time systems

- designing parallel and distributed applications

- distributed real-time databases

- dependability, realiability and safety in dis-
tributed real-time systems

- standardization.

Only previously unpublished work will be accepted
for the volume. All papers will be refereed.
Due dates:

* February 15, 1994 Submission deadline
* May 1, 1994 Notification of the authors
* June 1, 1994 Camera-ready versions due

All correspondence and requests for sample copies
of INFORMATICA should be addressed to the Guest
Editors at the following address:

Dr. Marcin Paprzycki and Dr. Janusz Zalewski
Dept. of Computer Science
University of Texas-Permian Basin
4901 E. University Blvd
Odessa, TX 79762-0001
USA
Phone: (915)367-2310
Fax: (915)367-2115
Email: paprzycki_m®gusher.pb.utexas. edu
zalewski. j (Dutpb. pb. utexas. edu

414 Informatica 17 (1993)

Call for Papers

18th German Annual Conference on Artificial Intelligence (KI-94)

Saarbriicken, September, 18-23, 1994

General Chairs:
Jorg Siekmann, DFKI, Univ. Saarbriicken
Hans-Jiirgen Biirckert, DFKI Saarbriicken

The scientific, as well as the economic importance
of Artificial Intelligence research has steadily grown,
even though in some degree, partly slower than had
been hoped for. AI research in Germany had a belated
start, but steadily improved in recent years. Today the
field is well established and some areas even play an
outstanding role internationally. This positive devel-
opment is accounted for in the forthcoming German
Conference on AI, which is especially broadly based,
aiming at researchers, university students, users and
practitioners in industry alike.

The German Conference on Artificial Intelligence is
traditionally organised once a year by the Al-section of
the German Society for Computer Science (GI). This
is one of the four subdivisions of the GI and today the
AI section has more than four thousand members. In
1994, the conference will be carried out at the Uni-
versity of Saarland in Saarbriicken by the German Re-
search Center of AI (DFKI), the Computer Science De-
partment (FBI), the Institute of Computer Linguistics
(CoLi) and the Max Planck Institute for Computer
Science (MPI). It comprises a Scientific Conference,
from the 18th to 22nd of September 1994, and an In-
dustrial Congress on the 22nd and 23rd of September
1994. Tutorials will be offered on Sunday the 18th, sci-
entific talks form Tuesday to Thursday in the morning
and workshops in the afternoon.

On Monday a symposium will be held, covering a
selected topic, the "International Symposium on Log-
ics in Artificial Intelligence", chaired by Dov Gabbay
(Imperial College London) and Jorg Siekmann (DFKI,
University of Saarland). Invited speakers will give
lectures on current issues pertaining to this context.
This is prompted by the publication of the multivol-
ume "Handbook of Logics in Artificial Intelligence and
Logic Programming".

The Industrial Congress offers a multifaceted pro-
gramme which demonstrates how AI is put into indus-
trial practice: talks on areas of applications of AI, con-
sulting service offers from the German AI-Institutes'
association (AKI) and an AI Exhibition.

Contributions to the Scientific Conference and the
Industrial Congress will be published in a set of
Springer- Verlag conference publications. KI-94 will
be supported by an advisory board consisting of the
previous and future chair persons, as well as represen-

tatives from Industry and University.

Local Arrangement Committee

Susanne Biundo, DFKI (chair)
Michael Kohlhase, FBI
Brigitte Krenn, CoLi
Christoph Weidenbach, MPI

Conference Office
Coordinator: Reinhard Karger
DFKI Saarbriicken
Stuhlsatzenhausweg 3
D-66123 Saarbriicken
Phone +49 681 302-4444, Fax +49 681 302-5341
e-mail: ki-94<Bdfki.tuii-sb.de

Further information about the KI-94 can be ob-
tained from the conference office.

KI-94 Scientific Conference

Chairs:

Leonie Dreschler-Fischer, Universitat Hamburg
Bernhard Nebel, Universitat Ulm

The scientific programme consists of invited talks,
reviewed paper presentations, tutorials, workshops,
poster sessions and system demonstrations. Confer-
ence languages are German and English, (simultane-
ous translation is not available.)

Submissions

Contributions from all aspects of AI are welcome, es-
pecially those (but not exclusively) which address the
subjects:

— knowledge representation

— knowledge acquisition

— deduction, inference systems, logic programming

— machine learning

— cognition

— architectures, methods, tools

— natural language processing

— robotics

— image processing and image understanding

Informatica 17 (1993) 415

— intelligent interfaces

— diagnosis

— planning

— configuration

— qualitative reasoning

— neural networks and connectionism

— social impacts

Papers are also welcome, which investigate the prin-
ciples and problems involved when AI is put into prac-
tice. Contributions though, which describe commer-
cial AI applications should be submitted to the Indus-
trial Congress.

Submissions to the scientific program must be origi-
nal, neither, published or accepted for publication else-
where, nor currently going through a review process
at another conference (with exception of specialised
workshops). Accepted submissions will appear in the
Springer Lecture Notes in Aland therefore must be
written in English.

Posters and System Demos at the
Scientific Conference

Research groups and scientists will be given the oppor-
tunity through posters and system demos to present
current Al-projects and Al-systems. These contribu-
tions will be reviewed by the program committee as
well, and will appear along with the papers in the
LNAI.

Submission Details for the Scientific
Conference

Papers and proposals for posters should be sent in six
(6) copies to one of the two program chairs (s.f.) till
April 8th, 1994. Papers received after that date can-
not be considered. Fax or e-mail submissions are also
unacceptable.

The papers should be clearly legible and written in
12 point type. The length of a paper should not exceed
16 pages with roughly 38 lines/page and 75 characters
per line (corresponding to the standard LaTex article-
style), including bibliography and appendix. The title
page is separate.

Proposals for posters and system demos require the
submision of a one- to three-page summary of the pre-
sentation (adding diagramms if necessary).

The title page should show the title of the contribu-
tion, the catagory (paper, poster or system demo), the
names of all authors with postal and e-mail addresses.
In addition, the title page should contain an abstract,
of not more than 200 words, supplemented by key-
words which characterise the contribution's content.

In order to facilitate the review process, the contents
of the title page should be sent till April 8th via e-mail
to

ki-94-abstract(8df k i . uni-sb. de
using only plain ASCII text.

Review Process

All submitted papers, proposals for posters and system
demos will be reviewed by at least two members of the
program committee.

The main criteria underlying the judgment of papers
are the achieved results, originality, technical quality
and presentation. Proposals for posters and system
demos are judged against their Al-context and quality
of presentation. The authors will be informed of the
program committee's decision by May 20th.

Publication

Accepted papers will be allocated 12 pages in the con-
ference proceedings , which will be published in the
Springer LNAI series. Each accepted poster and sys-
tem demo will have one page reserved in the confer-
ence proceedings for a summary of its presentation. A
camera- ready copy must be submitted to one of the
program chairs by June 17th, 1994.

Deadlines

8/4/94 Submission of contributions
20/5/94 Notification of acceptance
17/6/94 Submission of final, revised copy

Addresses for Submission of
Contributions

Prof. Dr. Leoni Dreschler-Fischer Universitat Ham-
burg FB Informatik Bodenstedtstrasse 16 D-22765
Hamburg Phone: + 49 40 4123-6132 (-6128) e-mail:
dreschlerfirz.informatik.uni-hamburg.d400.de

KI-94 Workshops

Chairs:

Jiirgen Kunze, HU Berlin
Herbert Stoyan, Universitat Erlangen

The Workshops take place in the afternoon on
September 20th and 22th. A workshop should dis-
cuss current problems in applications of AI and ba-
sic research. Its participants will be working on these
problems and will share a common interest in an in-
terchange with equally inclined persons or those active
in similar areas.

416 Informatica 17 (1993)

Call for Papers

IEA/AIE-94
The Seventh International Conference on Industrial & Engineering
Applications of Artificial Intelligence &: Expert Systems

May 31 - June 3, 1994, The Hyatt Regency on Town Lake, Austin,
Texas 78704, USA

General Chair:
Moonis AH, Southwest Texas State University

Program Chair:
Frank Anger, University of West Florida

Program Co-Chair:
Bernard Widrow, Stanford University

Sponsored by:
The International Society of Applied Intelligence

Organized in Cooperation with:
ACM/SIGART, American Association for Artifi-

cial Intelligence, Institution of Electrical Engineers,
IEEE Computer Society, INNS/SIG, Canadian Soci-
ety for Computational Studies of Intelligence, Insti-
tute of Measurement and Control, Japanese Society
of Applied Intelligence, Southwest Texas State Univ,
European Coordinating Committee for Artificial Intel-
ligence

IEA/AIE-94 continues the tradition of empha-
sizing applications of artificial intelligence and
expert/knowledge-based systems to engineering and
industrial problems. Topics of interest include, but
are not limited to:

Computer Aided Design/Manufacturing, Depend-
ability & AI/ES, Distributed AI Architectures, Expert
& Diagnostic Systems, Intelligent Databases, Intelli-
gent Interfaces, Intelligent Tutoring, Knowledge Ac-
quisition, Knowledge Representation, Machine Learn-
ing, Machine Vision, Model-Based k Qualitative Rea-
soning, Natural Language Processing, Neural Net-
works, Pattern Recognition, Planning k Scheduling,
Practical Applications, Reasoning Under Uncertainty,
Robotics, Sensor Fusion, Intelligent Software Devel-
opment Tools, System Dependability, Temporal and
Spatial Reasoning, Verification & Validation.

Authors are invited to submit four copies of papers,
written in English, of up to 10 single-spaced pages,
presenting the results of original research or innova-
tive practical applications relevant to one or more of
the listed areas of interest. Practical experiences with
state-of-the-art AI methodologies are also acceptable
when they reflect lessons of unique value to the con-
ference attendees. Shorter works, up to 6 pages, to be
presented in 10 minutes, may be submitted as short pa-
pers representing work in progress or suggesting pos-
sible research directions. (Please indicate "short pa-

per" in the submission letter in this case.) Submissions
should be received by the Program Chair by Novem-
ber 5, 1993. Notification of the review process will be
made by January 22, 1994, and final copies of papers
will be due for inclusion in the conference proceedings
by February 22, 1994.

Dr. Moonis Ali
General Chair
Dept. of Computer Science, SW Texas State Univer-
sity, San Marcos, TX 78666-4616, USA
Tele: (+1) 512 245-3409, FAX: (+1) 512 245-3804,
e-mail: maO4<8admin. swt. edu
Dr. Frank D. Anger
Program Chair
Dept. of Comp. Sci., The University of W. Florida,
Pensacola, FL 32514, USA
Tele: (+1) 904 474-3022, FAX:(+l)904 474-3129,
email: faQcis.ufl.edu
Dr. Bernard Widrow
Program Co-Chair
Dept. of Elect. Engin.(ISL), Stanford University,
Stanford, CA 94305-4055, USA
Tele: (+1) 415 723-4949,
email: widrowQisl. Stanford. edu.

The proceedings will be published and will be avail-
able at the conference. Copies of the proceedings of
earlier conferences are available - contact:

Gordon and Breach Science Publishers
Customer Service
P.O. Box 786, Cooper Station, New York, NY 10276;
Tel.: 1-800-545-8398 (in USA only), (+1)212-206-8900
Ext. 246, Fax:(+l)212-645-2459
Tutorial Chair:
R. Rodriguez, U W FL
Local Chair:
K. Kaikhah, SW Texas State U
Publicity Chair:
S. Stoecklin, FAMU
Exhibition Chair:
W. Peng, SW Texas State U
Registration Chair:
C. Morriss, SW Texas State U

Informatica 17 (1993) 417

Announcement and First Call for Papers

The Fourth International Workshop on Inductive Logic
Programming (ILP94)

September 12 - 14, 1994
Bad Honnef/Bonn, Germany

General Information

Originating from the intersection of Machine Learning
and Logic Programming, Inductive Logic Program-
ming (ILP) is an important and rapidly developing
field that focuses on theory, methods, and applications
of learning in relational, first-order logic formalisms.
ILP94 is the fourth in a series of international work-
shops designed to bring together developers and users
of ILP in a format that allows a detailed exchange of
ideas and discussions. Reflecting the growing matu-
rity of the field, ILP94 for the first time will offer a
systems and application exhibit as an opportunity to
demonstrate the practical results and capabilities of
ILP.

Submission of papers

Reflecting the broadening scope of the field, ILP94 in-
vites papers covering on the three main aspects of ILP,
namely inductive data analysis and learning in first-
order formalisms, inductive synthesis of non-trivial
logic programs from examples, and inductive tools for
software engineering. Possible topics include, but are
not restricted to:

• complexity of learning in logical for-
malisms

• relationships between ILP and neigh-
boring areas

• higher-order learning
• predicate invention
• learning of integrity constraints
• theory revision and restructuring
• multiple predicate learning
• learning in relational formalisms
• handling of noise
• declarative bias
• architectures for ILP
• comparative analyses of ILP methods
• application discussions

Ideally, papers should fit into one of the following cat-
egories:

Theory. Theory papers prove results about a new or
known ILP problem or method, discuss the re-
lationship with neighboring fields, or present a
unified analysis of several methods.

Methods. Method papers present details of new al-
gorithms, ideally including theoretical and com-
plexity analysis, and empirical results on impor-
tant applications. Ideally, a method paper would
be accompanied by a system demo.

Applications. Application papers describe one or
more real-life ILP applications in detail, justify-
ing the use of ILP techniques, and giving a repro-
ducible presentation of experiments and results.
Ideally, an application paper would be accompa-
nied by an application demo.

Please submit four paper copies of your paper to the
workshop chair

Stefan Wrobel
GMD, I3.KI
Schlofi Birlinghoven
53757 Sankt Augustin, Germany.
E-Mail: ilp-94@gmd.de
Fax: +49/2241/14-2889 Tel: +49/2241/14-
2670 ;

to be received on or before May 31, 1994. There is no
fixed page limit on submissions, but length should be
reasonable and adequate for the topic. Please use La-
TeX if at all possible. Authors will be notified of accep-
tance or rejection until July 15, 1994, and camery-
ready copy will be due on August 9, 1994.

Program Committee

Francesco Bergadano (Italy)
Ivan Bratko (Slovenia)
Wray Buntine (USA)
William W. Cohen (USA).
Luc de Raedt (Belgium)
Koichi Furukawa (Japan)
Jorg-Uwe Kietz (Germany)
Nada Lavrac (Slovenia)
Stan Matwin (Canada)
Stephen Muggleton (UK)
Celine Rouveirol (France)
Claude Sammut (Australia)

Proceedings

To keep submission dates close to the workshop, ac-
cepted papers will be published as a GMD technical

418 Informatica 17 (1993)

report to be distributed at the workshop and officially
available to others from GMD afterwards. Publication
of an edited book is planned for after the workshop.

Systems and Applications Exhibition
ILP94 offers participants an opportunity to demon-
strate their systems and/or applications. Please an-
nounce your intention to demo to the conference office
until August 1, 1994, specifying precisely what type
of hardware and software you need.

Location
ILP94 will take place in Bad Honnef, a small resort
town close to Bonn in the Rhine valley and adjacent
to the Siebengebirge nature park. Participants will
be able to take advantage of Bad Honnef's vicinity to
medieval castles and of the new wine season that starts
at the time of the workshop.

Registration and Conference Office
Please address all correspondence regarding registra-
tion to:

Christine Harms
ILP94
c/o GMD
SchloB Birlinghoven
53757 Sankt Augustin, Germany
Tel. +49/2241 14-2473, Fax +49/2241 14-
2472 or 2618
E-Mail ilp-94@gmd.de

If you send (preferably by E-Mail) the following infor-
mation to Christine Harms, you will be sent a complete
registration brochure as soon as it is available:

Last name:
First name:
Institution:
Zip code, city:
Country:
E-Mail:
Fax:
Intend to submit a paper?

Important Dates

Paper submission deadline: May 31, 1994
Notification of acceptance: July 15, 1994
Demo requests: August 1, 1994
Camera-ready copy due: August 9, 1994
Early registration: August 9, 1994

Workshop: September 12 - 14, 1994

Informatica 17 (1993) 419

THE MINISTRY OF SCIENCE AND TECHNOLOGY
OF THE REPUBLIC OF SLOVENIA

The Ministry of Science and Technology also in-
cludes the Standards and Metrology Institute of the
Republic of Slovenia, and the Industrial Property Pro-
tection Office of the Republic of Slovenia.

Scientific Research and Development Potential
The statistical data for 1991 showed that there were

230 research and development institutions, organiza-
tions or organizational units in Slovenia, of which 73
were independent, 32 were at the universities, and
23 at medical institutions. The remainder were for
the most part departments in industry. Altogether,
they employed 13,000 people, of whom 5500 were re-
searchers and 4900 expert or technical staff.

In the past 10 years, the number of researchers has
almost doubled: the number of Ph.D. graduates in-
creased from 1100 to 1484, while the number of M.Sc.'s
rose from 650 to 1121. The 'Young Researchers' (i.e.
postgraduate students) programme has greatly helped
towards revitalizing research. The average age of re-
searchers has been brought down to 40, with one-fifth
of them being younger than 29.

The table below shows the distribution of re-
searchers according to educational level and fields of
research: ..

Ph.D. M.Sc.
Natural Sciences 315 217
Engineering-Technology 308 406
Medical Sciences 262 174
Agricultural Sciences 122 69
Social Sciences 278 187
Humanities 199 68
Total 1484 1121

Financing Research and Development
Statistical estimates indicate that US$ 260 million

(1.7% of GNP) was spent on research and develop-
ment in Slovenia in 1991. Half of this comes from
public expenditure, mainly the state budget. In the
last three years, R&D expenditure by business organi-
zations has stagnated, a result of the current economic
crisis. This crisis has led to the financial decline and
increased insolvency of firms and companies. These
cannot be replaced by the growing number of mainly
small businesses. The shortfall was addressed by in-
creased public-sector R&D spending: its share of GNP
doubled from the mid-seventies to 0.86% in 1993.

Overall, public funds available for Research & De-
velopment are distributed in the following proportions:
basic research (35%), applied research (20%), R&D in-
frastructure (facilities) (20%) and education (25%).

Research Planning
The Science and Technology Council of the Repub-

lic of Slovenia, considering initiatives and suggestions

from researchers, research organizations, professional
associations and government organizations, is prepar-
ing the draft of a national research program (NRP).
This includes priority topics for the national research
policy in basic and applied research, education of ex-
pert staff and equipping institutions with research fa-
cilities. The NRP also defines the mechanisms for ac-
celerating scientific, technological and similar develop-
ment in Slovenia. The government will harmonize the
NRP with its general development policy, and submit
it first to the parliamentary Committee for Science,
Technology and Development and after that to parlia-
ment as a whole. Parliament approves the NRP each
year, thus setting the basis for deciding the level of
public support for RfcD.

The Ministry of Science and Technology provides
organizational support for the NRP, but it is mainly a
government institution responsible for controlling ex-
penditure of the R&D budget, in compliance with the
NRP and the criteria provided by the Law on Re-
search Activities: International quality standards of
groups and projects, relevance to social development,
economic efficiency and rationality of the project. The
Ministry finances research or co-finances development
projects through public bidding and partly finances in-
frastructure research institutions (national institutes),
while it directly finances management and top-level
science.

The focal points of R&D policy in Slovenia are:
- maintaining the high level and quality of research
activities,
- stimulating cooperation between research and indus-
trial institutions,
- (co)financing and tax assistance for companies en-
gaged in technical development and other applied re-
search projects,
- research training and professional development of
leading experts,
- close involvement in international research and de-
velopment projects,
- establishing and operating facilities for the transfer
of technology and experience.

In evaluating the programs and projects, and in de-
ciding on financing, the Ministry works closely with
expert organizations and Slovene and foreign experts.
In doing this, it takes into consideration mainly the
opinions of the research leaders and of expert councils
consisting of national research coordinators and recog-
nized experts.

The Ministry of Science and Technology of the Re-
public of Slovenia. Address: Slovenska c. 50, 61000
Ljubljana. Tel. +386 61 131 11 07, Fax +38 61 132
41 40.

420 Informatica 17 (1993)

JOZEF STEFAN INSTITUTE

Jozef Stefan (1835-1893) was one of the most
prominent physicists of the 19th century. Born to
Slovene parents, he obtained his Ph.D. at Vienna
University, where he was later Director of the
Physics Institute, Vice-President of the Vienna
Academy of Sciences and a member of several
scientific institutions in Europe. Stefan explored
many areas in hydrodynamics, optics, acoustics,
electricity, magnetism and the kinetic theory of
gases. Among other things, he originated the law
that the total radiation from a black body is pro-
portional to the 4th power of its absolute temper-
ature, known as the Stefan-Boltzmann law.

The Jozef Stefan Institute (JSI) is a research
organisation for pure and applied research in the
natural sciences and technology. Both are closely
interconnected in research departments composed
of different task teams. Emphasis in basic re-
search is given to the development and education
of young scientists, while applied research and
development serve for the transfer of advanced
knowledge, contributing to the development of
the national economy and society in general.

At present the Institute, with a total of about
800 staff, has 500 researchers, about 250 of whom
are postgraduates, over 200 of whom have doc-
torates (Ph.D.), and around 150 of whom have
permanent professorships or temporary teaching
assignments at the Universities.

In view of its activities and status, the JSI plays
the role of a national institute, complementing
the role of the universities and bridging the gap
between basic science and applications.

Research at the JSI includes the following ma-
jor fields: physics; chemistry; electronics, infor-
matics and computer sciences; biochemistry; ecol-
ogy; reactor technology; applied mathematics.
Most of the activities are more or less closely con-
nected to information sciences, in particular com-
puter sciences, artificial intelligence, language and
speech technologies, computer-aided design, com-
puter architectures, biocybernetics and robotics,
computer automation and control, professional
electronics, digital communications and networks,
and applied mathematics.

The Institute is located in Ljubljana, the cap-
ital of the independent state of Slovenia (or
SQnia). The capital today is considered a cross-

road between East, West and Mediterranean Eu-
rope, offering excellent productive capabilities
and solid business opportunities, with strong in-
ternational connections. Ljubljana is connected
to important centers such as Prague, Budapest,
Vienna, Zagreb, Milan, Rome, Monaco, Nice,
Bern and Munich, all within a radius of 600 km.

In the last year on the site of the Jozef Stefan
Institute, the Technology park "Ljubljana" has
been proposed as part of the national strategy
for technological development to foster synergies
between research and industry, to promote joint
ventures between university bodies, research in-
stitutes and innovative industry, to act as an in-
cubator for high-tech initiatives and to accelerate
the development cycle of innovative products.

At the present time, part of the Institute is be-
ing reorganized into several high-tech units sup-
ported by and connected within the Technology
park at the "Jozef Stefan" Institute, established
as the beginning of a regional Technology park
"Ljubljana". The project is being developed at a
particularly historical moment, characterized by
the process of state reorganisation, privatisation
and private initiative. The national Technology
Park will take the form of a shareholding com-
pany and will host an independent venture-capital
institution.

The promoters and operational entities of the
project are the Republic of Slovenia, Ministry of
Science and Technology and the Jozef Stefan In-
stitute. The framework of the operation also in-
cludes the University of Ljubljana, the National
Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for
Materials and Construction Research among oth-
ers. In addition, the project is supported by
the Ministry of Economic Relations and Devel-
opment, the National Chamber of Economy and
the City of Ljubljana.

Jozef Stefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:+386 61 1259 199, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Ines Cerne

Informatica 17 (1993)

CONTENTS OF INFORMATICA, Volume 17 (1993) pp. 1-420

Articles

Baffes, P.T. and R.J. Mooney: Extending
Theory Refinement to M-of-N Rules, Infor-
matica 17 (1993) 387-397.

Bruha, I. and S. Kockova: Quality of Decision
Rules: Empirical and Statistical Approaches,
Informatica 17 (1993) 233-243.

Fomichov, V.A.: Towards a Mathematical
Theory of Natural-language Communication,
Informatica 17 (1993) 21-34.

Gamberger, D., S. Sekusak and A. Sabljic:
Modelling Biogradation by an Example-based
Learning System, Informatica 17 (1993) 157—
166.

Gams, M.: Real AI, Informatica 17 (1993) 53-
58.

Gordon, D. and D. Subramanian: A Multi-
strategy Learning Scheme for Agent Knowl-
edge Acquisition, Informatica 17 (1993) 331—
346.

Hieb, M.R. and R.S. Michalski: Multiple In-
ference in Multistrategy Task-adaptive Learn-
ing: Dynamic Interlaced Hierarchies, Infor-
matica 17 (1993) 399-412.

Innocenti, C. and V. Parenti-Castelli: Analyt-
ical Form Solution of the Direct Kinematics of
a 4-4.Fully In-parallel Actuated Six Degree-
of-freedom, Informatica 17 (1993) 13-20.

Jerman-Blazic, B.: Open Secure Model and Its
Functionality in Networks with Value-added
Services, Informatica 17 (1993) 41-51.

Kandus, G. and I. Tvrdy: Global Moderniza-
tion Plan of Telecommunications Infrastruc-
ture and Services in Slovenia (MTIS), Infor-
matica 17 (1993) 297-313.

Kieffer, J. and R. Bale: Walking Viabil-
ity and Gait Synthesis for a Novel Class of
Dynamically-simple Bipeds, Informatica 17
(1993) 145-155.

Kononenko, I.: Successive Naive Bayesian
Classifier, Informatica 17 (1993) 167-174.

Lai, O.-K. and N.T. Shatin: The Informa-
tion Technology (IT) for Enabling Disabled
People—A Strategic Agenda—, Informatica
17 (1993) 267-276.

Makki, K., N. Pissinou and Y. Yesha: An
O(VN) Token Based Distributed Mutual Ex-
clusion Algorithm, Informatica 17 (1993) 221—
231.

Malekovic, M.: A Combined Algorithm for
Testing Implications of Functional and Mul-
tivalued Dependencies, Informatica 17 (1993)
277-283.

Michie, D.: Methodologies from Machine
Learning in Data Analysis and Software, In-
formatica 17 (1993) 3-12.

Ram, A. and J.C. Santamaria: Multistrategy
Learning in Reactive Control Systems for Au-
tonomous Robotic Navigation, Informatica 17
(1993)347-369.

Rossak and T. Zemel, W.: Integrative Domain
Analysis via Multiple Perceptions, Informatica
17 (1993) 117-136.

Sarazin Lovrecic, I. and J. Grad: Moral Haz-
ard Problem Solving by Means of Preference
Ranking Methods, Informatica 17 (1993) 175-
182.

Silc, J., B. Robic and J. Buh : Alpha AXP
Overview, Informatica 17 (1993) 35-40.

Slechta, J.: On a Quantum-statistical Theory
of Pair Interaction between Memory Traces in
the Brain, Informatica 17 (1993) 109-115.

Tecuci, Gh.: Multistrategy Approaches to
Learning: Why and How, Informatica 17
(1993)327-330.

Widmer, G.: Combining Knowledge-based
and Instance-based Learning to EXploit Qual-
itative Knowledge, Informatica 17 (1993) 371—
385.

Wu, X.: A Prolog-based Representation for
Integrating Knowledge and Data, Informatica
17 (1993) 137-144.

Zeleznikar, A.P.: Metaphysicalism of Inform-
ing, Informatica 17 (1993) 65-80.

Informatica 17 (1993)

Zeleznikar, A.P.: Logos of the Informational,
Informatica 17 (1993) 245-266.

Zerovnik, J.: Regular Graphs are 'Direct' for
Colouring, Informatica 17 (1993) 59-63.

Profiles

Terry Winograd, Informatica 17 (1993) 2.

Jin Slechta, Informatica 17 (1993) 108.

Hubert L. Dreyfus, Informatica 17 (1993)
214-220.

Gheorghe Tecuci, Informatica 17 (1993) 325-
326.

Editorials

A.P. Zeleznikar: Towards an Informational
Orientation, Informatica 17 (1993) 1.

A.P. Zeleznikar: Knowledge—The New In-
formational Paradigm, Informatica 17 (1993)
107.

A.P. Zeleznikar: Editorial Program of Infor-
matica, Informatica 17 (1993) 213.

Research and Technology
Reports

Furukawa, K.: Fifth Generation Computer
Systems (FGCS) Project in Japan, Informat-
ica 17 (1993) 183-199.

Heylighen, F. and C. Joslyn: Electronic Net-
working for Philosophical Development in the
Principia Cybernetica Project, Informatica 17
(1993) 285-293.

Partee, B.H.: Center for the Study of Lan-
guage and Information, Informatica 17 (1993)
85-100.

Zeleznikar, A.P.: A Plan for the Knowledge
Archive Project, Informatica 17 (1993) 81-85.

Debates

Heylighen, F.: On Internal Representation,
Informatica 17 (1993) 294.

Zeleznikar, A.P.: On Informing between Enti-
ties, Informatica 17 (1993) 294-296.

News and Conferences

Dzeroski, S.: Report: AAAI '93, Informatica
17 (1993) 200-201.

Dzeroski, S.: Report: ML '93, Informatica 17
(1993) 202.

Navrat, P.: Report: AI-ED '93, Informatica
17 (1993) 313-316.

Robic, B.: Report: ACPC '93, Informatica 17
(1993) 314.

News and Calls for Papers, Informatica 17
(1993) 101, 200-208, 314, 413-418.

Machine Learning and Knowledge Acquisi-
tion, IJCAI-93 Workshop, Informatica 17
(1993) 203.

Professional Societies

Filipic, B.: Slovenian AI Society (SLAIS)
and AI Activities in Slovenia, Informatica 17
(1993) 318-319.

IJCAI-93 Workshop, Informatica 17 (1993)
102.

Jozef Stefan Institute, Informatica 17 (1993)
324, 420.
The Ministry of Science and Technology of the
Republic of Slovenia, Informatica 17 (1993)
323, 419.

Informatica 17 (1993)

Dear Subscribers and

Collaborators of Informatica

Within the new international issuing and editing, journal In-
formatica terminates this volume by the fourth number. The
year 1993 was aimed to the promotion of the journal in the
broader European and global regions. With this intention we
have distributed Informatica to different places and, simulta-
neously, we have appealed for an active collaboration in the
form of. submitting of papers, editing and personal promoting
of the journal in the respective professional communities.

Since we intend to settle the payment of subscription and
the list of subscribers in the coming year, we ask the readers
to inform us upon the subscription status or just fill out the
attached order-form for the journal Informatica and fill out
the questionary.

Please send your order-form and questionary to the address:

Dr. Rudi Murn
Jozef Stefan Institute

Jamova c. 29
61111 Ljubljana, Slovenia

Informatica 17 (1993)

INFORMATION FOR CONTRIBUTORS

1 Submissions and Refereeing

Please submit three copies of the manuscript with
good copies of the figures and photographs to one of
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the au-
thor's country will examine it, and they are invited
to make as many remarks as possible directly on the
manuscript, from typing errors to global philosophical
disagreements. The chosen editor will send the author
copies with remarks. If the paper is accepted, the ed-
itor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper
has been accepted, in which case it will be published
within one year of receipt of the original figures on sep-
arate sheets and the text on an IBM PC DOS floppy
disk or by e-mail - both in ASCII and the Informat-
ica IMgX format. Style (attached) and examples of
papers can be obtained by e-mail from the Contact
Person.

2 News, letters, opinions

Opinions, news, calls for conferences, calls for papers,
etc. should be sent directly to the Contact Person.

\documentstyle[twoside,informat]{article}

\begin{document}
\title{TITLE OF THE ARTICLE}
\author{First Author \\ Address \\ E-mail \\

AHD \\
Second Author \\ Address \\ E-mail}

\titleodd{TITLE II HEADER}
\authoreven{Author's name in header}
\keywords{article keywords}
\edited{editor in charge}
\received{date}
\revised{date}
\accepted{date}
\abstract{abstract — around 200 words}
\maketitle

\section{Introduction}
Text of Introduction.

\section{Subject}
Text of the Subject.

\begin{figure}
An example of a figure over 1 column.
\caption{Caption of the figure 1}

\end{figure*}

\begin{figure*}
An example of a figure over 2 columns.
\caption{Caption of the figure 2}

\end{figure*}

\begin{thebibliography}{99}
\bibitem{} First Author: {\sl Title},
Magazine, Vol. 1, No. 1.

\end{thebibliography}

\def\journal{Informatica {\bf 17} page xxx—yyy}
\immediate\writel6{'Informatica' VI.2 byB."Z}
\newif\iftitle \titlefalse
\hoffset=llmm \voffset=8mm

\oddsidemargin=-21mm \evensidemargin=-14mm
\t opmargin=-33mm
\headheight=17mm \headsep=10mm
\footheight=8.4mm \footskip=52.5mm
\textheight=242mm \textwidth=170mm
\columnsep=5mm \columnseprule=Opt
\tHocolumn \sloppy \flushbottom
\parindent lem
Meftmargini 2em \leftmargin\leftmargini
Meftmarginv . 5em \leftmarginvi . 5em
\def\labelitemi{\bf —} \def\labelitemii-[~}
\def\labelitemiii{—}
\setcounter{secnumdepth}{3}
\def \maketitle{\twocolumn ['/.

\vbox{\hsize=\textwidth\Large\bf\raggedright
\uppercase{\8title}}\vss\bigskip\bigskip \vbox{
\hsize=\textwidth \8author}\bigskip\smallskip
\vbox{\hsize=\textwidth {\bf Keywords:}
\8keywords}

\bigskip \hbox{{\bf Edited by:} \8edited}
\smallskip
\hbox{{\bf Received:}
\hbox to 10em{ \Qreceived\hss}
{\bf Revised:}\hbox to 10em{ \9revised\hss}
{\bf Accepted:}\hbox to 10em{ \8accepted\hss}}

\bigskip \vbox{\hsize=\textwidth
\leftskip=3em \rightskip=3em \sl \8abstract}

\bigskip\bigskip]\t itletrue}
\def\maketitleauthor{\twocolumn[y,
\vbox{\hsize=\textwidth \Large\bf\raggedright
\«title}\vss \bigskip\bigskip
\vbox{\hsize=\textwidth \8author}

\bigskip\bigskip] \gdef\8title{}\titletrue}
\def\makeonlytitle{\twocolumn['/,

\vbox{\hsize=\textwidth \Large\bf\raggedright
\8title}\vss\bigskip\bigskip]
\gdef\8title{}\titletrue}

\def\8title{} \def\8author{}
\def\8titleHO \def\8authorH{}
\def\8keywords{} \def\fiedited{} \def\8abstract{}
\def\8received{} \def\Srevised{} \def\8accepted{}
\def\authoreventl{\gdef\8authorH{fl}}
\def\titleodd#l{\gdef\8titleH{\uppercase{#l}}}
\def\keysords#l{\gdef\8keywords{#l}}
\def\editedtl{\gdef\aedited{#l}}
\def\received#l{\gdef\8received{#l}}
\def\revised#l{\gdef\8revised{*l}}
\def\acceptedtl{\gdef\8accepted{»l}}
\long\def\abstracttl{\gdef\8abstract{»l}}
\def\section{\8startsection {section}

{I}{\z8}{-3.5ex plus -lex minus -.2ex}

{2.3ex plus .2ex}{\Large\bf\raggedright}}
\def\subsection{\8startsection{subsection}

{2}{\z8}{-3.25ex plus -lex minus -.2ex}
{1.5ex plus .2ex}{\large\bf\raggedright}}

\def\subsubsection{\8startsection{subsubsection}
{3}{\z8}{-3.25ex plus -lex minus -.2ex}
{l.Sex plus .2ex}{\normalsize\bf\raggedright}}

\def\8evenhead{\hbox to 3em{\bf\thepage\hss}
{\small\journal\hfil \iftitle\else
\8authorH \fi}\global\titlefalse}

\def\8oddhead{{\small\iftitle\else \8titleH \fi
\hfil\journal}\hbox to 3em{\hss\bf\thepage}
\global\titlefalse}

\def\«evenfoot{\hfil} \def\9oddfoot{\hfil}
\endinput

\end{document}

REVIEW REPORT

Informatica 17 (1993)

Basic Instructions
Informatica publishes scientific papers accepted by

at least two referees outside the author's country. Each
author should submit three copies of the manuscript
with good copies of the figures and photographs to one
of the editors from the Editorial Board or to the Con-
tact Person. Editing and refereeing are distributed.
Each editor can conduct the refereeing process by ap-
pointing two new referees or referees from the Board
of Referees or Editorial Board. Referees should not be
from the author's country. The names of the referees
should not be revealed to the authors under any cir-
cumstances. The names of referees will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees.

It is highly recommended that each referee writes
as many remarks as possible directly on the
manuscript, ranging from typing errors to global
philosophical disagreements. The chosen editor will
send the author copies with remarks, and if accepted
also to the Contact Person with the accompanying
completed Review Reports. The Executive Board will
inform the author that the paper is accepted, meaning
that it will be published in less than one year after re-
ceiving original figures on separate sheets and the text
on an IBM PC DOS floppy disk or through e-mail
- both in ASCII and the Informatica LaTeX format.
Style and examples of papers can be obtained through
e-mail from the Contact Person.

Opinions, news, calls for conferences, calls for pa-
pers, etc. should be sent directly to the Contact Per-
son.

Date Sent:

Date to be Returned:

Name and Country of Referee:

Name of Editor:

Title:

Authors:

Additional Remarks:

All boxes should be filled with numbers 1-10 with
10 as the highest rated.

The final mark (recommendation) consists of two or-
thogonal assessments: scientific quality and readabil-
ity. The readability mark is based on the estimated
perception of average reader with faculty education
in computer science and informatics. It consists of
four subfields, representing if the article is interest-
ing for large audience (interesting), if its scope and
approach is enough general (generality), and presen-
tation and language. Therefore, very specific articles
with high scientific quality should have approximately
similar recommendation as general articles about sci-
entific and educational viewpoints related to computer
science and informatics.

SCIENTIFIC QUALITY

J Originality

| | Significance

Relevance

Soundness

Presentation

• READABILITY

I | Interesting

Generality

Presentation

Language

[FINAL RECOMMENDATION

Highly recommended

Accept without changes

Accept with minor changes

Accept with major changes

Author should prepare a major revision

Reject

Informatica 17 (1993)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Since 1977, Informatica has been a major Slovenian
scientific journal of computing and informatics, includ-
ing telecommunications, automation and other related
areas. In its 17th year, it is becoming truly interna-
tional, although it still remains connected to Central
Europe. The basic aim of Informatica is to impose in-
tellectual values (science, engineering) in a distributed
organisation.

Informatica is a journal primarily covering the Euro-
pean computer science and informatics community -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance commu-
nications between different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref-
erees outside the author's country. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi-
nally, major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor
can conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from the
author's country. If new referees are appointed, their
names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, edu-
cational and governmental institutions. Others should
subscribe (institutional rate 50 DM, individual rate 25
DM, and for students 10 DM). Send a check for the
appropriate amount to Slovene Society Informatica,
Vozarski pot 12, Ljubljana, account no. 50100-620-
133-27620-5159/4.

Please, return this questionnaire.

QUESTIONNAIRE

I | Send Informatica free of charge

Yes, we subscribe

I I We intend to cooperate (describe):

I | Proposals for improvements (describe):

Informatica is published in one volume (4 issues) per
year.

If possible, send one copy of Informatica to the local
library.

Please, complete the order form and send it to
Dr. Rudi Murn, Informatica, Institut Jozef Stefan,
Jamova 39, 61111 Ljubljana, Slovenia.

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):

Title and Profession (optional):

E-mail Address (optional):

Home Address and Telephone (optional):

Signature and Date:

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the Eu-
ropean computer science and informatics community;
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance commu-
nications between different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref-
erees outside the author's country. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi-
nally, major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each edi-
tor from the Editorial Board can conduct the referee-
ing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Ref-
erees should not be from the author's country. If new
referees are appointed, their names will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees. Each editor can
propose new members for the Editorial Board or Board
of Referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the
Editorial Board and Board of Referees are confirmed
by the Executive Editors.

The coordination necessary is made through the Ex-
ecutive Editors who examine the reviews, sort the ac-
cepted articles and maintain appropriate international
distribution. The Executive Board is appointed by
the Society Informatika. Informatica is partially sup-
ported by the Slovenian Ministry of Science and Tech-
nology.

Each author is guaranteed to receive the reviews of
his article. When accepted, publication in Informatica
is guaranteed in less than one year after the Executive
Editors receive the corrected version of the article.

Executive Editors
Editor in Chief
Anton P. Zeleznikar
Volariceva 8, Ljubljana, Slovenia
E-mail: anton.p.zeleznikar@ijs.si

Associate Editor (Contact Person)
Matjaz Gams
Jozef Stefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1259 199, Fax: +386 61 219 385
E-mail: matjaz.gams@ijs.si :

Associate Editor (Technical Editor)
Rudi Murn
Jozef Stefan Institute

Board of Advisors
Ivan Bratko, Marko Jagodic,
Tomaz Pisanski, Stanko Strmcnik
Publishing Council
Tomaz Banovec, Ciril Baskovic, Andrej
Jerman-Blazic, Dagmar Suster, Jernej Virant
Editorial Board
Witold Abramowicz (Poland)
Suad Alagic (Bosnia and Herzegovina)
Vladimir Batagelj (Slovenia)
Andrej Bekes (Japan)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Canada)
Janusz Brozyna (France)
Ivan Bruha (Canada)
Luca Console (Italy)
Hubert L. Dreyfus (USA)
Jozo Duj movie (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Janez Grad (Slovenia)
Noel Heather (UK)
Francis Heylighen (Belgium)
Bogomir Horvat (Slovenia)
Sylva Kockova (Czech Republic)
Miroslav Kubat (Austria)
Jean-Pierre Laurent (France)
Jadran Lenarcic (Slovenia)
Angelo Montanari (Italy)
Peter Mowforth (UK)
Igor Mozetic (Austria) -
StephenMuggleton (UK)
Pavol Navrat (Slovakia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Saso Presern (Slovenia)
Luc De Raedt (Belgium)
Paranandi Rao (India)
Giacomo Delia Riccia (Italy)
Wilhelm Rossak (USA)
Claude Sammut (Australia)
Johannes Schwinn (Germany)
Jiff Slechta (UK) "
Branko Soucek (Italy)
Harald Stadlbauer (Austria)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Claes Wohlin (Sweden)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

Volume 17 Number 4 December 1993 ISSN 0350-5596

An International Journal of Computing and Informatics

Contents:

Profiles: Gheorghe lecuci

Multistrategy Approaches to Learning: Why and
H o w '-.._•' > ' " " - • - : •

A Multistrategy Learning Scheme for Agent
Knowledge Acquisition

Multistrategy Learning in Reactive Control
Systems for Autonomous Robotic Navigation

Combining Knowledge-based and Instance-based
Learning to Exploit Qualitative Knowledge

Extending Theory Refinement to M-of-N Rules

Multitype Inference in Multistrategy . * .
Task-adaptive Learning: Dynamic Interlaced
Hierarchies , ~

Gheorghe Tecuci

D. Gordon
D. Subramanian ,

A. Ram
XC. Santamaria

G. Widmer

P.T. Baffes
R.J. Mooney

M.R. Hieb
R.S. Michalski

325

327

331

347

371

387

399

Reports and Announcements 413

