
Volume 18 Number 1 April 1994 ISSN 0350-55«

Informatic
An International Journal of Computinj
and Informatics

-O

p.
10

o
E
3

00
TH

u

s
(H

.o

'rofile: Robert Trappl
^uest Editor: Miroslav Kubat

Diagnosis of Technical Systems
Closure of Database Relation
IJCAF93: Critical

The Slovene Society Informatika, Ljubljana, Sloveni

Informatica
An International Journal of Computing and Informatics

Basic info about Informatica and back issues may be FTP'd from ftp.arnes.si in
magazines/informatica ID: anonymous PASSWORD: <your mail address>

FTP archive may be also accessed with WWW (worldwide web) clients with
URL: ftp://ftp.arnes.si/magazines/informatica

Subscription Information: Informatica (ISSN 0350-5596) is published four times a year in
Spring, Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika,
Vožarski pot 12, 61000 Ljubljana, Slovenia.

The subscription rate for 1994 (Volume 18) is
- DEM 50 (US$ 34) for institutions,
- DEM 25 (US$ 17) for individualš, and
- DEM 10 (US$ 4) for students
plus the mail charge DEM 10 (USS 4).

Claims for missing issues will be honored free of charge within six months after the
publication date of the issue.

F T E X Tech. Support: Borut Žnidar, DALCOM d.o.o., Stegne 27, 61000 Ljubljana, Slovenia.

Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.

Printed by Biro M, d.o.o., Žibertova 1, 61000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please
call Mr. R. Murn, Department for Computer Science, Jožef Štefan Institute: Tel (+386) 61
1259 199, Fax (+386) 61 219 385, or use the bank account number 900-27620-5159/4
Ljubljanska banka d.d. Slovenia (LB 50101-678-51841 for domestic subscribers only).

According to the opinion of the Ministry for Informing (number 23/216-92 of March 27,
1992), the scientific journal Informatica is a product of informative matter (point 13 of the
tarifT number 3), for which the tax of trafik amounts to 5%.

Informatica is published in cooperation with the follovving societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pat tern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Authomatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences (Janez Peklenik)

Referees: -
David Duff, Pete Edvvards, Hugo de Garis, David Hille, Tom Ioerger, Yves Kodratoff,
Ockkeun Lee, Rich Maclin, Raymond Mooney, Peter Pachowicz, Aswin Ram, Lorenza Saitta,
Jude Shavlik, Derek Sleeman, David Wilkins, Bradley Whitehall, Jianping Zhang

The issuing of the Informatica journal is financially supported by the Ministry for Science and
Technology, Slovenska 50, 61000 Ljubljana, Slovenia.

ftp://ftp.arnes.si
ftp://ftp.arnes.si/magazines/informatica

Informatica 18 (1994) 255

PROFILES

For the first tirne in its Profiles history, Infor
matica takes the opportunity to introduce one
of its editors who is not only a distinguished re-
searcher, computer scientist and professional AI-
activity organizer, but also a technological inno-
vator and the leader of one of the largest and the
most important industrial projects in the history
of Al. In the SQUAD project at NEC Corpora
tion, over 20,000 software engineers are partici-
pating in the implementation of knowledge engi-
neering for software quality control.

It is certainly important to stress at least one of
the major innovative fields of Hiroaki Kitano, the
massively parallel artificial intelligence. This fleld
is a consequence of his scientific and research work
concerning his speech-to-speech translation sys-
tem, implemented for a 'live' Japanese-to-English
translation on several massively parallel machines
like CM-2, IXM-2, and SNAP-1.

It is not for the first tirne that the readers of
Informatica can learn about some innovative Ki
tano'^ achievements. A short overview of his pro
fessional activity was already reported in Infor
matica, 18 (1994), pp. 97-99 (M. Gams, Re-
port: IJCAF93—A Critical Review). So let us
cite some characteristic sequences from there.
The Compiiters and Thought Avvard for outstand-
ing young scientists (belovv 35 years) was given to
Hiroaki Kitano.

. . . According to the revievvers, Kitano won the

prize for novel translation vvork on a massivelv par

allel computer. His approach builds on memory as

the foundation of intelligence. Each of computer's

32,000 processors cpntains a few sentences and de-

termines the best match for an input sentence in

natural language. Translation is based on exten-

sive use of memorv. Statements are parsed into ba-

sic parts, translated, and sensiblv combined to the

translated language. Ali reasoning is by analogv.

The program achieves around 75-percent accuracy

by one reports and around 90-percent in others:

. . . He categorises complete, correct and consis-

tent problem domains as toy domains. Real-world

domains aredenoted as incomplete, incorrect, incon-

sistent, and are in addition characterised by human

bias, tractability and economics.

. . . a great part of Al research is devoted to toy

problems vvhich are unscalable not only to real-vvorld

problems but also to intelligent svstems.

. . . Al as well as computer science and engineer-

ing in general are much more dependent on the

development of computer hardware that generally

recognised. Future computer projects can be char

acterised by massive computing, massive parallelism,

massive data.

The readers of Informatica may agree how the
preceding dictum illuminates complementarily
not only the work but also the philosophical and
engineering orientation of Hiroaki Kitano. It gives
significant hints not c>nly to researchers but also
innovators in computer and software engineering.
The adjective massive in respect to processors,
memory and data comes close to something called
the informational and regards an in componential
manner massive system (machine) in any respect,
that is, in the sense of an informational machine
which supports systemically the informing of its
hardware and software components (entities).

Hiroaki Kitano

Hiroaki Kitano is a researcher at Sony Computer
Science Laboratory, Tokyo, Japan. He holds a
Ph.D. in computer science from Kyoto Universitv.
Since 1988, he was a visiting scientist at Center for
Machine Translation, Carnegie Mellon Universitv.
In 1993, he received the Computers and Thought
Award from IJCAI for his accomplishments in
speech-to-speech translation and massively paral
lel Al research. He is currently serving as a mem-
ber of several important committees, such as the
advisory committee for IJCAI, the international
committee on evolutionary computation, the pro
gram committee for AAAI-94, etc.

His scientific contribution spans broad range of
Al research. In 1989, Kitano developed one of the
first speech-to-speech translation system, a sys-
tem which translates spoken Japanese into En-
glish producing vocal outputs. The system, Dm-
Dialog system, was also the first system, so far
the only one, which demonstrates the possibility
of simultaneous interpretation by machines. Ki
tano, based on his experiences as a professional
interpreter, proposed an almost concurrent pars-
ing and generation model so that, in some occa-
sions, translation can be generated even before
the completion of an input sentence. The Dm-
Dialog system employs massively parallel marker-
passing to carry out computation, and based on

256 Informatica 18 (1994) Hiroaki Kitano

memory-based translation approach.
Due to highly parallel nature of the comput-

ing scheme in Dm-Dialog, his system was imple-
mented on several massively parallel machines,
such as CM-2 connection machine, DCM-2 asso-
ciative memory processor, and SNAP-1 seman-
tic network array processor. These implementa-
tions demonstrate very high performance trans
lation, translation in milliseconds order, which
made a decisive čase for massively parallel ap
proach for spoken language translation. In fact,
ATR Interpreting Telephony Research Labora-
tory, a Japanese semi-government research insti
tute, made a decision to pursue a massively paral
lel memory-based approach to develop its speech-
to-speech translation system.

The impact of Kitano's work was not limited to
natural language community, it was the first ap-
plication of massive parallelism to Al for highly
complex tasks. Kitano also challenged to expand
horizon of high performance computing using the
state-of-the-art semi-conductor technology. In
1992, he designed a special purpose wafer-scale
integration (WSI), caUed WSI-MBR. It is dedi-
cated device for memory-based reasoning (MBR).
The architecture exploits the redundunt nature
of MBR to overcome inevitable fabrication de-
fects of WSI. With its special analog-digital hy-
brid design, the performance of a WSI-MBR on
an eight-inch wafer is expected to be equivalent
to 70 Tera-Flops in digital computers. It enables
over 2 million parallelisms in one wafer. The low
cost, small size, and high-performance of WSI-
MBR have significant potential to re-shape the
future of computing and industry.

The success of these projects led him to pro-
mote a new field in Al—massively parallel artifi
cial intelligence. He chaired a panel on this sub-
ject in IJCAI-91, held a tutorial in IJCAI-93, and
recently edited a book Massively Parallel Artifi
cial Intelligence (Kitano and Hendler, Eds.) pub-
lished from AAAI Press/The MIT Press.

In 1990, he published a seminal paper on the
combination of genetic algorithms (GA) and neu-
ral networks (NN). His paper, appeared in Com-
plex System journal, introduced a developmen-
tal stage in combining GA and NN. This is the
first work to integrate evolution, development,
and learning. This work quickly gets attention
in GA and ALife community, and a number of re

search projects was initiated and inspired by his
method.

Kitano has a substantial contribution to case-
based reasoning and corporate information sys-
tem field, too. While at NEC Corporation, he
leads the SQUAD project, which is a project to
develop a large scale corporate-wide case-based
system on the software quality control domain.
The SQUAD system has over 25,000 cases in var-
ious areas of software quality control, and the size
of the case-base increases at the speed of 3,000
cases a year. In one of the largest knotvledge en-
gineering projects undertaken in the Al history,
over 20,000 software engineers are involved in re-
porting cases throughout the company.

Aside from his scientific work, Kitano actively
promoted important new areas in Al, such as
massively parallel Al, entertainment, and grand
challenge Al applications. He chaired several
important workshops such as the First Interna
tional Workshop on Parallel Processing for Al
(PPAI-91) held in conjunction with IJCAI-91 at
Sydney, Australia, and the Second International
Workshop on Parallel Processing for Al (PPAI-
93), IJCAI-93, at Chambery, France. Back in
Japan, he established SIG-PPAI, a new SIG under
Japanese Society for Artificial Intelligence (JSAI).
SIG-PPAI is a dedicated forum to discuss parallel
processing for Al.

In 1991, he organized and chaired the work-
shop on Grand Challenge Al Applications, at
Tokyo, Japan, which triggered several key re
search projects in Japan each of which addresses
grand challenge applications. In 1993, he orga
nized a panel "Grand Challenge Al Applications"
at IJCAI-93 to discuss international aspects on
grand challenge. His recent emphasis in promot-
ing a new area is entertainment. At AAAI-94, he
co-chaired the workshop on Al, Alife, and Enter
tainment. He is currently planning several other
workshops to help researchers to explore a new
area of Al research.

Kitano serves as an associate editor in several
of the major journals, such as Journal of Evo-
lutionary Computation, and Applied Al, and is
a member of the editorial board for Journal of
Al Research, Journal of Theoretical and Exper-
imental Al (JETAI), Artificial Life journal, and
Informatica.

Edited by A.P. Železnikar

Informatica 18 (1994) 257-275 257

Evolution of Methods in Object Schema

Z. Tari and X. Li
School of Information Systems
Queensland University of Technology
GPO Box 2324, Brisbane, Australia
z a h i r t @ i c i s . q u t . e d u . a u , x u e l i @ f i t . q u t . e d u . a u

K e y w o r d s : Object-oriented databases, schema evolution, methods, proof correctness

Edi ted by: Xindong Wu

Rece ived: May 12, 1994 Rev i sed: September 20, 1994 Accepted : October 6, 1994

This paper deals with the problem of method restructuring in object-oriented databases.
We propose a framework that allows a change of methods while maintaining database
consistency. A set of minimal changing operations which affect ali parts of methods
is provided. The semantics of methods evolution relates to two levels of granularity
of a schema. The first level concerns the evolution of methods in the context of class
inheritance hierarchy, whereas the second level relates to behavioural evolution in which
the chain of calling relationships beiween methods is considered.

1 Introduction ensure consistency are provided. Many prod-
ucts have been enhanced by the above facil-
ities (e.g. Gemstone, 0 2 , Orion). A detailed
study of schema evolution in such systems
can be found in [1.5,8].

The purpose of this paper is to show how behav-
ior of an object-oriented (O-O) schema can be up-
dated by keeping the state of the database con-
sistent. This problem is generally involved in a
more global problem, namely schema evolution.
This problem relates to the ability of updating
information within a schema. Schema evolution
is an important facility because most of the design
of database applications calls for frequent changes
to catch up to changes in reality.

Schema evolution has been primarily performed
on the relational model. With the emergence of
richer models (e.g., 0 - 0 models), schema evolu
tion is addressed in a more general way, i.e. not
only on the structural perspective as it was done
in the relational model. In this paper we consider
the problem of schema evolution in 0 - 0 systems.
This problem concerns the ability to safely alter
a schema both structurally and behaviourallv.

— Structural alterations may be performed
• at different levels of granularity within a

schema: class level, relationship level, in
stance level. Several works, e.g. [4,13,14,16],
have investigated these different levels of
structural modifications. For each level a set
of alteration operations and semantic rules to

- Behavioural alterations concern the evolution
of the behaviour of objects. The operations
relate to the possibility of modifying both
the signature and the code of the methods,
and ensuring the correctness of these opera
tions. Some approaches have been provided
(e.g., [1,9,11,17,18]) in which some structural
changes, such as updating relationships be-
tween objects, may affect the behavior of ob
jects. In other words, they are considered as
behavior updates.

The literature has widely addressed the first
above aspect. However, regarding the second
above aspect, i.e. the modifications of methods,
to our knowledge no system fully supports such
an aspect. Indeed, the research in this area may
be considered as a "sample view" of the problem
of method changing, and it does not cover every
part of a method.

This paper provides our solution to the problem
of method evolution in 0 - 0 schema. The prob
lem of behavioural consistency is also addressed.

mailto:zahirt@icis.qut.edu.au
mailto:xueli@fit.qut.edu.au

258 Informatica 18 (1994) 257-275 Z. Tari & X. Li

The behaviour of an 0 -0 schema is considered
here as a pattern of activities coherent to the
schema. Method evolution refers to updating the
methods using operations which include deletion,
insertion, and modification. These, after their
use, may generate inconsistencies which involve

(1) run-time type errors,

(2) side-effects,

(3) unchanged methods made redundant or
meaningless, and

(4) unexpected results given by methods.

In this paper, solutions to the problems (l)-(4)
cited above are provided. To do so, a fundamental
issue is the way in which methods are represented.
The semantics of methods is represented declara-
tively by using appropriate data structures, such
as

— a graph for representing method overriding
and the inheritance relationships between
methods; and

— a graph for describing overloading semantics
and the method-calling relationships.

Because the information about method be-
haviours is represented in graphs, the be-
havioural inconsistency problems can be checked
out by searching the states represented in graphs.
By making the information that constrains
the method behaviours available to a method-
changing handling mechanism, we address the
strategies used to deal with behavioural inconsis-
tency problems.

Brieflv, the approach we propose has three as-
pects:

— method representation framework,

— the method evolution operations, and

— the checking strategies.

The first aspect is addressed by proposing ap
propriate graph data structures that represent ali
the information about methods. A set of opera
tions are provided for the second aspect, and this
covers ali the possible modifications of a method
schema. The last aspect is addressed by checking
the inconsistent behaviours on different states of
the graphs. We also provide consistency checking

algorithms that take these modified graphs as in-
put and output validation of the graphs. Program
verification techniques (e.g., Hoare rules [10]) are
used to provide a proof of correctness for the mod
ified methods. The consistency checking is per-
formed both at the inheritance level and at the
method-calling level. The algorithms to check
these different levels of consistency are proposed.
The remainder of the paper is organised as fol-
lows. The next section discusses the related work.
Section 3 describes the basic concepts related to
methods in 0 -0 schema. Section 4 gives an exam-
ple. Section 5 fixes the notations and presents a
formalisation of the semantics of methods. In sec
tion 6, the syntax of a method evolution language
is described. Section 7 presents the strategies for
behaviour consistency checking and we conclude
with future work in section 8.

2 Related Work

The evolution of methods in 0 -0 databases is
a complex problem. Generally, methods are de
scribed in a procedural language in which the ef-
fects of update operations are difficult to under-
stand. A small amount of literature has been ded-
icated to this problem, and generally addresses
the declarative part of methods, i.e. the update
of the signatures. This section survevs previous
work in the area of method evolution and puts
our work in context.

- In [9,18], the authors mainly approach struc-
tural evolution. Behavioural evolution is
focused on the update of signatures. Be
havioural consistency is restricted to run-
time type errors and side-effect problems.
The former are detected during structural
consistency checking which ensures that the
name and signature of methods are com-
patible along the method-inheritance chain.
Data Flow technique (VDF) is used in [9] to
detect run-time errors in terms of three type
safe sufficient conditions. The type safe con-
ditions guarantee

- the inheritance relationships among
data types referred by a method;

- the declaration of method data types;
and

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 259

- the matches of actual and formal argu
ment s.

- Waller's approach [17] is graph-oriented for
checking method consistency. An abstract
run is introduced to represent the unfold-
ing of the method computation from input
to output. The signature of a method is
"unfolded" as initial and final states of a di-
rected graph which gives a consistency proof.
When a method is changed, another consis-
tency proof will be generated. The approach
is based on incremental consistency checking
which analyses the differences between two
consistency proofs.

- Method Execution Tree (MET) [11] gives an
intuitive way to represent the execution of
method calls. The MET of a method exe-
cution is represented by the root of the tree
(m,t)[o], where m is a method name, t is the
type that m is encompassed in, and o is an ob-
ject instance of t used as the actual argument
to invoke m. When m is executed it calls
other methods and passes objects to them.
Therefore, a node in the tree is a method
call and an edge in the tree represents a call-
ing relationship. The ultimate goal to use a
MET is to find four kinds of problems: (1)
unavoidable nontermination, (2) the method
is reachable from another, (3) a method has
bounded execution, and (4) method execu-
tion is aborted. The problems (1) and (3)
can be detected through the configuration of
its MET. Also for each method, the problems
(2) and (4) are dealt with by examining a re-
port of the method execution.

The above mentioned approaches suffer from
the lack of semantics associated with methods.
Especially, there are no discussions about the
method correctness after method updates. How-
ever, among these approaches Waller's approach
seems to be very elaborate. It has following draw-
backs:

- When an abstract run is unfolding a method,
some cycles may stili appear in the graph
which are not distinctly different from that
of the recursion of methods. For example,
people — people may represent a family tree
or an employee — manager relationship. The

unfolding algorithm runs into the problem it
has tried to avoid by making the assumption
that methods are recursion-free. Moreover,
if the abstract runs to unfold recursive meth
ods are unavoidable, this approach runs into
a more serious problem because of the com-
plexity of a recursive method before it is un
folded.

- Although this approach is computationally
sound and complete, it stili cannot deal with
low level behavioural inconsistency, i.e. with
instances. For example, the output of a
method, say for instance an integer, may
be fed into another method deriving unex-
pected negative values of employee salaries.
The problem is rooted in the representation
of the graph: the vertices are represented as
(ti,Ci,i) where ti is a collection of method
output objects, Ci is a class name, and i is the
sequence number in the steps of abstract run.
The checking is based on the isomorphism
between the corresponding vertices and the
minimal bridge between two graphs of the
consistency proofs. Virtually there is stili
nothing more than the preventing of side-
effects and run-time type errors in methods.

In this paper we provide solutions for the above
problems by

- proposing a framework for representing the
semantics of methods as graphs. This frame-
work bears the information about signa-
tures, pre- post-conditions, and relationships
of methods;

- proposing the basic operations for method
evolution; and

- proposing a consistency checking strategy.
The checking algorithms are developed based
on the two _ kinds of graphs and can be
implemented to automatically validate the
changed methods.

3 Basic Concepts

This section clarifles the basic concepts of the ob-
ject paradigm such us: overriding, overloading,
and late binding. These characteristics are fun-
damental to methdd evolution in 0 -0 databases.

260 Informatica 18 (1994) 257-275 Z. Tari k X. Li

Other aspects of the object paradigm such us
static and dynamic typing, and covariance and
contravariance subtype rules complement the pre-
vious features. Ali of these aspects related to
the object paradigm will be described in this sec-
tion in order to provide a clear understanding of
such concepts in the context of method evolution
framework in 0 -0 databases. The reader is as-
sumed to be familiar with the 0 -0 terminology
[3].

Only a brief overview of the basic 0 -0 con
cepts is given here. A class is a central concept
in 0 -0 systems. It is an abstraction of some in-
formation of the real world. Instances may be
generated from classes. They are called objects.
A class has attributes and a set of methods that
are available to ali objects of the class. Attributes
and implementations of methods are hidden, and
methods are used only through their signatures.
The signature of a method specifles a set of in-
put attributes and a result attribute. A method
is invoked by sending a message to the object to
which the method is attached. A message actu-
ally is a call to a method with actual arguments
assigned to match with the method signature. In
this paper we use the terms of "calling a method"
or "sending a message" interchangeably. An 0-0
schema is a set of classes connected together with
various types of relationships. The most com-
mon (used) relationships are: inheritance (isa)
and aggregation (partof).

In this paper we adopt a "simplifled" Booch
notation [5] for describing an 0 -0 application
(see Figure 1). In [5], classes are specified as
cloud dashed icons. An icon class contains the
name, the attributes and the interfaces of the
class. Additional relationships such as using,
instantiation and metaclass relationships are not
considered in this paper. They are generally in-
troduced during the design, and then transformed
to an isa or partof relationship during the imple-
mentation. The static part of an 0 -0 schema, i.e.
the attributes of classes, is widely addressed in the
literature. However the dvnamic part, i.e. the
methods of classes, is generally not deeply stud-
ied. Indeed, method plays an important role in
0 -0 systems, especially for method evolution.

This section clarifies concepts related to meth
ods in 0 -0 systems to prepare for further work in
the area of method evolution.

Overriding, Overloading and Late Binding. Method
overriding is inherent in class inheritance seman-
tics. A method defined in the superclass can be
redefined by its subclass(es). By using the same
name, a number of methods may override along
with an inheritance path. Method overloading
reflects the meaning of the polymorphism. Dif-
ferent methods with the same name may be de
fined within the same lexical scope (e.g., a class).
Method overriding and overloading give an effec-
tive way of a natural mapping between a prob
lem space and a method space. Late binding is a
way that guarantees the overriding and the over
loading are properly handled [3]. During compile-
time, the binding of method names can only be
done in a context-free format and may not be
able to link the ones that are meant to be exe-
cuted. However, at run-time, a certain method to
be bound is dependent on the context that

- a method of a subclass should always override
the one of the superclass;

- amongst the methods with the same name
in the _ same lexical scope, the one which
matches the signature of the caller should be
bound.

In other words, the late binding is a process in
which the system determines the method code to
be run and performs the type checking at run-
time. Late binding is also known as dynamic
binding or run-time binding.

Static and Dynamic Typing. Methods in 0 -0 sys-
tems are categorised as either static typed [2]
or dvnamic typed. Sometimes static typing is
also known as strong typing [12]. A static typed
method is characterised by the fact that ali types
of objects referred to by the method can be de-
termined at compile-time. Situations include:

- a call for an overloaded method such that the
types of signatures need to be discriminated;

- a call for an inherited method such that the
types of objects involved need to be decided;

- any call-by-reference situations in which a
method or an object is to be referred to via
a pointer.

In the presence of late binding, some of the
static-typed languages require that ali candidates

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 261

must uniformly match with that of the dispatcher
(i.e., a caller of a method or a variable referring
to a method). Dynamic typing in programming
languages is characterised by the fact that the
types referred to in a program are determined
at compile-time whenever that is possible. Oth-
erwise, they are determined at run-time. This
means tha t during late binding, the match of
types of objects is performed within the context
of method execution. Whether a static-typed or
a dynamic-typed programming language is used,
the type safety problem for overloaded and inher-
ited methods have some principles, namely, the
covariance subtype rule [9] and the contravariance
subtype rule [7,6]. Following are the definitions of
such typing rules.

Covariance Subtype Rule. When a method is rede-
fined or substituted by another method, in order
to maintain the type safe method calling, the co
variance subtype rule states tha t a method mi

. with a signature X — • Y, denoted as m\ :
(X —»• Y), is a subtype of a method m 2 with
a signature X' —> Y' if X is a subtype of X'
and Y is a subtype of Y'. Thus if m 2 is replaced_
by m\ with the satisfaction of the covariance sub-
type rule, it is stili type safe. However, when late
binding is taking plače, the covariance subtype
rule per se cannot prevent run-time type errors.
In this čase, the late binding may take an object
x' E. X' instead of a; G X to match with m\. This
is allowable by the covariance rule since X is a
subtype of X' and X inherits ali objects from X'.
However x' may not have some at tr ibute that is
peculiar to x required by m\. In this čase, a run-
time type error within m-± would be detected.

In brief, the covariance subtype rule provides a
sufficient condition to specialise a method into its
subtype and problems may occur when an object
from a supertype is passed into a subtype.

E x a m p l e 1 Let us consider the follovoing exam-
ple to clarify the covariance subtyping. Assume
that X = Študent, Y = Lecturer, X' = Person
and Y' = Staff. If mi : (Person — • Staff) is
replaced by rn\ : (Študent — • Lecturer), then
ali calls previously to mi now become calls to
m\. Since Študent is a subtype of Person and
Lecturer is a subtype of Staff, this replacement
is acceptable for the reason that a študent inher
its ali the attributes of the class Person. This is

the same for a lecturer who is a person. Conse-
quently, any enauires previously to a person and
a staff will then be substituted by to študent and
lecturer. This is the nature of subtyping. Hovoever
with late binding, there might be a čase that an ac-
tual argument p uihich is of type Person is bound
to the formal argument s vihich is of type Študent.
Since p cannot provide some specific information
reguired by s (say, credit-points of a študent), a
run-time type error is reported. It can be seen
that this is not a problem when mi is not replaced
by its subtype m j .

Contravariance Subtype Rule. The contravariance
subtype rule has been discussed by Cardelli in
[7]. Given two methods m\ and m 2 , where m\ :
(X —> Y) and m 2 : (X1 —> Y') , m a isa m 2

means tha t X is a supertype of X' and Y is a sub-
type of Y'. By contravariance subtype rule, type
safety is provided in late binding. In this čase,
m 2 may be substituted by m\. Then, during late
binding, if an object x' 6 X' instead of x G X is
taken to match the m\ signature X — • Y, since
X is a supertype of X', any object taken from
X' must have ali properties that x G X has, so
no run-time type error could possibb/ happen. In
brief, a method m 2 : (X' —> Y') can be gener-
alised to m,\ : (X —> Y) when contravariance
subtype rule is applied.

E x a m p l e 2 Let us consider an ezample where
X — Person and Y = Lecturer, X' = Študent
and Y' = Staff. If mi is replaced by mi, then
ali the calls previously to mi are now calls to
mi. Since Person is a supertype of Študent and
Lecturer is a subtype of Staff, this replacement
is acceptable, in the sense that mi reguires less in
formation as its input type of Person and returns
more information as its output type of Lecturer.
Apparently, any previous calls to mi will be ac
ceptable to mi because the signature of mi actu-
ally specifies more information than is required by
the signature of mi. During late binding, if either
an actual argument s with the type Študent or p'
with the type Person is bound to the formal argu
ment p with the type Person, there is no run-time
type error because s actually provides redundant
information for p and p' is compatible to p.

Covariance vs. Contravariance. The covariance
subtype and the contravariance subtype rules are

262 Informatica 18 (1994) 257-275 Z. Tari & X. Li

mutually exclusive. That is, if a system adopts
the covariance subtyping, it will give an error
whenever the redefined domain (left) part of the
method signature violates this rule of the covari
ance subtyping. A similar situation happens to
a system that adopts the contravariance subtype
rule. When the redefined domain (left) part of the
method signature is not a supertype of the domain
it is redefined from, an error is issued. Many exist-
ing systems use only one of these rules: Eiffel for
example ušes the covariance rule. However in gen
eral none of the existing systems support method
evolution. In fact, the covariance and the con
travariance subtype rules are applied under the
following circumstances:

— When a method is altered, the relationship
or consistency with other methods needs to
be reconfirmed.

— When a method is called in a context sensi-
tive situation such as pointer dereferencing,
overriding, or overloading, in which late bind-
ing is invoked, the method signature needs to
be matched with the actual arguments.

We are concerned with a combination of these
two rules in the context of the method migra-
tion. The method migration can be performed in
two directions: specialisation and generalisation
(section 7). The combined rule is an exclusive
ored of covariance and contravariance subtype
rules. So, either one of the rules is allowed to be
applied on a method but not both. The distinc-
tion between the use of these two rules is based
on the semantics of method evolution which is de-
tailed in section 7. By applying either the covari
ance rule or the contravariance rule, methods are
specialised or generalised. The type safety then
relies on consistency checking in the presence of
late binding. This is also detailed in section 7 and
a run-time exception handler for this idea is to be
discussed in future work.

4 University Example

This section describes an example of an 0 -0 ap-
plication relating to a university environment (see
Figure 1). This example will be used to illustrate
the method alteration within an 0 -0 schema as
well as consistency checking. Booch [5] notation

is used for showing the class diagram. Dashed
icons represent the classes, such as Subject and
Course. Every class has three types of informa-
tion: the name of the class, the set of attributes
(properties), and the corresponding methods that
are used by the objects derived from that class.
Classes are connected with different types of re
lationships - aggregation and inheritance relation
ships. The former are represented graphically as
a line with a plain boulet at the beginning of the
relationships. For instance, the class Course has
coursejname, tirne, plus a reference to Subject as
attributes. This reference expresses the aggrega
tion relationship that contains the class Subject.
The other relationship, graphically expressed as
a directed arrow, expresses the inheritance rela
tionship between classes. For instance, there is
an inheritance relationship between the classes
FullTimeL and Lecturer which expresses the
fact that a fnll tirne lecturer is a lecturer.

Report V
~) clash_report()
/ x ti me_table_report()
^ ^ study_report()

)Print()

/
\
)

(Subject
/ unit_code()

<-" printO
^ f i n d g ^

Figure 1: The Class Diagram

The above class diagram contains information
that is required for design purposes. However, for
the evolution of the method, other types of knowl-
edge, such as the relationships between methods,
should be declaratively specified. These kinds
of relationships are called calling relationships,
and these model the calling dependencies between
methods. Calling relationships aregenerally parts
of the implementation part of methods. In our ap-
proach we will provide additional data structures
that allow the declarative specifications of such

EVOLUTION OF METHODS IN OBJECT SCHEMA

calling relationships.
Let us consider the example of Figure 1 to show

the advantages of the use of calling relationships
for method evolution purposes. For instance, the
method allocation() of the class Course, denoted
as Course.allocation(), refers in its implementa
tion to the method Subject.find(). This call
ing relationship between Course.allocation() and
Subject.find() means that C ourse.allocation()
may have to be modified when Subject.find() is
changed. This relationship will be declarativelv
represented in appropriate data structures and
then used as a basic "piece" of information during
the evolution of methods.

5 Method Schema

Definitions and notations are proposed in this sec-
tion to prepare the formalisation of methods. Ba
sic definitions of graphs, class inheritance hierar-
chy, and method schema are given. Notations for
the relationships between methods are described.

A graph G is defined as a tuple < N,E > where
N is a set of nodes and E is a set of edges. Every
edge describes a relation between two nodes. A
directed graph is a graph in which every edge is an
asymmetrical relation. A directed acyclic graph
G=< N,E > is a directed graph without cycles.

The class inheritance hierarchy of an 0-0
schema is a directed acyclic graph < C, E >,
where C is the set of classes and E is set of isa
relationships between classes. Given a class c and
a method m, the method m in c is identified by
cm which is called the method identifier.

A method schema describes ali information. re-
lated to methods of a schema. It represents the
behaviour part of a schema and it is represented
as a tuple in the form of < C, M, ID, I > in which

- C is the set of ali class names,

— M is the set of ali method names,

— ID is the set of ali method identifiers,

- I is the inheritance hierarchy defined over C.

The class inheritance hierarchy of an 0 -0
schema is a directed acyclic graph <C,E>, where
C is the set of classes and E is the set of isa rela
tionships between classes. Polymorphism allows
a class' method to be redefined in its subclasses.

Informatica 18 (1994) 257-275 263

Thus given a class c and a method m, we iden-
tify the method m in c by cm which is called a
method identifier. An attribute set A is defined
as a set of functions, A = F: B—>T, where

- B is a set of attribute names.

- T is a set of ali types.

- F is a set of functions that map between at
tribute names and types.

- A is the set of ali attributes, denoted by A =
{a|a = b:t, where beB, t e T } .

Refinements are needed for the above nota
tions, such as the functions that map attributes to
classes and map attributes to method signatures
etc. These are omitted because they are not in
our focus. Square brackets [] are used to deUmit
the notations. Given classes c, c', and c", and
methods m, m', we denote by

[c t c']: c is a subclass of c'.

[cm l c'.m']: the method m of the class c calls
the method m' of the class c'. Or we may say
that c'.m' is expected by cm.

[cm —> c'.m]: the method m in the class c is
redefined from the class c', where c t c' and
/9c" such that m is defined in c", cm —•
c".m and c' f c".

[a < a']: a is a subtype of a', where a = b : t;
a' = b': t'; a, a' G A; 6, b' E B; t, t' G T; and
t is a subtype of t'.

[m <cv m!]: method m is a subtype of method
m' satisfying the covariance subtype rule.

[m <ct m']: method m is a subtype of method m'
satisfying the contravariance subtype rule.

[m@m']: m is bound where m' is expected. This
implies that m' is replaced by m.

[m o m']: the message sent to m is received by
m' due to the late binding. This means that
the actual arguments of m are to be matched
with the formal arguments of m' because m'
is bound.

A method consists of two parts: the definition
part and the implementation part. The former is
in the form of cm : (S —> t) where c is a class

264 Informatica 18 (1994) 257-275 Z. Tari k X. Li

name; m is a method of the class c; S is a list
of input attributes of the method; and t is the
resultant attribute of the method. The function
S —* t is the signature of the method. Note that
the arrow "—•" has an overloaded meaning with
that of the method redefinition notation in section
5. However, in the context of our discussion, there
should be no ambiguitv. When methods are over
loaded, the same name is declared for different
methods in the same lexical scope. However they
are distinguished on the basis of the mimber and
types of their arguments. When it is necessary,
a svstem may need to refer to the signature of a
method to distinguish between overloaded meth
ods. Figure 2 describes a graphical description of
a method. The implementation part is the body
of the method and this is represented in the form
of c.m(P,Q,R,U), where

— P is a set of attributes local to m in c and
may be used as actual arguments to call other
methods.

— Q is a set of constraints on the method input
attributes (i.e., formal arguments). They are
predicates specifying the pre-conditions be-
fore the method is executed. The variables
of the predicates are taken from the signa
ture S.

— R is a set of predicates specifying the post-
conditions after the method is executed.

— U is a set of methods directly called by cm.
Elements of U can be expressed by method
identifiers with the signatures which are sub-
stituted by the attributes from P or S.

.
•

"

p u

Q(S) R(t)

Figure 2: Graphical Representation of a Method

In an 0 -0 schema, a class is deflned within
an inheritance hierarchy. A method as a prop-
erty of a class may be inherited from that of
its superclasses. By polymorphism, a method
may also be redefined in subclasses with the same
method name(s) as that of its superclass(es). Ev-
ery method is involved in two orthogonal hierar-

chical structures: the method definition directed
acyclic graph (DAG) and the method dependency
graph (MDG). The former is a graph which mod-
els the inheritance relationships between meth
ods, while the latter models the calling relation
ships. These graphs are deflned as follows:

Definition 1 (Method Definition)
Given a method schema < C,M,ID,I > and
a method m of M, the method definition di
rected acyclic graph of m is a graph DAG(m)=<
C',E' >, where

— C = {c'\c' G C, and m is declared in c'}

- E' = {e'\e' : c'.m —• c".m luhere c' G
C", c" e C , m G M, c'.m G ID,c".m G ID}.

When context is clear, we may mention DAG
for DAG(m).

Object.print

Lecturer.print TimeTable.print Subject.print

PartTimeL.print

Figure 3: The Method Definition DAG of print

Note that a node with only incoming arrows of
a DAG indicates the common definition. Ali other
kinds of nodes of the graph indicate the redefini
tion of methods. Figure 3 describes the DAG of
print method which has the following structure:
DAG(print)=< C',E' >, where

— C = {Object, Lecturer, TimeTable,
Subject,Report}

— E' = {Lecturer.print—»Object.print,
Subject.print—»Object.print, Report.print —•
TimeTable.print,TimeTable .print —•
Object.print}

Definition 2 (Method Dependency Graph)
Given a method schema < C, M, ID, I >, a class
c of C and a method m of M, the method depen-
dency graph of cm method represents the meth
ods of M uihich are linked to cm by the call
ing relationship. This graph is in the form of
MDG(cm)=< ID',E' >, where

EVOLUTION OF METHODS IN OBJECT SCHEMA

- ID' = {c'.m'\c'.m' £ ID, and cm i c'.m' or
3 c".m" € ID' such that c".m" j , c'.m'}

- E' = {e\e : c'.m' i c".m",c' G C,c" G
C,c'.m' eID\cv.m" elD'}.

When contezt is clear, we may mention MDG for
MDG(c.m).

t TimeTable.TimeTable

Report.Report Report.clasti_report TimeTable.clash TimeTable.print

\ Reporueach_report TimeTable.allocation

Figure 4: Method Dependency Graph of
Report.Report

Figure 4 shows the method dependency of
Report.Report. This is presented in the follow-
ing form: MDG(Report.report) = < ID',E' >,
where

- ID' = {Report.Report, TimeTable.TimeTable,
Report.clashjreport, Report .teachjreport,
TimeTable.clash, Teach.allocation,
TimeTable .print}

- E' = {Report.Report J. TimeTable.TimeTable,
Report.Report (

J. Report.clashjreport, Report.clashjreport J.
TimeTable. clash,TimeTable. clash j
TimeTable.print, Report.techjreport j
TimeTable.clash, Report.teachjreport J,
Teach.allocation}.

With ali the concepts introduced in this sec-
tion, the semantics of a method can now be rep-
resented as a single concept: namely method in-
tension. It is an integration of ali the information
related to a method. A method intension contains
the identifier, the signature, the implementation,
and the two graphs based on method definition
and method dependency.

Definition 3 (Method Intension)
Given a method m of a class c, the semantics of
c.m is defined by the tuple INT(c.m) = < cm :
S —*t, cm(P, Q,R, U), DAG{m),
MDG(c.m) > tvhere,

— cm is the method identifier;

— S—>t is the signature of cm;

Informatica 18 (1994) 257-275 265

- cm(P,Q,R, U) is the method implementation
of cm;

- DAG (m) is the method definition DAG de
fined over cm; and

- MDG (cm) is the method dependencv graph
of c m.

The next section introduces the syntax of
method-changing operations using the defmitions
and notations presented in this section as well as
those concepts described in previous sections.

6 Syntax of the Method
Evolution Language

The evolution of a method may be performed
by different operations on a schema. These op
erations are: the deletion of a method, the in-
sertion of a method, and the modification of a
method. Our approach considers only two basic
method-changing operations of deletion and in-
sertion. The method-changing operation should
be coded as a transaction to combine elementary
operations into a single method-changing opera
tion. For instance, the modification of a method is
described as a transaction of deletion followed by
an insertion. The moving operation is regarded
as a composition of deletion and insertion opera
tions as well. Consistency checking is done after
the transaction. Within a transaction, a virtually
deleted method can stili be accessed. This sec
tion discusses the syntax of the method-changing
operations and emphasises what can be changed
rather than how it can be changed.

Method-changing operations refer only to lo-
cally defined methods rather than those references
inherited via the class inheritance hierarchies.
In other words, the method-changing operations
can only be performed on those existing meth
ods which can be found in DAG(m), mgM. Oth-
erwise, an insertion operation of method m will
create a new DAG(m). For instance,-according to
the schema of Figure 1, the class FullTimeL in-
herits the method print() from the class Lecturer
but does not modify it since the method print is
not locally declared within the class FullTimeL.
This aspect will be detailed later.

Bearing in mind the fact that a method can
be changed by designing a transaction consisting

. 266 Informatica 18 (1994) 257-275 Z. Tari & X. Li

of only two basic method-changing operations, a
method can be changed by the following opera
tions:

A. Deletion

1. Deletion of a class: the class is deleted
and ali its methods are implicitly deleted
as well.

2. Deletion of a method: the method is
deleted explicitly from a class.

B. Insertion

1. Insertion of a method with a new class.

2. Insertion of a method within an existing
class.

C. Modification

1. Modification of the name or the signa-
ture of a method.

2. Modification of the implementation of a
method.

3. Modification of both the definition and
the implementation of a method.

The proposed set of operations may be reduced
to a minimal set. For instance, a method can
be deleted explicitly from a class or deleted im-
plicitly due to the deletion of a class. The im-
plicit deletion is sequenced within a transaction
into two distinct operations: the deletion of ali
methods defined within the class, and the deletion
of the class. Similarly, the insertion of a method
may occur with two distinct operations: the in
sertion of a new class followed by the insertion
of the method. Since the structural evolution of
a schema is not addressed in this paper, the in
sertion and the deletion of a class will not be dis-
cussed. Consequently, the set of method-changing
operations is reduced to the situations A-2, B-2,
C-l and C-2. The syntax of the method evolution
language is the following.

method_changing_operation

::= <deletion>l<insertion>l<modification>

deletion

::= delete_method (<method_identifier>)

method.ident if ier

:= <c>.<m>

:= <class name where m is defined>

:= <name of the method>

:= insert_method (<method_definition>,

<method_implementation>)

method_definition

::= <method_identifier>

[:<method_signature>]

method_s ignature

::= <input_type> -> <output_type>

method_implementation

::= <method_identifier> <method_body>

method_body

P :

Q :
R :
U :

:= ([<P>,<Q>,<R>,<U>])
:= {<local_variables>}
:= {<pre-conditions>}

:= {<post-conditions>}

:= {<method_identifiers>}

modification

::= <modify_definition>I

<modify_implementation>I

<modify_method>

<modify_def inition>

::= modify_def ([<method_definition>],

<method_definition>)

<modify_implementation>

::= modify_imp ([<method_implementation>],

<method_ implementat ion>)

<modif y_method>

::= modify_mtd ([<method>],<method>)

<method>

::= (<method_definition>[,<method_body>])

The <modify_method> may be seen as
a generic operation to <modify_def> and
<modify_imp>. The <modify_method> can also
be used as a generic method for moving and
copying operations. Using the above syntax for
method evolution, a method cm may be updated
as follows:

Insertion

syntax: insertjmethod(c.m : (S —>
t),c'.m())

semantic: This operation inserts m in
c. The body of m is copied from the
method with the same name in c'.

example:
insertjmethod(Lecturer.find : (c :
char —> find : char),Subject.find())

Deletion

C

m
insertion

— syntax: deletejmethod(c.m)

— semantic: This operation deletes the
method m from the class c.

— example:
deletejmethod(Course.allocation)

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 267

Modification of the name

— syntax: modify.def(c.m, cm')
— semantic: This operation changes the

name m into m'. This is interpreted as
a transaction which deletes m and is fol-
lowed by the insertion of m'. Since the
modification operation is a transaction,
the deleted m remains accessible from
m'. The new method m' has the same
signature and the same body as m.

— example:
modify-def(Subject.find, Subject.search)

Modification of the signature

— syntax: modify.def(,cm : (S' —> t'))
— semantic: This operation is regarded as

a transaction which firstly deletes cm.
Then, a method is inserted with the
same name and with the specified sig
nature. When the context is clear, a
comma in the command indicates that
the method before the comma has the
same identifier as the method after the
comma.

— example:
modify.def(, Report. Report: (S—»• t))
The details of S and t ought to be given.

Modification of the body

— syntax:
modify-imp(cm, c.m(P',Q',R,,U'))

— semantic: This operation modifies the
body of cm.

— example:
modify-imp(Student.print,
Študent.print(P', Q', R', U'))
The details of P', Q', R', U' ought to be
given in practice.

The proposed method-changing operations are
arbitrary and may possibly result in compile-time
or run tirne errors. These errors can be detected
or handled at various stages by a recompilation
trigger mechanism or by a run-time exception
handler. The focus of this paper will be on the
development of algorithms that are applicable to
these stages, in order to produce methods that
are type safe and behaviourally consistent.

Informally speaking, run-time errors are those
situations that can disrupt the execution of
methods. Some run-time errors are machine-
implementation dependent. In this čase, the run-
time errors report abnormal situations of the pro
gram execution environment such as arithmetic
overflows, memory, disk, communication, and file
management failures. However, due to overrid-
ing, overloading, and later binding, many run-
time errors are caused by method updates. These
include subtype mismatches during late binding,
violations of domain constraints, or some abnor
mal arithmetic errors. The major problem to be
dealt with is type mismatch errors during run-
time. The pre-detection of the run-time type er
rors is not a trivial problem.

Additionally, methods should be defined as
side-effect free. In fact, the specifications of
method pre/post conditions give a means to en-
sure that the expected behaviours are performed
at the implementation stage. When a method
is not side-effect free, a global variable, or an
object in the database, may be changed by the
method without a passing of method arguments.
In our approach, it is important to the evolu-
tion handling mechanism to maintain side-effect
free methods, especially when a method is sub-
ject to intensive calls or massive data updates in
a database.

7 Behavioural Consistency

This section develops a mechanism for han
dling method-changing operations and consis-
tency checking. For that, the concept of method
scope is introduced. This is defined as a set
of integrated graphs and a set of method inten-
sions. The method scope represents ali the in-
formation about the methods contained in an 0-
0 schema. Algorithms for building the method
scope are given and strategies for method con-
sistency checking based on the method scope are
described.

7.1 The Semantic of M e t h o d
Changing

The consistency of method behaviour can be seen
as the possibility of calling the method and ob-
taining the expected results. Inconsistent situa-

268 Informatica 18 (1994) 257-275 Z. Tari k X. Li

tions are run-time type errors, side-effects, redun-
dant methods, and unexpected behaviours, such
as (1) - (4) described in section 1. In the following
subsections, we discuss various aspects of the se-
mantics of method changing. In subsection 7.1.1,
method migration, as a special čase of method
changing, is presented. The type safety in this
čase is provided by the migration rules. Subsec
tion 7.1.2 develops the behavioural consistency.

7.1.1 M e t h o d M i g r a t i o n

When a method is changed using the operators
discussed in section 6, it can happen in many
different ways. One common situation is that
methods may be migrated between super and sub-
classes. This is called migration by either spe
cialisation or generalisation. The operation of
the method migration may be constructed as a
transaction of a deletion followed by an insertion.
With the method migration, the type-safety prob
lem concerns tha t : (1) the signature of a method
may be changed; (2) a message may have an
unexpected receiver i.e., a method from its su-
per/subclass is bound. Another issue regarding
the behaviour of migrated methods, such as the
consistency of modified pre/post conditions, will
be covered in the following two subsections.

Two rules, covariance subtype rule and con
travariance subtype rule, play an important role
in the checking of type safety. Based on these two
rules, we shall examine two specific late binding
situations.

1. Method generalisation: this means that a
method with the supertype of its input at-
tributes is used where its subtype is expected.
For example, a method n%\ : (Person —*•
Lecturer) may be used where a method
rn<i : (Študent —> Person) is expected.
Here Študent is generalised to Person and
Študent is surely acceptable to Person be-
cause at run-time, type Študent can always
be safely generalised to type Person. How-
ever, the result type Person is changed to
the type Lecturer. This substitution satis-
fies the contravariance subtype rule. Fig.5
illustrates this idea. The dashed arrows in-
dicate the subtype relations and the curved
solid arrow indicates tha t the method mi is
generalised to the method m\.

mi: Person +~ Teacher

x n-j?: Študent +~ Person
Figure 5: Method Generalisation

2. Method specialisation: this means tha t a
method with the subtype of its input at-
tributes is used where a supertype is ex-
pected. For example, a method 7713 :
(Študent — • Študent) may be used where
a method 7B4 : (Person — • Person) is ex-
pected. In this čase, Person is specialised to
Študent. Surely, at run time, only messages
sent to the object with m^ can be bound with
type safety. When the late binding mecha-
nism tries to bind a message sent to the ob
ject with 7714, a run-time type error (Person
does not match with Študent) is detected.
This is illustrated by Figure 6. The dashed
arrows indicate the subtype relations and the
curved solid arrow indicates tha t the method
m^ is specialised to the method m$.

s m* Person • Person

^ rr3: Študent *- Študent

Figure 6: Method Specialisation

Updating a method either by generalisation
or specialisation offers a general framework for
method migration as well as for type safety. The
following definition completes the previous dis-
cussions by integrating the specialisation and the
generalisation rules.

Def in i t ion 4 (Migration Rules)
In summarv, the migration via generalisation or
specialisation is said to be type safe if

— a method is generalised, or

— a specialised method is not to be bound to the
method of its supertype.

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 269

7.1.2 Behavioural Consistencv

In addition to the type safetv problem, the other
issue is behavioural consistencv which is a funda-
mental aspect of method evolution. This relates
to the capabilitv to produce correct behaviour ap-
plications in the sense that they reflect the as-
sumptions of the real world. However the prop-
erties of behavioural consistencv are difficult to
identifv and views on consistencv have been given
by many other works. The type safety problem
can be regarded as a sub-issue of consistency. We
now give a definition of behaviour consistency by
taking into account ali of the modifications of ev-
ery part of a method.

Definition 5 (Behavioural Consistency)
An 0-0 database schema is behaviourally consis-
tent if and only if it satisfies the follouiing condi-
tions:

— The behaviour of a method m in a class c is
prescribed by c.m:(S—>t) and c.m(P,Q,R,U).

— The relationships among methods are de-
scribed in DAGs and MDGs.

— There are no such conseauences caused di-
rectly by the method-changing operations, as

In a given method schema
H - < C, M, ID, I >, a method c.mGlD with
c.m:(S—>t) and c.m(P,Q,R,U) as the definition
and the implementation parts, can be updated
using the proposed method-changing operations.
The principles of behavioural consistency check-
ing are that:

1. Any arbitrary method changing is allowed.

2. The consistency checking is a decidable prob
lem if the method intensions {INT(c.m)|
c.mGlD} are given. This is mainly because
of the following:

— Ali INTs have limited sizes.

- Ali effects of method-changing opera
tions are reflected in INTs.

- The effects of method-changing opera
tions have finite states.

- The checking algorithms are designed
based on the searches and comparisons
of INTs' states.

Thus the method consistency checking prob
lem can be abstracted as a problem space
that has a limited size, with finite states, and
a set of search algorithms.

3. When a method cm is changed, INT(c.m)
becomes INT'(c.m') which may be empty if
c.m is deleted.

4. The checking criteria are used to check the
following situations:

- the signature of c.m is type-consistent
within MDG(c.m).

- the signature of c.m is consistent with
regards to the redefined methods within
DAG(m).

- there are no two methods c'.m' and
C".TO" such that they have identical sig-
natures and pre/post conditions.

- there is no such method intension
INT(c".m") such that the pre/post con-
dition P " and Q" of c".m" are false in
any čase of calls within the graphs.

- ali the c.m{P, Q,R,U) in INT(c.m) are
checked using MDG(c.m). The princi-
ple of the checking is to adopt the Hoare
rules [10] to check method correctness
and method calling consistency, and to
satisfy the matches between the formal
and actual arguments (i.e., the substitu-
tion of signatures by the input or local
attributes for the called methods). The
migration rules are to be checked and
the following rule is also used to check
the signatures:

if c.m i c'.m' G MDG(c.m)
then Ve'.m' G U,U C ID, S' U {t'}

C P U S U {t} A R D Q'
- if c.m is deleted, then INT(c.m)

should be deleted too. For any other
INT"(cn.m"), where c.m appears either

- run-time type errors
- side-effects
- redundant methods, i.e. methods that

have the same signature and the same
implementation

- unexpected behaviour, i.e. pre/post con
ditions cannot be satisfied.

270 Informatica 18 (1994) 257-275 Z. Tari k X. Li

in DAG(m") or in MDG(c".mn), cm
should be deleted from the DAG(m")
and the MDG(c".m"). Then, the con-
sequent deletions are checked in terms of
the above mentioned criteria.

Given a class c and a method m of that class,
a scenario of the method-changing and the be-
haviour consistencv checking is that

- a method-changing operation is defined on
cm.;

— the consistencv checking procedure ušes
INT(c.m) and other related INTs;

— a method-changing operation is rejected if ei-
ther errors are found or a warning message is
issued with the acceptance of the operation;

- an audit report on the operation is given.

In section 7.2 we develop appropriate data
structures for handling method evolution. This
is called method scope, and algorithms for consis
tencv checking are provided in section 7.3.

7.2 M e t h o d Scope

In order to check inconsistencv, method intensions
which carry the semantics of methods including
the changes on the methods are used as the basis
of checking. The checking procedure may refer
to many different method intensions for deciding
consistencies amongst methods. Indeed, a global
view on methods is needed to optimise the check
ing strategies. For that reason, the concept of
method scope as the integration of ali method
intensions is introduced. Since there may ex-
ist several method intensions such that they ali
share the same DAG, DAGs are integrated as a
global DAG(M) in the method scope. On the
other hand, MDGs are integrated as MDG(ID)
because an MDG may be a subgraph of some
others. MDG(ID) is not necessarily a connected
graph since there may be some methods which
do not call each other at ali. The connectivity of
MDG(ID) is not an important issue since it is not
necessary that a method must call another one
within a schema.

Definition 6 (Method Scope)
The method scope of a method schema <C,M,ID,
I> is a tuple which consists of integrated graphs

and method intensions. It is defined as SCOPE
= <C,M,ID,DAG(M),MDG(ID)IINT> where,

- DAG(M) = \JmeMDAG(m)

- MDG(ID) = U c . m e / C MDG(c.m)

- INT = {INT(c.m)\c.m £ ID,c £ C,m e
M}

We may treat the SCOPE as a generic class.
The algorithm we proposed (algorithml) builds
up the instances of SCOPE gradually with the
development of a method schema. Initially, the
SCOPE is empty. Then, when a method is added
to a schema, an INT(c.m)is created in the SCOPE
for cm. When a method is deleted, the INT(c.m)
will be deleted from the INT and the SCOPE
is modified accordingly. The operations on the
SCOPE should be in transactions and be coupled
with consistency checking. When a check fails,
the transaction should roll back. Particularly,
when

- m is added in c, then m is used to search
for the DAG(m). If there is no DAG{m)
found, then a new DAG(m) is created. Oth-
erwise, the cm will be added into a DAG(m)
according to the position of c in its inheri-
tance hierarchy. Consequently, DAG(M) is
also modified.

- m is added in c, since every method is also
associated with an MDG, MDG(c.m) will
be created and MDG(ID) consequently up-
dated. This process of building MDG(ID)
follows a bottom-up pattern, which means
that every method must be in existence be-
fore it can be called.

- cm is dropped from a schema, the cor-
responding INT{cm) including DAG{m)
should also be modified or deleted.

The maintenance of the method scope is cou
pled with method-changing operations. The
above algorithm is incorporated with the consis-
tency checking algorithms 2, 3, 4, and 5. Con-
sidering the complexity of the algorithm, it is in
0(n2) where n is the size of the problem space. By
evaluating the size of DAG(M) and MDG(ID), n
can be decided as the product of the number of
classes multiplied by the average number of meth
ods and then multiplied by the average number of

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 271

attributes of a method. Since the algorithms dis-
cussed in this section are ali basically search algo
rithms based on directed graphs, the complexity
analysis for the each of the following algorithms
is exactly same as 0(n 2) .

7.3 Semant ic Consis tency Checking

Unexpected behaviours of methods are the activ-
ities performed by methods which are not speci-
fied by the method declarations. The update of
one method may cause changes in the behaviour
of other methods. It is crucial to the checking
of behavioural consistency that each method is
guarded by its signature and its pre/post condi-
tions. However, since a method may call other
methods via a class inheritance hierarchy or just
from other classes, the relationships amongst
methods need to be constructed. In order to
achieve that, the following information about a
method is needed:

— the signature,

— the pre/post conditions,

— the local attributes that may be passed as
actual arguments to the called methods in
the MDG, and

— the identifiers of methods called.

To ensure behavioural consistency, a two-level
checking strategy is proposed. The first level of
checking concerns the prevention of run-time type
errors and side effects. This is performed mainly
on DAGs. The second level of checking relates
to the unexpected and redundant behaviours of
methods. This is performed mainly on MDGs.
These levels are complete in the sense that they
involve ali possible situations of the consistencv.
Here we describe these two levels in terms of the
method-changing operations.

7.3.1 Method Insertion

When a method m is inserted in a class c, the
two levels of checking will be carried out. For the
first level, INT(c.m) is created and used to check
the consistency of the names and signatures of
m. We informally describe the algorithm for this
level, i.e. algorithm 2. This algorithm checks the
following conditions:

% Algorithm 2 (Level-1 Insertion Consistency Check
ing on DAGs) %

1. c exists in the schema; In the čase of over-
riding, methods are distinguished by the
method identifiers with different class names.
In the čase of overloading, methods are dis
tinguished by the method identifier plus the
signatures. This implies that an INT(c.m)
may represent a group of methods which are
overloaded.

2. There is no c'.m—>c.m which exists in
DAG(m) such that c"fcel. This is to ensure
that there is no method redefined from c m
before cm is inserted. It can be seen that
the acyclicity of DAG (m) is also ensured by
this condition.

3. The signature of c.m:(S —• t) is compatible
. with those methods in DAG(m). The com-

patibility of signatures is defined as follows:

Vem—^c'.m G DAG(m), such that c|c ' and
c.m:(5 —> t), c\m:(S* —* t')

If S = si X s2 X s3 X ... X Sj and S' = s[X
5n X Sn X . . . X S L,

then

(i) si < s[,s2 d s'2,s3 < 4 , ...,
Sj ^ s'k,t <t' forj=k,

(ii) 5i < 5i ,s2 < s'2,s3 ^ s'3, ...,
s j -^ s j , t d: t' for j < k,

(iii) st ^ s[,s2< s'2,s3 <s'3,...,
Sk ^. s'k,t < t' for j > k.

This definition actually defines the common
part of signatures to be checked. The pro
posed definition is composed of two rules,
namely, the covariance subtype rule and the
contravariance subtype rule. We check these
two rules as one čase because we are do-
ing two-level checking and any violation on
subtyping or mismateh on signatures will be
checked later. Particularly, for the covariance
subtype rule, which is regarded as situations
(i) and (ii) above (i.e., S •< S'), the mateh
with s'j+l,...,s'k will be checked later at the
second level where the MDG(c.m) is checked.
For the contravariance subtype rule which is
regarded as situations (i) and (iii) above (i.e.,
S' < S), the mateh with sk+i,...,Sj will be

272 Informatica 18 (1994) 257-275 Z. Tari k X. Li

checked later at the second level where the
MDG(c.m) is checked. The advantages here
are t ha t it allows arbitrary changes to be ap-
plied on the signatures of a redefined method.
Especially in the čase of multiple inheritance,
a method may be redefined from that of more
than one superclass. In this čase, the signa-
ture of the redefined method may only match
with the common part of that of its super-
classes and the non-common part is left to
be checked later within the method-calling
chains. This means tha t the violation of ei-
ther the covariance subtype rule or the con-
travariance subtype rule in the non-common
part of the signatures is not a problem un-
til the method is to be called. The bot tom
line is to support the overriding, overloading,
and later binding semantics. A method can
be called by many different methods in many
different situations (e.g., a method may be
used to replace one which is to be deleted in
the DAG, i.e., method migration).

4. There is no redundant method in SCOPE.
For a given INT(c.m), any INT(c' .m') in
SCOPE is checked in order to find:

- identical structures of DAG(m) with
DAG(m') , or MDG(m) with MDG(m');

- identical signatures of cm : (S —> t)
with tha t of c'.m' : (S' — • t'), i.e.,
S = S' and t — t', and identical pre/post
conditions P = P',Q = Q'.

The insertion of a redundant method will be
warned.

For the second level of consistency checking, al
gorithm S is developed to check the implementa-
tion part of the method INT(c.m). These are the
different steps of the algorithm:

% Algorithm 3 (Level-2 Insertion Consistency Check
ing on MDGs) %

1. For every c'.m' involved in MDG(c.m),
INT(c ' .m') is defined.

2. For any c" .m" |c ' .m ' G MDG(c.m), with
the method intension INT(c".m") and
INT(c ' .m') respectively, ensure that S'U{f }U
P " U S" U {*"} and check if R" D Q'.

Then, method migration rules (section 7.1)
are checked. After tha t , Hoare inductive as-
sertion techniques [10] should be applied here
to prove the partial correctness of the method
intensions in INT. This is to ensure that ali
post-conditions in a method-calling chain are
true, derived from the signatures and pre-
conditions of calling methods. The violation
of the covariance subtype rule and the con-
travariance subtype rule is dealt with here.

7.3.2 M e t h o d De le t ion

When the deletion of a method m from class c
is requested, as for the insertion of a method, the
two-level checking is carried out. At the first level
of checking, we develop an algorithm (algorithm
4) tha t checks the following aspects:

% Algorithm 4 (Level-1 Deletion Consistency Check
ing on DAGs) %

1. c m should be deleted from DAG(m);

2. either drops or reconnects the rest of nodes
in the graph. In particular, ali the successors
of c m may need to be reconnected with the
predecessor(s) of c m ;

3. checks the compatibility of signatures be-
tween the reconnected nodes.

At the second level, we develop an algorithm
(algorithm 5) tha t modifies the MDG according
to the methods which call c m or are called by
c m . Since MDG(c.m) disappears with the dele
tion of INT(c.m), MDG(ID) needs to be mod-
ified. Algorithm 5 ensures tha t ali references to
cm in MDG(ID) should be modified. This occurs
in two steps: (1) the modification of the caller
methods of c m , and (2) the modification of the
called methods of c m .

The following details the different steps of al
gorithm 5 in which the modifications of the caller
methods and the called methods are described.

% Algorithm 5 (Level-2 deletion Consistency Checking
on MDGs) %

A) The Modification of the Callers
The modification of the caller methods of c m re-
gards the set of {INT(c'.m')\c'.m' J, cm,cm G

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 273

c1.m1 c2.m2

\ /
c4.m4

c3.m3

v
C5.m5

c1.m1 C2.m2 c3.m3

\ /
c5.m5

Figure 7: Method Deletion

ID,c'.m' G ID}. There are two cases for mod-
ifying caller methods. In the first čase, the cm
may be replaced by a method in the DAG(m). If
this is not possible, then the alternative is to try
the MDG(cm) to determine a method to replace
cm. We give details as follows.

1. If c m is not a root node of MDG(ID),
ali methods previously calling cm now
have to call the successor of cm in the
DAG(m) according to c in the inheri-
tance path. This implies that the signa-
tures of ali the callers of cm have to be
checked against that of the successor of
cm in DAG(m). Assume for example that
Temporary and T empor ar y-Lecturer are
classes where T emporary-Lecturer is a sub-
class of Lecturer and Temporary. In this
čase if Temporary-Lecturer.print is deleted,
then Lecturer.allocation may have to call
Lecturer.print or Temporary.print accord
ing to the checking of the signature compat-
ibility and the resolution of the multiple in-
heritance conflict.

2. After the deletion of cm, if no replacement
of cm can be found from DAG(m) for the
callers of cm, the method intensions of aH the
callers of cm will have two choices: (a) the
reference (call) to c m is replaced by a succes
sor of cm in MDG(c.m), or (b) the reference
to cm is deleted from the caller's method
intension. This decision is made through
a user's interaction or by a predefined con-
straint. Otherwise, the deletion should be re-

jected. Assume a method cm is to be deleted
and there is no substitution that can be found
from DAG(m), then a situation may be left
for the user to make a decision (see Figure
7).

Figure 7 can be read as that: if c m is deleted,
then the modification on the MDG is arbitrary,
decided by a user or by some predefined con-
straints.

B) Modification of the Called
Now, let us consider the methods that are called
by cm, i.e. cm is a root node or has suc-
cessors in the MDG(ID). The modification on
the called method of cm regards the set of
{INT(c'.m')\c.m j c'.m',c.m G ID,c'.m' G ID}.
There are three ways to maintain the method
scope: cascade, nullified, and restricted.

1. Cascade. If there is no other caller to the
successors of cm, then ali the method in
tensions of cm successors will be deleted to-
gether with INT(c.m) unless there are some
predefined constraints preventing this (e.g., if
c.m|c'.m' and c^c' (c.mGlD, c'.m'GlD, cGC,
C'GC) then c'.m' cannot be deleted). In this
čase, a recursive checking for ali successors
will be carried out.

2. Nullified. Only INT(c.m) is deleted and
the set {INT{c'.m')\c'.rri { cm,cm G
ID,c'.m' G ID} is modified with c'.m! J.
cm being deleted. This leaves the set
{INT(c'.m')\c.m | c'.m',c.m G lD,c'.m' G
ID} untouched.

3. Restricted. The deletion of cm will be re-
jected if there is any caller of cm. In this
čase, the effect on the method scope is mini
mum. Again, the decision of restricted dele
tion is made through an interactive session
with a user or it is predefined as a constraint.

7.3.3 Method Modification

Method modification is a transaction of deleting
and inserting operations. Thus the checking of
the behaviour consistency can be different from
that of insertion or deletion only operations.

Within a transaction, a method is virtually
deleted and then inserted with changed parts.
The consistency checking is therefore made in two

274 Informatica 18 (1994) 257-275 Z. Tari k X. Li

steps. In the first step, the checking is made on
deletion: the reaction of the checking will be sup-
pressed. In the second step, the checking on in-
sertion is made and the reaction of the checking
is also suppressed. When the transaction is com-
pleted, ali suppressed checking reactions then will
be synthesised. A method-changing transaction
may roll back if the following conditions are not
satisfied:

— DAGs are stili acyclical.

— There is no redundant method.

— To prevent the run-time errors and side-
effects, signatures of methods in method def-
inition DAGs are checked for compatibility.

— MDGs involved in the transaction are ex-
amined in ter ms of the linkages between
pre/post conditions and there is no false re-
turned.

8 Conclusion
In this paper we addressed the development of a
framework for the evolution methods in object-
oriented databases. This involves

— the definition of the set of update operations;

— the development of appropriate structures to
represent the semantic of methods; and

— an approach and algorithms for consistency
checking.

Da ta structures, such as DAG and MDG, that
model the semantics of inheritance and calling re-
lationships are proposed. These structures are
used to check the consistency of a schema after
method updates.

However our approach lacks a better incorpora-
tion with the transaction model. In our approach,
if an update of a method occurs and causes some
inconsistent database states, then we automati-
cally roll back the transaction. We think tha t a
better facility, such as compensation transactions,
will improve our approach and put it in a real de
velopment environment.

A c k n o w l e d g m e n t

The authors gratefully acknowledge the com-
ments provided by the anonymous referees which
helped improving the readability of the paper.

References
[1] Abiteboul, S., Kanellakis, P., and Waller,

E.: Method Schemas. Proč. of the ACM
SIGACT-SIGMOD-SIGART Symp. on Principles
of Database Svstems, Nashville, pp. 16-27, 1990.

[2] Agrawal, R., DeMichiel, L.G., and Lindasav,
B.G.: Static Type checking of Multi-Methods.
Proč. of the Int. Conf. on Object-Oriented Pro-
gramming Svstems, Languages and Applications,
pp. 113-128, 1991.

[3] Atkinson M., Bancilhon F., et al: The Object-
Oriented Database System Manifesto. Proč. of
the Int. Conf. on Deductive and Object-Oriented
Databases, Kvoto, pp. 40-56, 1989.

[4] Banerjee J.W., Kim W., Kim H-J. and Korth
H.F.: Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. Proč. of
the Int. Conf. on Management of Data, San Fran-
cisco, pp. 311-322, 1987.

[5] Booch, G.: Object-Oriented Analysis and Design
With Applicants. 2nd Edition, Addison-Wesley,
1994.

[6] Canniing P.S., Cook W.R., Hill W.L., and Olthoff
W.G. Interfaces for Strongly-Typed Object-
Oriented Programming, Proč. Object-Oriented
Programming: Svstems, Languages and Applica
tions, pp. 457-467, 1989.

[7] Cardelli, L.: A Semantics of Multiple Inheritance.
Information and Computation, Vol. 76, Academic
Press, pp. 138-164, 1988.

[8] Clamen, S.: Schema Evolution Support Sum-
mary. Electronic news (group OBJECTS) in com-
puter network, posted by clamen+cs.CMTJ.EDU,
1992.

[9] Coen-Porisini, A., Lavazza, L. and Zicari, R.: The
ESSE Project: An Overview. Proč. of the Far
East Workshop on Future Database Systems, Kv
oto, Vol. 3, pp. 28-37, 1992.

[10] Hoare, C.A.R.: An Axiomatic Basis for Computer
Programming. Communications of the ACM, Vol.
12, pp. 576-583, Oct. 1969.

[11] Hull, R., Katsumi, T., and Yoshikawa, M.: Be-
havior Analysis of Object- Oriented Databases:
Method Structure, Execution Trees, and Reacha-
bility. Proč. of the FODO, Lecture Notes in Com
puter Science, No. 367, Springer-Verlag, pp. 3 72-
388, 1989.

[12] Meyer B., Ensuring Strong Typing in an 0-0
Language. Proč. of the Int. Conf. on Object-
Oriented Programming Systems, Languages and
Applications, 1992.

http://CMTJ.EDU

EVOLUTION OF METHODS IN OBJECT SCHEMA Informatica 18 (1994) 257-275 275

[13] Monk, S. and Sommerville, L: Schema Evolu
tion in ooDBs Using Class Versioning. SIGMOD
Record, 22(3), pp. 16-22, 1993.

[14] Penney, D.J. and Stein, J.: Class Modification in
the Gemstone Object-Oriented DBMS. Proč. of
the Int. Conf. on Object-Oriented Programming
Systems, Languages and Applications, Florida,
pp. 111-117, 1987.

[15] Roddick, J.F.: Schema Evolution in Database
Systems - An Annotated Bibliography. SIGMOD
Record, 21(4), 1992.

[16] Skarra A.H. and Zdonik S.B.: Type Evolution
in an Object-Oriented Database. In Research
Directions in Object-Oriented Programming, B.
Shriver and P. Wegner (eds), MIT Press, 1987.

[17] Waller E.: Schema Updates and Consistency.
Proč. of the Int. Conf. Deductive and Object-
Oriented Databases, 1991.

[18] Zicari, R.: A Framework for Schema Updates in
an Object-Oriented Database System. Chapter 7,
in Building an Object-Oriented Database System:
the Story of 02, Bancilhon F., Delobel C , Kenel-
lakis P., eds), Morgan Kaufmann, 1991.

Informatica.18 (1994) 277-298 277

INFORMATIONAL BEING-OF

Anton P. Zeleznikar
Volaričeva ulica 8, 61111 Ljubljana, Slovenia
a.p.zeleznikar@ijs.si

Keywords: axioms, Being-of, functional composition and decomposition, function, includedness,
informational, informational frame and gestalt, metaphysical gestalts, metaphysicalism, nested func
tional forms; serial, parallel, circular and metaphysical functionality

Edited by: V. Fomichov
Received: April 5, 1994 Revised: August 5, 1994 Accepted: September 5, 1994

Informational Being-of is another fundamental informational concept of functionality
in comparison with the informational includedness studied in [9]. It has its formal-
theoretical informational structure which is recursive, circular and spontaneous. In
formational Being-of can be studied in many aspects from which we chose basic axioms
concerning informational functionality, informational interpretations of formula <p |=0f a,
and phenomena of serial, parallel, circular informational functionality. Some advanced
problems of decomposition (destruction) and composition (construction) concerning in
formational functionality are treated. At the end, informational functionality of' meta-
physical cycles impacted by an exterior entity is studied and the so-called metaphysical,
gestalts concerning the informational Being-of are introduced. Informational gestalts re-
veal several problems of informational formula structuring, functional interdependence
and the like.

1 Introduction

Informational Being-of is the original term coined
in this paper1. In the common speech we say
that something is of something or is something's
something, for example, also in the context, to be
a property (a definite something) of something,
an information of information, in general, etc.
Further meaning can be deduced from that which
is comprehended as formal functionality (being a
function of something), where the function of the
function's argument is coming into presence.

Informational Being-of concerns the so-called
functionality of informational entities, that is ex-
plicit and implicit formulas of the kind y(a)
and (p |=0f OL, respectively, being informational
operands within the informational theory [4]. In
formational function is the basic and one of the
most powerful informational concepts which en-
ables the active informational role of an entity

1This paper is a private author's work and no part of
it may be used, reproduced or translated in any manner
whatsoever without written permission except in the čase
of brief quotations embodied in critical articles.

upon another (passive or active) entity. In this
respect, formula <p(ot) has to be informationally
determined in an informationally recursive and
arising manner, as a regularly informing operand.
Expression <p(a) symbolizes a system of informa
tional formulas in which several operands can de-
pend on argument a, for instance in the filled
metaphysical shell belonging to an entity. Defi-
nition 1 is the basic concept determining the in
formational function as a fundamental item of the
informational theory. In the last consequence (in
a concrete situation), formulas depending on a are
explained (informationally interpreted) by formu
las, in which a appears explicitly as an operand
and not in the functional form (operand-operator-
parenthesis formula).

Informational Being-of is in several informa-
tional-theoretical aspects a parallel and comple-
mentary construction to informational Being-in
[9]. It can in several respects be more com-
plex than informational Being-in. Both give to
the informational theory the power of extremely
complex functionality where active, passive, and
active-passive entities can be distinguished in a

mailto:a.p.zeleznikar@ijs.si

278 Informatica 18 (1994) 277-298 A.P. Zeleznikar

transparent way. The question is, for example,
what kind of functionality does the informational
includedness (which is a synonym for informa
tional Being-in) perform. Thus, informational in
cludedness can also be studied from this point of
view, that is, to be understood as a particular
čase of the informational Being-of. We will show
how such a view is righteous and has its roots in
the basic philosophy of an arising informational
theory.

2 An Initial Philosophy of
Informational Being-of

To be something of something pertains to the
meaning of the of as described, for example, in
[10], where it is written, among other meanings,
that from its original sense, of was used in the ex-
pression of the notions of removal, separation, pri-
vation, derivation, origin, starting-point, springof
action, cause, agent, instrument, material, and
other senses, which involve the notion of talk-
ing, coming, arising, or resulting from. Of means
from, away from; also down of, up of, and off of
when following an adverb, with which it is some-
times closely connected. Of indicates a point of
tirne from which something begins or proceeds,
the emergence out of which something is formed.
Of is used in certain phrases, which particularize
the meaning, as within of, wide of, back of, back-
wards of, etc. It expresses a property, possession
or appurtenance.

As an informational operator, the Of is con
nected with verbs (operational compositions, see
[7]), e.g., to recover, deliver, empty, free, rid of,
etc. The Of introduces that (</? as a function)
which is removed (deduced, inferred) from some
thing (a as a functional argument). There are
functional relations (informational transitions)
between the maker (argument a and the impact-
ing environment), its making (informing) and the
made (function <p as v?(Q!))- The Of expresses
racial or local origin, descent, etc. after the verbs
arise, be, come, descend, spring, be born, bred,
propagated, and the like. In informational lan-
guage, we already use informational arising of,
being of something and, further, coming into exis-
tence of and from, etc. The Of connects notions of
origin (cause, maker, generator) and consequence
(the made, result), where (p is a consequence of a

(and, possiblv, other entities) in ip(oc).
Metaphysical sense of the Of concerns oneself,

something informing by one's own impetus or mo-
tion, that is, spontaneously, without instigation
or aid of another or together with another entity
(this is the so-called metaphysical environment of
an informational entity). The Of indicates the
cause, reason (in reasoning), or ground (in un-
derstanding) of an intelligently acting, occurring,
informing, sensing entity, etc. It points to the in
formational agent or doer (e.g. the sub jective gen-
itive is a form <p(a) with the direct speech equiv-
alent a's (p, that is (p of a) .

The Of has a significant role in interpreta-
tion when a transformation is expressed from a
former (origin) situation into a new interpreta-
tion (cause-consequence). There are numerous
phrases in which the Of is figuring as a func
tional transition between entities, where it indi
cates the subject-matter of thought, attitude, or
action. Thus, it figures in the sense: concerning,
about, with regard to, in reference to, etc.

In regard to an informing entity a, a's inform
ing Xa is nothing else than a function of a, that
is, 2(a). In this sense we use Xa to enable a di
rect expression of the X„'s functionality, for ex-
ample, Ta(P), in which la is a function of (3. A
direct functional expression in this čase would be
I(o:)(/?). Thus, we must remind that the paren-
thetical sequence ')(' in a formula is nothing other
than afunctional connection (akind of functional
product, marked by ')*(', for example). Instead
of Xa(P), one could also take the so-called lin-
ear functional expression l(a,fl), where inform
ing I is a function of both a and (3. In this
manner, a functional informational entity (p can
depend on several informational arguments, e.g.
« i , «2, •••,<*„, that is (p(a-i,a-i,---,an).

The notion of mathematical function belongs
to the most essential constructs in mathematics.
If a function gets its argument of the appropriate
type then, by means of its own functionality (e.g.
algorithm, procedure, program), it produces the
'regular' (legitimate, well-defined) result. This
view (and technique) may be understood to be
the most naive one, that is the most simple, re-
ductionistic, and idealistic. Informational func-
tions (Being-ofs) will be determined within the
broadest informational realm, including the naive
(logical, calculational) formal constructions.

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 279

3 Basic Axioms and Definition
of Informational Being-of

In this section we have to study axiomatic prop-
erties of informational externalism, internalism,
metaphysicalism, and phenomenalism, pertaining
to the informational Being-of. We will also use
the term informational function of something in-
stead of informational Being-of.

Definit ion 1 [Functional Notat ions] We in-
troduce the folloming informational implications
which concern the informational Being-of:

ip(a) =$> O |=of a; a \= <p) or

<pa => (v |=of « ; " h <P)
 o r

(<p)(a) = » (ip\=ofa;a\=ip)

uihere <p is the functional informational entity and
a is the functional argument (variable). Infor
mational function <p(a) will be recursively defined
by Definition 2. Informational operator |=0f is
a functionally particularized operator \= with the
meaning "informs to be dependent on" or "in
forms to be a function of". •

Implication formulas in the last definition are read
as follows:

— <p(a): tp as a function of a implies that <p in
forms to be a function of a or that ip informs
to be an entity arising by the impact of a.

— <pa: <p subscript a implies tha t (p informs to
be a function of a or tha t (p informs to be an
entity arising by the impact of a.

— (<p)(a): <p as a complex entity depends on a
as a complex entity implies tha t <p informs to
be a function of a or that (p informs to be an
entity arising by the impact of a.

Definition 1 is informationally recursive in the
sense tha t the implicative property of functional-
ity can be nested (derived sequentially, serialized)
to an arbitrary depth.

A x i o m 1 [Functional External ism] A func
tion of the form <p(a), as determined by Defini
tion 1, informs externalistically in a regular way
[7], that is,

<p(a) = • (<p(a) |=)

vohere the right side of operator
structed in a parallel manner,

(*>(«) H
/VKf;

a |=;

(<p |=of a) C;

V (a | = ¥ >) C o f /

can be decon-

Function <p(at) informs by ali its components, <p,

&, <P (=of o and a\= <p. O

Functional externalism says:

— that in a part of externalism, ip \=0{, entity
(p can become a function of any (other) argu
ment, e.g. <p |=0f P (externalistic functional
openness);

— that functional argument a informs, tha t is
a \=, in a general manner (externalistic ar-
gumentative openness);

— that the functional transition (p \=0{ a in
forms includably in a general informational
way (externalistic includable openness of
functional transition); and

— tha t the argumentative transition a f=
>p informs in an of-includable (particularly
includable) way (externalistic of-includable
openness of argumentative transition).

As shown in [7], the next basic axioms are in fact
axiomatic consequences of Axiom 1. Let us see
these axioms!

A x i o m 2 [Functional Internal ism] A func
tion of the form (p(a), as determined by Defini
tion 1, informs internalistically in a regular way
[7], that is,

V(«) = * (N V(«))

where the right side of operator =3
structed in a parallel manner,

(h ¥>(«)) C (<p (=of a) ;
V Cof (<*\=(p)J

can be decon-

All components of function y (a) , that is, a, (p,
(p \=0{ a and a \= <p, are specifically informed
(operators (=0f, f=, C, and Coi)- O

280 Informatica 18 (1994) 277-298 A.P. Zeleznikar

We can observe a phenomenal informational sym-
metry between functional externalism and func
tional internalism. Functional internalism says:

- tha t in a part of internalism, |=Df ct, entity
a can become an argument of any (other)
function, e.g. ip |=0f a (internalistic argu-
mentative openness);

- tha t functional entity tp is informed, that is
|= tp, in a general manner (internalistic func
tional openness);

— tha t functional transition (p (=0f a is includ-
ably informed in a general informational way
(internalistic includable openness of func
tional transition); and

— tha t argumentative transition a \= tp is of-
includably (particularly includable) informed
(internalistic of-includable openness of argu
mentative transition).

A x i o m 3 [Functional Metaphys ica l i sm] A
function of the form tp(a), as determined by Defi-
nition 1, informs metaphysically in a regular way
[7], that is,

<p(a) ==> (tp(a) |= tp(a))

where the right side of operator
structed in a parallel manner,

(tp(a) |= tp(a))

can be decon-

a \= a;
(ep \=of a) C {<p \=ot a);

\ (a \= (p) Cof (a |= (p) j

Function tp(a) informs metaphysically by ali its
components, <p, a, <p |=Df a and a \= (p. D

Functional metaphysicalism is a significant prop-
erty of informational Being-of, since it enables
the metaphysical, tha t is, self-produetive informa
tional arising of the function. Functional meta-
physicalism says:

— tha t function tp can become a function of it-
self, tha t is ip |=0f <p (metaphysical functional
closeness or circularity);

— tha t functional argument a informs meta-
physically, tha t is a (= a, in a general man
ner (metaphysical argumentative closeness or
circularity);

— that the functional transition (p |=0f o in
forms metaphysical-includably in a general
informational way (metaphysical-includable
closeness or circularity of functional transi
tion); and

— tha t the argumentative transition a \= tp
informs metaphysically in an of-includable
(particularly includable) way (externalistic
of-includable closeness or circularity of argu
mentative transition).

A x i o m 4 [Functional P h e n o m e n a l i s m] A
function of the form ip(a), as determined by Defi-
nition 1, informs phenomenalistically in a regular
way [7], that is,

tp(a)
<p(a) |=;

where the right side of operator
structed in a parallel manner,

can be decon-

Nof«;
1= v;

\=tp(a) J "" (tp\=oi a) C;
C (tp |=of a);
(a \= tp) Cofi

V Cof (a N <p) J

Function tp(a) informs phenomenalistically by ali
its components, tp, a, tp J=0f a and a (= tp. •

By functional phenomenalism, the parallelism of
functional externalism and functional internalism
(including functional metaphysicalism in an im-
plicit manner) is explicitly introduced into the
functional game. Functional phenomenalism says:

- tha t functional phenomenalism informs and
is informed in a functional externalistic and
functional internalistic form which means:

- that in a part of externalism, tp |= o f , entity
tp can become a function of any (other) argu
ment, e.g. tp)=0f P (externalistic functional
openness);

- that in a part of internalism, |=0f a , entity
a can become an argument of any (other)
function, e.g. tp |=0f a (internalistic argu
mentative openness);

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 281

— that functional argument a informs, that is
a \=, in a general manner (externalistic ar-
gumentative openness);

— tha t functional entity (p is informed, that is
|= (p, in a general manner (internalistic func
tional openness);

— tha t the functional transition <p K f a in
forms includably in a general informational
way (externalistic includable openness of
functional transition);

— tha t functional transition ip K f oc is includ-
ably informed in a general informational way
(internalistic includable openness of func
tional transition);

— tha t the argumentative transition a \=
ip informs in an of-includable (particularly
includable) way (externalistic of-includable
openness of argumentative transition); and

— that argumentative transition a \= ip is of-
includably (particularly includable) informed
(internalistic of-includable openness of argu
mentative transition).

Definit ion 2 [Informational Function] Let
entity ip be an informational function of entity
a, that is, ip(a). This expression reads: (p is a
function of a. Let the following parallel system of
informational function (Being-of) be defined re-
cursively:

(<P K f a; \
a\=tp\

(ip (=of a) C (p;

V (a \= ¥>) Cof <pj

mhere, for the first informational includedness of
the formula, aceording to [9], there is

(<p \= (<p \=oi a); \

(ip K f a) (= <p;

O h (<P Kf ot)) C (p;
V((vNof«) N) c <p/

and, for the second informational includedness,
aceording to [9],

(<P K f (a [=¥>); \
(a |= <p) |=of <p;

(<P K f (a |= ¥>)) Cof <P\
\ i a h v) Kf v) Cof (p J

<p(a)

((ip K f «) C (p)

((a |= ip) Cof v)

This definition recursively determines the paral
lel informational mechanisms of the informational
Being-of, irrespective of the functional-nesting
depth.

Consequence 1 [Nes ted Informational
Functional Form ip(a(fl))] By means of Defi
nition 2 for an informational function, it is pos-
sible to deduce formula systems for arbitrarily
deeply nested informational functional forms. For
ip(a((3)), with the nesting depth dnest = 2, there is

(<p hof a(/3); \
a((3) \= V,

(ip K f «(/?)) C ^,

\W) \= <P) C* <P J

ip(a((3))

((<p\=ota(/3))C<p)^

/V 1= (v Kf «.(0)); \
(<p (=of a(/?)) |= <p;

(<p \= (<p K f «(/?))) c (p\

\&tp \=of a(/3))\=<p)c <p/

(K/3) \= <p) Cof ip) ^ •

/V h* W) 1= v); \
(a(/?) (= <p) f=of v?;
(y> K f («(/3) h v)) Cof y;

V (K/3) Nv) hof v) Cof v j
and within these formulas, for the nested func
tional component a(/3), there is,

/«Kfč; \
P\=a;
O Kf P) C a;

\ (/ ? f=a) C o f « /

a(/3)

where

((« Kf / ?) C «) -

/ a (= (a K f / ?) ; \
(a Kf /?) h «;
(a h (« Kf /3)) C a;

\((«K/5)N«)c«/
and

D'

((/? h ") Cof a) ^

/ a > 0 f (/ ? h «) ; \
(/? \= a) |=of « ;
(a K f (/? (= «)) Cof a;

V((/?ha) Kf «) C0f a J
Formulas with operators C and Cof can i/ien 6e
derived aceording to Definition 1 in [9]. •

282 Informatica 18 (1994) 277-298 A.P. Železnikar

4 Informational (Verbal)
Interpretations of Formula

In this section we have to clarify the reading,
meaning, and possibilities of formula <p |=0f a.
We have already listed the possible meanings of
the word 'of. DifFerent 'equivalents' to opera
tor |=of are possible, where the orientation of the
equivalent operator may be reversed in respect to
operands tp and a.

Formula <p |=0f a is a rudimentary informa
tional formula, where operator |=0f connects the
left operand <p with the right operand a. This op
erator is nothing else than a particularization of
the informational operational metaphor (= which
represents an operational joker (a plače for the
possible particular operational possibility). So,
let us introduce a predse, manifold, and parallel
structured definition of the čase (p \=0{ a.

Definition 3 [Reading Formula <p |=of &] In
formational formula of the form

<P (=of «

is read in the folloming possible manners:

1. Operand entity (p informs to be information-
ally dependent on operand entity a.

2. Operand (p is an informational function of
operand a.

3. Operand a is informed that operand ip infor-
mationally depends on a itself [(a (= ip) |=
a] (and, as a conseguence of informational
openness of formulas, on other operand enti-
ties).

4. Operand a is informed that operand (p is an in
formational function of a (itself) [<p(ct) f=0f
a].

5. Operand a is informed that operand ep is
caused by a itself (and possibly by other
operands).

6. Operand a dependently (functionally) informs
operand <p [a (=dePend <p]-

7. Operand a is a constructor (co-constructor) of
operand <p.

8. (p \=a{ a is an informational funetional princi-
ple, vohich causes some other consequent in
formational formulas to come into existence.
E.g., ((p (=0f ot) =*> (" |= f)- And so forth.

These cases do not exhaust other possible inter
pretations of reading of formula ip |=0f a. •

Additional interpretations of formula <p |=0f a
come to the surface when considering meanings,
which pertain to the meaning of the word 'of.

Consequence 2 [A Possible Parallel Infor
mational Interpretation of Formula tp (=0f a]
Considering the language concepts pertaining to
the word 'of [10], there is,

(,(P hbe-a_function_£>f <*] \

y r=be_dependent.jon Ot]

*P Rbe-ajderivation-of Ot]

V |=be-a_consequencej3f Ot

<P N b e_an_instrument_of Ot.

V p c o m e j r o m Ot]

V f^&riseJrom Ot]

V F r e s u l t J r o m Ot]

*P Fbe - r emovedJ rom Ot]

P K r o m Ot]

f t=within^of OL]

V f=b e_delivered-by Ot]

*P l=be_generatedJby 01]

Ot p^cause *P'i

Ot |=deliver <P]

\ a l^generate V /

(v Nof ot)

Operator =£• marks that on its right side only
some of the knoum parallel alternatives concerning
its left side are listed. •

Formula <p |=0f ot is understood to mean the listed
possibilities in a parallel manner, and also other
possibilities which may arise in an informational
situation.

5 A Notion of the
Informational Frame

Notion of an informational frame is in no connec-
tion with the frame in psychology. Here, a frame
is simply another word for a formation of elements
(operands, operators, and/or parentheses) which
appear in informational formulas. Informational
frame is an arbitrary serried (compact) section

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 283

of a well-formed informational formula. We are
forced to introduce this strange (irregular) struc-
ture, called frame, to master some problems of
various possibilities of informational formula aris-
ing.

In this section we have to define the notion
of an informational frame in a formal manner.
We begin with the statement that each informa
tional formula, which is a well-formed structure of
operands, operators, and parentheses, is a frame.
Such a frame is viewed as a well-structured and
well-organized informational whole. But, if we
are breaking-down a formula introspectively into
its arbitrary structured components, we do in no
way discard the original formula as a whole. The
breaking-down has the role of additional interpre-
tation possibilities of the original formula and, as
we will see, an identification of frames within a
frame in the sense of simple inclusion.

We distinguish several kinds of informational
frames: operand or formula frames are called har-
monious frames. On the other hand, operator
frames or any other non-well-formed arrays of
informational components (operands, operators,
parentheses) are called disharmonious frames.

Definition 4 [Harmonious Informational
Frames] Harmonious informational frames are
enframed, well-formed informational formulas
or well-formed parts of formulas (subformulas),
built-up according to the informational formula
syntax. Thus,

(a) , a \= , (a (=) , |= a , a \= (3

(((a \= /3) h 7) h S) \= s

etc. are ezamples of harmonious informational
frames. •

Harmonious frames arise together with the arising
of informational formulas.

Definition 5 [Disharmonious Informational
Frames] Disharmonious informational frames
are enframed, syntactically non-well-formed parts
of informational formulas. Thus,

[(]«), (a\j\, ^) , (g],-\££\) , (a g)
a ^ P, ((a (= /3) |=7)|=

etc. are ezamples of disharmonious informational
frames. D

Disharmonious frames arise together with the
arising of informational formulas.

Definition 6 [Embedded Harmonious and
Disharmonious Informational Frames]
Harmonious and disharmonious informational
frames can be embedded in other informational
frames to any possible depth and form. For ex-
ample,

(S) (*)

(H> P) t

i a\\=

(«N

) a h / ?

/5) h 7

etc. are examples of embedded harmonious and
disharmonious informational frames. •

We see how an informational formula can be sys-
tematically enframed by frames, so that the result
is a complete enframing and frames "connection".

Definition 7 [Well-enframed Formulas] An
informational formula or a frame in or of a for
mula is well-enframed or frame-formed, if ali for
mula components concerning it are enframed in
the following way:

1. A vaell-formedformula is enframed, e.g. \a\.

2. Two adjacent frames, harmonious and
disharmonious, or disharmonious and har
monious, or disharmonious and disharmo-
nious can be concatenated, e.g. (a)

3. Within a formula frame, there are concate

nated frames, e.g. (a h P)

4- If a formula frame is completely filled
with concatenated frames, harmonious and
disharmonious ones, it is called the well-
enframed formula.

The procedure of enframing of formula parts starts
from the formula as a whole. •

Definition 8 [Parenthesis Frames] Two pa-
renthesis frames are distinguished: the left paren
thesis frame, $?, uihere n = 0,1,2, •••, marking

a seguence of n left parentheses, e.g. $^ ((((
and the right parenthesis frame, $?, where n
0,1,2, •••, marking a seguence of n right paren
theses, e.g. $? T=

284 Informatica 18 (1994) 277-298 A.P. Železnikar

Parenthesis frames $(and $) mark a frame of
an adeguate number of the left and the right paren-
theses, respectively. O

Definition 9 [Subscript Embedded Harmo-
nious and Disharmonious Informational
Frames] Embedded harmonious and disharmo
nious informational frames can be subscribed
with the aim to distinguish them for the pur-
pose of their teztual description and further in
formational interpretation. A subscribed frame is
marked by the subscribed $, which is the marker
for the enframed informational frame. For ezam-
ple,

etc. D

(SO (a) $3
$ 4

0*5N

E*7N /3 (S$10 h P)

(a h
$ 1 3

/5) \=J
$14

etc. are ezamples of embedded harmonious and
disharmonious informational frames. •

Subscribing informational frames, we can dis-
cuss them concretely. For instance, frames $ i ,
$5, $7, and $io mark equivalent harmonious
frames, which are well-formed formulas marked by
operand a. Examples of disharmonious informa
tional frames are $3, $ n , and $15, representing
non-well-formed formulas (non-well-formed parts
of well-formed formulas).

Definition 10 [Disharmonious Information
al Frames Concerning Informational Oper-
ators] Operator frames are not arbitrarilv dishar
monious; they must satisfy the condition to be se-
auences of operands, operators, and parentheses
set betuieen two operands. Within this rough de-
termination, they can be split in two parts and
united through the unique frame subscript Wn.
Particular ezamples of operator frames are:

a 0/3, -EEEL^IIk'

d a 1= £a) \= £a) \= a,

LUtf a
|= Za) \= (Ca \= (To

1= {£<* |= (ea \= a))))

In the first examp
tor |=, that is, |=

le, operator frame is opera-
In the second čase, oper

ator frame $1 is split in two parts, that is, in
\\=(P\=\ and [J In the third example, we
have a metaphysical operator frame ^2 between
operands a and a, that is, the enframed part
|= la) f= Ca) \= ja) \= £a) \= ea) |= and, before

this enframed part (before a), the split part of
that is, (f which equals $ 5

C These two
frames (the left and the right frame $2) constitute
an informational operator between two operands
a, that is ^ o ^ c * ? which may result as a de
composition (destruction) of the initial metaphys-
ical situation a (= a. In the fourth example, we
have a metaphysical operator frame $3 between
operands a and a, that is, the enframed part
|= 1a) \= (Ca [= (Ta 1= (£a \= (^a \= and, before

this enframed part (before a), the split part of
$3, that is, (which equals $ / . After the mid-
dle enframed part, there is the right split part of
$3, that is)))) , which equals ^Sy
frames (the

* 3

These three
eft, middle and the right frame $3)

constitute an informational operator between two
operands a, that is \ t30^30^3, which may re
sult as a decomposition (destruction) of the initial
metaphysical situation a\= a.

The concept of informational frame becomes
very helpful in studying of possibilities of the so-
called informational gestalts pertaining to serial
and metaphysical functionality.

6 Serial Informational
Functionality

Serial informational functionality offers several
possibilities of its understanding and to this un-
derstanding adequate notation. At the beginning,
we consider the most conventional form of func-
tionality, which has its roots in the mathematical
tradition.

Consequence 3 [Implicative Serial Func-
tional Forms] According to Definition 2, for the
functionally nested ezpressions the folloming in
formational implications are evident:

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 285

¥ > W (7)))

(<p\=ot(a \=o{ /?);\ .

^ N «) N ^) '
lip |=of (a (=of \

(0 t=of7)) ;

\ ((7 M) !=«) !=¥>/

To make the main function distinguishable from
the argument function, we can introduce the sep-
aration marker * between them, tha t is, between
the consequent parentheses ') ' and ' (' . Thus, the
last sequence of functional markers becomes

(oii) *(a2(a3(- • • («„_! (a n)) • • •)));

cp(a(P(---iP(u)...)))=>

(^ ^ (• • • (^ K f

« . . > | = ^) | = . . . / 3) | =
V «) N v /

These cases of informational functionality we call
natural serial functional forms. •

C o n s e q u e n c e 4 [Natural Serial Functional
Forms] Let 2 • (n — 1) serial forms of entities

«i> «25 • ' * 5 an> that is,

«1 Nof (a 2 |=of (" 3 |=of (• • ' (« n - l |=of

« n) • • •)));

(((• • ' K N « n - i) • • •) N «3) N «2) f=* «1;

(a i |=0f a 2) |=of (a 3 (=of (• • • K - i Nof

« n) • • •));

((• • • (« n 1= a n - i) • • •) h= «3) h * («2 h « i) ;

((«1 |=of «2) (=of «3) Nof (" " (a " - l Nof

« n) • • •);
(•••(an |= a n _ i) •••)}=* (a3 \= (a2 h «1));

((• • ' ((«1 Nof «2) |=of " 3) • • ') (=of « n - l)

Fof a">
a„ h * («n - l N (' • • («3 |= («2 N "l)) • • O)

be given. According to Definition 2, these serial
forms can evidently be implied by the correspond-
ing functional forms

a1(a2(a3(- • • (a„_ 1 (a„)) • • •)));

ai(a2)(a3(- • - (a n _ i (a n)) •••));

a1(a2(a3))(- • • (a„_ i (a n)) • • •);

a 1 (a 2 (a 3 (- . - • («„_!) • • -)))(an)

respectively. Operators |=*f anc? |=* mark the
main operators of particular seauences (the dis-
tinguishing operational points between the main
informer and observer entities). •

«1(0:2). *(«3(- • • (a n - i (a „)) • • •));

«1 («2(0:3)) * (- - - (« n - l (« n)) • • •) ;

« l (« 2 (a 3 (- - - (« n - l) •••))) * (« n)

In the first čase, we put ct\ between parenthe
ses. Each line of the last functional array can
be further decomposed, keeping the sequence of
operands a-i, a2, • • •, an preserved and only mu-
tating the parenthesis pairs. This decomposition
procedure delivers new functional forms exhaust-
ing at the end ali possibilities of the upper n — 1
functions (lines). Thus, for instance, the first
function decomposes into

(« l) *((« 2) * (« 3 (0 4 (- - - (« 7 i - l (« n)) • ••))) ;

(« i) | *(| « 2 (« 3) | * (« 4 (- • • (a n _ i (a n)) • • •)));

(« l) *(«2(«3(«4)) *(«s(- • • (« „ - l (a n)) •••)));

(« l) *(« 2 (« 3 (- - - (a n - 2 (0 ! n - l))•••)) *(an))

with two starš in each line, e t c , recursively, then
with three starš, etc. In each line, two frames
show the function-of-function situation in an evi-
dent manner.

7 Parallel Informational
Punctionality

Parallel informational functionality can be con-
ceptualized in different ways. We will deal only
with some of the most evident cases.

Definit ion 11 [A Form of Parallel Well-
connected Informational Functional i ty] Let
«i)«2>" ' ")«n &e operand entities. An informa
tional system aW(cti,a2, • • -,an) is called a well-
connected, functionally parallel system, if

286 Informatica 18 (1994) 277-298 A.P. Železnikar

a"(ai> "2, o3 , • • •, a„_2, a n - i , on)

/ 0 1 (0 2) ; \
"2(0:3);

O n _ 2 (o n _ l)

\ a n _i (a n) /

This is, in fact, a serially connected parallel sys-
tem. •

Which could be a senseful (adequate) con-
sequence of the introduced parallel system
all(ai, a2 , o3 , • • •, an_2 , o n_i , an)?

Consequence 5 [A Form of Substitution
of Parallel Informational Functions] Let
01,0L2, • • •, otn be operand entities belonging to the
system in Definition 11. By the operation of sub-
stitutional implication, there is, evidentlyn

/ 0 1 (0 2) ; \

0 2 (0 3) ;

''substitute

O n - 2 (O n - l)

/ a i (a 2 (a 3 (- ••(ttn .2(aB_i(an))) • • -)));\
02(o3(- • •(an_2(an_i(an))) • • •));

\ o n - 2 (o 7 i - i (o n)) /

Certainly, also 'shorter' functional formulas are
possible. •

A parallel array of shorter formulas instead of
the first formula on the right side of operator
=>substitute would be

Oi(a2(o3(- • •(an_2(an_i)) • • •)));
Oi(a2(o3(---(on_2) •••)));

Oi(a2(a3))

Consequence 6 [A Parallel Functional De-
pendence] A function a can simultaneously
(in parallel) depend on more than only one
operand. This parallelism of dependence on sev
erni operands can be ezpressed as

/ « (« i) ; \
0(0:2);

o (a i , Q ! 2 , - - -) O n)

that is,

o (a i , a 2 , - - - , o n)
o (=of on,a2,---,an^
o i , a 2 , - - - , o n |= a j

which proves the adequacy of the introduced par
allel functional ezpression. •

Informational parallelism and informational func-
tionality are informationally dependent phe-
nomena, which interfere with each other.
Functions oJI(a:i,0:2,0:3,•• • , a n _ 2 , o n _x ,a n) and
a (a i , t t 2 , - - , , a n) (Definition 11 and Conse-
quence 6, respectively) are essentially different
functional structures (functionalities).

Consequence 7 [Informational Parallelism
and Functionality] The beginning question is,
vohat is the difference betiveen the regular func
tional ezpression 0(0:1,0:2, • • •, an) and ezpres
sion a(oti] ct2\ • • •; an) where commas have been
replaced by semicolons. The comma system
(01,0:2, •• - ,o n) is a system of separated entities
di,OL2,- •• ,an which may or may not cooperate
(inform among each other). The semicolon sys-
tem (a i ; a 2 ; • • SOn) is a characteristic parallel
system in ivhich semicolons are nothing else than
parallel informational operators (e.g., H=j. The
meaning is

'ai\\=af, >
(a i ; a 2 ; - - - ; o n) ^ | i / j ;

i,j = 1,2,---.n/

Operator ||= has the meaning "informs in par
allel with". "In parallel" means simultaneously,
dependently or independently, spontaneously, cir-
cularly, particularly, etc. For instance, for the
meaning of the last formula there are the follow-
ing three alternatives:

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 287

oti ||= a j]

i,j= 1,2,

((V 1= (¥> Nof «)) C <p)

,n

(loti \£ a J;

i^r, Iv
\i,j = l , 2 , - - - , n

O j ^ " .) ;
»^ i;

\i,j = 1,2, • • • , n /

oii \= a J; *

? i;

v

parallel
independence

partly
parallel
dependence/
independence

a complete
parallel
dependence

T\

/

ivhere operator V replaces the usual semicolon and
means 'or' (informational 'or', that is an infor
mational alternative). •

Informational operator ||= enables an explicit
studying of informational parallelism, especially
in a functional environment.

8 Circular Informational
Functionality

Circular informational function as an informa
tional function belongs to the phenomenon of cir
cular serial phenomenality. An adequate func
tional parallelism would mean simply an occur-
rence of adequate functions in parallel, which
build an cyclically structured system of simpler
informational functions. In this section, we have
to study a sufficiently general concept of circular
informational function by means of informational
frames.

Definition 2 guarantees some basic forms of in
formational functionauty which can be developed
(decomposed, deconstructed) to complex circu-
larly functional schemes.

C o n s e q u e n c e 8 [Some Bas ic Forms of Cir-
cularity Per ta in ing to Informational Func
tion] According to Definition 2, the follouiing im-
plications can be deduced:

((<p \= W Nof PO

functional
transition

)\=V>)i

(((V Nof a)\=<p)C (p)

(vN((V f=of ot)\=<p

functional
transition

));

(((¥> (=of (a t= <p)) Cof (p)

((<P Nof (a \= <p)

argument ative
transition

) Nof <p);

(((" 1= V) l=of <p) Cof <p)

(?> t=of ((a |= <p) (=of <p

argumentative
transition

))

The marked functional transition appears tvithin
the general informing <p-cycles uihile the marked
argumentative transition is a part of particularly
informing (of-informing) (p-cycles. D

Definit ion 12 [General Circular Informa
tional Function] A general circular informa
tional function, (p^(a), is a functional informa
tional system, that is,

<pQ(a) ^ ($((p(a) <J> ip(a) $))

or, ezpressed in a functionally detailed form,

<p°{a)*(ai,a2,- • • ,an) ^

($(<p(a)$(a1,a2,---,<xn)<p((x)$))

ivhere the interior (circular, loop) operands a\,
a2i - • •> an may arbitrarily depend on the exte-
rior operand a, that is, a\(a), 012(0.), • • -, an(a).
An inverse general circular informational func
tion, ip^(a), is a functional informational system,
that is,

<p°(a) r=± ($(<p(a) $ - 1 (p(a) $))

or, in a functionally detailed form,

<p°(a)*(ai,a2,- • • ,an) ^

($(<p(a) $ _ 1 (a i , a 2 , • • •, an) <p(a) $))

Informational frames $ / , $ \ , $, and $ _ 1 are de-
fined in the follotuing way:

288 Informatica 18 (1994) 277-298 A.P. Zeleznikar

$/ is a left-parenthesis frame, ivhich can also
be empty (an empty plače, marked by A). In
stead of it, we introduce a significant marker,
<s. Thus,

$ <§;

A, if empty plače;

-times

- $\ is a right-parenthesis frame, which can
also be empty (an empty plače, marked by
A). Instead of it, we introduce a significant
marker, 3). Thus,

$) - § > ;

=>
A, if empty plače;

t—times

- $ or §{a.\,a2, • • - , a n) is o, general frame,
uihich is a disharmonious frame of a formula,
called the right-frame. Instead of it, we intro
duce a significant marker, ^ . Thus,

$ ^ ^ or
$(a-l,a2, • • • , « „) >(ai,a2,-- -,an)

$-1 or $_1(a!i, «2) •"") an) is a general in-
verted frame, which is a disharmonious frame
of a formula; it is called the left-frame. In
stead of it, we introduce a significant marker,
<£=. Thus,

$ - i
or

$ 1(ai,a2,---, ctn) ^ ^ (« i , «2, • • • > "n)

General informational function is said to be right-
circular mhereas inverse general informational
function is said to be left-circular. •

Deflnition 13 [Particular Circular Informa
tional Function] A particular circular informa
tional function, ¥ ,part(a), is a functional informa
tional system, that is,

VpartO) - (*(V(°0 V r t <P(*) *)) OT

($((p(a) $Part(ai(a),a2(a), •••,

a„)) </>(") $))

An inverse particular circular informational func
tion, v^partC0)) ?s a functional informational sys-
tem, that is,

¥&rt(a) ^ ($(V(°0 V r t ¥>(«) *)) °r

¥ ' p a r t (Q !) * (a l (Q ;) > « 2 (a) , • • • , « n (a)) —

(*(y>(a) *^ t (o : i (a) , a 2 (a) , • • •,

an(a)) ip(a) $})

Subscript 'part' marks a particular čase of frame
$part or ^part, fe.gr., numerical index, seman-
tic designator, particular symbol, etc.) in which
operands a\(a), ot2(a), •••, an(a) occur in the
seguence mritten. •

Consequence 9 [Circular Informational
Shell and Function] According to the previous
definition, a right-circular and left-circular func
tional shells ip® and <p^ are

respectively. For a function <p(a), the circular
forms are

<p°(a) ^ <š<p(a) =^(Qr) <f(a)3>;
(f°(a) ^ <š<p(a) <*=v(a) (fi(a)3>

where ^v(a) and ^=<p(a) are concrete informa
tional frames depending on operand a, for exam-
ple, general or basic metaphysical frames of entity
a. O

Definition 14 [Inverse Informational Frame
^ in Regard to Informational Frame ^] An
inverse informational frame <!= ($ _ 1) to the infor
mational frame ^ ($) is obtained'by the folloiuing
procedure:

— In right-frame ^ ($) ; ali informational oper-
ators \= (left-to-right operators) are replaced
by the alternative informational operators =|.

— The left parentheses become the meaning of
the right ones and vice versa.

— If in this manner modified frame is read from
the right side to the left side, the resulting
frame is the inverse informational frame, <£
C*-1).

http://fe.gr

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 289

— Now, the modified frame can be typograph-
ically inverted, so that the right end comes
to the lep, beginning and the left beginning to
the right end. The result is the inverted graph
with informational operators \=.

E x a m p l e 1 [A Frame and Its Inversion]
Considering the frames, marked by $2 m Defi-
nition 10 and the formula as a whole, there is,

(((((
* 2

a
h I«) h Ca) \= la)

|= Ca) \= Sa) \= . a:

a
(= (ea h (£a h

{la \= (Ca (= (2a (= a)))))

The second formula is obtained from the first for
mula by the replacement of operators |= by oper
ators =|, reading the formula from the left to the
right, reading the right frame from the bottom to
the top, and understanding left-parenthesis frame
as the right-parentheses one. That is,

(((((a
H la) =j Ca) =| 7«)

H Ca) =\ Car) H a

The reader can observe the inverted formulas in
the first and the second čase. But, the shortened
forms of the original and inverted formula would
be

<ša^aa;

It is to stress that <š in the first formula can be au-
tomatically identified from frame ^ a , where the
right parentheses are counted. The same can be
considered for §> in the second formula. Q

9 Decomposition
(Deconstruction) of
Informational Functionality

Decomposition or deconstruction2 of an informa
tional situation and at t i tude is nothing else than a
process of interpretation in which serial, parallel,

2 Deconstruction (we use the general term 'decomposi
tion') means, for instance, a strategy of critical analysis
(Jacques Derrida, 1930) directed towards exposing unques-
tioned metaphysical assumptions and internal contradic-
tions in philosophical and literary language [10].

circular or otherwise mixed ways of deconstruc
tion can come into existence. A functional ex-
pression as a beginning situation (concept, idea)
must be deconstructed in concrete details, by
which both functional and argument components
become informationally determined. Deconstruc
tion means that different functional (and other)
markers come to the surface, where they play sig-
nificant roles in further (especially metaphysical)
way of decomposition. To different functional
markers, different functional systems (concepts)
can be associated.

A complex functional form can always be de
constructed in more primitive forms which consti-
tute the complex formula. This is a very natural
way of parallel decomposition which reveals the
structure of a formula, tha t is, its informationally
distinguished components.

Consequence 10 [A Parallel Funct ional D e
compos i t ion of a-i(a2(a3(-.• • (an-i(an))•••)))]
Let us introduce the implicative decomposi
tion (operator =^decompose which reads "in-
forms decomposinghj") of the nested functional
form ai(a2(a3(- • • (a n _ 1 (a„)) • • •))) in the folloui-
ing way:

a-[(a2(a3(- • • (a „ _ l (a n)) •' • •))) =>decompose

/ a i ; « 2 ; a 3 ; - - - ; a n _ i ; a r i ; \
« n - i (a n) ;

a 3 (- - - (o : n _i (a n) - - -) ;
a 2 (a 3 (- • • (a n _ i (a n) • • •));

\a1(a2{a3(- ••(a I ,_i(a„)) • • •)))/

According to Definition 2, this decomposition
causes another decomposition, that is,

a>i(a2(a3(- • • (a n _ i (a n)) • • •))) =^decomPose

/ « n - l hof Cin] \
C*n \= Ctn-l J

«3 hof (• • • (««-1 hof «„) • • •);
(• • • (a n (= a n _ i) - - -) |= a 3 ;
a2 hof («3 hof (• • ' (" n - i hof ocn) • • •));
((• • • K h a n - i) - - -) h «3) h «2;
«i hof ("2 hof («3 hof (• " K - i hof

°») •••)));
V(((---(«n h a„_i)---) h «3) h «2) h ai/

2 9 0 Informatica 18 (1994) 277-298 A.P. Železnikar

The first and the second informational system
concerning decomposition in this consequence re-
veal together the informational complexity being
hidden in the consequently serially embedded func-
tional form cti(a2(a3(- • • (an-i(an)) • • •))). D

Consequence 11 [A Decomposition of Lin-
ear Informational Function] Let an ordered
set of informational items a,-, where i =
1,2, • • •, n, be denoted by

A^ = { « 1 -< Oii -< • • • -< an}

tvhere operator symbol -< has the role of an order-
ing comma. Let hold the following:

ordered indexing:
(o,- < <xj) = } • (* < j);

transitivity of ordering:
(a,- -< ctj; OLJ < a t) = > (a,- -< a^);

subscript-entity difference:

(* Ž J) =>• («i Ž aj)

Then, for a function <p(ai, a2, • • •, oti), where i >
1 and i < n, the following implication is deter-
mined:

\i > 1; i < n) = > d e c o m P ° s e

V(6,6); \
6 -< 6; ;

v f i ,6eA7

j,k e {i,2,-••,i}

This scheme of decomposition delivers ali pos-
sible linear functions of lengths i = 1 to £ =
i, according to the ordered set Af of operands
a i , a 2 , •••,«»•• O

Proof. This kind of informational decomposi
tion is customary in cases of metaphysical in-
terpretation of phenomena, that is, in linear-
decomposition scenarios belonging to metaphys-
ically circular schemes and also elsewhere. The
proof proceeds from the informational fact which,

at least in the framework of a language, says the
following: if a function depends on several infor
mational entities, then it depends also on each
of its arguments. Recursively, if a function de
pends on i arguments, then it can depend on ali
possible combinations, within an ordered set of
arguments, say Af, on i — 1 arguments. Such a
relativity of decomposition is a consequence of an
interpretational freedom, that is, possibility in an
occurring situation (a part of the unforeseeable
informational arising). D

10 Composition (Construction)
of Informational
Functionality

Composition or construction3 can be understood
as a reverse process to decomposition (deconstruc-
tion). If decomposition proceeds into details of
a roughly determined informational situation by
a process of interpretation, composition builds
systems from the existing informational lumps
(subsystems) and connects them informationally.
Then, the result of this form of construction be-
comes a new entity carrying a new (characteristic)
interpretation.

We can understand how decomposition and
composition condition each other and, in some
situations, it becomes impossible to distinguish
which way represents the reason and which the
consequence. There exists an informational game
concerning both of them (deconstruction and con
struction) when entities (operands, formulas, for
mula systems) arise, emerge, or come into exis-
tence.

Interpretation (together with induction, evo-
lution of entities, etc.) as a complex informa
tional mechanism can include several known and
unknown procedures e.g., substitution, insertion
of a new or additional (parallel or serial) 'in
terpretation', introduction of circularity in re-
gard to functions or functional arguments, spon-
taneity as a supplement of an unforeseeable en-
tity to the existing informational situation, etc.
Such views of decomposition and composition of

3Construction (we use the general term 'composition')
means, for instance, a strategy of critical informational
synthesis directed towards integrating unquestioned meta-
physical assumptions and internal contradictions in any in
formational language.

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 291

informational systems concern their understand-
ing. Several reasons for decomposition and com-
position interferences can exist in the form of
informational-system-interior and informational-
system-exterior entities. We must not forget that
any informational system has the system concern-
ing environment and it depends not only upon
its own metaphysicalism, but also on system-
disturbing external entities.

Consequence 12 [A Čase of Parallel-serial
Functional Composition] From a well-con-
nected parallel functional form

at\\(a>i,a2,---,an)

in Definition 11, the following implicative com
position from primitive parallel functions into se-
guential serial functions seems to be reasonable:

(<X\{a2);
«2(0:3);

\

compose
an-2 («n- l) ;

(a1(a2(a3));
<*i («2(03(04))) ;

ai(a2(- • • (an_2(an_!)) • • •);
\ai(a2(- • •(an_2(a7l_i(an))) • • •)/

As we can see, the last composition mas imple-
mented by means of substitution. •

11 Informational Functionality
of Metaphysical Cycles
Impacted by an Exterior
Entity a

In this section we turn our attention to the func-
tionality which concerns metaphysical phenomena
as functions of observing an external set of enti
ties. An intelligent entity is, for example, meta-
physical in observing its environment. The meta-
physical is a regular property of any informational
entity, regardless of its structure and organiza-
tion. It has something in common with the entity
existence. Existing means to be metaphysical in
the sense to preserve (memorize, maintain, sup-
port) a certain structure and organization of the

entity's intentionality, its informational function-
ing in the world. In this manner, the metaphysical
of an entity is a standard property for which one
can put the question: in which way is it standard?

In some previous papers [6, 7], one of the possi-
ble standards was proposed. This standard roots
in a logical consideration which is closely con-
nected with the nature of an informational en-
tity. Such an entity is subjected to informational
arising, which in a trivial čase approaches to the
state of an absolute stability of the entity's struc
ture and organization. OtherWise the entity is
arising together with its vanishing, which is only
a particular čase of the arising phenomenality.

As the reader may state, we distinguish three
substantial phases (processes) of an entity's in
formational arising. This arising is not only
a change, in the sense of modification, but
also the coming of new information into exis-
tence. Changed and emerged informational pieces
(lumps) have to be informationally connected to
the existing body of the informing entity. We say,
that the arisen items have to be informationally
embedded and that through the process of embed-
ding, in fact, informational entity has emerged
to a different state in comparison to the previ
ous one. This process of three subsequent phases
is circularly (hermeneutically, viciously, investiga-
tional) closed, so the process of arising is reaching
a satisfactory state by cycling, from informing,
counterinforming, and embedding—and again in
this way to a possible satisfaction.

What is the functionality of the metaphysi-
cal phenomenon belonging to an informing entity,
which is informationally impacted by an exterior
entity or set of entities? The impactedness may
mean nothing else than the observing and vice
versa. An entity 1 is impacted by an outside en-
tity a in the framework of i's metaphvsicalism.
Roughly, a \= t, where i has to be metaphysi-
cally decomposed (deconstructed) in a serial cir-
cular way, to satisfy the possibilities of informa
tional adequateness (equilibrium, satisfaction, se-
mantics, e tc) .

Let us take only one possible form of metaphys-
ical cycle, which belongs to entity i observing en-
tity a. As we shall see later, one such form is
sufficient for generating ali possible metaphysical
forms, that is, the so-called metaphysical gestalt
belonging to i observing a. So, let us set an ini-

292 Informatica 18 (1994) 277-298 A.P. Zeleznikar

tial form of possible standard metaphysical strac-
tures, in which components of informing, counter-
informing and informational embedding appear in
an cyclic serial form.

Definit ion 15 [A Standard Metaphys ica l
Form and Its Funct ional ism] Let the meaning
of informational operands (entities) be the follovo-
ing:

1. Operand i is an entity, which has to be cycli-
cally decomposed as a metaphysical structure
of informing, counterinforming, and infor
mational embedding when observing a. This
dependence can roughly be denoted by the
functional form t (a) . Thus, in a metaphysi-
cal situation,

(«1=0 t (a)

Operand a marks an exterior entity or a set
of entities (impacting environment) in regard
to i. It functions as an independent informa
tional variable of function i. Thus,

& C £environment(,'y

Environment £environment(0 is the environ
ment which can impact t and is the only one
vohich can be sensed (observed) by i. For i,
other environment does not exist.

Operand t informs and is informed means
that there ezists the so-called informing com-
ponent of i being marked by Zh. It is to un-
derstand that XL means a function 1(L) simul-
taneously. Being informationally involved in
t, a conseguence of functionality t (a) is

t(a)
\I(a,i)

The first form depends solely on a. The sec-
ond čase is a nested functional dependence of
rank 2. The third function linearly depends
on both a and t, ivhere

l(a,i) Mecompose
I (a) ; Z (0 0
J (o , t) j

Operand i informs and is informed means
that there does not only ezist the informing
component Xt, but also the counterinforming
component Ct. It is to understand that Ct

means a function C (T (tj) simultaneously. Be
ing informationally involved in i and I i ; o
conseguence of functionalities i(a) and I t (a)
is

« a) |= U<*))
/ C 4 (a) ;

C (J W a))) ;
\C(a,i,l)metaj

The first čase is a function, depending on
a only. The second form is a nested func
tional čase of rank 3. The third form is a lin-
ear function depending on three arguments,
mhich can be decomposed according to Con
seguence 11, ivhere

C(a,t,l)
^decompose

(C(a)-C(t);C(iy\
C(a,i);C(a,iy,

\C(a,t,I))

5. Operand i informs and is informed means
that there does not only exist the inform
ing component I t and the counterinforming
component C,., but also the counterinforma-
tional component j , . . It is to understand
that 7 t means a function 7(C(2"(t))) simulta-
neously. Being informationally involved in
t, l t andCt, a conseguence of functionalities
t (a) , Xi,(oi), and C0(a) is

((W «) H l 4 (a)) h C ((a)) h 7 , H ^

"T ((X] *

7 (C (i (t (a l ;
^(a,i,l,C)

The first formula is a function of the ezterior
entity a. The second form is a nested func-
tionality of rank 4- The third form is a linear
functional čase of four arguments for which
a decomposition according to Conseguence 11
can be realized, that is,

7^CHj i ,X ,LJ ^decompose

/ 7 («) ; T (0 ; 7 (Z) ; 7 (C) ; \

7 (a , O ; 7 (a , 2 0 ; 7 (a , C) ; 7 (i , 2 :) ;
7 (i ,C) ;7 (X ,C) ;

7 (a , i, I) ; j(a, I, C); 7 (4 , 1 , C);
\j(a,i,I,C) J

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 293

6. Operand t informs and is informed means
that there does not only ezist the informing
component Ib, the counterinforming compo-
nent Cc, and the counterinformational com
ponent j t , but also the embedding component
£t. It is to understand that £t means a func
tion £t(7(C(2"(t)))) simultaneouslv. Being in-
formationally involved in t,, l l t Ct, and 7,,,
a consequence of functionalities i(ct), XL{a),
CL(a) and j t is

(((t(a) |= £(«)) (= Ct(a)) |= 7 l(a))\

£(«); \
f(7(C(J(t(a)))));
£(a,i,I,C,j) J

The first formula is a function of the ezterior
entity a. The second form is a nested func-
tionality of rank 5. The third form is a linear
functional čase of five arguments for vihich a
decomposition according to Conseauence 11
can be realized in the form

Q:,i , X , L , 7 J ^decompose

£(<*, 0; £{<x,Z); £(a,C); £(a,7);
£(i,iy£(i,cy,£(L,1y,£(i,cy
£{l,l)\£{C,l)\

£(a, i, J) ; £(a, t, C); £ (a, t, 7) ;
£(a,I,Cy,£(a,I,-y);£(a,C,'yy,
£(L,i,cy,£(t,,i,iy,£(i,c,jy,

\£(a,i,I,C,i) J

7. Operand t informs and is informed means
that there does not only exist the inform
ing component Zlf the counterinforming com
ponent CL, the counterinformational compo
nent 7 t , and the informing embedding com
ponent £t, but also the informational embed
ding component eL. It is to understand that
eb means a function e{£{^(C{I{bfj^) simulta-
neously. Being informationally involved in 1,
2t> Ci> 7i, and s,,, a consequence of function
alities i-(a), Tb(a), Ct,(a), gamma^a), and
£,(a) is

(((W«) h ^)) h Ct(a)) h 7 ^ .
\= £v{a)) \= e.(a) j = "

£ t (a) ; \
£ (f (T (C(l (t («l) ;
e(a,t,,X,C,y,£) J

The first formula is a function of the ezterior
entity a. The second form is a nested func-
tionality of rank 6. The third form is a linear
functional čase of six arguments for which a
decomposition according to Consequence 11
can be realized in the form

£(Ct, i , -L, O , 7) £• J ^decompose

/ e (a) ;e (t) ;£ (: r) ;e (C) ;£(7) ;e (£) ; \

e(a,ty,£(a,iy,e(a,Cy,e(a,jy
£ (a , ^) ; £ (t , I) ; e (t , C) ; e (t , 7) ;
£(t) £) ; £ (! , C); £(2 ,7) ; £ (! , £) ;

£ (C , 7) ; £ (C , 0 ; £ (T , 0 ;
e(a,L,iy,e(a,i,Cy,e(a,i,j);

e(a,i,£y,e(a,l,C);e(a,l,jy,
e(a,I,£y,e(a,C,jy,e(a,C,£y
£(a,f,£y,£(b,i,cy,e(t,i,jy,
e (t , I , f) ; e (t ,C) 7) ; e (4 ,C ,£ :) ;
e{i,'y,£ye{l,C,'<iyE{l,C,£y
e (I , 7 , 5) ; e (C , 7 , £) ;

e(a, t, 1, C); e(a, t,l, 7); e(a, t, I , £);
e(a,L,C,-yye(a,t,C,£y,e(a,t,'y,£y,
£(t ,2" ,C ,7) ;£ (t ,2 : ,C ,£) ;£ (t , I ,7 ,£) ;
e(i,Cr,£y

\e(a,t,l,C,ir,£) J

8. Function i(a) informs and is informed means
that there does not only exist the informing
component 1L, the counterinforming compo
nent CL, the counterinformational component
7 t , the informing embedding component £,,,
and the informational embedding component
£t, but also that function i(a) is, through
these components, circularly and specifically
closed into itself (informational metaphysi-
calism). It is to understand that i (a) means a
function i(£(£(7(C(J(i(a:))))))) simultaneously.
Being informationally involved in 1, I t ; Ct,
jL, and £t> a conseauence of functionalities
t(a), lt(a), CL{a), gamma^a), £t(a), and
£,.(&) is

294 Informatica 18 (1994) 277-298 A.P. Železnikar

(i(a) \= Ua)) |= Ct(a)) |= 7 t (o ^
h £(a)) t= £4(a)) h *(<*) j

t (e (f (7 (C(I (t (a l | i

where

'-metal") =*°

tO(a)*(Z t(a), C t(a), 7 , (a) , £ (a) , £*(«));

^ (7 (C (I W a] l = •

tO(a)*(£t(a)(^(a)(7t(a)(C t(a)(I t(a))))));

and tf/ie linear circular decomposition is

LyCt, t , J., C , 7 , c., £) ' 'decompose

/ t ° (a) ; t 0 (I) ; t 0 (C) ; t 0 (7) ; t 0 (f) ; ^

*°(e);
t O(a,I) ; t O(a > C); t O(a) 7) ;

t«(a,5); t°(a ,£) ; t°(2: ,C);
^ (X , 7) ; i O (j ^) ; t O (J) £) ;

^ (C , 7) ; ^ (C , £) ; ^ (C , £) ;

*°(7,O;'°(7,0;'°(^0;
^ (a , J , C) ; ^ (a) J , 7) ; i C (a) J) (f) .

0 (a , I , e) ; t O(a ,C,7) ;^ (a ,C,£ :) ;

0 (a ,C , e) ; t O(a ,7 ,0 ; t ° (« ,7 , e) ;

tf(z,c,£);4tf(:z;,7,£);tO(i>7>e);

tO(I , f > e) ; t O(C) 7) £:) ; t O(C j 7 > e) ;

t O(C,f > e) ; t O(7) f) e) ;

t « (a , I , C , 7) ; t ° (a , I , C , 5) ;
tO(a , I ,C) e) i tO(a) I ,7 ,Oi
i ° (a , 2 : , 7 , £) ; t 0 (a , I , £ , e) ;
^ (I , C , 7 , f) ; t O (I , C , 7 , £) ;
tO(C,7,f,e);

^ (a , I , C , 7 , £) ; ^ (a , : Z : , C , 7 , £) ;

V^(a,I,C,7,£,£) /

By items 1-8, the metaphysical scenario of an en-
tity i, being informed by an ezterior entity a, is
implicatively standardized. Thus, further meta-
physical interpretations of discussed functions are
possible. •

Consequence 13 [A Standard, Functional,
and Circular Metaphysical Hierarchy of an

Informational Entity] As a consequence ofDef-
inition 15, the parallel functions

t(a);
l(c(a));
C(l(o(a)));
7(C(I(,(a))));
£(7(C(X«a)))));
e(£(7(C(I(t(a
i(e(E(7(C(l(L(a

form a functional hierarchy in the folloiving sense:

— Entity i(a) as such is a function of ezterior
entity a.

— Informing I(t(o;)) which depicts the inten-
tional character of entity t, depends on a and
preserves the informational contents of u.

— Counterinforming C(X(i(a]j) arises as the in
forming within the informing 2(i(a)) in a
spontaneous manner, producing entity 7 .

— Counterinformational entity 7(C(I(t(a)))) is
a free, informationally unconnected product
o/C(X(t(o:))) and will become an object of the
so-called embedding in the frameuiork of en-
tity t(a).

— Embedding £(7(C(J(i(a))))) spontaneously ob-
serves the counterinformational (arisen, un
connected) entity 7(C(I(t(a)))) uiith the aim
to produce an adeauate embedding (connect-
ing) informational entity s, by which 7 will
become an informational part of entity L(OC).

— By the embedding produced embedding infor
mational entity £(£(7(C(I(t(a)))))) is a free
informational product of £(7(C(J(t(o:))))) by
vihich the arisen counterinformational entity
7(C(I(i(a)))) is appropriately embedded into
t(a). Through this informational connection,
to entity 7(C(J(t(a)))) a sense or meaning
within t(a) is granted.

— The described hierarchy of entities i, Z, C, 7 ,
£., and £ is called a standard functional and
circular metaphysical hierarchy within entity
i. This hierarchy is circular in the functional
sense of

(e(f (7(C(I(0 t(a)

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 295

where

i £l(e,£,f,C,X) i{a) Q,y,

(e(f(7(C(I(

and Ct is the general marker for the so-called
functional frame (a framed functional part
in contrary to the framed informing part,
marked by $ and ^).

Embedding masters ali the components of the
metaphysical cycle and counterinforming emerges
from the present state of the circularly arising en-
tity t(a). •

12 Some Metaphysical Gestalts
Concerning the
Informational Being-of

A gestah is an informational whole belonging to a
particular informational entity. In this sense, an
informational entity is an informational part of
the whole (arising system, unity, entirety), which
is called the entity's gestalt. Gestalt is in no
way a final result (like category) and arises to-
gether with the involved informational entity. A
gestalt of an entity means that the appearance
of the entity pulls to the gestalt belonging other
entities into existence (e.g. possible and various
forms of a metaphysical cycle). These entities can
be understood as visible and invisible possibili-
ties of informing of the original entity and they
can be identified, for instance, solely by syntactic
modifications of formulas in which the sequence
of the occurring operands and operators remains
unchanged and only parentheses in formulas are
differently and adequately replaced in ali possible
ways. In other cases, to a gestalt of an infor
mational formula, modifled formulas can belong,
in which the operand/operator sequence is pre-
served, but some of the operands and with them
connected operators can be let out. Such cases
can become senseful especially in the framework
of metaphysically (circularly) structured informa
tional systems.

On the other hand, the informational gestalt
can as well concern the so-called semantic prob-
lems, in which the so-called interpretative de-

composition and composition of a formula or for
mula system come into question. In the sequel,
some metaphysical cases of gestalts will be pre-
sented. A metaphysical gestalt is particularly
structured (e.g. standardized, characterized) and
can be easily recognized even when its compo
nents are altered and structurally differently con
nected and when standard metaphysical compo
nents (informing, counterinforming, and embed
ding) occur in multiple variations. These varia-
tions follow an informational intention within a
dynamic (changing, emerging) existence of an in
forming entity. A general theory of informational
gestalt will be the subject of a separate study.

Definition 16 [Two Kinds of Metaphysi-
cally Informing Gestalts of an Informa
tional Entity] In comparison to an informa
tional frame, the informing gestalt T(_ is a higher
informational structure ivhich, to some extent, de-
termines possible frames mithin an informational
formula. In čase a \= i, the gestalt of the meta-
physically informing entity i observing a is

(T^iQ(a)*(Ua) < Ch(a) < 7 t (a) <\ _
l £t(a) -< £t(a))) j ^

\ r $ (I t (a) ^ C t (a) ^ 7 t (a) ^
^ £t(a) -< e4(a)) J ^

/ $ (I t (a) ^ C t (a) ^ 7 t (a) ^
^ £,{a)<sb{*))

\ \ K«) §• //

Operator |=v reads 'inform(s) for ali' and op
erator -< as 'precede(s)'. Expression J0(a) -<
Cu(a) -< 7 t(a) -< £t(a) -< e t(a) ivithin the func
tional and set notation is used instead of a se-
ries l^a) •< Ct{a); Ct(a) -< 7 t(a) ; J^a) -< £0{a);
£ t(a) -< e,.(a), where -< is understood to be a tran-
sitive operator, that is, TL(a) -< 7 t (a) ; J t (a) -<
£t(a); Ct(a) -< £ t(a); etc.

If we introduce, according to Consequence 11,
the linearly ordered metaphysical set of compo
nents,

Mt = {I t(a) •< Ct(a) -< 7 t (a) -< £t(a) -< e0(a)}~

then ali possible frames including 1, 2, 3, 4> and
5 metaphysical components and ali possible com-
binations of the parenthesis pairs '(' and ')' are

296 Informatica 18 (1994) 277-298 A.P. Zeleznikar

determined, in the sense of Consequence 11, by
the scheme (scenario) of the implicative decom-
position, which is

$ (J t (a) -< C,(a) •< 7 t (a) V
£i(ot) -< e t(a)) ;

/($(0; f e Atf);

= * • « * ecompose

\

/$(6,6); \
6 •< 6; ;

^ 6 , 6 e . A < /
$(6,6,6); \
6 -< 6 < 6; ;
6 ,6 ,6 e Msy

/$(6 ,6 ,6 ,6) ;
6 < 6 -< 6 -< 6;

\6,6,6,6-G-^?
\ $ (X t (a) < Ch{a) < 7 t (a) -< £4(a) -< e4(a)X/

T/ie inverse gestalt of the metaphysically inform
ing entity i, which observes a, is

(TUfi(a) * (Z4(a) -< Ct(a) -< 7 t (a) -<\ _
£ 4(a) -< e,(a))

/ / $ (e 4 (a) - ! £ : t (a) - ! 7 t (a) ^ Nv \

V

C4(a) -< Z4(a))

/ i i (a) \
/ $ (£ 4 (a) - < £ 4 (a) - < 7 4 (a) x
^ C 4(a)-{ I 4(a))

If we introduce, according to Consequence 11, the
inverse, linearly ordered metaphysical set of com-
ponents in comparison to A4^, that is the inverse
set

Mf1 = {£*(<*) < €,{a) •< 74(a) -<
Ct(a) -< I 4 (a) }

i/ien ali possible inverted frames (in fact, $ - 1 ^
including 1, 2, 3, 4> and 5 metaphysical compo-
nents (in the reverse order) and ali possible com-
binations of the parenthesis pairs '(' and ')' are
determined, in the sense of Conseguence 11, by
the scheme (scenario) of the inverse implicative
decomposition, which is

' $ (e t (a) -< £4(a)-< 74(a) -T
CL{a) < J4(a))

(m)\UMD
Mecompose

/$(6,6); \
6 < 6;

'$(6,6,6);
6 ^ 6 ^ 6;

,6 ,6 ,6 eMf
\

i

$(6,6,6,6);
6 -< 6 •< 6 -< 6;

,6 ,6 ,6 ,6 e Mt
\ * (£ 4 (a) -< £4(a) -< 74(a) -< C t(a) -< J 4 (a)) /

We see that

*(Z 4(a) -< C4(a) -< 7 4 (a) -< £4(a) •< e4(a)) =

* " 1 (e 4 (a) -< £4(a) -< 7 t (a) -< C4(a) -< J t (a))

and mce uersa is the correspondence betvoeen
the original and inverted čase of informational
frames. •

Consequence 14 [In a Standard W a y In
forming Metaphys ica l Gesta l t of an Infor
mational Entity] The appearance of a standard
metaphysical form, voith components of inform
ing, counterinforming and informational embed-
ding, implies the occurrence of ali possible ordered
cycles (operator -<,) in one and the other direction,
that is, from informing to embedding and also vice
versa. There is,

/ « a) |= Uc® \= C+a)) \= l,(a)j\
[M,(aO> |= £,(«» M a) J
/7<M«) \N

(§{li{a)<CL(a)<ll(a)<
\ £t{a) < e4(a))

f<št(a) \
/ $ (£» («) ^ £ 4 (a) - < 7 t (a) - <
\ C4(o) •< I 4 (a))

/

/

T7ie informing entity after (under) the implication
operator =>• is a pari o/f/ie so called metaphysical
gestalt of informing of entity (operand) t(a). D

INFORMATIONAL BEING-OF Informatica 18 (1994) 277-298 297

C o n s e q u e n c e 15 [A Funct ional Metaphys i -
cal Gesta l t of an Informational Entity] The
next question concerns the so-called functional
metaphysical gestalt of an informing entity. If,
in general; ip*£ marks the traditional functional
notation <p(£;), then, considering Consequence 13,
the possible functions, within a metaphysical func
tional gestalt, are

C*I(t(a)) ; C(I)* t (a) ;
C(I(t))*a; .

7*C(I(t(a))); 7(C)*I(t(a));
7 (C (I) M a) ; 7(C(I(0))*a);

£*7(C(2(,(a)))); £(7)*C(J(t(a)));
5(7(C))*J(t(a)); 5(7(C(I)))* t(«);
5(7(C(J(0)))*a;

£*£(7(C(zWo01; ^)Mč(2W«))));
£ (f (7))*C(J(t (a))) ; £ (f (7(C)))*r(t (a)) ;
£ (f (7 (C (Z l * t (a) ; e (5 (7 (C (I (t l) * « ;

i * £ (£ (7(C(J (t (a)))))) ; , (£)^ (7(C(J«a))))) ;
, (£ (£ :))* 7 (C(J (i (a)))) ; , (£ (f (7) rC(lWa))) ;
,(£(£:(7(C))))*I(,(a));,(£(^(7(C(Z)))))M«);
t (£ (f (7 (C (J (t l D * a

For f/ie inverse metaphysical functional gestalt,
the inverse functions, as

re{t{a))- 5(e)*t(a);

7*£(e(L(a))); 7 (£) M ' («)) ;
7(5(£)*t(a); 7(^(£(0))*«);

C*7(f«t(a)))); C(7)^(£Wa)));
C(7(f))*e(t(a)) ; C(7(£(£)))*i(<*);
C(7(C(£(0)))*a;

I*C(7(^(£(t(a))))) ;J(C)*7(^(£(i(a)))) ;
J(C(7))^(£(.(a))); I(C(7(f)J)M'(«»;

j(c(7(f(£))))M«);2:(C(7(^(e(0))))*«;

t (i (c r 7 (W * (« l ; <i(C(7F^('(«)9;
t (I (C (# | M t (a | i « 7 (W » (a) ;
<j(c(7(^(£(0)))F«

can come mto consideration. •

13 Conclusion

Informational Being-of is only one of the key-
stones within the arising informational theory.
Such a keystone is also the informational Being-
in [9]. What might be important in the context
of the differently appearing informational Being-
possibilities, is the comparison between mod
ernistk and postmodernistic understanding of in
forming of entities.

The informational formulas in this' essay are
not consequently (rigorously) informationally de-
duced, induced, and abduced. The presented the-
ory of informational Being-of and it concerning in
formational processes is only at the beginning of
a complete and elaborated theory. The presented
context of the essay shows tha t what is already
theoretically grasped in the sense of informational
Being-of, but has to be developed into emerging
possibilities.

Each open, postmodernistically structured the-
ory is not only phenomenological (e.g. in the sense
of the philosophy pertaining to Husserl and Hei-
degger), but phenomenalistic (e.g. in the sense
of informational phenomenalism). Phenomenol-
ogy does not create nor presuppose logic construc-
tions, theories or systems. It does not deduce
from axioms nor induce on the basis of observed
and noted facts. Its method roots in an exemplary
intuition, tha t is, investigating particular cases
qua cases, which represent essences and types in
the realm of consciousness [2].

Phenomenalistic theory is not only algorithmic
and does not search for a principle of principles. It
is aware tha t some initial principles are connected
with informational principles of inference (reason-
ing, conclusion) which have to be seen as initial
principles too (e.g., informational modus ponens,
tollens, rectus, obliquus, operandi, vivendi, etc.)
Principles of informing (understanding, interpret-
ing, reasoning, coming into existence) are dy-
namic and they change and arise according to the
emerging situations and att i tudes. Such an infor
mational theory can be understood as a predeces-
sor of the informational machine which seems as a
successor of the today computer. It becomes more
and more evident that processes presented in this
essay could be programmed on the most power-
ful (parallel, fast, and data-voluminous) computer
systems. One of the most significant informa
tional system will become the so-called knowledge

298 Informatica 18 (1994) 277-298 A.P. Zeleznikar

machine, being a natural, a logical, and a possi-
ble consequence of the today computer technology
and informational philosophy.

MODERNISM

mathematization;
algorithmization

algorithmism;
preceduralness
recursiveness
mathematical

formula system;
computer program

mathematical
function

mathematical
inclusion

mathematical
formalism;

philosophical
phenomenology

algorithmic
processing
algorithmic

cycling;
programmed

recursion
computer system

expert system;
knowledge base

artificial
intelligence

methodologies
theory of chance,
chaos, probability,

fuzziness, etc.
deduction,
induction,
abduction,

modus ponens
determinacy,

predictability,
closeness

POSTMODERNISM

informational philoso-
phy and formalization

informationalism;
inform. spontaneity
inform. circularity

informational formula;
informational formula

system (gestaltism)
informational Being-of;
inform. functionalism

informational Being-in;
inform. inclusivism
informational exter-
nalism, internalism,

metaphysicalism,
and phenomenalism

informational
arising (= informing)

metaphysical cycle
with informing,

counterinforming, and
embedding

informational machine
knowledge machine;
knowledge archives

metaphysicahsm with
informing, counterin

forming and embedding
counterinforming and

informational
embedding

inform. decomposition,
hermeneutics, interpre-
tation, deconstruction,

modi informationis
indeterminacy,

unpredictability,
inform. openness

Table 1. Modernistic and postmodernistic terms

Table 1 (see [1, 8]) shows some essential differ-
ences between modernistic and postmodernistic
orientation regarding traditional (mathematical,

algorithmic) approaches and informational sense.
This table might be helpful for a deeper under-
standing of informational phenomenalism as ex-
posed in this essay in the form of informational
Being-of. It is to stress that modernistic items
can certainly be included into the conceptualism
of postmodernistic means: such aposition offers a
substantial advantage on the way to informational
methodology, formalism and machine.

References

[1] I. Hassan: The Postmodern Tura, Ohio State
University Press, Columbus, Ohio, 1987.

[2] G. Ryle: Martin Heidegger: "Sein und Zeit",
The Journal of the British Society for Phe-
nomenology 1 (1970) No. 3, 3-14. [First pub-
lished in Mind, N.S. 38 (1929) No. 151.]

[3] H. Suematsu: Current Status of the EDR
Electronic Dictionary Project, Informatica
18 (1994) 93-96.

[4] A.P. Zeleznikar: Towards an Informational
Language, Cybernetica 35 (1992) 139-158.

[5] A.P. Zeleznikar: Formal Informational Prin-
ciples, Cybernetica 36 (1993) 43-64.

[6] A.P. Zeleznikar: Metaphysicalism of Inform
ing, Informatica 17 (1993) 65-80.

[7] A.P. Zeleznikar: Logos of the Informational,
Informatica 17 (1993) 245-266.

[8] A.P. Zeleznikar: Towards an Informational
Understanding of Knowledge, Cybernetics
and Systems '94 (Ed. R. Trappl), Vol.
II, 1587-1594, World Scientific, Singapore
(1994).

[9] A.P. Zeleznikar: Informational Being-in, In
formatica 18 (1994) 149-171.

[10] The Oxford English Dictionary, Second Edi-
tion (on compact disc), Oxford University
Press, Oxford, 1992.

[11] EDR Electronic Dictionary Technical Guide,
TR-042, Japan Electronic Dictionary Re
search Institute, Ltd., Tokyo, 1993.

Informatica 18 (1994) 299-304 299

CAUSALITY AND THE THEORY OF INFORMATION

Leon Birnbaum
Bloc B6, App. 26
str. Gutinului 6
RO-4650 Dej
Romania

Keywords: action, causal chain, causality, cause-effect, event, informational chain, perturbation
(constructive, dvnamic, functional), state, svstem

Edited by: Anton P. Železnikar

Received: May 10, 1994 Revised: July 29, 1994 Accepted: August 29, 1994

This article deals with problems pertaining to the cause-efFect phenomenalism, stressing
the structure of the informationally transitional triad emitter-channel-receiver. In an
informational-causal chain (see Fig. 1), perturbations (causes) and informations (effects)
are considered. In the article presented notions can be a basis for a more exhaustive
study of informational transitions basing on cause-effect philosophy. The grapi in Fig. 1
presents an adequate starting-point for the further research of informational transition
in the most complex manner.

1 Preliminaries conditions.

We must always start with the conviction that
not ali is definable. This statement refers to ev-
ery kind of language. In formal languages, we
do not define and never will define primary no
tions; the primary relations between the primary
notions are formulated axiomatically. In natu-
ral languages, the situation is more complicated
because these languages are in perpetual evolu-
tion and we can not always separate a finite set
of primary words out of their vocabularies. Tak-
ing this into.account, with intention to express
the treatment of our subjects in a more explicit
mode, we must introduce certain fundamental no
tions. It can happen that these notions are neither
independently definable nor accepted by scientific
communities or, that the scientific references in-
clude to much (and diverse) definitions of them.
Thus, let us explain what do we understand by
some basic notions in this article.

We introduce the following understanding:

— A system is a set through which one aprior-
istic relation with fixed features will be real-
ized.

— A state is the situation of a determinate sys-
tem, together with its structure and external

— An event is the intervened (and intervening)
change, when passing from state a\ at time
t\ to state <Z2 at time t2, where ti > t\.

— An action is the intervention of system Sp

into the natural autonomous unfolding of
events by system Sq.

— An informational chain is a system of in-
formation transition, for med by the infor
mational triad source-channel-receiver. This
triad can interfere with other elements. E.g.,
perturbations can drive (impact) informa
tional chains from both the exterior and the
interior of the informational chains.

— A perturbation is an information which alters
the transmitted information within the infor
mational chain. A perturbation performs as
an action.

An example of perturbation within the informa
tional chain is the trite feedback.

2 A Classification of Actions

Let us introduce the following basic classification
of sets of actions:

300 Informatica 18 (1994) 299-304 L. Birnbaum

A. Static actions and

B . Dynamic actions.

In turn, static actions can be classified into more
detail:

Aa. Actions of prevention. (Example: launching
of signals.)

Ab . Actions of defense. (Example: action ofbur-
glary warning.)

Ac. Actions of influence. (Example: action of
catalysis.)

Dynamic actions can be classified in the following
way:

Ba. Stabilizers. (Example: the reverse connec-
tion.)

Bb . Functional destructive actions. (Examples:
noises, catching diseases, virus intrusions,
etc.)

Bc. Functional constructive actions. (Examples:
sun radiation, atom mutations, etc.)

Each action manifests itself as information. Also,
each action is realized as to owe some information.
Therefore, a reciprocal implication exists, causing
not an equivalence between action and informa
tion. (E.g., one implication holds for the release
and the other for the action.) Each perturba
tion is considered to be an action (a perturbatious
one).

3 Perturbations

According to the formerly said, the classifica-
tion of perturbations presupposes the classifica-
tion of actions. Up to now, as perturbations
only those have been considered, generated by the
dynamic functional destructive actions as noises,
diaphones, distortions which represent informing
perturbations, transmitted along the channels of
electromagnetic and sonorous waves. As we have
seen, there is an immense number of channels
through which information can be transmitted.
On the other hand, perturbations are not neces-
sarily destructive (negative).

Another view of the perturbator action, ac-
cepted more or less tacitly, represents the fact
that we have considered only those perturbations

which impact the transmission channel. This con-
cept does not correspond to the reality. Each el
ement of the informational triad, that is, source-
channel-receiver, can perform submissively as a
perturbator action.

Let us motivate the presented arguments with
some further examples:

a) Actions of the perturbations of the source are,
for example, the well-known action of feed-
back, stimulation difference in intensity of
the source, etc.

b) Actions of the perturbations of the channel are
caused by electronic circuits of amplifiers, by
the influence of the ionic equilibrium K-Na
in cerebral synapses, etc.

c) Actions of the perturbations of the receiver
are filters which select and distribute the re-
ceived signals (information). The separation
is performed in such a way that information
is filtered out from noise and distortion.

4 Dynamic Functional
Constructive Perturbations

In turn, these perturbations can be classified as
continuous, periodical and irregular. Let us show
some examples of certain classes of perturbations
as follows:

a) As a continuous perturbation the force of the
attraction of the great celestial bodies (starš,
sun) can be understood. This force influences
the celestial bodies at the traversing the fields
of attraction of a star (according to the dis-
tances and masses); so, bodies will contin-
uously deviate from their uniform and (ap-
parently) rectilinear movement and, conse-
quently, will join as planets around the star.
Further two examples can be observed within
the biological domain: In a successive man-
ner, the contraction and relaxation of the
thorax induce the possibility of the breathing
and, implicitly, the oxygenation of the blood,
which feeds by oxygen ali the tissues. An
other example is the metabolism of consum-
mated substances, absorbed from the ambi-
ent medium.

b . Some examples of dynamic functional peri
odical perturbations are: the heterosexual

CAUSALITY AND THE THEORY OF INFORMATION Informatica 18 (1994) 299-304 301

provocation of attraction in fauna at the pe
riod of rut , the menstrual cycle, the zodiacal
influence, the migration of birds, the tides,
etc.

c) More interesting seem to be the so-called ir-
regular perturbations which can be further
classified in the following way:

c i) By an individual action: infection of a
human by AIDS through an individual
contact.

c2) For a group of individuals (species): the
genetic mutation which outcome was the
extinguishing of the great saurians, 67-
70 million years ago.

C3) By a historical action: migration of peo-
ples, migration of insects (locusts), out-
break of wars, great epidemic diseases,
etc.

C4) By a zonal action of a celestial body
(Terra): desertification of great produc-
tive areas (forests, plantations), glacia-
tions, floods, etc.

C5) By zonal action of the universe: that
what is named the "gravitational col-
lapse", appearance of the neutronic
starš, etc.

A note . Concerning C5), we must remark that
there is only an apparent gravitational collapse.
In the reality, mat ter is retransformed in infra-
mat ter (space) of which it is being constituted. If
the speed of transition of mat ter in inframatter
(space) is bigger as the speed of light, the impres-
sion arises that the force of attraction is so great
that the mat ter at t racts even the photons.

From the previous remarks it comes out that per
turbations are single active elements concerning
an introduction of changes (variations—according
to J.C. Ducasse [3]) which within the habitual, the
daily, the usual, and the universal are accepted as
"normal". The same philosophy pertains to the
term "cause". From this viewpoint the notion
"cause" is partly equivalent to the notion "dy-
namic perturbation" in the sense tha t the set of
causes is included in the set of dynamic perturba
tions, tha t is: "Each cause is a dynamic pertur
bation", if each effect presupposes a cause. Mario
Bunge [2] asserts tha t each cause is an external ac
tion which leads to changes in an object (see [2],

p. 15). We can therefore give an informational
definition of the cause.

Definit ion 1 The cause is a dynamic perturba
tion.

This perturbation is usually external, but it can
also be internal. The feedback does not operate
directly on the source, but impacts perturbations
which drive the source. However, not each dy-
namic perturbation represents a cause, because a
dynamic perturbation can also induce an implica-
tion being different from cause. For instance, the
birth implies the death, but the birth is not the
cause of the death. To this, although the pertur
bations at this tirne are static, the catalysts imply
the facilitation of chemical reactions, but they do
not represent the cause which produces the chem
ical reactions. By conclusion, merely a subset of
the dynamic perturbations represents the set of
causes.

5 The Relation Cause-effect

The receiver of an informational chain receives a
signal and, in the čase of the existence of per
turbations, the signal coming from the source is
already altered. If the perturbation is a cause,
then the altered signal in the receiver will induce
a phenomenon, called the effect, t ha t is, the ef
fect being proper to the cause (to the perturba
tion) and not to the source. There is not, a lin-
ear relation between the cause and the effect, but
a relation of intervention, grafting, change of the
signal emitted from the source. If the cause would
not exist, the receiver would receive the signal as
it is in the source (a unmodified one). The cause
(perturbation) is responsible for the alternation of
the signal. Several causes (perturbations) can ex-
ist which induce the same effect. Several mutually
diverse diseases induce the same effect—the fever.
Between the event when a cause induces an alter
nation of the signal and the event of the receiving
an altered signal is a temporary disparity, a gap
(see Section 1), because the signal from the source
did not reach the receiver yet and must be altered
in a later tirne; the signal must be disturbed by
an action of the signal alternation. Further, we
must consider that in no čase the speed of signal
transmission can outrun the speed of the light.

302 Informatica 18 (1994) 299-304 L. Birnbaum

The relation cause-effect is therefore a functional
relation of time.

However, among different observers there can
also be some of them (e.g. in a movement) who,
in the first turn, realize the effect while, later,
realize the cause, overtaking thus a paradoxical
situation. To avoid such paradoxical situation,
the change of the observer plače and also of the
cause-effect relation must be reported to the same
referential system being adequate for the relation
cause-effect.

Namely, the causality, the generic set of rela-
tions cause-effect, is thus a direct principle of the
action, but it remains also a principle of an exter-
nal intervention (sometimes, internal) of a usual
action (e.g., signal transmission).

Because our sphere of perception is anthropo-
logical (it spreads dimensionally from the atom
to the šolar system), the principle of causality
("Each effect has a cause") remains limited to our
anthropological domains. For this reason, the an-
thropological principle of causality does not retain
its validity beyond the boundaries of the anthro
pological. In quantum mechanics, as well as in
galaxy mechanics, the anthropological principle
of causality leads to a plurality of results and, so,
becomes indeterminate. In the subatomic as well
as in the overastral worlds there are phenomena
and events (e.g., for these domains the existence
of ununiform movements is proved) which demon-
strate perturbations through information trans
mission and among perturbations some of them
represent certain "causes". This may mean that
also in the non-anthropological domains the prin-
ciples of causality exist which differ comparatively
from the anthropological principles of causality.
We know (assume) several phenomena and inter-
relations belonging to such extra-anthropological
worlds not directly, but through the instruments
of investigation and measure possessing a high
vim of resolution. Up to now, our knowledge con-
cerning the extra-anthropological worlds is insuffi-
cient for a generalization of phenomena belonging
to these worlds and for a formulation of norms,
laws and principles, which would constitute a
different logic (e.g., being non-bipolar). In any
čase, the causality—or more exactly causalities—
of those worlds fundamentally differs from the an
thropological causality. To the same conclusion,
although by inference in another manner, comes

Mario Bunge [2]. That which was discovered in
the extra-anthropological worlds is rather impli-
cations than causalities, is rather results than reg-
ularities, and is rather effects than causes.

6 Confrontations

The problem of simultaneousness of cause and ef
fect was contributed to the theory, more or less, by
I. Kant [5]. We consider that the great thinker has
referred to the causes being spread over a longer
time period. A cause at time t' releases the effect
at time t, where t' < t and thus, in the time inter
val t — t', the cause and the effect are concomitant.

Let us consider that cx and C2 are causes and
that / (ci) and /(C2) are effects of the causes. If
c\ precedes C2, then f{c\) precedes /(C2). This is
a regular succession between the cause and the ef
fect. Concerning this regular succession, foreseen
by Fr. Bacon [1], after him by D. Hume [4], and
nov/ by J.C. Ducasse [3], we do not dispose and,
we consider that it is impossible to dispose, with
the rigorous arguments for this conformation. We
consider that the causes can be multiple ones and
these induce effects in different time lapses.

Concerning the influence of causality upon the
determinism in science and philosophy, even in
reference to the anthropological causalitv, we con
sider that its impact is limited in a several view-
points. Let us present some conclusive illustra-
tions:

a) One and the same cause can produce differ
ent effects, even contradictory ones, being in
the function of the intensity of the preceding
signal: a feeble wing extinguishes a candle, a
strong wind stirs a fire.

b) As we have seen before, there is not a guar-
anty for a regular and parallel succession be-
tween the cause and the effect. Although
thunder and flash of lightning take plače si-
multaneouslv, their effects (firing of a tree
and breaking of window panes because of
sonorous pressure) are staggered in time be
cause of different speeds of propagation.

c) A drug, in different doses can have different ef
fects, even the paradoxical and contradictory
ones.

CAUSALITY AND THE THEORY OF INFORMATION Informatica 18 (1994) 299-304 3 0 3

7 The Origin of Perturbations
and Causes

Considering the origin of perturbations (and of
causes too) , they can be:

a) endosystemic, which proceed from the same
system, the same informational chain;

b) ectosystemic, which proceed from another sys-
tem (external to the information chain).

The endosystemic perturbations are usually con-
structively continuous or constructively periodi-
cal. In such cases, perturbations have a regula-
tory or programming role. For living creatures,
these perturbations root in genetics specific for
each kingdom, phylum and species.

The ectosystemic perturbations are, by them-
selves, effects of another informational chain
(on the side of receiver) belonging to the same
suprasystem; they can regulate the necessities of
the suprasystem, etc.

An example of the suprasystem is that of the
living organisms, the nature. For keeping of its
internal equilibrium, tha t is, its existence (e.g.,
the ecological equilibrium), the nature intervenes
by means of its possibilities by evolution or invo-
lution of different populations.

The universe is the only system in which ali per
turbations are endosystemic, since the universe is
a unipolar notion without the exterior.

8 Final Considerations

The cause cannot be a generator of information;
this function belongs to the perturbation of an al-
ready existing information. The effect is informa
tion proceeding from the source, being perturbed,
altered, mutated by a cause. The cause, in itself,
can also perform as an effect, being induced by
another cause within another information.

Therefore, the causal chain has, as a support
(skeleton), a succession of (perturbed) informa
tion. Also, each effect can serve for a cause in
another relation cause-effect while each cause can
serve for an effect too. In any čase, each effect
has a cause.

The causal chain, in which any element is an
effect of a cause and any cause induces another

effect, with exception of the first and the last el
ement, is not linear but has a scalar form, as can
be seen from Fig. 1.

G' G

E' E

C' C

A' A

1 B

D'

D

D'

F

F'

Figure 1: The informational-causal chain: paths
A^B, WČ~, Č^D, WE, ~WF, 'FG, and GT~. are
informational while paths AB, BC, CD, DE,
EF, FG, and G... are perturbational, that is,
causal.

In accordance to the revealed, the philosoph-
ical problem of the "first cause" and the "last
purpose" (considering the purpose an effect of
an effect of cause) are therefore deprived of the
sense. Each cause is both the first cause and
the last cause concerning its capacity of perturb-
ing, changing, mutating certain information. The
problem of the first cause dates in the antiquity,
with the purpose to stop the regressive succession
of the "why's?". It has been agreed to equalize
the "first cause" with a superior power, at tr ibuted
to one (or more) supernatural creature(s), or to
God. Not the first cause must be attr ibuted to
God, but the first information (exactly, the first
informations). The first perturbations (causes)
are due to the interference of the first informa
tions.

We have to admire the deep intuition of the
Evangelist St. John: "At the beginning was the
Word, and the Word was with God." (Gospel,
John, 1,1.)

References

[1] Fr. Bacon: Novum Organon, I, af. 68, 1620.

304 Informatica 18 (1994) 299-304 L. Birnbaum

[2] M. Bunge: Causality. The Plače of the
Causal Principle in Modem Science, Cam-
bridge, MA, 1959 (p. 15 and 31).

[3] J.C. Ducasse: The JVature of Causality,
Edited by M. Brand, IL, 1976.

[4] D. Hume: A Treatise of Human Nature, Ox-
ford at the Claredon Press, 1958 (p. 77).

[5] I. Kant: The Critic ofthe Pure Reason, Part
II, Division 2, Book 2, Chapter II, Section 2,
Analogy B.

Informatica 18 (1994) 305-313 305

CRITICAL ANALYSIS OF ROUGH SETS APPROACH TO
MACHINE LEARNING

Igor Kononenko, Samo Zore
University of Ljubljana, Faculty of electrical engineering & computer science,
Tržaška 25, SI-61001 Ljubljana, Slovenia
Phone: +386 61 1768390, Fax: +386 61 264990
e-mail: igor.kononenko@ninurta.fer.uni-lj.si

K e y w o r d s : rough sets theory, eritical analysis, machine learning

Edited by: Rudi Murn
Rece ived: March 9, 1994 Rev ised: June 28, 1994 Accepted : October 5, 1994

In this paper the rough set theory (RST) approach to machine learning is analysed and
its drawbacks deseribed. RST often ušes complicated formalization of rather simple
notions and sometimes invents new notions that make the RST papers hard to read and
understand. Some authors from the RST community tend to ignore the huge amount pf
work done in machine learning. This may lead to reinventings and ad-hoc solutions.

1 Introduction

Pawlak (1982) defined the rough sets theory
(RST) which was later used for several applica-
tions and published in a series of papers (e.g.
Pawlak, 1984; Pawlak et al., 1986). However,
Wong et al. (1986) compared the RST approach
with ID3 approach (Quinlan, 1979; 1986) and
concluded tha t the induetive learning defined by
Pawlak is just a special čase of the ID3 approach
and basically differs in some (unrealistic) assump-
tions. To overcome the deficiencies Wong &
Ziarko (1986) defined the probabilistic RST which
was later refined by Pawlak et al. (1988). The re-
defined probabilistic RST seems to eliminate some
drawbacks of the original (discrete) RST, while
stili containing some problematic issues.

Later, numerous papers were published on the
application of RST, which almost ali use the origi
nal definition of (discrete) RST (with ali its draw-
backs). The most notable publications seem to
be the paper (Kubat , 1991), the book by Pawlak
(1991), and the edition of 27 papers in (Slowinski,
1992). Kubat ends his paper with "It is a pity that
this topic (RST) has not yet received more public-
ity ...". Maybe the more appropriate claim would
be: "It is a pity that nobody critically analysed
the RST and compared the performance of RST
with well known induetive learning approaches".

The aim of this paper is to fill this gap.
In the next seetion the RST approach to ma

chine learning is briefly deseribed. We deseribe
the basic terminology and definitions to give the
reader the impression about the RST approach,
however, in the RST literature there are many
more definitions and terminology which often con-
fuses the point. In seetion 3 we diseuss the de
ficiencies of the RST approach: its formal and
unreadable terminology, inflexible knowledge rep-
resentation, and ad-hoc solutions. Seetion 4 de-
seribes experimental comparison of performance
of two "classical" machine learning algorithms
with the performance of RST. In conclusion we
analyse the "contribution" of RST to machine
learning.

2 Rough sets theory

2.1 B a s i c d e f i n i t i o n s

The (discrete) RST (Pawlak, 1982) is introduced
through an information system which is defined
as a 4-tuple S = < U,Q,V, f >, where U is
a finite set of objeets, Q is a finite set of at-
tributes, V is the union of attr ibutes domains
and f : U X Q —• F is a total funetion tha t
assigns a value to each at t r ibute of each objeet.
This funetion is used to define equivalence rela-

mailto:igor.kononenko@ninurta.fer.uni-lj.si

306 Informatica 18 (1994) 305-313 I. Kononenko, S.Zore

tion called indiscernibility relation for each subset
of attributes P C Q:

P = {(x,y)\x,ye UkVq<=P: f(x,q) = f(y,q)}

(1)
In other words, objeets x and y are in the relation
P if they have the same value for every attribute
from P. The family of equivalence classes of rela
tion P is denoted by P*.

A rough set is defined as an approximation of
set of objeets Y C U and is defined with two
unions of equivalence classes of objeets (Pawlak,
1982):

PY = \J{X £ P*\X C Y) (2)

PY = \J{X £P*\XC\Y ^ 0 }

PY is called P-lower approximation of Y and PY
is called P-upper approximation of Y. The P-
lower approximation therefore contains only ob
jeets from set Y while P-upper approximation
contains also objeets from U — Y which are "P-
indiscernible" from some objeets from Y. The
relation between defined sets and set Y is:

PY C Y C PY (3)

An approximation is sometimes represented also
in terms of three regions:

P-positive region of set Y in S :

POSP(Y) = PY

P-negative region of set Y in S :

NEGP{Y) = U-PY

(4)

(5)

- P-boundary (doubtful) region of set Y in S :

BNDP{Y) = PY-PY (6)

P-positive and P-negative regions contain P-
equivalence classes containing objeets that ali be-
long and ali do not belong to set Y, respeetivelv.
P-doubtful region is the union of P-equivalence
classes each of which contains some objeets that
belong to Y and some objeets that do not.

Approximation of family of sets is a general-
ization of approximation of set Y. If x is defined
as:

X = {YuY2,...,Ym} : YiCU (7)

then approximation of x by P is defined:

Pj(= {Py1,RY2,...,PzYm}
PX = {PYi,PY2,...,PYm} (8)

If X is a classification (i.e. Yj fl Yj = 0 : Vi, j <
m > * ¥" i) UiLi Yi = U) then measures of rough-
ness of approximation of x are defined as follows:

— accuracy of approximation of x by P in S or
shortly accuracy of classification x

o / s TA-\card(PYi) n , ,

£ £ i card(PYi)
(9)

quality of approximation of classification ofx
by P in S or shortly quality of classification
X

7 P (X) =
£?= icard(fYj)

card(U) 0 < 7P(X) < 1

(10)

2.2 Decis ion rules

If classification x = {Y\, Y2,..., Ym} is defined in
information system S = < U,Q,V,f > and a set
of attributes P C Q induce P-equivalent classes
X = (X\,X2,...,Xn), decision rules for set Yj
are defined (Pawlak, 1991):

OPj =

{nj : (Des(Xi) =» Des(Yj))] XinYj £ 0; * = l„n}

and decision rules for a whole system are then
defined:

OP(X) = {OPJ;j = l..m} =

{r{j : (Des(Xi) => Des{Yj)); X{ D Y, ± 0 ;

i = 1 .. n ; j = 1 .. m} (11)

where Des(Xi) is a description of an equivalence
class which is equivalent to the description of ali
objeets from that class:

Vx 6 Xi : Des(x) =

(Pi = vh)HP2 = vh)^- • -A(Pn = vin) = Des(Xi)
(12)

where x € U, pk € P, Vjk e VPk. Des{Yj) rep-
resents a description of the value of an action at
tribute (class).

Two types of rules are defined:

CRITICAL ANALYSIS OF ROUGH SETS THEORY Informatica 18 (1994) 305-313 307

nj is DETERMINISTIC
Aj H Yj — Aj

rij is NONDETERMINISTIC

xt n Yj ± Xi

2.3 Learning algorithm

To generate a set of decision rules a subset P of
attributes must be selected. Decision rules are
generated using only attributes from P. For both
these complex tasks the RST approach ušes (ad-
hoc) heuristics. There are some more definitions.

Let S — (U, Q, V, f) be an information system.

- Set of attr ibutes R C Q depends on set of
attributes P C Q in S (denotation P —* R)

P C R.

— Set of attributes P C Q is independent in S

VP' : P' C P => P' D P

— Set of attr ibutes P C Q is dependent in S

^ > 3P' : P' C P => P' = P (P ' -» P)

— Set of attributes P C Q is reduct in S <=4>
P is the greatest independent set in Q

The definition of a reduct is from (Pawlak et
al., 1986). The "greatest independent set" is in-
terpreted as locally greatest and not globally. In
Slowinski (1992) a reduct is defined as the mini-
mal set of attr ibutes that defme the same equiva-
lence classes as original set of attributes (which is
equivalent to the above definition). Here the word
"minimal" is again interpreted as locally and not
globally minimal. .

From the above definitions we have the follow-
ing properties:

1. If set of attributes P C Q is independent in

S => Vp, q G P : -*(p —•<?)& -i(<7 -»• p)

2. If set of attributes P C Q is independent in
S_=* VP' C P : card(P'*) < card(P*),

(P' D P)

3. Set of attr ibutes P C Q is dependent in S
<=> 3P' C P : P ' is independent & P ' -+
P - P '

There may exist more than one reduct P C Q.
Learning algorithm as defined in RST, is di-

vided into three steps:

1. Reduction of those attributes from set Q tha t
do not change the <5-equivalence classes. For
such at tr ibute p holds (Q — p) —»• Q. This
leads to independent set of attr ibutes A for
which stands:

Q* = A* 1Q (x) = 7A(X)

As the number of reducts may be large one
should need a preference criterion for search-
ing for "good reduct". In the RST literature
typically an ad-hoc search is performed, such
as t ry to eliminate first a t t r ibute, then second
etc. (see e.g. Pawlak et al., 1986; Slowinski
& Slowinski, 1990; Slowinski, 1992a; Tanaka
et al., 1992; Grzymala-Busse, 1992).

2. Elimination of attr ibutes from reduct A
(which causes joining some of equivalence
classes and therefore decreases the quality
of classification 7) until the lowest permitted
predefined value of 7 is reached. The search
heuristic in each step eliminates the at t r ibute
that maximizes 7 for remaining subset P of
attributes.

3. Generation of rules for each class in turn us
ing only attributes from P . Many authors
from the RST community use the covering
algorithm (e.g. Wong et al., 1986; Wong
& Ziarko, 1986). In each iteration one rule
is generated and correctly classified training
instances are removed. Iterations terminate
when ali training instances are removed or
when no more rules can be found.

One rule is generated in a top-down man-
ner, starting with empty condition, and by
specializing the current rule in ali possible
ways and selecting the most promising spe-
cialization. This continues until the certain
quality criterion is met. For deterministic
RST, the quality criterion is the determin-
ism of the conclusion part of the rule (Wong
et al., 1986). For probabilistic RST, the qual-
ity criterion requires that the percentage of
the majority class is above the user defined
threshold a > 0.5 (Wong & Ziarko, 1986).

Classification with decision rules is straightfor-
ward. If the description of an object is equal to
the description of the condition attr ibutes of the
rule, the object is classified in the class repre-
sented with the value of the action at t r ibute of

308 Informatica 18 (1994) 305-313 I. Kononenko, S.Zore

that rude. For nondeterministic rules the diserete
RST doesn't give any priority to classes as it as-
sumes equal distribution of classes Yj in the equiv-
alence class. That was improved in the probabiUs
tic RST (Wong & Ziarko, 1986; Pawlak et al.,
1988) where for the conclusion part the distribu
tion of covered training instances was used.

Another problem is if the rule for classification
does not exist (i.e. there is no rule with the de-
seription of condition attributes corresponding to
the deseription of an object). In this čase the algo-
rithm searches for k closest rules that best mateh
the object and their conclusion part is averaged
(Krusinska et al., 1992).

3 Drawbacks of RST

3.1 Terminology

Probably the most confusing thing with RST is
its complicated formalization of rather trivial (at
least in the context of machine learning from ex-
amples) notions. While formalization is usually
welcome and necessary to avoid confusion, in RST
it adds confusion with numerous new notions and
unusual terminology that often confliets with the
usual terminology of machine learning commu-
nity.

The definition of boundary region BNDp,
which is the central part of the RST, merely repre-
sents a part of the instance space where attributes
do not suffice for diseriminating between classes.
The whole concept of a rough set merely states
that certain classes cannot be diseriminated from
other classes. However, there is no information
provided about the distribution of instances in-
side the boundary region.

The accuracy of classification (3, defined with
eq. (9), should not be confused with the usual
meaning of classification accuracy. The quality of
classification 7, defined with eq. (10), in fact rep-
resents the percentage of training objeets that can
be correctly classified using only attributes from
P. This is equal to the classification accuracy
on training dat a which may of course drastically
differ from the classification accuracy on unseen
objeets. Therefore, 7 is poor search heuristic and
the same holds for the quality eriterion based on
the majority class (see step 2 and 3 of the learning
algorithm in seetion 2.3).

The definition of dependent and independent set
of attributes is unusual in the context of machine
learning. It ušes only logical dependency into
acount which is not enough. (In)dependency is
defined in the probability theory, however, RST
doesn't operate with probabilities at ali. Pawlak
et al. (1988) try to overcome this (but only for
probabilistic RST) by defining the measure of de-
pendency in terms of entropy measure. However,
they define that attributes (variables) X and Y
are completely independent if

H(Y\X) = \ogm

where m is the number of values of attribute Y.
It is well known that H(Y\X) < H(Y) and that
X and Y are independent only when H(Y\X) =
H(Y), and H(Y) is only in a very special (and
rare) čase equal to log m.

3.2 Knowledge representation

The derived rules use a fixed subset of attributes
and discard probably useful information con-
tained in other attributes. The authors of RST
claim that sueh attributes are redundant and un-
necessary. This may be true for noise-free, com-
plete data sets with exact classification, which
obviously is not the čase for the great majority
of classification problems. For a certain problem
subspace one subset of attributes may be relevant
and for the other subspace another subset of at
tributes may be erucial.

On the other hand, there is no notion of the
probability distribution and the reliability of con
clusion parts of decision rules. Deterministic de-
cision rules, which are in fact just a special čase
of nondeterministic rules, are supported from n
training instances belonging to same class where
n > 1. Obviousb/, for small values of n, the con
clusion becomes unreliable and probability distri
bution should be estimated using Laplace's law
of succession and m-estimate (Cestnik, 1990). Al-
though the probabilistic RST is more flexible with
this respect, almost ali authors use the determin
istic RST.

RST can deal with diserete attributes only and
continuous attributes have to be diseretized in ad-
vance. There is no obvious way how to deal with
incomplete data (missing values) and noisy data.
The only straightforward solution to the problem

CRITICAL ANALYSIS OF ROUGH SETS THEORY Informatica 18 (1994) 305-313 309

of missing values is to define the unknown value
as an additional value of an at tr ibute, which is
known to be unsatisfactorv (Quinlan, 1989).

Some authors from the RST communitv use a
preset decision tree for the knowledge represen-
tation (see e.g. Modrzejewski, 1993). A preset
decision tree is a decision tree that has the same
order of attributes for ali paths from the root to
the leaf. This has an obvious disadvantage to be
less flexible than ordinarv decision trees which are
in turn less fiexible than decision rules (Quinlan,
1987).

Kubat (1991) describes an algorithm for updat-
ing lower approximation PY of concept Y and up-
per approximation PY using the fixed set of at
tributes P. Both approximations are represented
simplv as sets of equivalence classes of relation
P. The equivalence classes contain objects with
the same values for ali attributes. Equivalence
classes are disjoint and the union of ali equiv-
alence classes is equal to the set of ali training
instances. Theorems in the paper by Kubat are
more or less trivial, although the awkward formal
description is clumsv for reading and understand-
ing. They simply describe how new objects can be
added to these sets and hov/ existing objects can
be deleted. The only learning in this framework
is therefore the memorization. There is no induc-
tion, no generalization and neither specialization.
The knowledge is represented in the same way as
it was provided to the learner, except that objects
are grouped into the equivalence classes. Equiv-
alence classes containing objects from more than
one class are in the boundary region BND(Y).
Obviouslv, such framework is not very useful and,
besides, it is drastically sensitive to noise and
missing data.

3.3 Ad-hoc solutions

Instead of using well known results from the prob-
ability theory and the information theory, the
authors from the RST community often use ad-
hoc definitions and solutions. There is plenty of
parameters and thresholds with poor theoretical
background. While dealing with definitions of
straightforward notions, the RST is strictly for
mal and rigorous. As soon as more interesting
problems are encountered, such as finding a good
reduct or searching for good rules, ad-hoc heuris-
tics are used.

Such ad-hoc heuristics are described in section
2.3 (learning algorithm) and discussed in section
3.1 above. Note, tha t the definition of a reduct is
ad-hoc, at least in the context of machine learn
ing, as it is not connected to the class at t r ibute
at ali. Having enough random attr ibutes, a huge
number of reducts can be found tha t does not re-
flect any domain regularities at ali. Therefore,
any definition of a "good" reduct is also ad-hoc
and any search heuristic for finding a reduct is
necessarily ad-hoc.

3.4 Comparisons of R S T to other
approaches

Although there are many applications of RST (see
e.g. Slowinski, 1992), there was practically no
comparison of performance with existing machine
learning algorithms. Babic et al. (1992) com-
pared the performance of Assistant (Cestnik et
al., 1987) with CART (Breiman et al., 1984) on
two medical da ta sets. They reported 74% and
84% of classification accuracy, for each data set
in turn, achieved by Assistant. The same authors
(Krusinska et al., 1992) tested the performance
of the RST learning algorithm on the same data
sets and reported 73% and 80% of classification
accuracy for each data set in turn They also re-
port about results, obtained by Assistant Profes-
sional package, but only when using unusual clas
sification methods in combination with the naive
Bayesian classifier which does not use m-estimate
of probabilities (Cestnik et al, 1987); and these re
sults were worse than results reported in (Babic
et al., 1992).

Wong et al. (1986) theoretically analysed RST
and ID3 (Quinlan, 1979) and concluded:

"The criterion for selecting dominant attributes
based on the concept of rough sets is a special čase
of the statistical method if equally probable distri-
bution of objects in the doubtful region of the ap-
prozimation space is assumed."

The assumption of equally probable (uniform)
distribution is far from realistic.

Teghem & Benjelloun (1992) perforrried similar
analysis and concluded in the self contradictory
statements:

"If RST certainlv is an efficient tool to analvse

310 Informatica 18 (1994) 305-313 I. Kononenko, S.Zore

information systems, often more simple and com-
prehensive than Quinlan's method using entropy
notion, nevertheless the comparison suggests that
some improvements can stili be effected in the
rough sets approach. Further researchs are nec-
essary to investigate how the distribution of the
objects into doubtful regions can be taken into ac-
count."

4 Experimental comparison

We reimplemented the RST learning algorithm
and tested its performance on several real world
data sets. We compared the performance with
"classic" machine learning algorithms: Assistant
induetive learning algorithm for generating deci-
sion trees (Cestnik et al., 1987) and the naive
Bayesian classifier with m-estimate of probabili-
ties (Cestnik, 1990).

The important characteristics of our implemen-
tation of RST learning algorithm are:

— We used the RST learning algorithm, de-
seribed by Wong et al. (1986) generalized
to probabilistic RST (Wong k Ziarko, 1986;
Pawlak et al., 1988). We tried different val-
ues of majority class limit a. Here we present
the best results obtained for each data set.
This is somehow an overestimation of the
performance of the RST learning algorithm.

— In the čase of searching for k "closest rules"
to the testing object, k was set to 1 and the
distance between rules and instances was de-
fined as the number of condition attributes
that have different value.

— Unknown value was treated as an additional
value of the attribute. Namely, RST does not
provide any methodology to deal with this
problem.

The deseription of data sets used in our exper-
iments is provided in table 1. Besides the usual
numeric deseription of the data (number of at
tributes, number of classes, and number of cases)
we provide also the class entopy and the propor-
tion of the cases from the majority class. The
class entropy shows how simple/hard is the clas-
sification problem while the proportion of the ma-
jority class shows the "default accuracy", i.e. the

accuracy that can be achieved with a simple clas
sifier that classifies ali instances in the majority
class.

One experiment (trial) consisted of dividing the
set of objects into 70% for learning and 30% for
testing. We performed 10 experiments, each with
different split, and results were averaged. The
measured parameters were:

- classification accuracy (the percentage of cor-
rectly classified testing instances), results are
presented in table 2;

- average information seore, a measure that
eliminates influence of prior probabilities and
is defined as follows (Kononenko & Bratko,
1991):

yr~-#testing instances r r

Inf = ^—.—: tltli (13)
#tesung instances

where the information seore of classification
of i-th testing instance is defined with the
following. Let Ch be the class of i-th testing
instance, P(Cl) the prior probability of class
Cl and P'{Cl) the probability returned by a
classifier. We define the information seore for
two cases:
The information seore is positive if the prob-
ability of the correct class given by the clas
sifier is greater than the prior probability of
that class. The information gain is equal to
the prior information minus the posterior in
formation necessary to correctly classify that
instance:

P'(Cli) > P{CU):

Infi = -log2P(Cli) + log2P'{Ck)

If the classifier decreases the prior probability
of the correct class, the provided information
is wrong and therefore negative. It is equal
to the prior information minus the posterior
information necessary to incorrectly classify
that instance:

P'{Cli) < P(Ck):

Infi =

-(-log2(l - P{CU)) + log2(l - P'{Cli)))

Results are presented in table 3.

CRITICAL ANALYSIS OF ROUGH SETS THEORY Informatica 18 (1994) 305-313 311

Table 1: Characteristic description of experimental data sets.

domain name

primary tumor
breast cancer
thyroid diseases
rheumatology
hepatitis
lymphography
criminology
fresh concrete

attributes

17
10
15
32
20
19
11
14

classes

22
2
4
6
2
4
4
4

cases

339
288
884
355
155
148
723
254

class entropy

3.64bits
0.72bits
1.59bits
UObits
0.73bits
1.23bits
1.34bits
1.77bits

majority class

25% .
80%
56%
66%
79%
55%
64%
42%

Table 2: Comparison of the classification accuracy (%) of different classifiers on various data sets.

domain name

primary tumor
breast cancer
thyroid diseases
rheumatology
hepatitis
lymphography
criminology
fresh concrete

Assistant

44
77
73
65
82
79
61
61

naive Bayes

50
79
72
69
87
84
61
63

RST

35
80
61
66
81
77
63
61

Table 3: Comparison of the average information score (bit) of different classifiers on various data sets.

domain name

primary tumor
breast cancer
thyroid diseases
rheumatology
hepatitis
lymphography
criminology
fresh concrete

Assistant

1.38
0.07
0.87
0.46
0.15
0.67
0.06
0.70

naive Bayes

1.57
0.18
0.85
0.58
0.42
0.83
0.27
0.89

RST

0.96
-0.04
0.46
0.16
0.12
0.51
0.03
0.59

312 Informatica 18 (1994) 305-313 I. Kononenko, S.Zore

Ali differences in the classification accuracv (table
2) that are less than 4 % are statisticallv insignif-
icant (confidence level is 0.99 using two-tailed t-
test). Other differences are significant. However,
note that for breast cancer, rheumatologv, and
criminologv, where the differences are the lowest,
the classification accuracv is practicallv equal to
the proportion of the majority class. For those
data sets the information seore is a better mea-
sure. The majoritv of differences in information
seore (table 3) are statisticallv significant (the ex-
ceptions are the differences between Assistant and
RST in hepatitis and criminologv).

Results of RST are poor when compared to As
sistant and the naive Bavesian classifier with re-
spect to classification accuracv and/or informa
tion seore. Therefore, RST did not achieve the
performance of "classic" machine learning algo-
rithms. Besides, nowadays there exist better ma
chine learning algorithms which usually obtain
better performance with multistrategy learning
(e.g. Quinlan, 1993; Brodley, 1993). In fact we
used a multistrategy approach (in the sense of
multiple sets of rules) in our implementation of
RST to improve the performance of RST. How-
ever, the underlying assumptions prevented the
RST learning algorithm to perform well.

5 Conclusion

Lists of references in the papers on RST contain
plenty of self referencing while none or modest
number of references from machine learning liter
ature. There are some exceptions (e.g. Grzymala-
Busse, 1992), however the only purpose of refer
encing in sueh cases is to inform about alterna
tive approaches without any explicit comparison.
It seems that many authors have no overview of
the work that is going on in machine learning and
that may be the reason for many reinventings and
also plenty of ad-hoc solutions.

Complicated formalization in RST adds con-
fusion with numerous new notions and unusual
terminology that prevents global overview of the
RST and prevents systematic analysis. This
may be why so many authors use RST without
analysing its basic assumptions, which are in most
cases unrealistic. The problems with noise and
incomplete data disable RST from providing efR-
cient solutions for complex real-world problems.

Acknowledgements

We are grateful to Ankica Babic for providing the lit
erature on RST and Matevž Kovačič and Uroš Pompe
for their comments on the manuseript.

References
[1] Babic. A., Krusinska E., Stromberg J.E.

(1992) Extraction of diagnostic rules using
recursive partitioning systems: A comparison
of two approaches. Artificial Intelligence in
Medicine, 4: 373-387.

[2] Breiman L., Friedman J.H., Olshen R.A.,
Stone C.J. (1984) Classification and Regression
Trees, Wadsforth International Group.

[3] Brodley C.E. (1993) Addressing the se-
lective superiority problem: automatic algo-
rithm/model class seleetion. Proč. lOth Int.
Conf. on Machine Learning, (Amherst, MA,
June 1993), Morgan Kaufmann, pp. 17-24.

[4] Cestnik B. (1990) Estimating probabilities:
A erucial task in machine learning, Proč. Eu-
ropean Conf. on Artificial Intelligence, Stock-
holm, August, 1990, pp. 147-149.

[5] Cestnik B., Kononenko I.& Bratko I. (1987)
ASSISTANT 86 : A knowledge elicitation tool
for sophisticated users, in: I.Bratko, N.Lavrač
(eds.): Progress in Machine learning, Wilm-
slow: Sigma Press.

[6] Grzymala-Busse J.W. (1992) LERS - A sys-
tem for learning from examples based on rough
sets. In. Slowinski R. (ed.) Intelligent Deci-
sion Support: Handbook of Applications and
Advances of the Rough Sets Theory, Kluwer
Academic Publ.

[7] Kononenko I. & Bratko I. (1991) Information
based evaluation eriterion for classifier's perfor
mance, Machine Learning, 6: 67-80.

[8] Krusinska E., Babic A., Slowinski R., Ste-
fanowski J. (1992) Comparison of the rough
sets approach and probabilistic data analysis
techniques on a common set of medical data.
In. Slowinski R. (ed.) Intelligent Decision Sup
port: Handbook of Applications and Advances of
the Rough Sets Theorv, Kluwer Academic Publ.

CRITICAL ANALYSIS OF ROUGH SETS THEORY

[9] Kubat M. (1991) Conceptual inductive learn-
ing: the čase of unreliable teachers. Artificial
Intelligence, 52:. 169-182.

[10] Modrzejewski M. (1993) Feature selection us-
ing rough sets theorv. Proč. European Conf.
on Machine Learning, Ed. P. Brazdil, Springer
Verlag, pp.213-226.

[11] Pawlak Z. (1982) Rough sets. Int. J. of Com-
puters and Information Sciences, Vol. 11, pp.
341-356.

[12] Pawlak Z. (1984) On superfiuous attributes
in knowledge representation. Bulletin of the
Pollish Academy of Sciences, 32.

[13] Pawlak Z. (1991) Rough Sets: Theoretical As-
pects of Reasoning about Data. Kluwer Aca-
demic Publ.

[14] Pawlak Z., Slowinski K., Slowinski R. (1986)
Rough classification of patients after highlv se-
lective vagotomy for duodenal ulcer. Int. J.
Man-Machine Studies, 24: 413-433.

[15] Pawlak Z., Wong S.K.M., Ziarko W. (1988)
Rough sets: probabilistic versus deterministic
approach. Int. J. Man-Machine Studies, 29: 81-
95.

[16] Quinlan, J.R. (1979) Discovering Rules by
Induction from Large Collections of Examples.
In: D.Michie (ed.), Expert Svstems in the Mi-
croelectronic Age. Edinburgh University Press.

[17] Quinlan, J.R. (1986) Induction of Decision
Trees. Machine Learning. 1: 81-106.

[18] Quinlan J.R. (1987) Generating production
rules from decision trees. Proč. IJCAI-89, Mi
lan, August 1987, pp.304-307.

[19] Quinlan J.R. (1989) Unknown attribute val-
ues in induction, Proč. 6th Int. Workshop on
Machine Learning, Cornell University, Ithaca,
June 26-27, 1989, pp.164-168.

[20] Quinlan J.R. (1993) Combining instance-
based and model-based learning. Proč. lOth Int.
Conf. on Machine Learning, (Amherst, M A,
June 1993), Morgan Kaufmann, pp. 236-243.

Informatica 18 (1994) 305-313 313

[21] Slowinski K. (1992a) Rough classification of
HSV patients. In. Slowinski R. (ed.) Intelli-
gent Decision Support: Handbook of Applica
tions and Advances of the Rough Sets Theorv,
Kluwer Academic Publ.

[22] Slowinski K. & Slowinski R. (1990) Sensitiv-
ity analysis of rough classification. Int. J. Man-
Machine Studies, 32: 693-705.

[23] Slowinski R. (ed.) (1992) Intelligent Deci
sion Support: Handbook of Applications and
Advances of the Rough Sets Theorv, Kluwer
Academic Publ.

[24] Tanaka H., Ishibuchi H. & Shigenaga T.
(1992) Fuzzy inference system based on rough
sets and its application to medical diagnosis. In.
Slowinski R. (ed.) Intelligent Decision Support:
Handbook of Applications and Advances of the
Rough Sets Theorv, Kluwer Academic Publ.

[25] Teghem J. & Benjelloun M. (1992) Some ex-
periments to compare rough sets theory and or-
dinal statistical methods. In. Slowinski R. (ed.)
Intelligent Decision Support: Handbook of Ap
plications and Advances of the Rough Sets The
orv, Kluwer Academic Publ.

[26] Wong S.K.M. k Ziarko W. (1986) INFER
- An adaptive decision support system based
on the probabilistic approximate classifica
tion. Proč. 6th Int. Workshop on Ezpert Svs
tems and their Applications, Avignon, France,
pp. 713-726.

[27] Wong S.K.M., Ziarko W., Li Ye R. (1986)
Comparison of rough-set and statistical meth
ods in inductive learning, Int. J. Man-Machine
Studies, 24: 53-72.

Informatica 18 (1994) 315-323 315

ON THE EXPLOITATION OF MECHANICAL ADVANTAGE
NEAR ROBOT SINGULARITIES

Jon Kieffer
Engineering Department, The Faculties, Australian National University
Canberra ACT 2601 Attstralia

Jadran Lenarčič
Jožef Štefan Institute, University of Ljubljana
Jamova 39, 61111, Ljubljana, Slovenia
E-mail: jadran.lenarcic@ijs.si

Keywords: robot, singular

Edited by: Rudi Murn
Received: August 28, 1993 Revised: April 18, 1994 Accepted: June 3, 1993

Since the earliest days of robotics research when it was recognized that kinematic sin-
gularities physically hamper the free manipulation of objects in task space, there has
been a popular consensus that singular configurations are unsuitable for practical use
and should be avoided. At best they may be included with the expectation of gracefully-
degraded perfoTmance in their vicinity [1,2]. In this article we question the validity of
such conclusions, citing examples that show how humans use singularity configurations
of their limbs to gain mechanical advantage, and investigate the possibility of obtain-
ing similar benefits in robotic systems. It is shown that minimization ofjoint torques
in redundant systems leads to human-like behavior that favors singularities, but that
stable implementation of such behavior requires a strategy which gives the robot more
autonomy with respect to timing task execution. Application of such a strategy to a 2R
robot performing static lifting is considered in detail.

1 Introduction

A fundamental objective of robot design and con-
trol is to mask the characteristics of the under-
lying machine to provide an abstraction that is
easily understood and programmed. To ease task
specification we would like a manipulator arm
(walking machine leg) to behave as a disembodied
hand (foot) whose motion, force, or impedance
[3] can be arbitrarily programmed to fit a task.
For convenience it is sensible to specify tasks in
a cartesian space that we and our sensors can
readily identify with. To this end, robot mech-
anisms, actuators, and control systems have been
designed and implemented with varying degrees
of success.

Unfortunately, ali real robots have limita-
tions in speed, workspace, and force capabil-
ity that compromise the ideal abstraction of

an arbitrarily-programmable disembodied hand
(foot). To further complicate matters, these lim-
itations are interrelated in a complex way for ali
robots, except gantry robots. To a large extent
these problems can be ameliorated through de
sign and control. Mechanical design methodolo-
gies have been developed to optimize workspace
size and shape [4], minimize the directional distor-
tion of motion and force capability [5] and even to
move kinematic singularities, which severely dis-
tort directional force and motion characteristics,
out of the intended workspace [6]. In addition, re-
searchers have turned to redundant manipulators
whose extra degrees of freedom offer new possibil-
ities for avoiding singularities and improving the
directional uniformity of motion and force char
acteristics, now called dexterity [7], through con
trol. Nevertheless, by their vary nature, artic-
ulated robots distort cartesian force and motion

mailto:jadran.lenarcic@ijs.si

316 Informatica 18 (1994) 315-323 J. Kieffer, J. Lenarčič

characteristics and include configurations of ulti
mate distortion: kinematic singularities.

Our objective in this paper is to demonstrate
that kinematic singularities and ill-conditioned
configurations offer untapped potentials that may
be exploited through an alternative model (ab-
straction) for robot behavior that is better suited
to taking advantage of these potentials. In doing
so we hope to provoke increased interest in kine
matic singularities as well as in alternative strate-
gies for programming useful robot behavior.

2 Background
Kinematic singularities can be conceptualized as
configurations of local folding in the mapping of a
toroidal joint space onto an dissimilar manifold of
spatial end-effector positions/orientations [8]. For
the čase of a 2R planar robot, two joint positions
(elbow-left and elbow-right) map onto the same
end-effector position and folding of the joint space
manifold with respect to the mapping accounts for
the transition from inside the workspace, where
two joint solutions generally exist, to outside the
workspace, where there are no solutions. For the
special čase of equal link length geometry, the in
side workspace boundary (normally a circle) col-
lapses to a point which is the image of a one pa
rameter locus of singular configurations in joint
space. Physically, the end point will be in the
workspace center whenever the two links fold over
each other.

2

1.5

J

OS

0

•OS

•IS

-2

• / O 0 o . o o ^ \ •
• [0 o^-s^fc 0 | -
• \ ^ Q o o (H) 0 i
- %,^ooO 0 0/ •

Figure 1: Velocity ellipses for 2R robot with equal
link lengths.

Although singularity configurations are sparse
compared to regular configurations, their influ-
ence extends to significant portions of the sur-

rounding workspace, distorting the directional
properties of nearby regular configurations in pro-
portion to their proximity. As illustrated in Fig.l,
uniform joint velocity capability, represented by
circles in the joint space, become ellipses in the
task space and collapse in at least one direction
near singularity configurations. This is true of
both force and motion characteristics and extends
to dynamic properties, such as effective inertia,
as well [9, 10]. It is an exaggeration to say that
singularities cause this behavior, they are only ex-
treme manifestations of it.

(a)

(b)

(c)

Figure 2: (a) Velocity ellipses, (b) force ellipses,
and (c) torque "peanuts" along radial workspace
section (2R robot with equal link lengths).

A more complete understanding can be ob-
tained by considering the relation between the
force and motion distortions. By comparing force
and velocity ellipses along a radial section of the
2R manipulator's workspace (Fig.2(a-b)) we see
that the distortions are complementary. At the
workspace boundary, joint actuators can support
infinite radial loads, but radial velocities become
impossible. Converselv, tangential velocities at
the workspace boundary are enhanced and tan
gential force capability is diminished. This com-
plementary property persists, with diminished
distortion, at regular configurations and extends
to general spatial manipulators as well. An alter-
nate way to represent directional force character
istics is to plot the norm of joint torques needed
to support a unit tip force in each direction. As
shown in Fig.2(c) this results in "peanuf-shaped
figures that, in contrast to force ellipses, remain

ON THE EXPLOITATION OF MECHANICAL ... Informatica 18 (1994) 315-323 317

bounded at singularities.
It can be shown tha t force and velocity ellipses

share the same principle directions, but have re-
ciprocal principle axes lengths [11]. For this rea-
son it is convenient to consider only velocity el
lipses, henceforth called manipulability ellipses,
with the understanding tha t both force and ve-
locity characteristics can be inferred from them.

(a)

QO6OOOOOO0

(b)
0000001

Figure 3: Manipulability ellipses: (a) the only 2R
robot with isotropic configurations L\ = L2V2,
(b) 2R robot without isotropic configurations £2
= XiV2.

Truly uniform properties only occur at so-called
isotropic configurations [12], which only exist for
speci al robot geometries. Figure 3 compares the
manipulability ellipses for two robots with iden-
tical workspaces. The first robot is the only 2R
geometry tha t has isotropic configurations.

3 Potentials for Exploitation
The idea tha t singularities may be useful was first
suggested by K.H. Hunt [13] who recognized that ,
at singularity configurations, the space of instan-
taneous joint screws fails to span the entire screw
space. This enables any reciprocal wrench applied
to the end effector to be transmitted through the
structure without loading any actuators. This
means that there is a potential for applving or
withstanding extremely high loads in certain di
rections at singularities. Although this argument
has been often repeated, and suggested as use
ful for practical application, e.g. drilling [14], to
the authors ' knowledge it has yet to be applied in
practice.

Nevertheless, it is easy to verify that humans
take advantage of this principle when walking or

standing, for example. To see this consider the
2R planar manipulator as a approximation of the
human leg. When outstretched to a singular-
ity configuration, radial loads can be transmitted
through the structure without loading the joint
actuators. This is how humans avoid muscle fa-
tigue while supporting their weight when walking
or standing.

Although effective for walking, this exam-
ple also points out the specialization of mo-
tion required to take full advantage of singular
ities which are local and directionally-oriented
within the workspace. In walking, the end-
point (foot) only moves tangentially around the
workspace boundary where singularities support
the radially-directed load. If the 2R manipula
tor were applied to drilling for example, it would
be necessary to locate the end-effector and work-
piece near either the center or the boundary of
the workspace and to align them appropriately
with respect to the direction of heavy loading.
Furthermore, once this is done, we should expect
to apply only small motions in the direction of
heavy loading (drilling) because large ones would
move robot too far from the region of maximum
mechanical advantage. Obviouslv, this approach
would be awkward to apply in practice.

«£7 <̂ ? <=> ^ v > ^
' j f A o 0 ^ \ \
0 0 V^ 9^$ \
0 oo3l^o v |
^ ^ y o o\o 0 0 i
\ \> 0 0 \ 0 OJ
\ ^ ^ < 2 * e > ^ . ; '

~~ (a)

/$ c% ,==' ° ^ ^ \

/ AA- » « J M
1 0 f^y^%\
\ 0 6 -4° ° 0 0
s\ 4 <=. ^ ? ^ ČP ^

^•^"=**±><=-<f/

(b)

Figure 4: Manipulability ellipses for a 3R robot:
(a) configurations optimized for maximum dex-
terity (minimum condition number), (b) configu
rations optimized to minimize the norm of joint
torques for a vertical tip load.

Ideally, we would like to achieve maximum me
chanical advantage in any chosen direction at any
end-effector position in the workspace (arbitrary
placement and alignment of singularities). How-
ever, because this seems impossible, we might set-
tle for extending the influence of singularities to
larger portions of the workspace. In principle,

318 Informatica 18 (1994) 315-323 J. Kieffer, J. Lenarčič

Figure 5: Archer modeled by plan ar dual arms
with a constant force spring.

this can be achieved through redundancy: analo-
gous to the way redundancy can been exploited
to increase dexterity (uniformity in properties)
throughout the workspace [9], it can also be ex-
ploited to propagate nonuniformity of properties
(i.e., ill-conditioned configurations and singular-
ities) throughout the workspace.This principle is
confirmed in Fig. 4 which compares manipula-
bility ellipses for a 3R planar robots whose con
figuration at each workspace position has been
optimized to (a) maximize uniformity (minimize
condition number), and (b) minimize the joint
torques needed to balance a vertical tip load.

4 Human Exploitation of
Singular Configurations

Further insight into potentials for robotic appli-
cations can be gained by considering how humans
use singularities.

In performing the so-called "clean and jerk",
weight lifters take advantage of the singularity
configurations of their arms. From the floor, the
weight is thrown upward using forces generated by
leg muscles and transmitted through their arms
which are stretched downward in a singular con
figuration. The weight is then caught with arms
folded in a second singularity configuration that
is similar to the center point singularity of the 2R
manipulator. After a pause, the weight is again
thrown upward using leg muscles and caught with
arms stretched overhead in a third singularity
configuration. Obviously, the weight is too heavy
for the arms to manipulate except near these sin
gularities and the lifting process is one of ballisti-
cally transferring the weight between them.

These examples show that in walking and

weightlifting humans use singularity configura
tions mainly to support heavy loads, rather than
to apply forces. In this sense, singularities trans-
form the mechanism (limbs) into a structure with
respect to certain directions of applied loads.

In drawing a bow, archers also make use of
ill-conditioned configurations and singularities to
minimize muscle effort in their arms. As an ex-
planation, consider the planar dual arm system
shown in Fig.5 as approximation of an archer.
The bow has been modeled by a constant force
spring and the system has three degrees of redun-
dancy with respect to extending the spring. Fig
6(a) shows the pseudoinverse solution which min-
imizes joint motion. Figure 6(b) shows an alter-
nate solution which minimizes joint torques (sec-
tion 7) and is obviously similar to human behav-
ior. Figure 7(a) shows plots that compare joint
torques versus spring length for the two solutions,
confirming that the second solution substantially
reduces effort.

Figure 6: Archer solutions: (a) minimal joint mo
tion (b) minimal joint torques.

The manipulability ellipsoids in Fig.6(b) show
that singularity configurations play an important
role in minimizing effort. Because the initial con
figuration is not well suited to the spring load,
the flattened ellipses are first reoriented by self-
motion. The resulting increase in mechanical ad
vantage provides a dramatic decrease in torque
(Fig.7(a)). The spring is then extended with the
left arm outstretched and the right arm drawing
backward toward its center point. The final pos-
ture can be sustained without effort due to sin-
gularity configurations of both arms. Although
this model does not consider joint limits or in-

ON THE EXPLOITATION OF MECHANICAL ... Informatica 18 (1994) 315-323 319

terference with the body, it is clear that human
archers use essentially the same strategy, taking
advantage of- singularity configurations to mini-
mize effort and to reduce fatigue while aiming.

a

S

.S o

§

1 1.5 2 2.5 3

spring length

1 1.5 2 2.S 3

spring length

Figure 7: Comparison of archer solutions: (a)
norm of joint torques, (b) joint displacement ver-
sus spring length for archer solutions.

In addition to confirming the importance of re
dundanc^ this example shows that ill-conditioned
configurations near singularities are well suited to
applying forces.

5 The Need for Temporal
Autonomy

As stressed in the introduction, kinematic sin
gularities are usually regarded as nuisances that
should be avoided because they confound the
planning and execution of timed-end effector tra-
jectories.

Exactly at a singularity, the Jacobian ma-
trix relating joint velocities to the cartesian end-
effector velocity loses rank and the usual joint rate

solution becomes indeterminate. Although this
mathematical problem can be overcome by an un-
timed parametric formulation [15] which consid-
ers higher-order kinematics if necessary [16], there
stili remains the underlying physical problem of
joint rates becoming unbounded for certain direc-
tions of finite end-effector velocity. More impor-
tantly, joint rates also become unreasonably large
for substantial regions of ill-conditioned regular
configurations close to singularities.

Physically, the situation can be understood
from the flattening of the manipulability ellipses
near singularities: small end-effector velocities
(displacements) in the flattened direction require
large joint rates (displacements). Although, this
is generally viewed as a problem, it is actually the
definition of mechanical advantage. Large end-
effector velocities in the flattened direction are
simply not possible, but large forces are. From
this perspective, redundancy can be interpreted
as a mechanism for changing transmission ratio:
ill-conditioned configurations provide low trans
mission ratios with respect to motions in flattened
directions and high transmission ratios with re
spect to motions in the lengthened directions.

The main obstacle to making use of ill-
conditioned configurations is the complexity of ve-
locity limitations which make it very diffkult to
plan the timing of end-effector motions. This is
illustrated in Fig.7(b) which plots joint displace
ment versus spring length for the two archer so
lutions of Fig 6. The minimum torque solution is
far less uniform and requires far more joint mo-
tion, especially near singularities. This makes it
almost impossible to prescribe the rate of spring
extension without exceeding joint rate limits.

This means that the ideal abstraction of a
disembodied hand that can be arbitrarily pro-
grammed within simple velocity bounds must be
compromised and replaced with a more sophisti-
cated view: one that includes more consideration
of the machine that moves the hand. But, rather
than burden the task planner with complicated
details, it is better to simply relieve the planner of
timing considerations altogether: let the planner
specify the geometry of task execution, but let the
robot control system determine timing in accor-
dance with the robot's capability. This provides a
simple abstraction which is similar to human su-
pervision: tasks are assigned, but precise timing

320 Informatica 18 (1994) 315-323 J. Kieffer, J. Lenarčič

of their execution is not dictated. For tasks such
as welding, which require more-or-less strict ve-
locity control along a path, this strategy may not
be appropriate. But there are many other tasks
in which timing is of secondary importance and
can be sacrificed in favor of increased mechanical
advantage.

6 Temporally-Autonomous
Pa th Control

Hollerbach and Suh [17], resolved redundancy to
minimize joint torques subject to robot dynamics.
In doing so, they found the robot was likely to
blunder into a region near a singularity, where
joint rates become unacceptably large. In this
section we will consider a similar, but simpler,
problem: resolving redundancy to minimize joint
torques in a robot subject to a static end effector
forces, ignoring dynamics.

Various investigators [18-20] have proposed the
use of generalized inverses of the form

9 = J+r-(I-J+J)VH (1)

which minimizes a potential function H(6) sub
ject to the kinematic constraint J9(t) = r(t).
Here 6(t) represents the joint rates, r(t) repre-
sents a timed end-effector trajectory, J{6) is the
Jacobian matrix, J + = JT(JJT)~l is the Moore-
Penrose generalized inverse, and VH is the gra
dient of H{0).

Taking H(6) = \TTT, where T(6) = JTf rep
resents the configuration-dependent joint torques
resulting from the application of a static tip force
/ , we obtain an inverse rate solution which mini
mizes the norm of joint torques, subject to execu-
tion of the timed-trajectory r(t). Unfortunately
this solution fails. As the robot moves toward sin-
gularities in an effort to minimize joint torques,
larger and larger joint rates are needed to exe-
cute the timed-trajectory, r(t). Eventually, joint
rate limits are exceeded and control is lost. How-
ever, this is not the fault of singularities, which in
fact provide the mechanism for minimizing joint
torques. Rather, as discussed in the previous sec
tion, it is the fault of an inappropriate timing
specification which does not consider joint rate
limitations.

As an alternative strategy, consider that an un-
timed trajectory specification r(A) is given, and
let timing be determined by the controller. The
generalized inverse can then be expressed

Š = J+r'\-(i{I-J+J)VH (2)
where A and /i are positive scalars determined on-
line by the controller. The first term provides tra-
jectory execution while the second provides self-
motion that minimizes joint torques. In deter-
mining A and /i at any instant, the controller can
govern the relative priority of joint torque mini-
mization versus trajectory execution while simul-
taneously ensuring that joint rates remain within
physically-realizable bounds.

A detailed exploration of such a strategy is
beyond the scope of this paper and certainly
includes significant obstacles, including numeri-
cal problems in the close proximity of singular
ities where the matrix JJT (needed to compute
J + = JT(JJT)~l) looses rank. However, further
insight can be gained by examining a crude exam-
ple of this strategy applied to a 2R robot lifting
problem.

7 Static Lifting with a 2R
Robot

Figure 8(a) depicts a 2R robot lifting a weight.
Ignoring the x-coordinate of the tip, the system
has one degree of redundancy with respect to lift
ing in the y-direction. The problem is to lift the
weight while minimizing joint torques. The links
are considered massless and the weight static.

weight

Figure 8: (a) 2R weightlifting robot, (b) tip tra-
jectories for k=0,2,4, and 600.

ON THE EXPLOITATION OF MECHANICAL ... Informatica 18 (1994) 315-323 321

One approach to generating an optimal trajec-
tory is to perform a sequence of constant-i/ slice
optimizations beginning a y = - 2 and proceeding
upward. However, to get more insight into the
obstacles to control, we will consider a control-
oriented approach based on the previous section.

(a) "• //f[

- 2 - 1 0 1 2

(b) 2 V

. 2 - 1 0 1 2

Figure 9: Weightlifting robot motions: (a) k=0:
minimal joint motions, (b) fc=600: minimal
torques.

In particular, trajectories will be generated
based on integrating equation (2) with incremen-
tal steps of constant length S in joint space. Let
each integration step be defined as follows.

A0 = S-^-r (3)

where

v = J+r'-k{I-J+J)VH (4)

Here k provides weighting with respect to
torque minimization versus trajectory execution.
Since the operator projects the torque gradi
ent V iT onto the null space of J , there is no
chance of backward motion along the trajectory,
r(A)=2/(A)=A. If k(I - J+J)VH is large with

respect to J+r', then most to the joint motion re-
sults in robot self-motion to reduce torques. Con-
versely, if J+r' is large relative to k(I-J+J)\7H,
then most of the joint motion is directed toward
trajectory execution.

Figure 8(b) plots tip trajectories which result
for four values of k. Weighting factors k—O and
A;=600 represent extremes tha t minimize joint
motion, and joint torques, respectively. As an
aid to visualization, Figs. 9(a) and 9(b) show the
robot and manipulability ellipses for intermedi-
ate positions of the robot executing the k=0 and
fc=600 trajectories respectively.

In minimizing joint torques, trajectories with
large k take increased advantage of singularities
near the inner circular workspace boundary. Tra-
jectory k=4 comes very close to a singularity
on the bottom of the inner workspace boundary
while fc=600 finds two singularities (bot tom and
top of inner workspace boundary). The increase
in mechanical advantage which the singularities
provide is apparent from Fig.10 which plots the
norm of joint torques versus lifting height y.

lifting height y

Figure 10: Norm of joint torques versus lifting
height for weightlifting robot.

Some insight into the trajectory optimization
can be gained from Figs. l l (a) and l l (b) which
plot the surface of the joint torque norm over
the workspace for elbow-left and elbow-right con-
figuration branches, respectivelv. However, čare
must be taken, since the configuration branch can
change when a singularity is encountered as is the
čase for the fc=600 trajectory shown.

Perhaps better insight can be gained by consid-
ering the trajectories in joint space. Figures 12(a)
and 12(b) show the trajectories superimposed on

322 Informatica 18 (1994) 315-323 J. KiefFer, J. Lenarčič

contour plots of the torque norm, |T(<)|, and lift-
ing height, y(0), respectively. With increasing k,
the algorithm takes increased advantage of sin
gularities to minimize torques while simultane-
ously increasing y to perform the lifting task. It
is also apparent that increasing k increases the
joint-space path length, minimizing the change in
y with respect to incremental joint motion, espe-
cially near singularities. This implies that timing
of the trajectory in task space (i.e, y(t)) becomes
more difficult or impossible with increasing k.

Figure 11: Surface plots of joint torque norm ver-
sus tip position for weightlifting robot: (a) elbow-
left, (b) elbow-right.

In joint space, 8(t) can be prescribed relatively
freely, except exactly at singularities where dis-
continuities imply that the robot must deceler-
ate to a stop before accelerating onwards along
the path. This means that timing, even in joint
space, requires careful consideration if one is to
fully exploit singularities. However, from the k=4
trajectory it is also clear trajectories only have to
come close to singularities to gain the majority of
torque reduction (Fig 10).

Bfoad/n)

Figure 12: Joint trajectories over contour plots of
(a) joint torque norm, and (b) lifting height y.

8 Conclusion

The assertion that kinematic singularities of ar-
ticulated mechanisms offer untapped potentials
seems indisputable from at least two points of
view: (1) conventional insistence on uniform task-
space velocity capability obviously limits the us
ahle workspace and fails to take full advantage
of configurations that offer extremes in motion
or force capability which, by their nature, are
directionally-biased, and (2) it is easy to cite ex-
amples of humans using singularity configurations
to gain mechanical advantage.

In this paper, we have identified timing as the
major obstacle to exploiting singularities in re-
dundant robots and have proposed an alternative
control strategy in which timing is determined on-
line in accordance with machine limitations. Sim-
ple examples show that significant reductions in
joint torques can be obtained, suggesting that

ON THE EXPLOITATION OF MECHANICAL ... Informatica 18 (1994) 315-323 323

weak actuation can be compensated with more so-
phisticated control that exploits singularities and
ill-conditioned configurations.

References

[1] Wampler, C.W. II: Manipulator Inverse Kine
matic Solutions Based on Vector Formulations
and Damped Least-Squares Methods. IEEE
Trans, on Systems, Man, and Cybernetics, SMC-
16(1):93-101, 1986.

[2] Nakamura, Y. and Hanafusa, H.: Inverse
Kinematic Solutions with Singularitv Robust-
ness for Robot Manipulator Control. ASME J.
Dynamic Systems, Measurement, and Control,
109:163-171, 1986.

[3] Hogan, N: Impedance Control: An Ap-
proach to Manipulation, Parts I- III. ASME J.
Dynamic Systems, Measurement, and Control,
107(l):l-24, 1985.

[4] Lenarčič, J., Stanič, P., and Oblak, P.: Some
Considerations for the Design of Robot Manipu-
lators. Robotics and CIM, 5(2/3): 235-241, 1989.

[5] Asada, H., and Youcef-Toumi, K.: Develop-
ment of a Direct-Drive Arm Using High Torque
Brushless Motors. In Robotics Research - The
First International Symposium, Brady and Paul,
Eds., MIT Press, pp. 583-599, 1984.

[6] Stanišic, M.M., and Duta, O.: Svmmetri-
cally Actuated Double Pointing Svstems: The Ba-
sis of Singularitv-Free Robot Wrists. IEEE Trans.
Robotics and Automation, 6(5):562-569, 1990.

[7] Klein,C.A. and Blaho, B.E.: Dexterity Mea-
sures for the Design and Control of Kinematically
Redundant Manipulators. Int. J. Robotics Re
search, 6(2):72-83, 1987.

[8] Gottlieb, D.H.: Robots and Topology. Proč.
IEEE Int. Conf. Robotics and Automation,
3:1689-1691, 1986.

[9] Yoshikawa, T: Manipulability of Robotic
Mechanisms. Int. J. Robotics Research, 4(2):3-
9, 1985.

[10] Asada, H. A: Geometrical Representation
of Manipulator Dynamics and its Application to
Arm Design, ASME J. Dynamic Systems, Mea
surement, and Control, 105(3):131-135, 1983.

[11] Chiu, S.L.: Control of Redundant Manip
ulators for Task Compatibility. Proč. IEEE Int.
Conf. Robotics and Automation, pp. 1718-1724,
1986.

[12] Salisbury, J.K. and Craig, J.J.: Articulated
Hands: Force Control and Kinematic Issues. Int.
J. Robotics Research, 1(1):4-17, 1982.

[13] Hunt, K.H.: Special Configurations of
Robot-Arms via Screw Theorv, (Part I). Robot-
ica, 4(3):171-179, 1986.

[14] Wang, S-L., and Waldron, K.J.: A Study
of Singular Configurations of Serial Manipulators.
ASME J. Mechanisms, Transmissions, and Au
tomation in Design, 109:14-20, 1987.

[15] Kieffer, J.: Manipulator Inverse Kinemat-
ics for Untimed End-Effector Trajectories with
Ordinary Singularities. Int. J. Robotics Research,
ll(3):225-237, 1992.

[16] Kieffer, J.: Bifurcations and Isolated Sin
gularities in the Inverse Kinematics of Link-
ages and Manipulators. To appear IEEE Trans.
Robotics and Automation, 1994.

[17] Hollerbach, J.M., and Suh, K.C.: Re-
dundancy Resolution of Manipulators Through
Torque Optimization. Proč. IEEE Int. Conf.
Robotics and Automation, pp.1016-1021, 1985.

[18] Liegois, A.: Automatic Supervisory Con
trol of the Configurations and Behavior of Multi-
body Mechanisms. IEEE Trans, on Systems,
Man, and Cubernetics, SMC-7(12):868-871, 1977.

[19] Klein, CA.., and Huang, C-H.: Review of
Pseudoinverse Control for use with Kinematically
Redundant Manipulators, IEEE Trans, on Sys-
tems, Man, and Cybernetics, SMC-13(3):245-250,
1983.

[20] Yoshikawa, T.: Analysis and Control
of Robot Manipulators with Redundancy. In
Robotics Research - The First International Sym-
posium, Brady and Paul, Eds., MIT Press,
pp.735-748, 1984.

Informatica 18 (1994) 325-336 325

DATA REORGANIZATION IN DISTRIBUTED INFORMATION
SYSTEMS

A. Mahmood, H. U. Khan and H. A. Fatmi
Dept. of Electronic and Electrical Engineering
King's College London
The Strand, London WC2R 2LS
U.K.
a.mahmood@bay.cc.kcl.ac.uk

K e y w o r d s : Databases, distributed data management, data reorganization, distributed systems, dis
tributed information systems, file migration

Edited by: Matjaž Gams

Rece ived: April 13,1994 Rev ised: October 13, 1994 A c c e p t e d : October 23, 199'4

Da ta reorganization in distributed databases due to non-stationary nature of file uti-
lization pattern and network entities is a highly desirable event to improve system per-
formance and to reduce communication costs. This paper considers a non-blocking
approach to data reorganization and presents an algorithm which allows user transac
tions to run concurrentfv with the data reorganization activity. It presents an algorithm
to identify the opportunities for parallelism in the reorganization process. It also ad-
dresses the efficiency of parallel and serial data reorganization techniques in blocking
and non-blocking modes and reports some experimental results

1 Introduction

Distributed database reorganization can be de-
fined as a process of changing the physical loca-
tion of da ta items, such as files and fragments.
Data reorganization may be performed for vari-
ety of reasons, such as to reduce the communica
tion cost and response time. The communication
cost and response time of a distributed database
are functions of its physical location in the net-
work. File usage patterns in distributed systems
are characterized by the access and update fre-
quencies for each file-node combination and may
vary over time [1, 2]; thus, an optimal allocation
at one period may be non-optimal at another pe
riod [4]. Hence, da ta reorganization becomes nec-
essary to achieve the satisfactory system perfor-
mance [3].

Data can be reorganized in either blocking or in
non-blocking mode [5]. In blocking mode, the re-
organizer blocks ali the user transactions while it
reorganizes the data. After the reorganization fin-
ishes, normal access of da ta resumes. Implemen-
tation of this strategy is straightforward but it

may not fulfill the data availability requirements
of certain systems.

In non-blocking mode, database is not brought
off line and the reorganization is performed con-
currently with the normal usage of the database
[5]. Under this strategy, users have access to da ta
while one or more processes reorganize the data.
The reorganizer itself may be run at a low prior-
ity level so that user transactions should not face
long delays [5]. Since data reorganization changes
the physical location of da ta on a network, dis
tributed schemas should be modified accordingly
to reflect these changes.

The reorganization of centralized databases has
been studied for blocking as well as non-blocking
modes [5, 6, 7, 8, 9]. On the other hand, a num-
ber of algorithms have been proposed to deter-
mine the dynamic data allocations in distributed
systems [4, 10, 11, 12, 13, 14] but the problem of
data reorganization has not been fully addressed.
The problems of monitoring the system perfor-
mance and generating the near optimal alloca
tions have been discussed in an earlier paper [14].
This paper concentrates on the data reorganiza-

mailto:a.mahmood@bay.cc.kcl.ac.uk

326 Informatica 18 (1994) 325-336 A. Mahmood et al.

tion problem. Particular attention is given to the
non-blocking parallel data reorganization in dis-
tributed svstems.

The rest of the paper is organized as follows.
Section 2 presents algorithms to determine the
optimal serial and parallel schedules. Section 3
discusses a strategv to reorganize the data in non-
blocking mode. Section 4 analvses the efficiencv
of parallel and serial reorganization strategies in
blocking and non-blocking modes. It presents a
number of formulas to estimate the tirne required
to reorganize the data under different strategies.
Section 5 presents a čase study to explain the
working of the proposed algorithms. Section 6 de-
scribes a simulation model used to study the rela-
tive perform of various data reorganization strate
gies and presents the simulation results. Section
7 concludes the paper.

2 Serial and Parallel Data
Reorganization

In [14], we presented an adaptive data realloca-
tion algorithm to determine the optimal file allo-
cations in a computer network. The reallocation
algorithm iterativelv improves the existing file al-
location to reduce the communication and storage
costs. In each iteration, a file copy with a max-
imum positive value of the objective function is
added or deleted, provided, addition or deletion of
a file copy does not violate the space, channel and
file replication constraints. If a beneficial addition
of a file at a particular node violates the system
constraints, the less beneficial files at the same
node are deleted to accommodate a more ben
eficial file. The reallocation algorithm not only
generates the new file allocation but also gener-
ates a serial reorganization schedule (a sequence
of reorganization steps) to transform the existing
allocation into new optimal allocation such that
no constraint is violated during its execution [14].
Each step in a schedule can be one of the following
two operations:

dijk Transfer a copy of file i from node k to node
j -

dij Delete a copy of file i from node j

The subscript i will be used for file index, j ,
k for node indices, and a * at a respective posi-

tion would indicate don't čare. Sp will be used to
denote pth step in a serial schedule S.

A schedule generated by the reallocation algo
rithm may have redundant steps. These redun-
dant steps are introduced in a schedule when a
less beneficial copy addition step is undone lat-
ter in the reallocation process to accommodate a
more beneficial file addition step. In this
serial schedule has copy addition as well as copy
deletion steps for a particular node-file pair. How-
ever, a copy addition step followed by a copy dele
tion step for the same node-file pair is meaningless
and does not have any effect on the final file allo
cation and therefore, both steps can be removed
from the schedule.

The proposed algorithm to remove the mean
ingless steps from a schedule is given below.
For each Sp = dijk, algorithm SeriaLSchedule
searches for Sq = dij,(q > p) in the remaining
(Total Steps-p) steps. If a Sq = d^ is found, then
both Sp and Sq are removed from the schedule.
The tirne complexity of the algorithm is 0(n2),
where n is the total number of steps in the sched
ule.

The modified schedule can be implemented ei-
ther in blocking or in non-blocking mode. In
blocking mode, the reorganization starts with the
first step in the schedule. At the completion of the
flrst step, the second step is initiated and so on. In
serial reorganization, the reorganization transac-
tions are initiated strictly in the order that is de-
termined by algorithm SeriaLSchedule. However,
synchronization between the transactions has to
be achieved. One approach to achieve synchro-
nization is that each transaction signals its com
pletion to the next transaction in the schedule
which is then initiated. The sequential execution
of a schedule guarantees its successful completion
under normal conditions.

Algorithm SeriaLSchedule

p = l
While (p < TotalSteps) Do

If Sp = aij* Then q = p + 1
While (Sq ž d^ AND q < TotalSteps) Do

q = p+l
If Sq = dij Then

Remove Sp and Sq from S
p = p+l

DATA REORGANIZATION IN DISTRIBUTED Informatica 18 (1994) 325-336 327

One of the disadvantages of the serial reorgani-
zation is tha t a reorganization transaction cannot
be started unless ali of its preceding transactions
successfully complete. This increases the tirne to
complete the reorganization process. Ideally, the
reorganization should be performed in parallel,
whenever possible, to minimize the reorganization
tirne and to increase the system throughput.

However, scheduling the reorganization trans
actions in parallel is not straightforward. The
difficulty arises from the fact tha t the data reallo-
cation algorithm evaluates a copy addition and a
copy deletion step on the assumption that ali the
previous steps in the schedule have been executed
and their effects have been taken into account.
This may result into inter-step dependencies i.e.,
there could be steps which cannot be executed un
less some other steps in the schedule are executed
prior to tha t step. For example, a file may not
be added to a node due to space limitation un
less some other files are removed from that node.
Also, a file cannot be deleted if only one copy
of tha t file is stored in the network. The follow-
ing four propositions present the situations which
lead to inter-step dependencies.

Propos i t i on 1 A file i cannot be added at a node
j if the available space at j is less than the size of
file i.

Propos i t i on 2 If only one copy of file i is stored
in a network then it cannot be deleted unless a
copy of i is stored at another node.

Propos i t i on 3 A node cannot supply a file if it
does not have one or if the file has already been
removed from that node.

Propos i t i on A If a node has been schedule to
. send a file copy to some other node, it must ac-
quire one before sending it.

Let us consider a serial schedule
S = {Si , S 2 . . . , Sn}. The step Sp_i, (1 < p < n)
is generated prior to Sp by the data reallocation
algorithm. A serial schedule is logically correct if
Sp can successfully be executed without executing
Sq,(q> p) or a subset of { S p + i , S p + 2 , . . . , Sn}.

It can easily be proven that a schedule gener
ated by the reallocation algorithm is logically cor
rect since a step is only included in the schedule
if it can be executed successfully at the tirne of its

evaluation. To establish the logical correctness of
a serial schedule S, the following tests derivable
from the above propositions should be applied.

1. If there exists a S„ schedule S and
the available space at node j is not enough to
store a copy of file i, then there must exists
one or more Sq = d*j,(q < p) such tha t they
free enough storage space to store file i at j .

2. If there exists an Sp = d;» in a schedule and
only one copy of i is stored in the network,
then there must exist a Sq = a^**, (q < p) in
S.

3. If there exists a Sp — a^k in a schedule S
and k does not initially have a copy of i then
there must exit a Sq = o,-fc*, (q < p) in S.

4. If there exists a schedule S
and k initially has a copy of i then must not
exist a Sq = dik, (q < p) in S.

Definit ion 1 / / (S i , S 2 , . . . , Sn) is an ordered se-
quence of ali the steps in a schedule S, and Dp =
{Sq : 1 < q < p} such that Sp cannot be ezecuted
unless ali Sqis G Dp are ezecuted before Sv, then
Sp is dependent on Dv. Dp is called dependent set
of Sp.

Definit ion 2 If Dp and Dq are dependent sets
of Sp and Sq respectively such that Sp $ £)q and
Sq £ Dp then Sp and Sq are logically independent.

Propos i t ion 5 For a logically correct schedule S,

T h e o r e m 1 If a step Sp is ezecuted after ali
Sq's € Dp then the logical correctness of schedule
S is preserved.

Proof: Assume that there is a step Sr fi Dp tha t
must be executed before Sp to preserve the logical
correctness of S. From the definition of the de
pendent set, S r must be in Dp which contradicts
that S r $ Dp. Also assume tha t Sp can be exe-
cuted before a step Sr G Dp such tha t the logical
correctness of S is preserved. This implies that Sr

cannot be in Dp which contradicts that Sr G Dp.
D

T h e o r e m 2 Logically independent steps can be
ezecuted in parallel.

328 Informatica 18 (1994) 325-336 A. Mahmood et al.

Proof: Suppose there exist a step Sp in a group of
logical independent steps that must be executed
before Sq in the very group. This means that Sq

must be in dependent set of Sp. But definition of
logically independence rules out this possibility.

a

Using the above theorems and tests, the steps
which might be executed in parallel can be deter-
mined. One approach is to arrange the steps in a
hierarchy such that the steps at the same level are
logically independent and hence can be executed
in parallel; and the steps in their dependent sets
are at lower levels of the hierarchy and should be
executed before them.

The proposed algorithm which determines the
parallelism in the reorganization transactions con-
sists of two parts. The first part determines the
dependent set for each step in S by scanning the
serial schedule S for ali the possible inter-step de-
pendencies and identifies them accordingly. The
second part construct a reorganization hierarchy
(a forest like structure) by using the information
of inter-step dependencies determined at the first
step. The nodes of the hierarchy represent the re
organization transactions and the arcs show the
inter-step dependencies. The reorganization hier-
archy is arranged in such a way that the steps at
the same level are logically independent and the
steps in their dependent sets are at the lower lev
els of the hierarchy. It follows from theorem 1 and
2 that the steps at the same level can be executed
in parallel provided ali the steps at the lower lev
els are executed first. The time complexity of the
algorithm is 0(n2), where n is the total number
of steps in the serial schedule.

Algorithm ParalleLSchedule
Determine Dependent set of each step in S
StepsAtLevel[l] = </>; 1 = 1
For m = l to TotalSteps Do

lfDm = <f> Then
StepsAtLevel[l]=StepsAtLevel[l]+{5'm}

UptoLevel[l]=StepsAtLevel[l]
Repeat

1 = 1+1
StepsAtLevel[l]=<^>
For m = l to TotalSteps Do

If Dm C UptoLevel[l - 1] Then

StepsAtLevel[l]=StepsAtLevel[l]+{Sm}
UpToLevel[l]=UpToLevel[l-1]+

StepsAtLevel[l]
Until (S is empty)

Algorithm DetermineJDependentSet
For p = l to TotalSteps Do

If Sp = dijk Then q = p
AS=Free space at node j before

reallocation
While(A5 < FileSize[i\ AND q > 1) Do

q = q-l
If (Sq = d,j) Then

Dp = Dp + {Sq} (Test 1)
AS=AS+FileSize[*]

If (Sq = a*n* Then
AS=AS-FileSize[*]

If copies[i]=l Then q = p + 1
While (q < TotalSteps AND

Sq ž du) Do
q = q+l

If Sq = d,-„ Then
Dq = Dq + {Sp} (Test 2)

q = p
While (q < TotalStepsAND

Sq ^ dik Do
q = q+l

If Sq = dik Then
Dq = Dq + {Sp} (Test 3)

q = p-l
While(g > 1 AND Sq = aik*) Do

q = q-l
If Sq = a,ik* Then

Dp = Dp + {Sq} (Test 4)
copies [i]=copies [i]+1

Else copies[i]=copies[i]-l

Having the above algorithms, one can construct
the reorganization hierarchy to identify the paral
lelism in the reorganization process. However, the
number of steps which can actually be executed
in parallel depend on the processing capabilities
of the nodes and the channel bandwidth.

3 Non-blocking Data
Reorganization

Non-blocking reorganization is possible if the re
organization process is treated as a set of trans-

DATA REORGANIZATION IN DISTRIBUTED Informatica 18 (1994) 325-336 329

actions such that each transaction either deletes
or adds a file copy. Thus, dat a reorganization can
be performed in non-blocking mode by execut-
ing a sequence of two speci al transactions: Add-
copy(xjk) and Delete-copy(a:.;). The first transac
tion copies file x from node k to node j and the
second transaction deletes a copy of file x from
node j .

Since user transactions may be issued at any
tirne, read-write conflict on distributed schema
and data files may arise. Moreover, a copy be-
ing added may be updated by the user transac
tions when it is in transient. The key to the non-
blocking reorganization is the method that main-
tains serializability among the user and the reor
ganization transactions. A blocking mechanism is
one of the approach that can be used to maintains
serializability [15].

Let us assume that with every file x, a di-
rectory d(x) is associated which is fully repli-
cated. Each d(x) copy stores information about
the location of copies of file x and is denoted by
d(x).dataJocation. A directory copy stored at
node n is denoted by dn{x). every user transac
tion reads the related directory entry before read-
ing and writing a data file. The transactions can
set four types of lbck on a directory entry. These
are: a-lock, d-lock, user-read-lock and user-write-
lock. Locks on different copies do not conflict,
whereas locks on the same copy conflict as given
in Table 1. A x indicates a lock conflict and a
- denotes no conflict. Read and write locks on a
data file conflict in the normal way [15]

The concurrency control can be achieved by
2PL [16]. When a transaction commits or aborts,
the system respectively commits or aborts the
transaction at each node where it is active. This
ensures the atomicity of transactions. The dead-
lock can be handled using the existing algorithm
[17].

The algorithms to add and delete a file copy,
user read and user write are given below. These
algorithms are slightly modified version of the al
gorithms proposed in [18] for concurrency control
in distributed databases.

Add-copy(xjk)
The transaction starts at node j

Step 1. Set an a-lock on dj(x)

Step 2. Set a read-lock on Xk and read it

Step 3. Set a write-lock on Xj

Step 4- Set an a-lock on ali available copies in
{d(x).dataJocation — dj(x)}

Step 5. Do in parallel step 6 and 7

Step 6. For ali available copy of d(x), modify
d(x).dataJocation by including site j in
d(x).dataJocation and release a-locks on
respective d(x)

Step 7. Write Xk read in step 2 and release read-
lock on Xk and write-lock on Xj.

Delete-copy(xj)
The transaction starts at node j

Step 1. Set a d-lock on dj(x) and read
dj(x). dataJocation.

Step 2. Set a d-lock on each available copy of d{x)
in {d(x).dataJocation — dj(x)}.

Step 3. Delete file copy Xj

Step 4- Modify d{x).dataJocation of ali the avail
able copies of d(x) by removing site j from
d(x).dataJocation. Each such modifica-
tion releases the d-lock on the respective
d(x).

User Read(x)
Let the transaction starts at node j

Step 1. Set a user-read-lock on dj{x) and read
it. Find an available copy with minimum
transmission cost. Let this copy be x^.

Step 2. Set a read-lock onijt .

Step 3. If a delete-copy(xfc) transaction has no
d-lock on dh(x) then read x else abort the
transaction.

Step 4- Release ali the locks set at step 1 and 2.

User Write(x)
Let the transaction starts at node j

330 Informatica 18 (1994) 325-336 A. Mahmood et al.

lock type

a-lock
d-lock
user-read-lock
user-write-lock

a-lock

X
X
-
X

d-lock

X
X
-
-

user-read
lock

-
-
-
-

user-write
lock

X
-
-
-

Table 1: Lock compatability matrix for directory read-write

Step 1. Set a user-write-lock on dj(x)

Step

Step

2. For every available copy Xk,k G
{dj(x).dataJocation — j}, set user-write-
lock.

3. Set a write-lock on each available copy
of x.

Step 4- H a delete-copy(a;j;) has no d-lock on
dk(x) then write the item in every copy of
x locked at step 2.

Step 5. If a delete-copy(a:fc) has a d-lock on dk(x)
then ignore Xk and write the item in the
remaining copies locked at step 2.

Step 6. Parallel with step 4 and 5 release ali
write-locks obtained by the user transac-
tion.

Step 7. Release ali user-write-locks set at step 1
and 2.

Note that we allow the Delete-copy(a;) transac-
tion to run currently with the user transactions
which could result in abortion of some of the user
transactions. In such a čase, the aborted transac
tions have to be restarted.

tk, different pairs of nodes can communicate with
each other and the time to delete a file is negli-
gible as compared to the time required to add a
copy. Then, the expected execution time for pth
add-copy(a;jfc) transaction in the blocking mode
is given by:

tp = FileSize(x)/min(gj,tk) (1)

If a total of F files are to be added , then

F
RT = -£tp (2)

P = i

The reorganization time in parallel blocking
mode is determined by the time taken by the
longest copy addition transaction at each level
of the reorganization hierarchy. However, in the
non-blocking mode, the frequency of user transac
tions and the conflicting locks could increase RT.
If ti is the execution time of the longest reorgani
zation transaction at level / and total number of
levels in the reorganization hierarchy are L, then

RT = J2U (3)

4 Reorganization Time

Reorganization time (RT) can be defined as the
time required to complete the reorganization pro-
cess. The RT depends on the number of files to
be received and transferred among ali the nodes,
degree of parallelism, physical limitations of the
channel and the processing capabilities of the
nodes.

Let us assume that a node j receives data at
a rate of gj and node k sends data at a rate of

Where it is assumed that the reorganization
transactions at a higher level are not started un-
less ali the tra,nsactions at the lower levels of the
hierarchy are completed.

The response time of a transaction of type q,
decomposed into M step by the query optimizer,
can be determined using an open queuing network
model. For a point to point network, assume CPU
processing capability at site j is fij MIPS, disk has
an average 10 time I j and the link between site
j and k has a capacity of Xjk Mbytes/s. Let us
also define the follows notations. Let aqs be the

DATA REORGANIZATION IN DISTRIBUTED Informatica 18 (1994) 325-336 331

processing required by step s of query q excluding
the communication overhead, Ac be the average
processing required for receiving and sending mes-
sages and data, jj be the load on CPU at site j ,
Tjk be the communication traffic between site j
and k, Vqsjk be the amoiint of traffic generated
between node j and k due to step s of query q
and Pqsj be the disk 10 required at site j for step
s of query q. The average response time can be
expressed by

T = l/x^Xq(Pq + Cq + Dq) (4)

where
X = ^2xq (5)

and Xq is the arrival rate of query q. Processing
time Pq, queuing delay at a communication link
Cq , and disk 10 time Dq can be estimated using
a M/M/ l general queuing discipline and are given
below.

'. = EE-Otns^osi "t" **-c* c <-qs-uqsj c±qs]

Mj "M
(6)

where

M = Z) Xq £ aqsXqsJ + £ *9 £ AcYW (7)

where

*"qsj — *

1 if sth step is executed
at node j (8)

O otherwise

and

Xqsj — i

1 if site j is involved in the
communication at step s

O otherwise
(9)

The value of Cq is estimated by

c, = E £ » •*-/jk'Tjk^'qsjk . 'qsjk

j q s
A2 - Ar, jk

+ 1321) (10)
A

where Ljk is the average message length between
node j and k and is given by

Lik =

and
Jqsjk

Lsq l^k *qsjk

ž^o l^k ^qsjk

1 if Vqajk > 0
0 otherwise

(H)

(12)

and finally, assuming the exponential disk ser-
vice time with mean dj,

"« = EE IA o^gsj
di - Efc D xiPh\j

(13)

The above formulas can be used to determine
the expected response time for reorganization as
well as user transactions. After calculating the re
sponse time of ali the reorganization transactions,
the total reorganization time can be estimated by
using equation 2 and 3. The analysis given in
this section can easily be extended for networks
in which data transmission takes plače in packets
rather than in bit streams.

Given the above formulas, the reorganization
strategies can be evaluated under difFerent imple-
mentation approaches and environments. For a
specific environment, an accurate set of parame-
ters may be determined via measurement or sim-
ulation.

5 A Čase Study

To explains how algorithms SeriaLSchedule and
ParallelSchedule work, a čase study is presented
in this section. Consider a network of 5 nodes and
6 files. Storage capacities at various nodes, initial
and the new allocations of each file and the file
sizes are shown in Table 2 and Table 3. The min
imum degree of replication is one for every file.
Let the serial schedule generated by the realloca-
tion algorithm is as follows:

S — {a4i2, d3\, a6i3, d42, d$4, ae43, dei,
«•212, ^63) «525) ^55) «532; «654) ^ 2 2 }

Note that 0613 followed by d$\ are redundant
and can be removed from S by executing Se-
riaLScedule which produces the reduced schedule
S , where

S = { a 4 i 2 , ^ 3 1) ^ 4 2 j ^ 5 4 , «643)a212)^63)

«525) ^55) a 532i a 654 j ^ 2 2 }

To generate a parallel schedule, dependent sets
of each step in S are obtained using algorithm

332 Informatica 18 (1994) 325-336 A. Mahmood et al.

Node 1
Capacity 45

2
50

3
35

4
40

5
25

Table 2: Storage capacities at each node

Determine-DependentSet and are shown in Table
4. The steps which can be executed in parallel can
be obtained by ParallelSchedule and the reorga-
nization hierarchy is shown in Figure 1. The data
reorganization is accomplished in 5 stages. For
example, at the first stage, S\,S2 and 54 could
be executed in parallel, S3,Ss and 66 could be
executed at stage 2 and so on.

6 Simulation Results

A hybrid simulation models has been used to ana-
lyze and compare the relative performance of the
serial and the parallel reorganization strategies
in blocking and non-blocking modes. A discrete
event simulation model [19] is used to model the
arrival of transactions at network nodes and point
to point transmission of data between nodes. The
analytical the equations of M/M/ l queuing net-
work and equations given in section 4 have been
used to model the internal processing at each
node.

In the simulation model, users of the dis-
tributed system generate transactions which re-
trieve and update local and remote files. The
transactions are randomly generated on the de-
fined files. At each node, a local source generates
local queries with a poisson arrival distribution
while a global source generates distributed trans
actions with a poisson arrival distribution. For
every distributed transaction, an entry node is
chosen with a uniform distribution. The entry
node is also defined to be the result node for that
query. Every transaction is restricted to query or
update a single file.

The queuing network consists of a finite number
of nodes. Each node has an associated queue on
which a transaction may wait prior to receiving a
service. A transaction is present at a node if it
is waiting for or receiving a service at that node.
The transaction arriving at a node are queued in

a first-come-first-serve order. A maximum level
of mjiltiprocessing is defined for each node.

To make the model simpler, each transaction
type is assigned a fixed required amount of pro-
cessiag and volume of data received and sent.
A program constructs a response table for each
transaction type at each node using the queuing
analysis and the response tirne analysis given in
section 4.

Moreover, it is assumed that the network is
fullv connected with full duplex lines connect-
ing each pair of nodes. The processing tirne at
the communication processor and the propaga-
tion delays are assumed to be negligible, there
are mough buffers at each node to hold ali the in-
coming data, each channel is error free, acknowl-
edgment and locking overheads are negligible and
each message consists of a single packet. There-
fore, neither the time it takes to receive ali the
paciets belonging to a message at the destina-
tion nor the re-sequencing delays are taken into
account.

Simulation was run for 8 serial schedules gen
erated for a network of 8 nodes and a database
with 14 files. The optimal serial and the paral
lel schedules were obtained using algorithm Se-
riaLschedule and ParallelSchedule respectivelv.
The synchronization between the transactions
wa> achieved by monitoring the execution of the
transactions. A reorganization transaction is ini-
tiated only if ali the transactions in its dependent
set have successfully been executed.

To compare the relative performance of the re
organization strategies, equivalent serial and par
allel schedules were run in both blocking and non-
blocking modes and the reorganization time was
measured. Figure 2 shows the percentage in-
crease in RT for serial non-blocking strategy when
compared with RT for serial blocking strategy.
The average increase in RT is 3.39% for the non-
blocking serial strategy.

Figure 3 shows the percentage decrease in RT
fo- the blocking and the non-blocking parallel
strategies as compared to RT for the blocking se
rial strategy. According to the results, the parallel
blocking strategy took up to 45.01% less time as
compared the time taken by the blocking serial
strategy. However, the blocking parallel strategy

DATA REORGANIZATION IN DISTRIBUTED Informatica 18 (1994) 325-336 333

File

1
2
3
4
5
6

File size

15
10
10
20
15
12

Initial allocation
(nodes)
1,2
2,5
1,3
2,4
4,5
3

New allocation
(nodes)
1,2
1,5
3
1,4
2,3
4,5

Table 3: File sizes, initial and new file allocations

step

Dn
Si

<t>
52

<f>
5 3

{Si}
5 4

<k
S 5

{S4}
Se
{S2}

s7
{Ss}

58

{^3}
59

{Ss}
5io
{57 , Ss}

5n
{55, 59}

S12

{Se}

Table 4: Dependent sets

Figure 1: Reorganization hierarchy

334 Informatica 18 (1994) 325-336 A. Mahmood et al.

is comparatively faster than the non-blocking par-
allel strategy.

Figure 4 shows the decrease in RT for the
non-blocking parallel strategy as compared to the
non-blocking serial strategy. The difference in
RT between the non-blocking serial and the non-
blocking parallel strategies is less than the dif
ference in RT between the non-blocking parallel
and the blocking serial strategies. It is evident
from these results that the non-blocking strate
gies take more tirne to reorganize the data as
compared to the tirne taken by their counter-
part blocking strategies. This is because of the
fact that user transactions are allowed to run
concurrently with the reorganization transactions
and the processing and the channel resources are
shared between them which increase the RT for
non-blocking strategies. Another reason is that
the concurrent execution of transaction may re-
sult in conflicting locks and, therefore, to main-
tain serializability, either the reorganization or
the user transactions are delaved. The scenario of
conflicting locks may also reduce the actual paral-
lelism that can be achieved in data reorganization
activity.

The number of transactions which are aborted
due to the reorganization process depends on the
arrival rate of user queries for the file being reor-
ganized and the tirne it takes to remove a file and
update the distributed schema. In the present
study, an average number of user transactions
which were forced to abort, were less than 2%
of the total transactions.

7 Conclusion

The non-blocking parallel data reorganization in
distributed databases is a highly desirable event
which allows user transactions to run concurrently
with the data reorganization transactions. The
number of user transactions affected by the data
reorganization process is proportional to the re
organization tirne. Therefore, the reorganization
tirne should be minimized by exploiting the par-
allelism in the data reorganization process. The
algorithm ParalleLSchedule identifies the possible
parallelism in the serial schedule. The algorithm

maintains the. inter-step dependencies by apply-
ing a set of tests and theorems. The overhead of
this approach is the increase in the response time
and abortion of user transactions.

References

[1] B. W. Wah: File placement on distributed
systems. IEEE Computer, 17(1), pp. 23-32
(1984).

[2] H. M. Pocar: File migration in distributed
computer system. Ph.D. Thesis, U. C. Berke-
ley (1982).

[3] B. Gavish and 0 . R. L. Sheng: Dvnamic
file migration in distributed computer sys-
tems. Comm. of the ACM, 33(2), pp. 177-
189,(1982).

[4] K. D. Levin and H. L. Morgan. A dynamic
optimization model for distributed databases.
Operations Research, 26(5), pp. 824-835
(1978).

[5] G. H. Sockut and R. P. Goldberg: Database
reorganization - principles and practice.
Computing Surveys, 11(4), pp. 371-395
(1978).

[6] H. Mendelson and U. Vechiali: Optimal poli-
cies for database reorganization. Operations
Research 29(1), pp. 23-36, (1981).

[7] S. B. Yao, K. S. Das and T. J. Teorey: A
dynamic database reorganization algorithm.
ACM TODS, 1(2), pp. 159-174 (1976).

[8] E. Omiecinski, L. Lee and P. Scheuer-
mann: Concurrent file reorganization for
record clustering: a performance study. in
Int. Conf. on Data Engineering, pp. 265-272
(1992).

[9] C. Yu, K. Lam, M. Siu and C. Suen: Adap-
tive record clustering. ACM TODS, 10(2),
pp. 180-204 (1985).

[10] J. E. Ames and D. Foster: Dynamic file as-
signment in star network. in Proč. Computer
Networks Symposium, pp. 36-40 (1977)

DATA REORGANIZATION IN DISTRIBUTED Informatica 18 (1994) 325-336 335

Figure 2: Percentage increase in RT for serial non-blocking strategy as compared to serial blocking
strategy

60 •

50 •

8 40 •
fll
£

I 30-
20 •

10 •

0 •

• Blocking

• Non-blocking

1 2 3 4 5 6 -

Schedule

7 8

Figure 3: Percentage decrease in RT for parallel strategies as compared to serial blocking strategy

60 i

50 •
1-
c 40 •

i i 3 0 -
TI
& 2 0 -
n

10 •

0 •

• blocking

• non-blocking

1 2 3 4 5 6 7 8

Schedule

Fi gure 4: Percentage decrease in RT for parallel strategies as compared to non-blocking serial strategy

336 Informatica 18 (1994) 325-336 A. Mahmood et al.

[11] C. T. Yu, M. Siii and C. H. Chen: Adap-
tive file allocation in star computer netuiork.
IEEE TOSE, SE-11(9), pp. 959-965 (1985).

[12] A. Segali: Dynamic file assignment in a com
puter network. IEEE TOAC, AC-21(2), pp.
161-173 (1976).

[13] X. Du and F. J. Maryanski: Data allocation
in a dynamically reconfigurable environment.
in Proč. Int. Conf. on Data Engineering, pp.
74-81 (1988).

[14] A. Mahmood, H. U. Khan and H. A. Fatmi:
Adaptive file allocation in distributed infor-
mation systems. Informatica, 18(1), pp. 37-
46 (1994).

[15] D. Bell and J. Grimson: Distributed database
systems. Addison-Wesley, England (1992).

[16] B. G. Lindsay, P. G. Selinger et al.: Notes
on distributed databases. in Distributed
databases, Drattan and Pool (eds.), Cam-
bridge University Press, New York (1980).

[17] E. Knapp: Deadlock detection in distributed
databases. ACM Computing Surveys, 19(4),
pp. 303-328 (1987)..

[18] P. A. Bernstein and N. Goodman: An algo-
rithm for concurrency control and recovery in
replicated distributed databases. ACM TODS,
9(4), pp. 596-615 (1984).

[19] J. Banks and S. J. Carion: Discrete event
system simulation. Prentice-Hall, New Jersey
(1978).

Informatica 18 (1994) 337-345 337

EVALUATING THE MANUFACTURING SIMULATOR
"WITNESS" ON AN AUTOMATED MANUFACTURING
SYSTEM

Vlatka Hlupic, Ray J. Paul
Brunel University
Department of Computer Science
Uxbridge, Middlesei UB8 3PH
United Kingdom

Keywords: manufacturing system, simulation, simulation package, software evaluation

Edited by: Matjaž Gams
Received: April 20,1994 Revised: October 13, 1994 Accepted: October 23, 1994

The application of the manufacturing simuiator "WITNESS" to an automated manu
facturing system is described. Some sofiware tools for the simulation of manufacturing
systems are reviewed, as well as tiie most important characteristics of the simulation
package "WITNESS". The čase study model is described together with problems ex-
perienced during modelling. This provides a critical analysis of the capabilities and
shortcomings of the software. The conclusions outline the successes and failures of the
simulator for modelling, and what lessons and further ideas were obtained from this
study.

1 Introduction

Automated manufacturing systems are being used
increasingly in many industries in order to im-
prove productivity and reduce costs. These sys-
tems are complex, dynamic and stochastic. In
addition, they involve large capital investments.
Because bf this, simulation is often used to inves-
tigate both the configuration alternatives of the
system and its potential operation modes.

The growing acceptance of simulation has re-
sulted in an increase in the number of simulation
packages available on the market. Accordingly,
there is an increase in the number of publications
on software evaluation. Most of the publications
evaluate several simulation software tools, provid-
ing basic information about the software being an-
alyzed. Some examples of such publications are
those written by Law and Haider [10], Banks et al
[1], Van Breedam et al [19], Ekere and Hannam
[6], Hlupic and Paul [8] and Carrie [3]. On the
other haiid, publications that provide a review of
one simulation package are predominantly writ-
ten by vendors, with a potential for bias and a
lack of self-criticism.

This paper presents an example of the use of the
simulation package "WITNESS" for modelling a
real automated manufacturing system, with the
emphasis on a critical and fairly detailed evalua
tion of this software tool. Following a review of
some software for manufacturing simulation, the
system being modelled is described. The main
characteristics of the model developed are pre^
sented as well as the difficulties experienced dur
ing modelling. Positive features and shortcom
ings of the software used are addressed. The last
two sections provide a summary of research find-
ings and a discussion of the suitability of " vVIT-
NESS" and other similar software tools for mod
elling complex real systems.

2 Manufacturing Simulation
Software and WITNESS

2.1 Simulation Languages versus
Simulators

There are many different ways of classifying simu
lation sbftware [13]. According to Law and Kelton
:[11], simulation packages can be classified as sim-

338 Informatica 18 (1994) 337-345 Vlatka Hlupic et al.

ulation languages and simulators. When a simu-
lation language is used, the model is developed by
writing a program using the modelling constructs
of a language. This enables modelling of almost
any type of system, but it might be tedious and
time consuming.

On the other hand, a simulator allows the mod
elling of a specific class of systems with little or no
programming, as it is a dat a dri ven environment
for a limited problem domain.

Simulation languages are general in nature, al-
though some of them have special features for
modelling manufacturing systems. For example,
SIMAN [12] and SLAM II [14] have manufactur
ing modules for automated guided vehicles and
convevors. Other examples of simulation lan
guages include SIMSCRIPT II.5 [15], MODSIM
II [2], GPSS/H [16], SIMULA [7], ECSL [4] and
PCModel [20].

When a simulator is used for model develop-
ment, models are typically developed by the spec-
ification of model parameters via menus. As lit
tle or no programming is needed, modelling time
is usually significantly reduced. There are many
manufacturing oriented simulators on the soft-
ware market. Some of the most popular are WIT-
NESS [21], SIMFACTORY II.5 [17], XCELL+ [5],
and AutoMod II [18].

2.2 WITNESS

WITNESS is a data driven simulator, which em-
ploys a visual interactive approach to modelling
using pre-defined elements to represent manufac
turing processes. Models are developed through
three main phases: Define, Display and Detail.

. WITNESS physical and logical elements are
created in the Define phase. Each element has
its separate form, which has to be filled in with
relevant data. In this phase, the names and their
quantity have to be specified for the majority of
elements.

In the Display phase, a graphical display of the
model is created. Icons representing elements are
designed using the Icon Editor. The model layout
is built up by positioning elements on the screen
using a mouse. Characteristics such as the po-
sition of parts and labour, icons for physical ele
ments and directional flows are chosen from menu
forms. There is also a Screen Editor which en
ables the drawing of text, and of different lines

OVEN

" \

r\

SAMPLE

^
AUTO

COLOURS

AUTO

QHEY

MAN UAL

BOOTH

PRETREATMENT

J
IOMSNGAHEA

Figure 1: The layout of the system

and shapes to enhance the graphical display of
the entire model.

In the Detail phase, the user has to specify how
elements operate and how they interact with other
elements. For each element, pre-defined forms are
filled with information such as cycle times, labour
requirements, speeds, capacities and breakdown
patterns. In addition to the constant values, this
information may include functions, statistical dis-
tributions and variables.

Pre-defined physical elements represent man
ufacturing equipment such as Parts, Machines,
Labour, Buffers, Convevors, Vehicles, Trucks,
Tanks and Fluids. Logical elements handle the
model's logic. For this purpose, the user can de
fine part Attributes, Variables, use in-built func
tions or write their own, specify Input and Output
rules for part routing, write Actions to describe
changes in the status of elements or specify Shift
patterns.

EVALUATING THE MANUFACTURING . . . Informatica 18 (1994) 337-345 339

3 The Čase Study: A Powder
Coating System

The automated system for the electrostatic pow-
der coating of metal components is installed in the
United Kingdom. Although this system is a part
of the factory that produces electronics products,
it can be cdnsidered as a separate unit due to
its specific characteristics and function. The sys-
tem paints various metal components using the
methods of electrostatic powder coating. These
components are produced in flexible manufactur-
ing cells installed in the same factory, and after
coating are assembled with other components to
create final products.

The layout of the system is shown in Figure 1.
The entire system consists of a large overhead
conveyor chain passing through several process-
ing areas. Components to be coated are attached
to flight bars, which are mounted on the conveyor.
The number of parts per flight bar depends on the
product type, of which there is a range of almost
two thousand different part types. For example,
one large part may need two flight bars, whilst on
the other hand five hundred small parts can be
jigged together and hung on one flight bar. Af
ter the parts have been loaded on the flight bars
in the loading area, they are transported through
several processing areas, prior to their unloading
after the last processing stage. The first stage
is pretreatment, where parts are degreased and
washed in order to be properly painted. Following
pretreatment, parts are transported to the oven,
where they are dried. Finally, after drying, the
parts are ready for powder coating (painting).

There are two automatic and two manual
booths for painting. One manual booth is used
only when one or two parts are painted as a sam-
ple, whilst the other is used when the batch size
is small (less than 20 parts) or when a partic-
ular batch has high priority. In ali other cases
automatic booths are used, where the parts are
automatically coated. One automatic booth is
dedicated to one special colour, whilst ali other
colours are painted on the other booth.

Following coating, parts are transported to the
oven, where they are baked in order to preserve
the coating. After this last stage of processing,
parts go to the unloading area, where they are un-
loaded from the flight bars, separated and moved

out of this system. Only the main characteristics
of the system have been described here. It is not
possible to succinctly describe its full complexity,
because there are many additional details, such
as various features of the parts which make them
distinct from hundreds of different part types, de
tails of the manpower in the system, details about
breakdowns of the convevor and spraying guns, or
information about complicated shift patterns.

4 The čase study
4.1 Simulation model

The simulation model was developed using the
"WITNESS" software package. The main reason
why this package was chosen is its ability to al-
low additional programming for modelling specific
features of the system. This was necessary be
cause of the complexity of the system being mod-
eUed.

The simulation model was developed gradually.
An increasing number of details were added to the
model and tested repeatedly. This iterative pro-
cess resulted in more than sixty different versions.
of the model. The final version contains more
than 220 model elements. Whilst physical ele:

ments of the system (parts, conveyors, processing
stations, labour etc.) were modelled by specifying
their parameters in predefined forms, logical ele
ments had to be additionally programmed. Thus,
many additional functions were written, condi-
tions for routing programmed, and part attributes
defined.

For example, the part attributes defined relate
to the colour, batch size, batch priority, number
of parts per flight bar, batch number, masking
requirements, the number of the booth on which
the batch will be painted, the total number of
flight bars required for a particular batch, and the
requirements for a manual finish to the painting
if the part is complex. Conditions in the form
of input and output rules were programmed for
many parts of the model. For example, when the
batch has to be routed to one booth for painting,
attributes such as colour, batch size or priority
are tested and, depending on the values of these
attributes, the batch is routed in the appropriate
direction. A number of functions were written
in order to handle specific logical features of the
system.

340 Informatica 18 (1994) 337-345 Vlatka Hlupic et al.

After each iterative change, the model was thor-
oughly tested. In addition to animation, which
provided the most significant help for model verifi-
cation, many other facilities for testing the model
are available. For example, the values of functions
and variables can be displayed and changed dy-
namically as the simulation progresses. It is also
possible to obtain information about the state of
particular elements, and information about the
attributes of the parts present in the specific ele
ments.

The final version of the model gave results
(throughput) that varied about lfrom the real val
ues, so this model was accepted as a basis for fur-
ther experimentation. Several experiments were
run, and the results obtained were compared to
the values obtained in the real system. A detailed
description of experimentation is provided in [9].

4.2 P r o b l e m s e x p e r i e n c e d

Several features of the system under considera-
tion have not been modelled completely or have
been omitted from the model because of software
functionality. Examples of these features are as
follows.

WITNESS allows the commencement of the
machine setup only when the part arrives at the
machine. In the system under consideration,
setup (ie. cleaning of the painting booths and
spraying guns) starts as soon as one batch is fin-
ished, and when it is known that the next batch to
arrive at a particular booth is to be coated in a dif-
ferent colour. Production in the real system does
not stop because of the setup. The batch that re-
quires an alternative booth for coating is loaded
whilst another booth is being cleaned. Waiting
to model the setup until a new batch had already
arrived at the machine caused an ,unacceptable
delay in processing which had a significant im-
pact on throughput. After many unsuccessful at-
tempts to model this feature according to the sit-
uation in the real system, setup modelling was
abandoned. This did not influence the validity
of the results regarding throughput, but it had
some impact on labour utilization. Since setup
was omitted from the model, the performance of
labour was slightly underestimated. This did not
represent a problem, because the number of colour
changes on each machine was monitored, and the
time spent on setup during the simulated tirne

could be calculated and added to the value of
labour utilization.

Another problem experienced occurred in an
attempt to model a search of the buffer content,
and pulling out from the buffer a batch with a spe
cific characteristic. For example, after one batch
was loaded, the attributes of the batches placed
in the buffer ought to be investigated and then
the batch with the same colour (as the previously
loaded batch) loaded next. When this feature was
modelled, only the first part within a particu
lar batch that satisfied the condition (the same
colour) was pulled out from the buffer, and after
that the program stopped. This part of the logic
was abandoned and parts were pulled out from
the buffer on a FIFO basis, which in the end did
not influence the results significantly.

It is not possible to puli a part from a specific
position of an element (e.g. a machine) although
it is possible to push a part to a specific position.
In the system, after baking in the oven, the parts
are unloaded from any position on the convevor
apart from the newest three (which must be left
for cooling of the parts after baking, prior to un
loading). The parts are unloaded simultaneously
from final positions. In the model, unloading sta-
tions that represented unloading activity could
puli parts only from the front position on the con
vevor, namely from one flight bar at a time. This
did not have an important influence on the final
results, but showed a weakness of the package.

The above mentioned examples describe what
particular features of the system being studied it
has not been possible to model that corresponds
to the situation in the real system. Although in
the end their abandonment has not influenced the
results significantly, they are a good illustration
that even such a flexible package as WITNESS
does not allow the modelling of ali specific de-
tails. There are many other features of the pack
age which have not eased the modelling process.
Some of them will'-'be probably improved in sub-
sequent versions of the package. However, a lot
of modelling time could have been saved, had the
shortcomings listed below not been present.

Buffers are passive, which means that it is nei-
ther possible to puli parts from, nor to push parts
to, buffers. This caused problems when parts in
the buffer had to be sent to masking stations.
Several dummy machines were used to puli parts

EVALUATING THE MANUFACTURING .. .

from the buffer and send them to masking sta-
tions, which additionally complicated the logic of
the model.

There is no automatic increase of buffer capac-
ity. This sometimes meant that only part of a
batch was placed in the buffer and that another
part was lost or the model simply stopped. A
separate function was therefore written in order
to check for free space in the buffer, before the
batch was placed in it.

The modelling process could be speeded up if
the package allows the copying of physical and
logical elements. Similar elements could then be
modelled by copying ones already defined and
making some minor alterations.

Another example of the package weaknesses
listed. here, and perhaps the most important one,
is the problem of software reliability. That is,
the program 'crashed' many times for no appar-
ent reason, and-the only thing that could be done
was to reboot the computer.

Similar problems occurred due to a shortage of
computer memory. The software itself has a sig-
nificant hardware requirement (4MB of RAM). In
addition, the model developed was quite complex
and during experimentation the memory space
necessarily increased. Due to this memory prob
lem, the program 'crashed' many times during ex-
perimentation, or when the buffer content had to
be listed using the EXPLODE function. These
problems relating to software reliability and mem-
ory problems, which could have probably been
eliminated by using a more powerful computer,
cost a lot of time.

5 An evaluation of WITNESS

5.1 Positive features

Several general features of this simulator make it
adequate for the simulation of manufacturing sys-
tems. WITNESS is a data driven, manufacturing
oriented simulator, with the facility to add some
program code. Its Windows based environment
with puli- down menus makes it very user friendly
and it is easy to use once it is learnt. Modelling
transparency is good.

The Visual aspects are quite good, with easy to
use icon and screen editors that can produce niče
graphical displays of the models, using multiple

Informatica 18 (1994) 337-345 341

colours. Icons can be stored in the icon library.
These icons can also be manipulated. Full anima-
tion is provided, with the movement of elements
proportional to the time needed for a change in
their state. Panning and zoom function are pro
vided. Graphics can be switched on or off. Icons
can be changed during the simulation, when a
change of element represented by a particular icon
occurs.

With respect to coding aspects, WITNESS pro-
vides an interna! language which enhances mod
elling flexibility. The user can write code to han-
dle special logical features. The syntax of the code
is fairly readable and precise. A number of built-
in functions are provided. The user can also write
his/her own functions, which can invoke built-in
functions. Global variables accessible by ali ele
ments in the model can be used.

The Efficiency of this simulator is mainly ex-
pressed by its robustness, achieved by program-
ming flexibility. In addition, it possesses a high
level of interactivity and adaptability. Models can
be changed at any time, and the status of elements
can be inspected. AVITNESS enables a model to
be saved with its current status, and it is čase
insensitive. There is no limit to model size apart
from hardwarelimits. Partially developed models
can be retrieved and edited.

Modelling assistance is provided by several fea
tures. Prompting is provided, but it is biased to-
wards experienced users because it mainly points
at what should not be done. Code entered via
the text editor is automatically formatted, and
the software imposes its own use of upper and
lower čase letters. An easily accessible on-line
help is provided, but the information it gives is
somewhat general.

Several useful features that facilitate testability
are provided. Error messages are supplied. It
is possible to obtain a graphical display of the
values of functions and variables in addition to
animation. When experiments are run in the step
mode, every change in model status that happens
is written in the interact box. It is also possible
to obtain trace files, with ali the model changes
that occurred during the simulation. The Explode
function provides information about the status of
model elements, listing ali attributes of the parts
positioned at these elements. Ulegal inputs are
rejected, with an appropriate message.

342 Informatica 18 (1994) 337-345 Vlatka Hlupic et al.

Software compatibility enables integration with
spreadsheet packages for output data analysis,
and integration with word processors to edit
model list files, create input data files or create
programs using the WITNESS Command Lan
guage.

With regard to the Input/Output group of cri-
teria, a variety of reports are automatically pro
vided as well as special user defined reports. Peri-
odic reports written to a file can be also obtained.
Dynamic graphical display of histograms and time
series is also provided. Data can be entered into
the model via a menu driven interface, or they
can be read directly from the files.

Experimentation facilities provide automatic
batch running of experiments. Speed adjustment
is possible as well as the specification of a warm-
up period for experimentation. Models can be
re-started from a non-empty state.

The quality of statistical facilities is good in
the sense that a variety of theoretical statistical
distributions are provided as well as 100 different
ran dom number streams. User defined distribu
tions can be specified. It is possible to perform
antithetic sampling.

A high level of user support is provided by the
supplier. A help-line is available to users, training
courses are organized, and user group meetings
are held regularly. Documentation and reference
cards are supplied, but the quality of documenta
tion could be improved.

Positive aspects of financial and technical fea-
tures are software portability, its availability for
standard hardware and for standard operating
systems, educational discounts given to universi-
ties, and relatively frequent updating of the soft-
ware.

With regard to the pedigree of WITNESS, it
is claimed that it is widely used, especially in in-
dustry. It was introduced in 1986. References
describing characteristics of this simulator and its
successful use in simulation projects are available.
It was developed from the general purpose lan
guage SEE WHY.

Many general manufacturing modelling fea-
tures are supplied such as part attributes mod
elling, shift modelling, capacities, breakdowns
modelling, machine setup modelling, rejects mod
elling and job lists. Parts can arrive in the model
in batches. In addition, it is possible to model

buffer delays and a variety of operations such as
assembling, disassembling, inspection and fluid
composition.

Typical physical elements existing in manufac
turing systems are pre-defined and incorporated
in the simulator. Different types of machines can
be explicitly modelled such as single, batch, pro-
duction, assembly, multi-cycle and multi-station
machines. Buffers, labour, convevors, trucks and
vehicles, and continuous processing elements such
as tanks and fluids are also provided.

Scheduling features are mostly supported by
the programming flexibility of WITNESS. Con-
ditional routing is possible, and a variety of input
and output rules are available. Various schedul
ing strategies can be modelled by programming
with the support of input/output rules. Different
priorities can be specified for different elements
and the preemption of labour can be performed.
Vehicle scheduling can also be modelled.

A variety of reports regarding manufacturing
performance can be obtained such as information
on throughput, work in progress, the utilization of
production equipment and the scrap level of the
parts. In addition, special user-defined reports
can be created.

5.2 Weaknesses

The main shortcoming of WITNESS regarding its
general features are that, because of its compre-
hensiveness, it is not easy to learn so that its full
potential may be realised, and its special logical
features modelled. In addition, it is not possible
to create run-time applications.

With regard to visual aspects, the icon library
supplied is quite small and the icons are too sim-
ple. The graphical display of the models is over-
written by windows representing, for example, an
interaction box. It is not possible to obtain three-
dimensional graphical displays of models.

The main weaknesses of the coding aspects are
the limited flexibility of the language provided for
additional coding, and the restrictions on its use.
For example, it is not possible to program actions
when a part arrives at a machine. This is possible
only when the machine starts operating. Another
shortcoming relates to the text editor provided for
coding. The maximum length of lines in the editor
is 256 characters, which may cause problems when
complex features are modelled. In addition, there

EVALUATING THE MANUFACTURING ... Informatica 18 (1994) 337-345 343

is no indication of the cursor position within the
line, so it is not possible to know when the limit of
256 characters has been reached. Going over the
limit is reported only when the code is to be saved.
Saving is then not possible, nor is it possible to
determine which parts of the lines are surplus.

Efficiency is restricted by the problems with re-
liability. Namely, the program might get stuck for
no apparent reason, and then the computer has
to be rebooted. Multitasking and model chaining
are not provided. There is no automatic saving of
models nor the possibility to exit to the operating
system within the software. Merging of models
is not possible, which is especially inconvenient
when large complex models are developed.

Weakness of the modelling assistance lie in the
limited usefulness of prompting and on-line help,
which is to general.

Testability is generally good, but it might be
useful if the quality of error messages is improved,
because they do not provide advice on how the
detected error can be corrected. In addition, a
backward clock is not provided and it is not pos
sible to view the workflow path of the parts.

With regard to software compatibility, at the
moment it is not possible to integrate VVITNESS
with CAD systems, statistical packages, data base
management systems, expert systems, MRP II
software and scheduling software.

The shortcomings of the input/output features
relate to a lack of static graphical displays of sim-
ulation results. In addition, there is no automatic
rescaling of the y axis in dynamic graphical dis-
plays of tirne series and histograms, and the stan
dard output report written to a file is lengthy and
not comprehendible. It is not possible to obtain
a summary report of multiple independent exper-
iments.

The main weakness of the experimentation fa-
cilities is the absence of an experimental design
capability and no facility to interrupt experiments
run automatically. Setting up an automatic run
of experiments is not straightforward.

The main limitation of the statistical facilities is
the lack of an output data analysis facility. There
is a fixed number of random number streams, and
the user cannot specify stream seeds. Confidence
intervals cannot be obtained, and a facility for
distribution fitting is not provided.

The main shortcomings of user support relate

to the lack of an interactive tutorial which can
facilitate learning of the package, and the quality
of documentation. Documentation should provide
more useful examples of the functions, actions and
input/output rules and it should include an expla-
nation of error messages.

With regard to financial and technical features,
the main obstacle is the high priče of the pack
age, and substantial hardware requirements (it re-
quires a minimum of 4MB of memory to operate,
and a recommended 8MB of hard disk to install).
In addition, a security device is obligatory, which
is not very convenient, especially if the software
is used for education.

Considering the general, manufacturing mod
elling features, it is apparent that an automatic
increasing of the buffer capacity is not provided.
The explicit modelling of some specific operations
such as fixturing and palletization is not straight-
forward, whilst fluid modelling is quite basic.

Although the major physical elements typical
for manufacturing systems are provided, some
special ones are missing such as pallets with
fixtures, pallet shuttles, containers, robots and
cranes. Some of those elements that are provided,
such as vehicles, are not easy and straightforward
to use.

The main limitations of the scheduling features
are an inability to push/pull a part from specific
positions within the element, to push/pull from
the element more than one part, and routing re-
strictions. For example, buffers are passive, which
means that they can neither push not puli parts.
In addition, there is no departure scheduling for
the shipping area, and there is no explicit way of
using the batch index. Automatic calculation of
optimal scheduling is not provided.

A variety of measures of manufacturing perfor-
mance are provided by the software, or could be
obtained with additional programming. Never-
theless, there is no schedule related report such
as a Gantt chart, and it is not possible to obtain
a production sequence summary report.

6 Summary

The information presented in this paper relates
to a critical evaluation of the data driven man
ufacturing simulator "WITNESS" performed on
the basis of a čase study model. This evaluation

344 Informatica 18 (1994) 337-345 Vlatka Hlupic et al.

revealed that when a complex real system is mod-
elled using this type of simulation software, it is
likely that a number of approximations must be
made due to limitations of the software.

However, despite ali the problems experienced
and the deficiencies of the software discovered, the
majority of the important features of the system
under consideration were in the end successfully
modelled. Those that were omitted were of no
significant importance to the final results.

7 Conclusions

This research shows that despite the constant de-
velopment of software packages for manufacturing
simulation, and especially manufacturing simula-
tors, these simulators stili reflect that their devel-
opment is on the basis of a limited number of čase
studies. Even if these software tools can model
ali the desirable features of systems under consid
eration, the modelling time is long, and various
difficulties are to be expected.

The simulation package "WITNESS" was suit-
able for this study, despite ali the problems per-
ceived. This does not necessarily mean that this
or any other simulation software of this type
would be equally successful for other systems, or
that the problems experienced would be the same.
Every system is unique, and so are the logical fea
tures that have to be modelled, which imposes
substantial demands upon simulation packages,
and especially upon data driven simulators.

Despite regular revisions and improvements to
the majority of simulation packages, and the ad-
dition of better new ones, the development of new
and more sophisticated and flexible simulation
software tools is needed. In the meantime, for
any study, an estimation has to be undertaken
of whether the approximations that have to be
made due to the limitations of the simulator are
acceptable, or whether bespoke programming us
ing a simulation language is preferable.

References

[1] Banks J., Aviles E., McLaughlin J.R. and
Yuan R.C.: The Simulator: New Member
of the Simulation Family, Interfaces, 21:2,
March- April 1991, 76-86.

[2] Belanger R.F., Donovan B., Morse K.L., Rice
V and Rockower D.B.: MODSIM II Refer
ence Manual, CACI Products Company, La
Jolla, California, 1989.

[3] Carrie A.: Simulation of Manufacturing Sys-
tems, Wiley, Chichester, 1988.

[4] Clementson A.T.: The ECSL Plus System
Manual, available from Clementson A.T.,
The Chestnuts, Princess Road, Windermere,
Cumbria, UK, 1991.

[5] Conway R., Maxwell W., McClain J. and
Worona S.: User's Guide to XCELL+, The
Scientific Press, San Francisco, 1988.

[6] Ekere N.N. and Hannam R.G.: An evalua-
tion of approaches to modelling and simu-
lating manufacturing systems, International
Journal of Production Research, 27:4, 1989,
599-611.

[7] Hills P.R.: An Introduction to Simula
tion Using SIMULA, NCC Publications 5-Ss,
Norwegian Computing Centre, Oslo, Norway,
1974.

[8] Hlupic V. and Paul R.J.: Software Packages
for Manufacturing Simulation: A Compara-
tive Study, in the Proceedings of the 14th
International Conference Information Tech-
nology Interfaces, (15-18 September 1992,
Pula, Croatia), University of Zagreb Com
puter Centre, Zagreb, 1992, 387-391.

[9] Hlupic V. and Paul R.J.: Simulation Mod
elling of an Automated System for Electro-
static Powder Coating, in the Proceedings of
Winter Simulation Conference WSC'93, Los
Angeles, December, 1993.

[10] Law A.M. and Haider S.W.: Selecting Simu
lation Software for Manufacturing Applica-
tions:Practical Guidelines & Software Sur-
vey, Industrial Engineering, 31, May 1989,
33-46.

[11] Law A.M. and Kelton W.D.: Simulation
Modelling & Analysis, 2nd Edition, McGraw-
Hill, Singapore, 1991.

[12] Pedgen CD. , Sadowski R.P. and Shan-
non R.D.: Introduction to Simulation Us
ing SIMAN, Systems Modelling Corporation,
Sewickley, Pa., 1990.

EVALUATING THE MANUFACTURING . . . Informatica 18 (1994) 337-345 345

[13] Pidd M.: Computer Simulation in Manage
ment Science, 3rd Edition, Wiley, Chichester,
1992.

[14] Pritsker A.A.B.: Introduction to Simulation
and SLAM II, 3rd ed., Halsted, New York,
1986.

[15] Russell E.C.: Building Simulation Models
with SIMSCRIPT II.5, CACI Products Com-
pany, La Jolla, California, 1983.

[16] Schriber T.J.: An Introduction to Simulation
Using GPSS/H, John Wiley, New York, 1990.

[17] SIMFACTORY II.5 Reference Manual and
User Guide, CACI Products Company, La
Jolla, California, 1992.

[18] Thompson M.B.: AutoMod II: The system
builder, in the Proceedings of the 1989 Win-
ter Simulation Conference, (December 4-6
1989), eds. MacNair E.A., Musselman K.J.,
and Hidelberger P, Washington DC, 1989,
235- 242.

[19] Van Breedam A., Van de Raes J. and Velde
K.: Segmenting the simulation software mar-
ket, OR Insight, 3:2, April-June 1990, 9-13.

[20] White D.A.: PCModel User's Guide, Simula
tion Software Systems, San Jose, California,
1988.

[21] WITNESS User Manual, AT&T ISTEL Ltd.,
Redditch, UK, 1991.

Informatica 18 (1994) 347-356 347

Compressed Transmission Mode: An Optimizing Decision Tool

Tarek M. Sobh
Department of Computer Science, University of Utah
Salt Lake City, Utah 84112, U.S.A.
E-mail: sobh@cs.utah.edu
AND
Tarek K. Alameldin
Computer Visualization Laboratory, Graduate School of Architecture
Texas A & M University, College Station, Texas, U.S.A.
E-mail: tarek@viz.tamu.edu

Keywords: Communication, Compression, Optimization, Tools

Edited by: Rudi Murn
Received: March 1, 1994 Revised: June 14, 1994 Accepted: September 20, 1994

In this paper we address the problem of host to host communication. In particular, we
discuss the issue ofefRcient and adaptive transmission mechanisms overpossible physical
links. We develop a tool for making decisions regarding the How of control sequences
and data from and to a host. The issue of compression is discussed in details, a decision
box and an optimizing tool for finding the appropriate thresholds for a decision are
developed. Physical parameters like the data rate, bandwidth of the communication
medium, distance between the hosts, baud rate, levels of discretization, signal to noise
ratio and propagation speed of the signal are taken into consideration while developing
our decision system. Theoretical analysis is performed to develop mathematical models
for the optimization algorithm. Simulation models are also developed for testing both
the optimization and the decision tool box.

1 Introduction
Data which is transmitted over a communication
medium between two computers contains some
form of redundancy. This redundancy can be ex-
ploited to make economical use of the storage me-
dia or to reduce the cost of transferring the data
and commands over the communication network.
One of the basic issues in the design of the pre-
sentation layer is to decide whether data is to be
compressed before transmission or not. Many fac-
tors may affect making this decision, one of the
most important ones is the cost factor. Compress-
ing data before sending it will help reduce cost.

Some other factors may affect the decision of
compression. The time factor may be the influ-
enčing one, in fact, one should not forget that
there is the overhead of the compression and de-
compression algorithms at the sender and at the
receiver hosts. This overhead is both in time and

money, as the CPU is used for running the algo
rithms. Thus, the designer always faces the prob
lem of when should one compress the data. The
parameters which may affect this decision might.
be the parameters of the physical communication
medium, they might also be the parameters of the
compression algorithm used or both.

The decision that the design engineer will have
to make might be a decision to compress or not
given a certain fixed compression and physical
medium parameters, or it might be a decision to
compress depending on the value of one or more
of the parameters (i.e., to compress if a certain
threshold is met). In our work, we try to develop
a tool for making such a decision, we choose the
time to be the criteria for making compression
decision, where the time is both for the compres
sion overhead and for transmission. We develop
a yes/no decision box given some fixed parame
ters and an optimizing decision box for finding the

mailto:sobh@cs.utah.edu
mailto:tarek@viz.tamu.edu

348 Informatica 18 (1994) 347-356 T. Sobh

threshold for one varying parameter while fixing
the others. Theoretical analysis is performed and
also simiilations for difFerent sets of data and a
decision (or a threshold) is output for each kind
of analysis.

2 Physical and Compression
Parameters

The parameters of the communication medium
between two hosts will affect the decision regard-
ing compression. Whether the medium be a coax-
ial cable, a fiber optic cable or air (in the čase of
radio transmissions) it can always be completely
specified by parameterizing it. The parameters
that may help in determining the transmission
tirne can be listed as follows :

- The data rate in bits per second. {D bps}

- The band width of the medium in hertz. {B
Hz}

- The distance between the two hosts under
consideration in meters. {L m}

- The levels of discretization. {1}

- The baud rate in changes per second. {6}

- The signal to noise ratio in decibels. {S dB}

- The propagation speed of the signal in the
medium, in meters per second. {P m/s}

It should be noticed that there is redundancy
in expressing the tirne for transmission using ali
those parameters and the number of bits sent. For
example, it is sufficient to use the number of bits
and the data rate to express the time. However, if
the data rate is not available we can use the baud
rate, the levels of discretization and the data size,
or alternatively we can use Shanon's maximum
data rate bound, thus using the band width, the
signal to noise ratio and the data size to find an
expression for the minimum time for transmission.

The other set of parameters that is involved
with the computation of the time for transmit-
ting a certain amount of data is the set of the
compression algorithm parameters. The CPU run
time as a function of the size of data input to the
algorithm is one of those parameters. The ex-
pected compression ratio, which actually depends

on what type of data to be transmitted is the sec
ond compression parameter of concern.

3 Mathematical Formulation
The problem can be mathematically formulated
by trying to find the cost of sending a certain
number of bits from a host to another. The cost
will be assumed to be the time through which the
channel will be kept busy sending the data plus
the time that will take the CPU to perform the
compression and decompression on the data that
are required to be transmitted. One can use a
weight in the cost expression to denote that, for
example, the cost for utilizing the network cable
for one second is X times the cost for utilizing the
CPU for one second. Thus, the expression for the
cost function may be written as :

Transmission time + Xx CPU computation
time

where X is the ratio between the cost of using
the network for one unit time and the cost of one
unit CPU time.

3.1 The Transmission T i m e

If we make the assumption that we only have
two hosts connected directly and ignore the other
overheads of the protocol to be used, the time
needed to transmit N bits from a host to another
can be written as a mathematical expression in
terms of the physical medium parameters. For our
implementation we are going to develop the trans
mission expression in four difFerent ways, using
four difFerent sets of physical parameters, where
each set individually is sufficient to specify the
transmission time TI completely.

3.1.1 Formulation Using the Data rate

The time required for transmitting N bits can be
formulated as follows :

N L TI = — H D^ P
where D is the data rate in bits per second, L

is the distance between the two hosts and P is
the signal propagation speed. The first term is
for the emission of N bits from the sender and the
second term is the time for the last bit to reach
the receiver.

COMPRESSED TRANSMISSION MODE Informatica 18 (1994) 347-356 349

3.1.2 Formulation Using the baud rate

The tirne required for transmitting N bits can be
formulated as follows :

61og2/ P

where b is the baud rate in changes per second,
Z is the number of levels of discretization, L is
the distance between the two hosts and P is the
signal propagation speed. The first term is for
the emission of N bits from the sender and the
second term is the tirne for the last bit to reach
the receiver.

3.1.3 Formulation Using the band width

The tirne required for transmitting N bits can be
formulated as follows :

2B\og2l P

where B is the band width in Hertz, / is the
number of levels of discretization, L is the dis
tance between the two hosts and P is the signal
propagation speed. The first term is for the emis
sion of N bits from the sender and the second term
is the time for the last bit to reach the receiver. In
this čase, there is assumed to be no noise whatso-
ever, we are assuming the maximum possible data
rate.

3.1.4 Formulation Using the Signal to
Noise Ratio

The time required for transmitting N bits can be
formulated as follows :

JBlog2(l + 10&) P

where B is the band width in Hertz, S is the
signal to noise ratio in decibels, L is the distance
between the two hosts and P is the signal prop
agation speed. The first term is for the emission
of N bits from the sender and the second term is
the time for the last bit to reach the receiver. In
this čase Shanon's maximum data rate of a noisy
channel is assumed.

3.2 The Compression and
Decompress ion T i m e s

The run times of the algorithm for compression
and decompression can be expressed as a function
of the size of the input in terms of machine cvcles.
That is, the compression time can be expressed as
T2(M) where M is the size of data that is input
to the compression algorithm.

3.3 Total Cost W i t h o u t Us ing
Compression

The total time to send N bits without using com
pression would then simplv be equal to the trans-
mission time, thus it equals one of the four ex-
pressions discussed previouslv. The total cost is
considered to be only the time during which the
communication channel is utilized.

3.4 Total Cost Using Compress ion

The total cost for transmitting a sequence of
bits using compression will be assumed to be a
weighted combination of the times for transmis-
sion and the times for compression and decom
pression. Thus, if we assume the compression ra
tio of the algorithm to be equal to R, and X is
the ratio between the cost of using the network
for one unit time and the cost of one unit CPU
time and if we also assume a variable page size,
i,e. compression is to be performed before each
transmission of a block of size M of data, the
total cost to be incurred (when we express the
transmission time in terms of the data rate) can
be written as :

C = i ^ + | + X(fl(M) + t2(±M))

where fl and f2 are the compression and de
compression runtime functions (in terms of the
input size).

Similarlv, the total cost can be written for the
other phvsical medium sets of parameters as-:

or

or

350 Informatica 18 (1994) 347-356 T. Sobh

C= * M
 s + ^ + X(fl(M)

51og2(l + 10io) P

+f2(^-M))

4 Compression Algorithms

The methods to compress data have been stud-
ied for many years. However, sever al prob-
lems have prevented the widespread integration
of compression methods into computer systems
for automatic data compression. These prob-
lems include poor runtime execution preventing
high data rates, lack of flexibility in the compres
sion procedures to deal with most types of re-
dundancies and storage management problems in
dealing with storage of blocks of data of unpre-
dictable length. In most cases a method presents
some subset of these problems and therefore is re-
stricted to applications where its inherent weak-
nesses do not result in critical inefficiencies. In
this section we shall review the different forms
of redundancies that can be taken advantage of
for compression and then look at some of the ap-
proaches taken towards this end. Then we shall
present a method due to Welch [3] which avoids
many of the drawbacks of most of the methods.

4.1 Kinds of Redundancies

There are four major types of redundancies that
we shall mention here. The forms of redundancies
discussed are not independent of each other but
overlap to some extent. There are some other
forms of redundancies too, but the ones we are
going to discuss are the major ones.

In different types of data, some of the charac-
ters are used more frequently than others. For ex-
ample, in English text we see space and 'e' more
frequent than any other character and special
characters are used a lot less frequently. Gener-
ally speaking, ali of the string combinations might
not be used in a specific data set, resulting in
the possibility of reducing the number of bits per
combination. This kind of redundancy is due to
character distribution.

The repetition of string patterns is another
form of redundancy found in some of the cases.

For example, the sequence of blank spaces is very
common in some kind of data files. In such cases
the message can usually be encoded more com-
pactly rather than by repeating the string pat-
tern.

In a certain type of data set, certain sequences
of characters might appear very frequently. Some
pairs may be used with higher frequency than
the individual probabilities of the letters in these
pairs would imply. Therefore, these pairs could
be encoded using fewer bits than the combined
combinations of the two characters formed by
joining together the individual combinations for
the two characters. Likewise, the unusual pairs,
can be encoded using very long bit patterns to
achieve better utilization.In some data sets, cer
tain strings or numbers consistently appear at a
predictable position. This is called Positional re
dundanc^ It is a form of partial redundancy that
can be exploited in encoding.

4.2 M e t h o d s of Compress ion

Using the discussion on redundancy types as our
basis, we shall discuss several practical compres
sion methods, and then choose one of them and
use it for our simulation.

4.2.1 Huffman Encoding

This is the most popular compression method. It
translates the fixed-size pieces of input data into
variable-length symbols. The standard Huffman
encoding procedure prescribes a way to assign
codes to input symbols such that each code length
in bits is approximately \og2(SymbolProbability).
Where symbol probability is the relative fre-
quency of occurrence of a given symbol (expressed
as a probability). Huffman encoding has certain
problems. The first problem is that the size of in
put symbols is restricted by the size of the transla-
tion table. If a symbol is one eight-bit byte, then
a table of 256 entries is sufficient. However, such
a table limits the degree of compression that can
be achieved. If the size of the input symbols is
increased to two bytes each, the compression de
gree would be increased. However, such encoding
would require a table of 64K entries which may
be a high cost.

COMPRESSED TRANSMISSION MODE Informatica 18 (1994) 347-356 351

The second problem with Huffman encoding is
the complexity of the decompression process. The
translation table is essentially a binary tree, in
that, the interpretation of each code proceeds bit
by bit and a translation subtable is chosen de-
pending on whether the bit is zero or one. This
basically means a logic decision on every bit which
can create a system bottle neck.

The third problem with Huffman encoding is
the need to know the frequency distribution of
characters in the input dat a which is not well
known for ali kinds of data. A common solution
is to do two passes on the data, one to find the
frequency distribution ordering and the other is
to to do the encoding. This process may be done
block wise to adapt to the changes in data. This is
not very efficient although it might be acceptable.

4.2.2 Run-length encoding

Repeated sequences of identical characters can
be encoded as a count field along with the re
peated character. However, the count fields have
to be distinguished from the normal character
fields which might have the same bit pattern as
the count fields. A possible solution is to use a
special character to mark the count field. This
might be suitable for ASCII text, but not when
there are arbitrary bit patterns such as in the čase
of binary integers. Typically, three characters are
required to mark a sequence of an identical char
acter. So, this will not be useful for sequences of
length three or less.

4.2.3 Programmed Compression

In formatted data files, several techniques are
used to do compression. Unused blank or zero
spaces are eliminated by making fields variable
in length and using an index structure with
pointers to each field position. Predicted fields
are compactly encoded by a code table. Pro
grammed compression cannot effectively handle
character distribution redundancy and is there-
fore a niče complement of Huffman encoding. The
programmed compression has several drawbacks.
First it is usually done by the application pro-
grammers adding to the software development
cost. The type of decompression used requires a
knowledge of the record structure and the code ta-
bles. The choice of field sizes and code tables may

complicate or inhibit later changes to the data
structure making the software more expensive to
maintain.

4.2.4 Adaptive Compression

The Lempel-Ziv [4,5] and related methods fall
into this category. Fixed length codes are used
for variable-length strings such that the proba-
bility of occurrence of ali selected strings is al-
most equal. This implies that the strings com-
prising of more frequently occurring symbols will
contain more symbols than those strings having
more of the infrequent symbols. This type of al-
gorithm exploits character frequency redundancy,
character repetitions, and high-usage pattern re-
dundancy although it is usually not effective on
positional redundancv. The algorithm is adaptive
in the sense that it starts with an empty trans
lation table and builds the table as the compres
sion proceeds. This type of algorithm is a one
pass procedure and usually requires no prior in-
formation of the type of data. Such algorithm,
gives poor compression results in the initial part
of the data set; as a result the data set should
be long enough for the procedure to establish
enough symbol frequency experience to achieve
a good compression degree over the whole data
set. On the other hand, most finite implemen
tations of an adaptive algorithm loose the ability
to adapt after certain length of the input which
means that if the input's redundancy characteris-
tics vary over its length, the compression degree
declines if the input length significantly exceeds
the adaptive range of the compression implemen-
tation.

We have chosen a variation of the Lempel-Ziv
procedure which is called LZW due to Welch [3].
This method retains the adaptive characteristics
of the Lempel-Ziv procedure but is distinguished
by its very simple logic which vields relatively in-
expensive implementations and apotential of very
fast execution.

4.3 The LZW Algor i thm

The LZW algorithm is organized around a trans
lation table, referred to here as a string table,
that maps strings of input characters into fixed
length codes. The use of 12-bit codes is common.

352 Informatica 18 (1994) 347-356 T. Sobh

The LZW table has the prefix property that if
wK is a string in the table and w is a string and
Kis a character, then w is also in the table. K is
called the extension character on the prefix string
w. The string table may be initialized to contain
ali single-character strings.

The LZW table, at any time in the compression
process, contains strings that have been encoun-
tered previously in the message being compressed.
In other words, it contains the running sample of
strings in the message, so the available strings re-
flect the statistics of the message. The strings
added to the table are determined by this pars-
ing: each parsed mput string extended by its next
input character forms a new string added to the
string table. Each such string is assigned a unique
identifier, namely its code value.

The algorithm is quite simple and can have
a very fast implementation. The main concern
in the implementation is storing the string table
which can be very large. However, it can be made
tractable by representing each string by its prefix
identifier and extension character. This will give
a table of fixed length entries.

The decompressor logically ušes the same string
table as the compressor and similarb/ constracts it
as the message is translated. Each received code
value is translated by way of the string table into
a prefix string and extension character. The ex-
tension character is pulled off and the prefix string
is decomposed into its prefix and extension. This
operation is recursive until the prefoc string is a
single character, which completes decompression
of that code. Each update to the string table
is made for each code received (except the first
one). When a code has been translated , its final
character is used as the extension character, com-
bined with the prior string, to add a new string
to the string table. This new string is assigned
a unique code value, which is the same code that
the compression assigned to that string. In this
way, the decompressor incrementally reconstructs
the same string table that the compressor used.

5 Coinparing the Models
The goal of our mathematical formulations and
modeling is to perform one of two basic tasks, the

first one is to decide whether to use compression
or not given a certain set of fixed parameters {
for compression, decompression and the physical
medium } , the other is to decide the threshold
for a specific varving parameter before which we
should perform compression and after which we
should not perform compression.

Two independent situations can arise in our for-
mulation, in the first one, we can consider the pro-
tocol in which the communication to take plače is
a one of varving page length. In this čase, the
compression is performed for one "chunk" of data
at a time and is immediateb/ sent after that. In
the other čase, the protocol may have a fixed page
size and thus the compression is performed for
large files and the compressed data is sent one
page at a time. Thus comparing the two mod
els for decision making and optimizing parameters
can be performed for each one of these situations
separately. It should also be noticed that there
might exist hypothetical bounds and average val-
ues for the run times and compression ratios for
the compression and decompression algorithms.

The way we construct our mathematical mod
els and optimization problems depends entirely on
the set of parameters described in section 2. We
construct the timing models as a function in one
parameter to be determined (in the čase of solving
an optimization problem), given ali the values for
the other communication medium and data pa
rameters and solve the inequality to find the re-
quired range for the unknown parameter. In the
čase of decision problems, we solve the inequal-
ity given ali the values of the different parameters
and check to see if the inequality holds or not
(the greater than or less than relation). The deci
sion algorithm would provide an answer (whether
to do compression or not) depending on the cost
(time) it takes to compress with respect to the
transmission time without doing compression.

5.1 Us ing a V a r y i n g - L e n g t h P a g e

The problem in this čase is to either make a de
cision regarding compression or to optimize a pa
rameter, the four different representations for the
transmission time can each be used to formulate
and express the total cost incurred in the com
pression and uncompression modes. In the deci
sion problem, we choose the scheme to have the

COMPRESSED TRANSMISSION MODE Informatica 18 (1994) 347-356 353

less cost. In the optimization problems we find
the range for a certain parameter such that, for
example, compression is a better technique, by
solving the inequality.

Assuming that we use the LZW algorithm,
characters are 8 bits each, the machine's cycle
rate is w cycles per second, the data size to be
compressed is M bits and the compression ratio is
R. The algorithm runtime can be formulated as :

M
8w

1.5+R-

The following inequality can be formed for the
model using the data rate as the physical param
eter, for cost of the compressed mode to be less
than the cost of the uncompressed mode .

1.5+R- 1 1 .5+R- 1

M L
^U+P

For the model using the baud rate

kM
+ - + X

Mog2/ P
M
8w

1 .5+R- 1
+ 8t»

1 .5+R- 1

<
M L_

61og2/
 + P

For the model using the band width

L / M kM - v
i t . i i V

2Blog2l P
8w

1 .5+R- 1 +
i M

8w
1.5+R- 1

<
M

+ 2Blog2l P

For the model using the signal to noise ratio

R-M L

+X

51og2(l + 10io) P

M
8w +

M.
8tu

5.2 Us ing a F i x e d - L e n g t h P a g e

In this model we assume that the protocol has a
fixed length page and that the compression and
decompression is done for a large chunk of data
M, in this situation another parameter should
be taken into consideration, which is the page
size m and the expression for the transmission
time should now include the number of com
pressed pages that are sent over the communi-
cation medium. Thus the above inequalities can
now be expressed as :

K**

1.5+R-

M (m L

1.5+R" 1

For the model using the baud rate

m \b\og2l P j

For the model using the band width

m \2B\og2l
 + p}+X

M
8w +

1.5+R- 1

M
< — m

R-M >
8w

1 .5+R- 1 /

L"
+ m \2B\og2l P J

For the model using the signal to noise ratio

kM m
m \51og 2 (l + 10W) ^ + P

10 I J .

+X
M

1.5+R" 1 1.5+R"

• g . M
8w "•" 8w

1.5+R" 1 1 .5+R- 1
+

M L

51og2(l + 10") P
<

M m £
m V51og2(l + 10To) P

354 Informatica 18 (1994) 347-356 T. Sobh

6 The Experiment

In our experiment towards the goal of establish-
ing a reasonable tool for the design engineer, we
offer the choice for either making a decision to
use a compression/decompression scheme given a
certain situation, i.e, a fixed set of physical layer
parameters and a certain size of a chunk of data,
or choosing to optimize { obtain the threshold of}
a certain parameter, such that we can use com
pression for ali values of the parameter that are
less than this threshold, as it gives aless total cost
than the technique that does not use compression.
The user is given the choice of choosing any one
of the four different ways of modeling the cost
function, to maximize the number of parameters
that one can deal with. Thresholds are found by
solving the above inequalities for the parameters
that are to be optimized for minimizing the total
communication cost.

The results of running the experiment are dis-
played both theoretically and realistically. In the
theoretic solution, the input file to be transmit-
ted is assumed to be a plain text, thus assuming
no prior information about the kind of data that
are transferred in the network, then, a more re-
alistic { either a decision or a value } solution is
given by calculating the actual compression and
decompression runtimes by running the LZW al-
gorithm on them and observing the times and the
compression ratio.

In the first two examples the algorithm is run
on image data. The first one contains a lot of de-
tails, the second is mainly a few number of dots in
a planar surface, it is not surprising then to know
that the compression ratio in the second example
turned to be equal to 48 !!, especially when we re-
member the adaptive characteristics of the LZW
algorithm. The compression ratio in the first one
was equal to 5. This fact contributed to the dif-
ference in the thresholds and decisions between
the "theoretic" and the "realistic" approaches to
finding the required limits and decisions. The fol-
lowing are snap shots of three different runs for
the system, the first two are for the complex im
age, the third is for the simple one :

>> project.e

Enter various input values

prompted for.

Decision or Optimization? [d/o]:o

Desired Model?

[l=using data rate, 2=baud rate,

3=bandwidth, 4=using sig-noise

ratio]:3

Data Size? 8389192

Cycle Rate? 14286000

Network/CPU time cost ratio? 5

Theoretical Compression Ratio? 1.8

Observed Compression Ratio? 5.156

Observed Compression Time? 1.3

Observed Decompression Time? 1.2

Levels of Discretization? 2

Theoretical Results: If band width

< 1588559.073359 Hz then compress.

Simulation Results: If band width

< 270484.731978 Hz then compress.

>>

>> project.e

Enter various input values

prompted for.

Decision or Optimization? [d /o] :d

Desired Model?
[l=using data r a t e , 2=baud r a t e ,
3=bandwidth, 4=using s ig -no i se
r a t i o] : 4

Data Size? 8389192

Cycle Rate? 14286000

Network/CPU time cost ratio? 5

Theoretical Compression Ratio? 5

Observed Compression Ratio? 5.156

Observed Compression Time? 1.3

Observed Decompression Time? 1.2

Signal to Noise Ratio in decibels? 5

Medium Bandvidth? 1000000

Theoretical Results:

Compression would cost less.

Simulation Results:

Compression would cost more.

COMPRESSED TRANSMISSION MODE

»
>> project.e
Enter various input values
prompted for.

Decision or Optimization? [d/o]:o

Desired Model?
[l=using data rate , 2=baud rate ,
3=bandwidth, 4=using s ig-noise
r a t i o] : 1

Data Size? 1966640
Cycle Rate? 14286000
Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 48.468
Observed Compression Time? 0.4
Observed Decompression Time? 0.2

Theoretical Results: If data rate
< 3177118.146718 bps then compress.
Simulation Results: If data rate
< 642021.316608 bps then compress.

»

We then proceed in the experiment to try dif-
ferent kind of data, we try executable files and
observe the results of running our toolbox. The
following is a sample run for the system on a file
of executable commands.

>> project.e
Enter various input values
prompted for.

Decision or Optimization? [d/o]:d

Desired Model?
[l=using data rate, 2=baud rate,
3=bandwidth, 4=using sig-noise

. ratio]:4

Data Size? 745472
Cycle Rate? 14286000
Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 1.526
Observed Compression Time? 0.5
Observed Decompression Time? 0.3

Informatica 18 (1994) 347-356 355

Signal to Noise Ratio
in decibels? 30
Medium Bandvidth? 3000

Theoretical Results:
Compression would cost more.
Simulation Results:
Compression would cost more.

»

It is noticed that for a "niče" collection of in-
formation, which includes a lot of repetitiveness,
the compression ratio is maximum, while it de-
creases for other types. The fact that there is
sometimes a discrepancy between the realistic and
the theoretic values is because the theoretic ap-
proach assumes a "perfect" media when it calcu-
lates the runtime for compression, however, this is
not the čase when performing the actual compres
sion in software on a down-to-earth Vax worksta-
tion. Also the wide variations in the compression
ratios should be taken into consideration.

7 Conclusions

We discussed the issue of efRcient and adaptive
transmission mechanisms over possible physical
links between hosts. A tool was developed for
making decisions regarding the flow of control se-
quences and datafrom and to a host. The decision
of compressing data and commands is discussed
in details, a yes/no decision box and an optimiz-
ing tool for finding the appropriate thresholds for
a decision ,were implemented. Physical parame-
ters are taken into consideration while develop-
ing our decision system. Also, the compression
parameters relationships and different compres
sion techniques suited for the task are developed,
with an emphasis on adaptive ones that accom-
modate various data and control patterns. The
oretical analysis is performed to develop math-
ematical models for the optimization algorithm.
Simulation models are also developed for testing
both the optimization and the decision tool box.
Our system is tested through a series of simula-
tions and a comparison is performed against the-:
theoretical results for some data and control se-
quences.

356 Informatica 18 (1994) 347-356 T.Sobh

References

[1] V. Cappellini, Data Compression and Error
Control Techniques ivith Applications, 1985.

[2] W.K. Pratt, Image Transmission Techniques,
1979.

[3] T.A. Welch, " A Technique for High Perfor-
mance Data Compression", IEEE Computer,
June 1984, pp. 8-19.

[4] J. Ziv and A. Lempel, "A Universal Algo-
rithm for Sequential Data Compression", IEEE
Trans. Information Theory, Vol. IT-23, No.3,
May 1977, pp. 337-343.

[5] J. Ziv and A. Lempel, "Compression of In-
dividual Sequences via Variable-Rate Coding",
IEEE Trans. Information Theory, Vol. IT-24,
No.5, Sept. 1978, pp. .5306.

[6] H. K. Reghbati, "An Overview of Compres
sion Techniques", IEEE Computer, Vol.14, No.
5, April 1981, pp. 71-76.

Informatik 18 (1994) 357-366 357

Adaptive Bar Implementation and Ergonomics

Matjaž Debevc, Rajko Svečko, Dali Donlagič
Facultv of Technical Sciences
Smetanova 17, 62000 Maribor, Slovenia
E-mail: debevc@uni-mb.si

Beth Meyer
AT&T Human Interface Technologv Center
500 Tech Parkway, N.W.
Atlanta, GA 30313, USA
E-mail: Beth.Meyer@AtlantaGa.ncr.com

K e y w o r d s : Adaptive User Interfaces, Intelligent User Interfaces, Human Factors,
Icons Design

Edited by: Matjaž Gams
Rece ived: March 9, 1994 Rev ised: June 20, 1994 Accepted : September 22, 1994

Self-adjusting, adaptive user interfaces offer automatic customisation of the computer-
based working environment by checking users' procedures and tvpical decisions, eventu-
ally offering them adaptations or enhancements designed to make their individual work
patterns easier and more efhcient. This means that the users don't need deeper un-
derstanding of the application environment or its procedures, since the adaptive user
interface itself recommends solutions and possible adjustments.
This article classifies user interfaces and their roles. Positive and negative aspects of
adaptive user interfaces are also discussed. Using the adaptive bar as an example, we
discuss the implementation and ergonomics of the adaptive bar, which represents the
adaptive part of the interaction. During the working sessions, but v/ithout disturbing
them, the user interface suggests the addition or removal of command icons and their
resizing depending on the prioritv, which is based on the frequency of use. The article
also offers a convenient solution to present the priority of icons.

1 Introduction

Self-adjusting (in following text called 'adaptive')
systems offer automatic adaptation of the working
environment by keeping track of user's procedures
and decisions, and eventually offer the possibility
of adjustment or easier ways to doing something
(Geiser 1990). The user therefore doesn't need de-
tailed knowledge about the working environment
and possible procedures, since the adaptive sys-
tem itself recommends best solutions and optimi-
sation of repeating procedures. The same goes
for adaptive user interfaces in human-computer
interaction, since, for computer applications, the
user interface is the user's working environment.

Graphical user interfaces, which represent
an important component of current computer sys-
tems, are often the most sensitive elements of the
communication. Advances in computer controls
and displays make it possible for computers to be
more widely accessible and lead to new, innova-
tive interaction methods. One of these methods is
interface adaptation, which could widen the group
of users who would potentially switch to comput-
erised processing or controlling. An ideal com
puter system would automatically adapt to the
present user by identifving problem areas and of
fering help for the present work, therefore lower-
ing the stress level and necessary concentration.

As a result, there are many research projects
going on in this field (e.g., Browne et al 1990,

mailto:debevc@uni-mb.si
mailto:Beth.Meyer@AtlantaGa.ncr.com

358 Informatica 18 (1994) 357-366 Matjaž Debevc et al

Figure 1: Adaptive user interface in relation to Intelligent Interface (in Kuhme 1992)

Benvon and Murrav 1988, Kossakowski 1989).
The research is especiallv promising if we regard
ali the advantages of such a user interface in Com
puter svstems and applications, which are getting
more and more complex. Studies such as those
reported in Benvon and Murrav 1988 and Kos-
sakowski 1989 have demonstrated or implied sig-
nificant human performance advantages for adap
tive interfaces.

2 Classification

The user interface can be classified depending on
the methods of adaptation. Kuhme (Kiihme et
al 1992 and Hufschmidt et al 1993) suggests a
scheme that represents multi-dimensional classifi
cation and is more convenient for representation
of ali existing viewpoints and prototvpes of svs
tems.

Figure 1 shows the scheme of classification of
various existing user-interface concepts. The first
generation of user interfaces was static; the sys-
tem developer designed and implemented the user
interface, and the user had to learn how to use it.

Later, flexible user interfaces began to appear.
These user interfaces allow the user to make
changes, although these changes are initiated and
managed by the user. Today, many user inter
faces are adaptable to at least some extent - for
example, many offer the possibility of changing
colours or resizing and moving the windows.

Adaptive user interfaces actively change ac-
cording to conditions and user needs, either au-
tomatically or with user input. For example, an

adaptive system might suggest and provide a spe-
cial tool to perform a set of tasks that the user
frequently performs together. If the functionality
and demands of the application also adapt, the
system can get quite complex.

According to Figure 1 the intelligent user in
terface is an assembly of adaptive user interfaces,
intelligent help systems and intelligent learning
tools.

Kiihme has also defined stages and agents
which influence the flow of the adaptation pro-
cess. In every process of adaptation various tasks
are executed. We can identify them as stages,
which are carried out during the process of any
single adaptation.

The stages are: The agents are:

- Initiative - System

- Proposal - User

— Decision

— Execution

If the system is the agent that carries out ali
the stages we call it Self-Adaptation. In this
čase the system observes the communication, cre-
ates and evaluates various possible adaptations,
and in the end selectss one of them and accom-
plishes it. Another type of adaptation is User-
Controlled Self-Adaptation, in which the user
determines whether the adaptation occurs and the
system performs ali of the other functions.

Systems that offer self-adaptation or user-
controlled self-adaptation should also make it pos
sible for the user to manually initiate the process

ADAPTIVE BAR IMPLEMENTATION AND ERGONOMICS Informatica 18 (1994) 357-366 359

of adaptation. These variations are called User-
Init iated Self- A d a p t a t i o n and Computer -
A i d e d A d a p t a t i o n . In the first čase the user
initiates the adaptation process and the rest is
carried out by the system, whereas in the second
čase the user both initiates the process and de-
cides whether to accept the suggestion.

In the last two combinations the user per-
forms ali of the stages except, perhaps, initia-
tion. Depending on the agent that performs the
first stage we have Sys tem-Ini t ia ted Adapta
t ion, in which the system initiates the process,
and normal Adapta t ion , in which ali stages are
carried out by the user. The simple adaptation
makes it possible for the user to arrange the sys-
tem according to his preferences and goals. Al-
most every window manager offers, for instance,
colour palette customisation and changing of win-
dow size and menu display.

Generally, an information system may function
as an adapt ive user interface if the system acts
as an agent in any stage of adaptation. This def-
inition is taken from the user's point of view, so
it does not specify anything about implementa-
tion or necessary information (Haaks 1992, Zei-
dler 1992).

3 Negative and positive aspects
of adaptive user interfaces

An adaptive user interface adapts itself accord
ing to the present user and the present common
procedures. Because of continuous changing of
working environment and user's tasks there are
negative and positive aspects of adaptive user in
terfaces (Norcio and Stanley 1989).

a) negat ive aspec t s
The most inconvenient aspect of adaptivity is its
potential to prevent the user from developing a
clear model of a system, if the system is chang
ing ali the time. For example, the system could
require the user to learn a new procedure to ac-
complish a task, just as the user was beginning
to learn the initial procedure. This aspect could
reduce the user's productivity and confidence in
the system, since it could keep the user from un-
derstanding how the system will behave.

Another problem with adaptive user interfaces
is that the user can lose the feeling of competence
or of being in charge. It can even happen that the

user's actual goals and demands are concealed by
at tempts to control the user interface behaviour.
Therefore the user interface should make it possi
ble for the user to exert control over the working
environment. The user interface also must not
take the initiative away from the user, but should
give him the best and most proper assistance with
the present task.

A typical negative effect is when the system
suddenly changes and the user is forced to in-
terrupt his work and determine what happened
(Shneiderman 1992). The user may start wor-
rying, because he is unable to predict what will
the next adaptation look like, when it will happen
and whether he will be able to restore the original
state. This is why it would be better for the user
if the general appearance would remain the same
and only a part of it would change, and even that
only on his request (Debevc 1993, Debevc et al
1993).

b) posi t ive aspects
On the other hand we can also list some positive
aspects of introduction of adaptive user interfaces.
For example, automatisation of systems is a do-
main which expresses certain needs for adaptive
interfaces. A system that dynamically changes its
tasks must be able to adapt to individiial users.
The tasks should be assigned to the user as well
as to the computer. The way in which such an
assignment would take plače depends on who has
better overview upon the information and proce
dures at work with the automatisation system.

The user who has a great amount of informa
tion available at the same time has to make a
decision and choose one of these pieces of infor
mation. But we know tha t the user is not al-
ways capable of making decisions equally well and
quickly. In order to be able to assure general opti-
mal performance of the system it is necessary for
the computer to be able to link the user's previ-
ous decisions and eventually show him only a few
pieces of information, for which the probability of
being interesting for the user is the highest at the
moment.

Use of adaptive user interfaces is especially con-
venient for the growing group of users tha t do not
have the time to gain deeper understanding on
either the computers generally or the particular
application they are working with. The adap-
tivity is most convenient for novice users who

360 Informatica 18 (1994) 357-366 Matjaž Debevc et al

have to adapt to the new working environment
as quickly as possible. Besides, the user is en-
abled to complete his task faster and more effi-
cientlv. Plus, the possibility of disappointment is
lowered. For example, if an adaptive word pro-
cessor user interface detects that a user is try-
ing to print onto envelopes for the first time,, it
could provide additional instructions for printing
envelopes in unobtrusive help windows. These in
structions could then be omittedafter the user has
successfully printed onto envelopes several times.

The positive aspects of adaptive interfaces can
be summarised in the goals of these interfaces.
These goals are (Kiihme 1992):

- easy, efficient, effective use

— making complex systems usable

— presentation of what the user wants to see

- faster use

- a user interface that fits heterogeneous user
groups

— a user interface that considers increasing ex-
perience

The question exists, whether the positive as
pects can outweigh the negative ones and to what
extent are the adaptive user interfaces actually
needed? If they are correctly and carefully de-
signed, they can help in building more useful sys-
tems for treatment of larger amounts of informa-
tion. In this way both beginners and experts can
easily use the system. Adaptive interfaces help
various types of users in making their work more
efficient by showing them better ways to complete
certain tasks and offer them the proper amount
of support according to their individual needs.

4 Reasons for using the
adaptive bar

One of the successful ways to adapt to the user
can be found in the toolbar, which offers graphi-
cal representation of most often used commands
and macros (Figure 2). The icons can be accessed
quickly and simply; there is no need to spend time
browsing through menus.

Figure 2: Toolbar in the Microsoft Word 2.0 for
"VVmdoMrs-̂

The use of command icons is a relatively sim-
ple way to access various commands, but there
are also some problems related to their use. The
basic problem is in the size of the icons and poor
overview of them, since we can barely distinguish
between them on some screens because of their
small sizes.

Although in some programs it is possible to
adapt the bar to personal needs by adding or
removing icons, changing the bar requires addi
tional understanding of the structure of the pro
gram and the procedure for changing icons. Espe-
cially for the beginners, it can be a very difficult
task to perform, since in many cases they cannot
decide which commands will be used frequently
and which they won't even need.

Especially for them and for others who often
need a smaller number of repeating routine oper-
ations, we have designed the adaptive bar. It
follows the frequency and manner in which the
user performs individual commands, and, without
interrupting the user's work, it suggests addition
or removal of certain icons and shows their pri-
ority.

Perfect adaptivity is unfortunately impossible,
but auto-adaptivity in our čase means that the
user interface tries to determine the priority of
available commands. The bar is then adapted to
the differing priorities, but the interface never acts
on its own accord; it merely informs the user that
an adaptation is possible. The user can then ei-
ther confirm, deny or even ignore the suggestion.
According to Kiihme's classification, it is a User-
Controlled Self-Adaptation system.

During the testing and empirical research (in-
terviews, questionnaires) (Mayhew 1992) we de-
termined that it is better for the end-user if the
general appearance of the user interface remains
static and only one part, which is simple and easy
to use, is subject of change.

ADAPTIVE BAR IMPLEMENTATION AND ERGONOMICS Informatica 18 (1994) 357-366 361

Microsoft Wof<i - Dacuriieiitl'
File Edit Viev/ jnsert Format Iools Table Window Help

Figure 3: Adaptive bar with the dialog window

5 Adaptivitv of the bar

The adaptive bar (Figure 3), which we have de-
signed for Microsoft Word for Windows 2.0 (Mi
crosoft 1991), has following characteristics:

- automatic addition and removal of icons

- automatic resizing of icons according to the
frequency of use

- storing of present arrangement of the bar

The procedure of the removal of a command
icon starts when the user interface, while measur-
ing the frequency with which icons are used, de-
termines that a particular icon hasn't been used
for a pre-specified period of tirne. An indicator-
icon, accompanied by a sound signal, appears and
informs the user that a change to the bar is rec-
ommended. The indicator of change is repre-
sented by the background of the bar. The user
eventually chooses the dialog window, which can
be accessed by double-clicking on the background
of the bar, and decides whether to accept the
proposition. In this way we do not hinder the
user's work dynamics. It is up to him to decide
whether and when to change the bar. If the user
ignores the proposition, the background remains
in the warning state. This state is represented
by the relief and intensive colour, distinguishable
from the others. Further suggestions of changes, if
not accepted, are stored and inserted in the wait-
ing queue until the user decides about them.

For the user interface, the most complex and
difRcult operation is the installation of com
mand icons in the bar. The system has to de-
termine the frequency of commands and options

from the menus and to decide which ones have to
be inserted in the bar. A similar procedure is the
determination of macro commands. In order to be
able to determine the need for a change the user
interface requires information about the applica-
tion and its capabilities, the present user, previous
events and the real-time system being controlled
(Debevc et al 1992). On the basis of this knowl-
edge it is able to check and compare user's actions.
After a certain frequency of repetition it ušes
the indicator of change to inform the user that an
adaptation would be suggested. After the adapta-
tion is finished, which happens during the surveil-
lance mode, the indicator of change returns into
the passive state, which is represented by the flat
appearance and lack of colour. Nevertheless, the
bar-modification dialog box can stili be accessed
by double-clicking on the background of the bar.

The dialog window is designed to look simple
and offer a clear overview of ali its functions. The
user can either plače the suggested icon where
adaptive bar recommends or he can instruct the
bar to replace a different icon, simply by choosing
a different destination icon in the dialog window.

The look of the bar can often change due to
the adaptivity. Therefore the storage of the
present state in a file has to be provided. In
this way the adaptive bar can be used on the same
system by various users with the possibility that
evervone ušes the bar developed during his own
sessions. Of course, if there is a new user, the sys-
tem opens the default type of bar, which can be
either accepted or adapted to user's needs right
away.

362 Informatica 18 (1994) 357-366 Matjaž Debevc et al

a)

b)

c)

Figure 4: Models of the adaptive bar with varying positions of icons

6 Ergonomic point of view

In order to satisfy the ergonomic demands, which
are described in ISO-standards (ISO-9241, 1992),
we designed the bar in following two ways:

- Varying positions of icons:

- bigger icons in the centre of the bar, smaller
ones on the sides

— bigger icons on the right side, smaller ones
on the left side

— bigger icons on the left side, smaller ones on
the right side

— Fixed positions of icons:

— varying widths and heights of icons

- varying widths of icons

— varying heights of icons

Even though we had to implement many differ-
ent models of the bar, we used a single one and
designed others quickly and simply by changing
only four parameters:

- positions of icons: foced or varying

- height range of icons (min. and max. height)

- width range of icons (min. and max. width)

— icon arrangement pattern

The testing sessions were followed by research
using various prototype testing techniques (May-
hew 1992) (Structured observation, Benchmark-
ing, Classic experiments). We also used an empir-
ical research method with a questionnaire, written
according to ISO-9241 Part 10 norms (Priimper
1993).

6.1 Varying position of icons

In the first test we introduced three models with
varying positions of icons (Figure 4) to different
kinds of users (novice users, students taking com-
puter science classes, experienced users of interac-
tive systems and experts). The first model has the
most important icons placed in the centre of the
bar and these are also the biggest ones, whereas
other less important ones are getting smaller and
are arranged towards both sides. The arrange
ment of these icons is very similar to the Gauss'
random curve. The second model (Figure 4b) has
the most important icons on the right hand side
and the priority decreases from right to left side
of the bar. The last model (Figure 4c) has the
most important icons from left to right. In ali
three models the size of the icons decreases with
their decreasing priority. The spacing between
the middle points of icons are constant through-
out the bar, which means that spacing between
edges of bigger icons is smaller than the spacing
between edges of smaller icons.

The results of the empirical research are shown
in Figure 5. It is clearly visible from the table that
toolbar "b" was the most convenient. The num-

ADAPTIVE BAR IMPLEMENTATION AND ERGONOMICS Informatica 18 (1994) 357-366 363

bers represent the average number of points that
the particular model gathered during the testing.
The majority of subjects shared the opinion that
this bar seems to be the most convenient because
of its icon-arrangement from left to right, just the
way we are used to read. In our findings, 24% of
the subjects liked the changeable behaviour of the
bar, while 72% of them preferred fixed positions
of icons. Only 4% did not express a preference
(Figure 6).

Toolbar a) Toolbar b) Toolbar c)

Figure 5: Results of the empirical research (col-
lected points)

Figure 6: Results of the questionnaire about po
sitions of icons (in percentages).

The results of the testing revealed this impor-
tant fact: adapting the position of the icons was
disliked by users and probably would not work

well. It may be that users who are working with
icons that change positions within the bar, even
with their consent, would take more tirne to per-
form certain tasks and make more errors than the
people working with icons in fixed positions. We
make this prediction because such an adaptation
requires the user to change his actions. It requires
the user to move in a totally different direction
to select an icon that he is already accustomed
to finding elsewhere in the bar. This is a kind
of adaptation that could cause problems for the
user.

For example, if the user wants to select a cer
tain icon that has just changed position, he would
probably move the cursor to its former position,
not to its current position. He then either selects
the wrong icon, causing a time-consuming error,
or he must make a second movement to get to
the correct icon. Either way, the cost of moving
the icon after it has been frequently used would
be greater than the cost of leaving the icons un-
ordered in terms of their priority. Whatever the
order of the icons, it is likely that users will de-
velop habits of moving quickly to the icons that
they often use, perhaps without even looking at
them.

Therefore the model of icons in fixed positions
as long as they are in the bar is clearly better.

6.2 Representation of the priority of
icons

The next step with testing was trving to find the
best way to represent the priority of the icons,
since it is not visible from their positions in the
bar. The idea occurred to us, that it might be
easier for the user to select his "favourite" icons
if they are larger.

There are three possibilities:

- varving both width and height of icons

- varving width of icons

- varving height of icons

The most appropriate seems to be to vary the
height of icons. The reasons for that are:

- When we change the width in any way, we
must either change the position of icons as
well, or we must have the spacing large
enough in advance, which means potential
waste of space.

364 Informatica 18 (1994) 357-366 Matjaž Debevc et al

- Increasing the height of an icon would prob-
ably make it easier to select it than changing
its width.

However, these statements are based on the
study of horizontal toolbar behaviour. For a ver-
tical bar, the height is the dimensiori that should
remain constant and width should be subject to
change.

Returning to the horizontal bar, we can see that
changing the widths of icons is impractical if we
wish to keep them on the same positions. If we
start with relatively small icons, and then increase
their widths, we may have to move them as shown
in Figure 7:

Figure 7: Changing widths and positions of icons
after icons 1 and 2 are used frequently

It is clearly visible that icon 3 is almost hidden
next to icons 1 and 2, which are much bigger, and
is also moved far to the right.

Another possibility is to start with icons with
very large spacing, in order to give them room to
expand (Figure 8):

1 2 3

Figure 8: Changing widths of icons after icons 1
and 2 are used frequently

The later approach, while it does prevent the
icons from changing their positions, greatly re-
duces the maximum number of icons in the bar.
That is a problem, since a very useful feature of

the adaptive toolbar is the possibility to add icons
for frequently used commands.

This is the first reason for introduction of the
third model. The second one is that the increase
in height is likely to be more useful in making
the icon easy to select than an increase in width.
This prediction is based on Fitfs Law, the rule
by which the difflculty of a hand movement can
be predicted (Fitts 1954).

Fitfs Law states that the tirne required to make
a movement is related to both the distance of the
movement and the size of the target in the di-
rection of the movement. The formula may be
expressed in this way (from Bullinger, Kern, and
Muntzinger 1987):
M T = a + b 2 log (2 A / W) , where

M T is movement tirne,

A is "amplitude", or the distance from the start-
ing to the centre point of the target,

W is the length of the target in the direction
of movement(in the čase of a circular target
it would be twice its radius, not its area),

a and b are constants.

This means that, from the two movements be-
low, which both start in the point 's' and finish
in the centres of the targets, the one on the left
is more difRcult and takes more tirne to perform
than the one on the right (Figure 9):

S S

Figure 9: The right icon is easier to select that
the left one

This is because the value of W for the target
in the čase on the right is larger, thus making the
movement tirne (MT) smaller.

ADAPTIVE BAR IMPLEMENTATION AND ERGONOMICS Informatica 18 (1994) 357-366 365

Furthermore, the two movements below should
be equally difficult to perform (Figure 10):

S S

M i i. m i

Figure 10: Equally difficult movements

This is because W, the length of the target in
the direction of the movement, is the same for
both cases. The extra width of the target on the
right does not help when the movement start s di-
rectly above it. (It would help, however, if the
movement started from the side of it.)

Someone moving the mouse cursor to an icon in
the toolbar on the top of the application window,
most probably starts moving it from a point on
the screen well below the bar. In most cases, the
movement will be primarily vertical. Tha t means
that increasing the height of an icon should have
a greater effect on the ease of use than increasing
the width of an icon.

One effect tha t increasing the width of an icon
could have is tha t of reducing the distance that a
user's hand must move to reach the icon. It could
do this by decreasing the angle at which the user
must move. However, this effect is unlikely to be
significant. It is not practical to change the width
of icons very much, for reasons given previouslv.
Therefore, the vertical component of most move
ments is likely to be much greater than any pos-
sible change in icon width. For example, a move
ment from the center of the screen to a toolbar at
the top of the screen might require 13 cm of verti
cal movement, while the maximum change in icon
width might be about 1.3 cm. In a ease where the
center of an icon was 13 cm to the right or left of
the center of the screen, and the user was moving
to the icon from the center of the screen 13 cm be-
low the toolbar, increasing the width of the icon
by 1.3 cm would decrease the necessary movement
distance by at most only 0,5 cm, or 2.5 percent.

This figure is obtained by using the Pythagorean
Theorem on two right triangles, one with sides of
13 cm (vertical distance) and 12.3 cm (horizontal
distance), and the other with sides of 13 cm and
11.7 cm, respeetivelv. This calculation compares
two movements aimed at the very edge of the icon;
if movements are consistently aimed at the center
of the icon (the more probable ease), the effect of
a change in width is even smaller, since the center
points of icons in fixed positions would always be
at the same locations. Hence, it is reasonable to
prediet tha t increasing the width of an icon in a
horizontal toolbar will not significantly inerease
its usability. However, this predietion should be
tested in future experiments on the adaptive bar.

7 Conclusion

Generally speaking, adaptive user interfaces can
be convenient for novice users, who have to learn
quickly how to perform in an unfamiliar working
environment. Since the user interface adapts it-
self to the user's knowledge and work, the user
will soon lose the anxiety about the new environ
ment and will start working on the aetual prob
lem more quickly. If the user interface is carefully
and accurately planned it can be very useful for a
wide group of users. These interfaces offer better
efficiency of work by giving the proper amount of
suggestions and help tailor information to differ-
ent kinds of users and their individual preferences.
Given the increasing complexity and functionality
of computer svstems, the benefit and the need for
adaptable and adaptive user interfaces will also
inerease.

At testing of the adaptive bar, which represents
the adaptive part of our user interface, the re-
sults have shown that the models which included
changing positions of icons were unsuitable for the
user's needs, since they were unable to remember
and automatize movements for ali the changes.
The best solution appeared to be the model with
fixed positions of the icons, in which priorities of
the icons were represented by their height.

With help of the adaptive bar, we offer the user
an opportunity to easily use the advantages of a
self- adaptable user interface without being con-
fused by changes, since the general appearance of
the user interface remains unehanged. We also
defined several principles for making the adapti"

366 Informatica 18 (1994) 357-366 Matjaž Debevc et al

bar ergonomically acceptable. These principles
can be specifically tested in future studies of user
performance with the adaptive bar.

References
[1] Benvon, D.R., Murray, d., 1988, Experience with

Adaptive Interfaces, The Computer Journal, Vol.
31, No. 5, 465-473.

[2] browne, D.,Totterdell, P., Norman, M., 1990,
Adaptive User Interface, Academic Press, London.

[3] Bullinger, H.-J., Kern, P., Muntzinger, W. F.,
1987, Design of Controls, in G. Salvendv (Ed.),
Handbook of Human Factors, 577-600, John Wiley
& Sons,New York.

[4] Debevc, M., Donlagic, D., LEŠ, M., 1992, User
Interface Styles, Informatica, Ljubljana, 16, 49-54.

[5] Debevc, M., 1993, Adaptive Bar, INTERCHI '93,
Conference on Human Factors in Computing Sys-
tems, INTERACT '93 and CHI '93, Adjunct Pro-
ceedings, Amsterdam, 24-29 April, 117-118.

[6] Debevc, M., Donlagic D , SVEČKO R., 1993,
Adaptive User Interfaces, IEEE Electrotechnical and
Computer Conference, Portorož, Slovenija, Septem
ber 27-29, 91-94.

[7] Fitts, P.M., 1954, The information capacity of the
human motor system in controlling the amplitude
of movement, Journal of Experimental Psychology,
Vol. 47, No. 6, 381-391.

[8] Geiser, G., 1990, Mensch-Maschine-Kommunika-
tion, R. Oldenbourg Verlag, Miinchen.

[9] Haaks, D. 1992, Anpafibare Informationssysteme,
Verlag fur Angetuandte Psychologie,G'6tmngen,
Stuttgart.

[10] ISO-9241, 1992, Ergonomic requirements for of-
fice work with visual display terminals (VDTs), Part
10:Dialogue principles - Second commitee draft.

[11] Kossakowski, M., 1989, Adaptive Man-Computer
Dialogues, inF. Klix, N.A. Streitz, Y. Waern, and
H. Wandke (Eds.), Man-Computer Interaction Re
search, MACINTER-II, 201-212, Elsevier Science
Publishers, Amsterdam.

[12] Kiihme T., Dieterich, H., Malinowski, H.,
Schneider-Hufschmidt, M., 1992, Approaches to
Adaptivity in User Interface technology: Survey and
Taxonomy, Proceedings ofthe IFIP WG2.7 Working
Conference on Engineering for Human-Computer
Interaction,Angust 10-14, Ellivuori, Finland.

[13] Mayhew, D.J., 1992, Principles and Guidelines in
Software User Interface Design, Prentice Hali, En-
gleioood Cliffs, New Jersey.

[14] Microsoft Corporation, 1991, Microsoft VVord for
Windows 2.0, User's Guide.

[15] Norcio, A.F., Stanlev, J., 1989, Adaptive Human-
Computer Interfaces: A Literature Survey and Per-
spective, IEEE Transaction on Systems, Man, and
Cybernetics,Wo\. 19, No.2, 399-408.

[16] Priimper, J., 1993, Software Evaluation Based
upon ISO 9241 Part 10, Proceedings of the Vienna
Conference Human Computer Interaction, Austria,
September 20-22, 255-265

[17] Schneider-Hufschmidt, M., Kiihme, T., Mali-
nowski, U., 1993, Adaptive User Interfaces: prin
ciples and practice, Elsevier Science Publisher, Am
sterdam.

[18] Shneiderman, B., 1992, Designing the User In
terface, Strategies for Effective Human-Computer
Interaction, Second Edition, Addison-Wesley Pub-
lishing Company, New York.

[19] Zeidler, A., Zellner, R., 1992, Software-
Ergonomie, Techniken der Dialoggestaltung,il. Old
enbourg Verlag, Miinchen.

Informatica 18 (1994) 367

Electrotechnical and Computer Conference ERK'94

Portorož, September 26-28, 1994

Electrotechnical and Computer Conference is be-
coming every year meeting of the professionals on
the electrotechnical and computer field, under the
protection of Slovenia IEEE Section. Once a year
it joins interests of numerous professionals organi
zations. This organizations are paying attention
to the conference programe on their professional
areas and are organizing their meetings, round
tables and invited lectures, where it is possible
to discuss technical problems, technological pro
fessional and scientific development, international
cooperations, educational programs, financial in-
vestments, employment and so on.

Also this year conference ERK'94 was mosaic of
ten very specialized workshops, which were there-
fore on high quality level. Because of many differ-
ent events on the same plače it was oppurtunity
again for a variety of interdisciplinary discussions
and projects and to attend some of 8 available in
vited lectures interesting for a broader group of
listeners.

Ali invited lectures and many other papers were
in English language. So understanding was com-
plete. Some papers were in Slovenian language,
because we must develop Slovenian technical lan
guage ali the time. Nobody else could do this
for us. And such a forum, a kind of congress,
is appropriate oppurtunity to do this. On the
conference, there were 10 professionals areas with
different number of sections but 31 ali together.
Proceedings have two parts.

In Part A we find Eelectronics in 2 Sections
with 15 papers, Telecommunications in 2 Sections
with 13 papers, Automatic Control in 5 Sections
with 35 papers, Power Engineering in 5 Sections
with 38 papers and Measurement technique in 4
Sections with 28 papers.

In Part B there is Computer and Information
Science in 4 Sections with 29 papers, Artificial In-
telegence in 2 Sections with 15 papers, Robotics
in 2 Sections with 13 papers, Robotics in 2 Sec
tions with 13 papers, Pattern Recognition in 3
Sections with 24 papers and Biomedical Engineer
ing in 2 Sections with 15 papers. The interest for
the Conference was more than expected and dis-
cussion after majority of presentations was very

lively.
Let me teli you stili about the Študent paper

contest. This action is going on with ERK Con-
ferences from the very beginning. Paper must
be much longer and applying directly.to the con
test. Later we always send the winning paper for
the študent paper contest in Region 8 of IEEE,
which consists of Europe, Near East and Africa,
the biggest area on the Globe among ali 10 Re-
gions.

I would like to invite you to participate on the
next ERK'95, which will be held on the end of
September 95 for which we need four page cam-
era ready paper until July 24, 1995. Please plan
your participation at the next Conference. For
more information contact the contact editor of
this magazine and we will send you Call for papers
sometimes in February 95 when it will be ready.

Baldomir Zaje
Conference Chairman

368 Informatica 18 (1994)

Fourth International Conference on Information Systems
Development - ISD'94
Bled, September 20 - 22, 1994

During the past few years, many new concepts
and approaches emerged in the Information Sys-
tems Development (ISD) field. The various the-
ories, methods and tools available to system de-
velopers also bring problems such as choosing the
most effective approach for a speciflc task. The
aim of this International Conference on Informa
tion Systems Development - ISD was to establish
an international forum for the exchange of knowl-
edge, experience and new ideas, and to share and
stimulate new solutions. This conference provided
a meeting plače for IS researchers and practition-
ers from Eastern and Western Europe, as well as
those from other parts of the world. Participants
of the conference had an opportunity to express
ideas on the current state of the art in informa-
tion systems development methods and tools, and
to discuss and exchange views about new meth
ods, tools and their applications. An objective
of the conference was not only to share scientific
knowledge and interests but to establish strong
professional ties among the participants.

In response to the Call for Papers, 95 papers
coming from 25 countries were submitted for the
conference. Papers were refereed by the mem-
bers of the International Programme Committee,
helped by ad hoc reviewers. Papers based on
the results of research work dealing with theo-
retical and practical aspects of information sys-
tems development were selected for presentation
at the conference and publication in the Proceed-
ings, which includes 3 invited papers, 64 submit
ted papers and 16 presentations of the Work in
Progress. Together with invited guests, 125 par
ticipants from 26 countries participated the con
ference, among them 55 from Slovenia.

The majority of papers focused on the following
topics:

— Modelling IS development process: models
and meta models, modelling techniques and
tools

— Human, social and organizational dimension
of IS development

— Reconciliation of human and technical fac-
tors of IS development

— Theoretical foundations, new paradigms and
trends of IS development

— Education and training of IS personnel and
users

The panel discussion "Relational versus Ob-
ject Data Bases: Concatenation or Coexistence"
which concluded the conference, also attracted a
considerable number of delegates to express their
views and participate in the discussion. Positions
of the panellists will be published and mailed to
participants of the conference.

Invited papers presented at ISD'94 dealt with
the impact of information technology on teach-
ing practice of information system development
(Milton Jenkins, University of Baltimore, USA),
information svstems planning in small business
(Georgios Doukidis et al., Athens University of
Economics and Business, Greece) and develop
ment of information systems to support electronic
commerce (Jože Gričar, University of Maribor).

The Forth International Conference on Infor
mation System Development - ISD'94 contimies
the concepts of the first Polish-Scandinavian Sem
inar on Current Trends in Information System
Development Methodologies, held in Gdansk in
1988, and the Second and the Third International
Conferences on Information Systems Developers
Workbench (Gdansk 1990, 1992). The next con
ference - ISD'96, will be held in Gdansk again in
September 1996.

Jože Zupančič

Informatica 18 (1994) 369

st 19f/l O A G M and lst SDRV Workshop
Visual Modules

11-13 May 1995

Conference Cochairs

Walter Kropatsch
Technical University of Vienna
Institute for Automation
Department for Pattern Recognition and
Image Processing
Treitlstr. 3 / 1832,
A-1040 Wien, Austria
Tel: 43 (1) 58801 8161,
Fax: 43 (1) 569 697
E-mail: krw@prip.tuwien.ac.at
Franc Solina
Universitv of Ljubljana
Facultv of Electr. Eng.
and Comp. Science
Tržaška 25, 61000 Ljubljana, Slovenia
Tel: 386 (61) 1768 389,
Fax: 264 990
E-mail: franc@fer.uni-lj.si

Program Committee
Horst Bischof, Wien
Wilhelm Burger, Linz
Matjaž Colnarič, Maribor
Hans-Georg Feichtinger, Wien
Nikola Guid, Maribor
Josef Janša, Wien
Zdravko Kačič, Maribor
Stane Kovačič, Ljubljana
Walter Kropatsch, Wien
Franz Leberl, Graz
Aleš Leonardis, Ljubljana
France Mihelič, Ljubljana
Nikola Pavešič, Ljubljana
Franjo Pernuš, Ljubljana
Wolfgang Polzleitner, Graz
Franc Solina, Ljubljana
Bruno Stiglic, Maribor
Damjan Zazula, Maribor

Local Committee
Damjan Zazula, chair
Dean Korošec
Danilo Korže
Andrej Soštarič

Call for Pape r s
19 l h OAGM Workshop and 1** SDRV Workshop

11-13 May 1995

Technical Facultv, Universitv of Maribor
Maribor, Slovenia

The Slovenian Societv for Pattern Recognition (Slovensko društvo za razpoz
navanje vzorcev - SDRV) and the Austrian Societv for Pattern Recognition
(Osterreichische Arbeits-Gemeinschaft fiir Mustererkennung - OAGM) orga-
nize a joint workshop on pattern recognition which will be held in Maribor,
Slovenia.

Scope of the workshop:

image analysis and understanding, computer vision, neural netivorks, speech
analgsis and understanding, pattern recognition, applications.

Authors who wish to present a paper at the viorkshop should send three copies
of their full-lenght draft paper (in English) to the Workshop Secretariat by 15
February 1995.

The papers should include:

1. the title of the paper,

2. author's name, address, telephone and fax number, and e-mail address,

3. abstract,

4. up to ten pages of text and figures.

A book of abstracts will be available at the viorkshop. Camera-ready papers
vihich viill be published in viorkshop proceedings viill be due after the viorkshop.

Sponsors of the Workshop:
IAPR - International Association of Pattern Recognition
Slovenia Section IEEE
SATENA - Slovenian Association of Technical and Natural Sciences

Workshop secretariat:
Franc Solina
Universitv of Ljubljana
Facultv of Electrical Engineering and Computer Science
Tržaška 25, 61000 Ljubljana, Slovenia
Tel: 386 (61) 1768 389, Fax: 264 990
E-mail: francOf er .un i - l j . s i

mailto:krw@prip.tuwien.ac.at
mailto:franc@fer.uni-lj.si

370 Informatica 18 (1994) -

TfcX and TUG News
Volume 3, Number 3, July 1994

In 'Typographers Inn', shading, typeset conven-
tions, books, a kerning test, accent test, meta-
fonts, and top publishing with FrameMaker are
reported. A public Ust of ali known METAFONT
fonts is available.

In 'New Publications' interesting subjects are
short book and article reviews. E.g.,

Leslie Lamport: i£T]gX: A Document Prepa-
ration System. Second Edition. Addison-
Wesley, 1994. 180pp. USS41.50. ISBN 0-
201-52983-1 (paperback). —This new edi
tion of the official 1£T£X manual describes
W£^K.2e. It is announced to be available
soon.

J. Grosvenor, K. Morrison and A. Pim:
The PostScript Font Handbook: A Directory
of Type 1 Fonts. Revised edition. Work-
ingham: Addison-Wesley, 1992. ix,425pp.
US841.50. ISBN 0-201-56893-4 (paperback).
—For ali those interested (or forced) to
use PostScript fonts this directory provides
a comprehensive collection of font samples
from the font libraries of Adobe, Monotype,
Linotype, and Agfa. Each font is represented
by a full-page profile including the charac-
ter set, a brief history, and hints for recom-
mended usage. It includes an introduction
on PostScript fonts.

M.S . Margolis: MG Mathematical Graphics
System. Notices of the American Mathemat
ical Society, vol. 41, no. 3 (March 1994)
200-201. —The MG Mathematical Graphics
System creates and displays two- and three-
dimensional mathematical graphics on an
MS-DOS-based personal computer and pro-
duces high-quality PostScript output. The
developers, R.B. Israel and R.A. Adams, [...]
primarily designed the relatively small pro
gram to assist authors to create graphs to in-
clude in TgX-typeset documents. It is avail
able from MG Software, 4223 West Ninth Av-
enue, Vancouver, B.C., Canada V6R 2C6.

H. Werntges: Graiik-Import in BTpJ.. c't:
12/92, 252-258. —This survey article (in
the German computer magazine, c't) dis-

cusses the various possibilities for includ
ing graphics into WTf$. documents. It has
since been reprinted (slightly updated) in Die
T^inische Komodie (vol. 5, no. 2, 38-53
(1993)).

In 'Hey — it works!', sever al short TgX pro-
grams and advises are described as A page-
numbering scheme, Addresses and headings, A
double summation sign, and Matrix icons via
I M E X (rectangular, triangular, and upper Hes-
senberg form).

In 'Welcome to KTEX News', news on the
newest 12TEX, that is, M E X 2 £ are published.

J 2 T E X 2 £ — t h e new I^T^K release is informa-
tion on the most important release of the new
version of the Î T£)X software. This version has
better support for fonts, graphics and colour, and
will be actively maintained by the]$TEX3 project
team. Upgrades will be issued every six months,
in June and December.

Why a new I£-TEX? Over the years many ex-
tensions have been developed for 1#T£X. This is,
of course, a sure sign of its continuing popularity
but it has had one unfortunate result: incompati-
ble I£IgX formats came into use at different sites.
Thus, to process documents from various places,
a site maintainer was forced to keep 1£T£X (with
and without NFSS, SLITEX, AJ\^S-WTJ^K, and so
on. In addition, when looking at a source tile it
was not always clear for which format the docu
ment was written.

To put an end to this unsatisfactory situation a
new release of 1#TEX was produced. It brings ali
such extensions back under a single format and
thus prevents the proliferation of mutually incom-
patible dialects of $T£X 2.09. The new release
was available for several months as a test version,
and then final release of 1 June officially replaces
the old version.

Processing documents with WTQK.2£. Docu
ments written for WF£K.2.09 will stili be read by
M E X 2 £ . Any such document is run in WT$t 2.09
compatibility mode.

Unfortunately, compatibility mode comes with
a priče: it can run up to 50% slower than
]£TjgX2.09 did. If you want to run your docu
ment in the faster native mode, you should try
replacing the command

\documentstyle[<options>,

file:///documentstyle

Informatica 18 (1994) - 371

<packages>]{<class>}
with

\documentclass [<options>] -C<class>
\usepackage{latexsym,<packages}

New packages. WT^K2s has much better sup-
port for graphics, colour, fonts, and multi-lingual
typesetting. The following software should be
available from the distributor who brought you
^ T E X 2 £ :

babel for typesetting in many languages.

color for colour support.

graphics for including images.

mfnfss for using bitmap fonts.

psnfss for using Type 1 fonts.

tools other packages by the I^TEX3 team.

The packages comes with full documentation, and
are also described in &T£JK: A Document Process
ing System or The MT^jK Companion.

Fur ther information. More information about
WJ!£K2£ is to be found in:

J£T|<jX: A Document Prepara t ion System,
Leslie Lamport, Addison-Wesley, 2nd edi-
tion, 1994.

The WTEX. Companion, Gossens, Mittelbach
and Samarin, Addison-Wesley, 1994.

The BT£X distribution comes with documenta
tion on the new features of I$TEX:

WIE%.2£ for au thors describes the new fea
tures of WTQK documents, in the file
us rguide . tex .

I^T£X2e for class and package wri ters
describes the new features of KEEX classes
and packages, in the file c lsguide . tex .

WFEX.2S font selection describes the new fea
tures of B T E X fonts for class and package
writers, in the file fn tguide . tex .

For more information on TgX and 1$TEX, get in
touch with your local T£X Users Group, or the
international T£X Users Group, P.O. Box 869,
Santa Barbara, CA 93102-0869, USA, EMail:
tugOtug.org.

In '(LA)TgX News' the following is reported:
The new WT& on CTAN, TIQWAH (a T£X-
XeT/METAFONT/Flex package for the typesetting
of Biblical Hebrew), User group info on CTAN,
RELABEL on CTAN, New group forming, and
News from vendors. E.g.,

CDs are ali the rage! Prime Time Freeware latest
T£Xoffering is called "Prime Time TEXcetera".
"Prime Time Tj}Xcetera" consists. of a 100-page
book and an ISO-9660 CD-ROM. The disc con-
tains essentially the entire CTAN, as of mid-May,
1994. It ušes Info-ZIP format, allowing use with
a variety of computer systems.

To make the disc easier to use, a substantial
amount of annotation and indexing is added. The
list priče of Prime Time T£Xcetera is US$60. For
more information, send email to: ptfficfcl.com.

In 'Reports on Meetings' some interesting issues
have to be mentioned. At the annual confer-
ence of DANTE e.V. (the German-speaking TgX
user group), a young študent presented his self-
programmed editor called Eddi4T£X - EddiTgK
for short. This is a fantastic editor and user shell
for T£X, running under DOS and os /2 .

The enframed information may be of essential in-
terest for the authors and readers of Informatica.
On the first CD-ROM the entire stuff concerning
T£X is given. On the second CD-ROM a collection
of everything concerning the European emT£X is
not only copied but also edited and supported for
an easy-way installation. Prices are quite accept-
able in comparison to some TEX, 1£TEX, etc. ven
dors.

A.P. Železnikar

At the 13th meeting of the NTG (the Netherlands),
Wietse Dol demonstrated the full installation pro
cess needed to run the NTG 4allT£X CD-ROM on
a 'virgin' PC. A little less than 45 seconds was
ali it took, after inserting the CD-ROM and before
the first sample.tex was compiled, viewed and
ready to print. The priče of CD-ROM plus booklet
is Dfl 60 or US$35 at NTG Secretary, P.O. Box
394, 1740 AJ, Schagen, The Netherlands or e-mail
ntg@nic.surfnet .nI .

file:///documentclass
http://ptfficfcl.com
mailto:ntg@nic.surfnet.nI

372 Informatica 18 (1994)

THE MINISTRY OF SCIENCE AND TECHNOLOGY
OF THE REPUBLIC OF SLOVENIA

The Ministry of Science and Technology also in-
cludes the Standards and Metrology Institute of the
Republic of Slovenia, and the Industrial Property Pro-
tection Office of the Republic of Slovenia.

Scientific Research and Development Potential
The statistical data for 1991 showed that there were

230 research and development institutions, organiza
tions or organizational units in Slovenia, of which 73
were independent, 32 were at the universities, and
23 at medical institutions. The remainder were for
the most part departments in industry. Altogether,
they employed 13,000 people, of whom 5500 were re
searchers and 4900 expert or technical staff.

In the past 10 years, the number of researchers has
almost doubled: the number of Ph.D. graduates in-
creased from 1100 to 1484, while the number of M.Se.'s
rose from 650 to 1121. The 'Young Researchers' (i.e.
postgraduate students) programme has greatly helped
towards revitalizing research. The average age of re
searchers has been brought down to 40, with one-fifth
of them being vounger than 29.

The table below shows the distribution of re
searchers aceording to educational level and fields of
research:

Natural Sciences
Engineering-Technology
Medical Sciences
Agricultural Sciences ,
Social Sciences
Humanities
Total

Ph.D.
315
308
262
122
278
199

1484

M.Sc.
217
406
174
69

187
68

1121

Financing Research and Development
Statistical estimates indicate that US$ 260 million

(1.7% of GNP) was spent on research and develop
ment in Slovenia in 1991. Half of this comes from
public expenditure, mainly the state budget. In the
last three years, R&D expenditure by business organi
zations has stagnated, a result of the current economic
erisis. This erisis has led to the financial decline and
inereased insolvency of firms and companies. These
cannot be replaced by the growing number of mainly
small businesses. The shortfall was addressed by in
ereased public-seetor R&D spending: its share of GNP
doubled from the mid-seventies to 0.86% in 1993.

Overall, public funds available for Research & De
velopment are distributed in the following proportions:
basic research (35%), applied research (20%), R&D in-
frastrueture (facilities) (20%) and education (25%).

Research Planning
The Science and Technology Council of the Repub

lic of Slovenia, considering initiatives and suggestions

from researchers, research organizations, professional
associations and government organizations, is prepar-
ing the draft of a national research program (NRP).
This includes priority topics for the national research
policy in basic and applied research, education of ex-
pert staff and equipping institutions with research fa
cilities. The NRP also defines the mechanisms for ac-
celerating scientific, technological and similar develop
ment in Slovenia. The government will harmonize the
NRP with its general development policy, and submit
it first to the parliamentary Committee for Science,
Technology and Development and after that to parlia-
ment as a whole. Parliament approves the NRP each
year, thus setting the basis for deciding the level of
public support for R&D.

The Ministry of Science and Technology provides
organizational support for the NRP, but it is mainly a
government institution responsible for controlling ex-
penditure of the R&D budget, in compliance with the
NRP and the eriteria provided by the Law on Re
search Activities: International quality standards of
groups and projeets, relevance to social development,
economic efficiency and rationality of the projeet. The
Ministry finances research or co-finances development
projeets through public bidding and partly finances in-
frastrueture research institutions (national institutes),
while it directly finances management and top-level
science.

The focal points of R&D policy in Slovenia are:
- maintaining the high level and quality of research
activities,
- stimulating cooperation between research and indus
trial institutions,
- (co)financing and tax assistance for companies en-
gaged in technical development and other applied re
search projeets,
- research training and professional development of
leading experts,
- close involvement in international research and de
velopment projeets,
- establishing and operating facilities for the transfer
of technology and experience.

In evaluating the programs and projeets, and in de
ciding on financing, the Ministry works closely with
expert organizations and Slovene and foreign experts.
In doing this, it takes into consideration mainly the
opinions of the research leaders and of expert councils
consisting of national research coordinators and recog-
nized experts.

The Ministry of Science and Technology of the Re
public of Slovenia. Address: Slovenska c. 50, 61000
Ljubljana. Tel. +386 61 131 11 07, Fax +38 61 132
4140.

Informatica 18 (1994) 373

JOŽEF ŠTEFAN INSTITUTE

Jožef Štefan (1885-1893) was one of the most
prominent physicists of the 19th century. Born to
Slovene parents, he obtained his Ph.D. at Vienna Uni-
versity, vihere he was later Director of the Physics In
stitute, Vice-President of the Vienna Academy of Sci
ences and a member of several scientific institutions
in Europe. Štefan ezplored many areas in hydrody-
namics, optics, acoustics, electricity, magnetism and
the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th poiver of its absolute
temperature, known as the Stefan-Boltzmann law.

The Jožef Štefan Institute (JSI) is the leading in-
dependent scientific research in Slovenia, cpvering a
broad spectrum of fundamental and applied research
in the fields of physics, chemistry and biochemistry,
electronics and information science, nuclear science
technology, energy research and environmental sci
ence.

The Jožef Štefan Institute (JSI) is a research organ-
isation for pure and applied research in the natural
sciences and technology. Both are closely intercon-
nected in research departments composed of different
task teams. Emphasis in basic research is given to the
development and education of young scientists, while
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the devel
opment of the national economy and society in general.

At present the Institute, with a total of about 700
staff, has 500 researchers, about 250 of whom are post-
graduates, over 200 of whom have doctorates (Ph.D.),
and around 150 of whom have permanent professor-
ships or temporary teaching assignments at the Uni-
versities.

In view of its activities and status, the JSI plays the
role of a national institute, complementing the role of
the universities and bridging the gap between basic
science and applications.

Research at the JSI includes the following ma
jor fields: physics; chemistry; electronics, informat-
ics and computer sciences; biochemistry; ecology; re-
actor technology; applied mathematics. Most of the
activities are more or less closely connected to infor
mation sciences, in particular computer sciences, ar-
tificial intelligence, language and speech technologies,
computer-aided design, computer architectures, biocy-
bernetics and robotics, computer automation and con-
trol, professional electronics, digital Communications

and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of
the independent state of Slovenia (or S^nia). The
capital today is considered a crossroad betvveen East,
West and Mediterranean Europe, offering excellent
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče,
Bern and Munich, ali within a radius of 600 km.

In the last year on the site of the Jožef Štefan Insti
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technological
development to foster synergies between research and
industry, to promote joint ventures betvveen university
bodies, research institutes and innovative industry, to
act as an incubator for high-tech initiatives and to ac-
celerate the development cycle of innovative products.

At the present tirne, part of the Institute is be-
ing reorganized into several high-tech units supported
by and connected within the Technology park at the
"Jožef Štefan" Institute, established as the begin-
ning of a regional Technology park "Ljubljana". The
project is being developed at a particularly historical
moment, characterized by the process of state reor-
ganisation, privatisation and private initiative. The
national Technology Park will take the form of a
shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the
project are the Republic of Slovenia, Ministry of Sci
ence and Technology and the Jožef Štefan Institute.
The framework of the operation also includes the Uni-
versity of Ljubljana, the National Institute of Chem-
istry, the Institute for Electronics and Vacuum Tech-
nology and the Institute for Materials and Construc-
tion Research among others. In addition, the project
is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy
and the City of Ljubljana.

Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:+386 61 1259 199, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se.
Public relations: Natalija Polenec

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 18 (1994)

REVIEW REPORT

Basic Instructions
Informatica publishes scientific papers accepted

by at least two referees outside the author's coun-
try. Each author should submit three copies of the
manuscript with good copies of the figures and
photographs to one of the editors from the Edi-
torial Board or to the Contact Person. Editing
and refereeing are distributed. Each editor can
conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from
the author's country. The names of the referees
should not be revealed to the authors under any
circumstances. The names of referees will appear
in the Refereeing Board. Each paper bears the
name of the editor who appointed the referees.

It is highly recommended that each referee
writes as many remarks as possible directly
on the manuscript, ranging from typing errors
to global philosophical disagreements. The cho-
sen editor will send the author copies with re
marks, and if accepted also to the Contact Per
son with the accompanying completed Review Re-
ports. The Executive Board will inform the au
thor that the paper is accepted, meaning that it
will be published in less than one year after re-
ceiving original figures on separate sheets and the
text on an IBM PC DOS floppy disk or through
e-mail - both in ASCII and the Informatica La-
TeX format. Style and examples of papers can be
obtained through e-mail from the Contact Person.

Opinions, news, calls for conferences, calls for
papers, etc. should be sent directly to the Contact
Person.

Date Sent:

Date to be Returned:

Name and Country of Referee:

Signature of Referee:

Name of Editor:

Title:

Authors:

Additional Remarks:

Ali boxes should be filled with numbers 1-10
with 10 as the highest rated.

The final mark (recommendation) consists of
two orthogonal assessments: scientific quality and
readability. The readability mark is based on the
estimated perception of average reader with fac-
ulty education in computer science and informat-
ics. It consists of four subfields, representing if
the article is interesting for large audience (inter-
esting), if its scope and approach is enough gen
eral (generality), and presentation and language.
Therefore, very specific articles with high scien
tific quality should have approximately similar
recommendation as general articles about scien
tific and educational viewpoints related to com
puter science and informatics.

• SCIENTIFIC QUALITY

| | Originality

| | Significance

| I Relevance

| | Soundness

| | Presentation

• READABILITY

Interesting

| | Generality

| | Presentation

| | Language

• FINAL RECOMMENDATION

Highly recommended

| | Accept without changes

| | Accept with minor changes

Accept with major changes

Author should prepare a major revision

| | Reject

Informatica 17

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with
good copies of the figures and photographs to one of
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the au-
thor's country will examine it, and they are invited
to make as many remarks as possible directly on the
manuscript, from typing errors to global philosophical
disagreements. The chosen editor will send the author
copies with remarks. If the paper is accepted, the ed
itor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper
has been accepted, in which čase it will be published
within one year of receipt of the original figures on sep-
arate sheets and the text on an IBM PC DOS floppy
disk or by e-mail - both in ASCII and the Informat
ica $T£X format. Style (attached) and examples of
papers can be obtained by e-mail from the Contact
Person or from FTP or WWW (see the last page of
Informatica).

QUESTIONNAIRE
| | Send Informatica free of charge

| j Yes, we subscribe

Please, complete the order form and send it to
Dr. Rudi Mura, Informatica, Institut Jožef Štefan,
Jamova 39, 61111 Ljubljana, Slovenia.

Since 1977, Informatica has been a major Slovenian
scientific journal of computing and informatics, includ-
ing telecommunications, automation and other related
areas. In its 16th year (two years ago) it became truly
international, although it stili remains connected to
Central Europe. The basic aim of Informatica is to
impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the Euro-
pean computer science and informatics community -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Commu
nications between different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref
erees outside the author's country. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi
nali^ major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor
can conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from the
author's country. If new referees are appointed, their
names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, edu
cational and governmental institutions. Others should
subscribe (see the last page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):
Title and Profession (optional):

E-mail Address (optional):
Home Address and Telephone (optional):

Signature and Date:

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarilv covering the Eu-
ropean computer science and informatics communitv;
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Commu
nications betvveen different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref
erees outside the author's countrv. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi-
nally, major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each edi-
tor from the Editorial Board can conduct the referee
ing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Ref
erees should not be from the author's country. If new
referees are appointed, their names will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees. Each editor can
propose new members for the Editorial Board or Board
of Referees. Editors and referees inactive for a longer
period can be automatica!ly replaced. Changes in the
Editorial Board and Board of Referees are confirmed
by the Executive Editors.

The coordination necessary is made through the Ex-
ecutive Editors who examine the revievvs, sort the ac
cepted articles and maintain appropriate international
distribution. The Executive Board is appointed by
the Society Informatika. Informatica is partially sup-
ported by the Slovenian Ministry of Science and Tech-
nology.

Each author is guaranteed to receive the reviews of
his article. When accepted, publication in Informatica
is guaranteed in less than one year after the Executive
Editors receive the corrected version of the article.

Execut ive Ed i to r - ' Ed i to r in Chief
Anton P. Zeleznikar
Volaričeva 8, Ljubljana, Slovenia
E-mail: anton.p.zeleznikar@ijs.si

Execut ive Associate Ed i to r (Contact Person)
Matjaž Gams
Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1259 199, Fax: +386 61 219 385
E-mail: matjaz.gams@ijs.si

Execut ive Associate Ed i to r (Technical Edi tor)
Rudi Murn, Jožef Štefan Institute

Board of Advisors: Ivan Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

Publ ishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič,
Dagmar Šuster, Jernej Virant
Edi tor ial Board
Witold Abramovvicz (Poland)
Suad Alagič (Bosnia and Herzegovina)
Vladimir Batagelj (Slovenia)
Andrej Bekeš (Japan)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Canada)
Janusz Brozyna (France)
Ivan Bruha (Canada)
Luca Console (Italy)
Hubert L. Dreyfus (USA)
Jožo Dujmovič (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Janez Grad (Slovenia)
Noel Heather (UK)
Francis Heylighen (Belgium)
Bogomir Horvat (Slovenia)
Sylva Kočkova (Czech Republic)
Miroslav Kubat (Austria)
Jean-Pierre Laurent (France)
Jadran Lenarčič (Slovenia)
Angelo Montanari (Italy)
Peter Movdbrth (UK)
Igor Mozetič (Austria)
Stephen Muggletoh (UK)
Pavol Navrat (Slovakia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Sašo Prešern (Slovenia)
Luc De Raedt (Belgium)
Paranandi Rao (India)
Giacomo Della Riccia (Italy)
\Vilhelm Rossak (USA)
Claude Sammut (Australia)
Johannes Schvvinn (Germany)
Bai Shuo (China)
Jifi Šlechta (UK)
Branko Souček (Italy)
Harald Stadlbauer (Austria)
Oliviero Stock (Italy)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Claes VVohlin (Sweden)
Štefan Wrobel (Germany)
Xindong Wu (Australia)

L

mailto:anton.p.zeleznikar@ijs.si
mailto:matjaz.gams@ijs.si
file:///Vilhelm

Volume 18 N u m b e r 1 April 1994 ISSN 0350-5596

Informatica
An International Journal of Computing and Informatics

Contents :
Profiles: R. Trappl

Editorial: Cybernetics and Systems Research on
Their Way to the 21st Century

3

5

Parallel Algorithms for the Complete and
Restricted Transitive Closure of a Database
Relation

MFM Based Diagnosis of Technical Systems

Adaptive File Allocation in Distributed
Information Systems

Concept Representation of the Software Tool
Pidmaster for Systems Modeling and Controllcrs
Tuning

Evaluation of Softvvare Quality Attributes During
Software Design

Scheduling Strategies in High-Level Synthesis

Force Control of an Industrial Robot With
Adaptive Compensation of the Environment
Stiffness

Current Status of the EDR Electronic Dictionary
Project

A.A. Toptsis

A. Znidaršič,
V.J. Terpstra,
II.B. Verbruggen

A. Mahmood,
H.U. Khan,
H.A. Fatmi

M. Ostroveršnik,
Z. Sehic, B. Zupančič,
M. Šega

C. Wohlin

J. Šile

B. Nemec, L. Zlajpah

Hiroshi Suematsu

7

27

37

47

55

71

81
*

93

Reports and Announcements 97

