
Volume 21 Number 1 March 1997 ISSN 0350-5596

Informatica
An International Journal of Computing
and Informatics

Informational Supervenience
Maruyama's Čase Study
Integrated Software Life-Cycle Tool
Hierarchical Classiflcation Browsing
Generating Modula-2 from Prolog
Framework for Object-Oriented Programs

The Slovene Societv Informatika, Ljubljana, Slovenia

Informatica
An International Journal of Computing and Informatics

Basic info about Informatica and back issues may be FTP'ed from f t p . a r n e s . s i in
magazines/informatica ID: anonymous PASSWORD: <your mail address>
FTP archive may be also accessed with WWW (worldwide web) clients with
URL: h t tp : / /www2. i j s . s i /~mezi / informat ica .h tml

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in
Spring, Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika,
Vožarski pot 12, 1000 Ljubljana, Slovenia.
The subscription rate for 1997 (Vohune 21) is
- DEM 50 (US$ 35) for institutions,
- DEM 25 (US$ 17) for individuals, and
- DEM 10 (US$ 7) for students
plus the mail charge DEM 10 (US$ 7).
Claims for missing issues will be honored free of charge within six months after the
publication date of the issue.

ETEX Tech. Support: Borut Žnidar, DALCOM d.o.o., Stegne 27, 1000 Ljubljana, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please
call Mr. R. Murn, Jožef Štefan Institute: Tel (+386) 61 1773 900, Fax (+386) 61 219 385, or
use the bank account number 900-27620-5159/4 Ljubljanska banka d.d. Slovenia (LB
50101-678-51841 for domestic subscribers only).

According to the opinion of the Ministry for Informing (number 23/216-92 of March 27,
1992), the scientific journal Informatica is a product of informative matter (point 13 of the
tarifi0 number 3), for which the tax of traffic amounts to 5%.

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Patterh Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences (Janez Peklenik)

Informatica is surveved by: Al and Robotic Abstracts, Al References, ACM Computing
Survevs, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Cur.
Cont. & Comp. & Math. Sear., Engineering Index, INSPEC, Mathematical Reviews,
Sociological Abstracts, Uncover, Zentralblatt fiir Mathematik, Linguistics and Language
Behaviour Abstracts, Cybernetica Newsletter

The issuing of the Informatica journal is Rnancially supported by the Ministry for Science and
Technology, Slovenska 50, 1000 Ljubljana, Slovenia.

Post tax payed at post 1102. Slovenia taxe Percue.

ftp://ftp.arnes.si
http://www2.ijs.si/~mezi/informatica.html

Informational Supervenience

Today, some professional and scientific orientations

have to be essentially reconsidered in an interdis-

ciplinary sense. For instance, the Chalmers book1

calls both the field of computer science and es-

pecially the field of artificial intelligence to look

into their own conceptual and technological funda-

mentals and, simultaneously, to the newly emerg-

ing discipline of consciousness studies. These tra-

ditional disciplines (currently stili mainstream doc-

trines) would intend to increase the performance and

sophistication of the future computing machines,

operating systems and application programs. But ali

this might require fundamentally new and innovative

methodologies, and an interdisciplinary understand-

ing and communication betvveen researchers and en-

gineers. The nowadays mainstream Al is already be-

coming a traditional and firm routine, so to say, a

technical (engineering) field. On the other side, the

study of the conscious realm, as a long-term project,

might enter into the mainstream phase vvhere the

new interdisciplinary research and sciences become

not only necessary but crucially mutually dependent

and impacted in a fundamentally interdisciplinary

way.

The epistemology of traditional sciences2 might

change in the direction of higher complexity, dif-

ferent understanding of causalism (nonreciprocal,

morphogenetic, metaphysicalistic), less reduction-

ism (artificial simplification), and a clear distinc-

tion of scientific supervenience, how it is funded on

both a materialistic (physicalistic) and a phenom-

enal (consciousness-like, experiential) ground. The

supervenience of sciences has to be additionally ex-

plained to the readers of Informatica. What could

the informational supervenience mean at ali and,

how does it meet the phenomenologies (phenom-

enalisms) of sciences in particular?

Informatics as a wide-ranging field of research

and scientific background (underground) has uncon-

sciously and unexpectedly left the interdisciplinary

horizons comprehensively open when the term was

initially coined by the French informatique and the

German Informatik. In Germany, it was definitely

only an academic replacement for the Anglo-Saxon

C H A L M E R S , J .W. 1996. The Conscious Mind. Oxford
University Press. New York.

2MARUYAMA, M. 1980. Mindscapes and science theo-
ries. Gurrent Anthropology 21 : 589-600.

Informatica 21 (1997) 1

By Anton P. Železnikar, the Editor

Computer Science. VVhen in 1977, Informatica

appeared as a new professional journal in former

Yugoslavia (and among the identically named pro

fessional journals as incontestably the first one),

the difference betvveen computer science and infor

matics was clearly distinguished quite in the begin-

ning, by the subtitle of Informatica: a journal for

computing technology and problems of informatics.

Later, by its international issue, it became a jour

nal for computing and informatics3. At that tirne,

intuitively, the informational supervenience vvas pre-

understood in the špirit, how the informational could

supervene not only on the natural, the physical, the

methodological (technological, abstract, mathemat-

ical), the psychological, the sociological, the man-

agerial, the phenomenal, e tc , but also on the in

formational itself. Recursiveness in computer pro-

gramming vvas presumably the way to the concept

of informational circularity in a spontaneous way (in

formational causality), as one of the most basic in

formational principles in general.

On this way of development, informatics as an au-

tonomous research domain of disciplines slightly be

came also, so to say, a phenomenon of the informa

tional second-order cybernetics4. The concepts of

information as a mere flow of information particles

(bits, semantic codes) (e.g., Shannon5, Dretske6)

became essentially narrovved and reductionistic (sim-

plified) disciplines, philosophically, and traditionally

bounded forms of research and scientific normalism

(Maruvama7), leaving the abyss of the problems of

postmodernistic sciences open in the sense of their

informational amalgamation.

I promised my explanation of the concept of su

pervenience (together vvith its grammatical deriva-

3Today, informatics unites the information theory
(communication, librarianship), information technology
(methodology) and informational phenomenality (in so-
ciety, humanities, management, biology, mind processes,
consciousness, and the like).

4 BRIER, S. 1995. Cyber-semiotics: On autopoiesis,
code-duality and sign games in bio-semiotics. Cybernet-
ics & Human Knowing 3: 1: 3-14.

5SHANNON, C. 1948. The mathematical theory of com
munication. Bell Systems Technical Journal 27: 379-423,
623-656.

6 DRETSKE, F.I. 1981. Knowledge and the Flow of In
formation. MIT Press. Cambridge, MA.

7MARUYAMA, M. 1980. Normalism and its costs^ Fu-
turics 4: 1: 83-84.

2 Informatica 21 (1997) A.P. Zeleznikar

tives, indeed) since it brings to the surface the con-
cept, vvhich I call the informational8.

In the framevvork of the materialistic (phvsical-
istic, traditiona!) view, the phvsical facts should be
the most fundamental facts about the universe. The
question is on vvhich facts does the phvsical super
vene on9?

Chalmers1 (p. 33) gives a lose (unidirectional)
definition of supervenience:

-B-properties supervene on ^4-properties if no two pos-

sible situations are identical with respect to their A-

properties while differing in their 5-propert ies.

What does Chalmers mean by property, another
looselv assigned possibility along with superve
nience? Properties could represent relations vvithin
a class of objects but, more generallv, they could be
grasped also as relational, existing, or operational
entities, impacting the domain of propertv classes,
that is, being circularlv closed to a certain propertv
domain.

If the informational supervenes, for instance, on
the phvsical, the managerial, the psvchological, etc,
then for each different situation (and attitude) in the
informational there must exist a different situation
(and attitude) in the phvsical, the managerial, the
psvchological, etc, respectivelv. Hovvever, for the
informational supervenience one may request simul-
taneously the reverse definition, vvhich protects the
informational to become (scientifically, methodolog-
ically, traditionally, etc.) reductionistic (simplified,
oversimplified) vvhen being supervenient on some-
thing. That is:

B-properties supervene on ^4-properties if no two pos-

sible situations are identical with respect to their B-

properties while differing in their A-properties.

The example, given by Chalmers1 (p. 35), con-
cerns the logical supervenience in the follovving
form:

8 A typical and solely verbal presentation of the concept
was given in the author's paper Principles of information,
Cybernetica : 99-122 (1988) or, more exhaustively, in the
book On the Way of Information, The Slovene Society In
formatika (1990) ISBN 86-901125-1-0.

9One of the answers to this question could be that the
physical supervenes on the natural (a kind of nomic, em-
pirical, or even experiential facts, that is, on physicists'
consciousness). However, the reader already begins to feel
that the discussion aims at a sort of the source common to
the ali. Chalmers says it could be a superbeing (Laplace
demon) or God, or simply to say "It is logically so", etc.

B-properties supervene on A-properties if no two log-

icalhj possible situations are identical with respect to

their A-properties but distinct to their B-properties.

We see how this definition fits the basic superve
nience template vvhen the possible is replaced by
the logicalhj possible, and the vvord differing is re
placed by the vvord distinct. The reader can observe
that it is not anywhere said to vvhich realms the A-
properties and the 5-properties might belong. In
this respect, the logical supervenience may (proba-
bly not only in a unidirectional way) connect differ
ent fields of investigation, different sciences and, at
last but not least, substantially different systems—
different logical systems too. VVithin this vievv, su
pervenience functions as a sort of intersystemic re-
versal implication10 (in respect to the reading con-
vention, S-properties supervene on A-properties), in
one or another way. Thus, in metamathematics11, it
actually happens that the basic axioms are circularly
structured12 in the informational sense13.

The next most significant term concerning (the
informational) supervenience is the phenomenal.
According to Chalmers1, the informational should
supervene on the physical, and the phenomenal on
the informational. The informational could be rec-
ognized as a necessary condition (e.g., scientifically
senseful fact) existing betvveen the physical and the
phenomenal. But what to say, if the informational
appears simultaneously not only as the phenomenal,
but to some extent also as the physical?14 What
does the phenomenal mean at ali?

The phenomenal can be explained in many dif
ferent ways, not only in the domain of the philo-

10I intentionally use the vvord implication to bring near
the concept of supervenience as an intersystemic inferen-
tial (concluding) procedure on one side, and the mathe-
matically (metamathematically) conceptualized logical in-
ferential procedure (in fact, operation) within the unique
system of logic.

" H I L B E R T , D. UND P. BERNAYS. 1934. Grundlagen der

Mathematik. Erster Band. Grundlagen der mathematis-
chen Wisseschaften in Einzeldarstellungen, Band XL. Ver-
lag von Julius Springer. Berlin.

12 The critical reader could easily say, that these axioms
are tautological in the best sense of the known traditional
linguistic meaning.

13ŽELEZNIKAR, A.P. 1995. Elements of metamathemat-
ical and informational calculus. Informatica 19: 345-370.

14Informational processes, for instance, procedures of
learning, can directly influence the formation of neurons
and their circular synaptic interconnections. A bird song
is learned after the adequate neuronal circuit is being phys-
ically formed in the brain.

INFORMATIONAL SUPERVENIENCE Informatica 21 (1997) 3

logical (the philosophical) but also in the domain
of the physical (the scientific). One of the philo
sophical outcomes is phenomenology as conceptual-
ized by Brentano, Husserl15, and Heidegger16. Phe-
nomenology begins from a scrupulous inspection of
one's own consciousness, about the external causes
and consequences from vvhich the internal causes
and consequences have to be excluded. Later, the
internal causes and consequences become equally
important, for instance, concerning the Being of un-
derstanding and interpretation. Besides other views,
the Chalmer's project1 roots firmly in phenomenol-
ogy as developed up to this tirne17.

On the other side, the informational can be un-
derstood as the phenomenal of information in the
vvidest possible way. Through this view and compre-
hension, the informational comes close to the study
of the physical and the phenomenal of conscious
ness, enabling a new philosophical and scientific dis-
course, and a new formalistic (mathematics-like) in
formational approach (phenomenalistic logical for-
malism, vvhere informational formulas by themselves
behave as phenomena and not as firm statements,
equations, or formulas in mathematics).

Let us discuss in short the meaning and the use
of the noun supervenience, the adjective superve-
nient, and the verb supervene [on].

The vvord 'supervenience' (an intimidating name
for a philosophical concept) is rarely explained or
listed in dictionaries. The meaningly closest noun
is supervention, derived from the verb 'supevene'.
Supervenience is favored in respect to the philosoph
ical notion of identity or the mathematical notion
of (reversal) implication {B <= A), vvhere one set
of facts determines (better, explains, identifies, im-
plies, entails) another set of facts. The idea of
supervenience was introduced by Moore18 and by
Hare19. The first who applied the notion of super-

1 5HUSSERL, E. 1900. Logische Untersuchungen. Er-
ster Band. Prolegomena zur reinen Logik. 1901. Zweiter
Band. Untersuchungen zur Phanomenologie und Theorie
der Erkenntnis. I. Teil. 1901. Zweiter Band. Elemente
einer phanomenologischen Aufklarung der Erkenntnis. II
Teil. Max Niemeyer Verlag, Tiibingen.

1 6 HEIDEGGER, M. 1927. Sein und Zeit. 1986. Sechzehn-
te Auflage. Max Niemeyer Verlag, Tiibingen.

1 7 DREYFUS, H.L. 1991. Being-in-the-World. The MIT
Press. Cambridge, M A.

1 8 M O O R E , G.E. 1922. Philosophical Studies. Routledge
& Kegan Paul. London.

1 9 H A R E , R.M. 1952. The Language of Morals. Claren-
don Press. Oxford.

venience to the mind-body problem was Davidson .
Later, a theory of supervenience was developed, for
instance, by Kim 2 1 , Horgan22, Hellman & Thomp
son23, and others.

The verb 'supervene' (super = above, bevond,
in addition + come) is used consequentlyx vvith the
preposition 'on', so the meaning of ' i t supervenes on'
for a nevvcomer vvould sound literally, for example, as
it comes bevond on (in the form, something comes
bevond on something). In a similar context the ad
jective 'supervenient' is used. This short explanation
should relieve the understanding of the new terms
to the nonnative English speaker.

More precisely, for a better understanding, the
follovving correspondence schemata (—>) can be in
troduced:

supervenes on —> is implied by
—> is entailed by;

is supervened on by —> implies;
is supervenient on -—> supervenes on

The kinds of supervenience in Chalmers1 are mani-
fold: global, local, logical, natural, etc. The reader
can develop its own notions of possible types of su
pervenience, concerning any scientific and imagin-
able field: the physical, the phenomenal and, cer-
tainly, the informational. Informational superve
nience could be an essential step in understanding
of the realm of information dynamics.

Informatica, as a journal of informatics—and in-
formatics, as an interdisciplinary field—is a plače
vvhere different mindscape types (Maruvama)24

20DAVIDSON, D. 1970. Mental events. In L. Foster &
J. Sweanson, Eds. Experience and Theory. Duckwords.
London.

2 1 K I M , J. 1978. Supervenience and nomological incom-
mensurables. American Philosophical Quarterly 15: 149-
156.

KIM, J. 1984. Concepts of supervenience. Philosophy
and Phenomenological Research 45: 153-176.

KIM, J. 1993. Supervenience and Mind. Cambridge
University Press. Cambridge.

2 2 HORGAN, J. 1982. Supervenience and microphysics.
Pacific Philosophical Quarterly 63: 29-43.

HORGAN, J. 1984. Supervenience and cosmic hermeneu-
tics. Southern Journal of Philosophy, suppl. 22: 19-38.

HORGAN, J. 1993. From supervenience to superduper-
venience: Meeting the demands of a material world. Mind
102: 555-586.

2 3HELLMAN, G. & F. THOMPSON. 1975. Physicalism:
Ontology, determination and reduction. Journal of Philos-
ophy 72: 551-564.

2 4MARUYAMA, M. 1993. Mindscapes, individuals, and
cultures in management. Journal of Management Inquiry

4 Informatica 21 (1997) A.P. Zeleznikar

meet and separate, simultaneously. Roughly, the
technological (physical) and the phenomenal (infor
mational) build up and reinstate the bridge upon
the conceptual abyss between the physically possible
and the phenomenally, that is, iriformationally possi
ble. Thus, a new implementation of methodologies
and organization of machines and conceptualism is
on the way.

Another problem of Informatica which should be
faced up to a broader understanding of its read-
ers, authors, revievvers, and editors is the multidis-
ciplinarity of informatics. For instance, there ex-
ists the so-called Gesellschaft syndrome in the fields
of sciences (Maruyama)25. Interdisciplinarity is a
contextual orientation of mind26. Genuine interdis-
ciplinarists . . . became unable to function because of
the resistance inside their own departments and in the
mainstream journals. In spite of ali budget cuts, there
were specialists in each department as well as interdis-
ciplinarists who could have been innovative, but they
were under subsedure27, i.e. they are superseded by
the dominant group. . . . The 21st century will be an

2: 2: 140-155. — Mindscape types are originally cat-
egorized epistemological types emerged in different na-
tional, race, tribe, managerial, academic, scientific, polit-
ical, social, cultural environments, etc. Roughly, by the
Editor's interpretation, the four epistemological types of
Maruyama, could be signified also as (1) rationalistic (uni-
versalistic, hierarchical, classifying, Newtonian, Descarte-
sian, Kantian, reductionistic, sequential, one-truth) types;
(2) intuitivistic (individualistic, isolationistic, randomiz-
ing, artistic, nominalistic, haphazard, subjective) types;
(3) cybernetic (mutualistic, interactive, contextual, cir-
cular, stabilizing, simultaneous, polyobjective, Husserlian,
computeristic) types; and (4) second-order-cybernetic (in
formational, evolutionary, generative, spontaneous, paral-
lelistic, polysubjective, Heideggerian) types. In the fu-
ture, in the era of the globalization in an informational
way (a global information society), it would be perhaps
possible to introduce the so-called (5) informational epis
temological (phenomenalistic, serial-parallelistic, parallel-
serialistic, complexly causal-circularly organized, intrinsic,
metaphysicalistic, possible worlds view, informational phi-
losophy and the like) types. The last could reasonably
unite (absorb) the experience pf the previous four types,
that is, bringing up the highly integrated human conscious-
ness.

2 5MARUYAMA, M. 1992. Anti-monopoly law to prevent
dominance by one theory in academic departments. Hu
man Systems Management 11: 219-220.

2 6MARUYAMA, M. 1992. Context and Complexity.
Springer-Verlag. New York.

2 7MARUYAMA, M. 1991. Epistemological heterogeneity
and subsedure: Individual and social processes. Commu-
nication and Cognition 24: 255-272.

age of interuioven and interactive heterogeneity in
contrast to the past age of localized heterogeneity.

Informatica, as an interdisciplinary journal, is su-
pervenient on various scientific disciplines and re-
search experiences. A long tirne ago, after the ac-
ceptance by Professor Magoroh Maruyama to be-
come an editor of Informatica, I asked him to deliver
the data for his profile. I was informed from several
sources about his international and publicistic ac-
tivity (interdisciplinary reputation), as an educator
and a researcher in the sense of the nontraditional
(he vvould probably like to say, an outside-of-the-
mainstreams) research and investigation. At that
tirne he responded that instead of a profile he vvould
like to submit something researching his own expe-
rience in his interdisciplinary academic and research
vvork in different academic and social environments
(Japan, USA, Alaska, Europe, etc.) I agreed. But
until, a short tirne ago, I learned that he was enor-
mously burdened by lecturing seven curses at his
university in Tokyo and that he could not find tirne
even for ansvvering the letters.

Computing and informatics unite various scien
tif ic, research, methodology, and application main-
streams (traditional and firm fields of activity) be-
ing variously informationally structured and orga
nized disciplines. Besides evident mainstreams of
computer science, artificial intelligence, cognitive
science, etc. some nevv nontraditional approaches
come into the foreground. The most outstand-
ing fields of research open in the domain of con-
sciousness together with informational phenomenal-
ism. The common characteristic of these offshoots
is interdisciplinarity, nontraditional ways of scien
tific interpretation, in short, the evident phenomena
of informational supervenience. And on this route,
the mainstreamers have to loosen their disciplinary
boundaries to enable the possible development of
their own mainstream activity.

Staying vvithin this context, I believe that read-
ers of Informatica will enjoy in reading Maruyama's
autobiographical čase study entitled "A Situational
Informatical Dynamics: The Čase of Situation-
contextual and Time-contextual Non-additive Influ-
ences" recognizing his enormously reach interdisci-
plinary research experience vvithin various academic
and social environments. •

2 8MARUYAMA, M. 1973. Human futuristics and urban
planning. 1973. Journal of American Institute of Planners
39: 246-357.

Informatica 21 (1997) 5-18 5

A Situational Informatical Dynamics: The Čase of
Situation-contextual and Time-contextual Non-additive Influences

Magoroh Maruyama
Aomori Koritsu Daigaku, Goushizawa Aza Yamazaki 153-4
Aomori City, 030-01 Japan
Fax: Japan+17764-1544

Keywords: causal loops, conjunction, disjunction, individual čase studa, informational dynamics,
interlocking, motivation, non-additive concepts, parajunction, stress

Edited by: Anton P. Železnikar
Received: January 20, 1997 Revised: February 9, 1997 Accepted: March 14, 1997

Individual decision making and organizational processes do not follow rules or patterns
which are a priori predictable or situation-independently and time-independently pro-
grammable. We must look into situation-contextual and time-contextual texture instead
of theoretical skeletonization and formula-fitting. There are many types of situational
informatical dynamics. In this article the concept of non-additive influences is used as
an example. A čase is analyzed in detail.

1 Introduction the situations.

When several types, of job-related stresses occur
simultaneously or sequentially, it is usually as-
sumed that their effects are quantitatively addi-
tive in such a way that when their coefficient-
weighted "sum" exceeds4s a certain "threshold",
the individual takes an action such as quitting
the job. However, some situational or temporal
combinations may produce less-than-additive ef
fects while other combinations may yield more-
than-additive results, especially when there are
causal loops. Moreover, non-loop non-additive
conditions such as conjunction, disjunction and
interlocking may also exist. Sometimes the pro-
cess is more like chemistry than physics, i.e. the
combined effect is dissimilar to any of the com-
ponents. Consequently, in order to rate job sat-
isfaction or dissatisfaction as a predictor of fu-
ture performance or a retrospective explanation of
past behavior, the additive concept may be highly
misleading. Theoretically, this article presents a
use of the concept of situation- contextual and
time-contextual non-additive influences. Empir-
ically, i.e. from the point of view of data, this
article ušes perceptual phenomenology instead of
a prestructured data collection, because the indi
vidual^ decision was based on his perception of

2 Non-additive Relations
There are many non-additive relations. It is im-
possible to list them ali not only because they are
numerous but because each čase requires a new
set of relations. In this article, the following rela
tions are used:

- Causal loops: There are basically two types
with several subtypes. The first is change-
counteracting. The second is change-am-
plifying. The first has two main subtypes:
asymptotic stabilization and constant oscilla-
tion. But if there are tirne delays in the first
type, asymptotic stabilization may change to
an oscillation, and a constant oscillation may
change to amplification of oscillation. In the
second type, there are also several subtypes:'
steady increase; amplification of oscillation;
breakdown due to excessive increase or ex-
cessive amplification. But if there are time
delays in the second type, change-amplifying
may become change-counteracting.

— Conjunction: Simultaneous presence of A and
S is a necessary condition to produce C,
which cannot be caused by A or B alone.

6 Informatica 21 (1997) 5-18 M. Maruyama

— Disjunction: A alone or B alone is a sufEcient
condition to produce C. Their joint presence
does not increase the effect.

— Parajunction: Neither a sufficient nor a nec-
essary condition, but an incentive or a disin-
centive which may be in a causal loop with
another condition.

— Interlocking: Like a jigsaw puzzle, some
pieces fit together while others do not. Usu-
ally a result of situational or temporal coin-
cidence.

3 The Čase of P
P is a professor who left a university and went
to another. On the surface, his decision may be
attributed to an accumulation of several types
of stresses. However, the combination of these
stresses was not additive. It is important to look
into its non-additive nature. Let us examine what
happened step by step.

3.1 Events preceding the decision

At the beginning of 1995, P was under a heavy
psychological pressure primarily due to extra
work needed to avoid anticipated attacks from
other components against his unit at his univer-
sity. He was in a position to be scapegoated or
symbolically pinpointed in the attack because of
his speciall ways of teaching. In the 120-year
history of the university, his unit was only 15
years old. Other components practiced mass-
production in teaching typical in Japan. Some
classes had as many as 700 students. There were
no teaching assistants. The grades were mainly
based on one or two examinations. Most students
did not show up until a few days before the exam-
inations. The teacher hinted at questions likely to
be asked in the exams. Very often the students
did not have to know much to pass the exams. For
example, a typical question would be: "Choose
one from the following three topics and discuss
it." The three topics had already hinted at by the
teacher a few days before the exam. It sufnced to
study only one topic, not three topics. But P's
unit, the newest at the university, practiced teach
ing methods closer to those in the U.S.A. The fac-
ulty/student ratio in his unit was therefore much

higher than in other components. Consequently
from its inception, his unit was a target of politi-
cal attacks from other components which did not
understand the fact that the faculty members of
his unit worked several times harder than theirs.
P joined the faculty in 1987 after having taught
for three decades in the U.S.A., Sweden, France
and Singapore. P introduced new teaching meth
ods which he had developed in these countries.
His courses were on international business. But
he combined teaching and learning methods from
anthropology, sociology and psychology, such as
field work observation, analysis of nonverbal be
havior, participant observation, interactive meth
ods, intervention methods, and in-depth psycho-
logical analysis. These methods were neither un-
derstood nor appreciated by other components of
the universitv.

One of his courses was a project-based course
which required very intensive work on the part of
both the students and the teacher. There were
usually about 150 students in the class. They
were divided into about 20 groups. Each group
had to choose a business category, and compare
5 or 6 firms from various countries within that
business category in terms of their strategy and
management practices. Tokyo, where the univer-
sity was located, was one of the few places in
the world, along with Singapore, Hong Kong and
London, where firms from many countries were
present, and students could learn by directly talk-
ing with their managers, employees clients and
competitors, psychologically analyzing their ver-
bal and nonverbal reactions during the conver-
sation, and anthropologically and sociologically
observing their behavior and actual performance.
He devised new project methods which he had
begun while teaching in Singapore in 1983 and
refined in Tokyo since 1987 [2, 3].

During the first semester, each group of stu
dents studied their chosen firms from the man
agers' point of view. During the second semester,
the students had to study the same firms from the
points of view of their clients, employees and com
petitors, had to make on-site observations of the
firms' behavior and action, generate several future
scenarios to determine the loser, devise strategy
changes for the loser, and go back to the manager
of the loser firm to discuss the proposed strategy.
In interviews and other interactions with firms,

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 7

clients and competitors, the students had to ana-
lyze nonverbal cues and hidden levels of intention
and meaning, not just verbal statements. P made
no introduction of students to firms. The stu
dents had to initiate contacts, and learn how they
were rejected or accepted, and how the managers
evaded, deflected, circumvented or camouflaged
some topics, or ignoring a question by pretending
not to understand or notice it, or by purposely
misunderstanding it. The students had to analyze
nonverbal cues and hidden levels of intention.

When interviewing the employees, P advised
the students to avoid going thought the manage-
ment. Some groups invented methods of their
own. For example, in order to talk with em-
ployees, a subgroup used a walkie-talkie to de-
scribe employees coming out from the firm build-
ing, while another subgroup waited at the railway
station to intercept and trail the described per-
sons, follow them into the train, casually stand
next to them in the crowded train, and begin un-
suspectable conversations such as "I moved to this
area and am looking for a job. How would you
compare the working conditions in various firms?"
Sometimes the students posed as customers or as
someone who simply happened to be there. For
example, a group which compared diaper firms
borrowed a baby, went to a park where the firm
employees took a break, tried to change the di
aper with feigned clumsiness to see whether the
employees would help.

Such ways of teaching requires a great deal of
extra work for both students and teachers. The
course in international business, which P turned
into a project course, was a required course. At
the beginning of the course the students com-
plained for two reasons:

(1) They had never had a project-based course
and they did not see why they could not just
sit in the library and study;

(2) The project was too time-consuming and dif-
ficult.

But as their projects got under way, they be-
came absorbed in their work, often sacrificing
the homework of other courses. For this, P
was resented by other teachers. At the same
tirne, among the students he became known as
a teacher who teaches in a very difficult way,
and other courses of his which were not required

courses drew only few students who were ambi-
tious enough to try something in which they could
use their inventiveness. In a nationwide survey
conducted by the prestigious Toyo Keizai Shimpo
Sha in which 31,410 students in and graduates
from various universities in Japan responded, P
was one of the very few who received a special
mention and recommendation by the publisher for
his innovative ways of teaching [7].

Then in 1994 due to a reorganization, there were
no longer required courses. The number of stu
dents in P's project course fell, though the few
who came were excellent. But the political at-
tacks from other components of the university
were based on the number of students regardless
of their quality. In 1995 P would become a pri-
mary target of attacks as a prototype of a bad
guy. The academic year in Japan begins in April.
Therefore P devised campaigns during January
and February to attract students, because March
is a vacation time when no students would be
around. The campus newspaper did not want to
print articles on courses. Therefore P tried out-
side newspapers and weekly magazines which had
nationwide circulation. He had tried them before
and knew that they had much effect on students
in the entire country including those at his uni-
versity.

But two big incidents detracted the daily news-
papers and weekly magazines: Kobe Earthquake
in January, and Oum Sect terrorism in February.
The earthquake was the worst in the Japanese
history. Elevated highways collapsed. Debris
of buildings blocked the streets and rescue vehi-
cles were unable to enter the area. Victims were
buried under collapsed buildings for weeks, and
the count of the discovered dead persons was up-
dated daily. The newspapers were filled with daily
changing statistics of the destruction. Moreover,
various measures to set up temporary housing,
food supply and employment for survivors who
lost not only their houses but also their firms were
ineffective, and this problem filled the newspapers
for several months. The number of deaths eventu-
ally totaled to 6310, but the most recent amend-
ment dated December 10, 1996 (almost two years
after the earthquake) added 51 more, making the
total of 6361.

The Oum Sect incident was equally unprece-
dented. On a fine winter day, poison gas was

8 Informatica 21 (1997) 5-18 M. Maruyama

spread at several places in the subway system.
Seven persons died and other 2475 persons be-
came sick and were hospitalized. At the begin-
ning, it was impossible to find who did it. Grad-
ually the investigators linked the incident with
several mysterious unsolved cases of murders and
kidnapings which had occurred during a few pre-
ceding years. What gradually emerged was a
shock to the world. It was not a political terror-
ism, but a large-scale organized mass murder by
a religious sect which had secret factories to man-
ufacture poisons, guns and other weapons. Even
the American FBI was shocked. The discovery
of the hidden factories, the methods of the man-
ufacturing, the indoctrination of the sect mem-
bers, and the cruel methods of their murders of
not only outsiders but also disobedient insiders
were continually reported in the newspapers and
magazines as investigations proceeded.

Kobe Earthquake and Oum Sect Incident kept
reporters and editors of newspapers and maga
zines busy more than full-time. In spite of P's in-
numerable telephone calls, he got only one news-
paper Asahi Evening News to print an article on
his project course, which was to appear on April
24 [1], too late to have any appreciable effect of
the course enrollment. At the beginning of April,
P made another desperate attempt: to attract
foreign students to his seminars. It cost him
many days of legwork. Expecting that some of
his courses might not attract a sufficient number
of students and therefore might get canceled, he
announced a total of seven courses including the
project course, seminars and a few other courses.
It turned out that his campaigns were too suc-
cessful. Ali seven courses were filled. He could
not cancel any of them.

Note that this teaching load was not imposed
from above, but resulted from overcautious pre
ventive measures which were too successful. It
was due to overprecaution. But what were the
causes which necessitated the overprecaution?
The "triggering" cause was that there were no
longer required courses due to restructuring. But
behind the overprecaution were:

(1) attacks from other components;

(2) P's special methods of teaching.

(1) or (2) alone was not a sufficient cause. There
fore these two were conjunctive causes. Further-

more, the overprecaution was prompted by the
unavailability of media which were busy with two
unprecedented incidents of Kobe Earthquake and
Oum Sect terrorism. Either one of these two inci
dents was sufficient to block the media. Therefore
these two incidents were disjunctive causes, to the
unavailability of media which was a conjunctive
cause for the overprecaution.

The "effect" of the combination of these con
junctive and disjunctive causes was teaching over-
load. But this teaching overload was not a suffi
cient cause of P's moving to another universitv.
It took him other conjunctive causes to make his
decision, as will be seen. Therefore the teaching
overload was a conjunctive cause.

Then in April, another incident struck. Almost
a year earlier, P had been invited to a conference
in Cleveland, to take plače at the beginning of
May 1995. Knowing that it would coincide with
the Golden Week in Japan—a week-long holiday
when airplane reservations to foreign countries
were almost impossible to obtain—, P made his
reservations six months in advance at a substan-
tial discount priče. But the clerk at the make-
shift conference office, who was unfamiliar with
foreign travel, canceled P's reservation believing
that she could simplify the matter by asking a
travel agency in her city to remake reservations
of ali conference participants. Of course she could
not get a new reservation at that late date, and
she could not reinstate my reservation which she
had canceled. I had to make many phone calls
and fax calls to the U.S.A., and many trips to
airline offices and travel agencies in Tokyo. Be-
cause of the tirne zone difference, phone calls from
Japan had to be made at night, and because of
the crowded commuting trains, P had to take 5:00
am trains to airline offices and travel agencies, ali
these while teaching seven courses. He was ex-
hausted. Finally the conference organizer ended
up having to pay the first class tickets for P. But
P's psychological stress and fatigue were beyond
tolerance.

Teaching seven courses left him no time to even
read letters. It caused many inconveniences to
his correspondents. One colleague who wanted
to co-author a manuscript with him had to give it
up. Several other colleagues' research was delaved
because of lack of response or information from
him.

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 9

Meanwhile, an unprecedented opportunity
arose which he had to miss: the value of the
U.S.A. Dollar went down by more than 25% due
to a sudden dollar flowback from Mexico. At the
end of 1994, the value of one USA Dollar had been
more than 105 Japanese Yen. By April it went
down to ¥80. P had saved more than ¥3,000,000
for his daughter's study in the U.S.A. At the rate
of ¥105, it would be US$28,571. At the rate of
¥80, it would be US$37,500. The difference was
US$8,929, almost nine thousand U.S.A. dollars.
P had no tirne to go to a bank. He had a strong
urge to do so. But he kept saying to himself:
"Money is not a priority. Other things have higher
priorities. Even if I sink, I should not go to a bank
now." The low value of the USA dollar seemed
to last, and he got accustomed to thinking that
it would last. Moreover, he saw a prediction by
a British economist that the USA dollar would
go down more toward the end of 1995. He usu-
ally did not trust economists' extrapolative pre-
dictions, but in the spring of 1995 it was like a
consolation, a straw for a drowning man.

The Japanese spring semester lasted until July.
In July he was stili struggling with the huge back-
log of his work. He was scheduled to leave on Au-
gust 9 for a lecture tour in South America. Yet
on the first days of August he could have gone to
a bank. Instead, he shopped around for shoes as
his shoes were getting worn out. During the first
days of August the value of US$ stili stayed in the
¥80s. He hoped that the exchange rate would go
down further as the British economist said.

When he returned from South America in
September, the exchange rate was around ¥105.
He hoped that it would go down again. He waited
and waited. But the US$ stayed strong. He grad-
ually began to realize his mistake, first impercep-
tibly, and increasingly seriously.

3.2 Phases of Psychological States
W h i c h Followed His Realization
of the Mistake

From the material point of view, the mistake was
a missed opportunity, not a loss. However, from
the psychological point of view, it had profound
consequences which contributed to P's decision
to leave the universitv. But here again its effect
was non-additive. It became entangled in causal
loops as well as in interlocking. Therefore it is

interesting to examine subsequent developments
step by step.

3.2.1 Phase I: shock and disbelief

It took several days for him to become aware of his
mistake. When he returned from South America
on September 9, he was expecting the exchange
rate to have stayed in the ¥80s or possibly to
have gone down to the ¥70s. His first reaction
was disbelief. For six months, from February to
August, the exchange rate stayed in the ¥80s.
It could not change to ¥105 in one month. He
hoped that it was just a bad dream, not real. He
thought that the low rate would come back and
should come back. In retrospect, his reaction was
similar to what happened in his mind when John
F. Kennedy was assassinated: he thought that
Kennedy was not really killed and would come
back. Psychologically, this is a reaction common
to many people who suddenly lost someone close.
When he gradually realized that the low exchange
rate was irrevocably gone, he was shocked by his
stupidity of having lost the golden opportunity. It
was his "stupidity" that bothered him rather than
the monetary loss. He almost came to doubt his
intelligence. The "trauma" was not material: it
was loss of confidence in himself.

3.2.2 Phase II: resignation

He realized that the boat has been missed, and
the boat would not come back. His state of mind,
when he searched in his memory, was similar to
the time when he lost a beautiful girl friend when
he was a študent. She appeared unexpectedly and
stayed within his reach for quite a while. In fact,
a mutual friend between him and her told him
that she would like to get to know him. But he
was rather busy with his research too long, and
one day she was gone, never to come back, even
though he expected and hoped her return. Her
memory haunted him for a long time. Was she
real? Was she an apparition or a phantom? Was
she just a dream? The exchange rate of ¥80 sure
was a very beautiful and sweet girl who was gone
forever. He became resentful of the work overload
and resulting stress-causing situations which pre-
vented him from going to a bank. The more he
had an urge to go to a bank, the more he resisted
the "temptation". There was a change-amplifying

10 Informatica 21 (1997) 5-18 M. Maruyama

causal loop between the urge and the resistance
to the urge, and the tension between the two also
amplified the psychological stress. Now his re-
sentment toward the work overload was stronger
than before. This strengthened resentment was
in a way an attempt to counteract his loss of self-
confidence: He was stupid but he was not really
stupid. It was his fault but it was not really his
fault, etc.

3.2.3 Phase III: puzzle about
penny-saving mentality

Since P moved to Japan in 1987, his daily routine
included going to grocery stores around their clos-
ing time when fresh goods got discounted down
30% or even 50%. Often he hanged around in
stores for 20 or 30 minutes to wait until the prices
came down: If he went too early, the prices were
stili high. If he went too late, other people had
already bought what he wanted. People waited
until shop attendants came out to put discount
stickers on various fresh items.

Now that he had lost nine thousand USA dol-
lars, why bother to save pennies? Why not pay
more money to enjoy life? In fact at the beginning
of August, he shopped around for shoes to save
pennies instead of going to a bank. It was literalh/
saving pennies to lose thousands of dollars.

But in September he kept going to grocery
stores to save pennies. The whole thing was irra-
tional, he thought. Then it gradualh/ dawned on
him that "saving pennies" could not be explained
in terms of economics: it was more like a hobby or
a game. In fact, he enjoyed hunting for discount
prices. Some psychologists may say it is compul-
siveness. If so, then he should have some guilt
feeling behind the compulsiveness. But he simply
enjoyed discount shopping. Often he bought too
much at discount prices and thus wasted money.
Csikszentmihalyi might say it is "flow". In any
čase, his "saving pennies" cannot be explained in
economic terms. This corroborates the view that
it was his "stupidity" of having missed the oppor-
tunity that bothered him more than the monetary
loss of nine thousand USA dollars.

In a way, his habit of overbuying and overstock-
ing originated in the late 1940s in Japan during
the post-war period, when everything was scarce
and one had to buy whenever one could find some-
thing in a store or on the black market. Another

habit he developed during the post-war period
was to send off portions of his manuscripts to
friends as he wrote them instead of sending the
entire manuscript after its completion. The life
at that time, more than during the war, was filled
with uncertainties and one did not know when
one might die. Railway trains had been destroyed
during the war, and the few trains that ran came
very infrequently, overcrowded, worn out and
could not meet safety standards. Moreover, ex-
tensive bombings during the war destroyed many
if not aH of the houses in Tokyo, and people had to
commute to Tokyo from long distances away. Pas-
sengers rode on the roofs of the trains, hang out-
side the trains, and doors of the overpacked trains
occasionally cracked open by the passengers' body
pressure from inside and spilled out passengers
while the trains were running. Busses were also
dangerous. Tires were so worn out that plies were
exposed. Some vehicles had brakes which did not
work. In any čase the commuting distance was
much beyond the short bus routes, and people
had to ride trains. Another consideration was
that one's own house might burn down anytime
because houses were aging without proper main-
tenance and repair. For example, electric insu-
lators were worn out, and a short-circuit might
cause a fire. Under such conditions, it was wise
not to wait for the completion of a manuscript
because one might die or the manuscript might
burn before its completion. This habit lasted for
many years. During his postgraduate years in
Sweden, he continued the habit even though ev-
erything was safe in Sweden. Either his habits
were formed, not in childhood but in his adoles
cence, or his life during the postwar years had a
long-lasting traumatic effect on him. It should
be noted that while shopping in Japan after 1987
or while studying in Sweden in late 1950s, he no
longer had the anxiety regarding food shortage or
sudden death, but he continued his habit without
the anxiety which caused the habit formation. It
should also be added that even during the period
of the habit formation, money was not the pri-
mary consideration. In the čase of overbuying,
the cause was scarcity of foods. In the čase of
manuscript mailing, the motivation was preserva-
tion of the manuscript.

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 11

3.2.4 Phase IV: intellectualization

He became less grief-stricken or broken-hearted
about having missed the exchange rate of ¥80,
and began to intellectualize the mistake. "If
penny-saving is not an economic activitv, then
how can you empirically or experimentally prove
it?" He decided to observe himself in similar sit-
uations in the future.

3.2.5 Phase V: intentional neglect or
intentional repression

During the spring when he had a strong urge to
go to a bank, he kept saying to himself: "Money
is not the top priority. Other things have higher
priorities." He fought the urge. He tried to for
get and repress the urge. He was already busy but
kept himself busier to forget the urge. He realized
this in Phase V, and thought that he was success-
ful in repressing his urge in the spring. Well, the
loss was his mistake, but due to his success in re
pressing his urge. Perhaps he was not stupid after
ali.

The time span from the beginning of Phase I
to the end of Phase V was about five weeks. The
changes were continuous, not neatly divided into
distinct phases. Then another turn of events took
plače.

3.2.6 . Phase VI: apartment building
repair and its consequences

He lived on the fifth floor of an apartment build
ing. In mid-October there was a notice posted
at the bottom of the stairway. The exterior of
the building would undergo a decennial overhaul.
This meant that the building would be encased in
scaffolds for the workers to walk around, and cov-
ered with a net to prevent falling objects from hit-
ting the pedestrians below. There would be very
little daylight into the apartment. Because the
workers would walk around outside the windows,
the curtains must be closed ali the time. Any-
one other than the workers, for example a thief,
could come up the scaffolds any time of the day
or night. Therefore the windows must be locked.
He did his work, mostly writing and reading, in
daylight because otherwise his eyes got tired eas-
ily. This would mean that he would have to do
his writing at the university.

In September he had received a letter from an
editor, suggesting him to write some books. Dur
ing the spring semester which lasted from April
to July, he taught seven courses. Most of the
courses in Japan last for a year. But an MBA
course which he taught lasted only for half a year.
Therefore during the fall semester, he taught six
courses, which was much, but better than seven
courses. He decided to work on these books in
any spare time and on weekends at the univer-
sity. This would keep his mind off the "silly mis
take" . Nevertheless, he could not completely for
get about the mistake which kept coming back
to his mind. He made another rationalization:
the only way to justify the mistake would be for
something good to turn out, for example writing
a good book, as a result of the mistake. It was
a far-fetched rationalization because he would try
to write a good book regardless of whether he
had made the silly mistake. Another rationaliza
tion was that the silly mistake might help him
to avoid missing another golden opportunity. It
was an unrealistic wishful thinking because the
exchange rate of ¥80 was very unlikely to return.

3.2.7 Phase VII: out of the blue sky

At the end of November, P received a phone call
from an old colleague who had moved to northern
Japan to create a new universitv. The colleague
G, now the president of the new university, said
he would come to Tokyo to talk with P. From the
tone of his voice, P felt that G probably wanted P
to join the new universitv. P considered northern
Japan to be an inconvenient location for his ac-
tivities, but decided to talk with G. G came, and
to P's surprise G offered P very good conditions:
only four courses to teach, and research expenses
of more than US$10,000 per person per year. P
was cautious and answered that he needed to see
the plače before he could make a decision. G
agreed to pay for P's trip. This conversation took
plače in a morning.

Immediately afterwards there was a faculty
meeting at P's university to plan for the academic
year 1996. It was announced there that evervone
must teach at least six courses. In the past, the
maximum had been 5 courses, though the average
was 3 courses plus a seminar. Prior to this faculty
meeting, P had been quite resentful to the cir-
cumstances which had led him to teach 7 courses

12 Informatica 21 (1997) 5-18 M. Maruyama

in the spring of 1995, and he had sworn to him-
self that he would not have more than 5 courses in
1996. When it was announced in the faculty meet-
ing that everybody must teach at least 6 courses,
his resentment surfaced in full force. Ali his in-
tellectualization and rationalization of the previ-
ous Phases vanished. It was clear to him that he
should move to G's university. He had no hesi-
tation. The unrealistic wishful thinking of Phase
VI suddenly came true in an unexpected form.

The escape from the situation at the Univer-
sity in Tokyo was not the only motivation for P's
decision. The escape by itself would have been a
sufficient condition. But there was another mo
tivation which favored the decision, even though
it alone was not a sufficient condition. Actually
that motivation was triggered by the decision to
reinforce the decision in the manner of a causal
loop. But it had been latent until the decision
was taken. Its nature was something like: "If that
is the čase, then I could also do X which I have
never thought of being able to do even though I
wanted to do it someday." This type of "cause" is
neither conjunctive nor disjunctive. We may call
it parajunctive. The paraj unctive motivation in
this čase was as follows:

At G's universitv, P would be able to create an
institute of a very new kind—an institute for ex-
port product adaptation to foreign users' habits—
an idea which he had advocated for some years
because there was no such institute anywhere in
the world.

Technologically excellent products may fail if
they do not match the users' habits. Users' habits
cannot be discovered by interviews or question-
naires. They must be observed. It is often nec-
essary to use anthropological behavior observa-
tion methods, sociological participant observation
methods and interaction methods, and psycholog-
ical analysis of the habits. For example in the
early 1980s Japanese cars tended to stali on the
streets of Beijing in China. The reason was that
the drivers in Beijing stopped the engine while
waiting for the red signal to change, and in many
Japanese cars the air-conditioning kept running
after the engine was stopped. The battery went
dead and the engine could not start. The prob
lem was in the way the switch operated. But from
the point of view of the users, the entire car was
worthless. The solution was simple: to modify the

ignition switch to stop the air-conditioning when
the engine was stopped [4, 5].

The most elementary step of export product
adaptation is to meet the legal and technical spec-
ifications. For example, automobile emission con-
trol is a legal specification. Electric appliances'
line voltage is a technical specification. Legal and
technical specifications are usually explicit and
visible, and therefore easy to meet. The second
step is cultural and social adaptation. For ex-
ample, in Japan chocolate is considered to be for
children and young women. Therefore it has to
be sized, shaped and packaged for them. Cultural
and social product adaptation is already practiced
by many firms. The third step is product adap
tation to foreign users' habits. This is stili under-
developed.

In some countries such as the U.S.A. and France
where the main product outlet is the domestic
market, the manufacturers consider export as a
way to get rid of the surplus without product
adaptation. When they cannot seli, they blame
their failure on foreign users or governments. In
countries where the domestic market is small,
such as Sweden, Switzerland and Holland, some
manufacturers were able to export their prod
ucts successfully because of the technological ex-
cellence of their products. As competition from
firms in other countries increased, some of them
had to switch to market-oriented policies, for ex-
ample ASEA of Sweden in the 1980s. From now
on, firms which study foreign users' habits will be
far ahead of others in foreign market penetration.
However, an institute for export product adapta
tion to foreign users' habits stili did not exist. P
had suggested it in France and in the U.S.A., but
no one had implemented it.

The basic industries of northern Japan are fish-
ery and agriculture. An institute for adaptation
of fishery and agricultural products to tastes of
consumers in foreign countries is needed and will
be useful to the local firms. Outdoor agricultural
products of Japan have almost no hope for ex-
portation simply because of their high priče re-
sulting from decades of compounded government
subsidy and protectionism [6]. But fishery prod
ucts would stili be price-competitive because of
the high priče in the U.S.A. For example, some
products which are expensive in the U.S.A. such
as scallops, urchin and abalone are abundant in

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 13

northern Japan. Salmon in northern Japan is not
only inexpensive but has a seasonal cycle differ-
ent from Alaskan salmons. Until now they are
processed for Japanese taste. But they can be
prepared for foreign tastes. Aquaculture technol-
ogy is most advanced in Norway where, for ex-
ample, the yield of roe per urchin is increased by
500%. P had lived in Sweden and Denmark. It
would be a pleasure for P to develop exchange
programs or joint research with Norway. Even in
agriculture, there is one technology which is ex-
portable to foreign countries: the indoor agricul
tural technology. It is ironical that the high priče
of outdoor agricultural products in Japan made
indoor agriculture price-competitive [6]. Several
firms had developed indoor agriculture technol-
ogy in the 1980s. Vegetables were grown on racks
without soil. The roots were sprayed with fertiliz-
ing liquid. Artificial sunlight was used 24 hours a
day. Temperature and humidity were computer-
controlled and adjusted to the growth stages of
the vegetables. Evaporation was recycled. There
were no insects and therefore insecticides were not
used. Absence of weeds eliminated the need for
weed killers. This type of indoor agriculture had
several advantages over outdoor agriculture:

(1) independence from weather and season;

(2) independence from water supply;

(3) fast growth of vegetables due to use of artifi
cial sunlight 24 hours a day;

(4) absence of insecticides and herbicides which
are harmful to humans;

(5) It can be operated in urban areas, eliminating
the transportation time to assure fresh sup-
ply, as well as reducing transportation costs;

(6) It can be used in arid lands, polar regions and
outer space communities, where agriculture
was difncult until now.

In the 1980s the indoor agriculture was able to
compete with the outdoor agriculture in Japan
because of the high priče of outdoor agricultural
products due to compounded results of the gov-
ernmental protectionism [6]. But in the early
1990s the exchange rate of the Japanese currency
became very high, and many department chains

and supermarket chains in Japan developed im-
port channels for ali types of merchandises in-
cluding agricultural products to make use of low
foreign prices. Need for indoor agriculture de-
creased. Currently there is only one firm called
QP (pronounced "kew Pee" which is a japaniza-
tion of "cupid") which stili continues indoor agri
culture. But application of indoor agriculture
technology in arid lands such as Saudi Arabia, in
polar regions and in outer space communities will
grow. Eventually some arid regions of the world
may become new industrial and economic centers
of the world when fuel energy becomes exhausted
or expensive.

The concept of export product adaptation to
foreign users' habits and tastes, and use of in
door agriculture technology in arid lands and
outer space communities are two topics which are
new and long-range future-oriented. An institute
which will begin from a scratch can incorporate
these topics. P had always loved exploratory and
pioneering work, and the institute would open
new frontiers. This was a strong parajunctive con-
sideration.

There were two other parajunctive considera-
tions. The first was that P was once an elec-
tronics engineer, and he always wanted to analyze
some technological elements in cultural and social
change. The other was that he had worked in
Alaska in mind 1960s. At that time, some faculty
members at the University of Alaska were think-
ing of creating an institute which would facili-
tate research exchange between USSR and USA.
It was during the Cold War, and the institute
did not materialize. G's university in northern
Japan, since its inception in 1992, already had
exchange programs with Russia, more specifically
with Vladivostok. For P, this had an effect of a
revival of an old dream. These several parajunc
tive considerations seemed to nt together with one
another and with other considerations like pieces
in a jigsaw puzzle, making an interlocking.

Exploration and innovation had always been
the main motivations in P's work. In the past,
when the official policy of his employers did not
quite encourage them, P did it on his own any-
way. But in G's university, P would have an offi
cial support and encouragement.

At the university in Tokyo where P was, the
Dean was in his own way innovative and initi-

14 Informatica 21 (1997) 5-18 M. Maruyama

ated many programs, including the first evening
MBA program in Japan, and an internationally
linked business policy computer game. But the
Dean made ali decisions. The faculty simply
had to follow. The political wind against him
from other components of the university was very
strong, especially regarding the faculty/student
ratio. Partly because of it as well, he kept adding
new types of programs without reducing the fac-
ulty load elsewhere. The faculty members en-
dured it in the Japanese style. If one overloads a
truck, accidents are likely to happen even though
each of what is put on the truck is marvelous. In
fact accidents happened in P's čase: his teaching
load caused delays in his colleagues' research in
many countries. Not only he wanted to avoid fur-
ther accidents, but also he needed a plače where
he could create some programs himself. But per-
sonally he had nothing against the Dean. In fact,
the Dean did everything possible to facilitate P's
attending international conferences and other ac-
tivities. Basically, the university did not permit
its faculty members to go to foreign countries dur-
ing the duration of their courses. But the Dean
did whatever he could under the circumstances.
H and P remained in excellent friendship until
and even after P's moving to the other univer-
sity.

Before summarizing the non-additive as well as
additive effects of various stresses which led to
P's decision, we must consider also the degree of
the stresses as indicated by delayed physiological
symptoms which did not surface before the time
of the decision.

3.2.8 Delaved effects of the stresses

Sometimes the effects of stresses appear long after
the stresses are removed, especially the effects on
the body. P had some delayed physiological or
somatic effects which appeared after he had made
his decision to move. They are reported here to
indicate the severity of the stresses, even though
they were latent and were not visible or tangible
at the time of the decision making.

Toward the end of February 1996, P noticed a
darkening in his left eye visual field which he kept
ignoring mainly because this symptom resembled
a problem he had in 1974 which had no serious
consequences. But it was a dangerous problem,
very different from the one he had in 1974. Let

us first see the 1974 problem, then return to the
1996 problem

In the spring of 1974, P was under a severe psy-
chological pressure which will be explained later.
His eye problem occurred during that time. While
driving at night, the lower quarter of his right
eye visual field suddenly went blind. He imme-
diateh/ stopped his car. Realizing that his left
eye was normal, he drove home. By the time he
reached his home, the right eye almost recovered:
the blind quadrant was by then a dark quadrant,
in which he could see things tinted purple. Next
day he went to an ophthalmologist. The physician
could find nothing wrong, and concluded that it
was probably due to a temporary blood occlusion
which might or might not have damaged the reti-
nal nerves, and therefore the darkening might or
might not disappear. In any čase the blood circu-
lation was normal when the physician examined
P's right eye.

It turned out that it took the symptom three or
four months to disappear completeh/. The dark
ening was most noticeable when P blinked his
right eye. Immediately after the opening of the
eye, the "shadow" appeared but gradually dis-
appeared. The shadow was always there, but
the brain adjusted for the darkness. As days
passed, the dark quadrant receded to a smaller
and smaller shape, becoming like a slanted ham-
mer. By mid summer, even the hammer disap-
peared.

In 1996, recalling that in 1974 he was given
no therapy nor medication, but the eye healed
itself, P thought that it was unnecessary to go
to an ophthalmologist immediately when a new
problem began toward the end of February 1996.

An exciting and pleasurable experience had be
gun in October 1995 which alleviated P's psy-
chological pain. A graduate študent of his from
Canada was making a progress in her very in-
teresting research project. She devised and sent
out several hundred copies of a questionnaire,
one third of which was printed in English, an-
other third in French, and the rest in Ger
man, to European and North American man-
agers working in Tokyo. Her questionnaire was a
composite of several psychological tests, ranging
from Adorno-Sanford F-scale and Rokeach scale
of open-mindedness to more recent tests. She
had several objectives: (1) to check the valid-

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 15

ity of these tests when used with subjects from
many cultures; (2) to find correlations among
various tests; (3) to see whether these European
and North American managers working in Tokyo
would score differently from those staving in their
home countries; (4) whether the differences was
the "cause" or the "effect" of coming to Tokyo;
(5) whether the individual epistemological types
would be found across national or cultural bound-
aries, i.e. any type found in one national or
cultural group could be found also in other na
tional or cultural groups. She was getting a very
high percentage of questionnaire return. The data
would be sufficient to meet aH five of her objec-
tives, and could generate more than one Ph.D.
dissertations even though she was going to use
them for her master's degree. By mid-January
1996 the data were beginning to pour in, and she
was making surprising discoveries which excited
him. He was in touch with her every day and
night over the telephone and by fax. Her oral de-
fense of the thesis would take plače on March 6.
He decided not to go to an ophthalmologist until
after March 6.

The darkening in his left eye visual field in 1996
somewhat stayed steady in the lower left portion,
similar to the one in 1974. But around March
6 it began to spread toward the center, gradu-
ally spreading beyond the center. On March 7
he began to look for an ophthalmologist. In the
morning of March 9 he went to an ophthalmolo
gist near his university, and she advised him to see
a specialist for this type of problems. He went to
the special clinic, and it immediateh/ alerted him
of the seriousness of the problem: bleeding in the
retina, very different from the problem he had in
1974. He was given a medication. The bleeding
stopped spreading, but did not recede. In March
his left eye was quite dysfunctional, especially for
reading and writing.

On June 6 another eye problem struck. He was
taking a short walk before breakfast as a daily
routine. Suddenly his right eye went almost blind.
Dark purple color covered his visual field and the
trees and the sky disappeared. It was as if ink
was spilled over a somewhat bumpy table, leav-
ing islands which gradually submerged. He stood
stupefied. Fortunately the "ink" began to subside
after about three minutes and disappeared grad-
ually. It was almost similar to what happened in

1974. Therefore he did not panic, even though he
thought he should see the ophthalmologist (here-
after called W) as soon as possible. P had an
urgent work in that morning, and decided to post-
pone his visit to W until after the work. When
W looked into P's right eye, W almost panicked:
the main vein in the retina was almost completely
clogged and P could go blind at any moment. W
immediately put P on an intravenous drip treat-
ment. W said P should continue the treatment
for one hour every day for a week, and that W
would come to the clinic on the weekend j ust for
P. W was tired and exhausted, but did come on
the Saturday and Sunday. W saved P's right eye.

In 1996 his two eyes had opposite problems: in
the left eye he had bleeding, and in the right eye
he had an occlusion. The treatment for occlusion
may increase bleeding. But curiously his left eye
began to get better during the intravenous drip
treatment. Therefore some invisible occlusion in
a small vein in the left eye retina may have been
the cause of the bleeding because a blockage at
one point may increase the blood pressure at a
point upstream. Consequently the ophthalmol
ogist added an anti-clogging medication to stop
P's left-eye bleeding even though it seemed con-
tradictory.

Judging from the symptom of the "ink", what
happened to P in 1974 must have been also a
blood occlusion, much lighter in degree and with-
out heavy clogging. The spring of 1974 was a time
of great psychological stress for P : he was under-
going the process of divorce with his first wife.
The lawyers of both sides prohibited them to com-
municate directh/, and this created tremendous
anxiety and worries in P's mind, even though af
ter the divorce P and his first wife remained as
good friends. Considering this, in the spring of
1996 P must have been under a stress worse than
in 1974.

If standardized tests had been used to mea-
sure P's level of satisfaction with separate as-
pects of the university in Tokyo, and if the scores
had been computed additively with weight co-
efficients, then the satisfaction level would have
come out quite positive, and no real understand-
ing could be forthcoming. On the other hand if
we use situation-contextual and time-contextual
non-additive combination analvsis, the diagram
in Fig. 1 emerges.

16 Informatica 21 (1997) 5-18 M. Maruyama

political attacks
from other components

P's special
methods of teaching

(O-• I , -«-

There will be
not required courses Kobe earthequake

(C)

OUM terrorism

- (D) -

need for študent
recruiting media unavailable

-(C)---l(, •*-

overprecaution

foreign students recruiting announcing seven courses

• (C) --*- L ;) —

teaching overlaod Cleveland clerk's error

(A)

colleagues' research
delayed no time to go to a bank

L +

urge to go to a bank
(LA)

(C) • resistance to the urge

+

(C)

psychological stress

(D)-

Figure 1: Keys: (A) additive; (C) conjunctive; (D) disjunctive; (LA) change-amplifying causal loop;
(LC) change-counteracting causal loop; (P) parajunctive; and (I) interlocking.

A SITUATIONAL INFORMATICAL DYNAMICS... Informatica 21 (1997) 5-18 17

,

hoping that the British
economisfs prediction

is correct

did not go to the bank at
the beginning of August • (C) -

had to go to South America
on August 9

lost opportunity

doubting his own intelligence, and loss of
self-confidence

+ (LC)

resentment toward
overload

wishful thinking
for another golden

opportunity

+

(LC)

puzzled over penny-saving
(Phase III); intellectual-

ization (Phase IV); repres-
sion and rationalization

(Phase V)

(C)- faculty meeting

repression removed

(A)

G's visit >-

•

(I)

P's background as
electronics engineer

+

(AL, P)

+

— (C) - '

+

wanting to move to
G's university
.

- 0

i

0*

.

(AL, P)

+

unmaterialized
institute in Alaska

decision to
move

Figure 1: Continuation of the diagram (from the low-positioned ' . . . ' on the left side to the high-
positioned ' . . . ' on this side).

18 Informatica 21 (1997) 5-18 M. Maruyama

References

[1] HlDAKA, K. 1995. Professor who sends out
the business sleuth. Asahi Evening News April
24, 1995.

[2] MARUYAMA, M. 1989. Morphogenetic teach-
ing in international business. Journal of
Teaching in International Business 1: 77-93.

[3] MARUYAMA, M. 1994. Successive modifica-
tions of study guidelines for študent projects
with business firms. Cybernetica 37: 59-72.

[4] MARUYAMA, M. 1990. International proactive
marketing. Marketing Research (June 1990)
36-48.

[5] MARUYAMA, M. 1992. Changing dimensions
in international business. Academy of Man
agement Executive 6: 88-96.

[6] MARUYAMA, M. 1987. Japan's agricultural
policy failure. Food Policy (May 1987) 123-
126.

[7] TOYO KEIZAI SHIMPO SHA. 1994. Nippon
no daigaku 1995. Toyo Keizai Shimpo Sha.
Tokyo.

Informatica 21 (1997) 19-29 19

The Definition of an Integrated Software Life-Cycle Tool

Rick Leonard
PEI Electronics
110 Wynn Drive, Huntsville, Alabama 35812
USA

Keywords: computer aided software engineering, convergent metrics, life-cycle models, software
engineering, software metrics

Edited by: Xindong Wu

Received: July 12, 1996 Revised: January 17, 1997 Accepted: January 22, 1997

For Computer Aided Software Engineering to fulEU its promise, every aspect of the
software product should be accomplished within an integrated software engineering en-
vironment. Although integrated software engineering environments have been attempted
in the past, several areas of concern stili exist. Too often, the life-cycle models and their
resulting products are incongruous between aH phases of the software life-cycle. With
this incongruity comes a loss of previously captured Information which, in turn, results
in a larger, overall work effort to complete the software product. Incongruity between
life-cycle phases also causes inconsistent evaluation metrics and, as a result, improper
life-cycle management. In addition, techniques for reconciliation of errors with previ-
ous life-cycle products are practically non-existent. This paper attempts to overcome
the aforementioned problems by providing the background, methodology, and technical
analysis to demonstrate an interactive software engineering environment capable of ad-
dressing the entire software life-cycle in an integrated, automated fashion. In addition, a
related metric set is identified that converges with actual results as the life-cycle progress
from one phase to the next.

1 Introduction ware profession.
To overcome these problems, we provide the

1.1 Statement of the Problem background, methodology, and technical analysis
to define an integrated software life-cycle environ-

As software professionals, we tend to decompose ment, that ušes structured analysis and design as
the problems associated with software develop- the keystone. As an expert system, this tool pro-
ment into a finite set, rather than address them as vides the software project with the following fea-
an integrated whole. Consequently, the problems tures:
associated with requirements definition, design,
implementation, and test are usualh/ addressed A , r , , , , • ,, , -,, , • , • ,

v ' J - A set ol related metrics that will objectively:
with entirely different tool sets. Since the tool sets
are unrelated among life-cycle phases, an incon- „ ,. , ,. r, , ,

, . , . , , , m ~ Estimate the software development,
sistency among hle-cycle products results. The maintenance, and test efforts during the

earliest phases of the life-cycle,
inconsistency among life-cycle products gives rise
to a wide assortment of problems including, the
duplication of work, unrelated metrics, difficult - Converge with actual results as the life-
to harvest metrics, and the inability to efficiently cycle progresses from one phase to the
reconcile errors between life-cycle phases in an ef- next.
ficient manner. As a result, a life-cycle process
that generates homogeneous products in an auto- - A software engineering tool set that will au-
mated fashion remains under utilized by the soft- tomatically:

20 Informatica 21 (1997) 19-29 R. Leonard

- Integrate each life-cycle phase with
products from previous phases,

- Integrate formal documentation with
each life-cycle phase,

- Generate variable specifications, in-
put/output range tests, and function
calls during implementation,

- Generate boundarv-level test code for
each module during formal and informal
CSU, CSC, and CSCI testing.

— Reverse engineer the svstem to provide:

- Errors of estimate between life-cycle
phases and allow these estimates to be
used as metrics to determine subsequent
programming efforts,

- Automatic reconciliation of product er
rors between phases.

1.2 Organization of the Paper

This paper defines the components of an auto-
mated software engineering environment that in-
tegrates software life-cycle methodology and met
rics with an interactive computer program, here-
inafter called, the software engineering tool. The
software engineering tool requires the definition of
a formal software life-cycle model plus the iden
tification of any software development techniques
that could enhance the definition and/or refine-
ment of a program size metric. Each of these
components are further analyzed in subsequent
sections of this document.

Section 2 provides an analysis of currently avail-
able software engineering tools and their deficien-
cies. The analysis covers pertinent metrics, a
common life-cycle approach, and a limited review
of relevant structured analysis and design tech-
niques. Since the structured analysis and design
review is constrained, a complete examination of
the subject matter may be found within the liter
ature identified by the bibliography.

The third section provides solutions to the
problems identified in Section 2 and reconciles
the objectives set forth in Section 1. As such,
a set of convergent program size metrics are iden
tified, methods of integrating life-cycle products
into later phases are presented, while code gener-
ation, test, and documentation are automated to
the greatest extent practical.

2 Analysis of Available Tools

2.1 Introduction

A survey was conducted to distinguish research
related to the identification of metrics used for
measuring software programming effort. As a re-
sult, program size, in terms of the number of lines
of code (LOC), was identified as one of the better
metrics for measuring programming effort. Subse-
quently, a mature life-cycle approach to the soft-
ware development process was identified. This
led to further research involving the availability
of tools designed to attack the various problems
inherent to the software life-cycle. In addition,
this survey identified top-down software develop
ment techniques that enhance software produc-
tivity and integrate well with the life-cycle model
and software engineering tools chosen. Each of
these topics are further addressed in subsequent
paragraphs.

2.2 Pert inent Metrics

Techniques for objectively estimating the size of
a software product during the early stages of the
software development effort are currently unreli-
able. Generally, this task has been consigned to
the experienced software professional whose col-
lective estimation methods are limited to his or
her own personal judgments or intuition. Hope-
fully, these estimates converged with actual re-
sults as the software development process ad-
vanced from one phase to the next.

As a part of the software evaluation process,
metrics are used as a quantitative measurement
of the effort and subsequent cost of the problem
solution. Once the appropriate metrics are estab-
lished within the software life-cycle, they may be
used during the earlier project phases for predict-
ing effort and cost. Current studies indicate that
program size is very closely associated with the
amount of effort required to accomplish the soft-
ware task and, subsequently, the overall cost of
the software product.

Consider the following equation as the basis for
determining the level of programming effort re-
quired to develop a software product:

E = S/P (1)

AN INTEGRATED SOFTWARE... Informatica 21 (1997) 19-29 21

where E = level of effort, S = size of job, and P
= productivity of workers.

Assume that the level of effort may be ex-
pressed in terms of person-months. In addition,
assume that the size of the job may be expressed
in terms of the number of lines of code (LOC) in
the finished product. Also, assume that the pro-
ductivity of workers may be expressed in terms
of number of lines code (LOC) accomplished per
person-month. By substitution, Equation (1)
translates into the following:

E = {L0C)/{LOC/Person - months) (2)

Most research efforts have centered on identify-
ing factors that affect the productivity of workers
(the P designator of Equation (1)). Factors af-
fecting the size of a project (the S designator of
Equation (1)) have only recently been addressed.
Moreover, most research assumes that the size
of the job, in terms of the number of lines of
code (LOC), remains constant, or at least uni
form, throughout the life-cycle of the project. In
fact, when various models of productivity (such
as Boehm's COCOMO model) are used to deter-
mine the level of effort (E), job size (S), in terms
of LOC, generally remains static throughout the
development life-cycle. As a result, a wide dis-
parity exists between the LOC estimated at the
beginning of a project and the LOC delivered in a
finished software product. Techniques for recon-
ciling this lack of convergence are fully developed
in Section 3.

2.3 Life-Cycle Models

A software life-cycle model partitions the pro-
cesses required for the development of a soft-
ware product. In addition, it provides the en-
gineer with a framework that is used for evalu-
ating the impact of alternative solutions to the
specific problems encountered as the product is
being developed. The building of this framework
should take the developer from the conception of
the project through its phase out. If this task is
approached using a life-cycle model, then the first
step is to separate the software development pro-
cess into sequential phases. The sequential phases
include requirements analysis, preliminary design,

detailed design, implementation, test, integration,
and deliverv. This life-cycle approach was chosen
because it reflects current military and industrial
standards. Beginning with requirements analysis,
the following paragraphs identify techniques de-
signed to overcome the problems inherent to each
phase and their deficiencies.

2.4 The Tools of Structured Analys is

Proper requirements specification is critical to the
success of any project. The most difficult aspect
of properly specifying a software system is the
translation of the system concepts into a tangi-
ble form. Accomplishing this requires two steps
[6]. The first step is the top-down decomposi-
tion of the software system into smaller, more
manageable processes. The second step is the
bottom-up synthesis of the smaller, more man
ageable processes into a workable system. For this
paper, data flow diagrams (DFD's) are used as the
principal tool in converting the concept of a sys-
tem into a tangible form. The specification tools
include data flow diagrams (DFD's), a method
of accessing the DFD, a data dictionary, and a
method of describing the specification.

Data flow diagram's specify systems by por-
traying the processes and data elements compris-
ing a software system as a network. The entire
DFD network can be expressed using the data
flow, represented as a line; the process, depicted
as a bubble; the data store, drawn as a pair of
straight lines; and the source/sink, symbolized by
a box (see Figure 1).

The data dictionary produced during require-
ments analysis gives rigor to data flow diagrams
by providing the analyst with a central reposi-
tory of data definitions. This includes definitions
of ali data stores, unique data flows, and func-
tional primitives. A data flow that can be de-
composed farther is defined in terms of its com-
ponents. Compohents consist of other data flows
and data elements. A data element is a data flow
that cannot be decomposed any further (in Sec
tion 3 these are referred to as data element (DE)
variables). It is defined in terms of the meaning
of each of the values that it can assume [6]. For
example:

22 Informatica 21 (1997) 19-29 R. Leonard

SOURCE
Data Plow i

Data Flow 2

Data F lov/ 6

SINK

Data ?low 4

DATAM STORE

F i g u r e 1 . DFD Components (6]

DATA FL0W DATA ELEMENTS

telephone number area code

local number

extension

Data flow diagrams alone do not specify a soft-
ware system, but they do provide a computer
ized tool for decomposing the system into succes-
sively smaller processes. The processes that can-
not be decomposed any farther are called func-
tional primitives. It is the functional primitives
of the system that are formally specified. If each
functional primitive is specified in a concise and
independent manner, then processes at higher lev-
els do not need to be specified since they are noth-
ing more than a collection of lower-level processes
[6]. The simple mini-spec in Figure 2 demon-
strates the ability of structured English to express
a functional primitive in a concise manner.

2.5 The Tools of Structured Design

The design phase of the software life-cycle may
be considered the bridge between the specifica-
tion phase and the implementation phase of the
software project. Its primary goal is to translate a
specification document into a rigorous design doc-
ument that can be used by a software engineer as

Pire

5.4.3 1.0

2.0

3.0

4.0

Control Svstem

Select target.

If target is moving.

2.1 Get target speed.

2.2 Get target path.

Get target distance.

Fire weapon.

Figure 2. Mini-Spec Example [6]

a guide for implementing code. In this regard, a
structured design document may be considered as
the blueprint for programming a software system
[6]. Structured design provides the system de-
signer with a disciplined approach for transform-
ing the products of structured analysis into the
products of structured design. In particular, the
computerized data flow diagrams of structured
analysis are refined into a more detailed graphical
product called structure charts, while the com
puterized mini-specs that describe the processes
within the data flow diagrams are refined into a
more detailed description of the functions parti-

AN INTEGRATED SOFTWARE... Informatica 21 (1997) 19-29 23

The
System

X ^

structure charts is accomplished by transform
analysis, which enables the software engineering
to translate the network of processes that com-
prise a data flow diagram into the hierarchy of
modules that form a structure chart. By deriving
the structured design from a structured specifica-
tion, continuity is provided between the specifica-
tion and design phases of the software life-cycle.

At this tirne, the only task left within the de
sign phase is the translation of the mini-specs into
a detailed description of the processes partitioned
by the structure charts. Most texts recommend
pseudo code in the form of a program design lan-
guage or program statement language to accom-
plish this task.

Figure 3. The Structure Chart [6]

tioned by the structure charts.
A structure chart is a graphical tool that repre-

sents the manner in which a system will be imple-
mented. It is derived from the data flow diagrams
that were developed during structured analysis.
Structure charts are used to partition large or
complex systems into smaller more manageable
modules for coding (see Figure 3).

As the primary tool in preliminary design,
structure charts are used to graphicalb/ depict
the partitioning of a process into smaller mod
ules, the top-down organization of the modules,
the data fiowing into and out of a module (in Sec-
tion 3 these are referred to as a logic and control
(LC) variables), and a functional description of
the modules [6].

From Figure 3, a structure chart is composed
of the following three symbols, which are used to
illustrate the entire software system:

1. modules - depicted as a rectangular box. A
module represents a single subroutine within
the system.

2. connections - drawn as a line linking two
modules. It is used to symbolize a call from
one module to another.

3. couples - indicated by a short arrow with a
circular tail. A couple represents a data flow
from one module to another.

The transformation of data flow diagrams into

2.6 Conclusions

Data flow diagrams and structure charts pro-
vide excellent methods of quantifying require-
ments then translating them into an acceptable
design. However, most products do not trans
late into the implementation phase. In particu-
lar, a number of phase-dependent products are
lost. These products include previously defined
documentation, data dictionary declarations, and
the opportunity to generate any associated code.
In addition, none of the structured analysis and
design products translate over to the test phase.
Consequently, independent IV&V tasks are ex-
tremely costly. Finally, the number of lines of
code (LOC) metric is not fully realized until the
implementation phase has been completed. As
a result, empirical estimations of LOC can not
be achieved during the earlier phases of the life-
cycle. Solutions to each of these problems will be
addressed in the follovving section.

3 An Integrated Software
Engineering Tool

3.1 Introduction

Consider the structured analysis and design tech-
niques identified previously. The products pro-
duced during requirements analysis flow nicely
into the design phase, however, few of the result-
ing products provide benefit to the implementa
tion or test phases of the life-cycle. To overcome
this problem, the following paragraphs identify

24 Informatica 21 (1997) 19-29 R. Leonard

structured analysis and design process enhance-
ments that maximize product flow throughout the
life-cycle, minimize duplication of effort, and au-
tomate the life-cycle wherever possible. In ad-
dition, a metric set is presented that converges
on the LOC as the life-cycle progresses from one
phase to the next. It is to this metric set that we
now focus our attention.

3.2 Program Size Metrics

Although research by Wang [2] indicates that the
number of unique variables (VARS) within a pro
gram can be used to predict LOC as a simple
linear regression, this metric isn't available un-
til very late in the software development life-
cycle. Further research [5] indicates that subsets
of VARS exist such that the number of data ele
ment variables (DE), the number of logic and con-
trol variables (LC), and the number of static vari
ables (SV) are equal to VARS. In addition, data
flows (DF) link the DFD's and identify the in-
teraction of the individual tasks with other tasks.
The logic for developing these equations follows.

For data structure metrics concentrating on the
data elements fiowing between software modules,
consider the following equation,

VARS = DFE + SV (3)

For Equation (3), the data flow elements (DFE)
are equal to the number of unique DE and LC
variables flowing between modules, while SV is
equal to the number of unique variables that ex-
ist only during the execution of the module. For
DFE, Equation (4) follows:

DFE = DE + LC (4)

Substitution into Equation (3), provides the fol-
lowing relationship,

VARS = DE + LC + SV (5)

Considering that DF, DE, LC, and SV are sub
sets of VARS, and that these subsets are identi-
fied at progressive points in the life-cycle by the
continuous refinement of the software module's
data flows (as described in the previous section),
then, the assumption can be made that these sub
sets can be used to predict LOC during the early
stages of the life-cycle. The credibility of this as
sumption is validated by regression analysis [5],

the results of which may be found in Table 1 and
Table 2.

3.3 Requirements Analysis

If the structured analysis methodology described
in Section 2 is automated as an interactive pro
gram, additional integrated software tools are re-
quired. . In particular, an editor should be pro
vided that addresses both formal documentation
demands (as presented to the customer) and the
requirements specification products (as provided
by the analyst). To further automate the doc
umentation process, the editor should generate
the appropriate formal documentation templates
including appropriate paging, section numbers,
paragraph numbers, and headers. The analyst
then updates the templates up to, but not includ
ing, the system requirements paragraphs. Ad-
ditionally, system requirements paragraphs are
linked to a data flow diagram drawing package.
The DFD drawing package allows on-screen pro
cess illustrations as depicted in Figure 1. Once
illustrated, the processes, data fiows, data ele
ments, mini-specs, etc. may be further described
within the data dictionary utilizing the same edi
tor. As an added feature, the data dictionary re-
quires both a valid and invalid range specification
for each data element. Reasons for this require-
ment will become clear during the implementation
and test phases.

As a result of the formal documentation tem-
plate, its linkage into the systems requirements
paragraphs, and the special editor, process docu
mentation may be generated automatically after
the system is defined. Specifically, process and
sub-process definitions, data flow definitions, and
mini-specs collected within the data dictionary
are then written to the formal documentation in
a prescribed format consisting of paragraph num
bers, requirements description paragraphs, input
variable definitions, mini-specs, and output vari-
able definitions. Consequently, the analyst is not
required to define and analyze the system with
one tool, then transfer the system information to
a formal documentation standard using another
tool. This minimizes duplication of effort, both
in this life-cycle phase and in subsequent phases.

COCOMO provides estimates of schedules,
person-power, cost, etc. based on program size,
program structure, and certain productivity met-

AN INTEGRATED SOFTWARE... Informatica 21 (1997) 19-29 25

Life-Cycle
Phase

Early Speč.
Late Speč.

Early Design

Late Design

Metric
DF
DF
DE
DF
LC
DF
DE
LC
SV

VARS

Correlation
0.694
0.941

0.984

0.987

0.905

T
Significance

P0.1
P0.02
PO.Ol
P0.02
P0.001

P0.2
P0.5 ~
P0.3
POJ

PO.Ol

F
Significance

P0.1
PO.Ol
PO.Ol

PO.OOOl
PO.OOOl

*
*
*
*

P0.005

* Not Computed

Table 1: A VARS Components Comparison

Life-Cycle Phase
Req. Defin.
Req. Analy.

Prel. Design

Detail Design

Metric
DF
DF
DE
DF
LC

VARS

Equation
LOG « 29.027 + 3.892 *DF + E

LOC « -11.434 + 3.072 * DF + 5.843 * DE + E

LOC » -5.729 + 1.942 * DF + 12.654 * LC + E

LOC « 1.583 + 5.429 * VARS + E

Table 2: Equations for Predicting LOC

rics. Although the productivity metrics generally
remain static during requirements analysis, pro
gram size and structure may vary. As a result,
the system may be analyzed against tirne, bud-
get, and person-power constraints by automati-
cally supplying LOC estimates to COCOMO from
the DF and DE metrics identified previously. In
addition, program structure metrics may be de-
termined from the data flow diagramming net-
work itself, then supplied to COCOMO automat-
ically. Consequently, certain managerial aspects
of the life-cycle become automated without any
additional efforts.

3.4 Automated Design

Although data fiow diagramming techniques pro-
vide a well defined set of products fiowing from
the requirements specification phase into the de
sign phase, some process adjustments must be
made to accomplish the goals set forth herein. As
with the requirements analysis phase, consider a

formal design documentation template, its link-
age into the design package, an editor capable of
addressing each of the design products, and an ex-
panded data dictionary as the principle enhance-
ments to the design phase tool set.

Enhancements to the formal documentation
process allow the appropriate requirements doc
umentation to fiow directly into the applicable
design documentation. Subsequently, undefined
paragraphs are identified to the user. As with
requirements analysis, design is enhanced by the
linkage between the documentation and the de
sign processes. If additional requirements are
identified during design, the relevant require-
ments products are immediately updated via
backlink. The information then flows into the ap
propriate design products.

To generate the formal design document, pro
cess definitions, data definitions including logic
and control variables, and mini-specs are col-
lected from within the data dictionary, then writ-
ten into the formal documentation package in a

26 Informatica 21 (1997) 19-29 R. Leonard

prescribed format consisting of section numbers,
section headers, paragraph numbers, paragraph
headers, description paragraphs, input variable
definitions, mini-specs, and output variable defi-
nitions. As during requirements analysis the soft-
ware engineer is not required to design and ana-
lyze the system with one tool, then transfer the
information to a different tool set to complete for-
mal documentation or continue additional analy-
sis. This reduces duplication of effort, both in
this life-cycle phase and in subsequent life-cycle
phases.

At this point, a computer aided transform anal-
ysis occurs, the system is decomposed into func-
tional primitives, and the logic and control vari-
ables are added to the data dictionary. Subse-
quently, schedule, budget, and cost constraints
may be addressed by automatically updating CO-
COMO's program size estimates using the DF and
LC metrics identified previously. As a further
contribution to this analysis, the program struc-
ture metrics may be updated based on the design
network.

3.5 Automated Implementation

Based on previously captured information, most
of the documentation required during the imple
mentation phase may be automated. Consider
that information regarding the author, require-
ments paragraph number, requirements descrip
tion, design paragraph number, design paragraph
description, input variables, input variable de-
scriptions, process description (mini-specs), out
put variables, and output variable descriptions
could be placed into the code module as com-
ments based on the information captured dur
ing the requirements and design phase. Addi
tional comments based on the data flow diagram-
ming network could include calling program ref-
erences (which are very difficult for a programmer
to maintain) and called program references. Fur-
thermore, aH of this information could be included
in the module before any coding begins.

As the software product enters the mainte-
nance phase of the life-cycle, comments regarding
change history could be tracked and referenced
in this manner also. In addition, a programmers
updates to the previously described information
could be reversed engineered into the formal doc
umentation from the code module using the editor

described previouslv. As a result, consistent, er-
rorless, up-to-date requirements and design docu
mentation could be provided to the customer al-
most immediately. While this may cause some
anxiety to the software seller, a software buyer,
could monitor product milestones, changes, etc.
in a very emcient manner.

Although comments embedded within the code
describing specific processes would stili be pro
vided by the programmer, obviously, the inte-
grated approach reduces the programmers over-
all commenting effort, reduces discrepancies be-
tween comments in the formal documentation and
the code module, provides uniform documenta
tion standards for the programmers (studies in-
dicate that commenting styles vary widely), and
aids in the overall programming effort by clarify-
ing the purpose and intent of the code module to
the programmer in an efhcient manner.

Using the requirements analysis and design
methods described previously, a certain amount
of code could be automatically generated for
the programmer, completely independent of lan-
guage. Consider both the data dictionary and the
logic and control variables identified previously.
If variable type is included in the definition, then
the variable declarations could be automatically
generated for the programmer. As a further en-
hancement, these variables could be locked by the
software engineering tool to provide consistency
throughout the system, or, unlocked to provide
quick updates to ali modules. The only variable
declarations left to the programmer are the static
variables.

If the invalid variable range is included in the
definition, input and output checks could be au-
tomatically generated by the software engineering
tool also, although specific instructions regarding
exceptions would be left to the programmer. In
addition, code regarding calls to other modules
could be automatically generated within the mod
ule based on the data flow diagramming network.
As with the exception code, the process code gen
erated between calls would be the responsibility
of the programmer.

A quick visual inspection of FORTRAN mod
ules developed under structured analysis and de
sign techniques indicates approximately 25% to
35% of a small to medium sized software modules
code could be generated in this manner; a larger

AN INTEGRATED SOFTWARE... Informatica 21 (1997) 19-29 27

percentage for smaller modules and a smaller per-
centage for larger modules. The choice of pro-
gramming language probably plays a key role in
this estimate. Assuming that the code generated
in this manner is virtually errorless, the amount
of implementation, test, and integration tirne re-
quired to deliver the module should be greatly
reduced. In addition, some coding conformity
among software modules could be enforced by the
software engineering tool.

3.6 Automated Test

The cost of completely testing a software product
would be enormous. Consequently, methods of se-
lecting effective test sets and methods of automat-
ing software testing are highly desirable. Consider
a given specification S and a program P. As the
primary goal of testing, we want to determine if
P is correct with respect to S. Let fs and fp de-
note functions representing S and realized by P,
respectively over domain D. For statistical test
ing, we want to select a test set T of test inputs
over D such that T has the follovving property Pl :

P l : If for ali t G T, fp(t) = fs(t), then fs and fp

are probably equivalent.

A test data selection method is said to be statis-
tically effective if there is a mechanical procedure
to generate test set T with the property P l .

Consider boundary level testing, where soft-
ware modules are tested by manipulating the in-
put and output variables above a valid boundary,
on the boundary, and below the boundary in order
to reduce test cases. If the variable specifications
defined in the previous steps include valid and in
valid ranges, then the software engineering tool
described herein could automatically (mechani-
cally) generate ali the test cases for a given soft-
ware module, ali the software needed to drive each
čase, compare the čase against known results, and
mark the čase as valid or invalid based on those
results. Consequently, the programmer is allowed
to conclude a well defined cycle of design, code,
and test for each module, in a complete and thor-
ough manner.

Formal test documentation can be generated in
a similar manner. Consider that the previously
captured information is linked to a test document
template. The appropriate test documentation

information could fiow into the applicable para-
graphs. Design process definitions, data defmi-
tions, and mini-specs collected from within the
data dictionary are then w ritten into the formal
documentation package in a prescribed format
consisting of section numbers, section headers,
paragraph numbers, paragraph headers, descrip-
tion paragraphs, input definitions, mini-specs,
and output definitions. In addition, the software
engineering tool would generate ali boundary level
test cases, then incorporate them into the docu
mentation as well. As during the previous phases,
the software engineer is not required to test the
system with one tool, then transfer the informa
tion to a different tool to complete formal docu
mentation or continue additional analysis. Again,
duplication of effort, both in this life-cycle phase
and in subsequent life-cycle phases is reduced.

While the benefits to the three life-cycle phases
mentioned above are obvious, the requirements
analysis and integration phases should benefit,
to varying degrees, from this methodology also.
While the requirements test documentation and
test cases could be generated as before, the re-
quirements for some systems (real-time, simula-
tion, etc.) could not be completely tested using
this philosophy. Nevertheless, the independent
test cycle could be reduced to validating system
requirements, auditing software module, compo-
nent, and system test compliance, then generating
the appropriate documentation under the meth
ods described. Obviously this would result in a
substantial overall savings compared to current
methods.

4 Conclusions
4.1 Introduction

At this point ali of the components of the inte-
grated software engineering tool have been iden-
tified and developed. While some components
may not be unique, we have yet to embrace a sin-
gle software engineering tool that comprises ali of
them. By allowing a software engineer to imple-
ment each component through an interactive, in-
tegrated software engineering tool, many aspects
of the software life-cycle could be addressed in an
automated manner. In addition, the impact of
changing any one particular factor could be an-
alyzed and the best alternatives could be chosen

28 Informatica 21 (1997) 19-29 R. Leonard

without a detailed knowledge of the tools compo-
nents. Consequently, duplication of efforts, lack
of automation, inability to identify problem areas
early, and a larger, overall work effort could be
minimized.

4.2 Contributions

Consider the software processes (data flows, data
diagrams, etc.) proposed. The development pro-
cess converges on a finished product as the soft-
ware life-cycle progresses from one phase to the
next. At each phase, metrics (DF, DE, LC, SV,
VARS) become available that allow the size of the
finished program (S) to be predicted more accu-
rately. When used in conjunction with the various
models of COCOMO, effort (E) estimates may be
determined more accurately as the life-cycle con
verges on a finished product. This allows prob-
lems with under budgeting and restrictive due
dates to be addressed as early in the software life-
cycle as possible.

Enhancements to the data flow diagramming
process allow integration of phase dependent soft-
ware products throughout the life-cycle. These
products are also linked to the formal documen-
tation effort. As a result, data is captured once,
then made available throughout the life-cycle as
necessary. During implementation, documenta-
tion is virtually automated with the resulting
comments uniformly provided while coding is au
tomated to the greatest extent practical. In addi-
tion, testing is virtually automated from the pro-
grammer's standpoint. The benefits from the ca-
pability of reverse engineering legacy systems into
this product are intuitively obvious.

Using these techniques, the software engineer
is provided with a well defined set of products,
including automatic reconciliation of product er
rors, as the life-cycle progresses from one phase to
the next. As a result, the software life-cycle pro
cess is moving from a macro analysis perspective
to a micro analysis perspective.

4.3 Further Research

Although extensive research has been conducted
on the credibility of the convergent metrics, it
has centered on the completed software product.
Consider that most software products are incom-
pletely specified and/or mispecified during the re-

quirements analysis phase. This results in addi-
tional work to complete the final product. While
some of these errors may be corrected during the
design phase, additional errors may arise result
ing in the software product being incompletely
designed or misdesigned with respect to the final
product.

By taking this error refinement to its logical
conclusion, errors of estimate between ali life-
cycle phases could be resolved with errors of es
timate from subsequent phases. Consequently,
more accurate equations, providing better esti
mates of LOC, probably exist. This scenario lends
itself well to analysis with Markov chains.

If the effort and tirne required to complete each
module can be estimated, then, intuitivelv, the
DFD's could be translated into a Critical Path
Method (CPM) or, possibly, a Program Evalua-
tion and Review Techniques (PERT) network. Ei-
ther method could provide a more detailed analy-
sis of the system. These methodologies are based
in operations research and employ various cost
and scheduling analysis tools. Further analysis
should determine a well defined methodology for
implementing the translation.

A complexity metric could be determined from
the DFD network based on a combination of the
number of data elements and logic and control
variables flowing into and out of the program ver-
sus the LOC. This metric imiuences the amount
of effort required to complete the software prod
uct. Regression analysis could shed more light on
the viability of this metric as compared to other
complexity metrics.

The metrics and processes previously defined
should be integrated into object-oriented method
ologies wherever possible. While object-oriented
methodologies provide certain distinct advantages
over functions, many of the metrics are stili im-
mature. Further analysis and metric maturity are
required before this process can take plače effi-
ciently.

Finally, the software engineering tool defined
herein could be enhanced as an aid in any of the
previously identified research. As a result, metrics
could be harvested, and translations into other
operations analysis tools could occur, automati-
cally.

AN INTEGRATED SOFTWARE... Informatica 21 (1997) 19-29 29

References

[1] Boehm, B. Softuiare Engineering Economics.
Englewood Cliffs, New Jersey: Prentice-Hall,
1981.

[2] Conte, S.; Dunsmore, H.; and Shen, V.
Softuiare Engineering Metrics and Models.
Menlo Park, California: Benjamin/Cummings,
1986.

[3] DeMarco, T. Structured Analvsis and Sustem
Specification. New York: Yourdon Press, 1978.

[4] Jensen, R. and Tonies, C. Softuiare Engineer
ing. Englewood Cliffs, New Jersey: Prentice-
Hall, 1979.

[5] Leonard, Ricky Jack. A Convergent Model
for Predicting Software Programming EfTort.
MSOR Thesis, Department of Systems Engi
neering, University of Alabama in Huntsville,
June 1991.

[6] Page-Jones, Meilir. The Practical Guide to
Structured Svstems Design. New York: Your-
don Press, 1980.

[7] Yourdon, E. Managing the Svstem Life Cy-
cle: A Softuiare Development Methodologg
Overvietv. New York: Yourdon Press, 1982.

Informatica 21 (1997) 31-47 31

Qualitative Reasoning and a Circular Information Processing
Algebra

Pranj o Jovič
Institute of Computer Engineering & Faculty of Electrical Engineering
University of J. J. Strossmayer in Osijek
HR-31000 Osijek, Istarska 3, Croatia

Keywords: qualitative modeling, circular algebra, quantitative/qualitative transformation, informa-
tion, qualitative noise

Edited by: Anton P. Zeleznikar
Received: September 4, 1996 Revised: January 9, 1997 Accepted: February 6, 1997

Quantitative versus qualitative system modeling. Qualitative algebra. Events spaces
and measure of their complexity. Ordinality and cardinality of models. Continuous
Godel numbering. Qualitative correlation algebra. Model sensitivity amplification by a
circular quantitative/qualitative transformation. Qualitative noise.

1 Introduction

Any physical system can be described and later
modeled based on both quantitative and qualita-
tive aspect of its information. Thus measuring air
temperature one can obtain only a partial indica-
tion of either a pleasant or harsh weather. Quan-
titative data on temperature, pressure, strain etc.
describe a system as well as its comfort, efficiency
or beauty. Qualitative description of a system or
its end effect possesses necessarily an individual
note and both the simplicity of its impact to the
user. This has led to the canonization of using
qualitative aspect of system behavior to the level
of qualitative reasoning about systems as a very
useful tool in system modeling.

The core issues of qualitative reasoning include
qualitative and causal modeling of the systems,
automated modeling and qualitative simulation
([1]). There has been a strong tendency toward a
qualitative approach to solving engineering prob-
lems in the last twenty years ([2], [3], [4], [5], [6],
[7]). Several different algebraic theories and inno-
vative proposals of qualitative and both qualita-
tive and quantitative calculations have been pro-
posed by many authors ([4]).

The mainstream of development of the field as
attributed to Benjamin Kuipers ([6]) is as follows:
a) There is always a time independent structure
of a mechanism, or a plant, and a time dependent

behavior of the structure when involved with a
process. The distinction between these two terms
cannot be mapped clearly into a causal network
but fits better with Johan de Kleers work on qual-
itative envisionment ([8]).
b) Qualitative structure and behavior can be
most clearly understood and analyzed as abstrac-
tions of the ordinary differential equations and
their solutions ([9]). It results in legitimate term
qualitative differential equation or QDE where
the variables in the equation are pure qualitative
values given in the continuous manner enabling
thus their differentiation.
c) Several steps in modeling a physical system and
its behavior were enabled by the usage of models
in the following order:

— physical scenario

- abstract elements of the scenario

- qualitative differential equation of abstract
elements behavior

— quantitative behavior.

d) The sensory data from the plant and process
were taken into account especially by Dennis De-
Coste ([2]) where the problem of interpreting ob-
servations of a system over time is fundamental
to intelligent reasoning about the physical world.
The interpretation was viewed as the task of de-;

termining which possible behavior, predicted by

32 Informatica 21 (1997) 31-47 F. Jovič

the current model, are consistent with the sen-
sory data including which are the most plausible.
There were many reports and papers on interpre-
tations of relatively simplified systems based on
sensory data and on its failures ([4], [7], [10], [11]).
e) The qualitative interpretation of dynamic
across-time measurement has been made both
with a bottom-up diagnostic concerns such as
MIMIC model ([12]) and top-down such as
DATMI approach ([2]). Here the integration of
qualitative into quantitative observational data
was viewed as clearly desirable for constraining
the interpretation space.
f) A special algebra of combining qualitative in
terval data was developed ([3]) where temporal
knowledge may take the form of collections of
qualitative relations between intervals. Temporal
reasoning tasks include determining a consistent
scenario and deducing new relations from those
that are known. Because of the exponential char-
acter of the problem solution, the so called Point
Algebra has been introduced ([3], [13]).

Independent of the research mainstream the
two classical approaches to the reasoning process
were taken in the industrial application:

— reasoning process in the measurement con
trol and supervisory systems and equipment
([14]) and

— reasoning process in the operators backed-
up by the training and artificial intelligence
equipment ([15]).

As observed from the historical point of view,
the reasoning process in machines is influenced by
the following mechanisms:

1. Machine structure follow-up of the process
desired behavior and changing its behavior at
every exception of the state as for example in
PID mechanisms - so called state observers;

2. Machine learning according to some rules
that are defined as mathematical model such
as the system feedforward čase;

3. Stochastic approximation of the desired sys-
tem behavior such as a missing connection
among measurable and unmeasurable vari
ables;

4. Puzzy set control in rule controlled processes
([16]);

5. Neural network used for pattern recognition
and learning;

6. Genetic algorithm ([17]).

These simple reasoning processes are in the do-
main of machines for many production processes.

When viewed from the outside, the process
and its structure (plant) can be observed as a
composed dynamic interaction of qualitative and
quantitative part of its variables. The behavior
model is essential for system semantic. This ex-
emplifies the so called inherent process semantic
([18]) with its four semantic parameters (actual-
ity, reachability, relevance and importance) out
of which the most valuable and unique is the so
called importance parameter ([19]).

Permanent interaction of qualitative and quan-
titative aspect of process data, although unno-
ticed by user, technical and research staff, takes
plače in an effective way in many practical means
and tools of the system equipment such as in ([20],
[21]):

1. Neural network, by transformation of input
quantitative data at each neuron of each net-
work layer into qualitative reaction type at
its output (firing of the neuron based on the
exceeding threshold level after its summation
point);

2. Fuzzy set logic, by transforming input quan-
titative data set into qualitative descriptive
data on process behavior and later by trans
forming qualitative data set into the process
specific quantitative reaction;

3. Genetic algorithms, where the transforma
tion goes from qualitative (behavior of the
observed set) into quantitative (codes of the
artificial genes) and back to the qualitative
(the behavior of the selected and mutated
set).

The interaction of qualitative and quantitative
part of the process information does not mean
unifying or melting. It is the mutual action of
qualitative and quantitative aspect of the infor
mation, a dialectical unity and by no means the
algebraic one ([22]).

Thus the approach of unifying qualitative and
quantitative aspect of the process information as
presented in the research mainstream has shown

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 33

some defects. As the illustration of these defects
let us point to the few lacks of the approach given
in ([4]):

1. Model based reasoning is founded on the sup-
position of the known model which is a tau-
tological approach because by the definition
qualitative reasoning is a technique enabling
qualitative modeling;

2. The SR1 qualitative/quantitative algebra's
are defined on the same set of elements, with
the qualitative domain being a subset of the
quantitative domain, which is a mixture of
different set domains;

3. Qualitative expressions are related by set
equivalence, subset and nonempty intersec-
tion which is a sharp restriction of the possi-
ble relations among expressions;

4. Operations on multiplicands as allowed in
SR1 are usually not allowable in "sound"
qualitative operations.

The approach to a circular transformation of
the qualitative/quantitative "field" data was orig-
inated by the problem of modeling elderly people
injuring in road traffic accidents ([23]). The solu-
tion resulted in a qualitative stochastic difference
equation, a model that enabled the prediction of
the injuries for subsequent year with the ±3000
PPM precision. The model precision enabled the
discovery of some missreported data on the age of
injured people in a few previous cases. Following
to this was the model of the steam production
unit of the thermal power plant ([24]) that re
sulted in a qualitative algebraic relation of seven
out of 31 process variables. The critical part of
the model was the indication of the model sen-
sitivity to the burner subpressure being a small
amount in the denominator of the basically quali-
tative model. The resulting annual repair showed
that the misbehavior was properly indicated.

Next was a corn seed dryer modeled with a very
small number of variables ([25]). The problem to
the applied method might have been the small
and slow changes of the variables because the tem-
peratures of the dryer shOuldn't increase above 42
degree centigrade constantly for about 100 hours
of the drying procedure. During that period the
drying abilities of the corn are going through three
different types of behavior ([26]).

Constant or slow changing variables are very
sensitive to any qualitative treatment. Neverthe-
less, the obtained model of input/output energy
ratio in the starting and in the stationary part of
the process has shown a very good level of deter-
minism ([21], [25]).

Next application has been done for modeling a
restricted food market in a so called tautological
model - or a type of Paretto analysis ([27], [28]).
The value of the market has been predicted with
the precision of 0.93% of the realized šale taking
into account that an idealized prediction of criti
cal variables has been made for the defined tirne
interval.

Some basic research supporting the obtained re-
sults has been reported as the proposed language
of the procedure named Quacol (qualitative cor-
relation language) ([29]).

The aim of the paper is to explain the Qua-
col algebra which is at the base of the qualita-
tive/quantitative circular transformation method,
and it will follow the steps:

— definition of the intended model space and its
measure of communication

— continuous Godel numbering in the ordinal
model space

— presentation of the Quacol algebra

— modeling steps with the proposed algebra

— results and discussion.

2 Model events, spaces and
measure of communication

Essential for this part is the communication as-
pect of the qualitative content of the information
on process state and change of state.

A reasoning system comprises an on-line engine
where the connection to the process and plant
is realized, software for support of the reasoning
process and a connection to the system evalua-
tion operator. The usual form of such a system is
given in Fig. 1. as an expert system environment.

Events that occur in the process or plant are
fed to the system memory. They are later used
as a source of producing a system model in the
reasoning process. Events are simple when only
one variable with one measurable parameter is

F. Jovič

\

/

INFERENCE
ENGINE

ON - LINE
ENGINE

KNOVVLEDGE
MANAGEMENT

FACILITIES

KNOVVLEDGE
BASE

SIMULATOR

Figure 1: A complex reasoning system environ-
ment in real-time process control

fed to the system memory, or complex when a
large set of variable measurements are fed at an
instance. A series of complex event instances pro-
duces a space in the system memory. Events in
the memory have to be somehow coded in order
to correspond to actual and future system states
if the reasoning system is to be used for predic-
tion. A coding system will be proposed that re-
fiects the process state in a given structure in the
most efncient way. Essential to the coding system
is the state of plant and type of process reaction
involved.
Definition 2.1 A structure (or plant) state is er-
godic if the change of plant states goes through
uiell defined procedures from one to another struc
ture state without being stuck and unable to re-
cover.
Definition 2.2 A process reaction is dull if ali
process variables are measurable, knoum and pre-
dictable.

A dull process in an ergodic structure possesses
the feature of monotonicity, i.e., the increase or
decrease of any of its variable at any plače changes
in some way at other places other variables with
the predictable increase, decrease or constancy
depending on actual process reaction type and
structure involved.
Definition 2.3 The information on process be
havior and plant structure is nested in the sur-
rounding if this surrounding enables the expres-
sion of its content ([22]).
Usually the nesting occurs in computer memory

of the reasoning system making it a nested sys-
tem.
Definition 2.4 A nested system creates its posi-
tion in the surrounding by action.

The surrounding of the process and plant is the
reasoning system memory and the surrounding
of the nested (reasoning) system are the process,
plant and reasoning system itself. Thus the action
of the reasoning system results either in the rein-
forcement value from the process + plant, indi-
cating either the favorable position of the current
state of the environment, or gaining the informa
tion on the current state of the reasoning system.
Definition 2.5 The origin of information can be
used in the so called external information nesting.
Process and plant are external origin of informa
tion for the reasoning system.
Definition 2.6 Using its own or reference infor
mation in the svstem is called internal informa
tion nesting.

When the external information source is used
and modified and based on it a model made,
then the transformation occurs from external into
internal information nesting. Hovvever criteria
which source to use for what purpose is on the
side of system designer. Ultimately, the decision
of external nesting (operator) have to be obeyed.
Definition 2.7 The extent of the information
content consists of the saueezing of the set of pos-
sible information message set.
Theorem 2.1 ([30]) The extent of information
nesting is measurable viith the entropv decrease
in the svstem when modeling a dull process and
ergodic plant.
Proof of the Theorem 2.1: For a dull process and
ergodic plant there is practically no information
change obtained from the process events or vari
ables in subsequent events. The plant behavior
is completeh/ described with the system model.
Also, when the reasoning system is properh/ func-
tioning there are no additional data on its behav
ior change.
Collecting external data from the process results,
for a reasoning system in the process model, with
the information parameters close to the expected
model values. Any content of a process variable
event C{ei) can be measured with its entropy be
ing equal

C(ej) =p(ei) logp(ei), (1)

where e, is the i-th event and p(e;) is its probabil-

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 35

ity of its occurrence. When there is certainty in
process and plant behavior then ali event variable
probabilities tend to have the value 1 and total
entropy

Ctot<J2C^ W
tends to zero; ^ stands for sum over ali events.
A properly functioning model shows a negligible
small difference to the actual events behavior en-
abling thus its expression in entropy units (bits).
Thus the extent of the information nesting or the
value of the model can be measured in the entropy
decrease in the reasoning system. •
Theorem 2.2 The amount of information nest
ing is inversely proportional to the entropy con-
tent regarded from the center of information nest
ing.
Proof of the Theorem 2.2:
The content of process information needs to be
changed during modeling procedure in order to
be appropriate for the user and reasoning process
as well. As each process or process part has its
working point, however changeable during tirne
course, the organization of process data needs to
be done according to this working point (s). Thus
the process information nesting can be organized
around the working point(s). The behavior of the
process model in subsequent event points can be
regarded through its variables and their analytical
relations such as given in the abstract form
Input (Ri,... ,Rj) -> corresponds

-» Output (Rk,... ,Rn), (3)

where Ri denotes analytical relation of either in
put or output variables. The amount of corre-
spondence depends on the model quality. With
the process in its working point and with the
known analytical relation of the model as given
in (3) any given input variable values will corre-
spond to given output variable values. The impor
tance parameter ([18]) of the semantic value of the
model given in (3) will be equal to zero, meaning
that in the working point there is no need to make
any action because the process behavior is com-
pletely in accordance with the expected behavior.
Thus the importance function can be traced for
any process controlled by a reasoning system as
a single valued function as depicted in Figure 2.
The excursions of model variables and their effects
given in relations R\ to Rn are then summarized

,

m
F(s)

Fs
Si0

^

A_.

—

F (s j

1 — ' • *

i—i' •A
i

SjO

Figure 2: The importance parameter function in
a supervisory control system

as variable space Si with corresponding probabil-
ity of excursion F(Si). The importance parameter
rs{ is then calculable from the probability density
function /(5j) starting from the process working
point.

Any change from the working point introduces
entropy. As the information content of the im
portance function is gradually increased from the
center of nesting so its nesting amount is decreas-
ing as an inverse function of the importance func
tion. •
Theorem 2.3 The communication of informa
tion content in čase of information nesting change
is more effective by means of a qualitative (picto-
graphic) language.
Proof of the Theorem 2.3:
The efficiency of any message can be measured by
its coding length.
The change of nesting due to process changes re
sults from the discrepancy between observed and
modeled and results in the unexpected change of
the working point. The change can be commu-
nicated in the quantitative manner by sending at
least a percentage and direction of change. When
using qualitative manner of communication then

36 Informatica 21 (1997) 31-47 F. Jovič

only by sending the data on ranks of two con-
secutive importance parameter will sufnce. Thus
coding with qualitative data is more effective. D

Any qualitative communication is a type
of a pictographic language such as more/less,
up/down, first/next, good/evil pairs of symbols.

3 Continuous Godel numbering
Evaluation marks that are given to students are
a simple example of qualitative or ordering vari-
ables. Many technical terms are expressed and
used in qualitative form without even a notice of
the user. Thus for example the notion of hard
ness in metallurgy is practically applied using the
numbers of relative material hardness. The usage
refers to the specific discrete continuous number
ing system of graduate hardness of different ma-
terials which is only qualitative in its nature.

Thus qualitative approach to technical and sci-
entific issues is sometimes subsummed without
any "critical" revision or rigor. The basis for such
state in čase of hardness numbers is the natural
behavior of materials that harder material cuts
the softer one and naturally imposes the continu
ous discrete ordering in the system.

The aim of this part is to introduce a gen
eral procedure of continuous (discrete) number
ing. Kurt Godel introduced discrete set number
ing in 1905 and it was later used extensively in
computer science ([31]). By introducing a contin
uous (discrete) numbering the reduction of prob
lem dimensionality can be obtained. On the other
hand, such a method introduces naturalb/ more
nonlinearity and needs to be analyzed.

3.1 Ordinality and cardinality of
models

As pointed earlier qualitative reasoning forms
a substantial part of our everyday experience.
There are two central properties of qualitative
reasoning ([32]):

(1) The variables under consideration are, at
best, loosely specified in terms of inequality
relations or ranges of values;

(2) The system properties that interest us are
not sensitive to changes in either the form
of functional relations or the specific geome-
try's.

Thus in a group of potentialb/ equal products
one can find the most favorable without consider
ation of bigger geometric tolerances compared to
the next favorable one.

Qualitative reasoning treats variables that are
scaled or dinar ily, or put into order, rank, hence
they are defined only up to an arbitrary strict
monotonic transformation. As a net result any
ordinah/ treated system observed and modeled in
n events can take at maximum n different ranks
of its qualitative behavior.

Cardinal or numeric values cannot be at-
tributed to ordinal variables, but ordinal proper
ties can be always attributed to cardinal variables.
This points to the primality of ordinal values, nev-
ertheless.

Ordinal variables are invariant under arbitrary
positive monotonic transformations of the mea-
surement scale as will be presented in relation (2)
while cardinal relations are invariant only under
affine transformations ([32]). Process models are
usually describable at least by nonlinear differen-
tial equations. An example of such a model is the
čase of a three variable nonlinear system

The ratio of these two equations gives

dy_ = g(x,v) /2x
dx f(x,y)'

The equation (2) gives the system's path from any
initial conditions. At any point in such a path
equation (2) gives the path's slope. To study the
qualitative properties of the phase portrait in de-
tail one needs to define what is meant by qualita-
tive properties in dynamics. Following the work
by Andronov et al. ([33]) qualitative properties
are those properties of paths, sets of paths and
phase portraits that are topological invariants.

Topological invariant properties are properties
preserved under arbitrary topological mappings
of the region or set. A topological mapping is
one-to-one or bicontinuous. Each point M maps
to exactly one point M' of the same plane or set.
Distinct points Mi and M^ map to distinct points
M[and M'2 and any two arbitrary close points M\
and Mi map to arbitrary close points M" and M%.
The inverse of topological mapping is also topo
logical. A topological transformation can drasti-
cally change the shape of curves and regions but

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 37

a closed curve will remain closed and a straight
line will generallv become an are that does not
intersect itself.

The fundamental problem of the qualitative
properties is the topological strueture of the phase
portrait. Singular paths, closed paths and sepa-
ratrices are erucial in the determination of svstem
behavior. Thus the indication of information on
svstem paths is needed to ensure the qualitative
investigation as complete as possible. These are:

(1) The number and type of equilibrium states
— this is often a nontrivial task ([33]);

(2) The existence of closed paths, sueh as iso-
lated limit cveles, or whole regions as in con-
servative svstems. For limit cveles one needs
to know the number, their relative position
and their stabilitv;

(3) The behavior of the separatrices, especiallv
when x and y are approaching infinitv.

These properties are invariant under topological
transformations of x and y. Reasoning about
qualitative properties of global nonlinear differen-
tial equations have not yet been developed except
for the čase of stability invariance ([32]). Our ap-
proach is to invert the approach by construeting
algebraic and difference equations based on qual-
itative behavior of process variables ([21], [23],
[25], [34]).

3.2 Cardinality of a complex
reasoning system

Although the ordinal number of a complex rea
soning system can take only n or less qualitative
ranks or values in n observing events, the cardi-
nality of sueh a system is principally determined
with the number of independent variables in the
system number of events taken, and resolution of
the measurement variables. The cardinal number
of any system is thus a set of numbers attached
to ali its measured variables at any process event.
The space of sueh a set is big and yet not satis-
factory because lacking of system behavior esti-
mates. Sueh estimates, presented in Figure 1. as
an expert knowledge, require its inclusion in the
reasoning system and inerease its cardinality.

The inclusion of expert knowledge is done by
means of a questionnaire to be answered by plant

and process experts and put into any knowledge
representation scheme sueh as tables, databases
or rules. Sueh expert data form a multivariable
space of answers on plant and process estimated
states.

When, for instance, ten groups of six questions
with binary answers are elaborated, then an ad-
ditional space of 260 is to be added to the system
cardinal number.

3.3 Continuous Godel numbering

The notion of Godel numbering is a rather well
known method in algorithm theory ([31]). Hav-
ing any program or data line written in a given
language or a data code, an equivalent of ASCII
binary code can be stated as well as its equiv-
alent in base ten notation, or in any other base
notation. Thus any program activity or a perti-
nent data set can be recognized in any program
step as a numeric equivalent with different nu-
meric outeome corresponding to some command
code etc.

Godel numbering is thus a diserete numbering
svstem of computer commands and its outeomes.

When a similar numbering system is introduced
that enables continuous diserete numbering of
complex process and plant states then the pos-
sibility arises for an automatic ordering of other-
wise discontinuous diserete space of process and
plant states.

Let us suppose that the whole space of sys-
tem states is defined with the reasoning system
questionnaire, integrating the space of variables,
events and resolutions of measurement into the
questionnaire. With the number of plant and
process state parts m each with k questions and
each question having j different answers there is
a space with q different answers

m k

9=n zn*' (3)
i=i i=i

where Y[represent the product of m respectively
k members, each member having k respectively ji
values.

In order to obtain the required continuous num
bering, the answers have to be grouped into rel-
evance categories. The answers to the question-
naire grouped into the same relevance category
can be evaluated by process and plant experts into

38 Informatica 21 (1997) 31-47 F. Jovič

broader and coarser groups having the following
features of corresponding marks:

(1) evaluation marks of process/plant states can
be given in numerical form;

(2) numerical classification of marks can be put
into a continuous system preserving its orig
inal ordinality;

(3) continuous evaluation although deliberately
nonlinear is uniquely connected to the ordi-
nality of the respective variable.

The only condition for the fumllment of the points
(2) and (3) is the change of the numbering system
for each feature group according to the numbering
base of the particular mark. Thus having two stu-
dents, with ali their marks equal except marks for
two different subjects, can be put into a continu
ous Godel numbering system by unequal number
base of these two subjects.

Basic relation for such continuous transforma-
tion takes the form of

z = C(x?), « = 1,2,3, . . . ,« , (4)

where z is the total continuous Godel number of
particular evaluation questionnaire, a, are num-
bers exceeding each feature group evaluation by
one, Xi are marks given to each feature group, C
is designation of positional connection of specific
mark and v is the total number of feature groups.
Example: For the municipal thermal power
plant the following daily report based on hourly
data has been issued for process operators and
plant technical people regarding the overall state
of the plant, Table 1 ([35]).

The plant response was coded using a contin
uous Godel numbering from equation (4). Thus
a series of data was obtained as given in Table
2. The coding was based on plant total efficiency
and economy of fuel expressed in Godel numbers,
while the total Godel number z was expressed as
a transformation

z = (x on base c)C(y on base d) , (5)

where c = 27, d = 4 and x =efficiency,
y =economy of fuel, Table 2. Total number of
continuous states equals to decimal 108.
Theorem 3.1 Any dull process is continuously
Godel enumerable.

SYSTEM

Figure 3: A hypothetical simple system with two
inputs and two outputs

Proof of the Theorem 3.1: Any dull process does
not produce any unmeasurable variable and any
measurable variable can be put into a continu
ous Godel numbering system by a simple ranking
procedure. •

4 The Quacol (qualitative
correlation) algebra

Whether in the qualitative form or given in the
continuous Godel presentation any process vari
able taken in n events forms a single valued dis-
crete function with maximum n distinct values.
Such discrete single valued function will be named
an n-point graph. The subject of this part is to
present the usual way of using such graphs in rea-
soning systems i.e. for modeling purposes where
a specific algebra arises connected with multiple
transformation of such graphs from quantitative
to qualitative content during modeling procedure.

4.1 Basic modeling procedure

Any system can be described in terms of its in
put and output variables. A simple system with
two input and two output variables is presented
in Figure 3.

Let us suppose that both input and output vari
ables are measurable in ali events. Thus four n-
point graphs can be obtained when these mea-
sured values are taken and converted into quali-
tative form or put into a ranking procedure of any
kind.

If interested into the system behavior, one
would like to make any type of system model. The
simplest way to start with would be to correlate
qualitatively any combination of simple input and
output n-point graphs. In our čase there are four
combinations of correlations : In 1 corr Out 1, In 1
corr Out 2, In2 corr Out l , and In 2 corr Out 2.

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 39

hour

Ambient temperature (°C)
Hot water load (MWh)
Vapor rate at plant level (ton/h)
Masoot rate (ton/h)
Gas rate (in 1000 normal m3/h)
Vapor rate at turbine input (ton/h)
Vapor rate at condenser input (ton/h)
Electrical energv at generator (MWh)
Total fuel energy (GJ/h)
Fuel energv used for electrical energv (GJ/h)

1

3.03
8.71
23.73
8.18
0.15
51.58
50.39
14.63
297.7
172.9

2

2.62
9.00
22.63
8.02
0.15
51.08
49.32
14.36
291.8
169.9

3

2.27
22.31
23.05
9.57
0.15
74.00
43.29
17.68
347.4
168.8

22

8.56
8.52

26.63
8.31
0.14
49.56
49.27
13.82
302.1
167.3

23

8.12
8.98

27.22
8.40
0.14

48.61
47.45
13.49
305.3
166.4

24

8.7
9.18

27.58
8.04
0.14

49.94
44.44
12.63
292.5
151.4

Table 1: Overall variables of the povver plant taken from 31 plant variables (only the first and last
three hours of the daily report data are given)

hour
Plant efficiency
Economy of fuel
Godel number*

1 2 3 4 5 23 24
0 0 8 25 26 1 3
0 0 1 3 3 0 0

0A 0A 8B 25D 26D 1A 3A

Table 2: Coding of the plant global behavior in Godel numbers;
as A, B, C, and D

the set of variable y is designated

We can make an assumption that the second
combination gives the highest correlation coeffi-
cient. Here stops the usual investigation of such
a type. But when we analyze reasons why the
second combination lacks in better correlation we
may find that the In 1 quantitative data added to
the In 2 quantitative data and converted to its new
n-point graph exhibit a better qualitative correla
tion with Out 2 data.

Thus turning again to the quantitative aspect
of process information and back to the qualitative
evaluation of the behavior of such a treatment
represents a circular way of system modeling by
using such transformations.
Example:
A hypothetical čase is presented with data in Ta
ble 3-5. for a system from Figure 3. and for the
čase of a very short three-point n-graph. Pre
sented in Table 3. are four measured values from
three events as well as corresponding ranked val
ues of these measured values. Squared differ-
ences of ali corresponding ranks and their sums
are given in Table 4- The čase of summing two
input variables and comparing the sum with the
output variable Out 2 is given in Table 5. As visi-
ble from Table 3c. there is a complete qualitative

event
In l
In 2
Out l
Out 2

measured values
1 2 3

20 10 5
5 10 15
10 10 10
4 2 2

ranked values
1 2 3
1 2 3
3 2 1
2 2 2
1 2.5 2.5

Table 3: Measured and ranked. variables from
three events of the system from Fig. 3

correlation between the added combination of in-
puts and the output variable Out 2.

4.2 More complex algebraic
operations and their consequences
on rank graphs

The subject of this part is to introduce some com-
mon features of algebraic operations on quantita-
tive aspects of n-graphs and results of these op
erations. Such n-graphs are strictly defined on
dynamic across-the-time series of measurable pro-
cesses although a lot of freedom in relative pro-
portions of tirne measure is acceptable. The tirne
intervals between steps depend on the nature of

40 Informatica 21 (1997) 31-47 F. Jovič

event
rank differences squared
1 2 3

sums of rank differences squared

I n l / O u t l
I n l / O u t 2
In2 /Ou t l
In2/Out2

1
0
1
4

0
0.25

0
0.25

1
0.25

1
0.25

2
0.5
2

4.5

Table 4: Qualitative evaluation of different input/output variable combinations

event
(Inl + I n 2)

(Inl + In2)/Out2

sum of measured values ranked values
1 2 3 1 2 3

25 20 20 1 2.5 2.5
rank differences squared sum of rank differences squared
0 0 0 0

Table 5: The čase of complete qualitative correlation of the sum of input variables Inl and In2 and
the output variable Out2. Table 3-5: A simple hvpothetical čase of complete qualitative correlation
after an algebraic operation on input variables of the svstem given in Fig. 3.

the process and are outside the scope of the pa-
per. The ranking of time independent data series
is considered elsewhere ([36]).
Definition 4.1 An n-point graph is a single val-
ued discrete function defined in n points and ob-
tained from the ranking procedure of a process
measured values or from ranking procedure of a
Godel numeration of more complex system behav-
ior, inhere n > 1.
However processed the sum of ali n-graph values
is equal to

S = l + 2 + ... + n =
n(n + l)

(1)

and its mean value is n ^ .
The n-graphs i, j , and k will be designated as gin,
9jn and gkn.
Theorem 4.1 The n-point graph g{n is transpar
ent to the scaling procedure, i.e. any linear oper
ation on its quantitative part with the constants a
and b, does not change the graph or
a + bgin — gin for a > 0, a < 0, b > 0,

const 1, b — const 2 . (2)

The proof is trivial since multiplving ali val
ues with a constant does not change the order
of ranked values, as well as adding a positive or
negative constant. The meaning of relation (2)
is the invariance of Quacol algebra under positive
metric transformation.

For b < 0 the n-point graph is mirrored around
its mean value i.e.
a + bgin = r - for a > 0, a < 0, 6 < 0,

9in

a = const 1, b = const 2 (3)

Definition 4.2 An n-point graph g\n is strictlv
increasing (or decreasing) ivhen the consecutive
graph points are in the decreasing (or increasing)
order.
Definition 4.3 An n-point graph gin is a mono-
tonicallv increasing or decreasing ivhen some or
ali of its consecutive graph points are of the same
rank in the increasing or decreasing order.

Graphs can be partiallv strict or monotonic
when some of their parts exhibit the features
given in Definitions ^.2 and 4-3-
Theorem 4.2 The addition operation on two (or
more) n-point graphs yields a new n-point graph
i.e.,

din + gjn = 9kn • (4)

When two monotonicallv increasing or decreas
ing graphs are added, a less monotonous graph
is obtained because of independence of its mono-
tonicitv type.
Theorem 4.3 The addition operation on two
stricthj increasing n-point graphs gin and gjn gives
onhj the same stricthj increasing n-point graph,
or

Qin i gjn = gin — 9jn • (O)

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 41

Theorem 4.4 The multiplication operation on
tivo n-point graphs is commutative, i.e.,

9in9jn — 9jn9in • (6)

Because the multiplication takes part in their cor
responding quantitative value pairs the commuta-
tiveness propertv is unquestionable.
Theorem 4.5 The inversion operation on the n-
point graph gin changes the graph into its mir-
ror n-point graph gjn symmetrical to gin around
the mean value. Particularly the monotonically
increasing n-point graph gin is converted into its
monotonically decreasing counterpart gjn, i.e.,

J_
9jn

(7)

Proof: when any two quantitative values of the
n-point graph are inverted then their ranking is
inverted as well, maxima are converted to minima
e.t.c. D

Theorem 4.6 The division operation of any
tivo n-point graphs gin and gjn is always possible
even when some values of the quantitative part of
the divisor graph gjn possess zero values, i.e.,

9jn
= 9kr, (8)

Proof: Due to Theorem 4-1 the quantitative val
ues of the n-point graph gjn can be ali set to
nonzero values and then the division operation
can be performed. Nevertheless the division op
eration exhibits highlv nonlinear results in svstem
modeling. •
Definition 4.4 The similaritv of tivo n-point
graphs gin and gjn can be measured. The measure
of similarity SM can be ezpressed as a function
of the sum of rank differences squared among cor-
responding graphs, as given in Table 3. In this
sense the similarity betiveen tivo n-point graphs
is proportional to the inverse value of the sum of
rank differences squared, i.e.,

SM =
EDJ 2 ' (9)

ivhere Di is the difference betiveen tivo ranks at
point i of the n-point graph and £ designates the
sum above ali n points. Usually the sum of rank
differences squared or (%2Df) can be used as the
similarity measure.

Two n-point graphs can be evaluated for their
similaritv by using the gualitative correlation co-
efficient r ([37]) given with the equation (for ali
different ranks)

1 -
6 £ D ;

(10) n[n2 — 1)

where n is the length of the n-point graph.
Definition 4.5 The goal n-point graph is any n-
point graph that is to be mimicked during the mod
eling procedure by a set of other n-point graphs
using different algebraic and other mathematical
relations among them in order to obtain as simi-
lar result as possible.
Definition 4.6 Any n-point graph possesses a
certain amount of svstematic pictographic con-
tent ivhen its shape resembles to some simple sym-
metric or unsymmetric, odd or even line function
such as constant, monotonicly increasing or de
creasing function, U or inverse U shape, J or in
verse J, N or inverse N, M or inverse M (W) etc.
Definition 4.7 Two n-point graphs can pos
sess nonsvstematic pictographic content ivhen by
means of any type of algebraic operations on their
quantitative contents they can be made more simi-
lar to the reauired goal n-point graph ivithout using
any n-point graph ivith a systematic pictographic
content.

The measure of their similaritv can be ex-
pressed by (9) or (10).

Apart from or sometimes combined with alge
braic operations other types of operations can be
used such as differentiation, point shift, inversion
etc.
Theorem 4.7 Principal reason for the decrease of
similarity of a given n-point graph to a given goal
function lies in dispersion of otherivise ezpected
monotonous ranks to other parts of the n-point
modeling function by means of any algebraic op
eration.
Proof: any two rank positions can differ in a very
small amount of corresponding quantitative con
tents. Thus any algebraic operation can remove
any rank to any point of the n-point modeling
function. Thus caution should be put whenever'
the n-graphs are treated possessing small amounts
of the corresponding quantitative content. D
Definition 4.8 Qualitative noise is any unpre-
dictable change of rank positions due to infinites-
imally small changes of the corresponding auanti-
tative variables.

42 Informatica 21 (1997) 31-47 F. Jovič

RANK

k+1 -•

k

k-1

Figure 4: The example of qualitative noise calcu-
lation

Example:
Let us consider the example in Figure 4- where
two graphs each with three points is presented.
Let us suppose that the goal of addition of these
two graphs is to obtain the (goal) n-point graph
as given in Figure l^c.

The čase can be described with the following
set of consistent inequalities

aa\ + bb\ < aa2 + bb2 or a{a\
aa% + 663 < aa2 + 662 or a (03
aaz + bb$ < aa\ + bbi or a{a<$

a2) < b(b2 - h)
a2) < b(b2 - 63)
d) < b(h ~(U}

that can be reduced under less general but stili
rather strict conditions to

x-l<c, l-y>c, x-y>2c, (12)

where x = ai, 1 = a2, y = 03 are points on graph
A from Fig. 4a, and bi = 1, b2 = 2, 63 = 3 are
points on graph B from Fig. 4b, and c = | .

In the čase of taking c = \ the limit of the solu-
tion is obtained meaning that even the infinites-
imallv small change of c above ^ will induce the
jump in the shape of the graph in Fig. 4c.
Definition 4.9 The sensitivitv of an n-point
graph is equal to the amount of decimal num-
bers of the corresponding quantitative data of the
graph.

Theorem 4.8 Any algebraic operation on an n-
point graph increases the sensitivity of the ob
tained result.
Proof:
The initial sensitivitv of any n-point graph equals
to the measurement precision of process variables.
When two n-graphs of the same sensitivitv are
added then the result is the average increase of
the sensitivitv by a half decade. The multipli-
cation operation increases the sensitivity by fac-
tor two or for measured variables by two to three
decades etc. •
Theorem 4.9 The limits of model building are
determined with the qualitative noise.
Proof:
The goal of model building can be simply stated
as a series of comparisons of results of algebraic
operations on input and output variable relations
such as given in the general form in expression
(3). When more and more complex relations are
used for model building then the sensitivity of
the obtained n-point graphs increases in such a
way that the resultant quantitative data are so
big that they finally induce the effect of qualita-
tive noise due to stochasticity of used algebraic
transformations ([38]). •

5 Modeling procedure with the
Quacol algebra

The circular modeling procedure with the pre
sented Quacol algebra is briefly given in Figure
5. It consists of the following parts:

a) preparatory part, where process variables are
selected, event samples taken and the conver-
sion into n-point ranked graph is done (mod-
ules 1, 2, 3 in Fig. 5)\ the result of this mod
eling phase are relevant model variables put
into the form of n-point graphs

b) model selection part (module 4), where
model goal function is defined either as a
simple output n-point graph or similar input
graph or as a complex algebraic relation of
such input and/or output graphs

c) determination of input/output model differ-
ence (module 5) with the choice of difference
behavior in a svstematic manner, as given in

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 43

Definition 4-6 (module 18) or in a nonsvs-
tematic manner, as given in Definition J^.l
(module 12)

d) the difference in nonsvstematic manner leads
to model compensation by selection and in-
clusion of a new n-point graph (module 6),
and the difference in svstematic manner leads
to the selection of a new model analvtic form
(module 7) and both lead to the model scal-
ing procedure in quantitative form, as given
in expression (2) (module 8)

e) model conversion into quantitative form and
its testing for adequacy by using expression
(9) after converting into qualitative form is
performed in modules 9 and 16 ; the result of
model adequacy leads to it conversion into
quantitative form (module 10) and its ap-
plication in the process automation (module
11); the resulting inadequacy leads to the
procedure of trial to make a better system
model

f) the part of making a better system model can
be concluded either by changing the scale of
the model (module 13) or by dropping out
the included new variable or a new analytic
expression (modules 19 and 17) or by arrang-
ing a complete new way of input/output goal
functions (module 14)

g) the čase of process behavior change with time
is arranged in the modules 20 and 21 where
after a definite time interval a completely
new procedure of modeling takes plače.

The application of this procedure was done for
the čase of the thermoelectric power plant where
the modeling of input/output relation led to the
final model as given in ([19])

(aivi + a-ivi) - corr - (u4 H —) , (1)
a3 + a4u3 ' v * ' v7

where the model variables are as follows

vi - feedwater flow
vi - masoot flow
V3 - masoot temperature
U4 - steam flow
V5 - temperature of exhaust gases
VQ - burner air flow
vj - burner pressure
and ai,... ,a$ are model constants.

2 0 -

19 •

18 •

17 •

16 •

15 •

14 •

13 •

12 •

11 •

10 '

9

8

7

6

RANK

;--\

MODEL 3

GOAL FUNCTION

goal function

M O D E L I -11+ -i

- ±
0.875(3

••*••• : MODEL 2 -"4/ f2
•»- : MODEL 3 • f i«a.s J$J 4 -

: MODEL 4 . f u - | .

JH—ii I I I
11 12 13 14 hour

Figure 6: Modeling input/output relations in a
thermoelectric power plant
([19])

The numeric value of the obtained model rela
tions was 11 decades and the sum of ranks squared
was 46. The length of the model was n = 24.
The most critical part of the modeling procedure
was model sensitivity to the slightest change of
the analytical form that resulted in the drastically
change of the corresponding ranks. The most crit
ical were the ranks between the l l t h and 14th
point of the n-point model graph, as depicted in
Figure 6.

6 Discussion

The circular nature of system modeling is de-
scribed in points e), f) and g) of part 5. In its
nature it is a repetitive procedure that after test
ing of model inadequacy leads to the change of its
form in either inclusion of new variables or new
analytic forms but always based on testing numer-
ical differences of the qualitative n-point graphs.

44 Informatica 21 (1997) 31-47 F. Jovič

preliminary selection
of process
variables

determlnatlon of
difference beetween

input and output models

YES
selection of new

variable according to
individual difference

YES

T
selection of new

model analytic form
according to group

difference

J
scaling procedure
in guantitative form

model conversion
in gualitative form

erasing of new
variable or

analitic expresion

coversion into
quantitative form

I
model

application

10

11

Figure 5: Circular information processing in nonlinear process modeling

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 45

Thus in its base it is a qualitative procedure, al
though it can include both qualitative and quanti-
tative process description that after its conversion
into qualitative rank data can be evenly treated.
This makes the algebra feasible for a very wide
application area especially in quality control oper-
ations and complex human related modeling. The
engineering of such procedures is ensured by in-
troduction of the continuous Godel enumeration.

Such a qualitative procedure leads to models
that are weaker in its determinacy degree as com-
pared to the same obtained quantitative corre-
spondent models by using quantitative correla-
tion. However a slight improvement can be done
toward a better determinacy of the model by us
ing scaling feature of the method because of its
invariance to the scaling procedure.

Essential for the procedure are two parallel pro
cesses that are exhibited through such modeling:
a strong and measurable increase of model sensi-
tivity and intrinsic existence of so called qualita-
tive noise.

Nevertheless, ali algebraic operations in Qua-
col algebra are not of the same strength. Thus
addition increases very slightly the modeling sen-
sitivity compared to the multiplication procedure.
Both subtraction and division increase drastically
the content of noise and thus limit the number of
modeling steps. On the other side not ali opera
tions in Quacol algebra are preserving systematic
features of the n-point graphs in the same way.

A special problem might present the length of
the n-point graph. While for short and very short
graphs, meaning graphs with less than 10 points,
the exact correlation of the input/output model
is obtainable, longer graphs are not prone to this
feature, although a very high precision of models
can be obtained.

A special field of features are hidden in opera
tions of the Quacol algebra that are not exactly al
gebraic one such as inverting, differentiating and
delaying operations. They can be also included
into the algebra since the behavior of usual alge
braic operation are extended in Quacol algebra.
They extend the type of modeling possibilities
toward nonlinear stochastic difference equations
([23]).

The division operation in Quacol algebra is
completely permissible which puts this algebra
into a very favorable position for model building.

The only almost completely unknown region of
the investigation is the feasibility of mixing var-
ious quantitative and qualitative variables in ob-
viously a very free manner. The response to this
problem will be treated later although it has been
already observed that processes tend to exhibit
the feature of "gestalts" ([39]), i.e., their features
are not expressible in a unique additive way.

Acknowledgments. The author is thankful
to Prof. Lee J. White CWRU for suggestions and
comments.

References

[1] Nishida T., Tomiyama T. and Kiriyama T. :
Eighth International VVorkshop on Qualita-
tive Reasoning about Physical Systems, Al
Magazine, Summer 1995,7-8.

[2] DeCoste D.: Dynamic across-time measure-
ment interpretation, Artificial Intelligence 51
(1991) 273-374.

[3] Gerevini A. and Schubert L.: Efficient algo-
rithms for qualitative reasoning about tirne,
Artificial Intelligence 74 (1995) 207-248.

[4] VVilliams B.C.: A theory of interactions: uni-
fying qualitative and quantitative algebraic
reasoning, Artificial Intelligence 51 (1991)
39-94.

[5] van Beek P.: Reasoning about qualitative
temporal information, Artificial Intelligence
58 (1992) 297-326.

[6] Kuipers B.J.: Reasoning with qualitative
models, Artificial Intelligence 59 (1993) 125-
132.

[7] Raiman O.: Order of magnitude reasoning,
Artificial Intelligence 51 (1991) 11-38.

[8] de Kleer J. and Brown J.S.: A qualitative
physics based on confluences, Artificial In
telligence 24 (1984) 7-83.

[9] Forbus K.D.: Qualitative process theory, Ar
tificial Intelligence 24 (1984) 85-168.

[10] Falkenhainer B. and Forbus K.D.: Composi-
tional modeling: finding the right model for
the job, Artificial Intelligence 51 (1991) 95-
143. - 20 -

46 Informatica 21 (1997) 31-47 F. Jovič

[11] Skeirik R.D.: Modular neural network pro
cess control system with natural language
configuration, International Patent Classi-
fication G06F 15/80. Int. Publ.No.: WO
92/02896. 1992.

[12] Dvorak D. and Kuipers B.J.: Process mon-
itoring and diagnosis: a model based ap-
proach, IEEE Expert 6 (3) (1991) 67-74.

[13] Vilain M., Kauty H. and van Beek P.: Con-
straint propagation algorithms for temporal
reasoning: a revised report in Reading in
Qualitative Reasoning about Physical Sys-
tems (Morgan Kaufmann, San Mateo, CA,
1990) 373-381.

[14] Shin K.G. and Cui X.: Design of a Knowl-
edge Based Controller for Intelligent Control
Systems, Proč of the 1990 American Control
Conference, San Diego CA, 1990, 1461-1466.

[15] Jovič F.: Expert Systems in Process Control,
Chapman and Hali, London 1992.

[16] Isaka S. and Sebald A.V.: An Optimization
Approach for Fuzzy Controller Design, Proč.
of the 1990 American Control Conference,
San Diego CA, 1990, 1485- 1491.

[17] Goldberg D.E.: Genetic Algorithms in
Search, Optimization and Machine Learning,
Reading MA : Addison Wesley, 1988.

[18] Jovič F. and Zupanec R.: Entropy and se-
mantics of process model variables (in Croa-
tian), VI Symposium on Automatic Control
Systems, Proč of the 35th Jurema, Zagreb
1990, 121-125.

[19] Jovič F.: Possibilities of entropy and seman-
tic application in the estimation of process
model variables, Elektrotehnika 35, No. 12,
1992, 45-54.

[20] Jovič F.: Causality function in expert pro-
duction systems, 6th International DAAAM
Symposium, Krakow, October 1995.

[21] Jovič F.: Process Modeling by Multiple Con-
version of Nonlinear Analytic Expressions
of Process Variables into Qualitative Form,
Patent Claim HP950207A, Croatian Patent
Office, Zagreb 1995.

[22] Zeleznikar A.P.: On the way to information,
Ljubljana 1990, Authors publication, ISBN
869012510.

[23] Vorko-Jovič A. and Jovič F.: Macro Model
Prediction of Elderly Peoples Injury and
Death in Road Traffic Accidents in Croatia,
Accid. Anal. and Prev. Vol.24 No.6, 1992,
667-672.

[24] Jovič F.: Information in Nested Expert Sys-
tems, Proč of the Croatian Systems Society,
Artificial Intelligence in Measurement and
Control, Zagreb 1992, 113-118, Editors: N.
Bogunovič and F. Jovič.

[25] Jovič F.: Modeling Energy Ratios in Corn
Seed Drier, XI Int. Conf. of Technologists for
Drying and Storing, Stubičke toplice 1995.
191 - 196.

[26] Petric P.: Technological Aspects of the Dry-
ing Process of Grainy Agricultural Products
(in Croatian), Končar Stručne Informacije 1,
1989, 21-23.

[27] Me Graw Hill Dictionary of Modern Eco-
nomics, 3rd edition, Me Graw Hill Corp. New
York 1983. p 337.

[28] Jovič F.: A Food Market Estimation from
Characteristic Purchase Variables, to be
published.

[29] Jovič F.: On Grammar of Quacol - Language
for Process Modeling, Eurosim Congress '95,
TU Vienna 1995, Poster Book, Poster No.49.

[30] Jovič F.: On Continuous Goedel Num-
bering In Expert Systems, IX Int. Wis-
senschaftliches Kolloquium Hochschule Bre
men - Universitaet Osijek, Bremen 1993, 41-
46.

[31] Brookshear J.G.: Computer Science, The
Benjamin/Cummings Publishung Company,
Inc., Redwood City, CA 1991.

[32] Kalagnanam J. et ali.: The mathematical
bases for qualitative reasoning, IEEE Expert,
April 1991, 11-19.

[33] Andronov A.A. et ali.: Qualitative Theory
of the Second Order Dynamic Systems, John
Wiley and Sons, New York, 1973.

http://Publ.No

QUALITATIVE REASONING ... Informatica 21 (1997) 31-47 47

[34] Jovič F.: Drying Process as a Nonlinear Dy-
namic System, IX Int. Conf. of Technologists
for Drying and Storing, Stubičke toplice,
1993, 123 - 129.

[35] Anič-Ivičič S. et ali.: A process control and
supervisory system, Proč. of the MIPRO
Conf. PU 51-55, Opatija-Rijeka 1988.

[36] Jovič F., Piližota V. and Ugarčič-Hardi Ž.:
CIM in Food Industry - a Missing Link in
Process Prediction, Int. Conf. on Computer
Integrated Manufacturing, Zakopane, May
1996, 131-137.

[37] Petz B.: Basic Statistical Methods (in Croa-
tian) SNL Zagreb, 1985, p 192.

[38] Kohonen T.: Content-Addressable Memo-
ries, Springer Verlag, Berlin, Heidelberg and
New York, 1980.

[39] Jovič F.: Uber eine Gestalttheorie tautolo-
gischer Prozessenmodellierung, Presentation
at the 25th Anniversary of the Polytechnic
Albstadt - Sigmaringen, Albstadt, June 1996

Informatica 21 (1997) 49-57 49

Hierarchical Classification as an Aid to Browsing

J. Royce Rose and Caroline M. Eastman
Department of Computer Science
The University of South Carolina
Columbia, South Carolina 29208
USA

Keywords: unsupervised machine learning, hierarchical classification, browsing

Edited by: Rudi Murn

Received: July 12, 1996 Revised: January 8, 1997 Accepted: January 16, 1997

An approach to browsing large chemical reaction databases is presented. The method
that is described builds on earlier work in which unsupervised hierarchical classification
was used to extract generalizations of reaction classes from reaction databases for use
in reaction knowledge bases. The method described in this paper involves classifica
tion based on both semantic and topological features. It supports the creation of deep
hierarchies in which succeeding levels represent increasing degrees of abstraction. The
creation of a hierarchy allows the user to quickly locate interesting items or classes of
items by performing a tree traversal as opposed to sequentially scanning a hit list. In
addition, the depth of the resulting hierarchy is determined interactively by the user.

1 Introduction

Browsing is a common information seeking ac-
tivity and has been extensively studied [2]. Al-
though browsing is not well defined, a variety
of definitions have been proposed. What they
ali have in common is information seeking be-
havior that involves scanning a (possibh/ large)
number of items looking for something of interest.
The items are not restricted in nature; they may
be books, grocery items, TV shows, or database
records. Browsing is appropriate for searches in-
volving some uncertainty about the goal of the
search or about the way to achieve the goal (or
both).

Several broad classes of database browsing re-
quests can be identified:

1. Items related to X. X is a known or hypo-
thetical item. If X is a known item, it might
or might not be in the database. Items might
be related to X because they are similar to
X or for some other reason. In a chemical
reaction database, a user might request reac-
tions similar to a known reaction; similarity
might be determined on the basis of the end
product or the reaction conditions.

2. Items characterized by P. P is a set of prop-
erties. In a chemical reaction database, pos-
sible classes of properties include reaction
conditions, i.e., temperature, solvent, cata-
lyst, and pressure, topological changes such
as ring closure/opening, and general mecha-
nism such as the base catalyzed nucleophilic
mechanism.

3. Items of interest. This is a vague and ill-
specified request. However, people some-
times browse with exactly this kind of vague
goal in mind. Such searches might be facili-
tated by knowledge discovery systems. Such
a system might be used in a chemical reac
tion database to look for interesting and pre-
viously unidentified groups of reactions.

4. Kinds of items in the database. A user might
be interested in finding out what kinds of in
formation are in the database. This form of
exploration is facilitated by a classification of
the contents of the database. Although this
could be done manually, an automatic classi
fication is both more convenient and poten-
tially more flexible. It makes it practical to
create several classifications based on differ-

50 Informatica 21 (1997) 49-57 J.R. Rose et al.

ent dimensions.

Imposing a hierarchical classification, in which
succeeding levels represent increasing degrees of
abstraction, on either the entire database or the
results of a user query can be used to support
these four broad classes of browsing requests. The
creation of a hierarchical classification on a hit
list allows the user to examine the hit list by per-
forming a tree-traversal. This makes it possible
to rapidly evaluate the contents of the hit list and
quickly locate those items or sets of items the user
is searching for or to determine that they are not
present. Browsing by traversing such a hierarchy
is equivalent to being able to query by similar-
ity. We have chosen to evaluate this approach to
browsing in large chemical reaction databases.

2 The Domain
Chemistry is the science that among other things
deals with the transformations that substances
undergo. Two key problems in this field are re
action prediction and synthesis design. Reaction
prediction addresses the question of what chem
ical reaction or reactions will take plače with a
given starting material under particular condi-
tions. In the čase of synthesis design, the chemist
has a target compound in mind. The question
here is what should be used as starting material
and what reaction or series of reactions should be
used in order to transform the starting material
into the desired target compound.

Reaction prediction and synthesis design re-
quire the chemist to have a very good under-
standing of the types of reactions that may pos-
sibly occur with a given set of materials and the
influence that reaction conditions have. Where
does the chemist get this information? Histor-
ically, chemists have learned about chemistry by
reasoning from individual examples and by induc-
ing generalizations from sets of related reactions.
The chemist may be able to accurately predict
the resulting transformation on a set of starting
materials if these materials and the reaction con
ditions are similar to a known reaction. On the
other hand, this prediction may also be made pos
sible by an understanding of the underlying chem
ical processes. This deep understanding can be
derived by generalizing from a set of related reac
tions.

Both inductive generalization and reasoning
from individual examples are predicated on the
chemist having access to an appropriate collec-
tion of reactions. For this reason, chemistry has
always been a field in which databases have been
compiled. Thus chemistry databases have ex-
isted long before the advent of the modern digital
computer. In earlier times, these databases took
the form of multi-volume compilations much like
very large cookbooks. Today the field of chem-
istry is well supported by computerized databases
[7,22]. These databases provide access to infor
mation about the scientific literature, chemistry
hand books, patent information, business and in-
dustry data, chemical substance information, and
reaction information. Textual, structural, and
factual information is supported. In recent times,
databases with more than one million reactions
have been compiled [1]. Other reaction databases
are grovving by as much as 60,000 reactions per
year [17].

3 The Problem

Chemistry is a field in which the amount of in
formation available has consistently exceeded the
capability of database technology. The explosive
growth of reaction databases brings its own set of
problems. One of the most pressing problems is
not how the data is stored but how the user navi-
gates through such a vast amount of information.
This is usually not a problem if the database hap-
pens to contain the particular piece of informa
tion that the chemist is searching for. However, if
this information is not contained in the database
and the user must search for similar or related
data, then current technology does not provide
an adequate solution. Query methods that were
adequate for reaction databases comprising tens
of thousands of reactions are woefully inadequate
when the database grows by one or two orders of
magnitude.

An important aspect of the problem that users
have with such databases relates to finding a good
match between the generality/specificity of their
queries and the contents of the database. An opti-
mal match results in a hit list containing only that
portion of the database the user is actually inter-
ested in. Even in very large reaction databases
it may be the čase that very little of the chem-

HIERARCHICAL CLASSIFICATION AS... Informatica 21 (1997) 49-57 51

istry that the user is interested in is contained by
the database. In this čase, the user may have to
start with a very general query in order to select
the examples representing that chemistry. On the
other end of the spectrum, the database may con-
tain a rich complement of reactions, perhaps even
the actual example the user is interested in. Here,
the user will want to restrict the query to focus
on the most relevant reaction or set of reactions.

Typically, the user scans the resulting hit list
and then modifies the query in order to better
target the relevant portion of the database. This
may involve submitting a modified query to the
entire database or just to the portion contained
in the hit list. This type of query modification is
both tirne consuming and wasteful of resources.
One of the more tedious aspects occurs when the
user must try to extract a summary of the hit
list in order to decide how to modify the query.
Quite often this is done by glancing at the first few
entries and then modifying the query to exclude
the kinds of entries in the hit list that the user
does not find relevant.

This process of iterative query modification and
hit list summarization results in an incomplete
ad hoc hierarchical classification. Recognition of
this fact leads us to propose hierarchical classifica
tion based on unsupervised learning as an efficient
method for hit list processing in databases of or-
ganic reactions. However, since this problem is
very general, we expect that many of the lessons
learned will be applicable to other domains in
which very large databases of complex objects are
used.

4 Classification Methodology

The approach to hierarchical classification that we
have taken is based on both semantic and topo-
logical features. It builds on the previous work
of Rose and Gasteiger [19,20] which in turn was
based on an earlier scheme that primarily con-
sidered topological features [14]. It supports the
creation of deep hierarchies in which succeeding
levels represent increasing degrees of abstraction.
Our initial efforts have focussed on classifying the
retrieved set (hit list) and not the entire database.
We believe that providing the hit list with a hi
erarchical structure is more related to the needs
of the user than would be reorganizing the entire

database. Another reason for not restructuring
an entire database at the very beginning is that
such an approach would demand extremely close
cooperation with a database provider. However,
we expect that the experience we gain from struc-
turing hit lists will be valuable for later work in-
volving entire databases.

4.1 The H O R A C E Algori thm

The HORACE hierarchical classification algo
rithm was developed for classifying and gener-
alizing sets of chemical reactions. The primary
motivation for this earlier work was the extrac-
tion of generalized reaction descriptions for use
in chemical knowledge bases to support synthe-
sis design and reaction prediction systems. Con-
sequently, the hierarchies that are produced are
created with the specific goal of producing reac
tion class descriptions with the degree of abstrac
tion appropriate for a synthesis design or reaction
prediction knowledge base. The resulting hierar-
chy is simply a means to an end. This algorithm
for which a detailed description has already been
published[19] is shown schematically in Figure 1.

Calculate
Semantic Features

Classify Objects
on the Basis of

Semantic Features

Topological
Hierarchical
Classification

Determine (Sub)Class
Descriptions

(inductive generalization)

Determine Class
Descriptions

(inductive generalization)

Topological
Feature Analvsis

Classifv Objects
on the Basis of

Topological Features

<(Done! >̂

Figure 1: Hierarchical classification algorithm
combining semantic and topological metrics.

The algorithm starts by calculating the seman-
tics of the objects being classified. The meth-
ods for performing this characterization build on
empirical methods developed by the EROS group

52 Informatica 21 (1997) 49-57 J.R. Rose et al.

during the last 15 years [8, 9, 10, 11, 12, 15].
These are used to characterize the electronic and
energy effects operative at the atoms and bonds
of the reaction center. Classification at this level
then is based on the comparison of corresponding
atoms and bonds of the reaction centers of the re
actions with respect to the dimensions defined by
these parameters.

During the topological phase of hierarchical
classification, the reactions are analyzed for topo
logical features to support classification. HO-
RACE ušes a list of 114 features which are essen-
tially chemical subgraphs recognized by chemists
as functional groups. This set of 114 target fea
tures is stored in an external file which can easily
be modified by adding or removing features. At
this level, the classification of reactions involves
the comparison of their complements of topologi
cal features. The precise details of HORACE's se
mantic and topological classification can be found
in Rose and Gasteiger[19].

A hallmark of this approach to classification
is the alternation between phases of classification
and generalization and the way in which seman
tic and topological classification is combined. A
key feature of this algorithm is the manner in
which it combines structural and semantic clas
sification approaches. It does not simply com-
pose the two classification methods. Rather, it
propagates constraints from the semantic phase
of classification into the topological phase. This
is done by first computing the semantic classi
fication and then creating a topologically-based
hierarchy on each of the resulting clusters (Fig
ure 2). Since the topological algorithm is pro-
cessing only reactions from one semantic cluster
at a tirne, it cannot mistakenly combine reactions
from separate semantic clusters that might ap-
pear to be topologically similar. The semantic
features in the čase of chemical reactions consist
of descriptions of chemical structure in terms of
electronic and energy parameters. These describe
the meaning of the structure and make it possible
to create chemically valid equivalence classes of
reactions. The semantic classification is extended
by alternating phases of topological classification
and generalization of both semantic and topolog
ical descriptions. After the topological classifica
tion stabilizes, a final generalization based on the
initial semantic classification is performed.

semantic
generalization

topological
hierarchy

semantic
classification

individual objects

Figure 2: Stylized classification tree.

As can be seen in Figure 2, the topological hier
archical classification actually expands the classi
fication tree in between the semantic classification
and the final semantic generalization level. In a
given hierarchy, each level represents a different
degree of abstraction. The original objects be-
ing classified are at the lowest level. These items
are then classified on the basis of similarity. The
next layer consists of generalizations of the classes
formed by classification of these items. Each level
in the hierarchy is an abstraction of the level be-
low it. The goal is to provide class summaries
which are stored at the next highest level of ab
straction in the hierarchy. The topmost item in
the hierarchy summarizes ali of the objects in the
tree and is therefore the most general description.

4.2 The Modified HORACE
Algorithm

In order to derive substantial benefit from giv-
ing hierarchical order to data, the resulting clas
sification trees should strike a balance between
depth and breadth. For this reason, one impor-
tant goal in the design of the classification al
gorithm was to produce classification hierarchies
expressing a large range of abstraction. This re-
quirement motivated the design of a classification
algorithm combining both phases of semantic and
topological classification. A classification based
on semantic features makes it possible to recog-
nize similarity between objects that may be topo-
logically dissimilar. On the other end of the spec-
trum, consideration of topological features makes
it possible to refine a classification by extending it

HIERARCHICAL CLASSIFICATION AS...

in the direction of greater specificity in a manner
that is intuitive to the chemist.

Notice that the hierarchy shown in Figure 2 is
not particularly deep. Typically, HORACE hier-
archies have the number of levels shown here. Oc-
casionally, however, hierarchies that are shallower
or deeper by one level are produced. This is a re-
sult of the data driven nature of the algorithm. If
the reactions in a given semantic cluster are either
topologically very similar or very dissimilar then
only a single level of topological classification will
be produced [20]. Clearlv, such shallow hierar
chies are inadequate for supporting the browsing
of large numbers of reactions. Consider the čase
where the hit list contains several hundred reac
tions. A hierarchy of only a four or five levels lacks
balance between breadth and depth. The result-
ing hierarchy would look more like a fat bush than
a tree and vrould do little to reduce the informa-
tion overload placed on the user.

The relative shallowness of the hierarchies pro
duced by HORACE has been overcome by modi-
fying the algorithm to increase the number of lev
els produced on the basis of semantic classifica
tion. This is done by varying the distance thresh
old which is used to determine cluster member-
ship. The user supplies a starting threshold value
and ali intervening threshold values interactively
so that a well-proportioned hierarchical classifi
cation tree, from the perspective of the user, re-
sults. Although the computed distances between
reactions are normalized by the number of atoms
and bonds in the reaction centers, selecting an ap-
propriate threshold will depend on the nature of
the reactions under consideration. If the reactions
are quite similar, then a very low distance thresh
old will be required to split the clusters of one
level into significantly smaller clusters in a deeper
level. The threshold defines the upper distance
limit allowable for a reaction to stili be considered
as matching the elements of a cluster. Lowering
the threshold corresponds to requiring a closer de-
gree of similarity. Consequently, the depth of the
hierarchy is determined by the user interactivelv.

Once the size of a semantically based cluster
drops below a user-specified size, it is no longer
considered for further semantic classification. It
is then automatically extended by consideration
of topological features using the topological por-
tion of the HORACE algorithm. Recall that each

Informatica 21 (1997) 49-57 53

internal node of the hierarchy contains a descrip-
tion which summarizes the subhierarchy which ex-
tends underneath it. Such summaries are partic-
ularly helpful in the čase of topologically based
clusters since the resulting descriptions highlight
the structural similarity among the items com-
prising the subhierarchv.

5 A Browsing Example
Evaluation of the modified HORACE algorithm
for supporting browsing is being carried out
on a subset of the ChemInform-RX reaction
database[17]. This set, containing approximately
115,000 reactions, corresponds to the reactions
compiled in the database during 1991 and 1992.
This data set is being accessed directly without
going through a database system.

1 = 2 , 2

Figure 3: Diels-Alder reaction center.

The transformation shown in Figure 3, which
chemists will recognize as the reaction center of
the Diels-Alder reaction, was used as a query. The
data set was then searched directly using a pro
gram written locally. This generated a list of 343
reactions to be treated as a hit list in a simulated
reaction database query.

Figure 4: Level 1 of the hierarchical classification.

In Figure 4 we see the first browsing step with
the creation of the first and highest level of the
hierarchical classification. The user has selected
a distance threshold of 0.8 which has partitioned
the original 343 reactions into 10 clusters, of
which the largest contains 321 reactions. The
clusters at each level contain reactions that are
mutually dissimilar to those of other clusters at

54 Informatica 21 (1997) 49-57 J.R. Rose et al.

the same level with respect to the user specified
distance threshold. Thus, the twenty-two reac
tions that are contained in the nine smaller clus
ters can be interpreted as those reactions most
unlike the remaining 321 reactions in the single
large cluster. Although a single oval-shaped node
has been used to depict the nine smaller clusters
in Figure 4 primarily in order to reduce clutter
and to make the figure more readable, this de-
piction also conveys their dissimilarity from the
large cluster of 321 reactions. The user that is
interested in outliers need only examine these re
actions without ever having to scan through the
vast bulk that resulted from the simulated query.

As mentioned earlier, once the size of a cluster
falls below a user-specified size, it is automati-
cally processed by the topological portion of the
HORACE algorithm. The other side of the coin is
that these smaller clusters will no longer take part
in the refinement of the hierarchy that is based on
user selected thresholds. In this particular čase,
the nine smaller clusters are either so small or
similar within a cluster that no further subhierar-
chy is created on the basis of topological features.
However, each cluster is generalized to produce a
description which summarizes the cluster content.
Thus, the user may choose to look at the gener-
alizations of such small clusters before deciding
whether or not to look at the individual reactions.
The cluster description shown in Figure 5 is for
the cluster containing five reactions from Figure
4. In this figure, the label R l denotes the gener-
alization of hydrogen and Csp3 atoms.

Figure 5: Generalization of the cluster containing
five reactions in level 1.

The extension of the classification hierarchy
that results from the user having selected a dis
tance threshold of 0.55 followed by a threshold
of 0.5 is shown in Figure 6. In the bottom-most
level, two large clusters have been produced in ad-
dition to 16 smaller clusters. The 16 smaller clus
ters comprise only 44 of the 305 reactions on this
level and in the čase of clusters which are not sin-

gletons, the user may initially examine the gener
alized cluster description before deciding whether
or not to look at the individual reactions.

Figure 6: Levels 1-3 of the hierarchical classifica
tion.

Figure 7 shows the last level of semantically
motivated hierarchical classification construction
requested by the user. A threshold of 0.46 was
specified by the user to create this level. In noting
that the preceding level was created with a thresh
old of 0.47, we perceive that a critical boundary
has been crossed that has resulted in the fragmen-
tation of the cluster containing 202 reactions into
27 clusters, ali of which are considerably smaller.
It may be reasonable at this juncture for the user
to re-specify the cluster size threshold that the
system ušes to determine when to automatically
extend hierarchies with the creation of topologi-
cally motivated levels in order to further process
the larger remaining clusters. Doing so would,
for example, extend the hierarchy rooted at the
larger cluster of 59 reactions by the topological-
based hierarchy shown in Figure 8. We see that
within the span of five user-selected levels the ini-
tial monolithic hit list has been systematically re-
duced to clusters that a user would find much
more manageable than the imposing initial set of
343 reactions.

6 Related Work

Clustering has been extensively studied across a
wide variety of disciplines, and a large number of
clustering algorithms have been developed. Many

HIERARCHICAL CLASSIFICATION AS...

(59 39 21 19 10 6 5 4 4 4 4 4 3 3 2 2 2 2 1 I 1 1 1 1 1 1 1

Figure 7: Levels 1-5 of the hierarchical classifica
tion.

(59)

© © ® ® (5 2 2 1 1 l)

^ 7 4 3 2 1) (6 4 3 l) (4 4) (4 4)

Figure 8: Topological-based hierarchical classifi
cation of the level 5 cluster of 59 reactions.

Informatica 21 (1997) 49-57 55

of these algorithms create hierarchies of clusters,
but this is almost always done by splitting or join-
ing existing clusters by varying a cutoff parame
ter. The algorithm used here is distinctive both
in its use of semantic and syntactic information
during different phases of the creation of the hi-
erarchy and its use of different, i.e., successively
more abstract, information in the creation of each
major level in the topological phase. Cutting,
Karger, and Pedersen [4] describe a hierarchical
approach used in document retrieval applications.
However, their clustering algorithm is statistical
rather than semantic; it is based on the computa-
tion of keyword vector similaritv.

Clustering is only one of the techniques that
has been used in analyzing and managing chem-
ical information. A complete survey of ali of the
different approaches proposed or implemented is
not feasible here. An overview of storage and
processing of chemical structure information is
provided by Lipscomb, Lynch, and Willet [16].
They address problems in representation, index-
ing, and searching in both structure and reac-
tion databases, including similarity based match-
ing and clustering.

7 Future Work

The browsing system described in this paper bases
its classification purely on topological and physic-
ochemical attributes. The set of 114 topological
features used for classification was derived from
a collection of functional group structures used
by the SYNCHEM synthesis design system [13].
The structures in this subset have not been rigor-
ously evaluated for their appropriateness as clas
sification features. It is expected that some of
them could be discarded without negatively af-
fecting classification accuracy. At present, only
the physicochemical features sigma and pi elec-
tronegativity along with resonance stabilization
parameters are used. Additional physicochemi-
cal attributes must be evaluated for their clas
sification utility. One area in which the current
system is completely lacking is in the use of re-
action conditions as classification criteria. Al-
though reaction conditions by themselves can not
support the fine degree of classification possible
with topological and physicbchemical attributes,
they are important and must be taken into con-

56 Informatica 21 (1997) 49-57 J.R. Rose et al.

sideration. Additionally, stereo-chemistry is not
presently taken into account.

8 Conclusion

Hierarchical restructuring allows the user to
quickly evaluate the results of a query and to lo-
cate interesting items and classes of items. This
is accomplished by performing a tree traversal
rather than a sequential perusal of a hit list or a
series of ad hoc query refinements that is normally
required for nonhierarchical approaches. More
general classes may be examined by moving up
the hierarchy. Conversely, more specific classes
may be examined by moving down the hierarchy.
In contrast, sibling nodes in the hierarchy repre-
sent related classes of approximately the same de-
gree of abstraction. In very large databases where
classical querying methods are increasingb/ inad-
equate such as chemical reaction databases, such
a browsing method is required in order to man-
age the fiood of information with which the user
is confronted.

There is a long history of interest in intelli
gent systems to facilitate chemical information
processing beginning in the late 1960's. Much
of this work has focussed on the development of
knowledge-based systems for reaction prediction
and synthesis design [3, 5, 6, 13, 18, 21]. The
problems of synthesis design and reaction predic
tion are much more difficult than was thought
when research in this field began. Consequently,
intelligent systems developed to address these
problems have met with limited success. This has
been due in large part to the difficulty experienced
in compiling adequate knowledge bases. The re
search that we propose could be adapted to assist
in the compilation of chemical reaction knowledge
bases since it is essentially a data-mining tool.

Acknowledgments

The authors would like to thank Prof. Jo-
hann Gasteiger for making the empirical meth
ods developed by the EROS group for calculating
physicochemical parameters available to us. We
would also like to thank Dr. Rene DePlanque
of Fachinformationszentrum Chemie, Berlin, for
providing us with the reaction data set used
in evaluating the hierarchical classification algo-
rithm.

References

[1] J. E. Blake and R. C. Dana, CASREACT:
More than a Million Reactions. ACS Jour.
Chemical Information and Computer Science
1990, 30, 394-399.

[2] S. Chang and D. E. Rice, Browsing: a mul-
tidimensional framework. Annual Review of
Information Science and Technology 1993,
28, 231-276.

[3] E. J. Corey and W. T. Wipke, Computer-
assisted Design of Complex Organic Synthe-
sis. Science 1969, 166, 178-192.

[4] D. R. Cutting, D. R. Karger, and J. O.
Pedersen, Constant interaction-time scat-
ter/browsing of very large document collec-
tions. In proceedings of the Sixteenth Annual
International ACM SIG.R Conference on Re
search and Development in Infor mation Re-
trieval. June 27-July 1, 1993, Pittsburgh, PA.
ppl26-134.

[5] P. A. D. De Maine and M. M. De Maine,
Computer aids for chemists. Analytica Chim-
ica Acta 1990, 235, 7-26.

[6] J. Dugundji and I. Ugi, An algebrah model of
constitutional chemistry as a basis for chem
ical computer programs. Top. Curr. Chem.
1973, 39, 19-64.

[7] J. Garnett and V. Calderhead, Chemistry.
In manual of Online Search Strategies, 2nd
Edition. C. J. Armstrong and J. A. Large,
eds. G. K. Hali & Co. New York 1992 ppl28-
157.

[8] J. Gasteiger and M. G. Hutchings, Quan-
ti&cation of Effective Polarisability. Appli
cations to Studies of X-Ray Photoelectron
Spectroscopy and Alkylamine Protonation.
J. Chem. Soc. Perkin, 1984, 2, 559-564.

[9] J. Gasteiger, M. G. Hutchings, B. Christoph,
L. Gann, C. Hiller, P. L6w, M. Marsili, M.
Saller and K. Yuki, A New Treatment of
Chemical Reactivity: Development ofEROS,
an Expert System for Reaction Prediction
and Synthesis Design. Topics Cur. Chem.
1987, 137, 19-73.

HIERARCHICAL CLASSIFICATION AS...

[10] J. Gasteiger and M. Marsili, Iterative Partial
Equalization of Orbital Electronegativity - A
Rapid Access to Atomic Charges. Tetrahe-
dron, 1980, 36, 3219-3228.

[11] J. Gasteiger, M. Marsili, M. G. Hutchings,
H. Saller, P. L6w, P. Rose and K. Rafeiner,
Models for the Representation of Knowledge
about Chemical Reactions. ACS Jour. Chem
ical Information and Computer Science 1990,
30, 467-476.

[12] J. Gasteiger and H. Saller, Calculation of
the Charge Distribution in Conjugated Sys-
tems by a Quantihcation of the Resonance
Concept. Angew. Chem. 1985, 97, 699-701.
Angew. Chem. Ed. Engl. 1985, 24, 687-689

[13] H. Gelernter, G. A. Miller, D. L. Larsen
and D. J. Berndt, Realization of a large ex-
pert problem-solving systeni: SYNCHEM2,
a čase study. IEEE 1984 Proceedings of the
First Conference on Artificial Intelligence
Applications. IEEE Computer Society Press:
Silver Spring, MD, 1984.

[14] H. Gelernter, J. R. Rose and C. Chen, Build-
ing and Refining a Knowledge Base for Syn-
thetic Organic Chemistry via the Method-
ology of Inductive and Deductive Machine
Learning. ACS Jour. Chemical Information
and Computer Science, (30):492-504, 1990.

[15] M. G. Hutchings and J. Gasteiger, Residual
Electronegativity - An Empirical Quantihca-
tion of Polar In£uences and its Application
to the Proton AfRnity of Amines. Tetrahe-
dron Lett. 1983, 24, 2541-2544.

[16] K. J. Lipscomb, M. Lynch and P. Willet,
Chemical structure processing. Annual Re-
view of Information Science and Technology
1989, 24, 189-238.

[17] A. Parlow, C. Weiske and J. Gasteiger,
Chemlnform - An Integrated Information
System on Chemical Reactions. ACS Jour.
Chemical Information and Computer Science
1990, 30, 400-402.

[18] P. Rose and J. Gasteiger, EROS 6.0,
a Knowledge Based System for Reaction
Prediction - Application to the Regiose-
lectivity of the Diels-Alder Reaction. In

Informatica 21 (1997) 49-57 57

Software-Development in Chemistry. Editor:
J. Gasteiger. Springer-Verlag, Heidelberg,
1990.

[19] J. R. Rose and J. Gasteiger, HORACE: An
Automatic System for the Hierarchical Clas-
sification of Chemical Reactions. ACS Jour.
Chemical Information and Computer Sci
ence, 1994, 34, 74-90.

[20] J. R. Rose and J. Gasteiger, Hierarchical
Classihcation as an Aid to Database and Hit-
List Browsing. Third International Confer
ence on Information and Knowledge Manage
ment Conference Proceedings, Gaithersburg.
Maryland, pp408-414, 1994.

[21] T. D. Salatin and W. L. Jorgensen,
Computer-assisted mechanistic evaluation of
organic reactions. Journal of Organic Chem-
istry, 45 (11), 1980.

[22] H. Schulz and U. Georgy, From CA to CAS
online. In Databases in Chemistry, 2nd Edi-
tion. Springer Verlag, Berlin 1994.

Informatica 21 (1997) 59-77 5 9

Towards Recursive Models—A Computational Formalism for the
Semantics of Temporal Presuppositions and Counterfactuals in
Natural Language

Stefano Mizzaro
Department of Mathematics and Computer Science
University of Udine
Via delle Scienze, 206, Loc. Rizzi, 33100 Udine, Italy
Tel: +39 (432) 55.8456, Fax: +39 (432) 55.8499
E-mail: mizzaro@dimi.uniud.it
WWW: h t t p : / / d i m i . uniud. i t /"mizzaro

Keywords: artificial intelligence, computational linguistics, natural language processing, semantics,
pragmatics, temporal presuppositions, counterfactuals, linguistic knowledge, extra-linguistic knowl-
edge, ontology, content, computational models, recursive models, TOBI

Edited by: Vladimir Fomichov

Received: October 10, 1996 Revised: Febraury 24, 1997 Accepted: March 18, 1997

The linguistic phenomena of temporal presuppositions and counterfactuals, situated on
the boundary line between semantics and pragmatics, are common to many languages,
and the computational treatment of such phenomena is difRcult because of their non-
monotonic aspect.
These phenomena are presented through a corpus of examples; they are studied empha-
sizing the various types of knowledge underlying them; and the fragment of language
that encloses such phenomena is defined in a way not dependent from a speciGc language.
Then, Recursive Models, a formalism for modeling the semantics of utterances contain-
ing temporal presuppositions and counterfactuals, are proposed, described from both
functional (by formal specihcations) and structural points of view, and compared with
related work. Finally, the adequacy of Recursive Models is empirically verihed: TOBI
(Temporal presuppositions and counterfactuals: an Ontological Based Interpreter), a
system that interacts with the user in natural language using the recursive models, is
illustrated. TOBI is not based on a deductive system, but ušes the more primitive and
£exible notion of model-based evaluation; its architecture, flow of control and internal
data structures are presented.

1 Introduction

This paper1 sketches a formalism, named recur
sive models, that can be used for representing,
at a semantic-pragmatic level, utterances contain-
ing temporal presuppositions and counterfactuals.
The power of this formalism is tested by using it
in a natural language processing system named
TOBI (Temporal presuppositions and counterfac
tuals: an Ontological Based Interpreter).

The paper is structured in the following way.

^ h i s work is a revised and extended version of [33, 34].

In Section 2 the linguistic phenomena of tempo
ral presuppositions and counterfactuals are pre
sented and analyzed, and the fragment of natural
language relevant for such phenomena is formally
defined. Section 3 presents recursive models, the
data structures used for modeling the semantics of
natural language utterances; such presentation is
given from a functional-formal, a structural, and
a behavioral point of view. Furthermore, a sur-
vey of related work is proposed. Section 4 de-
scribes the TOBI system, illustrating its architec
ture, flow of control, and internal data structures.

mailto:mizzaro@dimi.uniud.it

60 Informatica 21 (1997) 59-77 S. Mizzaro

Section 5 summarizes the work done so far and
proposes some future extensions.

2 The language fragment
The linguistic phenomena considered in this work
are situated on the boundary between semantics
and pragmatics. In the following three subsec-
tions: (i) a corpus of examples that informally
describe such phenomena is presented; (ii) the
examples are analyzed with respect to a classifi-
cation of various kinds of knowledge; and (m) a
formal (syntactical) definition of the fragment of
the language studied is presented.

2.1 The linguistic phenomena

To completely understand the meaning of each
utterance, it is important to analyze its relations
with the other utterances in the discourse. Fol-
lowing Gazdar [18], an utterance implies another
utterance if the latter is a consequence of the for-
mer (here I give no formal definition of implica-
tion). For example, utterance (1)

"Mary met John before she left" (1)

(utterances are enclosed in double quotes) implies
utterances (2) and (3):

"Mary met John" (2)

"Mary left." (3)

A particular čase of implication between ut
terances is entailment: utterance (1) entails (2).
However, entailment is not the only type of impli
cation, as utterance (3) proves: the relation be-
tween (1) and (3) is not an entailment, as shown
by the fact that the utterance

"Mary met John before she left and he
persuaded her to stay at home" (4)

is consistent. If we admit that (3) is entailed by
(1), then (3) is also entailed by (4). But (4) entails

"Mary did not leave"

which contradicts (3). Utterance (3) is a (tempo-
ral) presupposition of (1) [18, 23, 24, 27, 29, 30].
A presupposition is a form of implication weaker

than entailment: the second part of (4), asserting
that Mary stayed at home, cancels the presupposi
tion, so we do not have a contradictory utterance.

It is important to remark that although the
event 'Mary left' did not happen, it is used in
(4) to date the event 'Mary met John'. Moreover,
from a logical point of view it seems more correct
to say

"Mary met John before she did not
leave and he persuaded her to stay at
home" (5)

instead of (3), but no human would do so. In
other words, the problem is in nonmonotonicity:
utterance (1) implies (3) only by default and the
second part of (4) deletes the default. Then, en
tailment can be seen as a certain inference, while
presupposition as a default (and so uncertain)
one.2 Therefore, a system handling such phe
nomena must be nonmonotonic. The most widely
used formalism for this purpose is represented by
nonmonotonic logics [11, 21]; however, the ap-
proach followed in this work is different, as will
be shown later.

It has to be noted that 'after' is not the sym-
metric counterpart of 'before', as shown by the
fact that in the utterance

"Mary met John after she left"

the leaving event cannot be deleted, as done in
utterance (4): the utterance

"Mary met John after she left. She did
not leave"

is clearly inconsistent.
Furthermore, relationships between events are

necessary for example to explain the utterance

"Mary left before meeting John", (6)
2 Note that there are two different views of temporal

presuppositions (and of presuppositions in general). On
the one side (what might be called an a priori view) they
are necessary for giving a truth value to the whole sentence:
the name 'presupposition' comes from here. On the other
side (a posteriori view) they leave a trace as a defeasible
inference: as it was pointed out before, temporal presup
positions can be seen as a kind of implication weaker than
entailment. Here I am interested in the latter aspect; the
former is analvzed in a lot of works [23, 24, 29].

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 61

in which the meeting event is presupposed, but
it is immediatelv deleted on the basis of ivorld
knouiledge; so the leaving event prevents the meet
ing.

Another linguistic phenomenon strictlv related
with the previous ones is that of (conditional)
counterfactuals. In fact, (4) implies:

"If Mary had not met John, she would
- haveleft", (7)

that is used for referring to an hvpothetical course
of events, or a non-real uiorld (the world in which
Mary did not meet John). It is important to
observe the (perhaps unexpected) fact that the
meaning of an utterance as "a before /3" is some-
times more similar to an utterance of type "if not
a', /3'" (where a' stays for the subjunctive form
of a and /3' for the conditional form of /3) than to
an utterance of kind "/3 after a".

Two other related linguistic phenomena have
been considered. The first one is exemplified by

"The bullet deviated before hitting
Mary. Nevertheless it hit her." (8)

What happens in this utterance can be explained
in the following way:

— analogously to utterance (6), it is presup
posed that the bullet hit the target, but
such presupposition is immediately deleted
on the basis of world knowledge: human be-
ings know that if a thing is deviated from its
trajectory, usually it does not hit the original
target;

— in the second part of the utterance it is as-
serted that the bullet hit the target anyway.
To do this, it is not correct to use the con-
junction 'and' as done in (4) to cancel a pre
supposition. A more powerful way, the use
of the conjunction 'nevertheless', is needed.
The reason is that what has to be deleted
in this čase (the non-occurrence of the non-
hitting, derived from world knowledge con-
siderations) is something 'stronger' than the
temporal presupposition of (4).

The second phenomenon is shown by the fol-
lowing utterance, implied by (8):

"Even if the bullet had not deviated, it
would have hit Mary." (9)

Such 'even if utterances (that I shall call weak
counterfactuals) play, concerning 'nevertheless'
utterances (i.e. utterances like (8) above), the
same role that usual counterfactuals have in the
čase of 'and' sentences. That is, utterance (9) is
for (8) what (7) is for (4).

The standard treatment of temporal presup-
positions [18, 23, 24, 27, 29, 30] is not entirely
satisfactory: there is no deep explanation of why
'before' should introduce a presupposition, while
'after' should introduce an entailment. The point
is that an ontologv of tirne is not taken into ac-
count: time is ordered and the future unknown
and partially unpredictable, and these facts must
be taken into account when dealing with utter
ances containing 'before' and 'after'. In this way,
no linguistic explanation of why an event intro-
duced by 'before' can be deleted and one intro-
duced by 'after' cannot is required. Linguisti-
cally, one can—and ought—only say that sec-
ondary sentences started by 'after' and 'before'
introduce a presupposition that can be deleted
later. The explanation of the asymmetry between
'before' and 'after' must be found at a deeper
level, in the way we, human beings, perceive and
treat the time. This point is investigated in the
next section.

2.2 Linguistic and extra-linguistic
knowledge

It is common usage [29] to divide the knowledge
utilized for making inferences about an utterance
into two classes: linguistic knouiledge (LK) and
uiorld knouiledge (WK). In this section I propose
a more subtle distinction, that will be useful for
both understanding and treating the linguistic
phenomena at hand.

First, it is possible to distinguish between LK
and eztra-linguistic knouiledge (ELK). LK is used
for deriving facts from an utterance through pure
linguistic rules.3 For instance: a proper noun

Let us note that 'knowledge' and 'inference' can be
defined from the standpoint of mathematical logic. A for-
mal calculus [16] is made of axioms (that represent known
facts about a domain) and inference rules (that model the
inference process). Starting from the axioms, and using
inference rules, one can derive (infere) other facts. The
axioms may be divided into groups corresponding to dif-
ferent kinds of knowledge involved. In the same way, also
the inference rules may be grouped. Inferences and derived
facts can be classified according to the kind of the axioms

62 Informatica 21 (1997) 59-77 S. Mizzaro

stands for an individual; if a noun phrase is plural,
then it denotes more than one individual; if the
tense of a verb is 'simple past' ('future'), then the
event that it denotes happened in the past (will
happen in the future); if an event is described in
the main (secondary) proposition, then it is en-
tailed (presupposed); and so on. ELK inferences
instead are not directly derived from the utter-
ance through linguistic considerations, but from
other knowledge sources (i.e. from the world as
we know it): a human proper noun like 'Mary'
usually denotes a female human being; if some-
one is dead, he cannot do anything; if an event
happened in the past, it cannot be modified; if
an event is expected to happen in the future, it
may or may not happen; and so on. The dis-
tinction between LK and ELK is not so clear-cut,
being sometimes difEcult (or arbitrary) to classify
an axiom or an inference. Anyway it is interest-
ing to study how far it is possible to push this
dichotomy.

Second, both the LK and ELK inferences and
derived facts can be uncertain or certain. The
uncertain LK inferences were called in the pre-
vious section 'presuppositions', the certain ones
'entailments'. Another kind of uncertain LK in
ferences are implicatures [30]. ELK inferences are
often uncertain (the 'real' world is very difficult
to model: the research on WK, or common sense
[14, 25] is one of the main subfields of artificial
intelligence): 'Mary' usually denotes a female hu
man being, but it might denote a hurricane, or
a boat, or something else; if a bullet is deviated,
usually it does not hit the target, but sometimes
this could happen anyway; and so on. But ELK
inferences can also be certain: if an event hap
pened in the past it cannot be modified; if an
event is said to happen in the future, it might
happen or not happen; and so on. In the fol-
lowing I will call ontology the certain ELK and
content the uncertain ELK. Informally speaking,
ontology is the component of knowledge that has
a general logical status; on the contrary, content
is the component of knowledge that is highly sit-
uation dependent.

Let us consider a concrete example. In Table 1

and inference rules used. Therefore, it is possible to speak
of axioms (inference rules, inferences, and facts) of LK and
ELK type. Examples of distinctions can be, besides the
WK/LK in [29], the terminological/assertional [9], or the
symbolic/subsymbolic [38] dichotomies.

LK

ELK

Uncertain
(presupposition)

Certain
(entailment)

Uncertain
(content)

Certain
(ontology)

An event of 'hitting' (from
the before-clause) hap
pened in the past
'The bullet' and 'Mary'
denote individuals
An event of 'deviation'
happened in the past
The deviation-event hap
pened before the hitting-
event
An event of 'hitting' (from
the nevertheless-clause)
happened in the past
The individual denoted by
'Mary' is a female human
being
The hitting-event, be-
cause of the deviation-
event, did not happen
The hitting-event is in the
future for what concerns
the before-clause, so it is
uncertain.

Table 1: Inferences from utterance (8).

some of the facts that can be derived from utter
ance (8) reported here below are shown and clas-
sified along the LK/ELK and uncertain/certain
dimensions.4

"The bullet deviated before hitting
Mary. Nevertheless it hit her." (8)

The phenomenon of temporal presuppositions
seems to be an expression of the ontology of time,
not of the content of time. The ontology of time
is its ordering and the fact that while the past is
in a sense closed, the future is open. This leads
to certain inferences. On the other side, the met-
ric of time is a content characteristic, in that the
subjective evaluation of the duration of a time in
terval may vary depending on the situation, and
this usually leads to uncertain inferences. Then,
the phenomenon of temporal presuppositions can
be explained in the following way: an event in the
future cannot be certain, because of the ontology
of time (partial unpredictability of the future).5

4 The čase of the certain ELK inference might seem a
bit awkward. A more convincing example is the fact that
in utterance "Mary met John after she left" the leaving
event did certainly happen.

5It is important to point out that 'future' refers to the

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 63

This is why 'before' introduces a temporal pre-
supposition, while 'after' does not.

In this work, I am interested in those parts of
LK and ELK that are related with temporal pre-
supposition and counterfactuals. The content is
not the focus of this research, but it plays a role
(indeed a marginal one) into the above described
linguistic phenomena. As a matter of fact, con
tent inferences can contradict presupposed and/or
entailed events, thus sometimes (but only if rel
evant and necessary) it will be necessary to take
content into account. Note that entailments over-
come content inferences (as, for instance, in utter-
ance (8)), and that content inferences overcome
presuppositions (as, for instance, in (4), (6) and
(8))-

2.3 Abstract syntax

In order to analyze the above introduced phe
nomena, it is sufficient to work on a restricted
language fragment, defined in this section. The
usual way to formally define a fragment of the lan
guage is to provide a grammar. Since the consid-
ered phenomena occur in many natural languages
(almost every western language has the syntactic
constructs necessary for expressing the previous
utterances), I prefer here a more abstract descrip-
tion, to some extent independent from the partic-
ular language adopted. I shall call such formalism
abstract syntax.

The first step to define the abstract syntax of
the relevant natural language fragment (that will
be denoted with L) is to specify a farnih/ of syntac-
tic functions, functions that syntactically manip-
ulate sentences of the natural language to obtain
other sentences. The definition of the abstract
syntax of L is then obtained by means of a set hi-
erarchy: starting from a set of simple sentences,
other sets containing complez and compound sen
tences [42] are obtained as the range of syntactic
functions. The union of these sets will be L.

The syntactic functions used to cover ali the lin
guistic phenomena presented in the previous sec
tion are the following:

— neg (s): returns the negation of sentence s.

point of reference, not to the point of speech [36]. In ut-
terance (1), both the events happened in the past ('met'
and 'left'), but the second is in the future of the point of
reference.

For example, if s is 'Mary left' (sentences are
enclosed in single quotes), neg(s) is 'Mary did
not leave';

— 6e/ore(si, S2): returns the complex sentence
formed by the main clause si and the tem
poral subordinate 52, introduced by 'before'.
Observe that the syntactic functions do not
only concatenate the strings given as argu-
ments, but also (syntactically) manipulate
them to obtain the correct result. For ex-
ample, from'J'Mary met John' and 'Mary
left', using the syntactic function before, one
should obtain 'Mary met John before she left'
and not 'Mary met John before Mary left';

— after(si,S2): returns the complex sentence
formed by the main clause si and the tem
poral subordinate S2, introduced by 'after';

— and(si,S2)- returns the compound sentence
constituted by the two sentences S\ and S2
joined by the conjunction 'and';

— nevertheless(si,S2): returns the compound
sentence constituted by the two sentences si
and S2 joined by the conjunction 'neverthe-
less'. Usuallv, nevertheless(s\, S2) is a pair
of sentences separated by a full stop. Here
this detail is not important, in that the two
sentences, from a semantic point of view, are
co-ordinated;

— c/(si,S2): returns the counterfactual sen
tence with s\ as antecedent and S2 as con-
sequent. For example, if si is 'Mary met
John' and S2 is 'Mary left', cf(neg(si),S2) is
'If Mary had not met John, she would have
left';

— wcf(si,S2)- returns the weak counterfactual,
i.e. a sentence (syntactically) differing from
a counterfactual one in that 'even if substi-
tutes 'if. For instance, if s\ and S2 are the
two sentences j ust' met for the cf function,
then wcf(neg(si),S2) is 'Even if Mary had
not met John, she would have left'.

Now, the syntactic functions listed above are
used to formally define the fragment L: as it was
said before, a set hierarchy is built, the last set
of the hierarchy being L. The process of i ' s con-
struction is illustrated in Figure 1. Nodes indicate

64 Informatica 21 (1997) 59-77 S. Mizzaro

^%—and + nevertheless
before + after / ^ 2 ^v-s*»^. L,

Lo L, / ^ * ^ v ^ L

*~ne **C J**
cf+ wcf\. L4 ^ " - " " ^

Figure 1: The construction of L.

the subsets of L, arcs mean set inclusion and are
labels show which syntactic funetions are used to
obtain the following sets.

The first set of the hierarchy, LQ, contains sim-
ple sentences, like 'Mary met John' or 'Mary left',
and so on.

Using the neg funetion, the set L\ can be de-
fined as6

L\ = L0U neg{L0). .

L\ contains sentences and their negations, so sen
tences as 'Mary did not meet John' belong to L\.

The next set is defined by the before and after
funetions:

L% = L\ U before(Li,Lo) U after(L\,L{).

Note that the temporal clauses introduced by 'be
fore' are always afnrmative, as observed in [24]
and as indicated by the utterances and sentences
(in particular (5)) presented above.

The following steps are:

£3 = L2U and(L2,Li) U nevertheless(L2,Li),
L4 = LiUcfiLu^UvjcfiLuL^.

The final set, L, is then obtained as

L = L3 U L4.

In this seetion, only sentences have been dealt
with, but the extension to the čase of utterances
is immediate. In fact, if u is an utterance, then u
is a pair (s,c), where s is the sentence and c the
context. Then,

neg(u) = (neg(s),c)

and similarly for the other syntactic funetions.
6Here and in the following of this seetion, the stan

dard notation for using sets as funetions arguments is used:
neg(Lo) stands for {neg(s) | s € Lo}, and similarly for the
other syntactic funetions, paying attention to their arity.

3 Recursive models
This seetion presents recursive models (RM), a
formalism that can be used to represent the mean-
ing of utterances at a semantic/pragmatic level.
In Seetion 3.1 the RMs are defined as an instance
of the class of computable models. In Seetion 3.2
RMs are seen as an abstract data type, whose
formal specifications are given. In Seetion 3.3 the
strueture of RMs is deseribed. In Seetion 3.4 the
funetions that build and use an RM are analyzed
and a possible implementation is sketehed. In See
tion 3.5 related work is discussed.

3.1 Computable models

From a computational perspeetive, two ap-
proaches are possible for representing the seman-
tics of a diseourse,7 and for using sueh representa-
tion in finding implications between the diseourse
and following utterances. In the first, 'inferentiaF,
approach, the diseourse is translated into a theory
(a set of logical formulas) T; the same happens to
a following utterance, obtaining, say, the logical
formula 4>\ then, to diseover whether the diseourse
implies the utterance, an inference procedure h is
used for testing whether T \- <p.s

In the second, 'model-theoretic', approach, the
diseourse is used to build a model M, and an eval-
uation funetion (usually denoted by j= in math-
ematical logic) is used in order to test whether

These are obviously two quite different ap-
proaches: in the former the central notions are a
set of axioms (to which further ones can be added
for taking into account new utterances) and a set
of inference rules; the latter is based on the two
funetions that, respectively, integrate (int in the
following) a previous model with the information
of a new utterance, and evaluate (eval in the fol-
lowing) an utterance in a previously built model.

If the representation of the semantics of a dis
eourse has to be used by an algorithm, both these
approaches reveal some decidability problems. In
the inferential approach, this happens when nei-

7A diseourse, or a text, can be defined as a sequence of
utterances. The concepts of implication, entailment and
presupposition deseribed in Seetion 2.1 can be extended in
a natural way in order to deal with diseourse.

8For an explanation of the concepts derived from math-
ematical logic, see for instance [12, 16].

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 65

ther the utterance (4>) nor its negation (-><£) are
an entailment of the discourse (r), and this is a
common situation, in that the logical theory T is
not necessarily complete. The standard solution
is to abort the inference process when it is too
long, the length of the process being the number
of inference steps or the computation tirne. In
the model-theoretic approach, similar decidabil-
ity problems arise when the evaluation function is
not computable. This leads to a constraint on the
models: their expressivity has to be sacrificed, for
obtaining a computable eval function. I shall call
the models with such property computable mod
els.

In the next subsections I will propose an in
stance of computable models named recursive
model (RM) that can be used to represent the se-
mantics of utterances belonging to the language
fragment defined above. I will not formally prove
the computability of the corresponding eval func
tion; instead, the approach is empirically tested
by utilizing RMs in a system whose implementa-
tion will be described in Section 4.

3.2 Formal specifications of recursive
models

This section describes the RMs from a func-
tional point of view, formally specifying their be-
haviour without referring to their structure. In
other words, I propose the formal specifications of
the Abstract Data Type (ADT) RM. The formal
specifications of the ADT RM,being rather com-
plex, only a brief sketch is presented here. I will
define (some of) the sorts, (some of) the functions
that define the ADT RM, toghether with their
signature, and (some of) the axioms that describe
the behaviour of the functions.9

The sorts of ADT RM are:10

— U, the set of ali utterances. On this sort,

Note that I said 'formal', not 'algebraic' specifications:
in algebraic specifications [7, 39] the axioms must be equa-
tions, in order to have an executable object. Here I am
interested only in obtaining a formal definition of the be
haviour of the ADT RM, not in the computational aspect
(that will be tackled in the following), so I prefer not to
have restrictions on the shape of axioms.

10These are not ali the sorts needed to completelv specifv
the ADT RM. Another sort, the set E of ali events, on
which the functions that describe the causal links betvveen
events must be defined, is necessarv.

ali the syntactic functions presented in Sec
tion 2.3 are assumed to be defined;

— M, the set of ali RMs;

— B, the set of boolean values ({true,false}). I
assume that the usual logical connectives are
defined as functions on this sort;

— Bu, the set obtained adding the unde-
fined value to the set of boolean values
({true,false, undef}). Also on this sort I as
sume that some logical operations are pre-
defined. There exist various 3-valued logics;
among them I need Bochvar's logic [8, 40],
in which the undef value is 'contagious' (i.e.,
if undef is one of the arguments of a logical
operation, the result will be undef too).

On such sorts, the following functions are de
fined (together with the signature of the func
tions, I also present an informal description of
their behaviour):

— create: —» M, that returns an empty RM;

— int: U x M -t M, that returns a new RM
obtained integrating the information of a new
utterance in a previously existing model;

— eval: U x M —> Bu, that evaluates the truth
value of an utterance in a model;

— modify: U x M —» M, that, given a counter-
factual utterance and an RM as arguments,
returns the RM obtained modifying the orig
inal RM in such a way that the antecedent
of the counterfactual utterance is evaluated
false. The model obtained is named counter
factual model;

— pref: 2M -» M, that selects the preferred RM
among the set of plausible ones. For exam-
ple, in the čase of utterance (1), pref should
choose the RM in which Mary left, and not
the one in which Mary did not leave. This
function, together with the following three, is
needed because of the nonmonotonic aspect
of the phenomenon of temporal presupposi-
tions;

— contr: U x M —» B, that is true iff an ut
terance, once integrated in an RM, leads to
a contradiction. This happens, for example

66 Informatica 21 (1997) 59-77 S. Mizzaro

when integrating the second part of (4) in the
RM obtained from (1), where it is not longer
true that Mary left;

— rev: U x M -> M, that operates a revision of
an RM when it, together with an utterance,
leads to a contradiction;

— intmon: U x M -» M, that can integrate
utterances that do not present contradiction
with the existing RM. Therefore, intmon can-
not treat nonmonotonicity, but it is the core
of int function;

— intset: U x 2M ->• 2 M , that from the set of
previous plausible RMs and an utterance re-
turns another set of RMs. This function is
needed because it is possible to build more
than one RM from an utterance, as is shovra,
for example by utterance (1) and (4);

— evalset: U x 2M -> Bu, that is true iff the
utterance given as the first argument is eval
uated true in ali the RMs belonging to the
set given as the second argument;

— entail: U* x U —>• Bu, that is true iff an ut
terance is an entailment of a discourse, i.e. a
sequence of utterances (with the * operator
I indicate the concatenation of utterances);

— imply: U* x U —> Bu, that is true iff an utter
ance is evaluated true in the preferred model
of a discourse. These two last functions can
be defined in terms of the previous ones, see
below.

As it was said, I present here only some ex-
amples of the axioms needed for the ADT RM.
One of such axioms defines the int function using
functions intmon, rev and contr:11

int{u,m) — if contr (u, m)
then intmon (u, rev (u, m))
else intmon(u,m).

The evaluation of counterfactual and weak
counterfactual utterances takes plače in a pecu-
liar way. A counterfactual utterance cf{u\,U2)
is evaluated true if and only if its antecedent
u\ and consequent ui are evaluated false and

the event represented in the consequent should
have happened if the event in the antecedent
had happened. In other words, the evaluation of
cf(u\,U2) in an RM m takes plače evaluating u\
and U2 in m and then evaluating «2 in a model
obtained modifving the RM m on the basis of the
antecedent u\. A weak counterfactual wcf(ui,v,2)
behaves in the same way, with the exception that
the consequent u<i must be evaluated true. This
is formalized by two axioms:

eval(cf(ui,U2),m) =
if eval(u\,m) = false and

eval(u2,rn) = false
then eval{u2,modify{ux,rn))
else false

eval(wcf(ui,U2),m) =
if eval{u\,m) = false and

eval(u2,m) = true
then eval(u2, modify(ui,m))
else false

(note the use of the syntactic functions cf and
wcf).

Another axiom defines the imply function in
terms of eval and int:

imply(ui,U2) = || eval(u2, int(u\, create{))) ||,

where the symbol ui denotes a sequence of utter
ances, i.e. a discourse, and the symbol || . || in-
dicates Bochvar's 'assertion operator', that maps
the undef value in false and does not affect the
other two logic values.12

A similar axiom can be given for the defmition
of the entail function. Here the notion of set of
models must be used: an utterance is entailed by
another utterance only if the former is true in ali
the models of the latter. Such an axiom is:

entail (111,112) =
|| evalset(u2, intset{\i\, {create()})) \\ .

11 The if-then-else operator used here has to be intended
as a declarative one, without any procedural meaning.

12 Note that the first argument of int is a sequence of
utterances, while int should have as argument a single ut
terance (int: U x M -> M). But it is easy to define by
recursion int': U* x M —> M in the following way:

int'([],m) = m;
int'([ui\u.2]) = int'(U2, int (ui, m))

(where the standard symbology of Prolog lists is used in
order to indicate a sequence of utterances) and redefine int
as int'. The same remark has to be made for the intset
function in the following equation.

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 67

As a last example, the following axiom defines
the connection among the int, intset and pref
functions:

int(u,m) = pref(intset(ui{m})).

The meaning of this axiom should be clear: the
RM obtained by int is the preferred one in the set
of aH plausible models, as generated by the intset
function.

3.3 Structure of recursive models

The previous section has shown how to formally
define the properties that RMs must have. Here,
the structure of the RMs is presented.

Roughly speaking, ari RM is constituted by in-
stances of classes of an encyclopedia and relations
among those instances. Therefore, an encvclope-
dia is needed, that is a taxonomy of categories and
concepts. The encyclopedia is a knowledge base,
and is needed in order to know that Mary and
John are persons, hence living beings, and so on;
that the meeting of Mary and John is an event,
etc.

Using the operation of instantiation it is possi-
ble to create a token for each individual mentioned
in the utterance. Referring to utterance (1), there
will be tokens for 'Mary', 'John' (instances of the
class person), 'met' and 'left' (instances of the
class event). Every token has an associated iden-
tifier; I shall use uppercase letters for instances of
objects (M for 'Mary', J for 'John'), and lower čase
letters for events (m for 'met', 1 for 'left', etc). As
usual, tokens inherit slots from their parent con
cepts, so M is the value of the slot agent of m and J
is the value of the slot theme of m. Moreover, be-
tween tokens m and 1 there is a temporal relation
to indicate that the meeting took plače before the
leaving.

Tokens, slots and relations are not sufficient to
obtain a complete RM, since by using only these
components, one would obtain the same RM for
the utterance

"Mary did not meet John before she
left"

and this is clearly a problem. To deal with event
occurrence and object existence, other elements
are introduced in the RM: spaces, attachments
and signs.

A space is needed because not only an object ex-
ists, or an event takes plače; it is more correct to
say that an object exists (or an event takes plače)
in a ivorld. Consider utterance (4): Mary did not
leave in the real uiorld, but it is correct to say that
Mary left in the counterfactual world (see utter
ance (7)) in which she did not meet John. Anal-
ogously, it is possible to say that Donald Duck
does not exist in the real world, but he exists in
Walt Disney's world.

So, a space is a formal tool for representing al
ternative worlds. I indicate the real world with
[] . It is possible to represent the object existence
and the event occurrence attaching every token to
the right world: the relation between token and
world is named attachment. Finallv, attachments
are labelled with a sign in order to deal with non-
existence and non-occurrence, both of which are
represented by a negative sign, whereas a positive
sign obviously means existence and occurrence.

As illustrated in Section 2.1, the occurrence of
an event may be certain (the meeting of (1)) or
uncertain (the leaving of (1)); this can be dealt
with using certain and uncertain signs. In the
RM of (1), the signs labelling the attachments of
the tokens for 'met' and 'left' are both positive,
but only the first is certain, while the second is
uncertain.

The RM obtained for (1) is illustrated in Fig
ure 2. Only the portion of the encyclopedia
needed to build the RM of the utterance is rep
resented (in the upper gray area, while in the
lower white area, the proper RM is sketched):
each rectangle stands for a concept. The rela
tions is-a (between two concepts) and instance-of
(between a concept and a token) are represented
by labelled grey arcs, tokens are shown as circled
letters, slots are illustrated by means of oriented
arcs, relations, as usual in entity-relationship di-
agrams used in data base theory [13], are repre
sented by arcs labelled with a rhombus (the sym-
bol < stands for 'precedes temporally'), a dashed
are represents an attachment, a bold sign is cer
tain and a plain text sign is uncertain. For the
sake of simplicity, in the graphic representation
the names of the slots are not illustrated.

The RM in Figure 2 models the meaning of (1).
Nevertheless, there is another element to add for
dealing with the causal links relating the occur
rence (or non-occurrence) of events. Examples

68 Informatica 21 (1997) 59-77 S. Mizzaro

o b j e c t e v e n t
i s a / ^ Nsisa l s a

p e r s o n l , mee t l e a v e

[]•-© []^-0

Figure 4: Graphic representation of the RM of
(6).

Figure 2: Graphic representation of the RM of
the utterance (1).

Figure 3: Graphic representation of the RM of
(4).

can be found in utterances (4) and (7) (the oc-
currence of the meeting with John causes the oc-
currence of the event 'Mary stayed at home') and
(6) (the occurrence of Mary's leaving causes the
non-occurrence of the meeting with John).

The elements used in RMs to represent such
causal relations are named justifications, and are
represented by curved arcs. As signs, justifica
tions may also be certain or uncertain. In order
to understand the role of these new elements, con-
sider Figure 3, in which the RM of (4) is repre
sented. Here and in the following, for the sake
of simplicity, I have omitted the representation of
the encyclopedia (i.e. the classes and the i s a and
i n s t relations): the letters labelling the tokens
should be sufficient for understanding which class
each token is an instance of. Furthermore, the to-
ken p is assumed to be an instance of the ad-hoc
class persuade to s tay at home.

The justification between the signs of tokens
m and p is uncertain (graphically represented by
a thin curved line), whereas the one that links
the signs of p and 1 is certain (thick curved line).
The reason for this distinction is that the meeting
implies persuading in a very weak sense (it is a
precondition), while persuading (to stay at home)
entails non-leaving.

Note furthermore that in Figure 3 l 's attach-
ment is labelled with two signs: the positive one
(uncertain) models the presupposition of the leav
ing and the negative one (certain) reflects the fact
that the leaving actually did not take plače. The
last sign is the preferred sign (and it overrides
the uncertain one); graphically, this is represented
putting it near the end of the are.

Justifications are needed not only by abstract
completeness considerations, but also to deal with
counterfactual utterances, as is explained in the
next seetion.

3.4 The implementat ion of eval and
int funetions

At this point, the strueture of the RMs should
be clear. Now, I present via a couple of exam-
ples the algorithms that implement the eval and
int funetions (that build an RM for an utterance
and evaluate a question in an RM, respectively).
Both algorithms can be defined in the same way
(by structural recursion on the logical form of an
utterance, see below), therefore I describe only
the way the model of an utterance is built.

A raw RM is built on the ground of LK and
ontology and is then refined using content knowl-
edge. Let us consider for example the RM of ut
terance (6) represented graphically in Figure 4.
The following steps take plače during its creation:

TOWARDS RECURSIVE MODELS . . . Informatica 21 (1997) 59-77 6 9

— token 1, from 'left', is created and it is at-
tached to the space [] with a positive and
certain sign. The sign is certain because of
linguistic considerations: 'left' belongs to the
main proposition;

— token M is created and it becomes the value
of slot agent of token 1. Now, the building
of the RM of the main proposition is termi-
nated;

— token m, from the event of the secondarv
proposition, is created and attached to [] .13

The sign of this attachment is stili positive,
but uncertain because the event is in a sec
ondarv proposition;

— the slot agent of token 1 assumes as value the
token M, alreadv present in the RM; token J
is instead created and it becomes the value
of slot theme of token m;

— the temporal relation between the tokens 1
and m is created;

— ali the above operations take plače on the
ground of linguistic and ontological consider
ations. However, to complete the construc-
tion of the RM, some content inferences are
needed to create a negative certain sign (pre-
ferred to the positive uncertain one) on the
attachment of m and the corresponding justi-
fication.

Thus, the division of linguistic, ontological and
content work seems clear. Linguisticallv and on-
tologicallv, tokens are created,,. slot values are
filled, relations explicitly referred in the utter-
ance are produced and attachments are created.
On the ground of content considerations, justifi-
cation arcs, representing the causal relations be-
tween events implicit in the utterance, are added,
and the same happens for new signs.

However, the separation between LK, ontologv
and content is not so simple: temporal relations

13The attentive reader might note that the processing
of the clause containing the presupposition, the secondary
one, takes plače after the main one's. This is in contrast
with the nature of the presuppositions, which should be
tackled as first. But, I pointed out in footnote 2 in Sec-
tion 2.1, here it is the 'a posteriori' aspect of temporal
presuppositions (and of the whole sentences encompassing
them) that is studied, so this is not a relevant difference.

may be created on the basis of content, and jus-
tifications on the basis of LK. This happens, for
example, in the creation of the RM of (7), that
is similar to the one represented in Figure 4: the
only differences are the attachment of m (that is
labelled by only one negative certain sign) and the
justification (that is certain too). In this čase, the
temporal relation is created on the basis of the
content, in that the fact that the leaving takes
plače before the meeting is indubitably a content
inference. Furthermore, the justification derives
from LK considerations, in that it appears explic-
itly in the word 'if' of the utterance.

As already specified, the discussion above re-
gards exclusively the function int. Nevertheless,
the algorithm that implements the function eval
can work in a similar way; instead of creating to
kens, it verifies that they already exist in the RM.

The algorithm implementing eval must work in
a particular way for the evaluation of counterfac-
tual utterances. Such evaluation takes plače in
three steps: first, the antecedent and the conse-
quent of the counterfactual utterance are evalu-
ated in the current RM; second, the current RM
is modified accordingly to what it was said in the
antecedent of the counterfactual, obtaining the
counterfactual model; third, the consequent of the
counterfactual is evaluated in the counterfactual
model. Let us consider the evaluation of utter
ance (7) in the RM for (4) (the RM in Figure 3).
The evaluation takes plače in the following way:

— the antecedent and the consequent of (7) are
evaluated in the RM; both of them are false
(and they must be false in order to evaluate
the counterfactual utterance trne);

— the counterfactual model, that is obtained
modifying the original RM in such a way
that the antecedent is evaluated false, is il-
lustrated in Figure 5. Observe that the token
m is attached with a negative sign to [] , in
that the antecedent must be evaluated false.
This, by means of the justification between
the signs of m and 1 (see the original RM in
Figure 3), leads to removing the positive sign
on p's attachment and labelling this token
with an opposite (negative) one. The same
happens with token 1; here the removal of
the negative sign brings up the positive sign;

— the consequent of the counterfactual ("Mary

70 Informatica 21 (1997) 59-77 S. Mizzaro

Figure 5: Counterfactual model for the evaluation
of (7).

left") is evaluated in the counterfactual
model, obtaining true as result. The coun
terfactual utterance itself is then evaluated
true.

From the informal description in this section, it
should not be difficult to extract the algorithms
for int and eval, implemented in the system de-
scribed in Section 4.

3 .5 R e l a t e d w o r k

A brief look at related work is mandatory, in or-
der to emphasize the differences between RMs and
other proposals. In this section, researches on dis-
course models and discourse representation theorv
(DRT) are briefly compared with RMs, and it is
shown how RMs can handle in a simple way the
concepts of belief and situation.

RMs can be seen as models of previous dis
course context, into which information from sen-
tences is merged, and against which queries are
evaluated. There are a lot of studies on discourse
models in which it is investigated how the various
structures that can be individuated in a discourse
ought to be used to understand the meaning of
the sentences forming such discourse: see for in
stance [22, 28, 31, 35, 37, 41]. RMs could be a
new instrument for this research, even if it might
be more appropriate to say that RMs are a com-
putational tool for modeling the meaning of sen
tences, and that they do not seem to suffer from
any intrinsic limitation for being used at the level
of discourse.

RMs are also comparable to DRS (Discourse
Representation Structures), the 'models' used in
DRT [26], but here also there are some differences.
First of ali, Kamp and Reyle themselves say in

their book on DRT [26, page 627] that they don't
tackle the problems I have analyzed here:

There exists the possibility of using before-
phrases in a kind of "virtual" sense which
is not possible for prepositional phrase with
after. In a čase where the sentence "George
died before the completion of his novel" is
true, the completion of the novel presumably
nevertookplače. [...] Thisuseofbeforehas
given semanticists a good deal of trouble.
[...] It is an issue which we will not pursue
here.

Notwithstandig that , one might try to treat
temporal presuppositions in DRT—and encounter
some difficulties. Consider for instance the stan
dard DRS of utterance (6) reported here

"Mary left before meeting John", (6)

namely the DRS of Table 2. The DRS is divided
in 3 groups, separated by empty lines: the first
one models the main clause, the second one the
word 'before', and the third one the subordinate
clause. In such DRS there is nothing represent-
ing the facts that the event e2 (the meeting one)
is only presupposed (and then uncertain), tha t it
has not happened, that there is a causal link be-
tween the occurrence of the two events and there
is no 'first-order' object representing the occur
rence of the events.

t\ne\x t2 e2 y
t\ <n
ei C tx

mary(x)
&i : leave(x)

h < * 2

t2 < n
e2 C t2

john(y)
e2 : meet(x,y)

Table 2: The DRS of (6).

Obviously, DRS could be extended in the direc-
tion indicated by RMs, but this is not so simple,

TOWARDS RECURSIVE MODELS ...

Figure 6: Situations in RMs.

in that in DRS there is nothing like RMs' spaces,
attachments, signs and justifications, which are
central concepts in RMs. So, DRSs might be sit-
uated at a semantic level, while RMs work on
the semantic-pragmatic boundary: a DRS is more
similar to a logical form [2] than to an RM.

RMs can be extended in a natural way for tak-
ing into account the concepts of beliefs and propo-
sitional attitudes [5, 15]. For instance, spaces al-
low to easily represent Mary's intention to leave
in utterances (1) and (4): it is sufficient to at-
tach the token 1 in Figures 2 and 3 to a space,
[int(M)], representing the world of the events
that should have happened if everything had gone
as presupposed. In this way, one can create a
family of operators on worlds (int (X) for inten-
tions, bel(X) for beliefs, and so on), indexed on
the tokens of the RM. These operators can trans-
form one world (for instance []) in other ones
([int(M)] , [bel(M)],etc.)

Finally, RMs might easily be improved for han-
dling utterances like

"Mary left with George. This hurt
John"

in which it is not the event per se that 'hurt John',
but the whole context. In order to treat this kind
of utterances, it will be necessary to introduce the
concept of situation [5, 15] in RMs: the RM of
this utterance could look like the one in Figure 6,
where the grey circle is the graphic representation
of 'what hurt John'.

4 The TOBI system

This section presents TOBI, a system that com-
municates with the user in natural language (En-

Informatica 21 (1997) 59-77 71

User> Mary met John before sne l e f t .
User> Did Mary leave?
CS> Yes.
User> Did Mary kiss John?
CS> I don't know.
User> Ann met George before she left and

he persuaded her to stay at home.
User> Did Ann leave?
CS> No.

Figure 7: An example of interaction CS - user.

glish) and ušes the RMs illustrated in the previ-
ous sections as internal representations of utter
ances. TOBI is implemented in LPA Prolog on
a Macintosh, and it can handle ali the examples
presented in Section 2.1 (and similar ones). The
following subsections illustrate: the class of nat
ural language processing systems to which TOBI
belongs, the architecture of the system, its data
flow, and its internal data structures.

4.1 Comprehension systems

TOBI is a natural language processing system.
It is indeed a particular čase of such systems, a
comprehension system (CS): it has the unique aim
of interacting with the user in natural language.
This section describes a CS using the concepts
presented in Section 3.1 and, on the basis of this
description, some design choices made in TOBI
are motivated.

A CS simulates the typical human activities
of comprehension and production of natural lan
guage utterances: it can understand a discourse
(sequence of utterances) and provide correct an-
swers to questions regarding the discourse. For
the sake of simplicity, only polar questions are
considered, i.e. questions admitting as answers
only 'yes' (true), 'no' (false) or 'I don't know'
(unknomn). In Figure 7 an example of dialogue
between a hypothetical CS and a user is shown.

CSs work by building some internal represen
tation of a discourse, and using such representa
tion to answer successive questions. On the ba
sis of what it was presented in Section 3.1, the
implementation of a CS can be accomplished in
two ways. The first (and traditional, see [20])
one is to build a nonmonotonic inferential system,
that ušes an inference procedure h (and usually
a TMS, Truth Maintenance System). This kind

72 Informatica 21 (1997) 59-77 S. Mizzaro

of CS will be named CS Formulae & Inference
(F&I). The second way of realizing a CS is to
implement a system that builds a (cornputable)
model of the discourse and evaluates the ques-
tion in that model in order to obtain the right
answer. Systems of this kind are named CS Mod
els & Evaluation (M&E), and (with respect to CS
F&I) work at the more primitive and flexible level
of models and model-based evaluation.

TOBI is a CS M&E that ušes the above de-
scribed RMs to model the meaning of utterances.
Since CSs F&I may rely on well known basis, de-
veloped in mathematical logic, the attempt to fol-
low the new way of CSs M&E must be justified.
The most persuasive critique of CSs F&I concerns
the way they have to abort the process of inference
if they obtain no answer. This is an unnatural
way of working, and it has no cognitive plausibil-
ity. On the other hand, CSs M&E present many
interesting features: they seem to have more cog
nitive plausibility (it is widely recognized that hu
man beings build a model of the utterance they
hear, and that they don't use an inferential mech-
anism to answer questions), they might deal with
the problem of termination in a better way than
CSs F&I do, and they show a natural treatment of
implications weaker than entailment (like the pre-
suppositions met in the examples in Section 2.1).

These observations motivate the attempt to fol-
low the approach of CSs M&E. Howewer, it must
be said that CSs F&I are preferable in handling
entailments and incomplete knowledge, fields in
which the inferential approach demonstrates ali
its power.

Summarizing, TOBI is a CS M&E, and not a
F&I one for the following reasons:

— the kind of phenomena it has to deal with:
mainly presuppositions, not entailments;

— the greater cognitive plausibility;

— the supposed better control of the weakening
of the system's inferential capacities;

— the examination of what can be done using
models and evaluation in plače of classical
and well known logical calculi.

4.2 TOBPs architecture
Figure 8 presents the architecture of TOBI. Here
is a list of TOBPs modules with a short descrip-

Figure 8: TOBPs architecture

tion of their tasks:

- SYNT: morphoSYNTactic analyzer that
parses the input utterance, producing its
syntactic structure. SYMT ušes a lexicon and
a DCG grammar [19] as knowledge bases;

- SEM: SEMantic analyzer; it takes the syntac-
tic structure produced by SYNT and produces
as output the logical form, that is a repre-
sentation of the utterance in a slot-filler no-
tation, in which events and semantic roles are
singled out. This module ušes a semantic dic-
tionartj associating syntactic terms with the
corresponding concepts;

- FRAM: FRAme Manager; manager of the en-
cyclopedia (a taxonomy of categories and con
cepts) and models. It implements the proce-
dures needed to work on classes (the encyclo-
pedia) and instances (the models);

- CONT: the module devoted to handling CON-
Tent knowledge;

- MOD: MODel builder; module that imple
ments the functions int and eval using pro-
cedures from SEM, FRAM and CONT;

- UI: User Interface; it accepts utterances from
the user (via keyboard) and answers his (her)
questions. This interface is developed using
the features of LPA Prolog for windows and
menus management.

4.3 TOBPs data flow
In Figure 9 the data fiow of TOBI is presented,
in order to illustrate the process that takes plače

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 73

Syntactic structure

Figure 9: TOBFs data flow for the interpretation
of an utterance.

when the system builds an RM from an utterance.
TOBI processes the utterance in three steps. The
first step is the morphosyntactic analysis: the in-
put utterance is parsed into its syntactic struc
ture.

The syntactic structure is input to the semantic
analysis, that produces another representation of
the initial utterance, namely its logical form.

The last step is the interpretation: here the log
ical form is used to build the RM of the utterance
(or, more generally, to integrate the old RM with
the new information in the utterance). It is in
this phase that TOBI's peculiarity comes in evi
dence. In most natural language systems, content
knowledge is encapsulated in the encyclopedia,
together with ontological knovvledge. In TOBI
the two kinds of knowledge are separated; the en-
cyclopedia contains only ontological knowledge,
that can easily be dealt with in symbolic terms;
the content part is handled by another module.

As it was said in Section 2.2, the phenomenon
of temporal presuppositions is based on the on-
tology of tirne, not on its content. But a system
that works only at an ontological level could do
very little. For example, to understand utterance
(6) content considerations are necessary for keep-

1 s(asser,
2 vg(sing,meet,trans,ind,past,aff),
3 subj(np(sing,f ,det , [] ,

pNoun(person(mary)),[])),
4 objl(np(sing,m,det,[],

pNoun(person(john)),[])),
5 obj2(nil),
6 [es(

prep(before) ,
7 s(asser,
8 vg(sing, leave, intr , ind,past ,aff) ,
9 subj(np(sing,f,det,[].pronoun,[])) ,
10 ob j l (n i l) ,ob j2(n i l) , []))])

Figure 10: The syntactic structure that TOBI
generates when interpreting (1).

ing into account the relation between the leav-
ing and meeting events. Then TOBI has to deal
with content inferences too. I have assumed that
ontology can be handled using classical symbolic
methods; there are reasons, however, to believe
that this might not be true for content (see for in
stance [1]). Furthermore, the linguistic phenom-
ena studied rely on the ontology, not on the con
tent. Therefore, in the present version of TOBI,
content inferences are replaced by an interface to
an external user, activated upon request of a mas-
ter module, which fully implements ontological in
ferences. The clear division between ontology and
content gives a conceptually clean system, and the
implementation of a 'reaP content module can be
tackled in an independent way.

4.4 TOBFs data structures

In this section I go deeply into the internal de-
tails of TOBFs work, illustrating in a concrete
example the utterance analysis process. The data
structures passed across the three steps described
in Section 4.3, namely the utterance, the syntac-
tic structure, the logical form and the RM, are
explicitly shown. Let us consider the interpreta
tion of utterance (1)

"Mary met John before she left" (1)

The syntactic structure, that the SYNT module
builds starting from the utterance (1), is the Pro
log term showed in Figure 10, where (see [42] or
[2] for a description of the terminology used here):

74 Informatica 21 (1997) 59-77 S. Mizzaro

- s stands for 'sentence' and as ser means that
the sentence is assertive;

- line 2 represents the verb group (vg) that is
singular, has head 'meet', is transitive, is in
the indicative form, in the past tense and af-
firmative;

- line 3 models the subject of the main clause;
it is a noun phrase (np), singular, female,
definite, without modifiers ([]) , with head
the proper noun 'Mary' and without quali-
fiers([]);

- lines 4 and 5 represent the direct ('John') and
indirect object (not present here) of the main
clause, respectively;

- in lines 6 to 10, the embedded sentence (es)
introduced by the temporal presupposition
'before' is represented, in a recursive man-
ner. The symbols have the same meaning as
in the main clause.

The syntactic structure is then input to the SEM
module that (recursively) transforms it in the log-
ical form of Figure 11. Here the events (meet and
leave) and the semantic roles (agent and theme)
are singled out and the anaphoric references are
made explicit.14 The notation should be clear, af-
ter noting that the logical form is expressed in a
slot-filler notation, that sLf and npLf stand for
'sentence logical form' and 'noun phrase logical
form' respectiveh/ and that <VAR> stands for an
unspecified value.

The last data structure is the recursive model.
The RM of (1) was illustrated in Figure 2. In
TOBI, it is represented as the set of Prolog facts
of Figure 12, where, again, the meaning should be
clearly understandable, when compared with the
graphic representation of Figure 2.

5 Conclusions and future work

The main points discussed in this paper are:

- the linguistic phenomena of temporal presup-
positions and counterfactuals;

I know that this is not an easy problem, but here I
am not interested in it. In TOBI, anaphoric references are
handled via a simple history list mechanism (see [2]).

— the distinction between linguistic and extra-
linguistic knowledge, and the role played by
different kinds of knowledge and inferences
(entailments, presuppositions, ontology and
content) in the linguistic phenomena studied;

— the abstract syntax of the fragment of lan-
guage related to temporal presuppositions
and counterfactuals;

— the recursive models, an instance of computa-
tional models for naturally dealing with tem
poral presuppositions and counterfactuals. I
have sketched the formal specifications of re
cursive models, described their structure and
compared them with related proposals;

— the consideration that the nonmonotonic lin
guistic phenomena of temporal presupposi
tions and counterfactuals are more naturally
handled by comprehension svstems Models &
Evaluation than Formulae & Inference;

— the implementation, based on the RMs, of
the TOBI system, a comprehension systems
Models & Evaluation indicating that RMs
are an effective tool for treating temporal
presuppositions and counterfactuals and that
the dichotomy ontology-content seems rea-
sonable.

From an epistemological point of view, RMs
make explicit some considerations about the use
of negation by human (or more generally living)
beings (see [6, 10]). In fact, the first way that one
can imagine for representing the non-existence of
an object (or the non-occurrence of an event)
is probably the use of a slot 'existence' ('occur-
rence'), with the opportune value for each token.
In RMs, the more general mechanism of spaces,
attachments and signs allows not only to deal
with existence and occurrence, but also to explic-
itly represent the fact that the causal relations
hold between occurrences (or non-occurrence) of
events, and not merely between events.

In the near future, TOBI will probably be en-
hanced in various ways. To extend the set of
cases it can dealwith, an extension of the vo-
cabulary is needed. This, in conjunction with
an improvement of the grammar, will allow for
the treatment of utterances syntactically differ
ent from the ones considered in this work, but

TOWARDS RECURSIVE MODELS . . . Informatica 21 (1997) 59-77 75

sLf(meetConc(aff) ,asser ,past ,
[s lo t agent:

npLf(person,sing,f,<VAR>,slot name:mary,slot s e x : f) ,
s l o t theme:

npLf(person,sing,m,<VAR>,slot name:john,slot sex:m),
s l o t atTime(before):

sLf(leaveConc(af f) ,asser ,pas t ,
s l o t agent:
npLf (pe r son , s ing , f ,de t , s lo t name:mary,slot s e x : f))])

Figure 11: The logical form of (1).

model(ml, ins t (leaveConcl , leaveConc)).
model(ml, ins t (person2 , pe rson)) .
model(ml, i n s t (p e r s o n l , pe r son)) .
model(ml, inst(meetConcl, meetConc)).
model(ml, instanceSlot(leaveConcl , agent, p e r s o n l)) .
model(ml, instanceSlot(meetConc1, theme, person2)) .
model(ml, ins tanceSlot(person2, sex, m)).
model(ml, ins tanceSlot(person2, name, j ohn)) .
model(ml, instanceSlot(meetConcl, agent, p e r s o n l)) .
model(ml, ins tanceSlo t (personl , sex, f)) .
model(ml, ins tanceSlo t (personl , name, mary)).
model(ml, relat ion(beforeTime, meetConcl, leaveConcl)) .
model(ml, a t t ach (a4 , meetConcl, [])) .
model(ml, a t t a c h (a 3 , leaveConcl, [])) .
model(ml, a t t ach (a2 , person2, [])) .
model(ml, a t t a c h (a l , personl , [])) .
model(ml, a t tachSign(a4, (s 4 , p l u s , c e r t))) .
model(ml, a t tachSign(a3 , (s 3 , p l u s , u n c e r t))) .
model(ml, a t tachSign(a2, (s 2 , p l u s , u n c e r t))) .
model(ml, a t t achS ign(a l , (s l , p l u s , u n c e r t))) .

Figure 12: TOBI's internal representation of the RM of Figure 2.

with some common semantic-pragmatic charac-
teristics. For example, counterfactual phenomena
are very common in language, and do not need a
specific syntactic construction: another common
čase is for instance the use of the verb 'to wish',
as in "Mary really wishes she had left". Also,
the extensions regarding beliefs and situations il-
lustrated in Section 3.5 will surely be considered.
Finally, it is also planned to formalize the theory
that underlies the RMs, on the basis of Allen'š
theory of action and time [3, 4], of McDermotfs
temporal logic [32], and of Fomichov's theory of
K-calculuses and K-languages [17] using the for-
mal specifications presented in Section 3.2.

Acknowledgements

I am indebted to Marco Colombetti for many
valuable suggestions, and for long and stimulat-
ing discussions; also to Paolo Giangrandi, Elena
Not, Fabio Rinaldi, and two anonymous referees,
for many useful comments on an earlier draft of
this paper.

References

[1] G. Airenti and M. Colombetti. Ontology of
mind, subjective ontology, and the example
of temporal presuppositions. Technical Re-
port 92-018, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Milano,
Italy, March 1992.

76 Informatica 21 (1997) 59-77 S. Mizzaro

[2] J. Allen. Natural Language Understanding.
The Benjamin/Cummings Publishing Com-
pany, Inc., 2nd edition, 1994.

[3] J. F. Allen. Mantaining knowledge about
temporal intervals. Communications of the
ACM, 26(ll):832-843, November 1983.

[4] J. F. Allen. Towards a general theorv
of action and time. Artificial Intelligence,
23(2):123-154, 1984.

[5] J. Barwise and J. Perry. Situations and atti-
tudes. MIT Press, Cambridge, MA, 1983.

[6] G. Bateson. Steps to an Ecologv of Mind.
Chandler Publishing Companv, 1972.

[7] H. K. Berg, W. E. Boebert, W. R. Franta,
and T. G. Moher. Formal methods of program
verification and specification. Prentice Hali,
1982.

[8] D. Bochvar. On three-valued logical calculus
and its application to the analvsis of contra-
dictions. Matematiceskij Sbornik, 4:353-369,
1939.

[9] R. J. Brachman and J. G. Schmolze. An
overview of the KL-ONE knowledge rep-
resentation svstem. Cognitive Science,
9(2):171-216, 1985.

[10] M. D. S. Braine. On the relation between the
natural logic of reasoning and standard logic.
Psvchological Revieiu, 85(1):1—21, 1978.

[11] G. Brewka. Nonmonotonic Reasoning: Log
ical Foundations of Commonsense. Cam
bridge Universitv Press, Cambridge, 1991.

[12] C. C. Chang and H. J. Keisler. Model The-
ory. Studies in Logic. North Holland, Ams
terdam, 1973.

[13] C. J. Date. An Introduction to Database Sys-
tems, volume 1. Addison-Wesley, Reading,
MA, 5th edition, 1989.

[14] E. Daviš. Representations of Commonsense
Knouiledge. Morgan Kaufmann, San Mateo,
CA, 1990.

[15] K. Devlin. Logic and information. Cam
bridge University Press, 1991.

[16] H. B. Enderton. A Mathematical Introduc
tion to Logic. Academic Press, New York,
1972.

[17] V. A. Fomichov. A mathematical model
for describing structured items of conceptual
level. Informatica, 20(l):5-32, 1996.

[18] G. Gazdar. Pragmatics: Implicature, presup-
position and logical form. Academic Press,
1979.

[19] G. Gazdar and C. S. Mellish. Natural Lan
guage Processing in Prolog. Addison Wesley,
Wokingham, England, 1989.

[20] M. R. Genesereth and N. J. Nilsson. Logical
Foundations of Artificial Intelligence. Mor
gan Kaufmann Publishers, Los Altos, Cali-
fornia, 1987.

[21] M.L. Ginsberg, editor. Readings in non
monotonic reasoning, Los Altos (California),
1987. Morgan Kaufmann.

[22] B. Grosz and C. L. Sidner. Attention, inten-
tions, and the structure of discourse. Com-
putational Linguistics, 12(3):175-204, July-
September 1986.

[23] O. Heinamaki. Before. In J.N. Peranteau,
P.M.and Levi and Phares G.C, editors, Pa-
pers from the Eighth Regional Meeting of the
Chicago Linguistic Societv, Chicago, Illinois,
1972. University of Chicago.

[24] O. Heinamaki. Semantics of English Tem
poral Connectives. PhD thesis, Department
of Linguistics, University of Texas at Austin,
Austin, Texas, 1974. Reproduced by Indiana
Universitv, Linguistic Club, November 1978.

[25] J. R. Hobbs and R. C. Moore, editors. For
mal Theories of the Commonsense World.
Ablex, Norwood, NJ, 1985.

[26] H. Kamp and U. Reyle. From Discourse
to Logic. Kluwer Academic Publisher, Dor-
drecht, The Netherlands, 1993.

[27] L. Kartunnen. Presuppositions of coum-
pound sentences. Linguistic Inquiry,
4(2):169-193, 1973.

TOWARDS RECURSIVE MODELS ... Informatica 21 (1997) 59-77 77

[28] A. Lascarides and N. Asher. Discourse rela-
tions and defeasible knowledge. In Proceed-
ings of 29th Annual Meeting of the Associ-
ation for Computational Linguistics, pages
55-62. University of California at Berkeley,
June 1991.

[29] A. Lascarides and J. Oberlander. Temporal
connectives in a discourse context. In Pro-
ceedings of the European ACL, pages 260-
268, 1993.

[30] S. C. Levinson. Pragmatics. Cambridge Uni-
versity Press, Cambridge, 1983.

[31] W. C. Mann and S. A. Thompson. Rhetor-
ical structure theory: A theory of text or-
ganization. Reprint ISI/RS-87-190, Informa
tion Science Institutes, University of South
ern California, 4676 Admiralty Way/Marina
del Rey/California, June 1987.

[32] D. McDermott. A temporal logic for reason-
ing about processes and plans. Cognitive Sci
ence, 6(2):101-155, 1982.

[33] S. Mizzaro. TOBI - An Ontological Based In-
terpreter for Temporal Presuppositions and
Counterfactuals. In R. Trappl, editor, Cy-
bernetics and Svstems '94, volume 2, pages
1879-1886, Singapore, 1994. World Scien-
tific. Proceedings of the Twelfth European
Meeting on Cybernetics and System Re
search, organized by the Austrian Society for
Cybernetics Studies, held at the University
of Vienna, Austria, 5-8 April 1994.

[34] S. Mizzaro. Recursive models: A computa
tional tool for the semantics of temporal pre
suppositions in natural language. In Proceed
ings of the fifth meeting of the AI*IA (Ital-
ian Association for Artificial Intelligence),
Workshop 'Natural Language Processing',
pages 43-46, Naples, Italy, 26-28 September
1996.

[35] L. Polanyi. A formal model of the structure
of discourse. Journal of Pragmatics, 12:601-
638, 1988.

[36] H. Reichenbach. Elements of Sgmbolic Logic.
Macmillan, London, 1947.

[37] R. Scha, B. Bruce, and L. Polanyi. Dis
course understanding. Technical Report 391,
Bolt Beranek and Newman Inc., 10 Moulton
Street, Cambridge, MA, October 1986.

[38] P. Smolensky. On the proper treatment of
connectionism. Behavioral and Brain Sci
ence, l l (l) : l -74, 1988.

[39] I. Sommerville. Softuiare Engeneering.
Addison-Wesley, Reading, MA, 3rd edition,
1989.

[40] R. Turner. Logics for artificial intelligence.
Ellis Horvrood Limited, Chichester, England,
1984.

[41] B. L. Webber. Discourse deixis and dis
course processing. Technical Report MS-CIS-
88-75, Department of Computer and Infor
mation Science, University of Pennsylvania,
Philadelphia, PA 19014, September 1988.

[42] T. VVinograd. Language as a cognitive pro-
cess, volume 1: Syntax. Addison-Wesley,
Reading, MA, 1983.

Informatica 21 (1997) 79-114 7 9

Informational Graphs

Anton P. Železnikar
An Active Member of the New York Academy of Sciences
Volaričeva ulica 8
SI—1111 Ljubljana, Slovenia
Email: anton.p.zeleznikar@ijs.si

Keywords: graph definition; informational gestalt, graph, operand, operator, star gestalt, transition;
parenthesis pairs; primitive parallel formula system; serial-circular formula system

Edited by: Jifi Šlechta
Received: August 6, 1996 Revised: December 3, 1996 Accepted: December 17, 1996

Informational graph seems to be one of the most basic underlying structures (circuits
[1, 4], frontal lobes functions [10], schemata [15], impressions, etc.) for the concept and
possibilities ofinforming and its understanding. The graph behaves as a regular parallel
informational system of formulas (entities) with its own possibilities of informational
spontaneity and circularity. By means of informational graph, it is possible to explain
the origin ofthe so-called informational gestalt and, besides, the arising of informational
formulas especially concerning the so-called causality in regard to the position of the
formula parenthesis pairs. Another view of the graph lies in the moving along the
arrows in the graph, that is, a formula construction, when choosing a path and setting
parenthesis pairs in the emerging well-formed formula, in a spontaneous and circular
way. This approach, together with the arising of the graph itself, can represent one of
the keystones of the informational arising of formulas, the vanishing of their parts, and
the changing of the structure during the informational moving through the graph. The
paper shows how the informational graph can be understood by the phenomenalism of
informational gestalts exerting the causal possibilities of formulas with the same length
but differently displaced parenthesis pairs. Several examples are formalized.

1 Introdliction original (initial) formulas. As such, it appears
as a schematic pattern of operands and opera-

Informational graph1 is a graphical imitation (in- tors, in which the user can set parenthesis pairs
formational presentation, and circuits [4], frontal Spontaneously, getting an arbitrary causal depen-
lobes functions [10], schemata [15] in the neuro- dence of operands (informational entities) within
logical sense) of a serial informational formula sys- j^e g raph's pattern2.
tem (a system of parallel serial formulas) or also Informational graphs can be comprehended as
•a parallel system of basic (atomic) informational generalizations of informational formulas (as par-
transitions (without any parentheses pairs). In- a l l e l s y s t e m s 0f c e r tain serial formulas) from
formational graph performs like an imprint along w h i c h v a r i o u s formula reconstructions are possi-
which different formula interpretations are pos- b l 6 j t h e n u m b e r of which depends on the involved
sible. In this sense, an informational graph pre- informational operators, that is, on the formula
serves the sequence (direction) of the occurring in- lengthm T h e n u m b e r of possible graph interpre-
formational operands and operators, but does not
consider (that is, ignores) the parenthesis pairs of 2Informational phenomenalism joins the terms repre-

senting phenomenology, ontology"and causation in regard
1This paper is a private author's work and no part of to an informational entity. An informational operator \=

it may be used, reproduced or translated in any manner exerts an existential (Being-like) as well as causal property
whatsoever without written permission except in the čase ofthe operand(s), to which the operator belongs (connects
of brief quotations embodied in critical articles. them).

mailto:anton.p.zeleznikar@ijs.si

80 Informatica 21 (1997) 79-114 A.P. Zeleznikar

tations by formulas grows rapidly by the number
of the occurring binary operators in the formula
as we shall show in the study which follows. We
shall learn also in which way the most rational
(unique) formal description of an informational
graph is possible and how interpretations of the
circular graphs by circular formulas can carry a
substantial degree of expressional redundancy.

On the other side we have to determine a set of
new concepts concerning graphs and their inter
pretations especially by informational gestalts. It
has to be answered rigorously what does an infor
mational graph represent and how can it be used
for the generation (emerging) of different formula
interpretations. For the sake of the understanding
clarity we can introduce special primitive graph-
ical symbols by which graphs of any complexity
can be presented in the form of graphical sketches
(schemes, circuits). For example, complex circu
lar informational graphs can be studied from the
different points of view. On one side, such a graph
appears as a relatively clear picture to the user;
on the second side it can be described formalh/ in
the most rational form by a parallel system of the
primitive informational transitions; on the third
side, it can be expressed by a parallel svstem of
arbitrary serial and circularly serial formulas, con-
sidering only those of them which in a given čase
represent the reality (rationality) of the problem.

An informational graph represents ali possible
interpretations which number depends solely on
the involved binary operators. Additionally, as
interpretations of the graphs, the so-called star
gestalts of graphs can be introduced which illus-
trate the moving through the graph from an initial
operand, constructing serial and circularly serial
formulas of different lengths, for example from the
length i. = 1 (basic or atomic transition) on to an
arbitrary length £ = n. Thus, systems of formulas
belonging to a circular star gestalt from a circular
graph can be constructed (by a parenthesizing) in
an arbitrarily lasting way.

Informational graphs are visual (texts, images),
acoustic (voices, music, noise), tactile (Braille
script), taste (food evaluation), smelling (perfume
competition), etc. They are static and dynamic.
Some practical examples of static informational
graphs are literature texts, artistic pictures, draw-
ings, music notes, etc. Examples of dynamic in
formational graphs are theatre performance, TV

and radio transmissions (mixed visual and acous
tic), everyday happenings in characteristic situa-
tions (common patterns of behavior and uncom-
mon reactions), etc. For aH these graphs it is
typical that they are not 'parenthesized'. Under
standing of the mentioned phenomena (together
with Parenthesizing, causation, interpretation) is
left to the observer. It means that the causal
structuring of a graph belongs to the domain
of the observer and that different observers can
causally-differently structure one and the same
static or dynamic informational graph.

2 Elements of Informational
Graphs

Elements of informational graphs are circles (or
ovals, if their informational markers are longer or
complex) and arrows (vectors). Parallel and al
ternative input and output buses contribute only
to the compactness of graphs. Circles (operand
atoms) are marked by operands which represent
informational entities in informational formulas.
Arrows (operator atoms) are marked and un-
marked. Unmarked arrows represent the most
general operator |= and are used also in situations
where ali of the unmarked arrows belong to one
and the same operator, e.g., to the implication
operator =$• in the global implication axioms of
Hilbert [8]. The symbolic atoms of informational
graphs are presented in Fig. 1.

operand a operator |= operator | = p

Figure 1: Graphical sijmbols for informational
operands and operators (atomic elements).

The symbols in Fig. 1 can be connected in the
form of a graph representing a formula or formula
system, but without parenthesis pairs. In this
way the order of operands and operators remains
preserved (exactly in cases of a single formula,
and to some extent in cases of formula systems).

In Fig. 2 some elementary graphs for the most
basic phenomenal occurrences of an informational
entity a are presented. These occurrences are

(1) operand (entity) a as such,

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 81

(1)

(a j a

•\(XJ \=ot

& a |=

(2)

(3)

•©— (tf)
(5)

a \= a

N« a N a.

Figure 2: Informational graphs for the basic (phe-
nomenalistically structured) informational formu-
las.

(2) cVs externalism a \= (informing for others),

(3) a's internalism |= a (informing for itself),

(4) cv's metaphysicalism a (= a (informing in or
within itself),

(5) a's phenomenalism (a \=; \= a) (informing as
such), and

(6) for the sake of clarity, the entire modus
agendi3 of an informing entity a, that
is, its phenomenalistic and simultaneously
metaphysicalistic informing as a system of
(a\=;\=a;a\=a).

(1)

Figure 3: Informational graphs representing (phe-
nomenalistically) the structure of data 5.

Data, marked by S, is a characteristic informa
tional entity which can be graphically presented
by a particularized graph being essentially differ-
ent from the modus agendi belonging to a gen
eral informational entity, marked by a. The data

3Modus agendi of an informational entity, exerting an
entity characteristic internalism, externalism, and meta-
physicalism, has the potentiality to be compared with the
Self behaving self-sensitive and self-active in regard to its
environment (exterior) and interior (the subject regarded
as the object of its own activity).

graph is sketched in Fig. 3, where the feedback
loop is marked by the equality operator '= ' , real-
izing the metaphysical situation 5 = 5, belonging
to data. In čase (2) one can introduce also the
explicit operator of non-informedness of data 5,
that is \£ 5. In this čase, the non-informedness of
5 means the absence or impossibility of any exte-
rior or interior impact on data 5.

In the čase of input and/or output parallelism
concerning an informational entity a, we intro
duce, for the sake of graphical transparency, a
kind of input and output lines (parallel buses),
respectively. Some specific cases are presented in
Fig. 4.

h«

" 1

«2

(1)

•©•

(2)

«1=

^2

—{£y-

/» iN

/32 N

(3)

•0-
M 5,

Figure 4: Informational graphs representing
characteristic cases of informational parallelism,
where vertical double-bars (||) are parallel input
and output collection lines of operand (entity) a.

The graph in Fig. 4, čase (1), shows how the
parallel decomposition of operand a might be
senseful, that is, in the form of implication

a = £ - . ;

82 Informatica 21 (1997) 79-114 A.P. Zeleznikar

which expresses the a's unlimited input (internal-
istic) and output (externalistic) potentiality. The
unique description of the graph is presented by a
system of the incomplete basic transitions, that
is, a ^ (N a; \= a; • • •; |= a; a \=; a \=; • • •; a |=).

Čase (2) in Fig. 4 can be described formally as

/7N«i;\
| = " 2 ;

\ \ N «m/

\

N« N
/

/A N\
AN

VAN/
But, as we see looking at the graph, there exists
stili another formula interpretation of the graph,
in the form

t=«2;

\H"m/

/

N a |=

v
/A H\\
A N

v A i=yy
The unique description of the graph by elemen-
tary transitions is in the form of the parallel for
mula system, which is

f\=ai\ N a2\
a\ \= a; «2 N «;
a NA; a NA;

V A N; A h;

1= «m; \
"m |= a
ot N A ;
AN y

Čase (3) in Fig. 4 includes a loop of parallel
operands and a possible formal description of this
graph is

/ N T I ; \ / / / Č I N \ \ \
N 72; ,

a\= N
Vi=w vv \8q\=JJ

N«
J

The reader can guess in which way stili four other
interpretations of the graph (3) in Fig. 4 are pos
sible. On the other side, the very unique graph
description, including ali possible graph interpre
tations, is the parallel formula system

/ N 7 1 ;
71 N « ;
a N <*i;

\ * i N«;

N 72;
72 N «; • •
a\= 52; ••

h N «; • •

•; N 7P; \
•; 7P N «;
• ; a N 5q'i
•; sq N « /

Let us show two examples which explain the
graphical presentation of parallelism.

Otl) K a 2

«1 «2

(1)

On) (2)

Figure 5: Graphically, the parallel connection of
operands a\, OL<I, • • •, otn (1) by semicolons (opera-
tors of informational parallelism, | N *s replaced
by isolated parallel operands (2).

Čase (1) in Fig. 5 shows the graphical presen
tation of a strictly, that is operationally, parallel
structured formula

(• • • («i |N «2) IN ' • • an-l) IN "n

(also, with any other distribution of parenthesis
pairs) which is replaced with the common semi-
colon (symbol of parallelism) formula

a i ; a 2 ; i Otn

Čase (2) in Fig. 5 shows this semicolon-simplified
formula example graphically.

(1) (P t= «) h P; (2) (7 N /3) N 7;
(-3 h 7) N >

,P\=(-r\=P).

© - d H (ž>-©-i

(3)

Figure 6: The joining oftivo serial graphs given by
formula systems (1) and (2) into a unigue serial-
parallel graph determined by the adeguate formula
system (3).

Fig. 6 shows in which way two circular serial
graphs (1) and (2) can be joined into the circular
serial-parallel graph (3). In this way the graphi
cal transparency of the resulting formula system
is essentially improved. The serially circular for
mula system, being parallelized by joining graphs
(1) and (2), means a (graphically) equivalent form

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 83

TNft
V/3N7/

^Nfr^^
7) ^ (^ (7

čH^llM;

V
a: 0 N d ; ') 1= 0 /

This formula describes the joined systems (1) and
(2) in Fig. 6 (compare to the eight formulas).
There exists a sort of meaning equivalence (op
erator ==) between the transition formula system
describing to the graph (3) in Fig. 6 and the serial-
parallel formula system on the right side of oper
ator ==.

Similar role as the parallel informational op
erator ||=, that is semicolon ';'> n a s the alterna
tive informational operator |=aiternativeiy-to> that
is comma ','• In an informational graph we use a
specially marked alternative bus (instead of par
allel bus) to distinguish the particular čase of al-
ternativism. For instance, if in cases of Fig. 6, ali
semicolons are replaced by commas, the alterna
tive situation is presented in Fig. 7.

(1) a h (/? N «0,
(/3 h «) (= /3, (2)

' 7 l=(0l=7) ,>
(7 1= /3) h 7,
(/3 h 7) N /3,

./»1= (7 M) ,

®-i ®-®n

(3) v y^A v

A
•©

A

Figure 7: T/ie joining of two serial graphs given by
formula systems (1) and (2) into a unique serial-
alternative graph determined by the adequate for
mula system (3).

After the discussion by examples we have to
answer the question, what does an informational

graph mean at ali, what is its informational rep-
resenting potentiality?

3 Informational Graph as an
Informational Entity

After the introductory interpretation concerning
the informational graph on one side and the infor
mational formula (also formula system) phenom-
enalism on the other side we have to construct a
precise definition of the informational graph and
its meaning, and deduce some consequences of
this definition. Further, how can an informational
graph arise informationally? To answer this ques-
tion we must determine which kind of informa
tional entity or even entities (operands, formulas)
does the informational graph represent.

D E F I N I T I O N 1 (A General Graph Determination)
An informational graph is a connection of in
formational operands (entities) and informational
operators (entities' informational properties) not
containing the parenthesis pairs of a formula.
Operands are marked circles or ovals represent-
ing arbitrary informational entities. Operators are
unmarked or marked arrows (vectors) represent-
ing adequate informational properties of entities
which they connect. An informational graph as
a structure of connected and unconnected (iso-
lated) graphical elements can represent any pos-
sible well-formed informational formulas—serial,
parallel, and circular—which can be constructed
by a consequent use of the parentheses pairs. •

D E F I N I T I O N 2 (A General Primitive Parallel For
mula Svstem) A general primitive parallel formula
system (G P P F S , for short), marked by ip', is a par
allel sequence (system) of the most simple inter-
nalistic, externalistic, transitional (serial, serially
circular) formulas of length t = 1 (having a single
operator) and unconnected (marker) formulas of
length £ = 0, concerning the informationally in-
volved operands. Such primitive formulas are, for
example,

H ;

v:

[internalistic (input) formula]
[externalistic (output) formula]
[transition formula as a serial

or serially circular formula]
[unconnected marker formula]

84 Informatica 21 (1997) 79-114 A.P. Zeleznikar

t, o, 1
T l iT2i / € V [primitive operands domain]
v J

where set V represents ali possible primitive (the
most elementary) operands or operand markers.
Thus, for example,

^(l',0,T1,T2,v) ^ I i \= Ti; Ti |= T2; j
\ T 2 |= o; v J

marks a general form of GPPFS. •

According to the last definition we can represent
an informational graph graphically, as already
done in the previous section in Fig. 2, or also sym-
bolically, tha t is by formulas or formula systems,
using an appropriate and unique (well-formed)
informational symbolism. However, there exists
only one form for unique graph representation by
informational formulas without parenthesis pairs.

T H E O R E M 1 (A Graph Interpretation by the Gen
eral Primitive Parallel Formula System) An arbi-
trary informational graph (drauiing), being for-
mally marked by

®(vj (7i>72, • • • ,7n7 ; vi, v2, •••,«„„))

concerning the connected operands 71,72, • " , 7n7

and the unconnected (informationally isolated)
operands vi, v2, • • •, vUv, can uniquely be described
by the primitive parallel formula system ip' of the

form

<£j| (71)72 , - ")7n7 j ^ l , t>2, •••,!>„„) —

(1= 7i; Tj 1=; 7P N= 7«; \

7*1 lj,7pi7? G {7l, 72, • • • , 7 n 7 } ;
Preliminarily unconnected operands v\\ v2; •••;
vHv function as entities which could become con
nected in the course of further decomposition of
the system ip'. •

P r o o f 1 (Graph & and Formula System ip') Each

graph © can completely be described by the ad-

equate formula system ip'. The proof of the the

orem is the following. For any two by the arrow

connected marked circles (or ovals) in the direc-
tion from j p to j q , there is, evidently, 7P |= 7g ,
where the arrow represents the operator |=, be
ing marked or unmarked. For each arrow in the
graph, there is exactly one basic transitional for
mula. In this way, ali operator connections of the
graph can be formalized. In principle, a graph
can include also unconnected (isolated) operands
which are not connected elsewhere. The input
arrows leading to some operand markers are for
malized in the form |= 7,, while output arrows
leading from some operands have the form 7, |=.
This completes the proof of the theorem. •

The next question we have to solve is what an
informational entity, that is, formula or formula
system, does an informational graph, formally de-
termined in Theorem 1, imply. We have to prove
the informational transformation possibilities of
the parallel system in the previous theorem. Ev-
idently, a parallel informational system hides the
power of another parallelism of serial and circular
structure which has a causal origin.

P R E S U M P T I O N 1 (Interpretation Possibilities of
the Graph) An informational graph represents a
parallel system of serial and serial-circular for
mulas of different lengths in which operands can
be variously interwoven and the parenthesis pairs
in the occurring formulas can be arbitrarily dis-
placed. This means that the parallel system of the
most basic transition formulas, representing the
graph (as in Theorem 1), can be informationally
transformed in a causally more transparent and
for the human observer more understandable par
allel system of serial and/or circular-serial formu
las of different lengths. In this way transformed
formula system brings to the surface the explicit
possibilities of a causal structure of the occurring
formulas which, then, can be chosen as the best
fitting ones for the description of an informational
situation and at t i tude. •

Serial and circularly serial formulas will be su-
perscribed by the formula length n and n + 1,
respectivelv, and subscribed by the formula index
i in an interval 1,2, • • • ,N_> and 1, 2, • • • , N^ , re-
spectivelv, where N_> and N^ , respectivelv, the
so-called numeri causae (causal numbers), will
depend on the length of a serial and circularly
serial formula. Usually, subscript 1 will be given
to a serial formula

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 85

" ^ (C T , CTi,o-2,---,crn_i,CTn) ;=±

((• • • ((CT 1= °l) \= °i) 1= • • • *n - l) 1= °n)

where er, o i , 02) • • • J c n _ i , crn are serial operands,
and to a circular formula

(((• • • ((w |= wi) |= w2) |= • • • wn_i) |= wn) |= u)

where (w ,wi ,W2, i , , !W n - i ,w n are circular serial
operands. The subscribing proceeds consequently
(systematically) from 1 to N_^ and 1 to N , re-
spectively.

D E F I N I T I O N 3 (A Serial Formula and Its Gestalt)
By a serial formula ,ip let us mark any well-
formed arrangement of the operands, operators
and parenthesis pairs, for which

" (^(^CTi , - - - ,0-„_i,CT„),
>;

¥l+(cr>0 'l! • " , ^ n - b ^ n)

i e { l , 2 , . . . , J N U ; ^ } = ^ T (2 „ ") ;

2</3^(CT,CTI,--- ,crn_i,cr„);

\ w V_> (o"> °"i > • • • > tfn-i, o-n)y

where n is the length of serial formula being
equal to the number of binary operators |= in
the formula, i is a systematic (causal) number-
ing of serial formulas of length n, N+ is the
number of ali possible serial formulas obtained
from a serial formula by the displacements of the
parenthesis pairs, and T(.ip (a, a\, • • • , a n _ i , an))
is the so-called gestalt of the serial formula rep-
resenting the parallel system of ali formulas of
length n obtained from the original formula by
ali possible displacements of the parenthesis pairs
in the original formula. As evident, operands
and operators remain on the initialh/ fixed po-
sitions, according to the original (initial) formula
"(/^(O-JČTI,--- ,ern_i,crn) . D

D E F I N I T I O N 4 (A Circularly Serial Formula and Its
Gestalt) By a circularhj serial informational for
mula . tp let us mark any serially and circularly
well-formed arrangement of the operands, opera
tors and parenthesis pairs, for which

n+l O , N
.ip^iu,^,--- ,Un-l,LL>n) G

t n+1 ° (\ \
n+l O , s

n + l O , \
<p {w,ui,--- ,un-i,un)

,6{l,2,.-,iVf}; ̂ = ^ « 5 ?) ;

/n+l O / s \

n+l O , x
(p [U},OJI,--- ,un-i,u}n);

n+l O / N

where circularity concerns the first (main)
operand, that is, u and the parenthesis pairs can
be arbitrarily displaced in another way, according
to the gestalt of the formula.

The difference between formulas .ip (a, a\, a2,
••• , 0Vi-i, an) and " . ^ (w , u>i, u2, ••• , ojn-i,
uin) is in their lengths l_^ and l , tha t is, t —
£_ + 1. Thus,

- g e s t a l t T\J<p^(a,ai,a2,--- ,^n-i,crn)j h>
cludes

2£.

+ 1

formulas of length £_^;

gestalt T^jip^iu, ux, w2, • • • , un-i, w„)J
of a circular formula includes, analogously to
the serial structure of its circularity,

f2l_

o o
formulas of length l formulas of length £ = l^ + 1 ; and

86 Informatica 21 (1997) 79-114 A.P. Železnikar

the so-called circular gestalt of the form
r { j V ^ K wi> ^2, ••• , un-i, un)J m-
cludes, considering ali operands in the cir
cular structure (loop, cycle),

& Wn-1 j ^ n)

Figure 8: The serially circular graph representing
n+ž (n+i) s e n a ^ 2 / circular formulas of length i =
n + l.

formulas of length £_^ — £_^ + 1.

In this respect, for the gestalts of a serial and cir-
cularly serial formula, and for the circular gestalt
of a circularly serial formula, the corresponding
numeri causae are the following:

l (2L, ftt-> \ _ _L_ (2n\ .
1++1 \Li I ~ n+l U / '

TO I (U^ s _ _ i _ / 2 n + 2 \ .
J&+1\t° / n+2 ^ n+l) '

°N°

1 fll?

o „„o

<F+7
C2f-> ~\ _ n + l (2n+2\
\£0J n + 2 V n + 1)

In this way, the so-called causal difference be-
tween the complex circular and the pure serial
čase is, expressed by the running subscript n (be-
ing equal in ali three cases),

n + l (In -I- 2
n + 2 V n + l

I [2n

n\ n

Causal possibilities are essentially different in a
pure serial and in a complex circular čase. •

THEOREM 2 (Transparency of the Operand Cir-
cularity in a Circular Formula) The circularitv
of operand u) in a seriallv circular formula

.ip (UJ,LJI,UJ2, • • • ,con-i,ujn) implies the circu
laritv of the remaining operands o>i,a>2,--- ,uin,
that is,

n+l O / . ..
. (p^(u},Ui,U}2,- • • ,Un-l,Vn) =>

/ n + l O / , \
^ ^ (^ l , ^ , - - - ,w„,w); >

n+l O / x

V j n ^ ^ n , ^ , ^ ! , - - - ,Wn_2,Wn_i)y

In a seriallv circular formula, the circularitv con-
cerns ali operands, that is, u,UJI,UJ2, • • • ,u)n-i,u)n.
D

Proof 2 (Circular Informing of Operands in a Cir
cular Formula) For a serially circular formula

n+l O / x
i V ^ ^ ^ l ' " " ") W n - l , W n) ^

((• • • ((J (= Wi) | = • • • Vn-l) | = W n)

we can construct the circular graph in Fig. 8.
In the loop of the graph, for the remain
ing operands OJ\,--- ,uin-i,ujn, the existence of
the serially circular formulas (viewed as by the
parenthesis-pairs-displaced specific functions of
n + l operands)

n+l O / N

J 1 ^ (w i , w 2 , - ' - ,w„,w);

"}2V" (^2, w3, • • • ,un,uj, wi);

n+l O / v

is evident. This proves the validity of the theo
rem. D

THEOREM 3 (A Graph Interpretation by the Cir
cular^ Serial Formula System) An informational
graph (draming in Fig. 9), being formallv marked
by

(

e ,<r

V

/ i o , ^ l , £2, ' • •
oo,oi ,o 2 , - -
0~pO,0~pl,0~p2,
P = 0,1,- - -
UqO,iL)qi,U)q2

\V0,Vl,V2,--

^nii
> °n0'i

i °~pmv j

' ' ' > L O q n q i

, ^ n u

\ \

/ /

concerns the systematically grouped and also over-
lapping

— input (internalistic) operands, marked byl =
{l'0,l'l,l'2,-m' i ^ n j ;

— the output (externalistic) operands, symbol-
ized byO = {o0, ox, o2, • • • , on<J};

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 87

— the A groups of serial (transitional) formula
operands, denoted byS — {o~po, av\, op2, • • • ,

o, pmv
|p = 0,l,--- ,A},

the B groups of circularly serial formula
operands, represented by O, = {c«;gojWgi, • • • ,

u, qnq
= 0,1, • • • ,B}, and

— the unconnected (informationally isolated)
operands, V— {VQ,VI,V2,-• • ,vnv}-

The unconnected operands do not overlap with
other operands and are foreseen as those which
could become informationally involved. The inte
gral gestalt, being composed of the respective par-
tial gestalts, is a formula

oo,oi,o2,- • • ,o„0;
°~pOi ®p\ i °~p21 ' ' ' i Gpmv i

p = 0, l , - - - ' , i i ;
^gO j ̂ 1) ^ 2) " - - ,Wqnv'i

q = 0,l,--- ,B;
\vQ,Vi,V2,--- ,Vnv j)

&

^r(|=io;|= 4i;l= li\--- ;l= O ;
r(o0 (=;oi \=;o2 (=;••• ;o„„ (=);

> w g n ?

5 wgn<, >w<?o)J;

5 ^ 5 7 1 . v-\)jl

T (TpV-, (°"p0, CTpl, • • • , <7pmp)j

p = 0,l ,--- ,A;

(nq+l Q.

\ J<70 "^

_ , / n , + l O /

\Jqnq -*

q = 0,l,--- ,B;

\T(v0;vi;v2;--- \vHv)

1 < ?' < x (2mp) •

± ^ Jqk ^ nq+2\nq+l)>

k = 0 , 1, • • • , 7 1 ,

/ / i/ie elements of the connected operands are rep
resented by the union set C = l U O U S U Cl,
then C n U = 0. Evidently, the different sorts of
graphs corresponding to the input, output, serial,
and serially circular gestalts can mutually (spon-
taneously, arbitrarily) overlap. D

uihere

Input
graphs

t = (-o

h n

1= 'n,

Serial graphs with
operands ap0, • •• ,crpmp

O
Circular serial graphs with

operands uq0,--- ,u)qrig

=2]
Unconnected graphs with

operands v0,--- ,vUv

O O o

Output
graphs

oo h

»i N

°n„ \=

Figure 9: A complex (circularly parallel-serially
structured) graph concerning input (internalis-
tic operands), output (externalistic operands), se
rial (transitional), serially circular, and isolated
operands, corresponding to the gestalt in Theo-
rem 3.

Proof 3 (Covering the Graph by Serial and Circu
lar Formulas) It is to stress that any operand of
the system formula ¥^_>. appears in the graph
one time only. This situation leads to the over-
lapping of input, output, serial, and serially cir
cular graphs. Overlapping means the occurrence
of one and the same operand in several formulas
concerning the input, output, serial, and serially
circular arrangement of operands and operators.

The proof of the theorem can be realized by
the inspection of the graph. In this situation,
serial and circular formulas can be constructed,
concerning different paths and loops, respectively,
with the aim, to cover the entire graph by this
formula description technique. In this process,
any form of the formula, irrespective of the set-
ting of the parenthesis pairs within it, can be cho-
sen. Certainly, for each chosen path or loop of the
graph, a formula and to it corresponding gestalt
can be determined. Evidently, by such a tech-
nique, the graph with aH its circles, ovals, and
arrows can be covered, that is described by for
mulas in whole. It is evident that for, the iso
lated operands and for internalistic and external-
istic formulas, there is

{vi;v2;---\vnv) ^T{vi;v2;---;vnv) and
(H H) ^ T(\= Li); (0j |=) ^ T{0j h)

file:///Jqnq

88 Informatica 21 (1997) 79-114 A.P. Zeleznikar

respectively. Thus, the number of causal varia-
tions of systern ..$ is

£ 2rnr
B

' +E 2nq + 2
^0mp + l\mpJ ^ ng + 2 V ng + 1

This completes the proof of the theorem. •

DEFINITION 5 (Graphical Equivalence of Formulas
and Formula Systems) Two formula systems (or
formulas), marked by <J>i and $2, are said to
be graphically equivalent, if they describe (cover,
have, possess) exactly (completely) one and the
same informational graph <3. In this čase, we in-
troduce

$ 1 = « $ 2

where = 0 marks the operator of the informational
graphical equivalence. The meaning of this graph
ical equivalence can be expressed by the formula

($ i = e $ 2) - (<5($i) = 0 ($2))

in which the general informational equivalence
(operator =) can be used. For a formula system
(or formula) $1 and its graph, and a formula sys-
tem (or formula) $2 and its graph, the following
is alternatively (the comma) informationalb/ im-
plied:

(<3 (<h) = 0 ($2)) ® (* i) = e * 2 ,
& ($!) = . 0 (<&2),

Thus the use of the general equivalence operator
= and the graphical equivalence operator =a is
uniquely determined. •

THEOREM 4 (An Equivalence of the Possible
Graph Descriptions by Different Formula Systems)
There exists aluiatjs the one and only one graph
0 being described simultaneously by the circular
primitive parallel formula system

t o'

OQ,OI,O2,
&p0,O-pl,O-p2,

) unLi \
Jnai
• , o , pmp>

p = 0,l,--- ,A\
WqQ,iOgi,U>g2,- '• ,&qnq',
9 = 0 ,1 , - - - ,B ;

\v0,vi,v2,--- ,vnv

(Theorem 1), consisting of input operands 1^, out-
put operands 0{0, serial (elementary transitional)
operands a^, circular (elementary transitional)
operands u ^ and isolated operands viv, which can
(with ezception of the isolated operands) arbitrar-
ily overlap one another, on the one side, and the
graphically equivalent parallel circular serial for
mula system . . ^ , on the other side. In this sys-
tem, there ezist circular serial formulas (of length
2 and greater), tnhich can be derived from the
graph. There is

01
Moreover, tp means nothing else than the prim-

o itive parallelization of ,,$_,., by which serial and
o circular serial formulas of ,.$_^ are decomposed

into primitive (basic) transitions. In this way,

H*°) t o'

inhere

t o'

/ t-o,i'i,i<2, • • • , t f i t ;
0 0 , 0 1 , 0 2 , - • • , o n o

O"p0,O-pi,crp2,-- •

P = 0,1,- - - ,A\

9 = 0,1, ••• ,B;

j °~pmv j

qnq i

/

f\=tr; r = 0, l,--- ,n t ;
os (=; s = 0, l,--- ,n0;

°~pi |= °p,i+l>
p = 0,l,--- ,A\
i - 0, l,--- ,mp - 1;

Wqj f= Ugj+V, Wqnq | = U}qo]
9 = 0,1, -•• ,B;
3 = 0,1 , - - - ,nq-l;

\vu; « = 1,2, ,n.

The obtained serial and circular serial basic tran
sitions are seen in the lower formula array. D

Proof 4 The proof of the last theorem is evident
and proceeds from the previous definitions and
theorems. For a graph 0 , there is evidently,

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 8 9

<8 t
o'

OQ,Oi,02,-•• ,Ono;

0~pQ, O-pl, <Tp2, • • • , 0-pmp]

W 9 0 7 ^ g l 5 ^ g 2 , Wqnq;

0 &

w
O 0 , O l , O 2 , - - - , O n o

CpO, CTplj CTp2, - • -

WqQ,lOql,Uq2, ' • •
<7 = 0 , 1 , - - - , S ;

i °pmp i

/ /

Both parallel formula systems, ^ a n d ,,$^ de-
scribe exactly one and the same graph 0 . This
proves the theorem. D

Theorem 4 says that there exist at least two for-
mal and to the graph completely corresponding
interpretations of an informational graph: that in
the form of the primitive parallel formula system
(PPFS) and the other in the form of the paral
lel circular serial formula system (PCSFS). Other
forms can certainly be circularly mixed parallel-
serial systems, including explicit expressions of
various main operands of complexly mashed in
formational systems.

4 Serial and Circular
Informational Graphs Hiding
a Parallel Informational
Structure

4.1 Introduction

In general, an informational graph represents
a complex (gestalt-like) informational structure,
which under certain circumstances, can simul-
taneously represent parallel, serial and circular
informing of the involved (mutually informing)
operands (entities). An informational graph, as
an optical or formalistic scheme, does not say
anything of that what concretely, in a true sit-
uation, comes actually in the foreground. It can
be only a simple, very particular serial or circu-
larly serial scheme of informing. On the other

side, such a graph, obtained from the pure se
rial or circularly serial situation, comes to the
foreground simultaneously as a pure, that is, ex-
tremely parallel informingly structured organiza-
tion, and through this view, covers not only one
particular čase but ali possible other particular
cases of particular causalisms, as a consequence
of the parenthesis pairs displacements in partic
ular formulas in respect to the original (initial)
particular formula(s).

On the other hand, we have learned so far,
how informational parallelism can cause the phe-
nomenon of informational serialism and informa
tional circular serialism (as an implicit property
of element ar y informational transitions). Within
informational serialism of any kind, the so-called
causalism can come into existence. The causalism
is nothing other than a different serial interpre-
tation of an initial formula, in which parenthesis
pairs are not once for ali determined or are simply
left out. This happens with sentences of a natural
language where a formal syntax analysis cannot
be performed unambiguously. Also in a speech
act, the speaker or hearer cannot follow an ab-
stract and depth-structured syntax analysis (syn-
thesis), but more or less a spontaneous linguis-
tic informing. Also, a living linguistic performer,
by his/her consciousness, cannot inform in the
discussed primitive parallel way, when long and
circularh/ structured sentences (with hundreds or
thousands causal possibilities) appear in the dis-
course. A consequent primitive informing would
be possible solely by an informational machine4

[22].
Causalism appears as nothing other than a spe-

cific informational organization (structure) of in
formational serialism. There does not exist a
causalism of this sort in a pure parallel (simulta-
neous) čase. It seems that causalism is "timely"
(serially) conditioned, where serially could mean
time-consequently.

4.2 A Serial Formula and I ts Graph

The pure serial informational graphs (without in
formational circies) correspond to the pure serial
informational formulas in which there are only bi-

4 An informational machine is a multiprocessing (multi-
processor) device possessing the propertv of an informa
tional entitv (spontaneity, circularitv, parallelism, serial
and circular causalitv).

90 Informatica 21 (1997) 79-114 A.P. Zeleznikar

nary informational operators between operand en-
tities (parenthesized or single) in a formula. To
this pure serial structure one can (must) add pos-
sibilities of the input and output informing of
the serial structure. The input informing is in-
ternalistic when a serial operand component o
is being openly informed from the environment
by \= Ui. The output informing is externalistic
when an operand of the serial structure informs
openly to the environment by Oi |=. Such a struc
ture is realistic from the viewpoint that entities
(operands) of a serial structure (formula) can be
informed from exterior operands and can inform
to exterior operands.

DEFINITION 6 (A Pure Serial Formula)A pure se
rial formula, . tp , is determined in the following
manner:

\= crL; a0 (= ;

{at,a0 G {ao,cri,--- ,an})\
(•••((To (=cri) |= •••crn_i) |= anJ

where the serial formula of the form (• • • (CTO \= a\)
\= • • • crn_i) (= an can be substituted by any other
serial formula with displaced parenthesis pairs,
that is by a formula which is graphically equiv-
alent to the original formula (Definition 5). The
formula subscript i systematically varies in the
interval 1 < t < ^ (2

n
n). •

L L L

n n n
Figure 10: Two graphical interpretations corre-
sponding to the pure serial formula system in Def
inition 6. The eguivalent bottom graph ezplicates
the parallel character of the serial formula.

4.3 Primitive Serial Parallelism and
Serial Formula Gestalt

A primitive serial parallelism denotes the exis-
tence of the primitive transitions which are seri-
ally connected, e.g., in the form of a small paragon
system a j= /3; /3 |= 7; 7 |= 6. A serial formula
gestalt is the system of ali the possible serial for-
mulas which parallelization delivers the primitive
parallel system. For the paragon system, these
gestalt formulas have the form ((a |= /3) |= 7) |=
8, with ali possible replacement of the parenthesis
pairs.

DEFINITION 7 (Primitive Parallelism of a Pure Se
rial Formula) The graph corresponding to Defini
tion 6 is presented in Fig. 10. The parallel collec-
tion lines || in the bottom graph of the figure show
the potentiality of further parallel inputs and out-
puts of the serially coupled entities. According to
Theorem 4, the graph in Fig. 10 can be equiva-
lently described by the primitive parallel formula
system

|= aL\ a0 \=; (aL,a0 G {cro,o"i,- • • ,crn});
(70 |= o\; a\ |= CT2; • • • ; 0"n-l |= o-n

For this formula it is characteristic that it deter-
mines the gestalt T of formula n<p_^ (01, 0̂ 2, • • •, crn)
in Definition 6. •

THEOREM 5 (Graphical Equivalence of a Serial
Formula Gestalt and a Pure Serial, Primitive Par
allel Formula System) The graphical eauivalence of
the form

rCV-^OjO"!,--- ,0Vi)) =e
 nip'(a0,<Ti,--- ,an)

determines one and the same graph for the gestalt
of a serial formula oflength n and the correspond
ing primitive parallel formula. This eauivalence
shouis the pouier of the basic transition formulas
(of the length 1, and informing in parallel) com-
pared to the long serial formulas of length n, and
belonging to the gestalt T(™(p_^ (ao, o\, • • • , an)). D

Proof 5 We have to prove the graphical equiv-
alence of the two parallel formula systems in
the theorem. Gestalt VQ(p^(ao,ai, • • • ,an)) is
a parallel system of serial formulas of the form
;</?_> (°"0) 01, • • • i Cn) which length is n. In a pure

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 91

serial formula of length n there are exactly n bi-
nary operators and n + 1 serial operands. As de
scribed, parenthesis pairs can be displaced in a
spontaneous manner, giving to the formulas dif-
ferent causal meanings (the corresponding causal
subscript i of formula "95^. Thus, the formu
las can be systematically numbered (subscribed),
where, for example,

iV- + (° 'o ,0 ' i . - - - ,CTn) ^

((• • • (cr0 |= cri))= • • • crn_x) (= an)\

((• • • (o-o h °"i) 1= • • • ovi-i \= o-n));

1 f 2n\ P_.{&0,V2,--- ,crn) ^

' (O-O N (CT1 1= • • • (°~n-l 1= an) • • O)

Thus, the gestalt of any of these formulas is a
parallel system of N_> — ^j-j- (^) serial formulas,
that is, in a shortened symbolic form,

r(>J &-+; 2 V H l-(2n)
</>_

HTU

for 1 < i < iV,. Each of these formulas deter-
mines one and the same graph 0 .

On the other hand, a graph (5, corresponding
to a formula nip_^ can be described, according to
Theorem 1, by formula tp'. This proves the the
orem. •

4.4 A Circular Serial Formula and Its
Graph

DEFINITION 8 (A Pure Serially Circular Formula)
A pure serially circular formula, ". ip , is deter-
mined in the following manner:

n + l O / s
ip (£ j 0 , w i , - - - , £ * ; „) ^ JI

(= wt; u>o \=; (wt,u;0 G {w0,wi, • • • ,un});
((• • • (w0 1= wi) (= • • • o;n_i) 1= u)n) \= w0

where the serially circular formula of the form
((•••(wo |= wi) |= ••• w„_i) |= w„) |= w0 can
be substituted by any other serial formula with
displaced parenthesis pairs, that is by a formula
which is graphically equivalent to the original for
mula (Definition 5). Formula subscript j system-
atically varies in the interval 1 < j \ < ^ ^ (2JT+I2) •
D

L L L

n
w n U

T

Figure 11: Two graphical interpretations cor
responding to formula system in Definition 8.
The equivalent bottom graph explicates the parallel
character of the serially circular formula.

4.5 Primit ive Circular Serial
Parallel ism, and Gestalt of
Circular Serial Formula

For the circular serial parallelism, one of the ba-
sic transition formulas must informationally con-
nect the 'last' operand with the 'first' one, that
IS, " l a s t N "first-

THEOREM 6 (Graphical Equivalence of a Circular
Serial Formula Gestalt and a Pure Circular Serial,
Primitive Parallel Formula Svstem) The graphical
eauivalence of the form

n + l O1, N

determines one and the same graph for the gestalt
of a circular serial formula of length n + l and
the corresponding primitive circular parallel for
mula system. This eauivalence shows the power
of the basic transition formulas (of the length 1,
and informing in parallel) compared to long circu
lar serial formulas of the length n + l, belonging

to the gestalt T(" . ip (UQ,UI, • • • ,wn)J. •

Proof 6 We have to prove the graphical
equivalence of the both circularly structured
parallel formula systems in the theorem.

Gestalt T(n .(p (UQ,UI, • • • ,un)\ is a paral

lel system of the serial formulas of the form

92 Informatica 21 (1997) 79-114 A.P. Zeleznikar

.ip (OJQ,U>I,-• • ,tjjn) which length is n + 1.
In a pure circular serial formula of the length
n + 1 there are exactly n + l binary operators
and the n + 1 serial operands (one of them
appears twice, that is, the title operand of the
circular formula, at the beginning and at the
end of the formula. As described, parenthesis
pairs can be displaced in a spontaneous manner,
giving to the formulas different causal meanings
(the corresponding causal subscript i of formula

. (p (UJO, CJI, • • • ,ujn). Thus, the formulas can be
systematically numbered (subscribed), where, for
example,

n + l O , >.

(((• • • (wo \= wi) |= • •' w n - i) |= w„) |= oj0);

n+l O , -.

2(p_t[ujo,ui,- •• ,w„) ^

((• • • (w0 (= wi) |= • • • tt»n_i) |= (ujn f= w0));

n+l O
1 r 2 n + 2 ^ - > 0 , W 2 , - - ' , W „)

« n U + i J
(w0 |= (wi |= • • • (w„_i |= (w„ |= w0)) • • •))

Thus, the gestalt of any of these formulas is a
parallel system of N_^ = ^ ^ (n+i) c i r c u l a r serial
formulas, tha t is, in a shortened notation,

t>:) -
n+l O n+l O

i¥> ; 2 ^ ;
n+l O

' _1 C*n+2\ V->
n^Z\ n+l)

for 1 < j < N . Each of these circular formulas
determines one and the same graph (5.

On the other hand, graph (3, corresponding to
a formula " . ip can be described, according to

Theorem 1, by formula " ip . This proves the

theorem. D

4.6 Circular Gestalt

The circular gestalt of a circular formula con-
cerns the parity of the formula operands. Within
the cycle of the formula graph, each operand can
be rotated to the title (initial, leftmost) posi-
tion, and in this situation, it can function also as
the leftmost and simultaneously as the rightmost
operand in the circular formula.

T H E O R E M 7 (Graphical Equivalence of Primitive

Circular Parallel Formula Svstems) If the expres-

sion <p {<JJQ,UJ\,-• • ,u>n) represents a primitive

circular parallel formula sijstem (of basic n + l
transitions), then

n+l O ' / s
<P (wo.wi,--- ,un) = e

n+l O ' / N

(p {u)i,(Ji+i,--- , W n , W 0 , W l , - - - , W i _ l J

for i = 1,2, ••• , n. Each primitive circular for
mula sijstem

n+l O ' , .
(p (U>i,U>i+l, • • • ,(Jn,U(),U)l, • • • ,Ui-l)

corresponds to a gestalt T of the circular serial
formula

n+l O , .
(p [U>i,Uli+1,- • • ,OJn,U0,OJl,- • • ,Ui-l)

The parallel sijstem of such gestalts is called the
the circular gestalt T of a circular serial function
n+1 ° i \ mu

. (p (UJO, u>i, • • • ,u)n). lhere is

•pO/n+l O , A
\ ^ ^ (^ » ^ i + l) " - ,Wn,Wo,Wl,--- ,Wj_l)J =*

(r (T^ ^°'Wl'''' ' w"7 ' ^
r \7iVt (wi > w2, • • • , w„, u0)j ;

, / n + l O ,
w i+ i : • • • ,wn ,wo,a;i , - • • ,

,));

\ r(T^(u ; n 'a ; o 'a '1 ' '" 'w«-i)J 7
D

Proof 7 In a parallel formula system, formulas
can occur in an arbitrary sequence. The formula
ordering does not influence the informing of the
system. Therefore, instead of (a f= /3) \\= (7 f= d),
simply the semicolon system (a \= /3; 7 (= 6) can
be used (taking a semicolon instead of |f=), where
semicolon performs as an associative operator of
parallel occurrences of formulas in an informa-
tional system.

The proof of the first part of the theorem con-
sists of the graphical equivalence of informational
systems of the form

file:///7iVt

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 9 3

/ o > 0 | = w i ; \
toi \= w2 ;

Ui+l p U>i+2]

un-i p un;

fui \=u>i+i; \
k > i + l | = <*>i+2',

w0 p wi;

U>;_2 (= W j _ i ;

71 + 1

for i = 0,1,2, • • • , n. The right formula system is
nothing else than the parallel reordered left for
mula system. So,

n + l O ' / v
<p (< J 0 , W I , - - - ,un) = e

n + l O ' / N

is proved. But, evidently, in this particular čase,
instead of the operator of the graphical equiva-
lence = e , the operator of the general informa
tional equivalence = could be used.

In the second part of the theorem we must prove

r1 O / n + 1 O /
w i + l ! ' " i ^n, U>0 j ^ 1 , • • • , ix>i - .))

n + l O', x

V3,, (wo,wi,--- ,wn)

There also is, evidently,

^ (n J • i V : ^ (w ^ ^ w ^ + l , • • • i W n , W0 , ^ 1 , • • • , W j - l) J

n + l O ' / s
= ,5 <£ (w o , W l , - - - , W n)

However, there are n + l different gestalts
r (" | . V ^ (w t , W j + i , - - - , a ; n ,w 0 , a ; i , - - ' ,Wi-i)J for a

circular formula, and so, TV̂ = ^ ^ (^ i 2) pos-
sibilities of the circular formula interpretation
through ali circular operands, where each of the
operands can occupy the title position in the cor-
responding circular formula. This proves the sec
ond part of the theorem. •

To remind, graphical equivalence means one and
the same informational graph for two differently
structured informational formulas or formula sys-
tems. As we have seen, the following graphical
equivalences hold:

where i, k = 0 ,1 ,2, ••• ,n. We see how opera
tor = e , in fact, has the property of the graphical
projection of an informational formula onto its in
formational graph.

4.7 Star Gestalt T*

The star gestalt of a formula or a (complex) for
mula system is obtained by moving through the
graph from an arbitrary operand by an arbitrary
chosen path (in the direction of operator arrows).
In this way, two formulas, obtained by such a
moving, can have one and the same graph. The
moving can run along an infinite pa th when for
mula or formula system is circularh/ structured.
In this sense, a star gestalt concerning a circular
system, can consist of an unbounded number of
formulas (the infiniteness of recursiveness).

The reader can imagine how formulas of a
star gestalt can be arbitrarily not only cycled,
but also re-cycled, that is, certain parts of the
paths can be passed again and again. Such
a circulating does not cause an additional part
of the graph, but it can have complex causal,
especially, self-referencing and self-constructing
consequences, reaching to arbitrary causal (self-
informing, hermeneutic, historical, memorizing,
consciousness) depths. The phenomena using the
at tr ibute of the self can have a circular orga-
nization of an arbitrary depth. For instance,
phenomena of self-observation, self-reference, self-
replication, self-consciousness, etc. can be con-
ceptually and notionally captured (grasped, un-
derstood) by sumciently complex circular infor
mational formalism, possessing means of spon-
taneous informational arising (emerging, coming
into existence, to the surface, e t c) . The reader
can perform such experiments by means of pre-
sented circular informational graphs in this paper.

For a simple (pure) circular formula of the form
" ; . ^ k i w < + i r " ,Un,uJo,u>i,--- ,Ui-i), the cy-
cle can be repeated several times, and can be-
gin at an arbitrary operand and end by an an-
other (arbitrary) operand. Such a čase is not
particularly interesting in the sense of a star

94 Informatica 21 (1997) 79-114 A.P. Zeleznikar

M*
c, H ausbilden

M*
c, h ausbilden' T ' "

N.c entvvorfen

N* als

F* auf' F* zu

' erschlieflen

®
M*

i ' ausbilden'

f ' entwerfen

<yy

•(eetwas j *\ a andere J 1

' c ^H ^ bft ^ —,c

' verstehen
-o^-®

F* ei. gnen

N

h*
A Ausbildung

N*

N*. N,

N
{Vvl 'erstandene 1—

als

' entvverfen

C
k sondern

A Ausarbeitung D
N*

"l '-'Seinkonnen J

Figure 12: T/ie beginning injormational graph of the Heideggerian understanding and interpretation
for the original German text (taken from the first paragraph, Section 32, p. 148 [1]). The vertical
parallel lines (||) denote the input and output buses of entities (circled markers).

gestalt, although it can carry a particular causal ^andere
sense. Much more significant and senseful are ^Ausarbeitung
complexly and completely circularly structured -̂ Ausbildung
informational graphs, where moving through the A
graph can run through different loops (only touch- D
ing them or more actively influence operands of E
different paths) and in variously repeated ways. eetWas
The reader can grasp how the degree of causality K
changes (arises, emerges) and how this degree can
represent a complicated "historically structured" M
event through several steps of circularly conse-
quent informing. In this respect, it is possible to R
set up informational systems of any imaginable S
circular causal complexity. The reader can grasp Sseinkonnen
the significance of a star gestalt and its formulas ^Verstandene
on the basis of an instructive example. A com- V
plex circularly parallel serial informational system W
(Definition 3) was denoted by . . ^ . Let us have S (D)
the čase of Heideggerian understanding (Verste
hen) and interpretation (Auslegung) system ..V^ \=$ alg

(the first eight sentences of the first paragraph on |r3 auf

page 148 in [7]) with the graph in Fig. 12 (original \=X a u s b i l d e n

text in German), with the following meaning (in Neumen
German and English) of operands and operators: [=3 en th i i l l

F * entwerfen

(der, die, das) andere [different]
Ausarbeitung [working-out]
Ausbildung [development]
Auslegung [interpretation]
Dasein [Dasein]
Entwerfen [projecting]
etwas [something]
Kenntnisnahme [acquiring of

information]
Moglichkeit, Moglichkeiten

[possibility, possibilities]
Riickschlag [counter-thrust]
Sein [Being]
Seinkonnen [potentiality]
Verstandene [the understood]
Verstehen [understanding]
Weg [way]
Sein des Daseins, S \=t ^D
[Dasein's Being]
ist als (als) [is as (as)]
ist auf (auf) [is upon (upon)]
ausbilden [develop]
eignen [appropriate]
enthiillen [exert]
entwirft [projects]

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 95

(-entworfen

R erschliefien

R fiir

R

R

F* sondern

F* verstehen

R zu

R *

C

(ist) entworfen in [(is)
projected in]

erschliefien [disclose]
ist fiir (fiir) [is for (for)]
sein (bin, bist, ist, sind)

[to be (am, are, is)]
nicht sein (ist nicht, wird nicht)

[not to be (is not, does not
become)]

impliziert [implies]
sondern (ist) [but (is)]
verstehen [understand(s)]
ist zu (zu, gegen)

[is towards (towards)]
ist eine Funktion von
[is a function of]
hat, einschliefit, besitzt

[has, include(s), possess(es)]
und (Operatorkomposition)

[and (operator composition)]
Formelparallelismus

[parallelism (of formulas)]
Formelalternativitat [alter-

nativeness (of formulas)]
bedeutet, bedeuten [mean(s)]

Evidently, according to Fig. 12, each operand
in in some way circularly connected with other
operands occurring in the graph. The graph
is a mesh of feedback loops for each occurring
operand, a kind of creative loops5 interacting in
the informational mesh. It means also, that Hei-
degger was probably well aware that a proper
philosophical system for understanding and inter-
pretation has to be structured circularly in the
sense of interconnected loops (informational cir-
cles), if possible, also in the presented initial philo
sophical text detail.

This complete circular system can be formally
described by the primitive circular parallel un
derstanding system..V_+ , consisting of elementary
transitions, that is (alphabetically ordered by the
left operands of elementary transitions),

/
aandere C A;

-^•Ausbildung R vj/ * i

F* verstehen '

^ R a l s ^
D\=4ZUM;

-K R \p 'Verstandenei
M R ^ S ;

M p t <->Seinkonnen>

'-'Seinkonnen R fiir " i (^Verstandene

F* verstehen V

F ' entwerfen '
V C V;

V R ausbilden ^'i

v
v
v

ausbilden '

R eignen *verstandene i

R eetwasj

V;

, 0 '

-^-Ausarbeitung \ '

R sondern " '

A& K-
^ R a u f M ;

U R erschliefien "">
6etwas F* * ^anderej

"A- R verstehen ^ '

M Centworfen V;

'-'SeinkSnnen C- D\

l ^Verstandene \

I R sondern J
\ -^Ausarbeitung/

R als '-'Seinkonneni

V dE;
* R ausbilden -"i

V^±A;
* R -^-Ausbildung!

V CA;
R verstehen >

R entwerfen /

5See, for instance, E. Harth: The Creative Loop, How
the Brain Makes a Mind. Penguin, Harmondsworth (1996);
or the book review in Journal of Consciousness Studies 3
(1996) No. 2, pp. 186-187, by G. Sommerhoff.

Understanding ..V_^ of something a requires the
additional transition

a\=V

to the system .V , causing {.V_^ (a), and thus aH

operands of system .V^ become functions of a,
that is, take the general functional form (p(a) [20].

5 Complexly Interweaved
Circular Informational
Graphs

Real informational systems are complexly circu-
larly interweaved. This is a condition sine qua
non, for only circular systems have the poten-
tiality of emerging from that what already is, to
that what unforeseeably could arise. In the most
normal situation, each occurring operand (repre-
senting an informational entity) is circularly con
nected in one or more loops (circular graphs), and

96 Informatica 21 (1997) 79-114 A.P. Zeleznikar

each loop is in some way connected to ali other
loops in the system. For such a system we say that
it is completely circularly connected or informa-
tionally closed. In some way, each operand of such
a system informs (indirectly via other operands)
ali other operands and vice versa: each operand
is indirectly (or, in particular cases, directly) in-
formed by ali other operands. This means that a
singular operand impacts the system entirely and
is entirely impacted by the system in which it oc-
curs.

This type of informational closeness does not
mean that system operands cannot be impacted
from the exterior and that they cannot impact
the exterior operands (entities). According to in
formational axioms [21], this property of infor
mational openness or independence of operands
is given, in general, to any informational entity.
Only in clearly explicated cases, it can be deter-
mined in which čase an entity does not inform an
another entity.

Besides, there can exist operands which do not
appear in a loop, for instance, merely in linearly
serially structured formulas, where the last (end)
operands of such formulas function like final desti-
nations, informing for the sake of its own purpose,
as a kind of final receptors. In some cases, such
final informational destinations can be foreseen
for a later looping into the system, when their in
forming will begin to impact the other entities of
the system.

In the described complexly interweaved circu-
lar informational system, presented by the cor-
responding graph, the only senseful and signifi-
cant function of each operand is to be circularh/
connected to the system, that is, to play a devel-
opmental role of the system by its arising and di-
minishing6. Otherwise, the existence of an uncon-
nected or partly connected informational item is
not within an informationally senseful and signif-
icant function of system development, emergence,
and function.

In the same sense, parallel informational graphs
can exist, but, in a senseful situation, they must
be in some way connected. Isolated graphs are
presentations of possible informational informing
and as such, that is mutually isolated, they per-
form as a kind of informational reductionism.

6For instance, in the sense of an estimate of the precision
or certainty or definiteness according to [11].

This especially holds in the cases when informing
of system entities is studied, grasped, and finally
presented under essentially limited circumstances.
Sooner or later, the need for informational com-
plexity in the form of a serial, parallel, and circu-
lar phenomenalism comes to consciousness. Both
in the living and artificial systems, as well, the
facts of this informational complexity can be con-
sidered.

6 A Classification of
Informational Graphs

6.1 I so la t ed G r a p h s

Isolated graphs perform as informationaily iso
lated entities. It simply means that they are not
connected to and from the other graphs or en
tities. They usually emerge as a consequence of
the so-called reductionistic reasoning, where each
graph, as such, represents a reductionistic situa
tion of a particularly isolated view or interest.

Isolated graphs as informational entities are in
no way senseless since they can become, through
the emergence of conceptual and informing sys-
tems, parts of systems, also with essential in
formational modification, further decomposition,
connectivity, and the like. As such, they can be
come suitable for the so-called bottom-up com-
position. In this sense, isolated informational
graphs hide the potentiality for their future in-
volvement into a linearb/ (serially), parallel (si-
multaneously), and circularly (cyclically, with re-
gard to a loop structure and organization) con
nected informational realm.

By definition, isolated informational graphs do
not loose the axiomatically given property of
the input (internalistic) and output (externalistic)
possibility of operands, that is, their connection
to and from the potential environment. Consider-
ing this situation for isolated graphs, the following
definition becomes meaningful.

DEFINITION 9 (Isolated Graph) An isolated infor
mational graph is an arbitrary organized graph of
operand circles and/or ovals and them connecting
operator arrows in a serial (linear), parallel, and
circular way, but not connected to or from other

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 97

informational graphs. Operands of the graph re-
tain their potentiality for undetermined internal-
istic and externalistic informing, from and to the
virtual graph environment. Isolated graphs and
operands are graphically presented as circles and
ovals without arrows. •

As a consequence, each finite informational graph
is isolated, that is obtained on the basis of a re-
ductionistic approach. However, it hides the pos-
sibility for its further decomposition of operands
and operators [26]. Graphs can contain isolated
operands and isolated subgraphs.

6.2 Pr imit ive Transition Graph

A primitive transition of the form a \= /3, and
its decomposition, [26] is the key form of any in
formational system, particularly of the primitive
serial and serially circular parallel systems of ba-
sic transitions (ntp' and ip J. Its operand and

operator decomposition possibilities were exhaus-
tively treated and discussed in [26].

DEFINITION 10 (Transition Graph) A transition
informational graph consists of two operand cir
cles or ovals, connected by a single operand arrow.
This arrangement of both operands and an arrow
is treated as an informational unity, that is, as
a transition from the first operand to the second
one. •

6.3 Pure Serial Graph

Pure serial graph is a graphical presentation of
the formula . (p with n + 1 operands and n binary
operators. Pure serial graph represents a system
of different formulas .(p of length n, where 1 <
1 - n+l\nl-

6.4 P u r e Circular Serial Graph

A pure circular serial graph is a graphical pre
sentation of formula . (p with n + 1 operands
and n + 1 binary operators. A pure circular serial
graph represents a system of different formulas
B+V° of length n + 1, where 1 < j < ^ Cn£) •

6.5 Paral le l ism of Graphs

The reader can see that informational graphs are
by arrows connected circles and/or ovals. Both

circles/ovals and arrows are marked: circles/ovals
by operands and arrows by operators. An un-
marked arrow represents the operator |= (an oper-
ational joker). At the first glance, such connected
circles/ovals in the graph give the impression that
the system of operands is informing in a serial
(also circularly serial) manner. To exceed this
surface impression, the reader should stay aware
that any basic informational transition, a (= /?,
with its left part a and its right part /?, simulta-
neously means the detachment [23], in the form

"M
a; P

This detachment says, that a and (3 inform inde-
pendently and in parallel to the transition a \= (3.
This detachment must be understood recursivelv,
irrespective of the complexity of both a an (3,
which can represent arbitrary formulas or systems
of formulas.

Each graph represents parallel informing of ali
operands and aH possible subformulas and formu
las which proceed from the graph in the sense of
their informational well-formedness, that is as se
rial formulas n(p and . ip , primitive formula

systems ip' and (p and ali the possible for
mulas and formula systems of these formulas and
formula systems.

Using the last rule of the parallel detachment
of subformulas recursively, one can determine how
many parallel processors are needed for a simula-
tion of formulas "tp and . <p in an informa-
tional machine [22]. For serial formula " ^ , the
detachment

(• • • ((a0 \= ai) \= a2) •.. \= an-i) \= «n
a0; ai; a2; • • • ;an-i;an;

(a0 \= «i) |= a2;

((a0 (= ai) |= a 2) . . . |= a„_i;
n

delivers 2n + 1 separate parallel operands (enti-
ties), that is, 2n + 1 parallel informing processors
of the machine.

For the circular serial formula n , (p the num-
ber of processors increases to 2n + 2.

Through this discussion, the reader can
(should) become aware, that a complex graph rep
resents much more of parallelism as it may be

98 Informatica 21 (1997) 79-114 A.P. Zeleznikar

needed in a concrete situation, because it hides
also the various possibilities of circularism, by
which a graph can be covered, e.g., by the par-
allelization of a concrete systeni of formulas.

6.6 Incompletely Structured Graphs

A definition concerning incompletely structured
graphs can be useful.

DEFINITION 11 (lncompletely Structured Graph)
An incompletely structured graph is character-
ized by several properties when a, /3, and 7 are
operands of the graph:

1. it includes at least one isolated oper and a for
which neither a \= /? nor 7 |= a holds;

2. it includes at least one oper and a for which
a (= /3 holds (externalistic connectivity) but
7 |= a does not hold; or

3. it includes at least one operand a for which
/3 |= a holds (internalistic connectivity) but
a \= 7 does not hold.

D

6.7 Completely (Circularly)
Structured Graphs

Within an informational system, it is senseful to
insist, that ali graph operands are externalisti-
cally as well as and internalistically (mutually)
connected.

DEFINITION 12 (Completely Structured Graph) A
completelv structured graph does not include an
operand which is externalistically and/or inter-
nalistically isolated and there does not exist a loop
isolated from other loops of the graph. D

THEOREM 8 (Completely Circularly Structured
Graphs) In a completelv structured graph, each
graph operand is circularlv connected, and each
operand is transitionallg (through informational
operators and other operands) connected with ali
the other (remaining) operands of the graph. D

Proof 8 (Circularity of Operands in a Completely
Structured Graph) In a completely structured
graph aH the operands are externalistically and
internalistically connected to at least one other

operand of the graph. Let the graph operands
be marked by cto, ai, •••, an. The worst čase
condition is, for example, that ai is connected to
atj-i-i, this one to OJJ+2, and so on, to an. Now,
let an be connected to a\, this one to 02, and
so on, to eti-i. In this way we have exhausted
ali the available operands of the graph, however,
a.i-i does not have the connection externalistic to
another operand yet. Let it be connected to a%.
In this čase, ali the operands of the graph are in
the longest possible loop of the graph.

Besides the longest loop also any shorter loop is
possible and some loops can cover (include) com-
mon operands. The common loop operands mean
the informational connection of involved loops.
The interloop connection must be realized in such
a manner that every operand of the graph is in-
directly (informationally) connected with the ali
remaining operands of the graph.

Let graph (55 possess k distinguishable loops Â
of the set A = {Ai, A2, • • • , A^}, in which n + 1
operands (ali operands appearing in graph (3) of
the set A = {ao, a\, •••, an} occur. Let any
two loops, for example A^, Â 2 G A, include some
common operands a^, Oj2, • • • , &iq G A, where
q > 1. Let this hold for any two loops and let
ali the occurring loops cover aH the operands of
graph 0 . Evidently, under these circumstances,
each operand is transitionally connected with the
remaining operands of the graph. This means not
only that an operand circularly transitionally in-
forms the remaining operands, but also that it is
circularly transitionally informed by the remain
ing operands. •

Evidentlv, according to the proof, a loop can be
arbitrarily structured, from the shortest one, con-
sisting of two operands to the longer ones.

The next request is, that ali loops of the graph
must be mutually connected, and no loop group
must be isolated. For loops of the graph the same
holds as for the graph operands. This leads to
the conclusion that every operand is in some way
circularly connected within the graph.

A completely (circularly) structured graph
guarantees an equal informational treatment of
any occurring operand and its possibility to
become, in some particular context, the title
operand of the system, when it observes and is ob-
served as a significant entity, magnifying its phe-
nomenalism within the system presented by the

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 99

graph.

7 What Would Mean to
Understand an Informational
Graph and to Program Its
Possibilities?

An informational graph is the most powerful pre-
sentation of an instantaneous informational sys-
tem since it contains ali the possibilities of the
instantaneous informational system in respect to
its (integral) gestalt (gestalts of the possible loops
with already occurring graph operands and oper-
ators).

To program ali such possibilities of an instan
taneous graph means simply to process in parallel
not only ali the operands in parallel, but also to
have separate processors for any subformula of the
system and, at last, for the system as an entirety.
We have seen how a primitive parallel (transition)
formula system does not represent (e.g., simulate)
only the concrete system of formulas, but also ali
the other possibilities which the formula system
with its operands and operators could represent.
This situation is not always an adequate one, al-
though its simulates the aH possible situations of
the instantaneous system.

The next problem of an informational graph,
representing a system, is its emerging, being con-
ditioned by the informational arising of the sys-
tem it represents. Informational arising is a con-
sequence of different decompositional processes
concerning operands (informational entities) to-
gether with their operands. It means that a
graph changes its graphical structure during the
informing of the system. An informational graph
is nothing other than a particular (representa-
tional) informational entity, which underlies the
principles of informational externalism, internal-
ism, and metaphysicalism.

One can imagine a decomposition of a graph
in a similar manner as the decomposition of
an operand or operator [24, 26]. Between two
operands of the graph, connected by an operator
arrow, the decomposition means, that instead of
a single arrow, a new subgraph arises, being ade-
quately inserted into the graph.

Let a \= /3 be a transition and A (a |= /3) its
decomposition in the form

((•••((« 1= 7i) 1= TU) | = " - 7 n - i) | = 7 n) | = / 3

This decomposition of a |= /3 can be grasped in
the following way:

1. operand a-decomposition is framed as

((...((a|=7l)(=72)l=...7n_1)|=7n) M

2. operand /3-decomposition is framed as

((•••((«1= 7 l) l = 7 2) | = - - - 7 n - l) | = 7 n) M

and, finally,

3. operands a-/3-decomposition or the original
operator (=-decomposition is framed as

((•••((OL | = 7 l) | = 7 2) | = - - - 7 n - l) N 7 n) N /3

8 Informational Graphs for
Informational Being-in and
Informational Being-of

What are informational graphs for informational
Being-in and informational Being-of and how
could they be reasonably interpreted? In concern
to these relatively simple informational cases we
can discuss the meaning of the occurring gestalts,
circular gestalts, and star gestalts.

8.1 Informational Being- in

In [19], the informational Being-in or informa
tional inclusion (operator c) was defined in the
following way.

DEFINITION 13 (Informational Includedness) Let
the entity a inform within the entity /3, that is,
a C /3. This expression reads: a informs ivithin
(is an informational component or constituent of)
/3. Let the following parallel system of included
ness (Being-in) be defined recursively:

//3 h «;
(ac/3) ^±Def U M ;

\ 3 (a C / ?) .

where for the extensional part E(a C /3) of the
includedness a C /3, there is,

100 Informatica 21 (1997) 79-114 A.P. Zeleznikar

2 (a C /3) € V

/f(/?f=«)c/n\
(«N/3)cA

] {/3\=a)Ca,(
VI (a H /3) C a J/

The most complex element of this power set is
denoted by

Cases, where E{a C /3) ^ 0 and 0 denotes an
empty entity (informational nothing), are excep-
tional (reductionistic). •

If one looks into this definition, irrespective of
the complexity and recursiveness of the defini
tion, (s)he can observe the informational inter-
play solely between two entities, tha t is, a and
/3. Informational includedness means that both a
and /3 are under mutual informing and observing.
Within this interplay two informational operators
appear: |= and C.

Let us perform the primitive parallelization II'
of the definition, that is,

'/3\=a;
n ' | a \= /3;

,2g>C/J).
j3\=a; a\=(3;

s ^ K « ; a c/3

and

/ /3N«; « c/3'

n ' (S J ^ (a C /3) ^ a C a; a H #

This parallelization delivers according to the def-

3 (a C /3) = CTj8.a s£>c/3)

Figure 13: Informational graphs for the simplest
and the most complez čase of informational in
cludedness.

inition of the informational includedness 16 differ-
ent graphs, where the minimal and the maximal
configuration is presented in Fig. 13.

For the so-called zero or minimal option (H (a C
/3) = 0), there is,

(a C /3) ^ (P \= a; a \= /3)

The remaining S-parts are:

S £7_ 77_ "& "ot ^ a 'zja
—a i —/3) "/3,a> — > —a; <—0> " / S . a '

s /3 s/9 s - 3 s / 3 ra8,a s/?>" s ^ . a

The minimal graph configuration must be in-
cluded in ali the H-parts.

8.2 I n f o r m a t i o n a l B e i n g - o f

In [20], the informational Being-of or informa
tional function (expressed as (p(a)) was defined
in the following way.

D E F I N I T I O N 14 [Informational Funct ion] Let
entity ip be an informational function of the entity
a, that is, (p(a). This expression reads: </? is a
function of a. Let the follovving parallel system of
the informational function (Being-of) be defined
recursively:

<p{a)
a\=<p;
{ip [=0f oi) C <p;

V (a h <P) C0f <p j

where, for the first informational includedness of
the formula, according to [19], there is

((</> K f a)Ctp)*±

/V 1= (v Kf«); \
{ip K f «) N v;
(v 1= (v Kf«)) c v

V ((v Kf a) h v) c y> /

and, for the second informational includedness,
according to [19],

/tp \=of (a \=<p)\

{{a (= </?) C0f (p) ^

\
(a h v) Kf v;
(<p |=0f (a |= v?)) Cof ip;

V ((« h v) Kf v) cof v? /
D

This definition recursively determines the paral
lel informational mechanisms of the informational
Being-of, irrespective of the functional-nesting
depth. For the complex (recursive) functional def-

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 101

(A)
(<p{a))

a>^-€) (B)

Figure 14: Informational graph for the čase of
informational function: (A) for (p(a), (B) for the
functional transition (p \= a, and (C) for the def
inition of informational function ip(a).

inition (p{a>), the standardized informational tran
sition of the form (p (= a is introduced, with the
meaning

<p(a) ^± (ip \=v a)

The definition of (p(a) is graphically presented in
Fig. 14. Questions which follow are the following:
How can a and ip be expressed explicitly in a par
allel circular form? Which is the primitive parallel
system for the informational function? How com-
plex is the circular gestalt and what is the star
gestalt for <p(a)?

From the graph in Fig. 14, the informational
system concerning a is, evidently,

a ;=
(a (= ip) K f a;
(a C (p) (=0f «;

(a (= f) C0f <p;
(a C (p) Co f ip

Similarly, from the system, represented by the
graph, functional component tp can be expressed.
There is

p^fif K f a) |= (p; (<p C0f f) K f a

\ (93 K f a) hof f

Now, one can see, how ip(a) can be expressed
by substitution of (p and a, where the complex
operand a (a parallel system of cyclically serially
structured formulas) becomes the argument of the
similarly complex operand ip (as a parallel system
of circularly serially structured formulas). Such a
substitution could be quite senseful in čase of a
particular causal situation.

According to the definition oiip(a), there exists
a unique parallel primitive system (of basic tran-
sitions), marked consequently by (ip(a))', that is,

M*)),: a |= ip; a C ip
ip (=of a; tp Cof V

The circular gestalt must cover the entire graph
in Fig. 14 by circularly serial formulas. Thus,

T°(ip(a))

((a 1= V>) Hof «; (v K f ot)\=ip;\
a \= (ip \=o{ a); <p \=oi (a \= ip);
(a c ip) Kf a> (<P K f a) c v;
a c (^ Kf«) ; V Kf («) c </?);

\ V C0f V /

9 Graphs for Informational
Concluding

9.1 I n t r o d u c t i o n

Informational concluding (modi informationis)
was classified, critically discussed, and informa-
tionally formalized for the first tirne in [18]. In
this framework, the following modi can be pre
sented systematically and in the form of informa
tional graphs, gestalts, and circular particulari-
ties:

1. informational modus agendi (an entity's ex-
ternalism, internalism, and metaphysical-
ism);

2. informational implication as a complex struc-
ture;

3. informational modus ponens (linear conclud
ing);

4. informational modus tollens (circular con
cluding) ;

5. informational modus rectus (detachment of
an entity's intention);

6.

9.

10.

11.

informational modus obliquus;

7. informational modus procedendi;

informational modus operandi (detachment
of an entity's informing);

informational modus vivendi;

informational modus possibilitatis; and

informational modus necessitatis.

102 Informatica 21 (1997) 79-114 A.P. Železnikar

decomposi-
tion loop

Figure 15: Informational graphs for informational
modus agendi with input and output path, and the
loop for inner decomposition.

9.2 Graph Invest igation for
Informational M o d u s Agendi

The graph for informational modus agendi in
Fig. 15 demonstrates the most general phenom-
enalism of informing of entity a. This entity is
open to its exterior and interior and it can be
innerly decomposed by the informing of its com-
ponents. There always exists an a-decomposition
A(a), which, in general, is a system of formulas
(or a simple circular serial formula) in which inner
components appears together with a.

Modus agendi of an operand is its possibility
to be informed from its exterior by other entities,
to inform the exterior components, and to be cir-
cularly organized (e.g., metaphysically or other-
wise). In an informational graph, the circle or
oval represents, in general (in principle) an in
formational operand (entity) with the presented
three categories of arrows (informational opera-
tors). Implicitly, the rule of modus agendi, pMA,
can be formalized as

»

This scheme of the operand a presentation is es-
sential for the understanding of the informational
operand and informational formulas or formula
systems, which are nothing other than forms of
operands (informing entities). The parallel for
mula system (|= a;a \=; A(a \= a)) is a form of
primitive parallelization of a, that is, iT (a), being
equivalent to the graph in Fig. 15.

9.3 Graph Invest igation for
Informational M o d u s Ponens

The modus ponens is the most obvious and fully
legal rule of inference in mathematics. Its struc-
ture realizes logically a conjunction (operator of

Figure 16: Informational graph for informational
modus ponens.

informational parallelism ';')) an implication (op
erator = >) , and the main implication, called the
informational detachment (operator in the form
of a fraction line, denoted by 5 m a n informa
tional graph). Formally, the rule of informational
modus ponens, pMP, is a formula of the form

Pup(a,P) —
a: a /?

/3

with the graph in Fig. 16, corresponding to the
primitive rule parallelization, that is,

n'
, (a; a ==> /3

/ ot |(= a; \

{ S)
In this primitive parallelization scheme, the semi-
colon in the premise was replaced by operator of
parallelism |f=, to make the primitive formula sys-
tem more transparent (semicolons are used as sep-
arators between elementary transition formulas).
By the rule of modus ponens, operand /3 is de-
tached from the rule premise, that is, follows as a
conclusion.

What is characteristic for this rule of inference
is its linear serial structure in concern to a, but
circular structure in concern to /3, being evident
from the graph in Fig. 16. It will be presented
how other rules of inference are much more in-
formationally circularly structured and, that in
formational circularity pervades the entire living
and artificial (also mathematical) informational
realm. Thus, modus ponens, as one of the firmest
inference rules in mathematics, is pseudolinear
(linear consequential) and, in fact, violates it-
self (in a hidden form) the mathematical princi
ple of straightforwardness. Namely, the detached
operand (3 is, according to the modus agendi of
an informational entity, circularly decomposed in
the most consequent form % (or /3 = > /5).

What could bring a real surprise into the phi-
losophy of modus ponens is a mathematically and
informationally legal rearrangement of the rule

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 103

premise. The semicolon represents a conjuctive
connective in mathematics and a parallel connec-
tive in informational theory: both underlie the so-
called associative law. This means, that operands
on the left and the right of semicolon can be ex-
changed. This sort of legal conclusion causes a
rule of modus ponens in the form

PLr(">fl^
a P; a

P

If this rule with exchanged premise parts is math-
ematicallv unacceptable, it just means that be-
hind the philosophv of modus ponens something
remains unexplained (hidden, unrevealed), and
that the semicolon, also in mathematics, occu-
pies an looselv determined logical connective (sep-
arator), being formallv excluded from the valid
(transparent) field of legal intelligibilitv. It should
mean that parallelism does not enter into the
regular mathematical discourse, although it func-
tions as the most normal phenomenon in logical
concluding.

Figure 17: Informational graph for another for
mal interpretation of informational modus po

nens.

This disputable rule of modus ponens delivers
the graph in Fig. 17 or the primitive paralleliza-
tion scheme

n' a P;g\ _
P a

V 0 J
As the reader can see, the local (inner) loops for
operands a and P disappeared, and instead of
them two other loops including both operands a
and P appear. Preciselv the graphs for the first
and the second formal presentation of modus po
nens explicate the essential difference of them and
bring up the dispute of the ultimate and everlast-
ing validitv of this type of concluding.

A radicallv different concept of modus ponens
concerns the decomposition of both operands a

and p. As well a as /3 hide a decompositional na-
ture A a and Ap, which decide about the neces-
sary informational (modus ponens) adequateness
between a and p. Thus, the new inference rule
p^Ap(a,P, Aa, Ap) must be understood as

A/9(/9)
P

The graph for this rule of modus ponens is pre-
sented in Fig. 18.

IN

h*
3 A

-TA
N*

Figure 18: Informational graph for decompo
sitional formal interpretation of informational
modus ponens.

9.4 Graph Investigation for
Informational Modus Tollens

The informational modus tollens already arises
from a more informationally slippery ground,
with interweaved informational loops which some-
times might perform explicitly tautologically.
Two possible graphs for modus tollens are pre-
sented in Fig. 19

Figure 19: Informational graphs for informational
modus tollens.

9.5 Graph for Informational M o d u s
Rectus

The aim of informational modus rectus pMR is
detaching intention întention of an informational
entity a within a transitional intentional inform
ing of a to an entity /3. E.g., an exterior ob-
server, say P, of a who observes the a's inten
tional informing of P, comes to the conclusion
that there exists an a>'s intention in the informing

104 Informatica 21 (1997) 79-114 A.P. Železnikar

by which it informationally impacts (3. The re-
sult of this intentional informing is observed (see-
able, comprehensible, intelligible) in j3 as an in-
formational Being-in [19]. Intention of entity a
appears as a general circular decomposition, e.g.
as A_̂ (ijntention («)) or as a metaphysicalistic de
composition M" (tintention(a))-

The rule of informational modus rectus has the
form

PMR \ a i Pi '•intention j ^ _ +) ^

"S ((« |=intend /3) '•intention («))

A _ , (i i n t e n t i o n (a)) C /3

The graph for this rule is presented in Fig. 20.
Primitive parallelization

' . o"

p-intend

<£>
h*

{'intention J

Figure 20: Informational graph for informational
modus rectus.

n ' [PUR (<*) & in t en t ion , A °) j

fa\\= a; a Hntend /?; N
P '* ' 'intention! '•intention ^»p Ol',

OL A O

A^ A: K * intention >

\ intent ion t = * a ! a C P J
is an exact description of the graph in Fig. 20.
One can see how modus rectus emerges through
a particular moving along the graph paths (ar-
rows). This formula can be understood as the
one of the possibilities of belonging to the infinite
star gestalt formula systern, which arises through
ali the possible moving along the graph paths.

Many other rules for detaching (extracting) the
intentional informing of an entity could be con-
structed considering various views and beliefs of
intentionality as an informational phenomenal-
ism.

9.6 Graph for Informational Modus
Obliquus

An informational modus obliquus [18, 23] is a
broad informational concept for concluding and

inference which has its roots in the Latin conver-
sation practice (e.g., slanting, sideways, oblique,
indirect, covert, envious discourse). The modus
obliquus (MO) concerns indirect adjustment of
an absurdly experienced, individually motivated,
felt, emotional, interested, etc. consciousness in
forming. MO as informational detachment of an
informational item out of an absurd, disapproved,
distrust informational situation ušes the inference
and concluding forms and processes, even in its
conscious realm of informing, in the realm of un-
awareness, illiteracy, doubt, and falsity. This is
the absurd attitude of the MO itself with the aim
to surpass the absurdness of a complex informa
tional situation.

The reader will agree that setting an informa
tional graph for various possibilities of MO would
require a separate and exhaustive study. But
some simplified concepts of MO can be presented
by informational graphs and the corresponding
formula systems.

As a form of the rule using indirect informa
tional content and meaning, MO obviously devi-
ates from a direct or intentional line (e.g., the
line with modus rectus) of discourse, performing
roundabout or not going straight to the point.
In this respect it performs within a speech game
in which behind-the-scenes intentions, views, and
purposes remain hidden and must not be dis-
closed (e.g., in political, ideological, clan-like, de-
ceptional public discourse). As an indirect form
of inference, it involves concluding with "com-
monly noninforming" (secretly, unconsciously in
forming) entities. But on the other side, right
in this manner, MO can reveal information being
not openly shown to the participants of a com-
plex, yet not essentially disclosed discourse.

Let a mark a complex controversial and unex-
amined informational entitv. The controversy of
a means that a clear absurd informational item
babsurd in a can be identified. In this situation,
babsurd has to be informationally decomposed (an-
alyzed, synthesized, interpreted, transformed) in
the circular form A_̂ (babSUrd(a)) with the aim to
deliver the conclusion cconc]usion in such a way
that absurd is informationally included in the
conclusion. In this way, the possible scheme for
Cconclusion detachment from the controversial ori-
gin entity a is

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 105

P M O [a ' ^absurdi cconclusionj ^ _ j j l»_j j ^

Va r^absurdl / "absurdI 3)) C. 3 ;

^ ^ (.t>absurdlaJJ ^ cconclusion

'^_j (^absu rd i 3 / / t - Cconclusion

In this rule, N marks the so-called negated circular
serial decomposition of the absurd informational
entity babSUrd(c). This circular decomposition is
something like

(• • • ((b a b su rd (a)^" i (a))^«2(a)) - -^
« n (a)) ¥" babsurd(a)

^ \PMO [a , babsurd, C c o n c i u s i o n , A _ ^ , IM^ J J ^

' a |^absurdly "absurdi ^absurd F * a j i

a C a;

^_> F 1 $ "absurdi

a * Cconclusion!

•J. Dabsurd)

\ 3 C C c o n c i u s i o n

a|HA^;
babsurd l = * a> ^

Cconclusion

l\T
^absurd K a; (")

/

is the exact description of the informational graph
in Fig. 21. Formulas marked by (*> and C*' in
the primitive system are superfluous and are used
solely for seeing the circular continuity of the sys-
tem.

where some derivatives ai(a) informationally
counterinform (informationally oppose) in respect
to babsurd (a)- It means that this decomposition is
a circular serial function of the form denoted by

n + l O

JO
<P (babsurd(a), ai(a), a2(a),--- ,a„(a))

with 1 < jo < -z+žin+i)- N° w the reader can
grasp the importance of the other such functions
resulting as a consequence of an operand rotation
to the title plače. Some of these operands can
represent a direct answer (in fact, counter-answer)
in regard to the absurd situation babSurd

(a). Thus,

™+i..o , ",-. V_ ("i(a)> «j+i(a),-- ' 5«n(a), babsurd(a),
Ji —*

«i(a), o2(a),--- ,«i-i(a))

The primitive circular parallel system

(Cconclusion J

Figure 21: An informational graph for possible
informational modus obliguus.

9.7 Graph for Informational Modus
Procedendi

A goal or aim of informing of an entity, as some
thing essentially different in regard to informa
tional intention, can become the subject of the
detachment, for instance, in a strategic environ-
ment. The question is what could a system of
goals within a strategy be at ali? The Latin pro-
cedo has the meaning of to go forth or before, ad-
vance, make progress; to continue, remain; and
to go on.

Let an informational strategy entity s include
a hidden goal system ggoai- Strategy s causes a
system of consequences c (s), elsewhere, such that
c (s) can be transparently observed. The goal sys-
tem ggoai performs as a cause of c (s), that is, as
a system of the form

C (s) C S ; C (s) | = c a u S e ggoai

The |=
cause operator has to be particularized to

operator => c a u s e with the meaning implicatively
causes.

Detachment of ggoai must remain within a care-
ful (goal-consequent) decomposition G_̂ ofconse-
quences c, (s,), that is, as G^ (c (s)).

Modus procedendi is a rule (pMPr) for the de
tachment of goal-directed organization ggoai of the
strategy informing entity s, through the observ-
ing of c (s). Thus,

106 Informatica 21 (1997) 79-114 A.P. Zeleznikar

PMPr(s>ggoal,c,G"j ^

ggoal C S ; ggoal G" (c(s))

ggoal

The graph for this inference rule is presented in
Fig. 22. Primitive parallelization of the rule gives

K

Here, decomposition A_̂ is a circular serial de-
composition concerning the goal as a function of
the strategy, that is, as ggoai(s). Parallelization
of the presented rule for modus rectus is

n ' (P M R (S , C > ggoal, A " |

/s IN s;
c K s;
ggoal N * s i

s f^goal c i i
s ^ ggoal i

S

A"
A_> N * ggoal j ggoal N * s >

\ s C c ; c N* s /

Figure 22: Informational graph for informational
modus procedendi.

n ' (p M p r (s , g g o a i , c , G ° J ^

/ggoal C S;
ggoal »'cause ^ ^ j ^ ^ F > c j

Vc K s;

S JN ggoal A

J
A more firm and direct inference rule would be
that of modus ponens, e.g.,

PMP(S> ggoal) —
s ; s ggoal

ggoal

from which c and G are excluded. But with
—>

modus rectus the preceding informational com-
ponents can be considered in a slighth/ different
way (see Fig. 23, for instance, in the form

Figure 23: Informational graph for the čase when
modus procedendi is replaced by slightly modified
modus rectus.

PMR (s >c > ggoal , A _ J ?=i

S! ((S Ngoaic(s)) = ^ g g o a l (s))

9.8 Graph for Informational Modus
Operandi

An informational modus operandi detaches the
(inner, own) operational capabilities of an entity
a in the form of an informational function of the
entity in the general form ip(a) (e.g., informa
tional Being-of in [20]). This function is usu-
ally called the entity informing and marked by
3a. But informing 3a, as an operational property
of the entity a, performs by itself as an infor
mational entity within a, as an a ' s includedness,
3a C ct (e.g., informational Being-in in [19]).

A modus operandi concerns the decomposition
of an entity in respect of its interior informing.
Informing 3a is only the initial step in the de
composition process when circular informing of
the form (a \= 3a) \= a and/or a \= (3a N a)
comes to the surface. The deeper operational
detachment of further inner components of a
can deliver not only the other inner components
but also the informational structure (formula) of
them. One of the possible forms of the opera
tional detachment concerning an entity is the so-
called rule p ^ 0 p (a , 2fa, iQ, £Q , ca, £a, ea) of meta-
physicalistic modus operandi (metaphysicalistic
decomposition M^ or /Zj-decomposition) in the
form

PMOP^' a ' l a ' a ' C a > a>*"a>

A ^ (ggoal(s)) C C (s)

((((((« N ?*) N ia) N Ca) N
Ca) N £a) N »a) N a

^OLI *cn *~ac) CQ:, v^ct? ^ot

where the number ji of possible causal interpre-
tations (because of the definite particularization
of operators ';'> : = ^ ! a n d E and the rule firmness)

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 107

varies within the interval 1 < ji < 132 (= }(g2)).
The possible interpretations concern the meta-
physicalistic fo rmula^ (a, 3a,\a, €a, ca, <Ea, ta)
(metaphysicalistic symbol fi comes instead of <p
for a general symbol7).

In fact, the metaphysicalistic components are
detached from several loops existing within (in the
framework of) the main (one- or two-directional)
loop [24], and also from the other parallel loops
which particularly (characteristically) concern the
interior informing of the entitv. In this manner,
the detachment of the inner operational compo
nents can not only be accomplished but further
informationally refined within the process of in-
formational arising, considering the ongoing infor-
mational happening, appearing, and phenomenal-
izing of the entity under the investigation. Thus,
according to [25], the improved detachment of an
one-directional metaphysicalism (six loops) of the
entity delivers

/((((((« N 3«) P i a) h £ a) h C«) |=\
Ča) p ea) 1= a;

{Pa P ta) \= Ca) |= Ca) \= 3a]
a; a = > (((Ca |= cQ) p £a) p e«) p £a,

P a P ia) 1= •Joti I

\S-a P CQ) P *^ai

V (Ca P ea) h £a /
*^OLI *ai ^ a : C a , C a j CQ

This rule of the multiloop detachment could be
systematically marked, according to the six loops,
as

P M O p l ai Joti l a i {'On CQ, W*! e a I

where the second subscript q of fj,jpq corresponds
to a subloop in the main loop.

There is to stress that operands below the de
tachment line are separated by commas. This
means that each of operands is detached sepa-
ratelv, and that there is not meant the parallel
system of the form 3a; ia; Ca; cQ; Ča; eQ. This
situation causes a complex and circularly inter-
weaved graph structure (not so easily drawn on a
piece of paper). Thus,

rMetaphysical is t ic formula 1fj, (a , 3 a , \ a , £ a , ca, &a,

c a) already considers the semantically determined compo
nents (operands) of informing, counterinforming, and em-
bedding.

a _̂ /a a\
Ki^Kf i)

where detachments % and - are understood as
the basic transitions at the parallelization of the
rule. The system of the basic transitions for the
discussed metaphysicalistic modus operandi is

OL | p O, J Q . , C a , CQ.J Oi)• Ct, J a , CQ. , C Q ,

~ II p p || 0. . ®-i •Jg.-i *-a; ^ a
J a | P ^-ai ^a> c a IP ^ a ! ~ . ^ -

O! p J a j J a p ^ai la p *-a! *-a p Ca!

Ca P *~aj *-a P ^a\

C Q p O ; ca |= j a \ za p LQ ; i a p J Q ;

Ca P *-aj Ca p ^ a

The system in the first frame includes 35 basic
transitions and represents the part of the rule out-

7 O

side the formula 1/i_^ (o:,3a, ia, £ a , ca, £ a , C a) , w i t h
exception of parallel (semicolon) operators of the
formula. In the second frame the "feedback" tran-

7 O

sitions of the formula xn occur. Finally, on the
basis of the described parallel system, the graph
of the rule can be drawn.
9.9 Graph for Informational M o d u s

Vivendi

An informational modus vivendi [18] concerns the
information of life (e.g., autopoietic informational
entity a) in environmental, individual, techno-
logical, and social circumstances. Informational
problems of social transition [26] are typical forms
of modi vivendi when the governing totalitar-
ian ideological pattern of understanding has to
be replaced with a more flexible and life-suited
paradigm of social and environmental survival.

The basic living information—conscious as
subconscious—existing everywhere the life arises,
may be recognized as autopoietic or self-
organizing information. It does not organize only
the organism for the suited behavior in life cir
cumstances but organizes, through the pressure
of the environment, also the information itself for
a proper organism behavior, for instance, building
up the so-called metaphysicalism \i of autopoietic
entity a, marked \ia or together with sensory in
formational entity aa.

108 Informatica 21 (1997) 79-114 A.P. Zeleznikar

It is to understand that, in the beginning, a
and aa impact the arising of fia, and then fia
essentially impacts the emerging of both a and
aa, thus a basic circular system of the form

((a \= aa) (= Ha(o)) \= «

is reasonable. Within this cycle, metaphysical-
ism (J,a(cr) is a constitutive part of a, e.g. na{(j),
which has to be. extracted from a by a modus
vivendi, being essential for survival and adapta-
tion of a. in the environment. This rule must be-
long to a itself as a particular informational en-
tity, being able to identify instantaneous /iQ(<r)
during its emerging in life circumstances. This
rule is

PMv(a'cr"'/xa(cr)) ^
{a,aa);(a,aa \= fJ,a(a))

fj,a(a)

The graph for this rule is presented in Fig. 24. It

©
K

Figure 24: Informational graph for the discussed
modus vivendi.

is an initial scheme only which can be decomposed
to further details (informationally particularized).

A logically more consistent (rationalistic) form
of modus vivendi would, for instance, require a
rule of the form

(a,aa);(a,aa ==> fJ,a(cr))
Ha{a)

representing a kind of modus ponens in the frame-
work of modus vivendi.

9.10 Graph for Informational Modus
Necessitatis

By a necessitv, the 'must' is compelled. In this
respect, the meaning of the verb must becomes
necessity by itself in the realm of the theory of
informational. Necessity as informational phe-
nomenon is a pressure of circumstances, which
can be grasped also as an essential impossibility
of a contrary informational position. It appears
as an urgent informational experience, emotion,

memory, need and desire (the consciousness of the
must), in such a way, that it as a particular infor
mational entity cannot inform outside itself, that
is, in an another direction. Within the causalism,
necessity can be comprehended as an inevitable
informational consequence.

Modus necessitatis is that principle of inference
which in several situations can coincide with dis
cussed principles hidden in other modi informatio-
nis. Intentionality, which comes to the surface in
modus ponens and modus rectus, can be grasped
as a particular čase of necessity, being consistentb/
bound to the so-called logical mind of human, in
the sense of the "best" rationalistic tradition. A
more detailed discussion (also formalized) is given
in [18]. The attentive reader is already able to
proceed into the philosophy of informational, its
formalization, and construction of informational
graph by himself/herself.

9.11 Graph for Informational Modus
Possibilitatis

Possibility is a modal informational phenomenon
which opposes the instantaneous reality (essen-
tialness, existentiality) and necessity. A modality
(potentiality) by itself is a mood of revealing of
experience, emotion, consciousness, and in more
general form, of Being, thinking, occurrence; it is
a mood of game with conditionalities.

In logic, modality of propositions means the
degree of trustability of propositions in regard
to possibility, existence, and to necessity. Such
a proposition of the possibility is, for instance,
a |=Can_be P, read as a can be p, or information-
ally consequently as a informs that there could
be (3. An asserting (existential) proposition is,
for example, a = /3 with the meaning a is /3 or,
consequently formally, a |=3 /3. An apodictic (ne-
cessity) proposition is a (=must_be P-

Modus possibilitatis is that modus which opens
the realm of informational potentiality, including
views of exaggeration, inauthenticity, unreliabil-
ity, controversialism, but also unreasonableness,
insolence, and mania. AH this concerns the infor-
mationally active (intense) and quality creative
possible consciousness searching. In this respect,
modus possibilitatis can become bound to modus
obliquus and modus vivendi, but also to the non-
informing (negative) possibilities of modus neces
sitatis. A basic rule for such a kind of inference

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 109

is described in [18] in the form

{a, P); (a, /3 \= a) \=n 7
7 K 71,72,-•• ,7»

where a is the subject entity, /3 its exterior im-
pact, 7 an entity induced as possibility, compo-
nents 71, 72, • • • , 7n its informational derivatives,
while \=„ represents a possible informing (possi-
bility operator).

10 An Informational Čase for
Strategy Decision Making

Maruyama (1993) has invented a practical com-
puter supported scheme for simulation of strategy
decision making for business executives and gov-
ernmental planners. Let us show this concept of
a typical computer supported simulation program
in the realm of an informational formula system
and the corresponding graph, where substantial
conceptual changes in understanding the informa
tional nature of the decision making problem take
plače.

The informing scheme of the problem can be
presented in an informationally condensed form
in Fig. 25 and parallelized according to the par-
ticular entities e, f, g, h, j , t, m, n, r, D, r., 38. Accord
ing to the graph in Fig. 25, the adequate formal
description of the graph (9 becomes, considering
the gestalt F of the formula system,

8Maruyama (1993) has given the following meaning
to the operand markers (informational entities in our
čase): e—exchange rate (value of county's own cur-
rency); f—infiation (priče); g—government subsidy of
inefficient firms; f) — import restriction; j — amount of
import; t—efficiency of business; m—money supply;
n—nationalism; r—interest rate; 0 — international balance
of payment; r.—restriction of investment from foreign coun-
tries; 3 — foreigners' deposits in banks and purchase of gov-
ernment securities, stocks and other investment. As under-
stood, the model was reduced to the corresponding numer-
ical values and by three influence parameters (particular-
ized operators between operands) by which the character of
the impact onto the informed operand has been qualified.

0

/ | = e , f , f l , f) , j , 6 > m , n , t , t > , y , 3 ; W
e , f , 0 , f) , j , e , m , n , t , t) , r , 3 |=;

HA
0;

V

(t>Hn)h(? ;) ; (j? ;)M;

V(^i=f)i=t / /

The scheme in Fig. 25 presents a complex and
completely circularly structured informational
graph (Subsection 6.7, with additional input and
output paths for each involved entity).

11 An Example of Association
Graph

Informational connection means entities being op-
erationally linked and joined together through
causal or logical relations or sequences. By infor
mational association such a connection between
informational entities is meant which has a re-
lation in similarity, contrariety, contiguity, cau-
sation, etc. For example, a thought (process)
is linked in the mind or memory with the other
thoughts in the process of thinking (e.g. associa-
tive components, an associative system, encoding
consciously apprehended information, in [10], pp.
137-138). Further, the sensory and the motor ar-
eas of the cortex are supposed to be connected
with ideation, etc. For these associative phenom-
ena a general type of the informational circular
graph can be constructed in which the so-called
parallel association arrays occur as presented in
Fig. 26.

Let us describe the graph in Fig. 26 in more de-
tail, concerning a process of thinking association.
Let be given a sentence in which operands (lan-
guage entities like nouns, adjectives, pronouns,
etc.)

110 Informatica 21 (1997) 79-114 A.P. Zeleznikar

Figure 25: A parallelized scheme of the graph concerning an example of strategic decision making,
according to Maruyama (1993), and with ezplicit input and output informing of the 12 involved infor-
mational entities, e, f, g, h, j , t, m, n, t, o, f, 3.

\ 2 J

1 \~niJ

-*\oqt--

-*{oJ*

—ki rv 1—•

-*\aij-—

— * J / • v " ' 1—ta.

—*{a V--

Figure 26: The graph of parallel associative arrays
in an associative serial loop.

a i > a2>''' > ani J
2 2 2

a l > a 2 > ' ' ') ari2'

al> a2' >"nfc

perform as certain sentence words, but between
them the operators (language entities like verbs,
adverbs, prepositions, etc.) are set. In the graph,

operators are presented by vectors and the nature
(meaning) of them depends on operands which
they connect.

A strict causal scheme of an associative medi-
ation of the sentence, presented by the graph in
Fig. 26 is

/ /

VI

//«1;\
a

o

h

Vl</

a.

/ « i _ 1 ; \ \

H

2>

\<J/
fah\

a
fc-i.

\<-JJ
H

H

\<JJ

a. 21

\ < /

As one can see, while the associationism of the
operands a*- is explicit, the associationism of op
erators |= remains implicit and depends on the
chosen operands, also on well-formed connections
of operands, which the operator connects. It is

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 111

certainlv possiblv to foresee the adequate grouped
associative operators. Such an operators associa
tive scheme would take the form

II //«1;\
®b

M \ (a2^\ M \
H a 2) N

vv vv</ \\=u \<J) VNU
/ « i _ 1 ; \ \

a,
fc-1. Kfc /«?;\\

a.
/Ni \
H

v<v/ \i=v \<l) \\=U \<)

f"b\
a

—•^aP}—•
Ni
H

h1

r m i

N!

-®-

N?
Ni

Ni

Figure 27: The graph of parallel associative arraijs
tvith marked operator arroivs in an associative se-
rial loop.

In Fig. 27 the operator paths are marked by
the adequate operators which can appear between
operands (entities a1,). The number of possible
operators is given by

mi < m- U2\ m2 < n2-n3; mk < nk-ni

In čase of the circular association graph in Fig. 27,
we have to determine the transition through the
graph from an initial operand, for example, a1,1.
It is possible to take as an eicample the !šentence

((-(«511=^^)1= •4:1) I=
p/c-i

where for the associative operands and the corre-
sponding associative operators the choices of the
sort

a]\ E {a\,al,--- . a ^ } ;

N ? i e | N l) F 2 ' ' ' ' > Nrn! J i
aj2e{a\,al,--- ,a2

n2}-

Ni?2^ \ N l) F2> ' ' ' ' Nm2J i

aj* e { a f , a § , - - - , a * J ;
|_Pfc c /U-fc l_fc |_fc \
F g f e t \ F i) F 2 i ' ' i F m f c j

are on disposal. In a natural language, such
choices are nothing other than the adequate syn-
onym and antonym word entities, by which the
association process in the next associative cycles
can come to the surface. It is evident that through
such an informational processing the very ini
tial sentence can not only meaningly change in
a substantial way, but can, through the use of
antonyms and again synonyms, pass through var-
ious mutually oppositional meanings. This pro
cess reminds on or approaches to a real associa
tive mediating in the living brain when linguistic
thinking is performed on the conscious level (and,
for example, by the use of dictionaries).

It is important to stress that a cyclic graph
hides the informing of an undetermined length. It
only insists to make at least one informational cy-
cle. Afterwards, the informing can stili be cyclic,
but it can also stop at any operand or operator
entity, not closing the ongoing cyclic informing.
In this čase the part of the last cycle is serial. On
the other hand, to some extent, cyclic informing
is causal, depending on the concrete form of the
cyclic formula, which can not be directly recog-
nized from the graph.

12 Conclusion

Problems of informational graphs reveal the com-
plexity of informational phenomenalism and make
the appearahce of circularity and possible spon-
taneity of emerging and arising informational en
tities more transparent as a pure informational
formula and formula system approach could do in
such an evident way. On the other hand, graphs
as graphical informational entities can have their
own informational presentation and can perform
as regular informational entities (systems).

112 Informatica 21 (1997) 79-114 A.P. Železnikar

The history of the informational theory (since
1987) has gone through substantial principled
(axiomatic) and formalistic innovations, so today
it can fit the most pretentious requirements for
the formalization in the area of consciousness phe-
nomena (e.g., formalistic and graphical treatment
of psychological, psychiatric, understanding, eco-
nomical informational models, presented in [25]).
The exposed formalism together with informa
tional graphs (a kind of conscious imprints, ex-
pressed as the extremely possible parallel form)
seems to be appropriate for defining, handling and
observing the problems of consciousness with var-
iouš consciousness components and systems con-
cerning, for instance, experience, emotion, mem-
ory, association, qualia, sensitivity, awareness,
attention, intention, significance, meaning, dis-
course, understanding, self, subconsciousness, un-
consciousness, e tc , being connected into a com-
plex system of consciousness (conscious thinking).
In the discussed sense, the informational graphs
could be incorporated into the 'hot' (T < 0_) the-
ory of the brain and society ([12, 13]) in a fuzzy
disperse pattern.

Wheeler [16] has argued persuasively that
physics stands to learn a great deal about the
world by looking it in terms of information. Infor
mation occupies a wonderfully ambiguous plače
somewhere between the concrete and the subjec-
tive [6]. He suggested [17] that information is fun-
damental to the physics of the universe so that in
a double-aspect theory, proposed by Slechta [14]
and Chalmers [2, 3], information has both physi-
cal and experiential aspects. Hameroff and Pen-
rose [5] stress how experiential phenomena and
the physical universe are inseparable (e.g., the
duality of energy and information in [14]), and
this may imply a necessary non-computability
in conscious thought processes; and they argue
that this non-computability must also be inher-
ent in the phenomenon of quantum state self-
reduction—the 'objective reduction'.

Besides others, the theory of the informational
fulfills these requirements and the concept of in
formational graph not only widens the instrumen-
tality of the theory but makes the formalistic ap-
proach more evident (technical).

References
[1] Structure and Functions of the Human

Prefrontal Cortex. 1995. J. Grafman, K.J.
Holyoak, & F. Boller, Eds. Annals of the
New York Academy of Sciences 769: i-ix +
1-411. The New York Academy of Sciences.
New York.

[2] CHALMERS, D. 1996 Facing up the Problem
of Consciousness. Journal of Consciousness
Studies 2: 200-219.

[3] CHALMERS, D. 1996. The Conscious Mind.
Oxford University Press, New York.

[4] CUMMINGS, J.L. 1995. Anatomic and Be-
havioral Aspects of Frontal-subcortical Cir-
cuits. In [1]: 1-13.

[5] HAMEROFF, S. & R. PENROSE. 1996. Con
scious Events as Orchestrated Space-Time
Selections. Journal of Consciousness Studies
3: 36-53.

[6] HAUSLADEN, P. , B. SCHUMACHER, M.
VVESTMORELAND, & W.K. WOOTERS.
1995. Sending Classical Bits via Quantum
Its. In Fundamental Problems in Gjuantum
Theory: A Conference Held in Honor of
Professor John A. Wheeler: 698-705. D.M.
Greenberger & A. Zeilinger, Eds. Annals of
the New York Academy of Sciences 755 i-
xiv + 1-908. The New York Academy of Sci
ences. New York.

[7] HEIDEGGER, M. 1986. Sein und Zeit.
Sechzehnte Aufiage. Max Niemeyer Verlag.
Tubingen.

[8] HILBERT, D. und P. BERNAYS. 1934.
Grundlagen der Mathematik. Erster Band.
Die Grundlagen der mathematischen Wis-
senschaften in Einzeldarstellungen. Band
XL. Verlag von Julius Springer. Berlin.

[9] MARUYAMA, M. 1993. A Quickly Under-
standable Notation System of Causal Loops
for Strategic Decision Makers. Cybernetica
36: 37-41.

[10] MOSCOVITCH, M. & G. WINOCUR. 1995.
Frontal Lobes, Memory, and Aging. In [1]:
119-150.

INFORMATIONAL GRAPHS Informatica 21 (1997) 79-114 113

[11] SLECHTA, J. 1996. On the Generalized Un-
certainty Relations in the Quantum Statis-
tical Theory of the 'Hot' (T < 0_) (Living)
Systems (Brain), Human Society and Living
Metabolism (Physics). In Knowledge Trans-
fers 96. A. Behrooz, Ed.: 16-23. pAce. Lon
don.

[12] SLECHTA, J. 1989. Brain as a 'hot' Cellu-
lar Automaton. In Proceedings of the 12th
International Congress on Cybernetics: 862-
869. International Association for Cybernet-
ics. Namur, Belgium.

[13] SLECHTA, J. 1992. Society as a 'hot' Cellu-
lar Automaton. In Proceedings of the 13th
International Congress on Cybernetics: 405-
409. International Association for Cybernet-
ics. Namur, Belgium.

[14] SLECHTA, J. 1993. On a Quantum-statistical
Theory of Pair Interaction between Memory
Traces in the Brain. Informatica 17: 109-
115.

[15] STUSS, D.T., T. SHALLICE, M.P. ALEXAN-

DER, & T.W. PICTON. 1995. A Multidis-
ciplinary Approach to Anterior Attentional
Functions. In [1]: 191-211.

[16] WHEELER, J.A. 1990. It from Bit. In Com-
plexity, Entropy, and the Physics of Informa
tion. W.H. Zurek, Ed. Addison-Wesley.

[17] WHEELER, J.A. 1990. Information, Physics,
Quantum: The Search for Links. In Com-
plexity, Entropy, and the Physics of Infor
mation. W.H. Zurek, Ed. Addison-Wesley.

[18] ZELEZNIKAR, A.P. 1989. Informational
Logic IV. Informatica 13: 6-23.

[19] ZELEZNIKAR, A.P. 1994. Informational
Being-in. Informatica 18: 149-173.

[20] ZELEZNIKAR, A. P. 1994. Informational
Being-of. Informatica 18: 277-298.

[21] ZELEZNIKAR, A.P. 1994. Principles of a For-
mal Axiomatic Structure of the Informa
tional. Informatica 18: 133-158.

[22] ZELEZNIKAR, A.P. 1995. A Concept of In
formational Machine. Cybernetica 38: 7-36.

[23] ZELEZNIKAR, A.P. 1995. Elements of Meta-
mathematical and Informational Calculus.
Informatica 19: 345-370.

[24] ZELEZNIKAR, A.P. 1996. Informational
Frames and Gestalts. Informatica 20: 65-94.

[25] ZELEZNIKAR, A.P. 1966. Organization of
Informational Metaphysicalism. Cybernetica
37: 135-162.

[26] ZELEZNIKAR, A.P. 1996. Informational
Transition of the Form a \= (3 and Its De-
composition. Informatica 20: 331-358.

Appendix A

A General Overview Concerning For
mula Markers, Graphs, Causal Coeffi-
cients, etc.

In this papers several characteristic formula mark
ers, other symbols, and informational graphs have
been introduced. To keep them in mind together
with their meaning a special table (on the next
page) could be helpful. It can serve the reader
as a dictionary of the main notions and concepts
presented in the paper.

Figure 28 is a comprehensive table reminder of
the most often used graphs and their informa
tional symbols belonging to formulas. The reader
will easily find the entities concerning informa
tional axiomatism, serialism, circularism, causal-
ism, parallelism, and gestaltism, together with the
corresponding graphs. Markers of specific formu
las and formula systems used in the paper are sys-
tematically structured and can be unambiguously
distinguished from one another. These markers
are shortcuts for standardized formulas and for
mula systems and will be used, from now on, al-
ways consequently in the same form.

Complex symbols in Fig. 28 can be typograph-
ically standardized for later use. For instance:

T n}_{J}\!\varphL{_{_{\!\to}}} ^

T{\:\:\:n}}-{-{N_{_{_{\!\!\to\!}}}}}%
\ ! \varphi.{.{.{\ ! \ to}}} ^

"{"{\ ,n+l}}.{-{N44\!\ ! \ to}}"{"{\circlearrowleft%

}}}}\ ! \varphi({\circlearrowleft}}-{.{.{\ ! \ to}}}n+V"

etc.

114 Informatica 21 (1997) 79-114 A.P. Zeleznikar

Informational Axiomatism

Extemalism Internalism Metaphysicalism Phenomenalism

a\= \=a a\=a (a\=?

Serial Formula Systems /n+1 Q\
n+i o ^ / n \ M ip 1;

0- -H a -H o; -K a

Parallel Formulas
n , n+ 1 O '

v>; v.. rf-v:)
Informational Serialism

l<i<N^;

(Gl)

N*
_ 1 f2n\

n+1Vn /

©—<

?</>_> —((••• ((« N «l) N «2) N • • • an- l) N* "n);

2V_» —((••• ((« N «l) r= a2) N • • • an-2) N* (an-1 N On))!

• • •; WV> — (a N* («11= («2 H • • • («n-i 1= «n) • • •)))

•K*n-2j " / a n - l j " /« ;

rCf^ («, a i , a2 , • • • 1 « n | ^ L ^ 5 2V_ ; ' 1 (2n\ , ^ -> ' 1 / 2 n \ ^ -
S+Tl,n J - 1 nTU n)

Circular Serialism
n+1 O / x

. (p (a, « i , • • • ,an);

n + 1 O
1 </>_» — (((• ••((<* h «0 N «2) t= • • • «n-i) N «n) N* «);

n+1 O

l<i<N \

(G2)

7V° - -L- (2n+2\
J V-> — n+2 ^ n + 1 ^

'V_ — (((• " • ((« ! = «1) 1= «2) |= • • • a n - 2) |= « n - l) N * («n 1= «)) ;

"oV° - (a H* («1 h («2 |= • •' K - i N K H ")) • • O))

02)—- • • • —«/«»1-2ij «/o!n-iJ «(an

n+1 O n+1 O

1 ^ - » ' 2 ^ - + ' ' _l(2n+2_.^-t ' 1 / '2n+2\
S+lZVn+lJ 1 H+1H n+1 ,/

Circulating the Main Operand a. j (ao = a)

;,V_>(Q;j.Q!i+i)
--- ,ocn-i,otn,a,ai,--- ,aj-i); !<«_,•< AT°; j = 0,1,••• ,n

n+ 1 O
V.

n+ 1 O

n + 1 O

(G3) • (" j + U

<\rO _ n+1 (2n+2\
Iy-* ~~ n+2 V n+1 /

Otn-l) >{an) *Ca) *(ai) ' *(aj-l)

1 (i¥'_i(
Q;j>Q;J^-l!•••) « n - i , « n , a , a i , - - - , " i - i j) ^

Circular Causalism (r (" ; ^ (" j , ay+i, • • • , an-i,an, a, ai, • • • , ay-i)J ; j = 0,1,2, • • • , n j

Primitive Informational Parallelism

n'("<£_, (a, a i , - - - ,a„_i ,a„)) ^ (a |= a i ; a i |= a2;--- ; a n - i |= an)\ (Gl)
V (a i « i r " ,«n- i ,«n) 5= Wr<p (a,ai,--- , a n _i ,a„)) ;

II M - >

r C V - ^ a j a i) " " , a n _i ,a n)) C V O ^ a i i ' ' ' i " n - i , a n) ;

n ' r V ° (a , a i , ' " ^ ^ ^ (a ^ a i i « ! | = a 2 ; a n - i [= a B ; a n (= a) ; (G2 G3)
n + 1 O ' , ' \ _ i T T / / ' n + 1 O/ \ \ '

V? {a,ai,--- ,an-.i,an) ^ 1 1 I . (^ (a , a i , • • • ,an-i,an)j;
! ^ V (a ,a i , - - - , a n - i , a n) J C <p (a ,a i , - • • , a„_ i , a„)

Figure 28: vin overvieiv of markers, formulas, formula svstems, and graphs concerning axiomatism,
serialism, circularism, causalism, parallelism, and gestalitsm. By \=* the main operator |= is marked.

Informatica 21 (1997) 115-127 115

A Study in Generating Readable Modula-2 from Prolog

Dan Resler
Virginia Commonwealth University,
Richmond, VA U.S.A.
Email: dresler@vcu.edu
AND
Danny Crookes
The Queen's University of Belfast,
Belfast, Northern Ireland

Keywords: program translation, program generators, software readability

Edited by: Matjaž Gams
Received: December 23, 1996 Revised: February 18, 1997 Accepted: March 7, 1997

This article presents an empirical study into generating readable imperative language
programs from deterministic Prolog. An overview of a prototype translator is given,
followed by a detailed discussion of the required transformations. Two čase studies,
complete with listings of both the specifications and resultant programs, are presented.
An assessment of the generated code and overall project is also given.

1 Introduction
This paper describes an exercise in developing a
program generator (called 'Genny') that trans-
lates a dialect of Prolog into functionally equiv-
alent, readable Modula-2. Generating readable
software obviously requires having a clear under-
standing of what constitutes readable programs.
Unfortunately, however, an objective standard for
program readability does not yet exist [1, 2]. As a
working definition, readable programs are defined
as programs that have a similar style to that used
by 'good' programmers.

Genny was designed and written with three pri-
mary goals in mind:

1. To investigate the development of a good
strategy for transforming logic programs into
imperative code.

2. To determine the transformations necessary
to go from Prolog to Modula-2.

3. To investigate the generation of Modula-2
code that is 'indistinguishable' from hand-
written code.

Note that one of the broader goals of the project
was to explore the process of paradigm transla

tion. Prolog and Modula-2 were chosen as rep-
resentative languages for rule-based and procedu-
ral paradigms, respectively; other languages could
have been selected without changing the main is-
sues that the project addressed.

2 Overview of System

2.1 Specification and target languages

Turbo Prolog [3] was chosen as the basis for the
specification language primarily because it re-
quires the explicit defining of domains and pred-
icates. Such definitions greatly simplify the .gen
eration of readable type definitions in Modula-2.
There is also great benefit in having an executable
specification language; in the absence of a formal
proof of correct transformations from the Prolog
specification to the target program, it is possible
at least to demonstrate that for given inputs both
the specification and resultant programs generate
the same outputs.

While it is possible to generate non-deter-
ministic Modula-2 programs [4, 5], the resultant
code does not appear to have been written by
good imperative language programmers. There-
fore Genny was written to translate only deter-

mailto:dresler@vcu.edu

116 Informatica 21 (1997) 115-127 D. Resler et al.

ministic Turbo Prolog programs into Modula-2.
This restriction is not as severe as it first appears;
in Some Global Optimizations for a Prolog Com-
piler [6], Mellish suggests that large portions of
existing Prolog programs are alreadv determinis-
tic and directional. Even without backtracking
Prolog stili remains a powerful programming ab-
straction; features such as unification, the logic
variable, declarative semantics, and the lack of
side effects make it an attractive programming
tool.

Complete Turbo Prolog programs are not nec-
essarv to produce Modula-2 code. Genny will try
to do the best it can with what is given; generally
ali that is essential is that user-defined domains
and predicates be specified. Defined predicates
with no clauses will produce a subprogram shell
(i.e., a procedure heading with an empty BEGIN-
END block) while an empty goal section will re-
sult in an empty main program.

Genny is a prototype designed to handle only
a subset of Turbo Prolog. It does not sup-
port global and special 'database' declarations,
most of the standard predicates, and modular
programming—the primary aim was not to gen-
erate a 'complete' translator but to use this ex-
ercise as a means of investigating the problem of
constructing a generator.

Genny generates code for the single-pass Top-
Speed Modula-2 compiler [7]. Differences between
TopSpeed and Wirth's language definition [8] are
slight, with the most noticeable being the different
10 routines. Formatting and naming conventions
reflect the authors' personal style and are easily
modified.

2.2 Approach

The method used by Genny emulates human
translation of code. A significant part of the de
sign of Genny involved hand translating Prolog
programs to Modula-2 and noting the process.
An attempt was made to go beyond direct line-
by-line translation—Genny focuses on translating
paradigms, from rule-based to procedural (imper
ative). Therefore whenever problems were en-
countered or design decisions had to be made, the
first question asked was always "How would an
imperative language programmer code this, and
how can we mimic the process?".

The first consequence of this was the observa-

tion that Genny was not going to be a straight-
forward 'single-pass' translator. Human transla
tion of Prolog involves free movement through the
specification to extract the information needed at
the moment. Of major importance therefore was
an intermediate representation of the specification
that allowed for easy extraction of information
from virtually any part of the program at any
time.

3 Transformations

3.1 G e n e r a t i n g t y p e s from domains

Genny is able to translate 3 types of Turbo Prolog
domain definitions into Modula-2 definitions:

1. domainJist = standard.domain.type
A standard-domain-type can be either an
integer, char, real, string, or symbol. A
domainJist can consist of one or more do
mains separated by commas. For example,

sum.average = r e a l
would declare the domains sum and average
to be of type real.

2. domainJist
= compound.object{\ compound-object}
A compound-obj ect consists of
a functor and (optionally) the
sub-objects belonging to it (e.g.,
functor (obj ectl, object2,..., objectN)).
A functor without objects is written as
functor() or just functor. Domains can
be explicitly extended using the disjunction
operator (i.e., the semicolon (;)) . For exam-
ple, if we assume that the sub-objects t i t l e ,
author, and name are defined elsewhere, the
domain a r t i c l e s could be defined as

a r t i c l e s = b o o k (t i t l e , a u t h o r) ;
horse(name); boat ; b a l i

3. domainJist = domain*
Appending an asterisk (*) to either a stan
dard or user-defined domain declares it to be
a list. Therefore the declaration

fpList = r e a l *
declares a domain for lists of reals (e.g.,
[2 .1 ,4 .2 ,0 .02 ,93 .1]) .

http://standard.domain.type

A STUDY IN GENERATING... Informatica 21 (1997) 115-127 117

Turbo Prolog's rules for defining compound ob-
jects allow for some interesting and versatile do-
main declarations, as illustrated in Figure 1. Do-
main one consists of a series of functors without
sub-objects that functionally is similar to an enu-
merated type in Modula-2. Functors with and
without sub-objects can be mixed freely in decla
rations, as is shown in the declaration for seven.
Note also that in the definition of f our, the iden-
tifiers s t r ing , r ea l , and in teger are functors
and not domains (the same is true for one in the
definition of seven). Recursive domain declara
tions (both indirect and direct) are also allowed
in Turbo Prolog, as is demonstrated in the decla
rations of s ix and seven.

Simple compound domains in Turbo Prolog
can be translated directly to record types in
Modula-2. The functor provides a convenient
name for the new type; field names, how-
ever, are not available, as sub-objects are not
named in Turbo Prolog. The convenient but
rather unsatisfactory convention of naming fields
f 1 , f2 , . . . ,±n was adopted in Genny. Since
record definitions almost always consist of more
than a single field, compound objects with only
one sub-object are 'flattened' to simple type defi
nitions, e.g., the domain declaration

oneSubObject = f (i n t ege r)
would be translated to the type definition

oneSubObject = INTEGER;.
Domains that consist of a list of functors with-

out sub-objects are transformed into Modula-2
enumerated types. This method alone will not
work, however, if the compound declaration mbces
objects with and without sub-objects. In such
cases Genny generates a variant record type to
represent the domain. The functors are used to
define an enumerated type whose items become
the tags in the variant record. For example, the
domain

a r t i c l e s = b o o k (t i t l e , a u t h o r) ;
horse(name); boat ; b a l i

would become

TYPE
ar t i c lesTags = (book ,horse ,boa t ,ba l i) ;
a r t i c l e s =

RECORD
ČASE t ag : a r t i c l e sTags OF

I book: fl: title;
f2: author;

I horse: f3: name;
I boat: f4: articlesTags;
I bali: f5: articlesTags;

END;
END;

Note that the tag names boat and b a l i are redun-
dant (Genny at present does not use tags when
accessing variant records) and that further analy-
sis would have shown that fields f 4 and f 5 could
have been combined (i.e., the tag value would be
a sufficient indicator).

In Turbo Prolog, domains can be referenced be-
fore they are declared; TopSpeed Modula-2, how-
ever, is a single-pass compiler that requires ali
types to be defined before they are used. Genny
therefore must generate declarations in such a way
as to avoid referencing undefined types. This re-
quires the use of a dependency graph.

Figure 2 shows the directed dependency graph
for the domain declarations of Figure 1. The cor-
rect ordering for single-pass compiler type defini
tions can be derived by topologically sorting the
graph nodes; however, topological sorts work only
for directed acyclic graphs. The back edges must
first be removed before sorting the nodes.

Only in defining pointer types does Modula-2
allow one to reference an unknown type. Genny
takes advantage of this by defining ali types whose
dependency creates a back edge as pointers, thus
allowing the removal of back edges from the
graph. Ali edges representing the dependencies of
list domains can also be removed as Genny ušes
generic lists which need only the importation of
Genny's 'standard' L i s t s module.

one
two
three
f our
f ive
six
seven
eight

=
=
=
=
=
=
=
=

aa;bb;cc;dd;ee
ff(real,integer,integer)
gg(real,two,seven)
string;real;integer
one*
hh(six,seven)
j j;one;kk(one,two,five,six)
11(one,two,six,seven)

Figure 1: Domain declarations in Turbo Prolog

118 Informatica 21 (1997) 115-127 D. Resler et al.

back edges: six to seven, six to six

topological sort (see text):
five,ibur,two,one,seven,six,eight,three

Figure 2: Dependency graph

The resultant type definitions produced by
Genny are illustrated in Figure 3. Note that name
conflicts are resolved by appending a unique inte-
ger to the offending identifier.

While Genny is capable of handling rather
convoluted domain declarations, the majority of
Turbo Prolog domains used in 'real' programs
map to simple standard or record type definitions
in Modula-2. These definitions, with the excep-
tion of record field names, are very close to what
a human programmer would produce.

3.2 Generating procedures from
clauses

Genny merges ali identically named clauses with
the same arity and component types into a sin-
gle Modula-2 procedure. Clauses are considered
in the order that they appear and are not at
present reordered to possibly generate more natu-
ral code. In addition, ali procedures are declared
as FORWARD to allow the ignoring of the or-
dering restrictions for single-pass compilers. The
re-ordering of procedure declarations to eliminate
or minimize forward declarations is a straightfor-
ward exercise that has been left for a later time.

Genny maintains a rather limited database of
predicates that need not be defined to be refer-
enced. Many of the more commonly used 'stan-

TYPE
STRING
sixPtr
f ive
four
two

one
sevenTags
seven

six

eight

three

=
=
=
=
=

=
=
=

=

ARRAY [1..80]
POINTER TO six
Lists.list; (*

OF CHAR;
;
list type: one

(string,real,integer);
RECORD
fl
f2
f3

REAL;
INTEGER;
INTEGER;

END;
(aa.bb,cc,dd.ee);
(jj,one_l,kk);
RECORD
ČASE tag:sevenTags OF
1 jj: fl
1 one.l: f2
1 kk: f3

14
15
16

END;
END;
RECORD
11 : sixPtr;
12 : seven;
END;
RECORD
11
12
13
14

one;
tuo;
sixPtr;
seven;

END;
RECORD
fl : REAL;
f2 : two;
f3 : seven;

END;

: sevenTags;
: sevenTags;
: one;
: tuo;
: five;
: sixPtr;

*)

Figure 3: Generated type declarations

dard' predicates in Turbo Prolog are specified in
this database. Warning messages are generated
for ali predicate calls that are not user-defined or
located in the predicate database.

Prolog parameters are mapped directly to
Modula-2 parameters (i.e., no attempt is made
to create new Modula-2 parameters by combin-
ing in and out Prolog parameters). Genny re-
quires that the parameter type and direction be
specified in the predicate definition. Since Turbo
Prolog does not provide for defining the direction
of (non-global) predicates, Genny requires that a
parameter's type be followed by a comment that
indicates its flow pattern (or 'mode'). For exam-
ple, adding the flow patterns for quicksort would
produce

predicates
writeList(list/*i*/)
quicksort(list/*i*/,list/*o*/)
split(integer/*i*/,list/*i*/,

list/*o*/,list/*o*/)

http://dd.ee

A STUDY IN GENERATING... Informatica 21 (1997) 115-127 119

c o n c (l i s t / * i * / , l i s t / * i * / , l i s t / * o * /) For example, the getCommand predicate

Genny looks at the unification conditional at
parameter n (moving left to right) of each clause
for a given predicate to determine the type of con
ditional Modula-2 statement to generate. Con-
sider, for example, the clauses

editLine(quit,'\27',L,L).
editLine(insert,Ch,line(BC,AC),

line([Ch|BC],AC)).
editLine(leftArrow,_,line([Ch|BC] ,AC),

line(BC,[Ch|AC])).
editLine(leftArrow,_,line([],AC),

line([],AC)).
editLine(rightArrow,_,line(BC,[ChIAC]),

line([Ch|BC],AC)).
editLine(rightArrow,_,line(BC,[]),

line(BC,[])).
Genny first considers unifying parameter # 1 and
determines that only simple comparisons are nec-
essary to select the appropriate clause. Moving
left to right, parameter # 2 is shown to have only
one unification conditional (in the first clause).
Finally it would be noted that the last parameter
would require a combination of extractions and
comparisons for unification to be successful.

Unification conditionals will result in the gen-
eration of some combination of IF or ČASE state-
ments according to the following criteria:

— Predicates with only one or two conditions
for a given parameter will result in an IF
statement. (Note that throughout this sec-
tion 'IF statements' will include, where appli-
cable, ali permutations of IF-ELSIF-ELSE
statements.)

— Three or more conditions requiring compar
isons of ordinal (i.e., enumerated, CARDI
NAL, INTEGER, CHAR, or BOOLEAN)
types will cause Genny to generate a ČASE
statement.

— More complex comparisons (e.g., comparing
more than one list item, fioating point or
string comparisons, etc.) will always result
in an IF statement.

— Situations where both simple and complex
comparisons take plače will result in the pos-
sible nesting of IF and ČASE statements ac
cording to the rules mentioned above.

getCommand(Ch,digit) :-
Ch > = 48, Ch = < 57,
printstr ing("New l e v e l : ") , put(Ch), n I .

getCommand(105,up).
getCommand(60,down).
getCommand(106,left).
getCommand(108,right).
getCommand(32,shoot).
getCommand(113,quit).
getCommand(_,illegalcommand) .

would be translated into the following code by
Genny:

PROCEDURE getCommand(Ch:CHAR;

BEGIN
IF (Ch >= '0') AND

VAR command:SYMB0L);

(Ch <= '9') THEN
I0.WrStr('New level: ') ;
I0.WrChar(Ch);
ID.WrLn;
command := digit;
ELSE
ČASE Ch OF

'i'
1 } 3
1 J

1 'j'

r-l

1 ' '
1 'q'

command :=
command :=
command :=
command :=
command :=
command :=

ELSE command :=
END; (* ČASE *)
END; (* IF *)
END getC< Dmmand;

up;
down;
left;
right;
shoot;
quit;
illegalcommand;

The naming of procedure parameters presents
a particular problem as Prolog often does not re-
quire it. Where variables are used as parameters
in Prolog clauses, Genny tries to use the same
name in the generated Modula-2 code. This often
works as it's a common practice amongst Prolog
programmers to use the same identifier for a given
parameter across most or ali of the clauses. Pa
rameter names can also be explicitly given in the
predicate defmitions by appending a i-idName> to
the flow indicator, e.g.,

p redica tes
l e n g t h (c h a r s / * i - s t r * / , i n t e g e r / * i * / ,

in teger /*o- len* /) .

120 Informatica 21 (1997) 115-127 D. Resler et al.

Should Genny not be able to determine the name
for a given parameter, a default name of 'pn' will
be generated where n is the parameter's position.

The scope of variables in the Prolog specifi-
cation is maintained by Genny in the Modula-2
code. As mentioned previously, name clashes are
resolved by appending a unique integer to one of
the identifiers. The global scope is determined
by the (optional) goal section (i.e., variables that
are local to the goal section are declared globally,
and the main Modula-2 program block is gener
ated from this section).

Most of Turbo Prolog's 'standard' predicates
were deemed unnecessary for the prototype and
therefore were not implemented. In addition, the
cut (or '! ') is simply ignored as it is irrelevant
when translating deterministic Prolog code.

3.3 Generat ing s ta tements from
subgoals

There is almost a one-to-one correspondence of
subgoals in the body of a Turbo Prolog predicate
to statements in the body of a Modula-2 proce
dure. Therefore in most instances transforming
subgoals into statements is trivial.

There are exceptions, however, with one impor-
tant example being the Turbo Prolog input and
output predicates. The subgoals

write("Value '",X,"' was found in l i s t ",
L i s t i) , n I .

would be translated into several TopSpeed
Modula-2 statements:

IO.WrStr("Value " ') ;
I0.WrInt(X,0);
I0.WrStr("' was found in list ") ;

WrList(Listi);

I0.WrLn;

Routine WrList would need to be generated by
Genny and would be peculiar to the type of list
being written.

Another difficulty arises from Turbo Prolog's
substitution of ' = ' for the 'is' operator; the re-
sulting ambiguity is described in the Turbo Prolog
Owner's Handbook:

In Turbo Prolog, statements like N=Nl-2
indicate a relation between the three ob-
jects: N, NI, and 2; or a relation between

two objects: N and the value of Nl-2. If
N is stili free, the statement can be sat-
isfied by binding N. This corresponds to
what other programming languages call
an assignment statement; in Turbo Pro
log, it is a logical statement. [3, page
66]

As a result testing for equality and assignment
have the same syntax in Prolog; the semantics for
these operations must therefore be determined by
context. In Genny, relational subgoals that oc-
cur before any procedural subgoals and contain
bound variables will result in the generation of
conditional expressions that must be satisfied be
fore the rest of the predicate body is executed.
Any relational subgoals that either contain un-
bound variables or occur after a procedural sub-
goal will result in assignment. For example, the
predicate count contains two '= ' operators:

count([N|T],Key,CIn,COut) : -
N=Key,
C=CIn+l,
count(T,Key,C,COut).

In the first instance (i.e., N=Key), both variables
are bound and the subgoal occurs before a proce
dural subgoal (i.e., before count (T,Key,C,COut),
therefore an IF statement containing the condi
tional expression N=Key would be generated as
part of the unification conditional. And since the
second use of '= ' contains the unbound variable
C, Genny would generate the code C:=CIn+l;.

3.4 List manipulat ion

Generic list routines (imported from the 'stan
dard' module Lis t s) are used for ali list manipu-
lations in the programs produced by Genny. Fig
ure 4 gives examples of the common list opera
tions provided by Genny (Note that the ambiguity
between the test for list equality and list assign
ment arises from Turbo Prolog's lack of the 'is'
operator. Creating a list constant must be done
at run-time as 'standard' Modula-2 does not al-
low the building of structured constants during
compilation). In order to make type l i s t truly
general, list item constructors, dereference rou
tines, and comparison functions must be provided
for ali types. These are included in L i s t s for the
'standard' types but would have to be generated
for ali applicable user-defined types.

A STUDY IN GENERATING.. Informatica 21 (1997) 115-127 121

O p e r a t i o n
tests for empty list
test for list equality
list assignment
create an empty list
remove head of list
split integer list into head h tail

add integer N to head of list
create list literal

P r o l o g
[]
L1=L2
L1=L2
[]
[-IL]
[HIT]

[NIL]
[1 , 2 , 3]

U s i n g L i s t s A D T
empty(L)
a r e E q u a l (L l , L 2 , l i s t C o m p a r e)
a s s i g n (L l , L 2) ;
emp tyL i s t ()
behead (L) ;
H : = i n t (h e a d (L)) ;
T : = t a i l (L) ;
L : = n e w L i s t (i n t I t e m (N) , L) ;
newLis t (

i n t l t e m (i) ,
newLis t2(

i n t l t e m (2) ,
i n t l t e m (3)))

Figure 4: Generic list operations in Genny

4 Čase Studies
This section will present two čase studies of pro-
grams transformed by Genny: quicksort and a
simple line editor.

4.1 Qu ickso r t

Appendix A.l lists the Prolog specification for
Quicksort; the Modula-2 program generated by
Genny from this specification is given in Ap-
pendix A.2. The quicksort Prolog specification
is of interest because it involves list unification,
more than two clauses for a predicate, conditional
subgoals, and 'out' parameters.

Genny always postpones clause unification un-
til the clause is selected; note, for example, the
Modula-2 code for vr i teLis t—the list head for
the second clause is not extracted until the ELSE
branch in the IF statement. Note also that both
the second and third clauses of s p l i t require the
extraction of the head of the second parameter
(which is unified with 'Y'); Genny pulls this com-
mon operation out of the Modula-2 IF statement
rather then duplicating the code.

Prolog 'out' parameters present a unique prob
lem as they must be assigned values immediately
before exiting a procedure (see the assignments
to Big and Small in the procedure s p l i t) . In
general, for each clause Genny executes code for
unifying 'in' parameter first, then subgoals, and
finally the 'out' parameters are unified.

The subgoal 'X > Y' in the second clause for

s p l i t is the condition determining which of the
last two clauses will be executed and therefore is
the test in the generated IF statement. Genny ex-
tracts ali subgoal conditionals and includes them
in the generated code.

The rather unorthodox building of the list
passed to quicksort in the main program is due
to the lack of a compile time constructor for struc-
tured types in Modula-2.

4.2 Line editor

The final example is a one-line screen editor (see
Appendix B) that features simple cursor move-
ment and text deletion operations using several
of the IBM PC's special keypad keys.

Turbo Prolog has a standard type 'symbol' that
maps naturally to enumerated types in Modula-2.
Genny scans the code looking for aH symbol iden-
tifiers that are then used to define the special
type SYMB0L. Turbo Prolog allows for input and
output of data of type symbol; Modula-2, how-
ever, does not provide for enumerated type I/O.
Consequently Genny will not translate a Turbo
Prolog goal of the form 'readln(SymbolVar)\ A
straightforward solution, saved for a later version,
would be to have Genny generate special I/O rou-
tines for SYMB0L.

Unlike the other two examples, l i n e d i t does
not provide adequate information for Genny to
name several of the procedure parameters. Many
of the actual parameters simply are not unified to
variables, so either Genny provides default names

122 Informatica 21 (1997) 115-127 D. Resler et al.

or the user supplies connotative names in the
predicate section (see Section 3.2). Genny will
only use formal parameter identifiers if there are
no conflicting parameter names in other clauses
for the same predicate. Such a conflict is il-
lustrated in the predicate editLine—the second
clause (for command ' inse r t ') ušes variable C
for parameter # 2 whereas clause #12 (command
'end') ušes Ch. Genny is also careful to remove
possible conflicts caused by loca l variables. The
predicate get Command ušes the variable Ch differ-
ently in 2 different clauses; although in this čase it
wasn't necessary, Genny removes ali possibilities
of conflict by making the local variable unique.

The predicate editLine is a good example of
how Genny combines many relatively complicated
clauses into one Modula-2 procedure. Most of the
clauses have two conditional parameters and are
paired by the value of the first parameter. This
results in Genny generating a large multi-way
branching (ČASE) statement each with nested IF-
ELSE statements.

4.3 Overall Assessment of Genny

Genny is capable of generating reasonable quality,
readable Modula-2 code from deterministic Turbo
Prolog specifications. Its strengths lie in its gen-
eration of readable type definitions, the merging
of many scopes (clauses) into a single Modula-2
procedure, and its ability to generate complex se-
lection control structures.

Many of its weaknesses have known solutions [9]
that were not implemented because either they
did not help meet the original objectives or be
cause of difficulty in implementing them in the
time available, e.g.,

— the elimination of the need for (most) FOR-
WARD declarations through the re-ordering
of procedure definitions

— automatically determining the 'mode' of
predicate arguments

— the combining of certain in and out parame
ters into a single Modula-2 VAR parameter

— the use of arrays to represent lists in certain
cases

— transforming recursion to iterative structures
(such as WHILE or FOR loops)

- extending the database of 'standard' Prolog
predicates that have default transformations

- the automatic generation, when needed, of
10 routines for enumerated types

- the automatic generation, when needed, of
comparison routines (of type cproc) for user-
defined types

- the inclusion of specification comments in the
generated code

The flexibility of Genny could be improved by
allowing the user more control over the form of
the generated program. This control could vary
from code formatting to choice of data and con
trol structures to specifying the contents of sepa-
rate modules. Other issues include incorporating
a better, more comprehensive method for specify-
ing names (e.g., variable and record field names)
and possibly allowing the user to select an inter-
active mode of operation.

As Genny evolved it became more and more ap-
parent that Modula-2 was perhaps not the best
language for implementing the system. Repeated
manceuvring through the parse tree to extract in-
formation was awkward at best even with special
purpose routines. It was often difficult to extract
and debug transformations that were hard-coded
across many lines of code or sever al procedures.
A rule-based system (using a dialect of Prolog or
a transformational language) would have resulted
in a more easily modifiable system.

5 Conclusion

Genny generates readable Modula-2 that is very
similar to hand-written code (for example, the
program presented in Appendix A.2 compares fa-
vorably to textbook versions found in [10, 11, 12].
See [9] for a thorough comparison). In addition,
the transformations for improving the code for
some of the situations where the generated pro
gram fails to meet this criterion (e.g., forward pro
cedure declarations and removal of recursion) are
known [9] and will be incorporated into future
versions.

Genny will also generate 'better', more readable
code as it becomes more flexible. The ability to
specify, for example, data structures, naming con-
ventions, type of control structures, etc , will aid

A STUDY IN GENERATING... Informatica 21 (1997) 115-127 123

„ the user to 'tune' the outpufs readability. Such
control is essential until there is a widely recog-
nized standard for code readability.

References

[1] Paul W. Oman and Curtis R. Cook. A pro-
gramming style taxonomy. Software Engi-
neering Lab Technical Report #90-05 TR,
University of Idaho, College of Engineer-
ing, Computer Science Department, Moscow,
Idaho, February 1990. Abridged to 'A Taxon-
omy for Programming Style' in Proceedings
of the 18th Annual Computer Science Con-
ference (Washington D.C, Feb. 22-23, 1990)
ACM, New York, pages 244-250.

[2] Dan Resler and Danny Crookes. Software
readability. Technical report, University of
Limerick, Department of Computer Science
and Information Systems, Limerick, Ireland,
August 1991.

[3] Borland International, Scotts Valley, CA,
USA. Turbo Prolog Owner's Handbook-
version 1.0, 1986.

[4] J0rgen Fischer Nilsson. On the compila-
tion of a domain-based Prolog. In R.E.A.
Mason, editor, Information Processing 83,
pages 293-298. IFIP, Elsevier Science Pub-
lisher B.V. (North-Holland), 1983.

[5] J.L. Weiner and S. Ramakrishnan. A piggy-
back compiler for Prolog. ACM SIGPLAN
Notices, 23(7):288-296, 1988. In Proceed
ings of the SIGPLAN '88 Conference on Pro
gramming Language Design and Implemen-
tation, Atlanta, Georgia, June 22-24, 1988.

[6] C.S. Mellish. Some global optimizations for a
Prolog compiler. Journal of Logic Program
ming, 1:43-66, 1985.

[7] K.N. King. Topspeed Modula-2 Language Tu-
torial. Jensen &: Partners International, Lon
don, 1990. For Topspeed Modula-2, version
2.0.

[8] Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, Berlin, third edition, 1985.

[9] R. Daniel Resler. An Investigation into Gen-
erating Readable Software from Logic Speci-
fications. PhD thesis, Queen's University of
Belfast, Belfast, N. Ireland, October 1991.

[10] Richard F. Sincovec and Richard S. Weiner.
Data Structures with Abstract Data Tgpes
and Modula-2. John Wiley, New York, 1986.

[11] Michael B. Feldman. Data Structures with
Modula-2. Prentice Hali, Englewood Cliffs,
NJ, 1988.

[12] Daniel F. Stubbs and Neil W. Webre. Data
Structures uiith Abstract Data Tgpes and
Modula-2. Brooks/Cole, Monterey, CA,
1987.

124 Informatica 21 (1997) 115-127 D. Resler et al.

A Quicksort

A . l Prolog Specification
domains

list = integer*

predicates
writeList(list/*i*/)
quicksort(list/*i*/,list/*o*/)

split(integer/*i*/,list/*i*/,list/*o*/,list/*o*/)

cone(list/*i*/,list/*i*/,list/*o*/)

goal

quicksort([45)l,67,22,897,2,100,4,5,6,2],SortedList),

write("sorted list:"),nI,

writeList(SortedList),nl.

clauses

writeList([]) .
writeList([H|T]) :- urite(H," ") , vriteList(T).

quicksort([], []) .
quicksort([X|Tail].Sorted) :-

split(X,Tail,Small,Big),
quicksort(Small,SortedSmall),

quicksort(Big,SortedBig),

conc(SortedSmall,[X|SortedBig] ,Sorted).

split(_, [],[],[]).

split(X,[YlTail],[YISmall],Big) :-

X > Y,

i

split(X,Tail,Small,Big).
split(X,[YITail],Small,[YIBig]) :-
split(X,Tail,Small,Big).

conc([] ,L,L).
conc([XILl],L2,[XIL3]) :-

conc(Ll,L2,L3).

A.2 Generated Modula-2
(*
File: QS.M0D (created 5-20-91 at 10:04)

Description: created from specification

file QS.PR0 by GENNY vl.O

*)
MODULE QS;

IMPORT Lists.IO;

TYPE

list = Lists.list; (* list type: INTEGER *)

VAR

SortedList : list;

PROCEDURE writeList(pl:list); FORHARD;

PROCEDURE quicksort(pl:list;VAR Sorted:list); FORKARD;

PROCEDURE split(X:INTEGER;p2:list;VAR Small:list;

VAR Big:list); FORVARD;

PROCEDURE conc(pl:list;p2:list;VAR L:list); FORVARD;

PROCEDURE writeList(pl:list);

VAR

H : INTEGER;

BEGIN

IF Lists.empty(pl) THEN

RETURN;

ELSE

H := Lists.int(Lists.head(pl)); pl := Lists.tail(pl);

I0.WrInt(H,0);

I0.WrStr(' ') ;

uriteList(pl);

END; (* IF *)

END uriteList;

PROCEDURE quicksort(pl:list;VAR Sorted:list);

VAR

X : INTEGER;

Small,

Big,

SortedSmall,
SortedBig : li3t;

BEGIN

IF Lists.emptjr(pl) THEN

Sorted := Lists.emptyList();

ELSE

X := Lists.int(Lists.head(pl)); pl := Lists.tail(pl) ;

split(X,pl,Small,Big);

quicksort(Small,SortedSmall);

quicksort(Big,SortedBig);

cone(SortedSmall,Lists.newList(Lists.intItem(X),

SortedBig).Sorted);

END; (* IF *)

END quicksort;

PROCEDURE split(X:INTEGER;p2:list;VAR Small:list;
VAR Big:list);

VAR

Y : INTEGER;

BEGIN

IF Lists.empty(p2) THEN

Small := Lists.emptyList();

Big := Lists.emptyList();

ELSE

Y := Lists.int(Lists.head(p2)); p2 := Lists.tail(p2);

IF X > Y THEN

split(X,p2,Small,Big);

Small := Lists.newList(Lists.intItem(Y),Small);

ELSE

split(X,p2,Small,Big);

Big := Lists.newList(Lists.intItem(Y),Big);

END; (* IF *)

END; (* IF *)

END split;

PROCEDURE conc(pl:list;p2:list;VAR L:list);

VAR

X : INTEGER;

BEGIN

IF Lists.empty(pl) THEN

L := p2;

ELSE

X := Lists.int(Lists.head(pl)); pl := Lists.tail(pl);

conc(pl,p2,L);

L := Lists.newList(Lists.intItem(X),L);

END; (* IF *)

END cone;

BEGIN (* main program *)

quicksort(Lists.nevList(

Lists.intltem(45),
Lists.neuList(

A STUDY IN GENERATING... Informatica 21 (1997) 115-127 125

Lists.intltem(l),

Lists.newList(

Lists.intltem(67),

Lists.newList(

Lists.intltem(22),

Lists.newList(

Lists.intltem(897),

Lists.nevList(

Lists.intltera(2),

Lists.neuList(

Lists.intltem(lOO),

Lists.newList(

Lists.intltem(4),

Lists.nevList(

Lists.intltem(5),

Lists.neuList2(

Lists.intltem(6),

Lists.intltem(2))))))))))),

SortedList);

IO.HrStrCsorted list:*);

I0.WrLn;

vriteList(SortedList);

IO.VJrLn;

END QS.

B Line Editor

B. l Prolog Specification

domains

chars = char*

line = line(chars, /* before the cursor */

chars) /* after the cursor */

predicates

driver(symbol/*i-command*/,line/*i*/)

editLine(symbol/*i-command*/,char/*i-currChar*/,

line/*i-lineln*/,line/*o-lineOut*/)

getCommand(char/*i*/,symbol/*o*/)

specialKey(char/*i-keyStroke*/,symbol/*o-command*/)

updateScreen(line/*i-newLine*/)

writestring(chars/*i-str*/)

length(chars/*i-str*/,integer/*i*/,integer/*o-len*/)

rev(chars/*i*/,chars/*o*/)

revzap(chars/*i-ll*/,chars/*i-12*/,chars/*o-10ut*/)

goal

clearwindow,

driver(nil,line([],[])).

clauses

/*
driver: main "loop" of editor

*/
driver(quit,_) :- !.

driver(_,LIn) :-

readchar(Ch),

getCommand(Ch,Command),

editLine(Command,Ch,Lin,LOut),

updateScreen(LOut),

driver(Command.LOut).

/*
editLine: executes an editor command

Tokens Commands

del delete character at cursor

delLine delete the entire line

home move cursor to beginning of line

end move cursor to end of line

*/

editLine(quit,_,L,L) :- write("goodbye"),nl,nl.

editLine(insert,Ch,line(BC,AC),line([Ch|BC],AC)).

editLine(leftArrov,_,line([ChIBC],AC),

line(BC,[ChlAC])).

editLine (lef tArrov,., line ([] ,AC) ,line([] , A O) .

editLine(rightArrou,_,line(BC,[ChIAC]),

line([Ch|BC],AC)).

editLine(rightArrov,_,line(BC,[]),line(BC, [])).

editLine(backDel,_,line([_IBC],AC),line(BC,AC)).

editLine(backDel,.,line([] ,AC) ,line([] ,AO) .

editLine(del,_,line(BC,[_|AC]),line(BC,AC)).

editLine(del,_,line(BC,[]),line(BC, [])).

editLine (delLine, _, _, line ([],[])).

editLine(home,C,line([Ch|BC],AC),L) :-

editLine(home,C,line(BC,[ChlAC]),L).

editLine(home,.,line([],AC),line([],AC)).

editLine(end,C,line(BC,[ChlAC]),L):-

editLine(end,C,line([Ch|BC],AC),L).

editLine(end,.,line(BC,[]),line(BC,[])).

editLine(illegalCommand,_,L,L) :- beep.

/*
getCommand:

tokenizes input into appropriate command;

I use the special kevpad keys on the IBM PC

for the corresponding editor commands;

these keys return special 2 character codes

uhich must be interpreted differently */

getCommand(Ch,insert) :- /* printable char */

Ch >= ' *, Ch <= '"',!.

getCommand('\0'.Command) :- /* keypd key */

readchar(Ch),

specialKey(Ch,Command),!.

getCommand('\8'.backDel) :- !. /* back del */

getCommand('\25',delLine) :- !. /* <ctrl> y */

getCommand(_,illegalCommand).

specialKey('\75',leftArrow) :- !.

specialKey('\77',rightArrow):- ! .

specialKey('\83\del) :- !.

specialKey('\71' ,home) :- !.

specialKey('\79',end) :- !.

specialKey('\45',quit) :- !. /* alt x */

specialKey(_,illegalCommand).

/*
updateScreen: urites line to screen at row 0

*/
updateScreen(line(BC,AC)) :-

insert insert a character at cursor

leftArrow move cursor left one character

rightArrou move cursor right one character

backDel delete character before cursor

clearwindow,

rev(BC,BCl), /* rev. part before cursor */

writestring(BCl), vritestring(AC),

length(BC,0,Col),/* compute cursor position */

126 Informatica 21 (1997) 115-127 D. Resler et al.

cursor(O.Col) . /* move cursor */

w r i t e s t r i n g ([]) .
wr i t e s t r ing ([Ch |S]) : - u r i t e (Ch) , w r i t e s t r i n g (S) .

l eng th ([] ,N ,N) .
length([_ |L],N,N2) : -

NI = N + 1,
length(L,Nl,N2).

rev(Ll,L2) : - r evzap (L l , [] ,L2) .

revzap([X|L],L2,L3) : - revzap(L,[X|L2],L3).
revzapC [] ,L,L) .

B.2 Generated Modula-2
(*
File: LINEDIT.MOD (created 5-20-91 at 11:57)
Description: created from specification file

LINEDIT.PRO by GENNY vl.O
*)
MODULE LINEDIT;

IMPORT Window,Lists,IO;

TYPE
SYMBOL = (nil,quit,insert,leftArrow,rightArrow,

backDel,del,delLine,home,end.illegalCommand);
chars = Lists.list; (* list type: CHAR *)
line = RECORD

fl : chars;
f2 : chars;

END;

VAR
lineBuff : line;

PROCEDURE driver(command:SYMBOL;LIn:line); FORWARD;
PROCEDURE editLine(command:SYMBOL;currChar:CHAR;lineln:

line;VAR lineOut:line); FORWARD;
PROCEDURE getCommand(Ch:CHAR;VAR Command:SYMBOL);

FORHARD
PROCEDURE specialKey(keyStroke:CHAR;VAR command:SYMBOL)

FORHARD
PROCEDURE updateScreen(newLine:line); FORHARD
PROCEDURE vritestring(str:chars); FORHARD
PROCEDURE length(str:chars;N:INTEGER;VAR len:INTEGER);

FORHARD;
PROCEDURE rev(Ll:chars;VAR L2:chars); FORHARD;
PROCEDURE revzap(11:chars;12:chars;VAR 10ut:chars);

FORHARD;

PROCEDURE driver(command:SYMBOL;Lin:line);

PROCEDURE editLine(command:SYMBOL;currChar:CHAR;
lineln:line;VAR lineOut:line);

VAR
Ch : CHAR;

BEGIN
ČASE command OF

quit

I insert

I leftArrou

I rightArrov:

I backDel

del

VAR
Ch :
Command :
LOut :

BEGIN

CHAR;
SYMBOL;
line;

IF command = quit THEN

I delLine

home

RETURN;
ELSE
Ch := I0.RdKeyO;
getCommand(Ch,Command);
editLine(Command,Ch,Lin,LOut);
updateScreen(LOut);
driver(Command,LOut);

END; (* IF *)
END driver;

I end

IO.HrStrCgoodbve');
IO.HrLn;
IO.WrLn;
lineOut := lineln;
lineOut.fl :=
Lists.nevList(Lists.charItem(currChar),

lineln.fl);
lineOut.f2 := lineln.f2;
IF Lists.empty(lineln.fl) THEN
lineOut.fl := Lists.emptyList();
lineOut.f2 := lineln.f2;

ELSE
Ch := Lists.char(Lists.head(lineIn.f D) ;
lineln.fl := Lists.taildineln.f 1) ;
lineOut.fl := lineln.fl;
lineOut.f2 :=
Lists.nevList(Lists.charltem(Ch),

lineIn.f2);
END; (* IF *)
IF Lists.empty(lineln.f2) THEN
lineOut.fl := lineln.fl;
lineOut.f2 := Lists.emptvList();

ELSE
Ch := Lists.char(Lists.headdineln.f2)) ;
lineln.f2 := Lists.taildineln.f2);
lineOut.fl :=
Lists.newList(Lists.charltem(Ch),

lineln.fl);
lineOut.f2 := lineln.f2;

END; (* IF *)
IF Lists.empty(lineln.fl) THEN
lineOut.fl := Lists.emptvList();
lineOut.f2 := lineln.f2;

ELSE
lineln.fl :=
lineOut.fl :
lineOut.f2 :

END; (* IF *)
IF Lists.empty(lineln.f2)

Lists.tail(lineln.f1);
lineln.fl;
lineIn.f2;

THEN
lineOut.fl
lineOut.f2

ELSE
lineln.f2
lineOut.fl
lineOut.f2

:= lineln.fl;
:= Lists.emptyList();

= Lists.taildineln.f2) ;
:= lineln.fl;
:= lineln.f2;

END; (* IF *)
lineOut.fl := Lists.emptyList();
lineOut.f2 := Lists.emptyList();
IF Lists.empty(lineln.fl) THEN
lineOut.fl := Lists.emptyList();
lineOut.f2 := lineln.f2;

ELSE
Ch := Lists.char(Lists.headdineln.f 1)) ;
lineln.fl := Lists.taildineln.f 1) ;
lineln.f2 :=
Lists.nevList(Lists.charltem(Ch),

lineln.f2);
editLine(home,currChar,lineln,lineOut);

END; (* IF *)
IF Lists.empty(lineln.f2) THEN
lineOut.fl := lineln.fl;
lineOut.f2 := Lists.emptyList();

ELSE

A STUDY IN GENERATING... Informatica 21 (1997) 115-127 127

Ch := Lists. char(Lists .headdineln.f 2));
lineln.f2 := Lists.tail(lineln.f2);
lineln.fl :=
Lists.neuList(Lists.charItem(Ch),

lineln.fl);
editLine(end,currChar,lineIn,lineOut);

END; (* IF *)
I illegalCommand: I0.WrChar(7C); (* beli *)

lineOut := lineln;
END; (* ČASE *)
END editLine;

PROCEDURE getCommand(Ch:CHAR;VAR Command:SYMB0L);

VAR
Ch_l CHAR;

BEGIN
IF (Ch >=
Command := insert;

ELSE
ČASE Ch OF

CHR(O)

) AND (Ch <= ') THEN

Ch.l := I0.RdKey();
specialKey(Ch_l,Command);
Command := backDel;
Command := delLine;
Command := illegalCommand;

I CHR(8)
I CHR(25)
ELSE

END; (* ČASE *)
END; (* IF *)
END getCommand;

PROCEDURE specialKey(keyStroke:CHAR;
VAR command:SYMB0L);

BEGIN
ČASE kf

'K'
1 'M'
1 'S'
1 'G'
1 '0'
1 ' - '
ELSE

END; (
END spe<

jyStroke OF
command :=
command :=
command :=
command :=
command :=
command :=
command :=

• ČASE *)
:ialKey;

leftArrow;
rightArro«;
del;
home;
end;
quit;
illegalCommand

PROCEDURE updateScreen(newLine:line);

VAR
Col
BC1

IO.WrChar(Ch);
writestring(str);
END; (* IF *)
END vritestring;

PROCEDURE length(str:chars;N:INTEGER;
VAR len:INTEGER);

VAR
NI : INTEGER;

BEGIN
IF Lists.empty(str) THEN
len := N;

ELSE
str := Lists.tail(str);
NI := N + 1;
length(str,Nl,len);

END; (* IF *)
END length;

PROCEDURE rev0.1:chars;VAR L2:chars);

BEGIN
revzap(Ll,Lists.emptyList(),L2);
END rev;

PROCEDURE revzap(ll:chars;12:chars;VAR lOut:chars);

VAR
X : CHAR;

BEGIN
IF L i s t s . empty(l l) THEN
lOut := 12;

ELSE
X := L i s t s . c h a r (L i s t s . h e a d (l D) ;
11 := L i s t s . t a i l (l l) ;
r evzap (l l ,L i s t s . neuL i s t (L i s t s . cha r I t em(X) ,12) ,

lOut) ;
END; (* IF *)

END revzap;

BEGIN (* main program *)
Window.Clear();
lineBuff.fl := Lists.emptyList();
lineBuff.f2 := Lists.emptyList();
driver(nil,lineBufi);

END LINEDIT.
INTEGER;
chars;

BEGIN
Window.Clear();
rev(nevLine.f1,BC1);
writestring(BCl);
writestring(newLine.f2);
length(newLine.f1,0,Col);
Window.GotoXY(Col+l,0);
END updateScreen;

PROCEDURE writestring(str:chars);

VAR
Ch : CHAR;

BEGIN
IF Lists.empty(str) THEN
RETURN;

ELSE
Ch := Lists.char(Lists.head(str));
str := Lists.tail(str);

Informatica 21 (1997) 129-133 129

Design of Approximate Identity Neural Networks by
Picewise-Linear Circuits

Jifi Kaderka
Department of Microelectronics, TU of Brno, Udolni 53, 602 00 Brno, Czech Republic
Phone: +42 5 43167 134, Fax: +42 5 43167 298
E-mail: kaderka@umel.fee.vutbr.cz

Keywords: approximate identitv neural networks, piecewise-linear circuits

Edited by: Rudi Murn

Received: August 20, 1996 Revised: December 1, 1996 Accepted: December 10, 1996

The design of the approximate identity neural network (AINN) using the piecewise-linear
(PWL) approach is presented. AINN realizes linear and non-linear mapping. This net
consists oftwo executive layers. The cehs ofthe first - hidden layer, hidden neurons, are
designed according to extended PWL sub-circuits that make the function ofthe absolute
value.
The present theory describes a transfer function and a learning algorithm of AINN. The
convergence of the learning algorithm is provided numerically The electronic circuit of
AINN is based on PWL sub-circuits and modeled by Saber.
Results show possibility of AINNs to approximate the sine and squared functions. The
theory of PWL AINN can be extended; approximate networks can be defined in more
dimensions.

1 Introduction

Approximate identitv neural networks belong to
the class of neural nets which are able to approx-
imate linear and non-linear functions. These nets
have the abilitv to approximate non-linear map
ping to any degree of accuracv. AINN consists of
two lavers. The degree of accuracy depends on
a number of neurons in the hidden layer and a
learning algorithm.
There are many possibilities how to create a struc-
ture of neural nets. In this paper the design of
the analog approximate identitv neural networks
based on the piecewise-linear circuits is estab-
lished.
The transfer function of AINN is composed of a
sequence of functions {yj(x)}<j?=1. The elementary
function yj(x) has to satisfv the following proper-
tiesfl]:

- P1) f-™ Vj(x).dx = C, for any j

— P2) given e and p > 0, an index N exists such
that for j>_N it results / ^ \yj(x)\.dx < e,

(OvK ty

(O N . ^ ^

Figure 1: Block scheme of AINN.

where Dp represents the domain outside the
sphere Dp or radius p and centered at the origin
and Dp + Dp — Rm. The function yj{x) describes
the elementarv analog neurone of the hidden
layer.

mailto:kaderka@umel.fee.vutbr.cz

130 Informatica 21 (1997) 129-133 J. Kaderka

3 Training algorithm of AINN

V"S

y

o.

A A* "HC

Figure 2: Piecewise-linear transfer function.

2 Definition of the transfer
function

The block scheme of AINN is shown in Fig 1.
This AINN belongs to the feed-forward neural
nets and realizes the one-dimensional mapping.
It consists of an input layer, a hidden layer and
an output layer. Although the number of layers
equals to three in this, in this paper AINN will
be denoted as two-layers net as stated in [1]. The
AINN is described in Equation (1).

As was stated in the preceding section the neurons
of the AINN are described by 3 sets of parameters
- A, a and k. The parameter a sets a co-ordinate
of an elementary function of the hidden neurone
on the x-axis and domain of the AINN is the par-
titioned into N — 1 sub-domains. Parameters a
and k are adjusted by the learning algorithm so
desired outputs have to be obtained. In general
the output of AINN will not be the same as the
desired value of a primary function f(x)\ on the
other hand parameters a and k [5] can be chosen
such that the square of the error

E=^=1(f(xl)-A(xl)Y (3)

be minimized [1]. A commonly use algorithm is
the method of steepest descent in which the in-
cremental changes of parameters Aa and Ak are
proportional to SE. Equations (4) and (5) make
up the core of the learning algorithm.

Aa,- Va
SE
Sa>j

(4)

A{x,a,X,k) = ^=iyj{x,aj,Xj,kj) (1) = Va^Mfi^i) - A(rcj)).

The proposed AINN is defined in one dimen-
sion. It transforms R =$• R. The input layer is
composed of one neurone and distributes an in
put signal into ali neurons of the hidden layer.
The output layer is also composed of one neurone
and sums up output signals of hidden neurons.
The neurons of the hidden layer are executive el-
ements. They are described by elementary func-
tions yj(x; a, A, k).

The transfer function yj must accomplish notes
P l and P 2 which define its properties. As shown,
P W L function that has three breakpoints fulfills
this definition and can be designed by PWL sub-
circuits [2] [4].

The function yj is defined by Equation (2) and
its shape is shown in Fig 2.

yj — -OLJ (\ndist + 1| + \ndist — 1| — 2\ndist\)

.\ (\dist + 1| + |dist - 1| - 2|dist |))

where dist = -p(xi — Xj).

And

xi (A,- — kj;Xj + k j)

Akj = % E / = i p (f(xi) - A(xi))
<Xj\xi — Xj

where ndist = ^(rc — Xj)
(2)

(5)
where rja and % are positive valued constants that
set the learning rate.

According to Equations (4) and (5) the learn
ing algorithm is implemented in C + + language.
The desired primary function / (x), the domain of
AINN and initial values of parameters compose
the input of the C+-1- program. Results contain
computed parameters of circuits of hidden neu
rons.

Till these days there is no exact method how
to choose initial values of parameters and initial
learning condition. Therefore computing of pa
rameters must be repeated to obtain best results.

file:///ndist
file:///ndist
file:///dist

DESIGN OF AINN BY PWL CIRCUITS Informatica 21 (1997) 129-133 131

In addition, constants r]a and % control con-
vergence of the learning algorithm. If they are
too big convergence will fast point to the mini
mum but the learning algorithm can exhibit os-
cillations. If these constants are small the learning
algorithm will take a lot of tirne. In order to solve
this problem the constants r\a and rjk are being set
to reach the global minimum by the learning al
gorithm dynamically. x

4 Implementation using PWL
circuits

The particular choice for the transfer functions
yj(x;a,\,k), defined as piecewise-linear in the
theory described above, is related to the fact that
these terms are suitable for being implemented
using piecewise-linear circuits [2].

The structure of the hidden neurone circuit
employs elementary circuits of the absolute-value
function. This synthesis is very suitable it utilizes
the absolute-value function as a basic mathemat-
ical and circuifs tool and enables to describe the
PWL circuit in explicit close form.

In addition this synthesis makes possible to de
sign multi-dimensional piecewise-linear approxi-
mate neural networks. The circuit of a hidden
neurone can be easy extended and AINN can ap-
proximate more complicated mappings and func
tions.

On the top of it PWL AINN has simple rela-
tion between outputs of the learning algorithm
and parameters of PWL sub-circuits. There are
many approaches how to design the PWL circuits
but in creating of the approximate system it is
important that parameters of AINN are easy set
in PWL sub-circuits.

As was developed in the present theory and
shown in Figure 3 the features of AINN are stated
by parameters of summation amplifiers that are
easy adapted.

Figure 3: Circuit of analog neurone.

xThe source code of the learning algorithm is available
on the author's e-mail address.

Figure 4: Circuit of the absolute-value function

5 Electronic circuit designing
and Saber modeling of PWL
AINN

The hidden neurone consists of three main parts
of sub-systems. The block scheme of the neurone
is shovvn in Figure 3. The first part is compose
of three circuits of the absolute-value function;
they compose a middle column in block scheme
in Figure 3. It is shovvn the best circuit which im-
plements the absolute-value function is the circuit
in Figure 4. This circuit is composed of two oper-
ational amplifiers, four resistors and two diodes.

The second part consists of four summation
amplifiers. This part is easy created by real op-

132 Informatica 21 (1997) 129-133 J. Kaderka

NuHtar- <>r mnironi: lb

\

Figure 5: Function 2sin(a;), 14 hidden neurons. Figure 6: Function 2sin(a;), 16 hidden neurons.

erational amplifiers. The last third part of the
hidden neurone is a D C voltage source.

6 Results

The energy function of PWL AINN has very com-
plicate surface and convergence of the learning
algorithm depends on initial values of weights.
Changing the initial values the energy function
will able to move itself successfully along a learn
ing algorithm's direction toward minimum.

In Figures 5 and 6, application examples
with the reference to learning of the function
f(x) = 2sin(a;) are shovra. The AINN making
a curve in Figure 5 has 14 hidden neurons and
this one making a curve in Figure 6 has 16
hidden neurons. Figures 7 and 8 show applica
tion examples with reference to learning of the
function f(x) = x2. You can note the degree of
accuracy depends on a number of hidden neurons.

7 Conclusion

The approximate identity neural networks are
universal tools for approximating any mappings
and functions [1]. In additions these nets can
be designed by piecewise-linear circuits which are
easy implemented [5]. The PWL circuits are de-
fined by a new triangular piecewise-linear func
tion.

The numerical paradigm for learning of the

"T"
\
\
\

\

\ \ \
\
\ \

— * — z — = —

Vd

\

*

9

e

7

6

3

4

3

a

„

i

!
i

/

/

~z—

/
/

/

/

»_

Figure 7: Function x2, 12 hidden neurons.

\

\
\
\
\
\
\

* . ' _

14

\

S

T

e

3

4

3

3

•

/
r

/

/

z
i

/

i
/

i
1

/

—,_ _̂—

Figure 8: Function a;2, 16 hidden neurons.

DESIGN OF AINN BY PWL CIRCUITS Informatica 21 (1997) 129-133 133

PWL approximate identity neural networks is also
presented. There are introduced rules for synthe-
sizing of AINN circuits. Experiments show that
the approximate identity neural networks could
be successfully designed by using of PWL sub-
circuits. There are shown examples of approxi-
mated sine and squared functions.

References

[1] Conti M. & Turchetti C. (1994) Approximate
Identity Neural Networks for Analog Synthesis
of Non-linear Dynamical Systems. IEEE Trans-
actions on Circuits and Svstems: Fundamental
Theories and Applications, vol. 41, p. 841-858.

[2] Pospisil J., Kolka Z. & Brzobohaty J.
(1995) Decomposed Parametric State Model of
Piecewise-Linear Systems with the Fully Inde-
pendent One-Dimensional Mapping. Proceed-
ings of the SYS 95, Brno, Czech Republic, p
126-133.

[3] Pospisil J. & Brzobohaty J. (1996) New gener-
alised approach to the transformation proper-
ties of linear and picewise-linear systems. Pro-
ceedings of IASTED International Conference
Modelling, Identification and Control, Inns-
bruck, Switzerland.

[4] Kaderka J. (1995) Universal Approach to
Modelling of the Analog Neurone. Proceedings
of the SYS 95, Brno, Czech Republic, p 34-37.

[5] Kaderka J. (1996) Using Piecewise-Linear Ap
proach to Synthesis of Approximate Identity
Neural Networks. Proceedings of the ITHURS
96, Leon, Spain, p. 43-46.

Informatica 21 (1997) 135-145 135

An Integrated Testing Framework for Object-Oriented Programs

Shih-Sung Liao, Kai H. Chang and Chun-Yu Chen
Department of Computer Science and Engineering, Auburn University, Auburn, AL 36849

Keywords: Software testing, Formal methods, Object-oriented programs, Usage profile

Edited by: Rudi Murn

Received: October 4, 1995 Revised: March 15, 1996 Accepted: November 16, 1996

It has been proved that object-oriented technology (OOT) can improve software pro-
ductivity and quality through object reuse and high level of code modularity. While
most OOT research efforts have been devoted to the object-oriented analysis, design,
and programming, little attention has been paid to program testing, especially testing
beyond class level. This paper presents an integrated object-oriented programs testing
framework that distributes its testing effort based on usage and importance. The frame-
work incorporates both formal methods and usage profiles. A usage profile combines
the expected data distribution Information and the frequencies of anticipated operation
sequences of a program. The data distribution Information is represented in a grammar
form that can be used to generate test data. The frequencies of operation sequences
can be derived from state transition diagrams that are enriched by operation probabil-
ities. An object-oriented styled formal specification language, which enables a clearer
association between specification and implementation, is used in this framework.

1 Introduction

Object-oriented technology (OOT) is becoming
increasingly popular in recent years. Different ap-
proaches in testing object-oriented programs have
been proposed [5, 10, 14]. Most of these test
ing approaches have centered around classes or
lower levels. This paper presents a new approach
that incorporates different techniques into an inte
grated testing framework for object-oriented pro
grams, with emphasis on system testing and ac-
ceptance testing. The main features of this ap
proach include:

1. The use of an object-oriented formal specifi
cation in testing — Formal specification has
been proved to be a useful means for improv-
ing software quality. Using object-oriented
styled formal specification not only results in
a conceptually clear specification to speed up
prototyping and implementation, but also ul-
timately provides a basis for testing object-
oriented programs.

2. The utilization of a usage based testing —
Usage based testing tests the system from the
perspective of the target user, not the soft-
ware designer. Testing results can thus re-
flect the quality of software system with less
bias when compared to the conventional cov-
erage testing.

Section 2 reviews the relevant research on
object-oriented technology, software testing, for
mal methods and usage profile. Section 3 gives
an overview on the underlying idea of this frame-
work. Section 4 gives an illustrative example, and
Section 5 concludes the paper.

2 Background

The importance of quality assurance continues to
grow along with the demand for highly complex
software systems. The main thrust of software
quality assurance has been on the development
of formal methods and software testing. Formal
methods provides a means to specify and verify
the behavior of a system by applying a rigorous

136 Informatica 21 (1997) 135-145 S. Liao et al.

mathematical notation. Software testing repre-
sents the ultimate review of software and has been
used as a major technique to detect errors. With
the increasing application of object-oriented pro-
gramming, it is also expected that OOT vrould
bring about significant software productivity and
quality improvement through its inherent code
modularity and code reuse. Object-oriented tech-
nology, software testing, formal methods and us-
age profile ali have their impacts on softvrare qual-
ity assurance, and are discussed in the following.

2.1 Object-oriented technology and
software testing

There is no doubt that object-oriented analysis
and design of software are fundamentally differ-
ent from the conventional structured approach.
This also leads to a different approach to test
ing object-oriented programs. Several properties
of object-oriented programming affect its test
ing, for example, inheritance, overload, and poly-
morphism. Smith [14] classified testing object-
oriented programs into four different levels of ab-
straction : algorithmic, class, cluster, and system.

For an object-oriented program, it is obvious
that the natural units of a program are classes
and objects. Class testing is the first level that
brings attention to testing object-oriented pro
grams. Smith used a modified data flow test
ing approach and a class flattening (the inherited
parts in a class are flattened out) methodology
to address the testing problem at the class level
[14]. Also based on inheritance, Harrold and her
colleagues [10] presented an incremental approach
to test classes by exploiting the hierarchical na-
ture of the inheritance relation and reusing the
testing information of a parent class to guide the
testing of a subclass. Doong and Frankle [5] built
a prototype testing system for the class level, and
focused on the issue of whether a sequence of mes-
sages puts an object of a class under test into a
correct state. In the limited object-oriented pro
gram testing research, efforts have been focused
on the unit (class) level.

2.2 Formal Methods

The scope of formal methods includes formal
specification and verified design [4]. The underly-
ing idea is that the behavior of software is first de-

scribed in a formal specification, then the software
is implemented according to its specification, and
finally the conformance between specification and
implementation is checked. For project managers
or high-level designers, a formal specification de-
scribes the problem concisely and precisely. For
testers or maintainers, the specification provides
important information about the producfs cor
rect behavior.

With the emergence of formal specification, au-
tomated test data generation based on specifica
tion has become feasible. Stocks and Carrington
presented a specification-based testing framework
that is designed for any model-based specification
notation [17]. Richardson et al. [13] combine real
tirne interval logic and the Z specification lan
guage [15] to derive test oracles from specifica-
tions and incorporate them in the testing process
for reactive systems. Carrington and Stocks also
gave a summary of some major efforts that ap-
ply formal specification languages (especially Z)
to software testing [2]. Formal methods are lead-
ing an evolution rather a revolution in the field
of softvvare testing. It is noteworthy that none
of these approaches to specification-based testing
ušes an object-oriented specification language.

Another trend in formal methods is the devel
opment of object-oriented styled formal specifica
tion. Most conventional formal specification lan
guages are not object-oriented. Various object-
oriented formal specification methods have been
proposed. For example, Fresco [18], an exten-
sion to VDM, is intended to facilitate the descrip-
tion of reusable software components and pro
vides an environment for rigorous development of
object-oriented softvvare from a specification. A
wide-spectrum language, COLD (common object-
oriented language for design), along the tradition
of VDM and Z, was developed at the Philips Re
search Laboratories in Eindhoven [8]. COLD can
be used as an algebraic specification language,
as well as an integrated language unifying alge
braic and state-based techniques. More than half
a dozen projects describing different approaches
for providing Z with object-oriented structuring
mechanisms are collected in [16], which includes
Mooz, Object-Z, OOZE, Z++ and ZEST+.

AN INTEGRATED TESTING FRAMEWORK... Informatica 21 (1997) 135-145 137

2.3 Usage profile 3 A n overv iew

For a moderate to large software product, there
are usually an infinite number of possible exe-
cutions. Since there are too many test cases to
choose from, test data selection criteria must be
used. Although numerous testing adequacy cri
teria have been investigated or experienced, none
of them can be proven to be better than others
for an arbitrary program [9]. When dealing with
higher-level testing, such as system testing and
acceptance testing, the most critical issue is how
the user will perceive the product. Thus, higher
level testings, should be conducted from the per-
spective of the user rather than the designer. Us
age profiles provide the fundamental information
for test data selection from the user's perspective.

Different user groups may use a software prod
uct in different ways, and corresponding profiles
can be defined to describe the different usage pat-
terns. Similarlv, some infrequently used functions
with serious consequences for failure (e.g. emer-
gency handling functions) can also be expressed
by special profiles. Five steps to develop an oper-
ational profile are described in [11]: (1) Find the
customer profile; (2) Establish the user profile;
(3) Define the system mode profile; (4) Define the
functional profile; and (5) Define the operational
profile itself. In these steps, a particular usage
is progressively broken down into more and more
detailed levels. However, some steps may not be
necessary for a particular application. For exam-
ple, a customer profile is unnecessary if there is
only one customer group. According to [12], for
an average-sized project, the cost of developing
an operational profile at AT&T is about one staff
month.

From the perspective of testing, the most-used
operations should receive the most testing and
should be most reliable. In terms of MTTF, "It is
shown based on a study of a number of projects
that usage testing improves the perceived relia-
bility during operation 21 times greater than that
using coverage testing [3]." Both theory and prac-
tical experience indicate that usage profiles can
provide a great means of improving software qual-
ity from the user's perspective. In fact, software
reliability is reflected by the way a user will use
the system.

The major difference between testing object-
oriented programs and conventional structured
programs is the software design architecture. In
the conventional structured design, subprograms
are basic building blocks. A conceptually clear
tree-like structure shows the dependencies among
modules. A usage distribution can be easily as-
signed to this structure. The hierarchy of modules
is simple and clearly represented. Unit testing
starts with functions and procedures. Integration
testing points can be chosen from intermediate
nodes based on different approaches, and system
testing can be performed incrementally. When
applying usage-based testing for a structured de
sign, test cases can be generated to exercise mod
ules according to their probabilities.

To apply usage based testing in an object-
oriented environment, an entireh/ new approach
must be developed. For an object-oriented de
sign, the basic building blocks are classes and ob-
jects. Data communication between classes is by
message passing. The topology of an object ori
ented design is no longer a tree, and there is no
easy way to establish a structural hierarchy. The
usage model of an OOP application should be de-
rived from its operation.

The main ideas of this work include (1) the
translation of ambiguous requirement descrip-
tions into a rigorous formal specification and (2)
the definition of usage profile that define data dis
tribution and operation frequency. It has been
reported that formal methods and statistical us
age based testing have been successfully combined
in the Cleanroom approach [3, 7], which resulted
in several ultra-high quality software products.
Although the Cleanroom paradigm is not spe-
cially designed for object-oriented programs, the
ideas of Cleanroom are adopted in our research.
Cleanroom ušes a box structure formal specifica
tion methodology to describe a software svstem.
The specification hierarchy contains three distinct
box structure forms: black box, state box, and
clear box. The underlying idea of the box struc
ture is abstraction. In Cleanroom, the conven
tional structural testing is replaced by correctness
verification, while the functional testing strategy
stili remains and is called statistical usage testing.
Statistical usage testing requires an investment
in front-end analysis and then planning for func-

138 Informatica 21 (1997) 135-145 S. Liao et al.

tional testing based on usage probabilities. The
usage probability distribution is expressed in an
executable usage grammar called usage distribu
tion language (UDL). By using a translator to
convert UDL statements and running a statisti-
cal test čase generator, any number of test cases
can be created according to the distribution [3, 7].

Cleanroom approach works fine for structured
program development. However, in order to
incorporate the Cleanroom approach into the
object-oriented program testing, it is necessary
to modify the existing techniques. First, al
though the box structure gives a clear specifica-
tion and good representation for verification, ex-
tensive human intervention is needed. Also, the
box methodology is basically structure-oriented,
not object-oriented. An object-oriented formal
specification language is needed to mirror the im-
plementation. Second, the usage analysis can
be independent of the design methodology, but
the mapping between usage and implementation
varies drastically for different design methodolo-
gies. The mapping between usage and implemen
tation must be studied when deriving the opera
tion profile. Third, data distribution information
can be added for statistical test data generation,
and will provide a natural data usage simulation.

3.1 The framework

Testing can not be a stand-alone process in the
software development life cycle. Instead, test
teams must work closely with the analysis and
design teams. The framework of our approach is
shown in Figure 1. In the analysis and design
phases, three aspects of a system are presented:
domain knowledge, static class structure, and dy-
namic interaction of operations. These aspects
must be represented precisely, so that the tester
can have accurate information regarding the sys-
tem. An object-oriented formal specification lan
guage can serve this purpose. The specification
language provides a means for the tester to re-
trieve the information without going into the im
plementation details. The formal specification,
which provides pre- and post- conditions for each
operation, can then be used as a basis for testing
and verifying the correctness of execution. The
purposes of pre- and post-conditions are to indi-
cate the system states that must hold before exer-
cising an operation and the effects of an operation,

respectivelv.
Usage profiles include both data usage pro-

files and operation usage profiles. The data us
age profile includes the data dictionary and the
data distribution. The operation usage profile
describes the operation probability based on the
analysis result of projected user applications (or
user groups). A state transition diagram is used
to describe the operation sequences of the appli-
cation. A test scenario, which is a sequence of
message passing paths along with the expected
results, can be derived from the state transition
diagram. Any number of test cases can then be
generated from a test scenario. If different us
age patterns exist among user groups, individual
usage profiles can be derived for each group.

Testing is inadequate unless testing results can
be verified thoroughly against the specification.
Unfortunately, software testing are usualb/ not
analyzed thoroughly, either due to the tirne re-
quired, or due to the lack of tools and the absence
of specification. Since the formal specification is
incorporated into this framework, it becomes pos-
sible to generate the desired effects for each cause
systematically. During execution, each message
passing event will be monitored for its pre- and
post-conditions. In practice, no oracle can gener
ate precise expected results for a particular test
čase, otherwise it could replace the code itself.
By improving the testing process in terms of test
cases and oracle generation, the quality of soft-
ware can thus be measured statistically in terms
of MTTF. Product released by this testing frame-
work will gain a significant degree of quality as-
surance.

Our approach is centered around the confor-
mance between implementation and specification,
while assuming the specification has met the cus-
tomer's requirements. Although the underlying
ideas can be language independent, the effec-
tive use of a particular language is important in
object-oriented design. This framework is tar-
geted at programs written in C + + and the formal
specification language used in this framevrork is
Object-Z [6]. C++ and Object-Z are chosen for
many solid reasons. C-t-+ is a stable and full-
scale production language. The Z specification
language [15], is a well-known formal method with
a very popular user group in both the UK and
the USA. Object-Z is an extension language of Z

AN INTEGRATED TESTING FRAMEWORK... Informatica 21 (1997) 135-145 139

Customer
Requirements

Design
&

Ana!ysis Teams .}

Formal
Specification

Development
Team

Domain
Information

-o-

Symbol
Table

Code
Template

-J Certification
Team

Usagg Profile
Operation usage profile

Data profile

implementation
Code Test Cases

Assertitlons

JT* Execution U -
I Monitor j

Test
Data

Generator

Execution
Profile

Oracle
Procedure

Test
Reports

Figure 1: The framework

which embraces the object-oriented style, while
stili keeps the advantages of Z. In addition, there
is also an strong correlation between an Object-Z
class and a C+-f- class, including class constants,
inheritance and operations (member functions in
C++) .

3.2 Specification of the design

A formal specification that embraces an object-
oriented style will not only speed up the pro-
totyping and implementation of object-oriented
programs, but also direct the selection of test
cases and oracles. Object-Z was developed by
the Software Verification Research Center at the
University of Queensland [6]. Encapsulation, in
heritance and polymorphism were key concepts
in developing Object-Z. Similar to C+-1-, an ob-
ject in Object-Z is described by its states and re-

lated operations. A specification box which rep-
resents typical Object-Z definition format is given
in Figure 2. A class definition in Object-Z may in-
clude inherited classes(names of ancestor classes),
type and constant definitions (collectively called
attributes), at most one state schema (nameless
and containing declarations and a predicate), at
most one initial schema(initial instances for the
class), zero or more operation schemas (enabling
communication to the environment), and an op-
tional history invariant. A class consists of a name
box in which the features of the class are described
and related.

The detailed discussion of Object-Z is beyond
the scope of this paper. An introduction to
Object-Z can be found in [6]. Figure 3 shows
an example of Object-Z specification and its cor-
responding C++ implementation. The specifica
tion clearly specifies the behavior for each schema

140 Informatica 21 (1997) 135-145 S. Liao et al.

HA'o : dunJblmmnltfu
»t:rvi<xFrr, hiinurc, trinpOrpiuiil, rftlity \VD,MinBninnni : R
«nlMrawt)K : H

bataiiini > MinBalanrc — nnaiir.Fir.
ir.njimFin € (O.D,0.25,1.00,2.50)

MbihH<T,tltiUsWD,™lhh™01i)
nmiimdl : N

(nmuunl/ min! 5 = 0
Min < nmauiUl
iuninmt'1 < Mm
bntonfr. > nmuurtlV + Miitiintiiiirr.
Mnz > duiiytfZ) + immunll
itaUvlVD" = ilitilvlVD + lanomii!
tnittmre' = butniti*. — mnntinl? — n.mirrFi-r.
miUiiliianOti' = tru») V
((itinuurtf? mini 5 ^ 0 V Min > amuunll V iiinmiiitl > Min
bolnim < oriKiunl? + MeniiirFei: + Mintlulnnn: V
Mm < dailS\YD + ainnnidl) A
mitliilmniOK' = f;its.:)

liupmv _
A(6<1(HIU*)

rTiniiKleiDrpuKil-

Figure 2: Object-Z class definition.

(operation or method). The specification can
be translated into assertions which then can be
used to monitor program execution. The map-
ping between the specification and implementa-
tion is very direct. This indicates that formal
specification also serves as a very useful means for
code verification during development. While ver-
ification may not totally replace class level test-
ing, it would definitely improve the correctness of
classes. An automatic teller machine (ATM) sys-
tem is used as one of our target testing systems.
Figure 4 shows a portion the Object-Z specifica
tion of an account class. A complete specification
of the ATM is given in [11].

3.3 Usage of the system

In Booch's definition [1], "A state transition dia
gram is used to show the state space of a given
class, the events that cause a transition from one
state to another, and the actions that result from
a state change." In our approach, a complete sys-
tem is presented by the state transition diagram.
We define an embedded finite-state automaton
(EFSA) to describe the state transition diagram.
The definition follows:

An Embedded Finite-State Automaton (EFSA)
is an nine-tuple

(E,XJ,p,R,Op,x0,S,F)
where

E is a finite event set
X is a finite state set
f is a state transition function,

f:XxE^X
p is a usage function, p : E —> <?,0 < g < 1
i? is a finite operation information set
Op is an operation function, Op : E —> R
XQ is an initial state, XQ 6 X
S is a set of superstates, S C X
F is a set of final states, F C. X

A state that contains nested states is called a
superstate, and its nested states are called sub-
states. Vs 6 S, s can be defined by another
EFSA, i.e., a decomposed state transition dia
gram. This will provide an abstraction of the
state transition diagrams. The state transition di
agram is developed incrementally, and normally,
has a hierarchical structure. At the highest level,
a state transition diagram is constructed accord-
ing to the major operation steps. At the lowest
level, a state transition diagram must be associ-
ated with an operation in a class. The multiple
levels of presentation will provide the tester a di
rect mapping between design structure and us
age, and allow the user to view the design in an
understandable way. After the state transition
diagram is developed, different usage profiles rep-
resenting different user groups or different criteria
can be applied to the state transition diagram to
develop the usage models. The sequence of op-
erations are then derived from the usage models,
which are called test scenarios. We first need to
prepare testing scenarios for normal usage, i.e.,
applications without any unusual or exceptional
conditions. Different criteria can then be used to
define additional test scenarios.

Vr G R, r includes the information of input,
output parameters, a list of called functions, pre-
and post-conditions. The names of input and out
put parameters will be used by the test data gen
erator to generate input data and by the execu-
tion monitor to check output results. The pre-
and post conditions are obtained from the Object-
Z specification. These conditions can be inter-
preted by human, or by an oracle tool once a
reasoning tool of Object-Z is incorporated. A se-
quence of operations is represented by a sequence

AN INTEGRATED TESTING FRAMEVVORK... Informatica 21 (1997) 135-145 141

Stack[T]

max : Z

max — 100

This class has a constant max.

items seqT

#items 6 max

INIT
items

Push.

= 0

A(items)
items? : T

j^items < max
items' = (items?) items

rPop
A(items)
itemsl : T

items ^ ()
items = (itemsl) items'

#define Max 100
template<class T>
class Stack
{
private:
int Index;
T Array[Max];

public:
Stack() {Index =0;}
void Push(T x);
T Pop O;

};
template<class T>
void Stack<T>::Push(T x)
{
if (Index < Max) Array[Index++]

}
template<class T>
T Stack<T>::Pop()
{
if (Index != 0)

return Array[—Index];
else
{ cout «"\n*** Stack is empty!

return T(0); }
>

= x ;

***"

Figure 3: A specification and implementation of a generic stack class.

of events(or states). The probabilitv of a sequence
represents the usage probabilitv of this operation,
and the probability of a sequence is the product
of probability of each event in a sequence. When
there is no loop in an EFSA, the set of ali possible
sequences is finite and can be collected, but this is
rarely the čase in real applications. A threshold of
probability and an upper limit of loop iterations
are used to filter out impossible sequences or some
sequences with very low probability. In this čase,
a finite set of sequences will be impossible to cover
ali sequences. However, it is well known that ex-
hausted white or black box testing is impossible
for most applications. The rationale of the test
ing based on the EFSA is that the testing will be
based on the usage of the system, and thus the
testing efforts will be distributed according to its
importance.

After usage scenarios are constructed, test cases

can be generated according to the data informa-
tion. A data domain profile is used to define the
data information. The data domain profile ušes
the Extended Backus-Naur Form (EBNF) to de-
scribe the data type definition and distribution.
Structured data types will be defined based on
other simpler or primitive data types. A tree
structure can be used to depict the structure data
type. Each node in the tree represents a da ta
type. A primitive node is called a leaf node or a
terminal. The portion of grammar that describes
leaf nodes is:

type ::= [<continuous_type> | <discrete_type> |
<enumerate_type>]

leafnode::=<type><ranges><resolution>
<exceptions> < distribution > <parameters>

In this grammar, a default value will be as-
signed when a pair of blank brackets is used at

142 Informatica 21 (1997) 135-145 S. Liao et al.

, Account.

Max, Min : R

Max = 200
Min = 20

bNo : BankAccountNo
serviceFee, balance, tempDeposit, dailyWD, MinBalance : R
withdrawOK : B

dailyWD < Max
balance > MinBalance — serviceFee
serviceFee G {0.0,0.25,1.00,2.50}

_ INIT
daily WD = tempDeposit = 0
uiithdrauiOK = false

_ Withdraw
A(balance, dailyWD, uiithdrauiOK)
amount? : N

(amount? mod 5 = 0
Min < amount?
amount? < Max
balance > amount? + MinBalance
Max > dailyWD + amount?
dailyWD' = dailyWD + amount?
balance' = balance — amount? — serviceFee
uiithdrauiOK' = true) V
((amount? mod 5 ^ 0 V Min > amount? V amount? > Max V
balance < amount? + serviceFee + MinBalance V
Max < dailyWD + amount?) A
uiithdrauiOK' = false)

r Inquire
A(balance)
amountl : N

balance' = balance — serviceFee
amountl = balance'

. TransferDeposit.
A(balance)
amount? : N

vjithdrauiOK' — true
balance' = balance + amount?

Figure 4: Account class in Object-Z

AN INTEGRATED TESTING FRAMEWORK... Informatica 21 (1997) 135-145 143

the position of any tuple. During testing, the data
type is used to generate appropriate types of test
data for variables. The test data generator can
thus process the grammar description to generate
any number of test cases according to the desired
data distribution. The usage model and data do-
main profile allow the execution of test cases to
emulate the actual application of software system.

4 An example

An ATM example is used to illustrate our ap-
proach. The top level state transition diagram of
the ATM is shown in Figure 5, which represents
the major operation states of the system. The
arcs represent the events that cause state tran-
sitions. Since an emergency can happen in any
state, a separate node is used to prevent clustering
of the diagram, especially at the lower levels. The
arcs entering or leaving the emergency state are
represented by dotted lines to distinguish them
from normal state transitions. Based on the state
transition diagram, the operation sequences of the
ATM can be described. The idle state is Startup
(S). When a customer inserts a card, it moves to
Validating User (V). In V, the personal identifica-
tion number (PIN) is entered and verified. If the
verification succeeds, then the system moves to
Validating Transactions (T), otherwise the user
can make two more tries, or quit and return to
Startup. In T, if the transaction request is valid
then the system moves to Processing Transactions
(P), and fmally returns to Startup. A normal op
eration sequence like this will be represented by
a sequence of states: (S)(V)(T)(P)(S) or be rep
resented by a sequence of events (0)(1)(4)(6)(8).
After refinement, these states can be decomposed
into lower level states. Figure 6 shows the first de-
composition of the Validating Transaction state.

Using an OOA decomposition approach, these
states will eventually correspond to the class oper-
ations. A sequence of events with frequency infor-
mation is then used as a test scenario. By incorpo-
rating the data profile represented in EBNF, test
data can be generated. An example of the data
profile is given in Table 1. When a structured data
type is selected, the parsing will continue until it
reaches primitive types, which are enclosed in a
pair of brackets (e.g. WithdrawAmount). The
values to be generated for WithdrawAmount must

Startup

Validating
User

E1

J Y

Validating
Transaction

E2

Emergency

Processing
Transaction

E3

Figure 5: ATM top level STD

satisfy its definition, i.e., the range is greater than
or equal to 20 and less than or equal to 200, the
resolution is 5, no exception, and the distribu
tion is a normal distribution type with mean =
86 and standard deviation = 42.06. Although the
sample distribution may not be exactly the same
as the actual distribution, the usage distribution
provides a feasible way for the emulation of the
usage.

In the EBNF, a default value is provided for
each category. For example, the default distribu
tion type is a uniform distribution and the default
resolution for the integer type is 1. A data dic-
tionary defined in the EBNF format would not
only describe data distribution, but also provide
a means in applying other test data selection cri-
teria, e.g., boundary values and exception values.
The test data generator can automatically gener
ate test data when the test scenarios and EBNF
definitions are provided.

144 Informatica 21 (1997) 135-145 S. Liao et al.

Table 1: Example of ATM data dictionary

CustomerName

MI

LastName
FirstName

Name

letter
RequestTypeInfo

InqueryInfo
WithdrawInfo

AccountNo

CardNo
BankNo

BankAccountNo

CurrentBalance
WithdrawAmount

LastName + FirstName + MI

[null I letter]
Name

Name

letter(1..26)

<char><[a..z,A. .Z]>
[InqueryInfo | Transferlnfo | Depositlnfo | WithdrawInfo]
AccountNo + CurrentBalance

AccountNo + WithdrawAmount + CurrentBalance

BankNo + BankAccountNo

[digit(lO) I digit(13) |digit(16)]

<string(6)><(100000..999999]>
<string(8)><(10000000..99999999]>

<float><minimalBalance..maximalBalance><0.01>
<integer><[20..200]><5><><norm><86,42.06>

5 Conclusions

An usage-based testing framework is presented
in this paper. Because of tirne and resource con-
straints, test selection should be done according
to the importance of software components. With
this philosophy, once the test is terminated, the
most important and most frequently exercised
parts of the software will have thus received most
attentions and should be most reliable. Since
testing will never be perfect except for very small
programs, the errors detected based on usage
will be in the order of its significance. This will
directly contribute to the software's reliability.
If the MTTF is larger than the span of the
expected software life, the errors stili contained
in the software will have no effect to the end-users.

The objects and classes of the object-oriented
model contain operations (member functions) and
attributes that reflect the state of an object. The
dynamic behavior of the object-oriented software
svstem is described in EFSA to model its state.
The EFSA also describes the usage of the sys-
tem, as well as the dynamic features of the class
function invocations. The usage of a system will
be represented as the frequencies of operation se-
quences rather than the probabilities of modules
exercised. The use of formal specification also fa-
cilitates the automatic generation of oracle. In
general, a specification cannot be used to derive

the precise output values for specific test datum.
Thus, mechanisms must be developed to derive in-
variant oracle information from the specification
and use a corresponding oracle procedure to deal
with dynamic assertions. In addition, oracle can
not simply be done by comparing the expected
outputs with execution results at the end. The
intermediate states (or values) also need to be
checked. The development of a tool to reason the
formal specification is stili under investigation.

Our current effort is to construct the EFSA
grammar and the EBNF for the ATM system,
and to implement the test data generator. While
this research emphasizes on the testing aspect of
object-oriented programs, ultimately, it can also
lead to a systematic approach for object-oriented
program development by integrating analysis, de
sign, testing and verification.

References

[1] G. Booch, Object oriented design with appli-
cations, 2nd ed., Benjamin Cummings, 1994.

[2] D. Carrington and P. Stocks, "A tale of
two paradigms: formal methods and soft-
ware testing", In Workshops in Comput-
ing Series: Z User Workshop, pages 51-68.
Springer-Verlag, 1994.

AN INTEGRATED TESTING FRAMEWORK... Informatica 21 (1997) 135-145 145

• J Emergency

Figure 6: A Decomposed STD of the ATM

[3] R.H. Cobb and H.D. Mills, "Engineer-
ing software under statistical quality con-
trol", IEEE Softivare, pages 44-54, Novem
ber 1990.

[4] A. Diller, An introduction to formal methods,
John Wiley & Sons, 1990.

[5] R. Doong and P. G. Franki, "The Astoot ap
proach to testing object-oriented programs",
Technical Report pucs-104-93, Department
of Computer Science, Polytechnic Universitv,
1993.

[6] R. Duke, P. King, G. Rose, and G. Smith,
"The Object-Z specification language, Ver-
sion 1", Technical Report 91-1, Software
Verification Research Centre, Department of
Computer Science, University of Queensland,
May 1991.

[7] M. Dyer, The Cleanroom approach to quality
softivare development, John Wiley & Sons,
1992.

[8] L.M.G. Feijs and H.B.M. Jonkers, Formal
specification and design, Cambridge, 1992.

[9] P. G. Franki and S. N. Weiss, "An exper-
imental comparison of the effectiveness of
branch testing and data flow testing", IEEE
Trans, on Soft. Eng. , 19(8):774-787, Aug.
1993.

[10] M. J. Harrold, J. D. McGregor, and K. J.
Fitzpatrick, "Incremental testing of object-
oriented class structures", In Proč. l^th
International Conference on Softivare Engi-
neering , pages 68-80, May 1992.

[11] S. Liao, An Integrated Testing Approach for
Object-Oriented Programs, PhD Disserta-
tion, Dept of Computer Science and Engi-
neering, Auburn University, March 1997.

[12] J. D. Musa, "Operational profiles in soft-
ware reliability engineering", IEEE Soft
ivare, pages 14-32, March 1994.

[13] D. J. Richardson, S. L. Aha, and T. O.
0'Malley, "Specification-based test oracles
for reactive systems", In Proč. lJ^th Interna
tional Conference on Softivare Engineering,
pages 105-118, Melbourne,Australia, May
1992.

[14] M. D. Smith and D.J. Robson, "A frame-
work for testing object-oriented programs",
Journal of Object-Oriented Programming,
5(3):45-53, June 1992.

[15] J. M. Spivey, The Z notation: a reference
manual, 2nd ed., Prentice Hali, 1992.

[16] S. Stepney, R. Barden, and D. Cooper
(Eds.), Workshops in computing series:
object-orientation in Z, Springer-Verlag,
1992.

[17] P. A. Stocks and D.A. Carrington, "Test
templates: a, specification-based testing
framework", In Proč. 15th International
Conference on Softivare Engineering, pages
405-414, Los Alamitos, CA, 1993.

[18] A. Wills, "Specification in Fresco", In
Workshops in Computing Series: Object-
Orientation in Z, pages 125-135. Springer-
Verlag, 1992.

Informatica 21 (1997) 147

Call for Papers: Consciousness as Informational Phe-
nomenalism

Special Issue of Informatica 21 (1997) No. 3

Informatica, an International Journal for Computing and Informatics, announces the Call for Papers
for the issue of an interdisciplinarv volume dedicated to the informational problefns of consciousness.

The scientific program of the volume includes the following:

1. consciousness as an informationallv emerging entitv in events, processes and svstems of under-
standing;

2. innovative formal svmbolism for study, research and expression of dynamically structured and
organized (arising, emerging, generic) events, processes, and systems of consciousness;

3. philosophical (existence, phenomenology), cognitive (intention, qualia, understanding), linguistic
(semiotic, pragmatic), psychological (experience, feeling), physiological, neuronal (connectionist),
cellular (biological), cybernetic (self-organized) and other views of consciousness as informational
phenomenon;

4. physical (space-time, quantum, thermodynamical), chemical (molecular) and other natural models
of consciousness as informational phenomena;

5. consciousness as learning, memorizing, associative, concluding, and intelligent processes of behav-
ior;

6. classical, computational and artificial-intelligence approaches (stressing artificialness and con-
structivism) for understanding and modeling of the consciousness phenomenology;

7. emerging terminology and systematics (structure, organization) of consciousness.

Informatica 21 (1997) No. 3, in an enlarged volume, is fixed as the special issue.

The deadline for the paper submission in three copies is May 15, 1997. International refereeing
will be performed according to the standard Informatica procedure. For more instructions see FTP
f t p . a r n e s . s i with anonymous login or URL: ht tp: / /www2.i js .s i /~raezi / informatica .html .

Correspondence: E-mail addresses: anton.p .ze leznikar@ijs . s i , matjaz.gams@ijs.si, and
mitja.perus@uni-lj.si.

Printed-paper mail address: M. Gams, Jožef Štefan Institute, Jamova c. 39, SI-1111 Ljubljana,
Slovenia.

ftp://ftp.arnes.si
http://www2.ijs.si/~raezi/informatica.html
mailto:anton.p.zeleznikar@ijs.si
mailto:matjaz.gams@ijs.si
mailto:mitja.perus@uni-lj.si

148 Informatica 21 (1997)

Consciousness
Scientific Challenge
of the 21st Century

Edited by D. Rakovič and D. Koruga
Belgrade 1996

Published by the European Centre for
Peace and Development (ECPD) of the
United Nations University for Peace

The book (ISBN 86-7236-005-2) is a collec-
tion of papers presented by the Belgrade sympo-
sium Consciousness: Scientific and Technological
Challenge of the 21st Centurv, held during 29-30
May 1995. It represents the activities of the Joint
Laboratory of Belgrade scientific community.

The book is divided into four parts. The first
part deals with Phenomenology of Consciousness
and includes the following contributions: Self-
consciousness of the first civilization: The čase of
the divine Pelasgians of the Balkans (L. Klakič);
The phenomenon of consciousness in philosophv
(V. Abramovič); Consciousness as a (psychologi-
cal) function (P. Ognjenovič); and Biological basis
of consciousness (V. Desimirovič).

The second part, entitled by Altered States of
Consciousness, begins with a survey of the the
structure of Universe, human selfhood, bodies,
states of consciousness, psychic organization, and
attainment of higher states of consciousness in es-
oteric practices [States of consciousness in eso-
teric practice (P. Vujičin)]. A further example in
the direction of the altered states of consciousness
is presented by the application of psychotherapeu-
tic ritual in Amazon tribal societies, with shaman-
istic control and interpretation of hallucinogenic
altered states of consciousness [Psychotherapeu-
tic ritual in Amazon tribal societies (C. Hadži-
Nikolič & B. Petkovič)]. The last contribution of
the second part deals with a survey of contem-
porary methods of neurolinguistic programming,
including original integrative model for efficient
hypnotherapeutic reprogramming of old behav-
ioral models [Neurolinguistic programming: An
integrative model for states of consciousness (G.
Stanojevič-Vitaliano)].

The third part encompasses Electroencephalo-
graphic Correlates of States of Consciousness. It

begins with a broad survey of phramacoelectroen-
cephalography (PEEG), i.e. by an electroen-
cephalographic study of drug effects, with signif-
icant clinical implications [EEG studies of drugs
acting on the central nervous system (Z. Marti-
novič)]. It is followed by a detailed relationship
between clinical neurophysiological polysomno-
graphic data and different sleep disorders [EEG
and the sleep disorders (N. Ilankovič & A.
Ilankovič)]. Out of the new methods of EEG sig
nal analysis, the application of the theory of de-
terministic chaos is given, illustrated in the cases
of normal and pathological EEG [Deterministic
chaos in EEG signal (V. Radivojevič, M. Ra-
jkovič, D. Timotijevič & M. Car)]. The next con
tribution presents an original methodology and
and software environment for quantitative analy-
sis of EEG activity in altered states of conscious
ness, with particular application on the moni-
toring of the healing process [On methodologg of
EEG analysis during altered states of conscious
ness (E. Jovanov)].

In Search of the Nem Paradigm is the title of
the fourth part. It brings some original scien
tific approaches to the problem of consciousness,
bearing characteristics of a new scientific synthe-
sis. It deals with concepts of information physics
as a synergetic theory of classical and quantum
mechanics and theory of information, which re-
lates consciousness with biology and physics, and
searches the roots in biophysical cytoskeletal pro
cesses [Information physics: In search of a scien
tific basis of consciousness (D. Koruga)]. The sec
ond approach points out a universal Mind/Matter
code starting from the unity of chemical and ge-
netic codes, unifying global-integral introspective
method of the East and single-partial empirical
method of the West [The universal consciousness
and the universal code (M. Rakočevič)]. The orig
inal triunism concept is presented in Brain and
thought in neurobiological contezt (L. Rakič). Fi
nali^ a new biophysical model of altered states
of consciousness is presented in the view of elec-
tromagnetic field of braimvaves, dynamics of psy-
chological processes, and bizarre transpersonal
phenomena in transitional states of consciousness
[Brainuiaves, neural netuiorks, and ionic struc-
tures: Biophgsical model for altered states of con
sciousness (D. Rakovič)].

By A.P. Zeleznikar

Informatica 21 (1997) . 149

Call for Papers

Parallel and Distributed Database
Special Issue of Informatica

Parallel and distributed database technology is
a core of many mission-critical information sys-
tems. New challenging problems are posed by
the growing demand for large-scale, enterprise-
wide, high- performance solutions. Innovative
approaches and techniques are necessary to deal
with the rapidly expanding expectations with re-
gard to massive data volume processing, perfor
mance, availability, and solutions scalability.

The scope of this Special Issue includes ali as-
pects of parallelism and distribution in database
systems. The Issue will focus on design, develop-
ment and evaluation of parallel and distributed
database systems for different computing plat-
forms and svstem architectures.

Original papers are solicited that describe re-
search on various topics in parallel and distributed
database systems including, but not limited to,
the following areas:

— Distributed database modeling and design
techniques

— Parallel and distributed object management

— Interoperability in multidatabase systems

— Parallel on-line transaction processing

— Parallel and distributed query optimization

— Parallel and distributed active databases

— Parallel and distributed real-time databases

— Multimedia and hypermedia databases

— Databases and programming systems

— Mobile computing and databases

— Transactional workflow control

— Parallel and distributed algorithms

— Temporal databases

Systems

— Use of distributed database technology
in managing engineering, biological, geo-
graphic, spatial, scientific, and statistical
data

— Scheduling and resource management

Time Table and Contacts

Papers in 5 hard copies should be received by
November 1, 1996 at one of the following ad-
dresses.

North & South America, Australia:
Bogdan Czejdo czejdo@beta.loyno.edu, Depart
ment of Mathematics and Computer Science, Loy-
ola Universitv, 6363 St. Charles Ave., New Or-
leans, LA 70118, USA

Europe, Africa, Asia:
Tadeusz Morzy morzy@poznlv.put.poznan.pl, In
stitute of Computing Science, Poznan Univer-
sity of Technology, Piotrowo 3a, 60-965 Poznan,
Poland

Silvio Salza salza@dis.uniromal.it, Diparti-
mento di Informatica e Sistemistica, Universita
di Roma La Sapienza, Via Salaria 113, 1-00198
Roma, Italy

E-mail information about the special issue is
available from the above guest editors.

Notification of acceptance will be sent before
March 1, 1997. The special issue will be published
in the middle of 1997.

Format and Reviewing Process

Papers should not exceed 5,000 words. Each pa-
per will be refereed by at least three anonymous
referees.

- Data mining/Knowledge discovery

mailto:czejdo@beta.loyno.edu
mailto:morzy@poznlv.put.poznan.pl
mailto:salza@dis.uniromal.it

150 Informatica 21 (1997)

C ali for Papers

Parallel Computing with Optical
Special Issue of Informatica
h t tp : / /www.cps .udav ton . edu / pan / in fo

Communications among processors in a paral
lel computing system are always the main design
issue when a parallel system is built or a par
allel algo- rithm is designed. With advances in
silicon and Ga-As technologies, pro- cessor speed
will soon reach the gigahertz (GHz) range. Tra-
ditional metal-based communication technology
used in parallel computing systems is becoming
a potential bottleneck. This requires either that
significant progress need to be made in the tra-
ditional interconnects, or that new interconnect
technologies, such as optics, be introduced in par
allel computing systems.

Fiber optic Communications offer a combina-
tion of high bandwidth, low error probability, and
gigabit transmission capacity and have been used
exten- sively in wide-area networks. Advances
in optical and optoelectronic tech- nologies indi-
cates that they could also be used as intercon
nects in parallel computers. In fact, many com-
mercial massively parallel computers such as the
Cray T3D use optical technology in their commu
nication šubsys- tems. Papers in this special issue
will be selected to focus on the poten- tial for us-
ing optical interconnections in massiveb/ parallel
processing svstems, and their effect on svstem and
algorithm design.

The topics of interest include but are not lim-
ited to the following:

— Various optical interconnections,

— Optical pipelined buses,

— Multistage interconnection networks,

— Reconfigurable optical architectures,

— Embedding and mapping of applications and
algorithms,

— Emulation of different models,

— Algorithms and applications exploiting par
allel optical connections,

— Data distribution and partitioning,

Interconnections

— Task scheduling,

— Performance Evaluation,

— New analytical methods for optical intercon
nections,

— Scalability analysis,

— Computational and communication complex-
ities.

Publication is scheduled for an issue in 1998.
Four copies of complete manuscripts should be
sent to one of the guest editors (see address be-
low) by May 15, 1997. Ali manuscripts must con-
form to the normal submission requirements of
INFORMATICA. Notification of acceptance will
be sent by October 15, 1997.

Guest Editors of the Special
Issue

North &; South America , Austral ia

Professor Yi Pan, Computer Science Department,
The University of Dayton, Dayton, OH 45469-
2160, USA, Email: pan@hype.cps.udayton.edu

Professor Keqin Li, Dept. of Mathematics and
Computer Science, State University of New York,
New Paltz, New York 12561-2499, USA, Email:
li@mcs.newpaltz.edu

Europe, Africa, As ia

Professor Mounir Hamdi, Department of Com
puter Science, Hong Kong Univer- sity of Sci
ence and Technologv, Clear Water Bay, Kowloon,
Hong Kong, Email: hamdi@cs .ust .hk

http://www.cps.udavton.edu/
mailto:pan@hype.cps.udayton.edu
mailto:li@mcs.newpaltz.edu

Informatica 21 (1997) 151

Call for Papers (New Journal)
Intelligent Data Analysis—An International Journal
An electronic, Web-based journal
Published by Elsevier Science

URL: h t t p : //www. e l sev ie r . com/locate/ida,
h t tp : / /www.e lsev ie r .n l / loca te / ida

Important e-mail addresses:
Editor-in-Chief: A. Famili
(f a m i l i O a i . i i t . n r c . c a)
Editorial Office: Heather D. Joseph
(h.dal terioOelsevier .com)
Subscription Information:
USDirectSelsevier.com

Introduction
As science and engineering disciplines become
more and more computerized, the volume and
complexity of the data produced on a day-to-day
basis quickly becomes overwhelming. Traditional
data analysis approaches have proven limited in
their ability to generate useful information. In a
wide variety of disciplines (as diverse as financial
management, engineering, medical/ pharmaceu-
tical research and manufacturing) researchers are
adapting Artificial Intelligence techniques and us-
ing them to conduct intelligent data analysis and
knowledge discovery in large data sets.

Aims/Scope
The journal of Intelligent Data Analysis will pro-
vide a forum for the examination of issues related
to the research and applications of Artificial Intel
ligence techniques in data analysis across a vari-
ety of disciplines. These techniques include (but
are not limited to): ali areas of data visualiza-
tion, data pre-processing (fusion, editing, trans-
formation, filtering, sampling), data engineering,
database mining techniques, tools and applica
tions, use of domain knowledge in data analysis,
machine learning, neural nets, fuzzy logic, statis-
tical pattern recognition, knowledge filtering, and
post-processing. In particular, we prefer papers
that discuss development of new Al architectures,
methodologies, and techniques and their applica
tions to the field of data analysis. Papers pub

lished in this journal will be geared heavily to-
wards applications, with an anticipated split of
70oriented, and the remaining 30

Editor-in-Chief

A. Famili
National Research Council of Canada,
Canada

Editorial Board

Timothy Bailey, San Diego Supercomputer Cen
ter, USA

Francesco Bergadano, University of Torino,
Italy

Pierre Boulanger, National Research Council of
Canada, Canada

Pavel Brazdil, University of Porto, Portugal
Carla E. Brodley, Purdue Universitv, USA
Paul R. Cohen, University of Massachusetts,

USA
Luc De Raedt, Catholic University of Leuven,

Belgium
Doug Fisher, Vaderbilt Universitv, USA
Matjaž Gams, Jožef Štefan Institute, Slovenia
James Garrett, Jr., Carnegie Mellon Universitv,

USA
Larry Hali, University of South Florida, USA
Alois Heinz, Universitaet Freiburg, Germany
Achim G. Hoffmann, University of New South

Wales, Australia
Jane Hsu, National Taiwan Universitv, Taiwan
Scott Huffman, Priče Waterhouse Technology

Center, USA
Xiaohui Liu, University of London, UK
Ramon Lopez de Mantaras, Artificial Intelli

gence Research Institute, Spain
David Lubinsky, University of The Witwater-

srand, South Africa

http://www.elsevier.nl/locate/ida

152 Informatica 21 (1997)

Nicolaas J.I. Mars, University of Twente, The
Netherlands

Stan Matwin, University of Ottawa, Canada
Claire Nedellec, Universite Paris-Sud, France
Raymond Ng, University of British Columbia,

Canada
Alun Preece, University of Aberdeen, UK
Lorenza Saitta, University of Torino, Italy
Alberto Maria Segre, The University of Iowa,

USA
Wei-Min Shen, University of Southern Califor-

nia, USA
Evangelos Simoudis, IBM Research Almaden

Research Center, USA
Stephen Smith, Carnegie Mellon University,

USA
Tony Smith, University of Waikato, New

Zealand
George Tecuci, George Mason University, USA
Richard Weber, Management Intelligent Tech

nologies, GmbH, Germany
Sholom Weiss, Rutgers University, USA
Bradley Whitehall, United Technologies Re

search Center, USA
Gerhard Widmer, Austrian Research Institute

for Artificial Intelligence, Austria
Janusz Wnek, George Mason University, USA
H.-J. Zimmermann, RWTH Aachen, Germany

Information for Authors

General

The journal of Intelligent Data Analysis invites
submission of research and application papers
within the aims and scope of the journal. In
particular, we prefer papers that discuss devel-
opment of new Al architec- tures, methodologies,
and techniques and their applications to the field
of data analysis.

Manuscript

The manuscript should be in the following format.
The first page of the paper should contain the ti-
tle (preferably less than 10 words), the name(s),
address(es), affiliation(s) and e-mail(s) of the au-
thor(s). The first page should also contain an ab-
stract of 200-300 vrords, followed by 3-5 keywords.

Submission

To speed up the production process, authors
should submit the text of original papers in
PostScript (compressed file), to the Editor-in-
Chief (address below). Any graphical or tabular
files should be sent in separate files in Encapsu-
lated PostScript or GIF format. The correspond-
ing author will receive an acknowledgement, by
e-mail.

The standard format (Times Roman) is pre-
ferred. The Manuscript should not exceed 35-
40 pages of text (or the compressed/uuencoded
PostScript file should not be more than 1.0 Meg).

References

Ali references in the paper should be listed in
alphabetical order under the first author's name
and numbered consecutively by arabic numbers.
The structure of the references should be in the
following format:

(a) Example of journal papers: R.A. Brooks,
Intelligence without Representation, Artificial In
telligence, 47 (1) (1991), 139-159.

(b) Example of monographs: A. Basilevsky,
Applied Matrix Algebra in the Statistical Sci
ences, North- Holland, Amsterdam, (1983).

(c) Example of edited volume papers: J. Pan
and J. Tenenbaum, An Intelligent Agent Frame-
work for Enterprise Integration, in: A. Farnih,
D. Nau and S. Kim, eds., Artificial Intelligence
Applications in Manufacturing, MIT Press, Cam-
bridge, MA, (1992), 349-383.

(d) Example of conference proceedings papers:
R. Sutton, Planning by Incremental Dynamic
Programming, in: Proceedings of the 8th Inter
national Machine Learning Workshop, Evanston,
IL, USA, Morgan Kaufmann, (1991), 353-357.

(e) Example of unpublished papers: C. H.
Watkins, Learning from Delayed Rewards, Ph.D.
Thesis, Cambridge Uni- versity, Cambridge, Eng-
land, (1989).

The Rev iew Process

Each paper will be reviewed by at least two re-
viewers. The authors will receive the results of
the review process through e-mail. The authors
of conditionally accepted papers are expected to
revise their papers within 2-3 months.

Informatica 21 (1997) 153

Proofreading

Authors will be responsible for proofreading. Fi-
nal cppies of papers will be made available to the
author and should be verified by the author within
three working days. No new material may be in-
serted in the text at the tirne of proofreading.

Final Manuscript

When paper accepted, the publisher requires an
electronic copy of the paper in one of the following
formats, along with the originals of figures and
tables.

Papers can be submitted in any one of the fol-
lowing formats:

— FrameMaker,

— WordPerfect,

— MicroSoft Word or

— Postscript.

Graphical files must be submitted separately, in
either PostScript or GIF formats. A paper copy
original is also required for any graphical material.

Journal of Intelligent Data Analysis will be a
fully electronic, refereed quarterly journal. It will
contain a number of innovative features not avail
able in comparable print publications. These fea
tures include:

— An alerting service notifying subscribers of
new papers in the journal,

— Links to large data collections, including the
U.C. Irvine Machine Learning Repository
Database,

— Links to secondary collection of data related
to material presented in the journal,

— The ability to test new search mechanisms on
the collection of journal articles,

— Links to related bibliographic material.

If you are interested in submitting a paper to
the Intelligent Data Analysis journal, please con-
tact:

A. Farnih, Ph.D. Phone: (613) 993-8554
Editor-in-Chief, Intelligent Data Analysis Fax
: (613) 952-7151 Senior Research Scientist

email: famili@ai.iit.nrc.ca Institute for Informa
tion Technology http://ai.iit.nrc.ca/ fazel Na
tional Research Council of Canada, Bldg. M-50,
Montreal Rd. Ottawa, Ont, K1A 0R6 Canada

If you are interested in receiving further an-
nouncements or subscription information about
the upcoming journal, Intelligent Data Analysis,
please send e-mail to:

Heather D. Joseph
h.dalterio@elsevier.com /

Correction and Comment
A l in Eastern and Central Europe

(Informatica Vol. 20, 223-229)

Among the mentioned Al systems developed in
Slovenia, the svstem for constructing equations
from data is called GoldHorn (not Golding as
given in the paper).

As stated in the paper, only major research or-
ganisations in Al were included in the review, so
in no čase the review was meant to be exhaus-
tive. It may be useful to add that in Slovenia, in
addition to J. Štefan Institute and University of
Ljubljana, Al-related work and applications are
also carried out at the Institute of Chemistry in
Ljubljana and at the University of Maribor.

Ivan Bratko and Matjaž Gams

mailto:famili@ai.iit.nrc.ca
http://ai.iit.nrc.ca/
mailto:h.dalterio@elsevier.com

154 Informatica 21 (1997)

ERK'97
Electrotechnical and Computer Science Conference

Elektrotehniška in računalniška konferenca
September 25-27, 1997

Conference Chairman
Baldomir Zaje
University of Ljubljana
Faculty of Electrical Engineering
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 349, Fax: (061) 1264 630
E-mail: baldomir.zajc@fe.uni-lj.si

Conference Vice-chairman
Jurij Tasič
Universitv of Ljubljana
Facultv of Electrical Engineering
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 440, Fax: (061) 1264 630
E-mail: jure.tasic@fe.uni-lj.si

Program Committee Chairman
Saša Divjak
Universitv of Ljubljana
Facultv of Comput. and Inform. Science
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 260, Fax: (061) 1264 647
E-mail: sasa.divjak@fri.uni-lj.si

Programe Committee
Tadej Bajd
Gerry Cain
Saša Divjak
Janko Drnovšek
Matjaž Gams
Ferdo Gubina
Marko Jagodic
Jadran Lenarčič
Drago Matko
Miro Milanovič
Andrej Novak
Nikola Pavešič
Franjo Pernuš
Borut Zupančič

Publications Chairman
Franc Solina
Universitv of Ljubljana
Facultv of Comput. and Inform. Science
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 389, Fax: (061) 1264 647
E-mail: franc@fri.uni-lj.si

Advisorg Board
Rudi Bric, Dali Djonlagič,
Karel Jezernik, Peter Jereb,
Marjan Plaper, Jernej Virant,
Lojze Vodovnik

C ali for Paper s
for the sixth Electrotechnical and Computer Science Confer
ence ERK'97, which will be held on 25-27 September 1997 in Por
torož, Slovenia.

The following areas will be represented at the conference:

- electronics,
- telecommunications,
- automatic control,
- simulation and modeling,
- robotics,
- computer and information science,
- artificial intelligence,
- pattern recognition,
- biomedical engineering,
- power engineering,
- measurements,

The conference is organized by the IEEE Slovenia Section together
with the Slovenian Electrotechnical Societv and other Slovenian pro-
fessional societies:

- Slovenian Societv for Automatic Control,
- Slovenian Measurement Societv (ISEMEC '97),
- SLOKO-CIGRE,
- Slovenian Societv for Medical and Biological Engineering,
- Slovenian Societv for Robotics,
- Slovenian Artificial Intelligence Societv,
- Slovenian Pattern Recognition Societv,
- Slovenian Societv for Simulation and Modeling.

Authors who wish to present a paper at the conference should send
two copies of their final camera-ready paper to as. Dr. Andrej
Zemva to Faculty of Electrical Engineering, Tržaška 25, 1001 Ljubl
jana. The paper should be max. four pages long. More information
on h t tp : / /www. ieee . s i / e rk97 /

Time schedule: Camera-ready paper due: July 22, 1997
Notification of acceptance: End of August, 1997

mailto:baldomir.zajc@fe.uni-lj.si
mailto:jure.tasic@fe.uni-lj.si
mailto:sasa.divjak@fri.uni-lj.si
mailto:franc@fri.uni-lj.si
http://www.ieee.si/erk97/

Informatica 21 (1997) 155

THE MINISTRY OF SCIENCE AND TECHNOLOGY
OF THE REPUBLIC OF SLOVENIA

Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61
1311 107, Fax: +386 61 1324 140.
WWW:http://www.mzt.si
Minister: Lojze Marinček, Ph.D.

The Ministrv also includes:
The Standards and Metrologv Institute of the
Republic of Slovenia
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 314 882.

Slovenian Intellectual Propertv Office
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 318 983.

Office of the Slovenian National Commission
for UNESCO
Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61
1311 107, Fax: +386 61 302 951.

Scientiflc, Research and D e v e l o p m e n t
Potent ia l :

The Ministrv of Science and Technologv is responsible
for the R&D policv in Slovenia, and for controlling
the government R&D budget in compliance with the
National Research Program and Law on Research
Activities in Slovenia. The Ministrv finances or
co-finance research projects through public bidding,
while it directlv finance some fixed cost of the national
research institutes.

According to the statistics, based on OECD (Fras-
cati) standards, national expenditures on R&D raised
from 1,6 % of GDP in 1994 to 1,71 % in 1995. Table 2
shows an income of R&D organisation in million USD.

Total investments in RfeD (% of GDP) 1,71
Number of R&D Organisations 297
Total number of emplovees in R&D 12.416
Number of researchers 6.094
Number of Ph.D. 2.155
Number of M.Sc. 1.527

Table 1: Some R&D indicators for 1995

Bus. Ent.
Gov. Inst.
Priv. np Org.
High. Edu.
TOTAL

1993
51

482
10

1022
1565

Ph.D.
1994

93
574

14
1307
1988

1995
102
568

24
1461
2155

1993
196
395

12
426

1029

M.Sc.
1994

327
471

25
772

1595

1995
330
463

23
711

1527

Table 2: Number of emplovees with Ph.D. and M.Sc.

— stimulation and support to collaboration between
research organisations and business, public, and
other sectors;

— stimulating and supporting of scientific and re
search disciplines that are relevant to Slovenian
national authenticitv;

— co-financing and tax exemption to enterprises en-
gaged in technical development and other applied
research projects;

— support to human resources development with
emphasis on young researchers; involvement in
international research and development projects;

— transfer of knowledge, technologv and research
achievements into ali spheres of Slovenian societv.

Table source: Slovene Statistical Office.

Objec t ives of R & D pol icy in Slovenia:

— maintaining the high level and quality of scientific
technological research activities;

Business Enterprises
Government Institutes
Private non-profit Organisations
Higher Education
TOTAL

Basic Research
1994

6,6
22,4
0,3

17,4
46,9

1995
9,7

18,6
0,7

24,4
53,4

Applied Research
1994
48,8
13,7
0,9

13,7
77,1

1995
62,4
14,3
0,8

17,4
94,9

Exp. :
1994
45,8

9.9
0,2
8,0

63.9

Devel.
1995
49,6

6,7
0,2
5,7

62,2

Total
1994 1995

101,3 121,7
46,1 39,6

1,4 1,7
39,1 47,5

187,9 210,5
Table 3: Incomes of R&D organisations by sectors in 1995 (in million USD)

http://www.mzt.si

156 Informatica 21 (1997)

JOŽEF ŠTEFAN INSTITUTE

Jožef Štefan (1835-1893) was one of the most
prominent physicists of the 19th centurg. Bom to
Slovene parents, he obtained his Ph.D. at Vienna Uni-
versitg, ivhere he was later Director of the Physics In
stitute, Vice-President of the Vienna Academy of Sci
ences and a member of several scientific institutions
in Europe. Štefan explored many areas in hydrody-
namics, optics, acoustics, electricity, magnetism and
the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the Jfih power of its absolute
temperature, knouin as the Stefan-Boltzmann law.

The Jožef Štefan Institute (JSI) is the leading inde-
pendent scientific research institution in Slovenia, cov-
ering a broad spectrum of fundamental and applied
research in the fields of physics, chemistry and bio-
chemistry, electronics and information science, nuclear
science technology, energy research and environmental
science.

The Jožef Štefan Institute (JSI) is a research organ-
isation for pure and applied research in the natural
sciences and technology. Both are closely intercon-
nected in research departments composed of different
task teams. Emphasis in basic research is given to the
development and education of young scientists, while
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the devel
opment of the national economy and society in general.

At present the Institute, with a total of about 700
staff, has 500 researchers, about 250 of whom are post-
graduates, over 200 of whom have doctorates (Ph.D.),
and around 150 of whom have permanent professor-
ships or temporary teaching assignments at the Uni-
versities.

In view of its activities and status, the JSI plays the
role of a national institute, complementing the role of
the universities and bridging the gap between basic
science and applications.

Research at the JSI includes the following ma
jor fields: physics; chemistry; electronics, informat-
ics and computer sciences; biochemistry; ecology; re-
actor technology; applied mathematics. Most of the
activities are more or less closely connected to infor
mation sciences, in particular computer sciences, ar-
tificial intelligence, language and speech technologies,
computer-aided design, computer architectures, biocy-
bernetics and robotics, computer automation and con-
trol, professional electronics, digital Communications

and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of
the independent state of Slovenia (or S^nia). The
capital today is considered a crossroad between East,
West and Mediterranean Europe, offering excellent
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče,
Bern and Munich, ali within a radius of 600 km.

In the last year on the site of the Jožef Štefan Insti
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technological
development to foster synergies between research and
industry, to promote joint ventures between university
bodies, research institutes and innovative industry, to
act as an incubator for high-tech initiatives and to ac-
celerate the development cycle of innovative products.

At the present tirne, part of the Institute is be-
ing reorganized into several high-tech units supported
by and connected within the Technology park at the
Jožef Štefan Institute, established as the beginning of
a regional Technology park "Ljubljana". The project
is being developed at a particularly historical mo
ment, characterized by the process of state reorganisa-
tion, privatisation and private initiative. The national
Technology Park will take the form of a shareholding
company and will host an independent venture-capital
institution.

The promoters and operational entities of the
project are the Republic of Slovenia, Ministry of Sci
ence and Technology and the Jožef Štefan Institute.
The framevvork of the operation also includes the Uni-
versity of Ljubljana, the National Institute of Chem-
istry, the Institute for Electronics and Vacuum Tech-
nology and the Institute for Materials and Construc-
tion Research among others. In addition, the project
is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy
and the City of Ljubljana.

Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:+386 61 1773 900, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se.
Public relations: Natalija Polenec

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 17

INFORMATICA
AN INTERNATIONAL JOURNAL OF C O M P U T I N G AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with
good copies of the figures and photographs to one of
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the au-
thor's country will examine it, and they are invited
to make as many remarks as possible directly on the
manuscript, from typing errors to global philosophical
disagreements. The chosen editor will send the au-
thor copies with remarks. If the paper is accepted,
the editor will also send copies to the Contact Per
son. The Executive Board will inform the author that
the paper has been accepted, in which čase it will be
published within one year of receipt of e-mails with
the text in Informatica $ T E K format and figures in
. eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be
obtained by e-mail from the Contact Person or from
FTP or WWW (see the last page of Informatica).

Opinions, news, calls for conferences, calls for papers,
etc. should be sent directly to the Contact Person.

QUESTIONNAIRE

j | Send Informatica free of charge

j | Yes, we subscribe

Please, complete the order form and send it to
Dr. Rudi Murn, Informatica, Institut Jožef Štefan,
Jamova 39, 61111 Ljubljana, Slovenia.

Since 1977, Informatica has been a major Slovenian
scientific journal of computing and informatics, includ-
ing telecommunications, automation and other related
areas. In its 16th year (more than five years ago) it
became truly international, although it stili remains
connected to Central Europe. The basic aim of Infor
matica is to impose intellectual values (science, engi-
neering) in a distributed organisation.

Informatica is a journal primarily covering the Euro-
pean computer science and informatics community -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Commu
nications between different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref
erees outside the author's country. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi
na l i , major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor
can conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from the
author's country. If new referees are appointed, their
names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, edu
cational and governmental institutions. Others should
subscribe (see the last page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):
Title and Profession (optional):

E-mail Address (optional):
Home Address and Telephone (optional):

Signature and Date:

Referees:

Witold Abramowicz, David Abramson, Kenneth Aizawa, Alan Aliu, John Anderson, Catriel
Beeri, Fevzi Belli, Istvan Berkelev, Azer Bestavros, Balaji Bharadwaj, Jacek Blazevvicz, Laszlo
Boeszoermenvi, Ivan Bratko, Jerzy Brzezinski, Marian Bubak, Leslie Burkholder, Frada
Burstein, Wojciech Buszkowski, Ryszard Choras, Jason Ceddia, Wojciech Chybowski, Andrzej
Ciepielewski, Vic Ciesielski, David Cliff, Travis Craig, Tadeusz Czachorski, Milan Češka, Pavol
Duriš, Sait Dogru, Georg Dorfner, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel,
Hesham El-Rewini, Pierre Flener, Terrence Forgarty, Hugo de Garis, Eugeniusz Gatnar,
James Geller, Michael Georgiopolus, Janusz Gorski, Georg Gottlob, David Green, Herbert
Groiss, Inman Harvev, Elke Hochmueller, Rod Hovvell, Tomaš Hruška, Ryszard Jakubowski,
Piotr Jedrzejowicz, Eric Johnson, Li-Shan Kang, Roland Kaschek, Jan Kniat, Stavros
Kokkotos, Kevin Korb, Gilad Koren, Henrvk Krawczyk, Ben Kroese, Zbvszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Phil Laplante, Bud Lawson, Ulrike
Leopold-Wildburger, Joseph Y-T. Leung, Raymond Lister, Doug Locke, Matija Lokar, Jason
Lowder, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz,
Roland Mittermeir, Madhav Moganti, Tadeusz Morzy, Daniel Mosse, John Mueller, Hari
Narayanan, Jaroslav Nieplocha, Jerzy Nogieč, Stefano Nolfi, Tadeusz Pankowski, Warren
Persons, Stephen Pike, Niki Pissinou, Gustav Pomberger, James Pomykalski, Gary Preckshot,
Cveta Razdevšek Pucko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Luc de Raedt,
Ewaryst Rafajlowicz, Wolf Rauch, Peter Rechenberg, Felix Redmill, David Robertson, Marko
Robnik, Ingrid Russel, A.S.M. Sajeev, Bo Sanden, Iztok Savnik, Wolfgang Schreiner, Guenter
Schmidt, Heinz Schmidt, William Spears, Hartmut Stadtler, Przemyslaw Stpiczyriski, Andrej
Stritar, Maciej Stroinski, Tomasz Szmuc, Jifi Šlechta, Zahir Tari, Jurij Tasič, Piotr Teczynski,
Ken Tindell, A Min Tjoa, Wieslaw Traczyk, Marek Tudruj, Andrzej Urbanski, Kanonkluk
Vanapipat, Alexander P. Vazhenin, Zyunt Vetulani, Olivier de Vel, John Weckert, Gerhard
Widmer, Štefan Wrobel, Janusz Zalewski, Yanchun Zhang

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarilv covering the Eu-
ropean computer science and informatics communitv;
scientific and educational as \vell as technical, comrher-
cial and industrial. Its basic aim is to enhance Commu
nications between different European structures on the
basis of equal rights and international refereeing. It
publishes scientific papers accepted by at least two ref-
erees outside the author's country. In addition, it con-
tains information about conferences, opinions, critical
examinations of existing publications and news. Fi-
nally, major practical achievements and innovations in
the computer and information industry are presented
through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each edi
tor from the Editorial Board can conduct the referee
ing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Ref
erees should not be from the author's country. If new
referees are appointed, their names will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees. Each editor can
propose new members for the Editorial Board or Board
of Referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the
Editorial Board and Board of Referees are confirmed
by the Executive Editors.

The coordination necessary is made through the Ex-
ecutive Editors who examine the reviews, sort the ac
cepted articles and maintain appropriate international
distribution. The Executive Board is appointed by
the Society Informatika. Informatica is partially sup-
ported by the Slovenian Ministry of Science and Tech-
nology.

Each author is guaranteed to receive the reviews of
his article. When accepted, publication in Informatica
is guaranteed in less than one year after the Executive
Editors receive the corrected version of the article.
Executive Editor - Editor in Chief
Anton P. Zeleznikar
Volaričeva 8, Ljubljana, Slovenia
E-mail: an ton .p . ze lezn ika r@i j s . s i

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1773 900, Fax: +386 61 219 385
E-mail: matjaz.gams@ijs.si
WWW: h t t p : //www2. i j s . si/~mezi/mat j a z . html

Executive Associate Editor (Technical Editor)
Rudi Murn, Jožef Štefan Institute
Publishing Council: Tomaž Banovec,
Ciril Baškovič, Andrej Jerman-Blažič,
Jožko Čuk, Jernej Virant

Board of Advisors:
Ivan Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagič (Bosnia and Herzegovina)
Shuo Bai (China)
Vladimir Bajič (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Hubert L. Drevfus (USA)
Jožo Dujmovič (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (Austria)
Ante Lauc (Croatia)
Jean-Pierre Laurent (France)
Jadran Lenarčič (Slovenia)
Svetozar D. Margenov (Bulgaria)
Magoroh Maruyama (Japan)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Luc De Raedt (Belgium)
Dejan Rakovič (Yugoslavia)
Jean Ramaekers (Belgium)
Paranandi Rao (India)
Wilhelm Rossak (USA)
Claude Sammut (Australia)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jih' Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
CIaes Wohlin (Sweden)
Štefan "VVrobel (Germany)
Xindong Wu (Australia)

file:///vell
mailto:anton.p.zeleznikar@ijs.si
mailto:matjaz.gams@ijs.si

Volume 21 Number 1 March 1997 ISSN 0350-5596

ntormatica
An International Journal of Computing and Informatics

Contents:
Informational Supervenience A.P. Železnikar

A Situational Informatical Dynamics: The Čase
of Situation-contextual and Time-contextual
Non-additive Influences

The Definition of an Integrated Software
Life-Cycle Tool

Qualitative Reasoning and a Circular Information
Processing Algebra

Hierarchical Classification as an Aid to Browsing .

Towards Recursive Models—A Computational
Formalism for the Semantics of Temporal
Presuppositions and Counterfactuals in Natural
Language

M. Maruyama

R. Leonard

F. Jovič

19

31

J.R. Rose
CM. Eastman

S. Mizzaro

49

59

Informational Graphs

A Study in Generating Readable Modula-2 from
Prolog

Design of Approximate Identity Neural Networks
by using of Picewise-Linear Circuits

An Integrated Testing Framework for
Object-Oriented Programs

A.P. Železnikar

D. Resler
D. Crookes

J-. Kaderka

S.-S. Liao
K.H. Chang
C.-Y. Chen

79

115

129

135

Reports and Announcements 147

