
Volume 22 Number 2 May 1998 ISSN 0350-5596 

'Inform atica\ 
An International Journal of Computing| 
and Informatics 

ipecial Issue: 
^arallel and Distributed Database Systems 

The Slovene Society Informatika, Ljubljana, Slovenia 



Informatica 
An International Journal of Computing and Informatics 

Basic info about Informatica and back issues may be FTP'ed from f t p . a r n e s . s i in 
magazines/informatica ID: anonynious PASSWORD: <.your mail address> 
FTP archive may_ be aiso accessed with WWW (worldwide web) clients with . 
URL: h t tp : / /www2. i j s , s i /~ inez i / in forn ia t ica .h tml ' *• 

Subscr ip t ion Informat ion Informatica (ISSN 0350-5596) is published four times a year1n Spring, 
Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 
12, 1000 Ljubljana, Slovenia. 
The subscription rate for 1998 (Volume 22) is . • 
- DEM 50 (US$ 35) for institutions, 
- DEM 25 (US$ 17) for individuals, and 
- DEM 10 (US$ 7) for students 
plus the mail charge DEM 10 (USS 7). • * 
Claims for missing issues will be honored free of charge within six months after the publication date 
of the issue. 

ETJjK Tech. Support: Borut Žuidar, Kranj, Slovenia. 
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia. 
Printcd by Biro M, d.o.o., Žibcrtova 1, 1000 Ljubljana, Slovenia. 

! i 
i S 

Ordcrs for subscription may be placed by telephone or fax using •any major credit card. Pleasc call 
Mr. R. Murn, .ložef Štefan-Institute: Tel (+386) 61 1773 900, Fax (+386) 61 219 385, or usc the bank 
account numbcr 900-27620-5159/4 Ljubljanska banka d.d. Slovenia (LB 50101-678-51841 for 
domestic subscribers only). . ; ' 

J a According to the opinion of the Ministry for Informing (numbcr 23/216-92 of March 27, 1992), the 
scientific journal Informatica is a product of informative matter (point 13 of the tariff nunibcr 3), for 
whicli the tax of traffic amounts to 5%. 

Informatica is published in cooperation with the following socicties (and contact persons): 
Robotics Socictyof Slovenia (Jadran Lenarčič) 
Slovene Socicty for Pattern Recognition (Franjo Pernuš) 
Slovenian Artificial Intelligcnce Society; Cognitivc Science Socicty (Matjaž Gams) 
Slovenian Socicty of Matliematicians, Physicists and Astronomcrs (Bojan Mohar) 
Automatic Control Society of Slovenia (Borut ZuiianCič) 
Slovenian Association of Tcchnical and Natural Sciences (Janez Peklenik) 

Informatica is surveyed by: Al and Robotic Abstracts, Al References, ACM Computing Surveys, 
Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature 
Index, Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Engineering Index, 
INSPEC, Mathematical Rcviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt fiir . ' 
Mathematik, Linguistics and Language Behaviour Abstracts, Cybernetica Newsletter 

The issuing of the Informatica journal is financiany supported by the Ministry for Science atid Tech-
nology, Slovenska 50, 1000 Ljubljana, Slovenia. 

Post tax payed at post 1102 Ljubljana. Slovenia taxe Percue. 

ftp://ftp.arnes.si
http://www2.ijs,si/~inezi/inforniatica.html'


Informatica 22 (1998) 127-139 127 

Performance Modeling of Parallel Database Systems 

Silvio Salza and Massimiliano Renzetti 
Dipartimento di Informatica e Sistemistica 
Universita di Roma "La Sapienza", Roma, Italy 
E-mail: sa lza@dis .uniromal . i t 

Keywords: parallel architectures, performance evaluation, workload modelling 

Edited by: Tadeusz Morzy 
Received: October 30, 1996 Revised: March 7, 1997 Accepted: April 25, 1997 

The paper investigates the main issues in performance analysis and tunmg of parallel database 
applications. More specifically \ve present a modelling methodology that was developed for an 
important class of parallel relational systems, and is devised for a strict integration with the design 
procedure. Our approach is meant to provide the designer \vith a valuable feedback since the early 
stages of a project, i.e. before the system is even implemented. Developing the model has required 
to deal with several interesting problems, and has led to some original contributions especially for 
the bufferpool model and the evaluation of transaction response times. 

1 Introduction 
Performance on demanding applications has been one 
of the main targets in designing parallel database sys-
tems. After about two decades of evolution, the last 
generation of scalable parallel DBMS, mostly based on 
standard hardware and operating systems, can deliver 
enough processing power to become a competitive al
ternative to traditional mainframe based database ar
chitectures and to distributed systems, especially for 
specific applications, like massive transaction process
ing and data warehousing. 

As a matter of fact, despite the evident centrality 
of the performance problem, in the early university-
based database machines projects not enough energy 
was devoted to this topic. This led to a first (and 
unsuccessful) generation of parallel database systems, 
where the main concern had been improving the paral
lel execution of relational operators, and the most com-
mon result was getting stuck with the I/O bottleneck. 
Later the problem was better understood (Cesarini 
and Salza 1987), and the first successful commercial 
systems have been based on MIMD architectures with 
non-shared disks and data replication to attain a high 
degree of I/O parallelism (Stonebraker 1986). As a 
further evolution of this trend, the last generation of 
parallel DBMS is mostly based, as we will discuss later, 
on shared-nothing architectures, with largely indepen-
dent processing units and private memory and disks. 

Dealing with these innovative architectures has con-
siderably changed the process of developing database 
applications. Designers and DB administrators have in 
fact to face a series of new problems, mostly connected 
with the more sophisticated physical data organization 
(e.g. relation declustering), and, in general, with the 

more complex execution model. In addition to this the 
traditional well known problems of relational systems 
remain as well, i.e. substantial difRculty in following 
Codcrs original (and partially vvishful) idea to make 
the logical design of a relational application largely 
independent from the details of the physical organiza
tion. 

The crucial problem, both in parallel and in sequen-
tial database systems, is that query execution plans, 
that directly affect the execution cost and the perfor
mance, are generated by the optimizer, and therefore 
are completely out of the designer's control. Therefore 
one has to get anyway involved with the physical level, 
both to detect vvhere the performance problem is, and 
to set up a solution. Performance tuning may then 
become an extremely painful process, especially if one 
has to wait for the final stages of the implementation 
before being able to trace the problem. 

Besides this there is indeed a main difference in de
signing parallel and sequential database applications. 
In the sequential čase the designer should also cpn-
sider the performance aspects, and he actually does 
it (very pften a posteriori) only if he runs into perfor
mance problems. For parallel DBMS systems, instead, 
performance is the problem, since it is the most likely 
reason why a parallel system was selected, and then 
performance analysis has to be an essential ingredient 
of the design and configuration process. 

In this paper we discuss the main issues of 
performance-oriented parallel database application de
sign. More specifically we present a modeling method-
ology that we have developed for an important class 
of parallel relational database systems, and covers 
ali the phases of the design process: preliminary de
sign, configuration, tuning and capacity planning. The 
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methodology is based on the results of previous work 
we have done on this subject for traditional sequential 
DBMS (Salza and Terranova 1989, Salza and Tomasso 
1992), and is devised for a strict integration into the 
design procedure. This is meant to provide both an 
early feedback on the performance of the application, 
and a detailed account of the workload and the execu-
tion cost, that help focus the problem and give hints 
for the design improvement. 

The approach we propose is quite general, but, of 
course, in developing the methodology we have re-
ferred to a specific parallel RDBMS, namely DB2 Par
allel Edition (Baru et al. 1995) an IBM product that 
runs on IBM SP2 parallel architecture , a system with 
a typical MIMD architecture, i.e. is composed by the 
interconnection, via a fast interconnection network, of 
several largely independent systems, each with its o\vn 
private memory and disks managed by local Unix op-
erating systems (Agerwala et alii 1995). 

Connected to the methodology we have also de-
signed and implemented in a prototype version a mod-
elling tool, that was specifically developed for DB2-
PE, and that was also used to produce the results that 
are reported in this paper. The tool, as we sliall discuss 
in more detail in the next sections, accepts as an input 
a detailed description of the database, of the trans-
action workload and the configuration of the parallel 
system, and generates a set of estimates of important 
performance measures, such as execution costs and re-
sponse times. 

The paper is organized as follows. In the next 
section we discuss the main architectures that have 
been proposed in the literature for parallel database 
systems, and in Section 3 in more detail the shared-
nothing model. Then in Section 4 we introduce the 
workload model, i.e. the set of parameters that we use 
to give a quantitative characterization of the database 
{static tvorkload) and of the set of transactions to be 
processed {dijnamic tvorkload). The system configura
tion parameters are discussed in Section 5. Sections 6 
and 7 deal with the evaluation of the transaction ex-
ecution cost. In particular in Section 7 we present 
an approximated mathematical model that allows to 
take into account the influence of database buffering 
on the I/O load. In Section 8 we discuss how the trans
action cost estimates can be used to perform bottle-
neck analysis, and to guide load balancing strategies. 
Next, in Section 9, we present a probabilistic model for 
the computation of transaction response time. Finally 
conclusions are given in Section 10. 

2 Parallel DB architectures 
The focus in a parallel database architecture is the in
terconnection between processing units, main memory 
banks and mass storage units. In a well known paper 
Stonebraker has proposed a taxonomy for the intercon

nection topology that has been since then universally 
adopted (Stonebraker 1986). 

— Sharcd-evenjthing: in this topology (which is also 
known as shared-memorij) ali processors share 
both the disks and the main memory, therefore 
tliere are no communication costs and no con-
straints connected to the data allocation scheme. 
The main advantages are flexibility in implement-
ing load balancing strategies and in general in de-
signing the structure of the parallel DBMS. On 
the other hand there is a limited scalability, since 
the memory may easily become a bottleneck, and 
may seriously affect system performance. 

— Shared-nothing: in this topology each processor 
accesses its own private memory and disks, and 
communicates with other processors only through 
a fast interconnection structure. In this čase, 
compared to shared-memory, advantages and dis-
advantages are reversed. There is little or no 
resource contention, and therefore there are no 
memory or disk bottlenecks. This actually guar-
antees an almost complete scalability of the ar
chitecture. But the lack of sharing makes the 
design of the DBMS and of the applications far 
more complex, and the performance strongly de-
pends on the partitioning of data among the stor
age vmits. 

— Shared-disks: this represents a somehow interme-
diate solution. Each processor has its own pri
vate memory but ali disks are shared. It is easier 
to implement tlian the shared-nothing architec
ture since a fast interconnection structure is not 
needed, and has a better flexibility in load balanc
ing. On the other hand the concurrent access to 
shared mass memory structures requires sophis-
ticated concurrency control protocols, similar to 
the ones used in distributed DBMS. Moreover the 
performance of these systems may suffer from a 
disk I/O bottleneck. 

Besides the main models above, several other hijbrid 
topologies have been proposed in the literature in the 
last decade, for instance the shared-somcthing archi
tecture where a shared-disk system is formed by the 
interconnection of several shared-memory subsystems 
(Valduriez 1993). 

As one may easily understand, any methodology for 
the design and tuning of parallel database applications 
is strongly dependent on the reference architecture. 
As a matter of fact most commercial parallel DBMS 
have a shared-nothing architecture (Carino 1992, Baru 
et al. 1995), and only a few adopt the shared-disk 
model (e.g. Oracle); practically only research proto-
types have till now used the shared-memory topology 
(Bitton 1983, Katz et al. 1988, Graefe 1990). There-
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fore in this paper we will concentrate on the perfor-
mance modeUing of shared-nothing systems. 

3 The shared-nothing model 

In a shared-nothing architecture data are partitioned 
among the processors and stored on local disks, and 
queries are executed according to a function shipping 
philosophy, i.e. to perform database operations wliere 
the data reside. 

More precisely each relation is declustercd (i.e. hor-
izontally partitioned) on a subset of processors called 
node-group. Declustering means distributing the tu-
ples of the relation on the nodes by hashing it on a 
given attribute, which is called the partition keij. 

Relational operations on base relations are executed 
in parallel by ali the nodes of a node-group, typically 
the one on which one (and possibly both) operands 
are declustered. Operations performed on interme-
diate results get their data from other operators by 
communicating in severa! different ways: 

— temporarij file: the intermediate result produced 
by a previoiis operator is materialized, declustered 
and stored on local disk; 

— pipdine: two or more operators can be pipelined; 
the intermediate results are not written to disk, 
and the destination operator may start as soon as 
the first block of data is available; 

— table-queue: two operators communicate through 
a FIFO file, managed at the block level. 

In the first two cases the source and the destination 
operators must be on the same node-group, but opera
tors executed by different node-groups have ahvays to 
communicate through table-queues. 

There are several options for the execution of each 
relational operator, mostly depending on data place-
ment. For instance a join can be performed in four 
different ways: 

— collocated join: when the two relations are declus
tered on the same node-group and the partition 
key is the join attribute; no data exchange is 
needed and ali the nodes in the node-group may 
work in parallel. 

— directed join: if only one relation is partitioned 
on the join attribute, then the other relation is 
hashed on the join attribute and distributed be-
tween the nodes of the node-group; 

— broadcast join: if neither relation is partitioned 
on the join attribute either the inner or the outer 
table is broadcasted and joined in parallel in each 
node with the other; 

— repartition join: both relations are partitioned at 
execution tirne and then a collocated join is per
formed. 

It is clear from the above, that the query optimiza-
tion problem in such an environment becomes con-
siderably harder than in a sequential RDBMS. Much 
effort has been indeed devoted in the literature to 
this topic (Chen 1993, Graefe 1993, Lanzelotte et al. 
1993, Lu and Tan 1993), though actually only specific 
aspects have been thoroughly analyzed (e.g. Borla-
Salamet et al. 1993, Hong and Stonebraker 1993). 

The main point is that in the parallel model the so-
lution space and the execution cost strongly depend 
on the data placement. Therefore one has to actually 
face two distinct, but intimately connected, problems: 
query and data placement optimization. The applica-
tion designer is in fact confronted with the problem of 
selecting the best data allocation for a given workload 
of predefined queries. 

The purpose of our modeling methodology is indeed 
to provide the designer with an easy way to compare 
different design alternatives, and to have an analytical 
account of the execution cost that may guide him in 
the tuning and in the capacity planning activity. 

4 The workload model 

In our model we assume that ali transactions arriving 
to the parallel DBMS belong to a set of predefined 
transaction tijpes. To give a quantitative description 
of the application the user must therefore specify the 
two main components of the vvorkload: 

- the static morkload, composed of the logical schema 
of the database, of a set of parameters that sum-
marize the physical extension of the relations and 
the statistical characteristics of the attributes, the 
specification of the relation declustering, and of 
the definition of the access structures; 

- the dijnamic morkload, composed of the specifica
tion of a set of predefined transaction types and 
of their arrival rates; 

4.1 Static workload 

Formally we define a database as a set of relations: D ~ 
{TZi,i = 1 . . . A'̂ }. Each relation is a set of tuples TZi — 
{rij,j = 1. . .Cj}, vvhere Cj indicates the cardinalitij of 
the relation. 

Each tuple Vij is an ordered set of ki values, where 
ki is said the a-rity of the relation: 

rtj = {rij[M,... ,rij[ki]) (1) 

rij[h]eVi[h] h=l...ki;j = l...Ci (2) 

ni[h] = {rij[h],j = l...Ci} h = l...ki (3) 

The multisets 7?.i[/i], containing ali the values as-
sumed by a given field in the relation tuples, are called 
attributes, and the corresponding base sets Vi[h] are 
called value sets and contain only distinct values. 
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Figure 1: Sample static workload 

Transaction TI Rate = .20 

SELECT PARTS. Name,ITEMS. Clty, ITEHS .Priče 
SUPPLIERS.Name.PARTSUPPS.S.cost,A.qty 
FROH CUSTDMERS, ITEHS,ORDERS,PARTS 
WHERE CUSTOHERS.Cust« = ORDERS.Cust« AND 
SUPPLIERS.Supp« AND 

ITEMS.Ord« = ORDERS.Ord« AND 
PARTSUPPS.Part« AND 

ITEHS.PART« = PARTS.Part« AND 
CUSTOMERS.Name = 'Smith* AND 

SUPPLIERS.Name 
ITEHS.Priče > 1000000 [.2] 

ORDER BY PARTS.Name 

Transaction T3 Rate = .35 

SELECT SUPPLIERS.Name,CUSTOHERS.Name, 
KATIONS.Name 

FROH CUSTOHERS.NATIONS,SUPPLIERS 
WHERE CUSTDMERS.Nat#=SUPPLIERS.Nat« AND 
NATIONS.Nat«=SUPPLIERS.Nat« AND 

NATIDNS.Hat«=SUPPLIERS.Nat« 
NATIDNS.Hat#=REGIDNS.Nat# AND 

Name='Afr' 

Transaction T2 Rate = .15 

SELECT 

FROH PARTS, PARTSUPPS, SUPPLIERS 
VmERE PARTSUPPS.Supp« = 

PARTS.Part« = 

PARTS.Name = 'CPU' 
DRDER BY PARTSUPPS.S.cost, 

Transaction T4 Rate = .30 

SELECT SUPPLIERS.Name 
FRDM NATIONS,REGIONS,SUPPLIERS 
UBERE 

REGIONS.Name='Eur' OR 

Figure 2: Sample dynamic workload 
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Por our purposes, a quantitative description of the 
database can be given by specifying the cardinalities 
Ci,i = l . . . n of the relations, and tlie following pa-
rameters for each attribute TZi[h] in the database: 

- Oi[h] = card{Vi[h]), called the attribute originalitij, 
which represents the number of distinct values in 

7^^[/l]; 

- Xi[h], called the attribute extension, which repre
sents the number of bytes needed to store each 
element oiTZi[h]. 

- Tj [/i] 6 {char, number, date}, called the attribute 
ttjpe, which represents its data type. 

- Vilh], which represents the expected fraction of null 
values in 7li[h]. 

Moreover to represent the coupling between at-
tributes we must specify for every couple of union-
compatible attributes the overlapping factor : 

^ii = 
card{Vi[h]nVj[k]) 

card{Vi[h]) (4) 

which gives the percentage of values that are common 
to both attributes. 

This characterization is simple enough to allow rea-
sonably the designer to estimate the parameter values 
even during early phases of the design, and on the 
other hand it is sufRcient, as we shall discuss later, 
to compute the execution cost of any relational oper-
ation performed directly on the base relations. How-
ever, deahng with complex queries requires to get esti-
mates of the parameters for the intermediate relations 
as well. This can be performed using a methodology 
that we have proposed in previous papers (Cesarini 
and Salza 1987, Salza and Tomasso 1992). 

Figure 1 shows the description of the static vvorkload 
for a sample application, a typical custpmer-supplier-
part database, to which we will refer ali along the pa-
per. Relation schemata are shown together with car
dinalities and attribute originalities. 

4.2 Dynainic workload 

For the dynamic workload, as mentioned before, we 
assume that ali transactions arriving to the system 
belong to a fixed set of predefined transaction tijpes: 

Q = {Ti,1=1,... ,m.) (5) 

For each transaction type Ti ali the details except 
some of the constants are specified, and the following 
Information is supplied: 

- the relative arrival rate Aj, i.e. the fraction of the 
transaction load that belongs to transaction type 
Ti-, 

- a SQL definition of the transaction type, from 
which the execution plan can be deduced; 

- the expected selectivity of each atomic predicate, 
necessary to compute the size of the intermediate 
results, and then the execution cost; 

- the CPU and I/O overhead of the application part 
of the transaction; 

In addition to this one must also specify the work-
load intensitij, i.e. the overall rate A at which transac
tions arrive to the system. 

Again this Information can reasonably be derived by 
the designer, from the user specification of the appli
cation. Perhaps the most delicate part is estimating 
the selectivities, since these may have a considerable 
impact on the execution cost. 

The transaction set of the sample application is re-
ported in Figure 2. The user estimates of the selectiv
ities for the atomic predicates are printed in square 
brackets. No selectivities are specified for equality 
predicates, since, assuming a uniform distribution, 
they are directly computed by the model from the 
database parameters. 

5 Configuration parameters 

The static and dynamic vvorkload descriptions of the 
previous section, are the input data to the design: 
they come from the problem, and the designer can-
not change them. The designer may instead take de-
cisions about the physical design of the database and 
the configuration of the system, i.e. the number of 
nodes, the speed of the processing elements, the size 
of the database buffers, the number of disks and their 
size and access times. 

This Information is reported in the allocation map 
which specifies the way relations are declustered, in 
the index map that specifies which access structures 
are maintained by the DBMS, and in the node config
uration parameters which specify the configuration of 
the nodes. 

relation 
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PARTSUPP 
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n-group 
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.65 
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-

.38 
-

.40 
-

.70 

node 

nz 
nj 

-
« 7 

-
718 

-
713 

Figure 3: The allocation map 

An allocation map for the sample application of 
Figg. 4.1 and 2 is shown in Fig. 3. The figure refers 
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to a system of 8 nodes in which we define a set of 
node-groups: 

other shared-nothing architectures, and therefore this 
does not affect the generality of our approach. 

7o 

lA 

IB 

li 

[ni . . .ns} 

{713,^4} 

{715, ne, 717, ns} 

{ni} 

(6) 

The map specifies for each relation the partition key, 
the node-group on which the relation is partitioned, 
and the data skew. The latter is a measure of the non-
uniformity of the partitioning, and gives the fraction 
of the tuples that are allocated on the most 'crovvded' 
node, assuming (as it is usually done) that the distri-
bution on the remaining nodes is uniform (Lakshmi 
and Yu 1990). This is indeed a very important infor-
mation, since the data skew may considerably affect 
the performance by umbalancing the load. 

relation 

CUSTOMERS 

ITEMS 

SUPPLIERS 

ORDERS 

PARTSUPP 

PARTSUPP 

PARTS 

n-group 

lA 

70 

JA 

70 

7fl 
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7 B 
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Name 
Ord# 
Name 
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Part# 
Supp# 
Name 

type 

B+tree 
B+tree 
B+trec 
B+tree 
B+tree 
B+trec 
B+tree 

Figure 4: The index map 

An index map for the example is shown in Fig. 4. 
Referring to the dynamic workload of Fig. 2, indexes 
are provided to support most of the joins. In a shared-
nothing parallel DBMS indexes are usually local to 
processing nodes. So vvhen a relation is declustered on 
a given node-group, actually a separate index is built 
on each node of the node-group. 

A set of values for the configuration parameters of a 
sample node is shown in Fig. 5. The processing speed 
is expressed as the relative speed compared to a stan
dard CPU assumed as a reference in the model, more-
over a CPU overhead by the OS and other applications 
is specified as a fraction of the utilization. Other pa
rameters specify the size in blocks of the bufferpool 
and sortheap areas. The latter may considerably in-
fluence the cost of merge-sort operations. 

For each disk in addition to the usual parameters a 
number of segments is also specified. When a relation 
is declustered the tuples allocated on each node are dis-
tributed with a block level round-robin scheme among 
the segments of ali the disks in the node. This gives 
the designer a way to balance the load between local 
disks, by changing the relative number of segments. 

Though some details of the configuration parame
ters discussed above actually refer to some peculiarity 
of DB2-PE/SP2, similar arrangements are found in 

6 Virtual execution costs 
In our methodology, estimates of the execution costs 
can be directly computed from the specification of the 
static and dynamic workload, and from the configura
tion parameters. 

We consider two components of the execution cost: 
the storage cost, i.e. the secondary memory layout 
and the storage requirements of the database (tables 
and indices), and the transaction ezccution cost (CPU, 
I/O and transmission cost), that can be computed for 
every transaction type in the set Q. 

To provide an accurate specification of the I/O cost, 
in terms of disk access rates, we consider the tables 
and the indices as partitioned in homogeneous data 
segments. These are coUections of blocks belonging 
to the same table or index such that ali the blocks 
in the same segment have the same probability to be 
accessed during the execution of the application, for 
example the blocks at the same level of a B-tree index. 
The partition in segments has the purpose to allow, 
in a later phase of modeling, the computation of the 
actual I/O cost, taking into account the uneven effect 
of DBMS buffering on segments with different access 
rates. 

As a first step we characterize the transaction ex-
ecution cost in terms of resource demands, expressed 
independently from the system configuration and the 
vvorkload profile (global arrival rate and transaction 
mix). We call these virtual costs. These include the 
CPU service time estimated on a reference processor, 
transmission cost, and the number of logical disk ac-
cesses, i.e. computed without taking into account the 
buffering. 

For each transaction type Ti, virtual costs are com
puted \vith reference to the parallel ezecution plan, 
which represents the sequence of concurrent tasks per-
formed by the parallel systems during the evaluation of 
the query. The execution tree is actually generated by 
the query optimizer (traditionalIy the most mysterious 
parts of a RDBMS), according to a complex strategy, 
mostIy driven by the data placement and the avail-
ability of indices. To mimic tliat strategy may in fact 
give a few technical problems, and actually requires 
intensive checking against the DBMS. 

A sample parallel execution plan is shown in Fig
ure 6 for transaction 7i. The leaves represent base re-
lations and the internal nodes parallel operators, each 
labeled with the node-group on which it is executed. 
The arcs represent the fiow of data between opera
tors, and their label specifies the kind of connection 
(F: temporary file; TQ: table-queue; PIPE: pipeline). 

The execution plan is a tree (or more precisely a 
DAG, since the same base relation may be an input 
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CPU - MEMORV DISKS 

Parameter 

Relative speed 

CPU overhead 
Bufferpool area 
Sortheap area 
Memory segments 

Value 

.20 

.05 
1000 
1000 

IG 

Parameter 

Disk size (Gbyte) 

Access time (ms) 
Block size (Kbyte) 
Overhead 
Disk segments 

Di,A 

1 

16 
4 
.1 
C 

Di,B 

2 
24 

4 

.15 
10 

Figure 5: Node configuration parameters 
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Figure 6: Parallel query execution plan 

Resource 

CPUi 

Di,A 

Dl,D 
CPU2 

£»2,4 
D2,D 

CPU3 

D3,A 

D3,B 

CPU4 

D4,A 

D4,D 

CPU5 

D5,A 

Di,D 
CPUe 

De„A 

D6,B 
CPU7 

Dr.A 
Dr.D 
CPUg 

Ds,A 

Ds,B 
NET 

Ti 

4.990 (.998) 
4302 (4676) 
7171 (7793) 
4.760 (.952) 
3060 (3569) 
5101 (5948) 
3.810 (.762) 
3329 (3571) 
5548 (5951) 
3.805 (.761) 
3277 (3570) 
5464 (5950) 
4.215 (.843) 
3405 (3777) 
5676 (6296) 
4.215 (.843) 
3405 (3777) 
5676 (6296) 

9.345 (1.869) 
8214 (8588) 

13693 (14314) 
4.215 (.843) 
3406 (3777) 
5676 (6296) 

1474 

Ta 

4.750 (.950) 
90 (90) 

151 (151) 
.035 (.007) 

33 (33) 
56 (56) 

.110 (.022) 
78 (93) 

131 (156) 
.070 (.014) 

51 ( 59) 
87 (99) 

.110 (.022) 
54 ( 62) 
89 (102) 

.110 (.022) 
54 ( 62) 
89 (102) 

.110 (.022) 
57 ( 62) 
94 (102) 

.700 (.140) 
54 ( 62) 
89 (102) 

41 

% 

.215 (.043) 
204 (204) 
341 (341) 

.005 (.001) 

1(1) 
1(1) 

1.530 (.306) 
1128 (1260) 
1880 (2100) 
.815 (.163) 
588 (671) 

982 (1118) 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
547 

Ti 

.015 .0030 
12 (12) 
20 (20) 

.005 (.001) 

1(1) 
1(1) 

.065 (.013) 
46 (61) 
76 (101) 

.025 (.005) 
19 (27) 
33 (44) 

— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
33 

P 
13.660 
16.400 
40.933 
10.340 
32.012 
24.670 
13.670 
17.268 
43.400 
10.671 
14.031 
35.011 
11.000 
10.000 
44.000 
11.000 
10.000 
44.000 
18.670 
37.000 
66.670 
10.335 
11.000 
27.467 

.267 

P 
.205 
.246 
.614 
.155 
.148 
.370 
.205 
.259 
.651 
.160 
.210 
.525 
.165 
.150 
.660 
.165 
.150 
.660 
.280 
.555 

1.000 
.155 
.165 
.412 
.004 

Figure 7: Service demands and resource relative utilizations 
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to several operators) . The tree is first visited in pos-
torder to compute the size and ali the extensional pa-
rameters of the intermediate relations. These are used, 
as we will see, to compute the I / O and CPU cost of 
each operator, tha t directly depends on the extensional 
characteristics of the operands. 

To understand how the computation of the virtual 
costs is carried out, let us consider the set flj of parallel 
operators in the execution plan of transaction Ti, and 
let us call 7J^ the node-group on vvhich operator w 6 fij 
is executed. Each parallel operator actually represents 
a set of sequential operators w(nj) , tha t we shall call 
operator instances, and tha t are executed each on a 
processing node rij G 7u, of the node-group. 

Therefore, given the extensional parameters of the 
operands, tha t have been computed in the previous 
step, and once the implementation of the relational 
operators in the given DBMS is known, the computa
tion of the execution cost of each instance becomes a 
straightforward task. 

Then, if we call CPV{u),nj) (service time on the 
reference CPU) and DiSK{ij,Dj^k) (disk accesses) the 
CPU cost and the I / O cost on disk Dj^k generated on 
node rij by the execution of operator instance uj{nj), 
we may compute the total virtual cost generated on 
node Tij by each execution of transaction Ti by adding 
up on ali the operators of its execution plan: 

CPu(7; ,n j ) J2 CPU(w,nj) 
t i j6n,Anj67iu 

(7) 

BlSK{Ti,Dj,k)= Yl DISK(w,Dj,fc) (8) 

Virtual costs given by the formulas above .are an in-
trinsic characteristic of each transaction type, that is 
they depend only on the static workload and on the 
execution plan of tha t transaction. To get physical 
costs, i.e. the actual load for the resources, we must 
take into account bo th the node configuration parame
ters and the dynamic workload, tha t is ali transaction 
types and their arrival rates. 

CPU physical cost can be directly derived by scaling 
the virtual cost CPU(7i,nj) by the CPU speed factor 
ai. To get physical disk costs, i.e. the number of 
accesses actually performed to each disk unit, we must 
instead consider the effect of buffer caching, which for 
each node depends on the size of the bufferpool area, 
and, of course, on the transaction mix. 

7 The buffer model 
On each node the bufferpool area is managed with a 
global LRU policy. Therefore the da ta blocks with 
high global access rate tend to reside in it. Actually, 
according to the assumption made in Section 6 ali the 

blocks of the same homogeneous da ta segment have 
the same access rate, and then the same probability to 
be in the buffer. Therefore for a given workload, and 
hence for a given access pat tern of the da ta blocks, to 
compute the number of physical accesses, we need to 
evaluate for each segment the buffer hit ratio, tha t is 
the equilibrium probability tha t a block of the segment 
is found in the buffer. 

Models to represent the effect of the buffering on 
database operations have been proposed by several au-
thors, analyzing both the buffer requirements of rela
tional queries, and the effect of local LRU policies on 
the number of page fetches (Mackert and Lohmanl989, 
Sacco and Schkolnick 1986, Chou and DeWit t 1985). 
Unfortunately these results do not apply to our čase, 
and we had to develop a new approach to represent the 
same buffer being shared by several transactions. The 
model we propose approximates LRU with Random 
policy, but, despite this simplification, seems to evalu
ate quite effectively the hit ratios of the segments, and 
to be accurate enough for our purposes. Anyway, not 
taking into account the locality of the references leads 
to conservative estimates. 

More formally, let us refer to a node with buffer 
of NI, blocks, and to a set of Ng homogeneous da ta 
segments, with global access rates / ; , and sizes Bi (in 
blocks). Let novv Ri be the resident set size of segment 
i, i.e. the average number of blocks in the buffer, and 
let ai and oji be respectively the rates at vvhich the 
blocks of segment i enter and leave the buffer. In an 
equilibrium condition the number of resident pages of 
every segment is constant, and then the two rates ai 
and u!i must equate: 

Cti = fi 
Bi-Ri 

Bi (9) 

Similarly uji depends on the resident set size of the 
segment, and on the global replacement rate: 

R i ^ (10) 

Then substituting the (9) in the (10) and considering 
that Oj = uji we get: 

/. 
Bj-Rj _ Ri ^ , Bj - Rj 

Bi No Efr Bj 
(11) 

The (11) are a set of nonlinear equations in the un-
knovvns Ri. An approximate solution to the system 
can then easily be computed with the iterative formu
las: 

^[0] = N, Bi 

T.%B, 
(12) 
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Ri\k] = 
fiBiNb 

fiN, + BiE^,fjS^^§l!^ 
(13) 

^From a practical point of view, the expeiience 
shows that the iteration converges quickly to the so-
lution of the system, and hence we may compute the 
hit ratios, that can be expressed as the ratio betvveen 
Ri and JBj. 

8 Bottleneck analysis 
Transaction execution costs for the sample applica-
tion are shown in Fig. 7. CPU costs are given in sec-
onds and I/O and transmission costs in block accesses 
and transfers. Virtual costs are shovvn in parenthesis. 
Costs are split by node and by transaction type, and 
represent the service demand of a single transaction to 
each resource in the system. 

The sum of the service demands from ali transaction 
types Ti £ Q to a given resource weighted by their 
relative arrival rate A; is called the relative utilization 
of the resource (and is the utilization up to a constant 
factor). 

Relative utilizations are then given by: 

p{nj,(Tj)=^aj ^ XiCPV{Ti,nj) (14) 
i=l. . .m 

p{Dj,r,Nh) = tj,r Yl AiDiSK(7^,jDj,,.,Afi) (15) 

where aj is the CPU speed factor for node j , A; the 
relative arrival rate of Ti, tj^r is the average service 
time of disk Dj^,- and DiSK(7i,Z?j,ri-^6) is the number 
of physical accesses to disk Dj^r by transaction % witli 
a bufferpool area of size Â ;,. 

The relative utilization corresponds to the actual 
resource utilization for unitary overall transaction ar
rival rate. Thus for a given overall arrival rate of A 
the utilizations are given by: 

Relative utilizations p for the sample application are 
also shown in Fig. 7. The last column shows normal-
ized relative utihzation, i.e. the resource utilizations 
that correspond to the saturation throughput Amax-

Cost analysis gives very valuable feedback to the 
designer. First it allows to locate the bottleneck (disk 
Dj^B in tlie example), and to compute the maximum 
overall transaction arrival rate A,„„a; (0.015 trans/sec 
in the example). More in general it shows which re-' 
sources have problems and which transactions are re-
sponsible for them. A more detailed account is also 
produced by the tool that gives the resource demands 
of each operator in a query execution plan. 

Ali this Information can be utilized by the designer 
to take the appropriate actions in reconfiguring the 
system. In the čase of Fig. 7, the cost analysis shows 
a very unbalanced I/O bound situation. Appropriate 
actions for load balancing could be: 

— extend the size of the bufferpool area on the nodes 
with higher relative disk utilizations; 

— add new disks and/or change file allocation on the 
disks of a given node, by modifying the number 
of disk segments; 

— modify the node-grouj) configuration, and the 
operator/node-group allocation; 

As the designer changes the configuration the new 
costs and utilizations can be readily recomputed by 
the model. For instance using the buffer model of Sec-
tion 7 it is possible to evaluate how the number of 
physical accesses on the bottleneck disk and its uti
lization change by increasing the bufferpool area size. 

N, 
1000 
2000 
4000 
8000 
16000 

Ti 
13693 
13067 
11821 
9311 
4385 

T2 
94 
90 
84 
76 
65 

p{D-7,B,Nl,) 

4839 
4586 
4149 
3720 
1544 

piNi,)/p{l) 
1.000 
.948 
.859 
.769 
.319 

Figure 8: Bufferpool size (in 4k pages) and number of 
physical accesses for disk DY^B-

U{nj ,aj,A)=A p{nj ,(JJ) (16) 

U{Dj^r, Nb, A) = A p(£>,>, Nb) (17) 

The resource with the largest relative utilization, say 
Pmax, is called the system bottleneck. As we consider 
the system as an open network of queues, this sets a 
limit to the maximum overall transaction throughput. 

1 (18) 

The results of this analysis are shown in Fig. 8. 
The figure reports for different bufferpool area sizes 
the number of physical accesses to DJ^B by T and T2 
(the only transaction types accessing DJ^B), and its 
relative utilization. The last column in the table gives 
the decrease in the relative utilization compared to the 
original value of Figure 5, according to which the val-
ues of Fig. 7 have been computed. It is clear from the 
table that increasing the bufferpool area size to 16000 
pages removes the bottleneck. There is indeed no use 
in a further increase of the bufferpool size, since, at 
that moment D^^B and De,s have become the new 
bottlenecks. 
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9 Transaction Response Time 
^From the execution costs it is possible to compute the 
average transaction response tirne, for a given work-
load intensity, i.e. for a given overall transaction ar-
rival rate A. We have used a hierarchical modeling 
approach which first takes into account the cross in-
teraction between transactions executed concurrently 
through slow-down factors computed from resource 
utiHzations, and then considers the interaction be-
tween operators. 

Actually the main problem is to model both for the 
parallel execution of individual operators by ali the 
nodes of the node-group, and the concurrent execution 
of different operators in the same parallel execution 
plan, which may be overlapped, for instance because 
they are pipelined or connected by a table-queue. 

To do this one must consider two different levels of 
parallehsm: 

— inter-operator parallelism: the overlapping be-
tween the execution of different operators, e.g. be
cause of pipeline or table-queue communication; 

— intra-operator parallelism: the parallel execution 
of a given operator by ali the nodes of the node-
group. 

9.1 Net operator execution times 
The first step consists in computing how much the ex-
ecution of each operator is slowed down because of the 
concurrent execution of other operators on the same 
node. We shall call this scaled tirne the net cxecution 
tirne, since it refers to the ideal condition in which the 
operator is not slowed-down by the execution of other 
operators that supply its input data. 

As discussed in Section 6, each parallel operator 
w € fži of a transaction execution plan (like the one 
in Fig. 6) represents a set of operator instances uj{ni) 
each executed on a node ni 6 7^ of the operator node-
group. 

If we model the system as an open product form 
queueing network, each service center can be solved 
as an independent M/M/1 queue. Therefore we may 
take into account the interference between concurrent 
operators on the same node through resource utiliza-
tions (given by (16) and (17)). Then, using well known 
queueing theory results, the net expected execution 
tirne of the operator instance is given by: 

E[T{u,ni)] = ^ — ^ ^ c p u ( a ; , n i ) 

-Er ti,k 
UiDi,k) 

DISK{CJ, Di^k) (19) 

overlapped. A more complex formula can be written 
to account for CPU/disk and disk/disk overlapping. 

Net execution times correspond to actual execution 
times for instances of operators that have base rela-
tions as operands (as operators 1, 3 and 5 in Fig. G), 
since there may be no further slow-down dne to input 
shortage. In the general čase, however, some of the 
operands are intermediate results produced by other 
operators, and therefore the execution time may ex-
tend because of lack of input data. 

9.2 Operator interconnection 
Let us start with some definitions. Given an operator 
instance w{ni) with nt G j^^, we define the follovving 
random times: 

— T{u,ni): the execution time of the operator when 
there are no waiting times for input data (the ex-
pectation of this time is given by the (19)); 

— tsiari{<^^ni): the time at which the execution of 
uj{ni) begins; 

— tsiopi^,ni)'- the time at whicli the execution of 
Lo{ni) ends; 

— Tfirsi{^,ni): time taken by w(?ii) to produce the 
first block of output, after it has started; 

— Tiasii^jiii): time taken by (j(nj) to complete after 
the last block of input has been delivered to u. 

Given an execution plan, solving it for response 
times means to compute tstnri{<^,ni) and tsiopii^tii^i) 
for ali the instances of its operators. From these 
the transaction response time can directly be derived, 
since ali leaf operator instances start at transaction 
start time, and the transaction is completed when the 
last instance of the root operator ends. 

Ali the times above are indeed random variables, 
and our final goal is to compute their expectcd val-
ues. Nevertheless it is important to explicitly repre-
sent in the model their stochastic nature, since the 
simplistic assumption that ali times are determinis-
tic and equal to their expectation, produces optimistic 
estimates that may be very misleading. Therefore, ac-
cording to a Consolidated tradition in queueing net-
work models, we make the conservative assumption 
that aH net and elapsed execution times of operator 
instances (i.e. T{u,ni) and tstop{u!,ni) — tsiart(w,nj)) 
are exponentially distributed. 

Similarly we consider an exponential distribution for 
Tfirst and Ttast as well. Moreover if we call N{cj, n.;) the 
total number of output blocks produced by tj{ni), and 
assuming a uniform execution rate, we may express 
their expected values as: 

In the (19) we have made the assumption that the 
queueing times on resources of the same node are not 

E[Tfirsl{uJ,ni)] 
_ tstop{0J,ni) - tstarljl^^rn) 

N{oj,ni) 
(20) 
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E[Tiast{cJ,ni)] = 
T{w,ni) 
N{u;,ni) 

(21) 

Now let us consider the simple čase of a consumer 
operator a that takes its input from producer opera
tor p. The starting and ending times of the instances 
of a depend on the starting and ending times of the 
instances of beta, and, of course, on the way the two 
operators communicate (see Sect. 3). 

If the communication is through a temporary file, 
each instance a{ni) of a may start only after the corre-
sponding instance y3(nj) of/3 has finished materializing 
its output. Therefore in this čase: 

tstarfXa,ni) = tsiop{(i,nk) (22) 

If the two operators are pipelined, this means that 
they are executed on the same node-group (7« = 7/3), 
and each instance a{ni) gets locally its input from 
(i(ni) that runs on the same node. Therefore, for our 
purpose, they may be considered as a single instance 
vvith net execution'time equal to T(a,ni) +T{P,ni). 
The same obviously holds for any number of pipelined 
operators. 

The last čase, connection through a table-queue, is 
the most complex. This is stili some kind of pipelin-
ing, but the operators are executed on different node-
groups, therefore there is no instance-to-instance con
nection like in the previous čase, and the connection is 
at block level and not at tuple level. Each instance of 
the consumer operator may start only when the first 
block is produced by the fastest instance of the pro
ducer: 

Using the above formulas the execution plan can 
be sol ved for the response times, in the sense defined 
abovc. This is accomplished by performing a postorder 
visit of the tree, i.e. starting from leaf operators \vhose 
starting tirne is known, since they have no producer 
and begin immediately at transaction starting time, 
and proceeding thereafter to the root operator. 

9.3 Stochastic execution times 
A last problem to be mentioned is the computation of 
the maximum and minimum functions in the (20) to 
(24), i.e. the computation of minimum starting time 
or maximum completion time of a set of operator in
stances concurrently executed. Given a set N of inde-
pendent random variables r^ ...ryv we are interested 
in the distribution of the minimum »Vutn = mini »'j i.e.: 

P[>min <t]= P[ri < i] V . . . V P[rN < t] 
P[ri <t] + P[7-2 < t]il - P[rt <t]) + ... , 

+P[rN < t]{l - P[ri < ^]) . . . (1 - P[r„_i < t]) (25) 

In the special čase of exponentially distributed ran
dom variables: 

P[ri<t] = l-e~'^,i = l...N (26) 

the (25) becomes: 

P[rn.in<t] = l-e-'-^'^ (27) 

and for the expectation: 

tstart{a,ni) = min {tstart{li,nk) + Tfirsi{l3,nk)) 
»U 67/3 

(23) 

Similarly each instance of the consumer operator 
may end only after processing the last input block sup-
plied by the sloivest instance of the producer, and any-
way not earlier than its net execution time has passed: 

tstop{a,ni) = max{tatartia,ni) +T{u,ni), 
max {tstop{P,ni,) + TtaHia,ni))) (24) 

The results extend immediately to the čase of a con
sumer operator vvith two producers, since a constraint 
in the execution model says that at least one must be 
a temporary file. Therefore a consumer instance may 
start only after the temporary file has been completed 
and the first block is on the table queue (if one of the 
producers actually communicates through it). That 
means the maximum between the two times has to be 
selected. 

E[r, 
T.i 

(28) 

With a similar, but slightly more complex approach, 
we get for the maximum: 

£[w]=x:(-i)^-^ E r — - — 
T^k 

(29) 

where we denote by TTO the product pi ...p[^,hy TTJ the 
generic product of a subset of the terms of TTO, and with 
n^ .̂ ,i the set of ali product of i terms selected among 
the terms of TVJ . Moreover we assume conventionally 
that the sum in the denominator of the (29) is 1 for 
i = 1. 

To give an idea of the importance of an explicit rep-
resentation of stochastic execution time we may point 
out that if ali A'̂  random variables rj have the same 
expectation p, then: 

file:///vhose
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E[rmax] = Np,E[rmin] = T7 N 
(30) 

i.e. when compared to a deterministic distribution the 
expectations respectively increase and decrease by a 
factor of A''. 

A 
.005 
.010 
.014 

Ti 
644.0 

1148.9 
28260.9 

T2 
4.4 
7.9 

251.4 

T3 
77.7 

101.9 
154.2 

% 
3.2 
4.1 
6.2 

Figure 9: Ti'ansaction response times 

Transaction response times for the sample applica-
tion are shown in Fig. 9 for three different overall ar-
rival rates. As one would expect from the bottleneck 
analysis of Section 8, response times for the arrival 
rate of .014 are very high since this value is quite near 
to the maximum rate, and in ali cases transaction TI 
has a response time considerably worse than the other 
transactions. 

The response time estimates computed by the model 
are indeed of great help for the designer since they give, 
even in the early phases of the design, an important 
feedback on a very crucial performance index. Even if 
affected by some degree of apprQximation, such Infor
mation is indeed very valuable in selecting the proper 
system configuration and carrying on a capacity plan-
ning study. 

10 Conclusions 
In this paper we have presented a systematic method-
ology for the performance analysis of parallel database 
applications. There are at least two good reasons 
for incorporating the modeling approach in the design 
procedure. First, performance evaluation is a far more 
crucial problem in parallel RDBMS than it is for se-
quential RDBMS, since high performance is the most 
likely reason why a parallel architecture was selected. 
Then a parallel database application has to be per-
forming. Second with these innovative architectures 
designers and DB administrators have to deal with a 
far more complex physical organization and execution 
model, and this makes in some cases very difHcult to 
predict the quantitative effect of their design decisions. 
Therefore it is very important to be able to get some 
feedback in the early stages of the design, even before 
the application is implemented. 

Three kinds of performance measures are produced 
by the model: 

— execution costs: i.e. the resource demands by ev-
ery transaction to system resources; this may sug-
gest changes in the physical organization (i.e. a 

different relation partitioning or node-group defi-
nition); 

- resource utilizations: these allow to locate the 
bottlenecks and are of crucial help in improv-
ing the system configuration (bufferpool area size, 
disk allocation etc) , and in implementing load 
balancing strategies; 

— transaction response times: these are end-user 
performance indices, and may be checked against 
the original design specifications or used in a ca-
padty planning study. 

The modelling task has proved to be considerably 
more complex than in the classical čase of sequential 
RDBMS, and several new specific problems had to be 
solved. The most interesting parts are the bottleneck 
analysis and the evaluation of transaction response 
times that are thoroughly discussed in the paper. 

To validate our methodology we have developed a 
prototype modelling tool, and we have run on it a 
series of experiments to compare, for several system 
configurations, the performance estimate computed by 
the tool, \vith the measures taken on a running ap
plication. For each experiment a stream of transac
tions with Poisson interarrival times was first gener-
ated off line and recorded. This was done referring 
to the transaction set and the relative arrival rates of 
Fig. 2, and randomly selecting the constants in the 
queries. The experiments consisted then in running a 
set of processes, that connected to the DBMS to simu-
late user sessions, and passed to it the transactions of 
the stream. Preliminary results show a good agree-
ment between measures and performance estimates 
produced by the tool. 
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Semijoins liave traditionany been applied for reducing the communication cest iequired for dis
tributed query processing. Semijoins whose execution wiU reduce the amount ofdata transmission 
reguired to perform ajoin sequence are termed beneficial semijoins for thatjoin sequence. Benefi
cial semijoins include conventional profitable semijoins and gainful semijoins that are not profitable 
tliemselves but become beneficial due to the inclusion ofjoin reducers. In this paper, based on the 
values of dynamic cumulative henefit (DCB), we propose an efRcient algorithm for Bnding bene
ficial semijoins, i.e., to interleave a sequence ofjoin operations with semijoins to reduce the data 
transmission cost. In this algorithm, a dijnamic vicighted graph is constructed based on the corre-
lated relationship among semijoins where two semijoins are said to be correlated with each other 
if the condition for one to be beneficial depends on execution of the other. Then, we compute the 
dijnamic profit for each subgraph, \vhich is recursively constructed. When there are N vertexes in 
the initial dijnamic iveighted graph, where each vertex represents a semijoin, our algorithm needs 
to expand (N + 1) graphs to find a solution in the best čase. From our simulation study, we sho\v 
that our strategy can efficiently find beneficial semijoins and requires a lower data transmission 
cost than does the profitable semijoin approach. 

1 Introduction 

In a wide area network, under the assumptions that 
each site contains one relation, that there is only one 
copy of each relation, and that the cost of local process
ing is negligible compared to the transmission cost, a 
query is usually processed in the following three phases 
[16]: (1) the local processing phase, which involves ali 
local processing such as selections and projections, (2) 
the reduction phase, where a sequence of semijoins is 
used to reduce the size of relations, and (3) the final 
processing phase, in which ali the resulting relations 
are sent to the site where final query processing is per-
formed. Significant research efforts have been focused 
on the problem of reducing the amount of data trans
mission required for phases (2) and (3) of distributed 
query processing [1, 3, 13, 14]. The semijoin operation 
especially has received considerable attention and lias 
been extensively studied in the literature [2, 5, 15, 9]. 
The semijoin operator takes the join of two relations, 
R and S, and then projects back out on the domains 
of relation R. For a semijoin to be performed, only the 
projection of the joining attribute need be sent. If the 
size of these projections is small relative to the amount 
by which R and S are reduced, then the preliminary 
semijoin will be profitable. 

The first algorithm using semijoins for distributed 

query processing was implemented in SDD-1 in [3]. 
This SDD-1 algorithm is based on a hill-climbing strat-
egy that produces efficient, but not necessarily opti-
mal, query processing strategies. Theoretical aspects 
of semijoins were first studied in [2]. Simple queries 
were studied in [13]. Their algorithm for general 
queries was improved in [1]. It has been proved that 
a trce query can be fully reduced by using semijoins 
[2], and there has been much research on optimizing 
semijoin sequences to process certain tree queries, such 
as star queries [6] and chain qucries [11]. However, 
the determination of an optimal semijoin sequence to 
process certain tree queries and general query graphs 
with cycles has been proved to be NP-hard [12]. Meth-
ods based on dijnamic programming to get an optimal 
semijoin sequence for tree queries and chain queries 
were studied in [10] and [11], respectively. 

In addition to semijoins, join operations can also 
be used as reducers in distributed query processing 
to further reduce the communication cost [4, 7, 8]. 
Moreover, the approach of combining join and semi
join operations as reducers can result in more benefi
cial semijoins due to the inclusion of joins as reducers 
[7]. (Note that such semijoins are referred to as gain
ful semijoins.) Both profitable semijoins and gainful 
semijoins are called beneficial semijoins. 
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In this paper^, based on the values of the dijnamic 
cumulative benefit (DCB), we propose an algorithm 
for finding beneficial semijoins, i.e., to interleave a se-
quence of given join operations with semijoins to re-
duce the total data transmission cost. In this algo
rithm, a dijnamic meighted graph G = (V, E) is con-
structed based on the correlated relationship among 
semijoins, where V is the set of semijoins (i.e., each 
vertex represents a semijoin) associated with its dij
namic cumulative benefit (DCB) and E is the set of 
correlated edges. Note that two semijoins are said to 
be correlated with each other if the condition for one 
to be beneficial depends on execution of the other [8]. 
Based on the values oi DCB, there is a dijnamic profit 
associated with the whole graph. Then, the graph is 
transformed to another graph by a vertex shrinking. A 
vertex shrinking is done by eliminating a certain ver-
tex and connecting correlated edges. This transforma-
tion is recursively executed and the related dijnamic 
profit is updated at the same time until ali vertexes 
are shrunken or ali the values of DCB associated with 
vertexes are negative. When the algorithm stops, the 
set of semijoins which provide the maximum total dij
namic profit is the set of beneficial semijoins. When 
there are N vertexes in the initial dijnamic meighted 
graph, where each vertex represents a semijoin, our 
algorithm needs to expand (N + 1) graphs to find a 
solution in the best čase. Moreover, since the DCB 
values of vertexes will be dynamically updated in the 
process of a vertex shrinking, it will speed up the ex-
ecution and reduce the large space requirement of the 
proposed recursive algorithm in general cases. From 
our simulation study, we show that our strategy caii 
efficiently find beneficial semijoins and requires a lower 
data transmission cost than does the profitable semi
join approach. 

The rest of the paper is organized as follows. In Sec
tion 2, we give some definitions used in this paper. In 
Section 3, we present our proposed algorithm. Finally, 
in Section 4, we give a conclusion. 

2 Background 
In this section, we describe assumptions and defini
tions used in the paper, which are mostly adapted 
from [7, 8] since the concept and properties of gain-
ful semijoins and beneficial semijoins were proposed 
and discussed in [7, 8]. 

2.1 Query Graphs, Joins and 
Semijoins 

Given a query Q with qualification q, we define its 
corresponding quenj graph GQ{VQ,EQ) as follows: 

^This research wcis supported by the National Science Coun-
cil of the Republic of China, Grant No. NSC 84-2213-E-110-023. 

Figure 1: A query graph qA-

VQ = the set of ali the relation names refer-
enced by q; 

^Q = {(*> i ) I * 7̂  j and some clause of q 
references both Ri and Rj ]. 

Figure 1 shows the query graph for the following 
query, where Ri.B is the target list. 

select Ri.B 
from Ri, R-z, R3 
where Ri.A = R3.A and Ri.B = R2.B and 

R2.C = R3.C 

We assume that we have the follovving Information 
about the relations. 

For each relation Ri, i=l,2,...,m, 
\Ri\: number of tuples; 
lujii- size (e.g., in bytes) of i?,i. 

For each attribute A of relation Ri, 
\Ri{A)\: cardinality; 
Pi^A- selectivity; 
'^"RiiA)' size (e.g., in bytes) of the data item 

in attribute A of relation i?;. 
The cardinalitij of attribute A of relation Ri, denoted 
as |A|, is the number of distinct values in attribute A 
of relation Ri and the selectivitij pi^A of attribute A 
is defined as the number of different values occurring 
in the attribute divided by the number of ali possible 
values of the attribute. 

A join clause "Ri joins R.2 on A" is denoted by 
Ri <—> R2, where Ri and R.2 are relations, and at
tribute A is the joining attribute. Associated with this 
join are two semijoins: Ri by R2 on A, and R2 by Ri 
on A, denoted by R.2 —> Ri, and Ri —> R2, respec-
tively. i?! —> R.2 entails shipping R\{A), attribute A 
of Ri, to the site where R2 resides and joining Ri {A) 
with /?2- We denote the resulting relation by RI2 (and 
Ri is unchanged). After the semijoin Ri -^ Rj is exe-
cuted, then the parameters of relation Rj are changed 
in the follovving way: 
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2.2 

\Rj\ <— \Rj\*pi^A; 
Pj,A < Pj,A * Pi,A\ 
\RM)\^\I^i{A)\*Pi,A-

Cost and Benefit of Semijoin 
Reducers 

We assume that the transmission cost is given by 
cost(n) = CQ + ci * n, where n is the amount 
of data transmitted and co and cj are constants. 
Let the transmission cost be one per data unit 
transmitted. Consider a semijoin Ri —>• Rj 
when Ri and Rj are at different sites. Then, 
the cost of the semijoin is {size.of Ri[A]), and 
the benefit is (sizc-of Rj before semijoin — 
sizejof Rj after semijoin), where the sizes of the 
relations are measured in bytes. A semijoin Ri —> 
Rj, is called profitable if its cost of sending Ri{A), 
iuji.(^A)\^i{A)\ — wii.i^A^\A\pi^A', is less than its bene
fit, wni \Rj\ - WH.\Rj\pi,A = WR. \Rj\{l - Pi,A), where 
wjij \Rj\ and wjij \Rj\pi^A are the size of Rj before and 
after the semijoin, respectively. In addition, we assume 
that the values of attributes are uniformly distributed 
over ali the tuples in a relation, and that the values of 
one attribute are independent of those in another at-
tribute. Thus, as in most prior work [1, 2], we assume 
in this paper that the selectivity and the cardinality 
of a non-semijoin attribute remain the same after a 
semijoin operation to simplify our discussion. 

2.3 The EfFect of Join Operations 

To determine the effort of a join operation specified by 
a query graph, the following theorem was described in 
[7]. 

Theorem 1 Let Gj = (Vj,Ej) be a join query 
graph. GB = (VB,EB) is a connected subgraph of 
Gj. LetRi,R2, ...,Rp be the relations corresponding to 
nodes in VB, let A\,A2,...,Aq be the distinct attributes 
associated with edges in EB, o,nd let rui be the num-
ber of different nodes (relations) to uihich edges with 
attribute Ai are incident. Suppose R* is the relation 
resulting from the join operations betiveen relations in 
GB, and that NT{GB) is the expected numbcr of tuples 
in R*; then 

NT{GB) = (1) 

2.4 Join Reducers and Gainful 
Semijoins 

The application of join operations as reducers may 
mean that more profitable semijoins will be available. 
Those semijoins which become profitable due to the 
use of join reducers are termed gainful semijoins [7]. 
Consider the query graph qA shown in Figure 1 with 
its profile in Table 1 as an example. It can be ver-
ified that the semijoin R^ —> Ri is not profitable 
since w/i3(4)|i?3(A)| > wn^{l - P3,A)\RI\- Note that 
although this semijoin is not profitable, it is gainful if 
we perform Ri ^ R-i and R'2 =>• Rz after this semi
join operation, where Ri => R2 means shipping Ri 
to the site where R2 resides and joining Ri with R2. 
It can be obtained that for the total communication 
costs required, 

|i?3(>1)I + 2|i?i|p3,^ + 3|i?i ioin i ? 2 K ^ « 2190 

2190 < 2\Ri\ + 3|i?i join /Ž2| = 2542, 

meaning that it is advantageous, as far as the cost 
of data transmission is conceined, to perform Rz —^ 
i?i, R'i => R.2 and then R'2 =̂  -R3, instead of perform-
ing directly Ri =^ R2 and R^ =^ R^- Thus, it can be 
seen that whether a semijoin is gainful or not depends 
on the subsequent join operations. 

2.5 A Join Sequence Tree 
Every edge in a tree is directed, and ali the arrows 
in edges are away from a single node, which is called 
the root of the tree [7]. Note that a rooted tree can 
be viewed as a partial order set. We denote Ui > Uj, 
if there is a path along the arrows in the tree from 
Ui to 71 j . In such a čase, node Uj (ui) is called an 
offspring [ancestor) of Ui (uj). We use rij > nj to 
mean n; > nj and n, 7̂  Uj. Let T-m denote the subtree 
formed by ni and its offspring (ancestor) in a rooted 
tree T, and let S(T„,.) be the set of nodes in T„., i.e., 
S{Tni) = {uj I Ui > Uj, Uj G 5 ( r ) } . We define the 
louiest eomraon ancestor of two nodes rij and nj in a 
rooted tree, denoted by n^ V nj, to be the node that 
is an ancestor of Uj and nj and for vvhich none of its 
offspring is an ancestor of n; and nj [7]. 

For the query shown in Figure 2, the ex-
pected number of tuples in the resulting relation is 
(\R^\\R2\\Rz\\R,\)/{\A\'\B\\C\\D\). Figure 2: A query graph qB (adapted from [8]). 
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Relation Rt 

Ri 

Ri 

Rz 

\Ri\ 

620 

700 

778 

Size wni\Ri\ 

1240 

1400 

1556 

Attribute X 

A 
B 
B 
C 
A 
C 

\Ri{X)\ 

400 
600 
580 
450 
360 
480 

Selectivity pi^^ 

0.80 
0.60 
0.58 
0.75 
0.72 
0.80 

Wx 
1 
1 
1 
1 
1 
1 

Table 1: Profile for query qA, vvhere \A\ = 500, |J9| = 1000, and \C\ = 600 (adapted from [7]). 

(a) (b) 

Figure 3: A rooted tree: (a) T; (b) T„, (adapted from [7]). 

(^) (b) 

Figure 4: An example: (a) a query graph GEXI', (b) the related join sequence tree (adapted from [7]). 
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For example, for a rooted tree T shown in Fig
ure 3-(a), r,i2 is given in Figure 3-(b), and S{Tn^) = 
{«2, na, 714, ̂ 5}- Also, /14 V713 = 7*2 and n^Vnr = n^ 
in Figure 3-(a). In addition, when Ui > nj in a rooted 
tree T, we use P(ni, Uj) to denote the set of nodes 
that are on the path from TIJ to Uj excluding ni, i.e., 
P{ni, iij) = {nk I rii > rik > Uj and i ^ k, 'ink 6 
S {T)]. In the rooted tree shown in Figure 3-(a), 
P{ni, rii) = {ris, 784} and P(7ii, 715) = {712, 715}. 

A join sequence tree is obtained from a join se-
quence [7]. Once a join sequence is determined, it can 
be mapped into its corresponding join sequence tree, 
which is defined as follows [7]. 

A join sequence tree is a rooted tree where each node 
denotes a relation and each edge implies a join hetiueen 
the two relations to vihich the edge is incident. The 
tree represents a sequenee of join operations which are 
performed in such a way that each relation in a node is 
sent to its parcnt node in the tree for a join operation 
in the hottom-up sensc. 

Given a query shown in Figure 4-(a) and a join se-
quence R4 =?• RT, R5 =>• Ry, Rj ^ Rg, R3 =» Ro, 
Ri => R2, Re => R2, the corresponding join sequence 
tree is shown in Figure 4-(b). Recall that Tji. is the 
subtree formed by Ri and its offspring in the join se-
quence tree, and that S{Tn.) is the set of nodes in T/?,.. 
The uueight of a relation Ri in the join sequence tree, 
denoted by W{Ri), is defined as the size of the relation 
resulting from joining ali the relations in S{Tiii) (and 
is computed by Equation 1 as described in Section 
2.3). For the join sequence tree shown in Figure 4-(b), 
W{Ry) = Wff^\R!j\ and W{R^) = ivn'JR'e\, where R'-, 
is the relation resulting from joining ŽŽ4, R5, and Rj, 
and R'g is the one resulting from joining R3, R4, R5, 
-Re, and -R7. For convenience, the weight of the root 
of a join sequence tree, which corresponds to the final 
site, is defined to be zero. Also, to facilitate our study 
on the eff'ect of semijoin operations, we define the con-
figuration of a query, JQ{SMJ), to be the structure 
of the query and its profile associated after the set of 
semijoins SMJ has been performed. When it is neces-
sary, we use W{Ri,jQ{SMJ)), instead of W{Ri), to 
mean the weight of Ri after the semijoins in SMJ are 
performed. 

2.6 Proper t ies of Beneficial Semijoins 

A relation is said to be reducible by a semijoin S Ji 
if the size of the relation in the join sequence tree is 
affected by the execution of the semijoin. Then, the 
set of reducible relations of a semijoin under a join 
sequence tree can be determined by the following the-
orems [7]: 

Theorem 2 Given a join sequence tree T, the set of 
reducible relations of a semijoin Ri —> Rj, denoted 
by Rd{Ri —> Rj), is P{Ri s/ Rj,Rj). 

For example, suppose Figure 4-(b) is the join 
sequence tree derived from Figure 4-(a); then, 
Rd{Ri -^ Ri) = {Ri,Ro,Rr}, Rd{R4 —> R^) = 
[R^] and Rd{R2 - ^ R3) = {R3,RG}-

Theorem 3 A semijoin SJk, Ri 
in the configuration JQ{SMJ) 
cial if and onhj if iUji.i^/^^\Ri{A)\ 
Pi,A) ER^eudiSJ,) WiRp, JQ[SMJ)). 

-^ Rj 
is benefi-
< (1 -

Corollary 1 Suppose that Ri and Rj are two rela
tions in a join sequence tree T and Ri > Rj. Then, 
Rj —> Ri is not a beneficial semijoin for T. 

Two semijoins are said to be correlated with each 
other if the condition for one to be beneficial depends 
on execution of the other. Thus, using Theorem 3, 
we can determine by the following corollary [7] whether 
two semijoins are correlated with each other in a join 
sequence tree. 

Corollary 2 /71 a join sequence tree, two semijoins, 
S Ji and SJk, are correlated with each other if nnd nnhj 
ifRd{SJi)^Rd{SJk)i^%. 

3 The Algorithm for Beneficial 
Semijoins 

Given a join sequence, we can map the join reducer 
sequence into the corresponding join sequence tree. 
According to Theorem 2, we can derive reducible 
relations from the join sequence tree. Based on the 
relationship among these reducible relations, we pro-
pose a new algorithm for interleaving a sequence of 
join operations with semijoins, i.e., for locating bene
ficial semijoins. The proposed algorithm is based on 
a value, called the dijnamic cumulative benefit, which 
will be defined later. 

Let SAdr be the set of possible semijoins in the given 
join sequence tree T except those semijoins Rj —> Ri 
which occur between two relations Ri and Rj in the 
join sequence tree T and Ri > Rj (i.e., Ri is an an-
cestor of Rj). (Note that, based on Corollary 1, we 
do not want to include these non-beneficial semijoins 
in SMT.) Let SMJ be the set of beneficial semijoins 
identified so far. Initially, SMJ is an empty set. We 
define the dgnamic cumulative ie7ie/ii of a semijoin S Ji 

[Rk —> Rj), denoted by DCB{SJi), as the amount of 
reduction minus the cost of semijoin S Ji if this semi
join is applied to the execution of a given join sequence 
and the profile of the semijoin is the one resulting 
from the semijoin executions SJk, for SJk € SMJ. 
That is, DCB{SJi) = DCB{Rk A Rj) = (1 -
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Relation Ri 

Ri 

i?2 

Rs 

Ri 

-Rs 

Ro 

Ri 

\Ri\ 

1150 

1200 

850 

1100 

900 

900 

1000 

Size of relation 

2300 

2400 

1700 

3300 

900 

2700 

3000 

Attr ibute A' 

A 
B 

A 
C 
D 
E 

B 
D 
F 

G 

C 
E 
H 

F 
G 
H 

\Ri{X)\ 

420 
325 
300 
385 
585 
550 
300 
405 
770 
585 
490 
400 
525 
630 
650 
630 

Selectivity 

0.70 
0.65 
0.50 
0.55 
0.65 
0.55 
0.60 
0.45 
0.55 
0.45 
0.70 
0.40 
0.50 
0.45 
0.50 
0.60 

Wx 

Table 2: Profile for query graph GEX\, where \A\ 
\F\ = 1400, \G\ = 1300, and \H\ = 1050. 

600, |B| = 500, \C\ = 700, \D\ = 900, |.B| = 1000, 

Semijoin S Ji 

Rl ->-i?2 
Ri -^ Ri 

R2~^Ri 

R^-^RG 

Rs - ^ i ?4 
R3-^R6 
R4 -^ Rl 
RA -^ R3 
Ri -> R-j 

Rs^Ri 
R&-^R2 
R&-^Rz 

RG -> /?7 
/?7 -> Ri 
R7 -+ i?.5 
Rj-^ Re 

in SMT 

N 
Y 
Y 
Y 
Y 
N 
Y 
Y 
N 
N 
N 
Y 
Y 
Y 
Y 
N 

DCB{SJi) 

-
2753 

850 
863 

1522 
-

620 
530 

-
-
-

620 
835 

1185 
-200 

-

Table 3: SMT for query graph GBXI-

N o . 

1 
2 
3 
4 

5 

Semijoin {S Ji) 

Rl >• i?4 

i?2 ^ -̂ 6 
Rz^fRi 

RG-^R-J 

Rj —> Ri 

Reducible relations 

{ Ri, Ro, Rl } 

{Re} 
{ R4, R7 } 

{R-r} 
{Ri} 

(a) 

N o . 

1 
2 

Semijoin {SJi) 

R6—^R3 
Ri —> R3 

Reducible relations 

{^3} 
{i?3} 

(b) 

N o . 

1 
2 

Semijoin {SJi) 

Ri —>Ri 

R2—^Ri 

Reducible relations 

{Ri} 

{Rl} 

(c) 

Pk,A) Eiip6fid(SJi) W{Rp, JgiSA^fJ)) - Gosti. Given 
the query graph shown in Figure 4-(a) with its profile 
shown in Table 2, Table 3 shows SMT and the value 
of DCB for each semijoin. 

For ali semijoins in SMT, the sets of reducible re
lations of semijoins can be further classified accord-
ing to whether the semijoin is correlated with some 
other semijoins or not based on Corollary 2. We as-
sign those semijoins which are correlated to the same 
group. For example, given a query graph shown in Fig
ure 4-(a), Figure 4-(b) shows the related join sequence 
tree, and Tables 4-(a), (b), and (c) shows three groups 

Table 4: Four groups in SMr- (a) GPi; (b) GP2; (c) 
GPs. 

of semijoins which belong to SMT and are correlated 
in the same group. Moreover, some semijoins in SMT 
may not be correlated with some other semijoins. If 
such a semijoin exists and it is beneficial (i.e., DCB > 
0), we add such a semijoin into SMJ. 

For those semijoins vî hich are in the same group, we 
want to find a good combination of beneficial semi
joins such that we can obtain the largest profit and 
then add them into SMJ. For each group GPi of 
semijoins SJk with DCB{SJk) > O, we construct a 
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Figure 5: A dynamic weighted graph for GPi. 

dtjnamic weighted graph. Given a GPi, a d^jnamic 
meighted graph G = (VGP; , -EGR ) is constructed based 
on the correlated relationship among the semijoins, 
where VGF; is the set of semijoins with positive values 
of DCB (i.e., each vertex represents a semijoin) as-
sociated with its dijnamic cumulative benefit (DCB), 
and Ecp. is the set of correlated edges. A correlated 
edge exists between two vertexes Vj (denoting S Ji) and 
v j (denoting S J j) such that the intersection of the 
sets of reducible relations of these two semijoins rep-
resented by Vi and Vj is not empty. As an example, 
Figure 5 shows the dynamic weighted graph for group 
GPi shown in Table 4-(a). 

Given the dynamic weighted graph G, G p is a graph 
constructed from G by eliminating vertex p and con-
necting correlated edges (p, x) and (p, y), where the 
intersection of the sets of reducible relations of these 
two vertexes x and y (representing two semijoins) is 
not empty. The step of constructing Gp from G is 
called a vertex shrinking. Figure 6 shows two examples 
of vertex shrinking for the dynamic weighted graph 
shown in Figure 5. After the process of vertex shrink
ing, the DCB values of those vertexes which are cor
related with the shrunken vertex in the group are also 
updated. (Note that the DCB values of the vertexes 
will be the same or be smaller in each update.) We 
define the dijnamic profit (denoted as D P (G)) of the 
most profitable set of semijoins for a given dynamic 
weighted graph G as follows: 

DP{G) = max{DP{Gp) + DCBp), 
p€G 

where we always consider positive values of DCB only. 
(Note that when the DCB value of a vertex is negative, 
we will give up the vertex shrinking for this vertex 
in this G p.) For group GPi, according to the above 
formula, we illustrate the process of finding the largest 
profit DP{G) from Figure 7-(a) to Figure 7-(m). 

DP{G) = max {DP{Gi) + 2753, DPiG-i) + 

863, DP{Gz) + 1522, 
DP{G^) -h 835, DP{G5)+ 

1185}; 
DP{G2) = max{£>P(C?2j + 2317, £)P(G23) + 

1522, DP{G2j + 835, 
DP{G2,) + 1185}; 

DPiG2,) = rmix{DPiG2,^) + 785, DP{G2j + 
359, i?P(G'2,J+550}; 

DP{G2,,) = 137; DPiG2j = 550; 
DP{G2,J = 32. 
Thus 

DP{G2,) = 922, and DP{G2) = 3239. 
Consequently, 

DP{G) = max { 3229, 3239, 3051, 2960, 2081} = 
3239. 
That is, 

DPiG) = DP{G2) + DCB2 
= DP{G2,) +DCBi + DCB2 
= DP{G2,^) + DCB3+DCBi+DCB2 
= DCB5 + DCB3 + DCBi + DCB2 

Therefore, for group GPi shown in Table 4-(a), 
the most profitable set of semijoins (i.e., SMJ\) is 
{ Ri -> R^, R2 -> RQ, R-i -^ RA, RT ^ R4 } 
{— {SJi,SJ2,SJ3,SJ5]). Similarly, for the groups 
shown in Table 4-(b), Table 4-(c), the most prof
itable sets of semijoins are { RG -^ R3 } {= SMJ2), 
{ R2 -> i?i } (= SMJ3), respectively. Therefore, 
SMJ = S M Ji U SMJ2 U 5MJ3. Finally, we in-
terleave those semijoins in SMJ in the given join se-
quence such that every semijoin Ri —> Rj precedes 
every related join Rj => R^-

Note that when the dynamic vveighted graph does 
not have any correlated edge or when the values of 
DCB of ali the vertexes are negative, we stop the exe-
cution of DP{G). Moreover, \vhen a vertex shrinking 
is executed, those related DCB of semijoins will be 
updated. 

Let's consider the following three cases to compare 
our strategy (Čase 3) with other strategies for dis-
tributed joins, where we use the query graph shown 
in Figure 4 with its profile shown in Table 2. 

Čase 1: Using profitable semijoins. 
Execute profitable semijoins R2 —> Ri, R4 —^ Ri, 
R4 -> R3, Re -> ^ 3 , Ri -> Ri, R3 -> R4, Ri -> 
RA, R2 -> RQ, R& —> Ri based on the strategy 
proposed in [3]. Then, send relations Ri, R3, J?4, 
i?5, RG, R7 to the site containing R2. The total 
transmission cbst is 300 + 300 -f- 405 -I- 400 + 325 
+ 585 + 630 + 385 + 525 + 690 -I- 306 -t- 626 -I-
900 -I- 1485 + 1500 = 9362. 

Čase 2: Applying join operations as reducers 
without semijoins [7, 8]. 
Execute the 
R'j ^ RG, R3 ^ RG, R'G => -R2, -Ri => R2- The 

file:///vhen
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i DCBU 

(a) (b) 

a shrunken vertex 
a deleted edge 

an original edge 

a new added edge 
Figure 6: A vertex shrinking: (1) vertex 1; (2) vertex 2. 

total transmission cost is 3300 + 900 + 2720 + 
1700 + 2772 + 2300 = 13692. 

— Čase 3: Interleaving a join sequence with semi
joins. 
Execute i?i -> /?4, R3 -> Ri, R-^ -^ R^, R'^ ^ RT, 
R5 => Rr, K =» Re, Re -> R3, R3 ^ Ra, 
R2 -> Re, R'o =^ R2, R-i -> Ru R[ => R-2- The 
total transmission cost is 325 + 585 + 630 + 627 
+ 900 + 1150 + 400 + 680 + 385 + 259 + 300 + 
1150 = 7391. 

(Note that in cases 2 and 3, we use the join sequences 
derived from the given join sequence tree as shown in 
Figure 4-(b).) From the above comparison, we show 
that the data transmission cost by using our strategy 
can be less than that by using profitable semijoins only 
or by using join reducers only. In general, in our algo-
rithm, when there are N vertexes in the initial dijnamic 
weighted graph, where each vertex represents a semi-
join, our strategy needs to expand 1 + Â ! * (l/(N — 
l ) !- l - l / ( iV-2)! + l / (Ar-3) ! + --- + l /2! + l/ l!) graphs 
to find the solution in the worst čase and (N + 1) 
graphs in the best čase. Since in the worst čast, there 
is no vertex with a negative value of DCB, it results 
in (1 + N + (N * (N - 1)) + (N * (N - 1) * (N - 2)) 
+ .. + N!) graphs, where there is one initial graph 
in level O and there are (N! / (N - «)!) graphs in the 
ith recursive execution, 1 < i < N. While in the best 
čase, after executing a vertex shrinking for each ver-
tex in the initial graph, each resulting graph contains 
vertexes with ali negative values. Therefore, (1 + N) 
graphs are creajed. (Note that only those semijoins 

which have positive values of DCB will be included 
as a vertex in the initial graph.) For the initial state 
shown in Figure 4 with its profile shown in Table 2, we 
need to expand 75 graphs to find the solution where 
206 graphs are needed in the worst čase with some 
other profile. 

Table 6 shows a comparison of the data transmis
sion cost using five different profiles, vvhere Profile C 
is the one shown in Table 2. For Profiles A and B, we 
increase the selectivity in ali the attributes of Profile C 
to 0.2 and 0.1, respectively. For Profiles C and D, we 
decrease the selectivity in ali the attributes of Profile 
C to 0.1 and 0.2, respectively. From the above com
parison, we can see that the data transmission cost us
ing our strategy can be less than that using profitable 
semijoins only or using join reducers only. Table 7 
shows a comparison of the number of states created in 
one čase of our algorithm, which vvas chosen randomly, 
the worst čase of our algorithm and exhaustive search. 
From this table, we can see that our strategy is very 
efficient. 

In [7], Chen et al. have proposed a heuristic al
gorithm to interleave a sequence of join operation 
with semijoins. In their algorithm, they define the 
cumulative benefit of a semijoin S Ji {Rk —> Rj), 
denoted by CB(SJi), as the amount of reduction 
if it is appiied individually prior to the execution 
of a given join sequence, i.e.? CB{SJi) = (1 -
Pfc,/i) E/j„6fid(sj,.) W{Rj„ JQ{%)). In this algorithm, 
they use the cumulative benefit (CB) as a heuristic 
to determine the set of semijoins to be interleaved into 
a given join reducer sequence. Ho_wever, in their al-
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Figure 7: A dynamic weighted graph and its subgraphs: (a) G; (b) d; (c) G2; (d) G3; (e) G4; (f) G5; (g) G2,; 
(h) G23; (i) G2,; (j) G2, (k) G2,3; (1) G2. , ; (m) G2 , , . 
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gorithm, CB depends on a static profile of semijoins; 
while in our approach, DCB depends on a dynamic 
profile of semijoins. Based on those dynamic values 
of DCB, we can have fewer computation steps than 
Chen et al.'s algorithm [7] if there exists vertexes with 
negative values of DCB. Moreover, our algorithm can 
find better solution than their algorithm. For example, 
for the same query graph shown in Figure 4 with its 
profile shown in Table 2, their algorithm will execute 
Ri -> /Ž4, Rs -> R4, K => •'̂ T, R5 => 1^7, Rr =^ lie, 
Re -> R3, i?3 ^ Re, R2 -> RG, R'G ^ R2, R-i ->• Ri, 
R'^ =>• i?2- The total transmission cost is 325 + 585 + 
1395 + 900 + 1150 + 400 + 680 + 385 + 259 + 300 
+ 1150 = 7529, vvhich is larger than our solution. 

In [4], based on the heuristic values of DCB, we 
have proposed a variant of the A* algorithm to find 
beneficial semijoins. In the variant of the A* algo
rithm, vvhich is a well-known heuristic search method, 
the search is controlled by a heuristic function }{x){= 
g{x) -\- h{x)). The state x chosen for expansion is the 
one which has the largcst value of f{x) among ali the 
generated states that have not been expanded so far. 
In this strategy, a state is defined as a set of corre-
lated semijoins; i.e., it is represented by a dynamic 
weighted graph. When a state x is expanded, ali the 
States that can be reached from state a; by a vertex 
shrinking are generated. (Note that vertex shrinking 
can be executed only when the vertex has a positive 
value of DCB.) Among those leaf nodes x which have 
not been expanded thus far, the one with the largest 
f{x) value will be chosen for future expansion. This 
procedure is repeated until the goal state is reached. 
The initial state is the given dynamic weighted graph, 
and the goal state is a dynamic vveighted graph vvhich 
does not have any correlated edge or in vvhich the 
values of DCB of ali the vertexes are negative. Let 
SMJk{x) be the set of beneficial semijoins applied to 
the initial state to reach a state x in GPk, and let 
C{SMJk{x)) be the total DCB values for the semi-
join operation in SMJk{x). Then, at a state x, we let 
g{x) = C{SMJk{x)). Let h{x) be the largest profit 
of future semijoins obtained in reaching the goal state 
from X. Let DW(G) be the dijnamic weight of the 
set of semijoins for a given dijnamic tueighted graph G, 
vvhich is defined as follovvs: 

DWiG) = {DW{Gp) + DCB,,}, 

where p G. G, DCBp is the largest value among ali 
the current DCBi in G, and vvhere we always consider 
positive values of DCBp only. Then, at a state x, we 
let h{x) = DW{x). For the same query graph shovvn 
in Figure 4 vvith its profile shovvn in Table 2, the set 
of beneficial semijoins found by this heuristic strategy 
[4] is the same as Chen et al.'s [7]. As compared to the 
performance of our previous proposed heuristic strat-
egy vvhich is also based on the values of DCB, although 
the heuristic strategy vvill expand fevver states than the 

nevv proposed one, our nevv proposed strategy can find 
better solution than the heuristic one. 

4 Conclusion 
In this paper, based on the values of dijnamic cumula-
tive benefit (DCB), vve have proposed an algorithm 
for finding beneficial semijoins, i.e., to interleavc a 
sequence of join opcrations vvith semijoins to reduce 
the data transmission cost. In this algorithm, a dij
namic nicighted graph is constructed based on the cor
related relationship among semijoins. VVhen there are 
N vertexes in the initial dijnamic meightcd graph, vvhere 
each vertex represents a semijoin, our algorithm needs 
to expand (N + 1) graphs to find a solution in the 
best čase. Moreover, since the DCB values of vertexes 
vvill be dynamically updated in the process of a vertez 
shrinking, it vvill speed up the execution and reduce the 
large space requirement of the proposed recursive algo
rithm in general cases. ,From our simulation study, we 
have shovvn that our strategy can efficiently find ben
eficial semijoins and require a lovver data transmission 
cost than does the profitable semijoin approach. In ad-
dition, this interleaving a join sequence vvith semijoins 
approach can reduce the communication cost further 
by taking advantage of the removability of pure join 
attribntes, vvhere pure join attrihutes are those vvhich 
are used in join predicates but not part of the output 
attributes. 
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Profile D 
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Profile E 
5327 
13692 
3510 

Table 5: A comparison. 
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In this paper \ve present a frame\York for parallel temporal joins. The temporal join is a key 
operator for temporal processing. Efficient implementations are required in order to make temporal 
database features attractive and applicable for the many applications that are amenable. 
We focus on the temporal intersection as the supertype of temporal joins. A basic algorithm is 
presented that is based on partitioning the temporal data over its interval timestamps. It consists 
of a partition, a join and a merge stage. The partition stage has to replicate tuples that intersect 
with more than one partition range. Any sequential join technique can be used in the join stage. 
T\vo possible optimisations for reducing the overhead imposed by replication are discussed. 
The algorithm and its optimisations are evaluated on top of a performance model. We describe the 
model and give details in the appendix. The evaluation shows that both optimisations together 
decrease the basic costs significantly. Furthermore we can give an idea of the quantitative impact 
of replication overhead in parallel temporal join processing. A modest workload caused a share of 
aromid 70% of the total costs; higher values can be expected in reahty. 

1 Introduction 

Recent years have seen increasing research efforts on 
temporal databases. Temporal data models, temporal 
query languages and temporal index structures have 
been the focus of a lot of papers. Only a few proposals 
have corae up discussing algorithms for temporal oper-
ations although it is often cited that temporal-specific 
algorithms are required for performance reasons. 

The temporal join is one of the key temporal re-
lational operators. Intuitively, it is used whenever we 
want to retrieve data that is valid at the same time. Ef
ficient implementations are required in order to make 
temporal database features attractive and applicable 
for the many applications that are amenable to tem
poral data processing, especially in data warehousing 
and data mining. The performance of temporal join 
processing, however, suffers from the higher size of 
temporal relations (because tuples are logicalhj deleted 
rather than phijsicalhj reinoved) and the high selectiv-
ity factor [12] of temporal join conditions. 

Various authors argue that the semantics of time 
can be used for optimisations. A popular example 
is the 'append-only' characteristic of transaction time 
applications: when new tuples are inserted they are 
appended to the collection of existing ones. This re-
sults in a natural sort order on the transaction time 
attribute. The sort order itself can then be exploited 
in several ways. 

Parallelism is another possibility of improving tem

poral processing performance. It has already been 
successfully incorporated in traditional database tecli-
nology and helped to overcome certain performance 
deficits. However, it has been widely neglected in the 
context of temporal databases. To our knowledge, 
there has been only one paper that discusses paral
lel temporal issues [7]. Its optimisations, however, are 
bound to special cases of temporal joins and there is 
no quantitative evaluation and no considerations on 
parallel architectural issues. 

In this paper, we want to overcome some of these 
deficits and present a framework for parallel temporal 
join processing. We thereby concentrate on features 
that are temporal-specific; considerations on data skew 
or optimisations based on non-temporal parts of the 
join condition are left out as these have been discussed 
already by other papers and in more detail. Section 2 
discusses types of temporal joins and sequential al
gorithms that were proposed in the past. Section 3 
presents an example for parallel temporal join process
ing as opposed to conventional parallel equi-join. In 
section 4, a basic parallel temporal join algorithm is 
given. This algorithm is improved through two op
timisations. Section 5 evaluates these results quan-
titatively. We modeled the performance of the three 
algorithms on top of a general-purpose hardvvare ar-
chitecture. This makes the results useful for a wide 
range of parallel environments. Details of the perfor
mance model are given in the appendix. Finally, the 
paper is concluded in section G. 
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2 Temporal Joins 
2.1 Types of Temporal Joins 
Temporal joins combine (at least) two temporal re-
lations using a temporal join condition over the two 
timestamps. The latter are usually represented as in-
tervals. Temporal join conditions therefore consist of 
expressions that define relationships between times
tamps, i.e. the time intervals. [1] identified seven pos-
sible relationships^ between two intervals. Tliese are 
shown in table 1. 

We adopt the following notational conventions: an 
interval x consists of a start point, denoted by x.ts, 
and an end point, denoted by x.te. When speaking of 
a timestamped tuple r we also refer to the respective 
interval boundaries by r.tg and r.te. Intervals are rep
resented by its start and end point being enclosed in 
brackets: [ or ] means that the respective boundary 
is included vvhereas ( and ) mean that the respective 
boundary is excluded: 

yX.Lgj X,tc j 

[X.tsj X,ts) 

{t : X.ts <t< X.te} 
{t : X.ts < t < X.te} 
{t : X.ts <t< X.f,e} 

Temporal joins can be classified according to the rela-
tionship that its join condition is based on: there are 
temporal contain-, meet-, overlap-, . . . joins. Obvi-
ously a temporal join condition may contain any ar-
bitrary combination of these relationships. We can 
consider the corresponding join to be of any type that 
is involved. In reality it is likely that there is only one. 

The literature has mainly concentrated on a 'super-
type' of the joins that arise from table 1, namely the 
temporal interscction that includes the relationships 
equals, overlaps, during, starts and finishes. We will 
concentrate on interscction joins as aH the other tem
poral joins can be considered as interscction joins with 
additional constraints. Furthermore we can draw a 
clear line between the optimisations that are possible 
for the temporal interscction join and those that are 
specific to the other temporal joins. 

Usually the tuples that satisfy the join condition are 
concatenated. In the čase of temporal joins this con-
catenation is not trivial as the value of the timestamp 
for the resulting tuple has to be defined. This defini-
tion depends on the type of the temporal join; assum-
ing temporal interscction the resulting timestamp is 
defined to be the interscction of the individual times
tamps of the participating tuples. For example in the 
čase of the two tuples r and s the resulting timestamp 
is 

[max{r.ts, s.ts},mm{r.te, s.te}] (1) 
'Actually there aro 13 if one takes the six possible reversed 

relationships into account. 

2.2 Algorithms for Temporal Joins 
The four principal algorithmic join techniques are 
brute force nested-loop, sort-merge, hash-joins and in-
dex based joins. Most join conditions involvc an equal-
ity predicate. Such joins are called cqui-joins and a lot 
of effort has been spent on algorithms that exploit the 
Iow selectivity factor imposed by the equality predi
cate. 

Basic nested-loops for equi-joins usually perform 
badly due to the lack of any preceding partitioning 
of the data. The sort-merge approach is based on 
implicit partitioning given by a sort order on a join 
attribute. This allows to reduce the number of unnec-
essary comparisons. The hash join approach requires 
explicit partitioning prior to its joining stage \vhereas 
index based joins use precomputed jDartitioning [9]. 

In the literature, several algorithms based on these 
approaches have also been discusscd in the context of 
temporal joining. Sort orderings on the temporal at-
tributes - these are either achieved through explicit 
sorting or implied by the 'append-only' characteristic 
of transaction-time relations - allow various optimisa
tions. Discussions can be found in [3], [6], [4], [13]. 

In the čase of equi-joins, explicit partitioning is the 
basis for very efBcient joining. Applying those tech-
niques to temporal intersection of interval data, liow-
ever, has the problem that intervals cannot be reduced 
to a discrete value that allovvs the grouping of the tu
ples whose timestamps intersect in one single parti-
tion. One way to get around this problem is to group 
tuples by either one of their temijoral interval bound
aries (start or end point) or a combination of these (c.g. 
in [8]). Tuples must then be either replicated and put 
into those partition fragments that hold other tuples 
that possibly join, i.e. have intersecting timestamps (as 
in [7], [14] and [16]) or each partition fragment has to 
be joined with various others that hold possibly join
ing tuples (as in [8]). The algorithm proposed in [14] 
processes fragments sequentially and keeps tuples that 
have to be present in the following fragment in a cache. 
This makes it an inherently sequential algorithm. 

Replication cannot be avoided in the čase of par-
allel temporal join processing. Such an approach is 
discusscd in [7]. The so called asymmetry property of 
relations - that appears e.g. in contain- or overlap-joins 
- can be used for reducing the number of tuples that 
have to be replicated. Asymmetry, however, does not 
occur in the more general intersection join. Therefore, 
most optimisations that are suggested by Leung and 
Muntz cannot be applied in the casc of the intersection 
join. 

3 An Example 
Before digging deeper into the parallel temporal join 
processing we want to illustrate the difference betvveen 
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R e l a t i o n s h j p 

X equals y 

X before y 
X meets y 
X overi aps y 

X duriiig y 

X s t a r t s y 

X finishes y 

E x a m p l e 

xxxx 
yyyy 
xxxx yyyy 
xxxxyyyy 
xxxx 

yyyy 
XXX 

yyyyyyy 
XXX 

yyyyyy 
XXX 

yyyyyy 

C o n d i t i o n 

X.ts = y.ts A X.te — y.te 

X.te < y.ts 
X,te -— y-t's 
X.ts < V-ta A X.tc > y.ts A X.te < y-te 

X.ts > y.ts A X.te < y.te 

X.ts = y-ts A X-ic < yte 

X.ts > y.ts A X.te = y.te 

Addtional constraints are: x.t3 < x.te A y.ts < y.te 

Table 1: The possible relationships between two intervals [1] 

conventional parallel equi-join processing and parallel 
temporal join processing by an cxample. For that pur-
pose we use two simple temporal relations of figures 1 
and 2: one holds information on cities and times of per-
formances the play "Hamlet", the other provides sim
ilar information on performances of the play "Faust". 
For simplicity, times are represented as integers. 

City 

Aachen 
Berlin 
Dresden 
H a m b u r g 
Munich 
Vieniia 

S ta r t 

3 
2 
4 
1 
6 
1 

End 

8 
10 
9 
8 
10 
10 

Figure 1: Relation Hamlet. 

City 

Bern 
Dresden 
Linz 
Mimich 
Salzburg 
Zurich 

S ta r t 

1 
1 
7 
2 
1 
7 

End 

4 
4 
9 
5 
3 
10 

Figure 2: Relation Faust. 

Assuming that the city names are unique we can get aH 
cities in which both plays are performed by computing 
an equi-join 

Hamlet M^ Faust 

with the join condition C = Hamlet. City = 
Faust.City. To compute this join in parallel we can 
partition the two tables by using the values of the city 
attributes. Figure 3 shows an example for partition-
ing the tables into three fragments respectively and 

thus into three smaller and independent joins. Please 
note that the partitioning process produced disjoint 
fragments respectively. Each of the three joins can be 
processed on different nodes in parallel. 

Hamlet 
Aachen 3 8 
Berlin 2 10 
Dresden 4 9 

Faust 
Bern 1 
Dresden 1 

Cities beginning witli A - F 

Hamlet | Fau.st 
Hamburg 1 8 i Linz 7 
Munich G 10 Munich 2 

Cities beginning witli G - M 

Hamlet 
Vienna 1 10 

Faust 
Salzburg 1 
Zurich 7 

4 

5 

10 

Cities beginning with N - Z 

Figure 3: Example of processing an equi-join in paral
lel. 

If we want to know the period during which both 
plays are performed (respectless of the location) then 
we need a temporal intersection join between the 
two relations. The join condition in this čase is 
C = TIMESTAMP(Hamlet) intersects TIMES-
TAMP(Faust). Similar to the equi-join above, the 
temporal join can be processed in parallel. However, 
this time the tables have to be partitioned over the in
terval timestamps. Figure 4 shows an example of par
titioning the tables into three fragments respectively. 
Please note that in this čase the fragments are not 
disjoint and tuples have to be replicated. This causes 
an overhead, not only because of the effort spent on 
the rephcation itself but also because of the additional 
work imposed on the joining of the fragments. 
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Hamlet 

Aachen 3 
Berlin 2 
Hamburg 1 
Vienna 1 

8 
10 
8 
10 

Faust 

Bern 1 
Dresden 1 
Munich 2 
Salzburg 1 

4 
4 
5 
3 

Timestamps intersecting with [1,3] 

Hamlet 

Aachen 3 
Berlin 2 
Dresden 4 
Hamburg 1 
Vienna 1 

8 
10 
9 
8 
10 

Faust 

Bern 1 
Dresden 1 
Munich 2 

4 
4 
5 

Timestamps intersecting with [4,5] 

Hamlet 

Aachen 3 
Berlin 2 
Dresden 4 
Hamburg 1 
Munich 6 
Vienna 1 

8 
10 
9 
8 
10 
10 

Faust 

Linz 7 
Ziirich 7 

9 
10 

Figure 4: 
parallel 

Timestamps intersecting with [6,10] 

Example of processing a temporal join in 

4 Parallel Temporal Joins 

In this section, we first describe the general structure 
of parallel temporal joins. We focus on the temporal 
intersection join. None the less, what we state can also 
be applied to the more specific cases such as contain-
or overlap-joins that allow more specific optimisations 
due to their increased selectivity. 

After an introduction of the basic architectural and 
notational issues in sections 4.1 and 4.2, a basic paral
lel intersection join is presented in section 4.3. Finally, 
two essential optimisations of the basic algorithm are 
discussed in section 4.4. 

4.1 The Basic Structure 

We assume a hybrid parallel architecture as it was de-
scribed in [5]. This architecture has two levels: the 
inner or node-level is based on a shared-memory ap-
proach, whereas the outer level adopts shared-nothing. 
Put in another way: it is a shared-nothing combi-
nation of SMP nodes. This type of architecture has 
proved to be the most general one and a recent survey 
of commercial parallel database systems [10] showed 
that most parallel database systems were optimised 
for running on this type of hardware. Figure ?? illus-
trates the architecture^. 

•^For redundanc/ reasons the disks are usually not only con-
nected to one SMP node but to several. For the purpose of this 
paper we do without this feature. 

The stages of a parallel (temporal) join of two (tem
poral) relations R and S are the following: 

1. Partition R into fragments Ri,...,7?„i; partition 
S into fragments Si,..., Sm. 

2. Perform local temporal joins i?i M S i , . . . , Rm N 

3. Merge the local results to form a global result. 

For simplicity, we will use the symbol lxl throughout 
the paper to represent a temporal join assuming that 
there is a temporal intersection condition associated 
with it. Section 4.3 discusses stages 1 and 2 in more 
detail because it is there where the differences between 
a parallel temporal join and a traditional parallel join 
arise. 

It is assumed that R and S are physically parti-
tioned over the nodes. However, we assume that the 
partitions of R and S for the join have to be created 
dynamic'ally, i.e. the Ri- and Sk do not correspond to 
the fragments of R and 5 that exist on the disks for 
the following reasons: 

- It is unlikely that R and S will be partitioned over 
the timestamp attribute using the same partition 
points for both relations. 

- It is even more unlikely that those partitions are 
colocated^. 

4.2 Preliminaries 
Let T be the time span covered by the tuples of R and 
S. For the purpose of this paper wc cissume T to be 
an interval over a discrete domain, e.g. an interval of 
integers [̂ niim • • •, *max]- A temporal m-way partition 
P o f T is aset {po,pi, •.. ,Pm-i,Pm} of m-l-1 partition 
p o i n t s w i t h Po = fmin,Pm = in.ax + 1 a u d Pk < Pk+1, 

Pfc e T for A; = o , . . . ,m - 1. P divides T into m 
partition intervals 

b^k-uPk) = {teT\pk-i<t<2}k} 

for k = l , . . . , m . The following function determines 
the number of the fragment, time range respectively, 
that a time point t € T belongs to with respect to 
partition P 

fragmentp(t) = fc iff te\pk-\,Pk) 

The parallel hardware has A'̂  nodes each with n pro-
cessors. The nodes are numbered from 1 to N and 
the processors from 1 to nN. For convenience we 
additionally use an M-way partition Q oi T with 
M = [m - 1) div n + 1. Q is a. subset of P and 

''In the sense of colocated joins as discussed in [2]. 
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Interconnect 

P [p] — P 

Bus 

ts ("̂  
• « • 

IP p ... p 

Bus 

@ ® 
Figure 5: Hybrid parallel architecture 

holds every n-th partition point of P, i.e. the parti
tion points that coincide with the points used as node 
boundaries. In the simple čase, i.e. m = nN, we have 
M = N. (5 is helpful when describing the algorithm 
in the next section 

Q = {'?o, (/1, • • •, qM-i, QM} 

with qk = Pnk • Similarly there is a function fragmentp 
forQ. 

4.3 The Algorithm 
The algorithm adopts the structure presented in sec
tion 4.1. We concentrate on stages 1 and 2 only; 
stage 3 either leaves the result partitioned for further 
processing or saves the tuples on disk. 

We assume that an optimiser has decided on a suit-
able partition P for the relations R and S. This is 
in fact a very delicate choice [16] because the parti
tion vvill have to čope with load balancing problems 
caused by data skew and - as a temporal data specific 
feature - vvill also influence the rate by which tuples 
are replicated. For the scope of this paper we assume 
that a suitable partition has been decided on; in the 
experiments in section 5 we assume an ideal uniform 
distribution of the data which makes this choice sim
ple. 

At the start, relations R and S are physically par
titioned into A"" fragments, each of vvhich residing 
on the disks at the corresponding node. Stage 1 
converts these initial partitions into the partitions 
i ? i , . . . , Rm, Si,..., Sm that are required for the join. 
As a result, the secondary storage of processor k vvill 
holdRk,Sk,Rk +n i ^k+n> • • • I Rk+ak'n! Sk+ak-n With ttk 
defined such that k + a^ • n < m. In the simplest čase, 
m = nN, this.means that aH Ofc = 1, thus Rk and 

Sk reside at processor k. The \vay to do this on the 
two level architecture might seem confusing at the first 
sight as various conversions of node, processor, buffer 
and fragment indices are necessary. 

Stage 1 

Range-partitioning for R, i.e. creation of the fragments 
Ri,..., Rm (assume m = nN when you read this for 
the first time) in stage 1 is done in the following way; 
S is partitioned similarly: 

(a) Each node reads its fragment of R; then each pro
cessor processes the n-th part of this fragment. 

(b) Each processor k has m hash buffers - one per 
partition fragment - and a^ + 1 output buffers 
numbered k,k + n,... ,k + a^ -n. 
It hashes its tuples to the hash buffers in the fol-
lowing way: a tuple with timestamp [ts,te] is put 
into 

(i) the hash buffer that corresponds to the first 
fragment in which [ts,te] falls, i.e. the hash 
buffer number fragmentp{tg), 

(ii) the hash buffers that correspond to the first 
fragments in each node in which the tuple 
has to reside, i.e. buffers with numbers [k — 
l)n + 1 where 

fragmcntg^ts) < k < fragmentQ{te) 

Remark: Step (i) puts the tuple in the fragment 
that covers the range in vvhich the timestamp's 
start point tg falls; step (ii) puts the tuples in the 
first fragments on nodes (other than that covered 
by step (i)) that hold ranges with vvhich [is,ie] 
intersects. 
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When a hash bufFer / is full it is transmitted to 
the output buffer (/ - 1) div nN + 1 of processor 
( / - 1) modnN + 1. 

(c) A further repUcation step is performed when tu
ples (each with some time interval [is,^e]) arrive, 
say at output buffer k + i -n at processor k: 

if (k + i • n) is not the final fragment for 
[ts, te] t hen 

send tuple to the ali output buffers I on 
the same node with / < fragment p {t g) 
(i.e. the number of the final fragment 
for [ts, te]) 

Remark: Alternatively, an index structure can be 
built (for each processor) that refers to those tu
ples in shared-memory that fall into the respective 
fragment. In the čase of large tuples this is cer-
tainly faster than replicating the tuples in main 
memory. As we \vill see from the results of sec-
tion 5, the costs imposed through this stage, even 
when using the slower 'copying', comprise only a 
very minor share of the overall costs. Therefore 
and due to space restrictions we only describe the 
simple copying strategy. 

(d) When an output buffer is full then its tuples are 
flushed to disk. 

The significant difference, in comparison to partition-
ing for a traditional parallel join, is the replication of 
tuples in steps (b).(ii) and (c). We chose a two-level 
replication: 

— (b).(ii) replicates the tuples over the interconnect 
and positions the tuples on ali nodes that hold 
ranges that intersect with the tuples' timestamps; 
this step can be seen as an inter-node replication. 

— (c) replicates the tuples within the nodes and 
sends them to ali processors that čope with a 
range that intersects with the tuples' timestamps. 
This intra-node replication is faster because it can 
be done via shared-memory rather than via com-
munication over the interconnection network. If 
this step was incorporated into step (b).(ii) the 
advantage of fast communication via main mem-
ory would be lost. 

Stage 2 

We now focus on stage 2 of the algorithm. Actually, 
any sequential temporal join algorithm can be used for 
performing the local joins i?i N 5 i , . . . , RnN ^ SnN-
We adopt a nested-loop approach for the follovving rea-
son: 

The performance drawback of nested-loop in the 
čase of a traditional equi-join is mainly due to the fact 

that the algorithm compares the two portions of tu
ples completely in order to compute the join result. 
Sort-merge equi-joins can decrease this overlap of the 
two relations nearly to a minimum as thcy take advan
tage of the relations being sorted on a join attribute. 
Hash-based equi-joins only do the necessary compar-
isons due to disjoint partitioning [9]. 

In the čase of a temporal intersection join, however, 
the degrees of overlap of sort-merge and hash joins 
have to be variable and are ~ as we argue - very close 
to a complete overlap: the B.^ and Sk originate in 
a range-partition of R and 5; thus they hold tuples 
whose timestamps intersect very likely. Therefore the 
degree of necessary overlap between the Rk and Sk is 
likely to be high. Therefore the advantages of sort-
merge and hash are rcduced. Furthcrmore thcy would 
require Rk and Sk to be sorted'' or hashcd beforehand 
which imposes an overhead that additionally reduces 
their advantages. 

Stage 2 of the basic algorithm then works in the 
following way: each processor k copes with 'its' frag-
ments Rk and Sk of R and S respectively. Without 
loss of generality we assume \Rk\ < \Sk\ in the follow-
ing. This only implies that - for efficiency reasons -
Rk will be the outer and Sk the inner relation in the 
nested-loop computation of Rk N S k • 

We assume that the join condition is a temporal in
tersection and some boolean expression C{r,s). The 
latter is supposed to be non-temporal and therefore 
amenable to the same optimisations that may be ap-
plied to non-temporal join evaluation. For perfor
mance modelling purposes we later assume that C{r, s) 
evaluates to true so that we can neglect any implica-
tions given by this part of the join condition and con-
centrate on the essential temporal aspects. Stage 2 
then looks like this: 

for each tuplc r in Rk do 
for each tuple s in Sk do 

i{ {[r.ts,r.te] intersects [s.t.,,s.te]) and 
no-previous.join(r, s, k) and C{r, s) then 

time-concatenate r and s 
placc rcsuIt in output buffer Xk 
if {Xk is full) then flusli to disk 

To avoid the situation in vvhich the global result con-
tains duplicates that are a consequencc of tuple repli
cation, tuples r and s are only joined if at least one of 
them appears in no preceding fragment /?,; or Si with 
/ < A;, i.e. if at least one of their timestamps has its 
start point in the current range. This is determined 
by the boolean function no.previous-join(r, s, k) that 
can be defined as 

' 'in a message-passing cnvironment it is difficult to preserve 
a sort order on R^ and Sk in the čase tliat relations /J and S 
are already sorted. At least it would slow the communication 
down and would impose an overhead in this way even though 
the sorting of R^. and Sk was avoidcd. 

file:///vill
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no.previous-join(r, s, k) — 
{fragmentp{r.ts) = k) or {fragment p {s.t s) = k) 

When two tuples satisfy the join condition they are 
concatenated. As we mentioned in section 2, the tuple 
that results from joining two tuples r and s holds the 
timestamp defined by (1). This process is called the 
tirne-concatenation of r and s. 

4.4 Optimisations 

In this section, we want to point to two possible op
timisations of the algorithm presented in the previous 
section. 

Optimisation 1 

The function no-previous.join(r,s,k) was used to 
avoid replicated tuples being joined unnecessarily and 
causing duplicates in the result. Nevertheless these 
tuples are processed by the algorithm. We can avoid 
this by splitting up the fragments R/. and Sk into two 
components respectively: 

— the set of tuples that have their timestamp start 
points in the range \pic-i,Pk) - these are called 
the primarij tuples and are put into the sets i?^ 
and 5^, respectively, 

- the set of tuples that fall into the fragment be-
cause of replication (i.e. their timestamp start 
point is not in the range \pk-i,Pk)) - these are 
denoted as the replicated tuples and are put into 
R'^ and S'^. 

Formally, we can describe the benefit of this procedure 
as follows: stage 2 in section 4.3 does ali the processing 
for computing the local join 

Rk^Sk (2) 

but is prevented from putting some tuples to the re
sults through the no.previous.join(r,s,k) condition. 
With Rk = R'kU R'l and 5fc = 5^ U 5^' (2) evalu-
ates to 

R'k^S'k\J R'k^ S'k U R';: t^S'k U Rl N Sk (3) 

which represents four individual joins. The latter one 
{R'1. M S'l) defines exactly the set of tuples that is ex-
cluded from the result by the no-previous-join(r, s, k) 
condition. It is actually unnecessary and can be 
skipped. Computation can be reduced to the first 
three joins. Section 5 will show the benefit of this 
measure. 

As a prerequisite for this optimisation we have to 
keep primary and replicated tuples separated during 
the partitioning stage 1: each processor had one hash 
bufiî er per processor that kept primary and replicated 
tuples. Now we use two: a primary hash buffer and a 

replication hash buff'er. Similarly, each processor had 
one output buffer for collecting tuples of its fragment 
before they were flushed to disk. Now there are pri-
mary and replication output buffers. Steps (b) and (c) 
of stage 1 are modified like this: 

(b) Each processor hashes its tuples to the buffers in 
the following way: a tuple with timestamp [ts,ie] 
is put into 

(i) the primary hash buffer 
k = fragmentp{t s) 

(ii) the replication hash buffers vvith numbers 
[k — \)n -\-1 where 

fragmentQ{tg) < k < fragmentQ{te) 

When a primary hash buffer is full it is trans-
mitted to the primary output buffer of the corre-
sponding processor. 
When a replication hash buffer is full it is trans-
mitted to the replication output buffer of the cor-
responding processor. 

(c) A further replication step is performed when tu
ples (each with some time interval [is,ie]) arrive 
at the replication output of processor (say k): 

if {k < fragment p {te)) t hen 
for / = fc -I-1 to 

m\n{n-node{k), fragmentp{te)] 
send tuple to the replication 
output buffer of processor / 

Optimisation 2 

A second optimisation is based on two observations: 

— The three remaining joins of (3) can be computed 
in the following orders (amongst others): 

R', M S'l ,R'k^S'k, R',: M S', (4) 

or 

R';[^S',,R'k^S'k,R'k^S'^ (5) 

Until now we assumed that the number m of frag
ments matches the number nN of processors. Al-
ternatively, \ve can choose m in a way such that 
R'i. and/or S'^ are small enough to fit into main 
memory of the node. This is possible because the 
sizes of R'/. and S'/, can be nearly arbitraribj cut 
down by increasing m; remember that they only 
hold tuples that have their timestamp start point 
in the range \pk-i,Pk)- Thus each tuple of R {S 
respectively) belongs only to one R'). {S'^ resp.) 
because the ranges are disjoint. Thus R {S resp.) 
is partitioned into more and smaller fragments by 
increasing m. 
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Assuming that the joins are computed in the order as 
in (4) or (5) and keeping R'/. and SjJ. in main memory we 
can avoid unnecessary accesses to secondary storage: 
R'^ is loaded once into main memory for computing 
the first join in (4) and is then kept for computing 
the second join, and finally the third join is computed 
with 5^ in main memory. The procedure for (5) works 
accordingly. 

Optimal join ordering and avoiding I/O accesses by 
optimally using main memory is no special feature of 
temporal join processing. However, there are two sig-
nificant issues about this second optimisation: 

— The original join (2) is decomposed into three sub-
joins, one of them being R',. ^ S'/.. R'/. and 5^ have 
predictable sizes as each tuple of R and 5 appears 
in only one of these fragments respectively. In 
contrast, the sizes of 7?'̂ ' ^^^ ^k' ^^^'•^ therefore 
also of Rk and S^, are rather difficult to predict 
because the rate of tuple replication is difficult 
to estimate. Furthermore, the negative effects of 
data skew are higher than for R'f. and S{.: it is not 
only the data skew on the timestamp start point 
values, but also skew on the timestamp interval 
lengths, that influence the sizes of 7?]̂ ! and 5{.'. 

— The optimisation is based on the patterns (4) and 
(5) that occur regularhj, namely in each of the 
local joins of the parallel temporal join execution. 
It is therefore an integral part of the algorithm 
and not a feature that an optimiser might exploit 
whenever a qualifying situation is detected. 

5 Evaluation 
In this section, we give a quantitative analysis of the 
parallel temporal joining techniques described in sec
tion 4: 

— the basic algorithm described in 4.3 (join A), 

— the basic algorithm plus optimisation 1 (join B), 

— the basic algorithm plus optimisations 1 and 2 
(join C). 

Section 5.1 describes the evaluation model; section 5.2 
gives the analysis of the algorithms. 

5.1 Evaluation Model 
The performance of the algorithms was modeled in a 
similar way to the parallel hash join in [5]. Due to 
space restrictions in this paper we only focus on the 
major issues of the model. The model is described in 
the appendix (tables 2 - 7 ) . A complete description 
can be found in [15]. 
The major issues are: 

— The total response time Cj„,„i of the algorithms 
depends on the times C,,,,,.,, Cj,„„ spent in stages 1 
and 2. In reality there might be an overlap be-
tween these two stages; thus 

max{C,„„.., C,.,„.„} < C„„„„ < C,,..,, + C,-,,,,. 

In our model, however, we assume that there is 
no overlap (e.g. enforced through a barrier type 
synchronisation). Thus we use the upper bound 
Ci„i,.i = C,„„, + Cj„i„. The stages (a), (b) etc. vvithin 
stages 1 and 2 are treated accordingly. 

- Within each stage the overlap between the I/O, 
communication, CPU and memory access phases 
is perfect. This can be nearly achieved by separate 
I/O and communication processors. Thus 

(̂ ,,.1.1 = niax|G,,.,„, G,,.,„„„,„, G,,.cpy, G,,.,„„„.) 
Cj„:„ = m a X { G j - . , „ , Gj- .c r ( / j Cj-.m,:m} 

Put the other way: in tables 2 - 5 the maximum 
of each row is taken. 

We assume a uniform distribution of the data over 
time, i.e. tuple lifespans do not vary much from their 
average values TII,TS and the timestamp start points 
are uniformly distributed over the relation lifespans 
Tji,Ts- This assumption is certainly ideal and in real-
ity temporal data skew has to be considered. It allows, 
however, the avoidance of any (possibly unrealistic or 
application specific) assumptions about the nature of 
temporal data skew. Furthermore, the model can be 
kept simple. 

The timespan T, covered by tuples from R and 5, is 
divided into m equally sized ranges, i.e. two partition 
points pfc and Pk+i are on equal distances for O < A; < 
m. If \T\ is the length of T then ^ is the length 
of a fragment range. If r is the average length of a 
tuple timestamp interval then this timestamp occupies 
a share of 

r 
m 

(6) 

of a fragmenfs range. As interval start points are 
distributed uniformly over the fragment range, there 
will be some tuples whose timestamps start near the 
end of the range. This means that those tuples overlap 
the range borders (i.e. the partition points pi). To get 
the average number 6 of fragment ranges that a tuple 
timestamp spans we have to add 1 to (6). Therefore 6 
is given hy 5 = T^T • m + 1. 

The parameter A in table 5 is the number of times 
a processor or node has to perform the stage in čase 
that m > nN. In the experiments we chose m to be 
a multiple of nN such that R'^. and S'/, fit into main 
memory (see section 4.4). Thus 

A \n-N\ (7) 
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5.2 Analysis 
The performance model was used to run several exper-
iments. First of ali, we compared the performance of 
the three joins with respect to the vvorkload of table 6, 
the architectural parameters of table 7 and varying the 
number 7V of nodes. Figure ?? shows the result. As 
it can be expected join C performs better than join B 
which itself is better than join A. Interesting facts, 
however, are the quantitative effects of the optimisa-
tions that were discussed in section 4.4: 

- Optimisation 1 (join A -> join B) improves per
formance by betvveen 20% {N = 10) and 65% 
(iV = 50). 

Optimisation 2 (join B 
by 90%. 

join C) decreases costs 

— Optimisations 1 and 2 (join A -> join C) give a 
composite improvement of around 95%. 

The experiments showed that every algorithm's costs 
are dominated by the costs for stage 2; partitioning 
costs and therefore communication costs can be ne-
glected. The costs of joins A and B mainly comprise 
I/O costs whereas join C's costs consist of CPU and 
memory access costs. Increasing N implies a higher 
I/O bandwidth, more memory and more CPU power. 
This explains the ideal scaleup in figure ??. 

Figure ?? shows the split of costs for join C. Graphs 
for the other two joins look the same; only the respec-
tive cost values on the vertical axis are higher but the 
ratio between the partial cost components is the same. 
The replication join costs are the costs for performing 
the joins that are dne to tuple rephcation, i.e. the joins 
involving i?'̂ ! and S'/! in (4) and (5). The primanj join 
costs are the costs for performing the join 7?̂  ^ S'f.. 

The overhead costs imposed by tuple replication 
have a share of 65% to 75% of the total costs. This sug-
gests that any optimisations that reduce tuple replica
tion should translate nicely into a total cost reduction. 

Up to now, the workload of table 6 did not require 
m to exceed nN in order to reduce the size of the R'^. 
and 5^ such that they fit in main memory (see opti
misation 2). In other words: it is A = 1 in figures ?? 
and ??. 

In figure ?? the costs of join C are shown for the 
tuple size r being varied. The graphs break off at 
around 1050 and 1678 bytes. The first breakpoint is 
caused by the fact that memory costs overtake CPU 
costs. The second one is due to the choice of m being 
a multiple of nN for simplicity. Passing the '1678-
bytes-point' A changes from 1 to 2 (see equation (7)). 
The crease suggests that this choice is not optimal but 
not bad either. The share of the replication overhead 
remains in the 65% to 75% margin throughout the 
experiment^. 

6 Summary 
In this paper, we discussed the parallel processing of 
teraporal joins. We focused mainly on temporal inter-
section as other types of temporal joins can be consid-
ered as special cases to temporal intersection. 

Parallelising temporal joins is not trivial. The signif-
icant difference with respect to traditional equi-joins 
is based on the fact that timestamps are usually rep-
resented as intervals. The intersection conditions con-
sists of non-equality predicates. Data partitioning over 
tirne intervals is therefore not straightforward: tuples 
have to be replicated and to be put into several frag-
ments of a range-partition of the temporal relations. 
This causes considerable overhead. 

We showed that this overhead can be reduced signif-
icantly if one divides a partition fragment into primanj 
and replicated tuples. This allovvs to avoid that repli
cated tuples of one relation are joined with replicated 
tuples of another relation as this is not necessary (op
timisation 1). Furthermore this division enables us 
to choose a certain number m of fragments such that 
subfragments that contain the primary tuples fit into 
main memory. This allows to reduce I/O accesses sig-
nificantly (optimisation 2). 

Finally we gave a performance model for three paral
lel joins. This was based on a general-purpose parallel 
hardware architecture. This makes results generally 
useful. The joins were evaluated on top of this model 
using a certain workload. Both optimisations reduced 
costs by around 95%. A further conclusion was that 
the overhead caused by tuple replication made up 
around 70% of the total costs. Research efforts on re
duction of tuple replication should therefore translate 
nicely into performance improvement. 

An open issue is the choice of an appropriate par
tition for the temporal relations. This choice is very 
delicate as it has to čope with data skew and also de-
termines the rate of replication. We plan to investigate 
this problem in the near future. 
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A Performance Modelling 
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Table 2: Performance model for the partitioning stage (stage 1) 
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Table 3: Performance model for the joining stage of join A (stage 2) 
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Table 4: Performance model for the joining stage of join B (stage 2) 
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Table 5: Performance model for the joining stage of join C (stage 2) 

Parameter 

|fi|,lS| 
r 

m 
TR,TS 

SR,SS 

Descript ion 

number of tuples in relations R, S 

size of a tuple in bytes 
length of the joint relation spans T = Tti\J Ts 
average lengths of the tuple timestamps in R,S 

the average number of fragment-ranges that a tuple 
timestamp spans 

Value in the Exper iments 

100000 tuples 
500 bytes 

5000 time units 
100 time units 

derived from rji,Ts,\T\,m 

Table 6: The workload parameters 

Parameter 

N 
n 
/ i 

WD 

VlC 

WM 

/„,,„: 

L..,. 

/„„,„.,„ 

/,,„ 
mem 

b 

Descript ion 

number of nodes 
number of processors per node 
processor speed in MIPS 
disk I /O bandvvidth per node 
communication bandvvidth 
memory bandwidth per node 
number of CPU instructions for processing a tuple in 
cach step 

number of CPU instructions for computing arithmetic 
expressions fragmentp{l) 
number of CPU instructions for initiating a data trans-
fer 
number of CPU instructions for initiating a disk I /O 
amount of shared memory per node avalaible for data 
structures 
page size 

Value in the Exper iments 

varied 
4 

100 MIPS 
20 MB/sec 
100 MB/sec 
400 MB/sec 

1000 

^ = 100 

500 

500 
8 MB 

4 kB 

Table 7: The parameters describing the parallel architecture 
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This paper presents the architecture of Phasme - a high performance appUcation-oriented database 
system manager providing key facilities for the fast development of object-oriented, relational-
based or other kinds of applications. Differing from conventional database systems, application-
oriented servers are independent of a particular data model but cooperate with any, offer facihties 
to exploit new hardware architecture trend, are fuUy general to support efRciently wide range of 
heterogeneous objects, and offer facihties to enforce applications consistency of related objects. 
Phasme, a Parallel Application-Oriented Database System(AODMS) has been designed to meet 
the new Information systems' requirements and to use the power and the trends of the ne\v gener-
ation of hardware. The major contributions of Phasme are the application-oriented architecture, 
the data storage manager, the dynamic optimization ofboth inter and intra-operation parallelism, 
and the exploitation ofoperating system services such as multi-threading or memory mapping for 
efRcient concurrent executions. 

1 Introduction 

To satisfy the next generation of heterogeneous in-
formation system's demands, the DBMSs have to 
support and to distribute a wide variety of com-
plex and dynamic data types (e.g. audio, video, im
age, text) to a wide variety of machines in enter-
prisewide, heterogeneous environments. DBMSs have 
done an important step to support Client/Server ar
chitecture and non-standard applications as lijperme-
dia systems[13], imaging database[24], on-line control 
systems[21], or CAD-CAM applications. However, 
none of the DBMSs is general enough to support ef-
fectively a large spectrum of different applications yet 
as it is shown in [31]. The DBMS overview proposed 
by [25] indicates that there is a room for further im-
provements and there is also a need for more effective 
DBMS implementation techniques. Even if improve-
ments in term of customizability have been achieved 
as it is shown in [35], vertical customizability from 
the data definition to the execution model is not yet 
supported as far as we know. This paper presents, 
Phasme, a parallel Application-Oriented DBMS under 
development since 1994. It has already achieved suc-
cesses in Delivery Information System[5], in WWW 
content-based document retrieval[6] and supporting 
video on demand([3], [4]). The design goals of Phasme 

are to achieve a high performance server, and to meet 
notabIy multimedia Information systems' demands by 
developing customizable features. There is a need to 
provide application-oriented features to serve a broad 
specific application requirements. The application-
oriented design also preserves both the data indepen-
dence and the knowledge independence by using an 
extended graph storage structure. 

To achieve these goals, the Phasme database server 
relies on the combination of the Decomposition Stor
age Model [38] and the DBGraph Storage Structure 
[37]. It ušes a simple graph data storage structure 
along the hnes of the Graph Data Model [26]. The 
resulting data structure is called Extended Binary 
Graph. The Phasme server largely ušes the main mem-
ory with virtual memory management mechanisms. 

As advocated for Cricket[33], ObjectStore[28], 
Texas[34], QuickStore[39], and other similar DBMS 
architectures, a DBMS using a virtual memory man
agement based on a pointer swizzling mechanism[23] 
(called PS/VM) appears to be the only alternative 
to high-end systems according to new emerging hard-
ware architecture. However, a DBMS using a virtual 
memory management without pointer swizzling mech-
anism(called NoPS/VM) is an interesting alternative 
which can provide similar or better query processing 
performance. Dali[22] and Monet[12] are some exam-
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ples of DBMSs with no pointer swizzling mechanism 
included inside the memory management. Phasme is 
related to this last group. Intuitively, a DBMS archi-
tecture with no pointer swizzling-based virtual mem-
ory mechanism has less mapping overhead: the ob-
ject format is the same on disk as in memory with no 
conversion overhead. One dravvback could be a low 
reliability to access persistent objects by no deferenc-
ing standard virtual memory pointers, introducing the 
need for software checks. The use of NoPS/VM mech
anism to support an Extended Binary Graph is a chal-
lenge to achieve high performance. Another motiva-
tion for Phasme is to support main memory algorithms 
for object parallel management. The rationale of this 
decision is that most of the main memory algorithms 
designed for PS/VM architecture are also relevant for 
NoPS/VM architecture. 

The focus in Phasme is to support both non-
query languages (SGML,HTML,Tcl/tk) and query 
languages such as SQL3 and ODMG-93 compilation 
with dynamic optimization and automatic paralleliza-
tion. To achieve performance goals, Phasme exploits 
both inter and intra-operation parallelism. Overall, 
the contribution of Phasme is to show that a par
allel application-oriented DBMS based on NoPS/VM 
mechanisms simplifies the object management and im-
proves the performance of the database management 
using customizing and parallel capabilities wliile meet-
ing new Information system's requirements and end-
users' needs. The optimizer integrates neural network 
technologies to customize query optimization strate-
gies according to the target applications. The run-time 
system exploits much the underlying operating system 
low levels as memory mapping and multithreading to 
minimize the overhead of parallelism. In this paper, we 
concentrate on the design choices, on the architecture 
of Phasme and on report on the performance exper-
iments of two major application domains: (1) object 
manipulation and (2) text retrieval. The remainder of 
the paper is organized as follows. Section 2 provides 
and discusses the design principles used inside Phasme. 
Section 3 describes the overall architecture of the sys-
tem. Section 4 reports on performance evaluations and 
experiments made with the current implementation on 
a SPARC Station sun20. Section 5 concludes. 

2 Design Overview 

This section gives an overview of the major decisions 
which led to Phasme's architecture. Obviously, some 
of these decisions were made in order to support ex-
isting standards (UNIX, ČORBA, OQL, SQL) and to 
provide high performance. 

2.1 Application-oriented concept 
The major improvement provided by the application-
oriented concept is the vertical customizability from 
the data definition to the execution model to enable 
the application to tailor the DBMS according to its 
own requirements. 

2.2 Design Principles 
Since designing DBMS is becoming more and more 
complex, it was essential to adopt principles for the de
sign of the DBMS architecture follo\ving the methodol-
ogy presented in [17]. First, they stem from the teach-
ings of previous research prototypes (DBS3, Quick-
Store, Dah, Monet, and others) and of previous com-
mercial systems. Second, it is important to re-use 
strong state-of-the-art technologies \vhich have already 
been thoroughly tested. Therefore, follovving princi
ples have been established. 

— Customizable interoperability-based ap-
proach. The advantages of the interoperabil-
ity approach are simplicity and high performance 
to exchange heterogeneous Information between 
servers and among client applications inside dis-
tributed and heterogeneous environment. Com-
bining a similar approach to the customizability-
orientation into Phasme leads to shift data mod-
els' constraints to libraries for user applications. 
Furthermore, this approach extends in some way 
the ODMG-standard ČORBA vvith customizabil-
ity mechanisms. This approach enables the man
agement of heterogeneous data and it also eases 
the integration of the various requirements of 
complex applications as data mining, knowledge 
discovery or multimedia applications. Phasme is 
a satellite DBMS which can discuss and exchange 
data with already existing DBMSs. 

— Main memory assumption. To support new 
hardware trends, we assume that the hot data set 
fit in virtual main memory. This is an important 
factor to get high performance. 

— Rely on memory mapped file mechanisms. 
Most of the new object-oriented database systems 
and parallel database systems ([22], [12], [10]) rely 
on the memory mapped file concept whose ma
jor advantage is the same format between the in-
memory data and the on-disk data. 

— Rely on operating system's functionality. 
The functions mmlock, mmap, and madvise 
are integrated into the Phasme implementation. 
However the trends in microkernel operating sys-
tems as Chorus or real-time Mach ([11]) indicate 
that they vvill provide efficient features as real-
time scheduler, time-driven prefetching pohcies. 

file:///vhich
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real-time threads, synchronization and real-time 
inter-process communication (IPC). 

— Micro-kernel system. The implementation of 
the Phasme system has been optimized at any 
level to produce an efficient kernel with size of 
code. This enables to provide a Information en-
gine for embedded system. 

2.3 Storage Structure and Execution 
Model 

The data storage structure and the execution model re-
spectively represent the way that the appHcation sees 
the data and the way that the appHcation's requests 
are executed. Storage structure and execution model 
design can be seen as the first step of the query opti-
mization. The storage structure is mandatory to inte-
grate rich modeling power to reach wide application re-
quirements. The execution model should provide efR-
cient low-level execution. To understand the way that 
the execution model vvill be mapped on an extended 
object storage structure, it is important to recall the 
characteristics of object storage models largely based 
on [38]. 

- N-ary Storage Model (NSM). A NSM-based 
architecture (Figure [1]) is composed of objects 
which are considered as N-ary tuples. Each tuple 
is constituted of ali the items characterizing the 
related object. This architecture forbids cluster-
ing objectives. 

- Decomposition Storage Model (DSM). A 
DSM-based architecture (Figure [2]) is composed 
of objects whose items are stored separately. This 
architecture consists of triple-based data repre-
sentation (OID, Item, Value). This architecture 
facilitates fragmentation objectives. 

— Partial Decomposition Storage Model 
(PDSM). A PDSM-based architecture (Figure 
[3]) is composed of objects which have been ver-
tically fragmented on specific items. Replication 
could become a shortcoming of this data struc
ture. 

To achieve good caching hit ratios, good load bal-
ancing and high response time, data are partitioned 
in data clusters. Recent works ([27],[32]) have shown 
that partitioned-based algorithms increase the query 
processing performance. In NSM and PDM, data par-
titions become a bottleneck while DSM seems to be 
the most suitable architecture. To achieve high perfor
mance for intensive object manipulation-based appli-
cations (e.g. office multimedia application), data and 
code fragmentation should also be considered, other-
wise data conflicts appear. 

OID ITEMl ITEJVIn 

OIDl ITEMl ITEMn 

Figure 1: N-ary Storage Model 

OID ITEMl VALUE 1 

• • • 

OID ITEMn VALUEn 

OIDl ITEMl VALUE 1 

• • • 

OIDl ITEMn VALUEn 

Figure 2: Decomposition Storage Model 

2.4 The Storage Structure 

The storage structure is an important performance fac-
tor for a database system as it has been shown in [36]. 
The major issue is to reduce the I/O costs for data re-
trievals according to the data structure and data place-
ment on disks. As it has been pointed out in [18], the 
physical data independence is also a cornerstone of a 
new generation of DBMSs. The separation between 
the physical representation of the data and its seman-
tic enables to take out data model logical aspects from 
the DBMS kernel. 

One Virtual Memory-base Level: Unlike 
DBS3[8] which implemented a two-level store to dis-
tinguish betvveen permanent and temporary data, we 
adopt one virtual memory-based level to store both 
kinds of data. The permanent data are shared among 
the users whereas teniporary data are not shared. 

DSM Model: The Decomposition Storage 
Model[38] has been chosen to implement the Data 
Storage Structure of Phasme because it enables to se-
lect independently each item and to change dynami-
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Fragment I Fragment 2 

OID ITEM 1 VALUE1 

... 
OID ITEMk VALUE i 

OID ITEM k+l VALUEn 

... 
OID ITEMn VALUE1 

Figure 3: Partial Decomposition Storage Model 

OIDl OID OID-Valile relaiionship Value 

OID-OID relaiionship Vertical decomposition 

Figure 4: Phasme data storage structure 

cally the object structure. Furthermore, this storage 
model is suitable with distributed environments. 

Binary Graph: A Binary Graph structure follow-
ing previous works ([38],[37], [26]) has been chosen to 
implement the data storage structure because it en-
ables efRcient data access methods [1] and assures a 
compact data structure to maximize the probability 
that the hot data set fits in main memory. This data 
storage structure enables to support wide different ap-
pHcation domains. 

Persistent Data: Persistent data are directly ma-
nipulated inside the binary graph in which they are 
stored, without incurring any in-memory copying cost. 

At the storage level, Phasme manipulates Extended 
Binary Graphs (EBG) resulted in the combination of 
the binary graph approach, of the Decomposition Stor
age Model approach, and of the Graph Data Model ap
proach. Phasme partitions ali the information in Ex-
tended Binary Graphs (EBG) as it is shown in Figure 
[4] in order to support high performance access meth
ods. The EBG data structure is based on no-oriented 
arcs, a set of arcs representing one object item. Each 
are is composed by two extremities (source = OID, 
destination = value) which can be inversed according 
to access methods. The database consists of a number 
of EBG files vvhich are UNIX files. Partition and repli-
cation are used to accelerate data retrieval when data 
are mainly on disk. Partitioning can be done on EBG 
data structure for optimal accesses in two ways: (1) on 
the EBG extremities, and (2) on search data structure. 
For example, hashing and index data structure such as 
G-TREE and BANG are used respectively in (1) and 
(2) cases. Other specific structures as signature file 

can be added to support specific data processing as 
text retrievals. 

2.5 The Execution Model 
The execution model is a parallel dataflow execution 
model vvhich supports main memory data operators, 
transfer operators, and control operators. The ve-
hicle of the query processing is D0RLA[2], an alge-
braic language incorporating support for Deductive, 
Object and Relational capabilities. Following previ
ous research work[20], DORLA is characterized as a 
many-sorted algebra which eases the customizability 
of the interface and internal languages as adding new 
types or new modules according to application's re-
quirements. 

The Phasme compiler transforms a user query into a 
parallel execution plan statically optimized. The par
allel execution plan will be dynamically optimized at 
runtime according to Phasme's behavior. Each exe-
cution plan is represented as a directed graph of op
erators. The rationale of this approach is to perform 
compile-time optimization and run-time optimization 
while keeping the server simple and providing very ef-
ficient parallel data accesses. A major issue addressed 
by the run-time optimization is to maximize the query 
processing throughput and to minimize the response 
time of users. This is dynamically achieved through a 
mechanism based on the concept of matching the avail-
able resources of the environment and the operators of 
the dataflow in order to evaluate the degree of paral-
lelism of the query execution plans. This mechanism 
is described in [7]. 

3 The Phasme Architecture 
Phasme is based on a Client/Server organization. The 
users are viewed as processes. Phasme is fully cus-
tomizable from the data types to the execution model 
as it is shown in Figure [5]. The kernel is based on 
main three subsystems: the Service manager, the Data 
Manager, and the Memory Manager as it is shown in 
Figure [6]. 

3.1 The Service Manager 
The Service Manager, based on an ORB-like ar
chitecture (ČORBA 1.2), provides the entry points 
to Phasme both for the application and the user 
front-ends. It receives request expressed in IDL 
(Interface Data Language) follovving the ČORBA 
mechanism ([30]). The interoperability feature pro
vides an implementation independence to exchange 
data inside distributed and heterogeneous environ
ments. Furthermore, the use of ČORBA approach 
enables to encapsulate dynamically applications as a 
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set of distributed objects and their associated mod-
ules. This property enables to manage concurrently 
heterogeneous information and apphcations based on 
different data models. 

3.2 The Data Manager 

The Data Manager provides ali the functions of the 
database system needed to support the execution of 
several parallel query execution plans. The Data Man
ager includes the transaction management and the rule 
manager (active mechanism of Phasme). Each com-
piled execution plan is dynamically optimized accord-
ing to the behavior of the server and then the result 
is dynamically linked with a set of library functions. 
These libraries correspond to some sets of functions de-
fined according to the appHcation's data model (e.g. 
object-oriented, relational, or deductive) and its se-
mantics. 

3.3 The Memory Manager 

The Memory Manager provides a direct support for ac-
cess methods to persistent data and volatile data. It is 
based on standard techniques (e.g. strict 2 PL, 2PC) 
as well as operating system functions (mmap, mad-
vise, mlock) for main memory management. We took 
the assumption that the hot-set of the database fits 
into the main memory for ali the concurrent transac-
tions and the other data may be swapped out to disks. 
To achieve the memory management, Phasme ušes the 
operating system mechanism of memory mapped file. 
The database is mapped into the virtual memory as 
contiguous logical address space. This memory man
agement mechanism is bounded by the size of the vir
tual memory space and it requires no pointer svvizzling. 
The memory management includes three main mod-
ules : (1) the Memory Manager it-self, (2) the Lock 
Manager, and (3) the Recovery Manager. The Mem-
ory Manager manages ali the transfers of memory 
mapped files between disk and memory. It supports 
a LRU caching policy for EBG manipulations. The 
Lock Manager serializes the concurrent transactions 
by a strict two phase locking mechanism([9]). The 
Recovery Manager ensures by a two phase commit 
algorithm that ali the modifications of the database 
done by committed transactions are visible and per
sistent. 

4 Performance Experinients 

In this section, we report performance experiments of 
two kinds of workload made witli the Phasme proto-
type: object manipulation and textual retrieval. The 
motivation of the choice of these two kinds of work-
load (Object manipulation and Content-based textual 
retrieval) was the increasing influence of those two 
aspects in major real apphcations. Furthermore, we 
concentrate on the performance of the kernel layer for 
both the two kinds of vvorkload. The platform used in 
the result presented here is a bi-processor Sun SPARC 
Station 20/50 MHz running Solaris 2.4, with 96 MB 
main memory, 16 KB data-, 20 KB instruction and 
1MB secondary cache, local disk and swap space. 

4.1 0 0 7 Experiments 

In order to get insights in the prototype's behavior, 
we have investigated a subset of the 0 0 7 benchmark 
[14] in increasing order of complexity: exact lookup 
(Ql), scan (Q2,Q3,Q7), path lookup(Q4), single-level 
make(Q5), join (Q8), insert and delete. The metric 
used in the performance experiments is completion 
time. The experimental database was generated auto-
matically following the specification of the 0 0 7 bench
mark. the size of the medium database (fanout 9) is 
equal to 69 MB. The parallelization of the operation 
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Table 1: 
quer ies 
qi 
Q2 d'/.) 
Q3(10y.) 
Q4 
Q5 
Q7(100'/.) 

Performance Results 
Cold tirne 
0.67 s 
0.52 s 
0.57 s 
0.74 s 
1.7 s 
1.80 s 

Hot tirne 
0.46 s 
0.51 s 
0.53 s 
0.53 s 
1.56 s 
1.62 s 
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Figure 7: Exact match lookup query 

relies on the Solaris thread management system. The 
Solaris system efFectively distributed the work betvveen 
the available processors, when several threads worked 
concurrently. We assumed a perfect parallelism re-
sulting from a good distribution between threads and 
processors. The performance results of the queries for 
the medium/9 database are shown in Table 1. 

Figure [7] compares the results of the cold and hot 
exact match lookup query execution varying the num
ber of threads for the medium database (fanout 9). 
In each čase, the system used the clustered index to 
provide high performance. 

Figure [8] compares the results of the cold and the 
hot scan execution of the ali atomic parts varying the 
number of threads for the medium database(fanout 9). 
The degree of intra-operator parallelism enables to im-
prove the efficiency of the 0 0 query processing. 

It is also important to evaluate the performance be-
havior of structural operations as insert and delete to 
stress build ability. Figure[9] shows the results of in
sert and delete operations. The intra-operation par
allelism betvveen the insertion operations enables to 
decrease the response time by a factor 5 if the num
ber of threads is equal to the number of nevv composite 
parts. The same result is obtained for the delete query. 

Ravv traversal speed has been also studied. Figure 
[10] shovvs that the cold times are maximal for a fac
tor 1.6 slovver that the hot times. The main memory 
approach is not a major cost factor. 

Numbef ot Ihraads 

Figure 8; Scan query, medium db/9 

Figure 9: Delete and insert, cold, medium db/9 

The association betvveen EBGs and parallel query 
executions is the key factor to provide high perfor
mance. 

4.2 Textual Retrieval Experiments 
To demonstrate the feasibility and effectiveness of 
Phasme, vve implemented the multilevel superimposed 
coding method([29]). Results on Signature Files have 
been published for both research and commercial text 
retrieval servers([15],[16]) in term of disk-oriented data 
accelerators. Our implementation of signature files 
sets a nevv mile-stone for further developments in this 
area in the field of main memory text retrieval. The 
implementation of the Phasme textual datatypes are 
based on the Phasme plug-ins interface. 

4.2.1 Extension Plug-ins 

To support large sets of documents, vve have imple
mented document types and the multilevel superim
posed coding method as index. Since nevv information 
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Numbar oi threacJs 

Figure 10: Traversal TI, medium size 

systems need index which perform well in both main-
memory as disk-based settings, we completed the sig
nature file implementation with clustering operations. 

Ali the operations related to the signature file plug-
ins are shown below: 

Plug- ins Document; 
ITEM Document; 
COMPARE = DOCUMENT.compare; 
ERASE= DOCUMENT.erase; 
HASH= DOCUMENT_hash; 
INSERT = DOCUMENT,insert; 
READ= DOCUMENT_read; 

END Document; 

Plug- ins SF; 
USE Document; 
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Figure 11: Text retrieval performance using signa
ture index (WSF) and without using signature index 
(NOSF) 
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Figure 12: TR and intra-operation parallelism 

INDEX SF; 
CREATE = SFcreate; 
ERASE = SFerase; 
INSERT=SFinsert; 
SAVE=SFsave; 

END; 
END SF; 

4.2.2 Performance Evaluation 

— With and without Signature File 
The first set of measurements shows how the in-
troduction of the signature file access method 
based on the multilevel superimposed coding 
method contributes to the improvement of the 
text retrieval. Figure [11] shows the average 
elapsed tirne of text retrieval queries varying the 
number of documents from 10000 to 200000 when 
the kernel is a using a single thread. 

The performance evaluation of the EBG data 
structure based on the memory-mapped file points 

out that the memory-mapped file mechanism is 
also efficient for selection queries. 

— Intra-operation Parallelism 
Figure[12] shows the influence of the intra-
operation parallelism of Phasme on the text re
trieval processing. Database size is set to 200 
000 documents. Tliis experience was run on the 
same kind of SUN workstation but in this čase 
the machine contains 2 processors. We varied the 
number of threads from 1 to 4 threads. We have 
horizontally clustered the multilevel signature file 
structure in several buckets of signatures. In this 
way, the set of threads can be linked to the set 
of buckets (signature). The intra-operation par
allelism mechanism of the execution model con-
siderably improves the retrieval performance. 

The creation of 4 threads introduces some over-
head due to the small number of processors. 
There are some thread overlapping on the pro-
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cessors. Figure [13] combines the variation of 
items and inter-operation parallehsm processing. 
The increase of the number of items improves the 
elapsed time. Figure [14] shows the influence of 
the signature data structure on the size of the 
database. The result points out that the signa
ture file has nearly no impact on the total size of 
the databases. 

-- Length of the Signature 

We varied the length of the signature at the first 
level from 1000 bytes to 4000 bytes. This varia
tion has been done for three different sets of doc-
uments (e.g. 10, 000; 50, 000; 100, 000). Figure 
[15] shows the influence of the length of the sig
nature at the first level on the elapsed time. We 
have verified that the increment of the length of 
the signature at the first level decreases the false 
drop probability, and thus improves the retrieval 
performance. 

— Weight of Signatures 

We examined the effect of the vveight of signa
ture on the performance. We confirmed that the 
smallest weight gives the best configuration for 
high performance as it is shown in Figure [16]. 

5 Conclusion 

Phasme is a parallel Application-Oriented DBMS 
whose goals are first to provide a new approach for 
Information processing technology and second to sat-
isfy both the requirements of the new generation of In
formation systems and the hardware trends. Phasme 
supports a main memory data storage structure called 
Extended Binary Graph (EBG). In this paper, we have 
presented the design decisions, the execution model, 
and the architecture of Phasme. We also reported ex-
periments with the current implementation of two ma
jor workload domains (object manipulation, textual 
retrieval). The alpha implementation of Phasme (VI) 
was complemented in June 1995 and the beta release 
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(V2) was completed in April 1996. Phasme DBMS is 
implemented in C. Phasme server is operational for 
Sparc/Sun Solaris and DEC alpha platforms. Phasme 
client is operational for Solaris, Macintosh Power PC 
and Windows 95. Also, we are planning on porting 
Phasme on Windows NT. An extension of Phasme to 
a distributed database system (DPhasme) is the pur-
pose of the TOSDHIM project (cooperation between 
Kyushu University, NACSIS, and Pariš VI/MASI Uni-
versity). We consider the following features to be the 
most significant contributions of the Phasme project: 

— Parallel execution model. Phasme imple-
ments a parallel dataflow execution model based 
on the Extended Binary Graph structure which 
provides data model independence but also allows 
to collaborate with any. Compared to otlier main-
memory systems such as Texas and Cricket, this 
leads to siipport efficiently intra-operation paral-
lelism for object management. 

— Parallel optimization. The Phasme supports 
several optimization strategies in order to produce 
parallel query plans. The optimizer can be cus-
tomized according to the target environment and 
neural network-based cost models. 

file concept avoids the overhead for data retrieval in-
troduced by traditional DBMSs. It gives an uniform 
data format for memory and disk data storage and 
manipulations. As a customizable DBMS, Phasme 
( a version for cooperation is available on request 
at phasmc@rd.nacsis.ac.jp) is being used inside the 
AHDS project (Active Hypermedia Delivery System) 
and inside the MODOS project (Museum On-Demand 
Open System) at NACSIS, experimental site for this 
emerging database system. 
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To eHicieiitly support continuous cUsplay for continuous media, many approaches based on the 
striping strategy that is implemented on a multi-disk drive liave been proposed. Ho\vever, the 
striping strategy can only support simultaneous display of continuous media wliicli are prede-
termined before t}iey are stored in tlie multi-disli drive. For an interactive display application, 
a system must support users to make any clioice of objects for display even when disp!ay has 
started. Altliougli Slialiabi et. al. have proposed the replication and prefetching strategies for 
interactive display of continuous media, the combination of objects for display and the branch 
points for choices both have to be predetermined. Based on their strategies, they have to consider 
aH the possible cases according to the given the combination of objects and the branch points of 
choices; it \vill require a lot of additional overhead of space and time. To reduce the overhead, in 
this paper, we \vill propose a sliding window approach to supporting interactive display for con
tinuous media, in \vhich we only record a little necessary Information ofretrieval of the following 
subobjects for display in a sliding window. For the \vay of interactive display described above, in 
which the combination of objects for display and the branch points for choices are predetermined, 
\ve call it off-line interactive display. As opposed to off-line, an on-line interactive display is 
the one, in which the combination of objects for display and the branch points for choices are dy-
namically determined. To support on-line interactive display, we will extend the sliding window 
approach to the dgnamic sliding vjindoiu approach. In this dgnamic sliding uiindcnu approach, 
the size of the sliding window can be changed according to the future requirements of data for 
display. 

1 Introduction bandwidth while a current typical magnetic disk drive 
has only an 80 Gbit capacity and approximately a 20 

Some media (such as audio and video) are classified Mbps bandwidth. In general, conventionalfilesystems 
as continuous because they consist of separate media are unable to guarantee that clients can access contin-
quanta (such as audio samples or video frames), which uous media in a way that permits delivery deadlines 
convey meaning only when presented in time. Sev- to be met under normal buffering conditions. There-
eral multimedia types, video, in particular require high fore, finding a way to support continuous retrieval 
bandwidths and large storage space. For example, one of multimedia data at the required bandwidth and a 
hour and a half of video based on HDTV (High Defini- way to store the multimedia data are challenging tasks 
tion Television) quahty images has approximately 36 [2, 5, 7, 13, 14, 21]. In this paper, for convenience, we 
Gbits of data and requires approximately a 100 Mbps use an object to denote an object of digital continuous 
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media. 
Previous approaches to supporting real-time ap-

plications of digital continuous media can be clas-
sified into three directions: continuous retrieval, 
random access and interactive bromsing. To sup-
port continuous retrieval, some strategies clustered 
the data on a single disl< to reduce the cost of disk 
head movement [6, 16, 17,18, 22, 23], and some strate
gies tended to increase the bandwidth of disk device 
by using parallelism, which combines the bandwidths 
of multiple disks to provide a high data bandvvidth re-
quirement [1, 9, 12]. To support random access, like 
editing operations, since there is a trade-off between 
the flexible placement and the overhead of disk head 
movement in a disk drive, a straightforward idea is 
to find a compromise between them, which restricts a 
group of consecutive data to be stored consecutively 
in each cylinder on the disk while sucli a group of 
data can be randomly stored on any cylinder [11]. To 
support interactive browsing such as fast forivard 
and fast hackiuard, some strategies used the scalable 
compression algorithms to generate the multiresolu-
tion data [10], and some strategies supported brows-
ing at any desired display speed by a predetcrmined 
sampling procedure [4]. 

Since future demands for high storage capacity and 
higli bandwidth are expected, to efficiently support 
these three different directions for real-time applica-
tions, the striping strategy [1, 12] implemented on 
a multi-disk drive has been proposed. Basically, in 
the striping strategy [1, 12], the object is split up 
into subobjects and placed in various locations on the 
disks. Moreover, in the sim.ple striping strategy [1], 
the striped subobjects are stored among the multi-disk 
drive in a predetermined sequence and must be read in 
this predetermined sequence to guarantee continuous 
retrieval. Furthermore, Berson et al. [1] further gener-
alized the simple striping (called staggered striping) 
to support a database that consists of a combination of 
objects, each with a different bandwidth requirement. 

Note that the striping strategy can only support si-
multaneous display of objects \vhich are predetermined 
before they are stored in the multi-disk drive. For 
an interactive display apphcation, a system must sup
port users to make any choice even when display has 
started. Although in [3, 20], they have proposed the 
replication and prefetching strategies for interactive 
display, the combination of objects for display and the 
branch points for choices both have to be predeter
mined. Based on their strategies, they have to resolve 
ali the possible conflicts before display starts, where a 
conflict means that a pair of two subobjects which are 
stored in the same disk must be retrieved simultane-
ously. Consequently, their strategies will require a lot 
of additional overhead of space and time. Moreover, 
display may be interrupted by the users at any time. 
When this current display is interrupted and is no 

longer needed, efforts for prefetching or replication 
are wasted because the following subobjects for dis-
play do not need to be retrieved. Therefore, to reduce 
the overhead, in this paper, we will propose a sliding 
window approach to supporting interactive display for 
continuous media, in which we only record a little nec-
essary Information of retrieval of the following subob
jects for display in a sliding window and resolve the 
possible conflicts within the sliding tvindovj. Fiom the 
simulation results, we^ find that the larger the size of 
a sliding ivindom is, the larger the waste of time and 
space once display is interrupted. Therefore, we pre-
fer a sliding window with a smaller size. However, a 
hiccup can occur when the size of the sliding window 
is not large enough, where a hiccup means that the 
subobjects for being displayed has not been retrieved 
and will be ready in the next time interval. There
fore, we have to select a proper sliding windmu size 
for a predetermined interactive display. A mathemat-
ical analysis will be studied to speed up the selection 
of the value of a sliding vjindoiu size. 

Furthermore, for the way of interactive display de-
scribed above, in which the combination of objects for 
display and the branch points for choices are prede
termined, \ve call it off-line interactive display. As 
opposed to off-line, an on-line interactive display is 
the one, in which the combination of objects for dis-
play and the branch points for choices are dynami-
cally determined. To support on-line interactive dis-
play, we will extend the sliding window approach 
to the dgnamic sliding windoiu approacli. In this 
dgnamic sliding luindmu approach, the size of the 
sliding window can be changed according to the fu
ture requirements of data for display. Since the sub
objects for future display are not predictable, we use 
some Information of previous retrieval to guess the pos
sible subobjects for future display. From the simula
tion results, we find that the probability of hiccup is 
decreased as the amount of Information of previous 
retrieval is increased. 

Basically, our proposed approach can be applied not 
only to the multi-disk drives, but also to the parallel 
database management systems, such as, parallel mul-
timedia systems based on the share-nothing architec-
ture [9]. A share-nothing architecture consists of a 
number of processors interconnected by a high speed 
communication network. Processors do not share disk 
drives or random access memory and can only commu-
nicate with one another by sending messages using an 
interconnection network. In this čase, we assume that 
the bandvvidth of both the network and the network 
device driver exceeds the bandvvidth requirement of an 
object. The rest of the paper is organized as follows. 
Section 2 briefly describes the striping strategy that 

'This research was supported in part by the National Science 
Council of Rcpublic of China under Grant No. NSC-86-2213-E-
110-004. 
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is applied in our approach. Section 3 presents the pro-
posed sliding-window approach. Section 4 presents 
the simulation results of the proposed approach. In 
Section 5, we will present a mathematical analysis of 
the sliding vjindow approach. In Section 6, we will ex-
tend the sliding window approach to support on-line 
Interactive display. Section 7 contains a conclusion. 

2 The Striping Strategy 

In our approach, we apply the striping strategy [1] to 
arrange the objects on a multi-disk drive. Suppose the 
bandvvidth of both the network and the netvvork de
vice driver exceeds the bandvvidth requirement of an 
object. Assume that there are N disks which operate 
independently, called a multi-disk drive and each disk 
has a fixed bandwidth d, a worst seek time WS, and a 
worst latency time WL. The simple striping strategy 
ušes the aggregate bandvi'idth of several disk drives by 
striping an object across multiple disks [1]. For exam-
ple, an object X with bandwidth requirement Cx at 
least requires the aggregate bandwidth of Mx = [ ^ 1 
disk drives to support continuous retrieval of X. (Note 
that the maximum aggregate bandvvidth of a multi-
disk drive with A'̂  disks is (A'' x d) which must not be 
smaller than Cx-) Moreover, object A' is organized as 
a sequence of equi-sized subobjects (A''o, Xi, A'2, ...), 
where the size of a subobject is sx Mbits. Each sub-
object Xi represents a contiguous portion of X and is 
stored randomly in the disks. For the load balance for 
each disk, the subobjects of X are assigned to the A'' 
disks in a round-robin manner and the N disks are di-
vided into R{— [ j ^ J) disk clusters, where each clus
ter is assigned to an object for retrieval of the Mx con-
secutive subobjects to guarantee the real-time trans-
fer. The duration of retrieval of a subobject is fixed for 
ali subobjects and is in terms of a time interval I. Ac-
cording to [16], concurrent pipelining of retrieval and 
display of an object requires prefetching and at least 
two buffers with size Mx subobjects. One buffer is for 
retrieval of the next Mx consecutive subobjects while 
the other one is to store the previous retrieved Mx 
consecutive subobjects which are currently displayed. 
The real-time retrieval (i.e., continuous retrieval) can 
be achieved by satisfying following equations: 

^ r. 

Mx>\^ 
Mx < N, 

I 

1, 

M v 

WS + WL + Sf < 

Hence, display of X employs only a single cluster 
at a time in a round-robin manner. In each clus
ter, consecutive subobjects of object X are stored on 
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Figure 1: An example of object X striped on a multi-
disk drive. 

IS 
/A 

XI 

n 

XI 

Xh 
X5 
X7 
X* 

VI 

XII 

15 
V<l 
\ l l 

V.I 
V*. 
V» 
Vil 

/ • 
\7 
Vit 

vu 

/1 
ZJ 
VII 
VI4 

/J 
/A 
Vl.< 

Figure 2: An example for staggered striping with a 
combination of 3 different objects. 

these Mx disks in a liner order. Figure 1 shows an 
example of simple striping for an object X with band
vvidth requirement Cx = 80 Mbps, vvhere N = 10, 
d = 20 Mbps, WS = 30 ms (ms = 10""^ seconds), 
WL — 10 ms and the value i denotes subobject Xi 
inside a disk. Suppose Mx = 5 (> 5^), then sx (= 
(ivs+iy/.)xr/x.^ 

;—^T ^) = 3.2 Mbits (Mbits = 10^ bits), I 

= 0.2 seconds and R = 2. Note that display of X 
first employs cluster O to read the subobjects Xo, Xi, 
A'2, Â 3 and "̂4 from disks O, 1, 2, 3 and 4, respec-
tively, into a buffer in the first time interval. In the 
second time interval, subobjects Xr,, XQ, XT, XS and 
Xo are read into the other buffer from cluster 1. At 
the same time, subobjects ^o , Xi, X2, ACs and X4 are 
displayed. Then, alternatively, the subsequent subob
jects of X are read from cluster O or cluster 1 into two 
buffers and then are displayed. 

Moreover, vvhen the database consists of a combi
nation of objects each vvith a different bandvvidth re-
quirement, the design of simple striping is extended 
to minimize the percentage of vvasted disk bandvvidth 
by constructing the disk clusters based on the me
dla type that has the highest bandvvidth requirement. 
The percentage of vvaste disk bandvvidth can be large. 
Therefore, Berson et al. [1] proposed a generalization 
of simple striping, called staggered striping, which 
constructs the disk clusters logicallij (instead of physi-
cally). It assigns the subobjects such that the disk con-
taining subobject Xi+Mx is 9 disks (modulo the total 
number of disks) apart from the disk drive that con
tains subobject Xi. The objects vvith different band
vvidth requirements are assigned to disk drives inde-
pendently but ali vvith the same value of k. Figure 
2 illustrates the assignment of objects X, Y and Z, 
vvhere g = 1, Mx = 3, MY = "i, Mz - 2 and N = 10. 
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3 The Sliding-Window 
Approach 

In this section, we will describe the basic idea of the 
proposed sliding-iuindoiv and the retrieval algorithm 
for the proposed approach. 

3.1 Basic Idea 

Suppose the desired subobjects of these 3 striped ob-
jects for display are changed to those shown in Figure 
3. Obviously, two conflicts will occur. One conflict 
occurs between subobjects Z3 and ¥15 and the other 
one occurs between subobjects Z5 and X3o. To resolve 
these conflicts, a straightforward method is to reorga-
nize these 3 objects according to the striping strategy. 
However, it requires a lot of overhead. A better solu-
tion as the one in [3, 20] is to prefetch the conflicting 
subobjects. For example, subobjects Z3 and Z5 are 
prefetched to resolve the conflicts in Figure 3. 

(I I 2 3 4 s fi 7 8 9 disk 

1 X0 XI X2 Y0 Yl Y2 Y3 ZO Zl 

2 X3 X4 XS Y4 YS Y7 Z2 Z3A'15 

3 ZS/X30 

time-interval 

X7 X8 Y8 Y9 Y10 Yl l Z4 

Figure 3: An example of display. 

Recall that based on the striping strategy, the du-
ration (in terms of a tirne interval I) of retrieval of a 
subobject is fixed in each disk of the multi-disk drive. 
Logically, we can use a tirne table of retrieval to 
record the retrieved subobjects for each tirne inter
val. For example, the logical tirne table of retrieval 
{TT) of the display in Figure 3 is shown in Figure 4, 
where the value of each entry TTij denotes the num-
ber of subobjects that have to be retrieved from disk 
j in time interval i. For an entry TTij which value is 
greater than 1, a conflict will occur due to more than 
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Figure 4: The time table of retrieval of Figure 3. 

Figure 5: An example in the prefetching approach. 

one subobjects that have to be retrieved in the same 
time interval i from disk j . To resolve the conflict, we 
have to prefetch {TTij - 1) subobjects of these TTij 
conflicting subobjects from disk j before time inter
val i. Logically, such prefetching operations can be 
viewed as a series of replacement operations, each of 
which is to find an entry TT^j with value = O for such 
an entry TTij and then, TTf^j is set to 1 and TTij 
is decreased by one, \vhere k, is the maximum value 
such that 1 < k < i. This replacement operation will 
be repeated until TTij is reduced to 1. Therefore, to 
guarantee continuous retrieval, we have to find {TTij 
-1) entries with value = O for each such an entry TTij 
which value is greater than 1. 

Let us consider another example, where the time 
table of retrieval is shovvn in Figure 5. The to-
tal length of this display {Len) is 10 time intervals. 
For each TTij which value is greater than 1, we per-
form the replacement operation. For example, one of 
these 2 conflicting subobjects in entry TT41 has to be 
prefetched in entry TT31. As shovvn in Figure 5, con
tinuous display can be guaranteed after ali the con
flicts are resolved by a series of replacement opera
tions. However, for an interactive display, users may 
stop this display at any time. In this example, sup
pose display is interrupted in time interval 5. That 
is, these retrieved subobjects in entry TTij for display 
after time interval 5 are no longer needed, where 6 < 
i < 10 and O < j < 9. In this čase, there are one con
flicting subobject of TTg^ and one of TTgv which have 
been prefetched in time interval 5 and time interval 
2, respectively. The disk bandvvidths and buffers for 
retrieving these two subobjects are wasted. The cor-
responding sizes of the buffer (in terms of the number 
of subobjects) in each time interval for storing these 
retrieved subobjects are also shown in Figure 5. 

To avoid the waste of time to prefetch and the waste 
of buffer space to store these unnecessary prefetched 
subobjects as the example shown in Figure 5, in this 
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paper, we propose a sliding window approach. The 
basic concept of a sliding tvindcmj in our proposed ap
proach is to record a little necessary information of 
retrieval df the following subobjects for display in a 
sliding ivindovj. In this proposed approach, first, we 
use a vifindow with size = SW (> 2) time intervals to 
record the first SW consecutive entries for each disk 
in the time table of retrieval, i.e, time intervals 1, 2, 
..., SW. Second, we only perform the replaeement op-
erations within the sliding ivindoiv. (Note that when 
SW = 1, no replaeement operation can be done for 
any entry with value > 1. Therefore, the minimun 
size of SW is 2.) After the possible conflicts within 
the sliding window have been resolved by a series 
of replacement operations, these subobjects in time 
interval 1 are ready to be retrieved for display and 
the window is slid forward by including time interval 
{SW + 1) and excluding time interval 1. Third, we 
resolve the conflicts within the sliding window again 
and then, slide the window forward. At the same time, 
these subobjects in time interval 2 are ready for re
trieval. These replacement and sliding operations will 
be repeated until display is finished or interrupted. 

For illustrative purpose, let us consider a simple ex-
ample shown in Figures 6, where the objects for dis-
play are the same as the ones in Figure 5 and SW 
is assumed to be 2. (Note that we use SW{a,b) to 
denote that the current sliding luindom includes time 
intervals a and h.) As shown in Figure 6-(a), first, 
no replacement operation is needed since ali the en
tries in the sliding window < 1. Second, we slide the 
window forward as shown in Figure 6-(b). At the same 
time, these subobjects in time interval 1 are ready to 
be retrieved and no replacement operation is needed 
within the current sliding window. Third, we slide 
the window again and perform a replacement opera
tion for entry TTu by setting Trsi and TTti to be 
1 as shown in Figure 6-(c). At the same time, these 
subobjects in time interval 2 are being retrieved and 
these subobjects that have been retrieved in time in
terval 1 are being displayed. Forth, we set TT^s and 
TT48 to be 1 for TT^s — 2 after the sliding ivindmu 
is slid again. When the sliding window has been slid 
forward to include time intervals 6 and 7 as shown 
in Figure 6-(d), suppose display is interrupted. In this 
čase, we set TTes and TT-ra to be 1 for TT73 = 2. Since 
the current time interval for retrieval is time interval 
5, this prefetching subobject for TT73 in TTes has 
not be retrieved yet. Moreover, the waste of time and 
space to prefetch the conflicting subobjects for TTsi 
and TT97 in Figure 5 can be avoided. 

From the above example, we observe that contin
uous retrieval can also be guaranteed by using the 
sliding window approach with SW = 2. Obviously, 
the larger the window size SW is, the longer the waste 
of time and the higher the buffer space to prefetch 
the unnecessary subobjects once display is interrupted. 

However, a hiccup can occur in the proposed sliding 
luindoiu approach when the window size S^V is not 
large enough, where a hiccup means that the subob
jects for being displayed has not been retrieved and 
will be ready in the next time interval. Therefore, 
from the view of users, display will not be continuous 
when a hiccup occurs. 

Such an example is shown in Figure 7, where SW 
= 2. 

From Figure 7-(a), we observe that we can not find 
an entry TTn = O for TTn to resolve the conflict 
within the sliding window. Note that even though 
TT21 - O, we can not set TT-n (= 0) to be 1 to prefetch 
one conflicting subobjects for TT41 in time interval 2 
because that these subobjects in time interval 2 are 
being retrieved. Therefore, rT4i is stili 2 after the 
replacement operation. Then, a conflict will occur 
such that one of these 2 conflicting subobjects for re
trieval in entry TT\x will be lost vî hen these subobjects 
in time interval 4 are being retrieved. To resolve this 
problem, one proposed solution is called time interval 
stealing, which inserts a new time interval 3 with ali 
TT3>j = O (O < j < 10) between time intervals 3 and 
4 and slides the window forward as shown in Figure 7-
(b). Now, we can set TT311 to be 1 for TT41. However, 
a hiccup will occur. Another better proposed solution 
is to select a large size of the sliding window SW = 
3, instead of SW = 2, initially. As shown in Figure 
7-(c), we can set TT21 to be 1 for TTn. Moreover, by 
applying the sliding uiindom approach with SW = 3, 
continuous display can be guaranteed. Therefore, to 
select a proper size of the sliding luindcnu for display is 
an important task and will be investigated in Sections 
4 and 5. 

3.2 The Algorithm 

In this subsection, we present the retrieval algo
rithm based on the sliding windcnv approach as shown 
in Figure 8. Suppose the execution time for the 
replacement process in each for-loop routine of the 
retrieval algorithm is negligible compared with the 
time interval for retrieval (e.g., 0.2 seconds in Figure 
1). Moreover, the retrieval algorithm is preemptive. 
That is, the execution of the retrieval algorithm can 
be interrupted vvhenever display is interrupted. In 
the retrieval algorithm, after given the value of the 
sliding window size and the time table for display, we 
logically put the first SW time intervals of the time 
table into the sliding window and resolve the conflicts 
within the sliding windaw. Then, we slide the win-
dow forward by excluding time interval 1 and includ
ing time interval {SW -f 1). Let ptr be 1, where ptr 
denotes the Identification number of time interval, in 
which these subobjects are ready for retrieval. In the 
for-loop routine, such a resolving-sliding operation 
wni be repeated until display is finished or interrupted. 
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procedure retrieval {SW,TT[Len][N])] 
var 

N : integer; /* the number of disks in a multi-disk drive*/ 
Len : integer; 

/* tlie length of display in terms of the number of tirne intervals */ 
SVV : integer; / * the size of a sliding window*/ 
TT[Len][N] : integer; /* the tirne table of retrieval */ 
Buf : a buffer; /* the buffer space for storing the retrieved subobjects */ 
i,j,k,m,flag,ptr : integer; 

begin 

end; 

resolve any conflict in the first SW tirne intervals by using the reptacement approacli; 
slide the window forward; 
ptr = 1; 
for {i=S\'V+l;i<=Len;i++) do 

retrieve TT[pir][*] for display; 
ptr = ptr + 1 ; 
for {j-0;j<N]j++) do 

flag = 0; 
whi!e ((Tr[i][j] > 1) and (flag == 0)) do 

begin 
for (k=i-l;k>i-SWik- -) do 

if {TT[k]lJ] == 0) 
begin 

TT[k][j] = 1; 
TTim = TT[i\\j] - 1; 
k - - 1 ; 

end if; 
end for; 
if (A; O -1) flag = 1; 

end while; 
end for; 

/***** steal tirne intervals to resolve the unresolved conflicts *****/ 
if (flag == 1) 

begin 
m = max{TT[i][*] - 1); /* function max rcturns the maximun value */ 
insert m new tirne intervals between tirne intervals {i - 1) and i 
in the tirne table of retrieval; 
Len = Len -f m; 
i — i + m - 1; 

end if; 

slide the virindow forvvard; 
end for; 
for ( i=ptr;i<=Len;iH—|-) do retrieve TT[i][*] for display; 

Figure 8: Algorithm retrieval. 
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For each for-loop operation, first, these subobjects in 
time interval ptr are ready for retrieval, where time 
interval ptr is just removed from the sliding ivindcmi. 
In other words, these entries TTptrj (O < j < N) in 
time interval ptr is no longer to be changed because 
that time interval ptr is not included in the sliding 
ivindom. Second, for each TTij > 1 in time interval i, 
we find {TTij - 1) entries with values = O within the 
sliding window and set them to be 1 to resolve the 
conflicts. However, there may not exist enough entries 
with values = O for each TTj > 1. In this čase, we 
have to steal some time intervals. Third, after the 
conflicts in time interval i are resolved, we slide the 
window again. 

4 Simulation Results 
In this section, we will present simulation results for 
the proposed algorithm based on the sliding window 
approach. In this simulation model, we assume that 
each disk in a multi-disk drive operates independently. 
When an I/O request arrives, it may be decomposed 
into subrequests, each of which will be serviced inde-
pendently on a different disk. Objects are stored on 
the multi-disk drive by applying the striping strat-
egy and ali the subobjects of each object have the 
same size. Moreover, the duration of retrieval of a 
subobject is fixed for ali objects and is in terms of a 
time interval I. At any time interval i, the required 
bandwidth RBi for display should not be larger than 
the aggregate bandwidth AB of the multi-disk drive. 
The required bandwidth RBi can be varied accord-
ing to the combination of objects for display. To de-
scribe the desired display, we propose a data model. 
In this data model, first, we use a load.factor to de-
note the average load of a multi-disk drive for a display 
with length Len (in terms of the number of time in

tervals) and let load.factor be Ef=r i^Bj Second, to ABxLen ' 
describe the status of conflicts in a display, we use a 
series of probabilities P^' {O < k < n), each of which 
is to denote the probability of an entry with value = k 
when the desired display is combined with n objects. 
Consequently, ^ L o Pk = 1 and E L o (k x Pk) = 
load.factor. The performance measure is the aver
age hiccup ratio ave.HR, which is the number of the 
number of hiccups num.HR divided by the length of 
display Len, that is, aveJLR = ""2*6"«̂ ^ • Another per
formance measure is the average size of buffer aveJBuf 
(in terms of the number of subobjects) that is used to 
store the retrieved subobjects during the duration of 
display. 

Figures 9 show the relationship between the size of a 
sliding window {SW) for three different displays {Di, 
D2 and D3) and the average hiccup ratio (ave.HR), 
where N = 10,n = 3 with Len = 1000 and load.factor 
is 0.7. The time tables of retrieval of three different 

ave_HR 
0.5 

o o D l : (0.35, 0.6, 0.05, 0) 
D — a D2 : (0.42, 0.47, 0.1, 0.01) 
* * D3 : (0.44. 0.44, 0.1, 0.02) 

••[BBIIBI a ' B D 
40 50 60 

Figure 9: The relationship between the size of a 
sliding luindoui {SW) and the average hiccup ratio 
{ave.HR). 

displays are randomly generated, where {PQ, Pf, Rf, 
pf) is (0.35, 0.6, 0.05, 0), (0.42, 0.47, 0.1, 0.01) and 
(0.44, 0.44, 0.1, 0.02), respectively. From this figure, 
we observe that avc-HR is decreased as the size of 
sliding window SW is increased. The reason is that 
the probability of a hiccup is decreased as SW is in
creased. Moreover, ave.HR is increased as the number 
of conflicts is increased (i.e., P^ and P^ is increased; 
while Pf is decreased). To support continuous dis-
play with hiccup-hee (i.e., aveJIR = 0), the minimum 
sizes of the sliding window for these 3 display D i, D2 
and D^ are 42, 44 and 50, respectively. However, the 
users may choose a small SW with a tolerable aver
age hiccup ratio to reduce to overhead once display is 
interrupted. 

Figure 10 shows the relationship between the size 
of a sliding window {SW) for three different dis-
plays (Di, D2 and D3) and the average buffer size 
{aveJ3uf) used in Figure 9. Obviously, the larger 
the value of 5 1 ^ is, the larger the value of aveJBuf. 
The reason is that it requires a larger buffer space 
to store these prefetched subobjects within a larger 
sliding rvindoiv than a smaller one vvithin a smaller 
sliding window. Even though ave.Buf is also in
creased as load.factor is increased, aveJ3uf is stili 
constant when SW is large enough such that aveJIR 
is reduced to 0. 

http://%7bave.HR
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Figure 10: The relationship betvveen the size of a 
sliding ivindoiu {SW) and the average buffer size 
{avcBuf). 

5 Analysis of an Sliding 
Window Size 

In the sliding window approach, we have to select 
a proper value of SW to support continuous display. 
However, such a selection will be made by repeating 
a series of imitations of the retrieval algorithm from 
an initial value of SW = 2 as described in Figures 9 
and 10; it will waste much tirne when P^^ (1 < fc < 
n) is large. For example, it requires to perform 42 
times imitations for Di; while it requires to perform 
50 times imitations for D3 in Figure 9. Therefore, 
to speed up such a process, in this section, we will 
present the mathematical analysis of average hiccup 
ratio ave JI R with a given value of SW in the sliding 
window approach. Moreover, given a tolerable value of 
ave^HR, we can analyze the minimum value of SW for 
display of a combination of n objects. Consequently, 
instead of SW = 2, a good initial value of SW can be 
obtained from the mathematical analysis in order to 
speed up the selection of a proper value of SW. 

Suppose there is a combination of n striped objects 
for display by using the sliding window approach with 
SW (> 2). The values of load.factor and the series 
of P^ (O < A; < n) are given. Assume that the prob-
ability of k subobjects that will be retrieved from any 
disk j in any tirne interval i has the same value PJ}, 
where O < A; < n. In other words, the probabilities 
of ali TTij with value = k are P^. The subobjects 
that will be retrieved in each time interval are inde-
pendent. Therefore, there are (n + 1) cases of the 
value of an entry TTij. Since the conflict-resolution 

process (i.c., the replacement operation) is performed 
from the initial time interval to the last one in the 
sliding window approach, the subobjects in time in
terval e which are ready for retrieval implies that those 
in time interval m are also ready for retrieval, where 
1 < m < e. Consequently, the value of each entry in 
these time intervals that are ready for retrieval will be 
either O or 1. The probability of such an entry \vith 
value = O is (1 - load.factor); while the one of such 
an entry with value = 1 is load.factor. Therefore, for 
a time interval i that is in the conflict-resolution pro
cess, the probabilities for an entry TTij with values 
= O and 1 are PQ and P " , respectively. In tlicse two 
čase, no confiict and hiccup can occur in entry TTij. 
When TTij = 2, a hiccup can occur if there does not 
exist any one entry TTmj = O, where {i - SW + 1) < 
m < {i - 1). The probability of such a čase is (5}!} l̂J) 
jsw-i Otherwise, no hiccup can occur. To simplify 
the notations, in the follovving formulas, we use / to 
denote load-factor. The number of hiccup with TTij 
= 2 is obtained as 

UH^ = P] ' X (1X (f;;j;:j) / ^ ^ ^ - i ) . 

Similarly, the number of hiccup with TTij = 3 can 
be obtained as 

UH^ = P," X (2 X {f^zD / ^ " ' - ^ + 1 

In general, the number of hiccup vvith TTij = k can 
be obtained as 

UH- = p » X {{k -1 ) X (i;:;;:}) f^^-^ 

+ ik-2)x{iz-_l)f''''-Hi-f) 
-r ... -t- 1 X \sw-k+i) 

fSW-k+l n f\k-2>. 

Therefore, the average number of hiccup can be ob
tained as 

ave.HR = ^^'^.^ UHl^. 

6 The Dynamic Sliding 
Window Approach 

In the sliding window approach, the combination 
of objects for display and the branch points for 
choices are predetermined. That is, tlie time table 
of retrieval has to be predetermined. To support 
on-line interactive display, in this section, we will ex-
tend the sliding window approach to the dynamic 
sliding window approach, which can support on-line 
interactive display for any combination of objects by 
applying a dynamic window size. The size of the 
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procedure retrieval' {PI,TT[Lcn][N])\ 
var 

NXen,PLSW,CSW : intcger; 
rT[ien][A'] : integcr: /* the liine table of retrieval */ 
WT[PI][N] : intcger; 
Buf • a bufler: /* the buffer space for storing the retrievcd subobjects */ 
i.j,k,m,r,flay,plr.I.flay,P.flag : inleger; 

begin 
SW = 2; WT[*][*] = 0; 
resolve any couflict in the firsl SW tirne, intervals: 
slide the windo\v forward: 
for {r=l;r<SW;r++) do WT{ptr-SW+r][*] = TT[r][*]; 
plr = 1: 
for {i=SW+hi<=Len:i++) do 

for ( r=l;r<PI;r++) do IFT[r][*] = WT[r+l][*]; 
WT[PI][*] = TT[i][*]; 
if {IJlay == 0) 

begin 
retrievc rT[pir][*] for displav: 
plr = pir + 1; 

end if; 
for {j=0:j<N:j++) do 

flag = 0: 
while {{TTli]lJ] > 1) and {flag = = 0)) do 

begin 
for {k=i-l:k>i-SW:k- -) do 

i f ( T T W b ] = = 0 ) 
begin 
TT[k][j] = 1; 
Tnm = TT\i]lj] - 1; 
A:=:-l; 

end if; 
end for: 
if {k O -1) flag = 1; 

end while; 
end for: 

if ( / % = = ! ) 
begin 
m = 7nax(TT\i][*] - 1); 
insert m new tirne intervals between tirne intervals [i - 1) 
and i on the tirne table of retrieval: 
Len = Len + m; 
j = i + m - 1; 

end if: 
PJlag=0; 
for ( r = 2 ; r < = P / ; r + + ) do 

imitatereirieua/(r,W'T[P/][A']); 

/ * perfonn tke retrieval algorithm rvilkoul the retrieval operations: 
we oiilg luant to get the number of hiccups after 
the retrieval algorithm is applied on WT */ 

if (the number of hiccups in the imitation is 0) 
begin 
CSW = r; 
P-flag = 1; 

end if; 
end for; 
if {P-flag = = 0) CSW = P7; 
if {CSW<SW) 

begin 
for {i=CSW;j<SW\j++) do 

retrieve TT'[p/r][*] for display; 
plr = ptr + 1; 

end for; 
SW = CSW\ 

end if; 
if {CSW>SW) { I.flag = 1; SW = 51^ + 1;} 
if {CSW=SW) I.flag = 0; 
slide Ihe window forward; 

end for; 
for {i=plr:i<=Len-.i++) do retrievc TT[i][*] for displav; 

O 

hO 

end: 

5 
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sliding window is changed according to the future re-
quirements of data for display. The basic concept is 
that display can be interrupted or may eventually be 
changed to another display by the users at any time. 
That is, the contents of the time table of retrieval 
can be dynamically changed. Therefore, we have to 
dynamically change the size of the sliding mindoiu ac
cording to the current status of subobjects for display 
in order to stili support continuous retrieval with the a 
little overhead. Since the subobjects for future display 
are not predictable, in the dijnamic sliding window 
approach, we use the PI {> 1) pervious time intervals 
of retrieval to guess the subobjects for future display. 
Then, the size of the sliding window SW for the next 
time interval i is chosen to be the minimum value of 
SW for these PI time intervals with numJIR = O by 
applying the sliding ivindoiu approach. 

The retrieval algorithm based on the dgnamic 
sliding window approach is called the retrieval* al
gorithm as shown in Figure 11. This retrieval* al
gorithm is also preemptive. The differences between 
the retrieval* algorithm and the retrieval algorithm 
are printed in bold font as shown in Figure 11. In 
the retrieval* algorithm, after given the value of PI 
and an initial value of SW, we logically put the first 
SW time intervals of the time table into the sliding 
ujindou) and resolve the conflicts within the sliding 
window. (Note that as opposed to the predeter-
mined time table in the retrieval algorithm, the one in 
the retrieval* algorithm is dynamically determined.) 
Then, we slide the window forvvard. In the for-loop 
routine, such a resolving-sliding operation vvill be re-
peated until retrieval for display is finished or inter
rupted. For each for-loop operation, first, these sub
objects in time interval ptr are ready for retrieval as 
the čase in the retrieval algorithm. Second, we put 
the Information of retrieval of previous PI time inter
vals into the working table WT. Then, for each TTij 
> 1 in time interval i, we find {TTij - 1) entries with 
values = O \vithin the sliding viindou) and set them to 
be 1 to resolve the conflicts. However, there may not 
exist enough entries with values = O for each TTij > 
1. In this čase, we have to steal some time intervals. 
Third, after the conflicts in time interval i are resolved, 
we have to predict a sliding window size CSW for 
the next time interval by imitating the retrieval algo
rithm with WT. In this imitation, we find the min
imum value of sliding ivindoiu size {CSW) for WT 
with hiccup-fiee. When the new sliding •window size 
CSW is smaller than SW, we have to retrieve the sub
objects in these time intervalspir, {ptr + 1),..., {ptr + 
SW - CSW - 1). The reason is that the size of sliding 
window will be reduced and these previous time inter
vals that will be removed from the sliding window are 
no longer to be changed. Therefore, the subobjects in 
these time intervals are ready for retrieval. On the 
other hand, when CSW > SW, we have to enlarge 

num HR 

I ' l=10 I 

400 

(4 
600 800 1000 

num HR 

l'l = 2 0 | 

200 400 600 1000 

(b)t 

num HR 
' 

L=z - I'I = SO 1 

-

200 400 600 800 1000 

(c)t 

Figure 12: The relationship betvveen the time interval 
t and the number of hiccups num-HR: (a) PI •=• 10; 
(b) PI = 20; (c) PI = 50. 

file:///vithin


A SLIDING-WINDOW APPROACH ... Informatica 22 (1998) 179-193 191 

the sliding window. In this čase, tirne intervals [ptr -
1), (ptr - 2), ..., ipt7- - {CSW - SW - 1)) have to be 
included in the sliding window. Hovvever, since these 
subobjects in these tirne intervals before time interval 
ptr had been retrieved, we can not change the values 
of these entries in these time intervals to resolve any 
conflict. Therefore, in this čase, the size of the sliding 
mindoiv is only increased by one, in which time inter
val ptr is not removed from the slidiiig luindoui and 
time interval {i + 1) is included in the sliding window. 
That is, the sliding window size for the next time in
terval is {SW + 1). I-flag is set to 1 to denote that 
such a čase occurs and to prohibit the retrieval opera-
tion of time interval ptr. Finally, we slide the window 
again. 

Figures 12-(a), 12-(b) and 12-(c) show the relation-
ship between the time interval t and the number of hic-
cups num-HB., where A'̂  = 10, n = 3 with Len = 1000 
and PI is 10, 20 and 50, respectively. The load.factor 
and the series of P^ (O < A; < 3) are varied in each time 
interval. To simulate the unpredetermined subobjects 
for on-line Interactive display, we use a random func-
tion of t to generate the values of the load.factor and 
the series of P | (O < A; < 3) for each time interval. 
From these figures, we observe that nuni JI R is de-
creased as PI is increased due to that the more the 
Information of retrieval are considered, the better the 
value of SW. 

Figures 13-(a) and 13-(b) show the relationship be-
tween the time interval t and the size of buffer Buf, 
where the related parameters are the same as those in 
Figure 12. Since there are similar results in the other 
ranges of t, Figures 13-(a) and 13-(b) only show the 
range of i from 300 to 440 and from 440 to 500, respec-
tively. From Figures 12 and 13, we observe that the 
size of buffer Buf is increased as num^HR is increased 
in ali these 3 cases. The larger the value of PI is, the 
larger the size of buffer. Moreover, the corresponding 
value of SW for each time interval t in Figure 12 is 
also shown in Figures 14. Compared to Figure 12, we 
observe that the sliding window is changed according 
to the retrieval Information of the previous PI time 
intervals. The larger the value of PI is, the better 
the value of SW. However, the overhead to decide a 
new value of SW is increased as the value of PI is 
increased. Therefore, based on the dynamic sliding 
vjindmu approach, users can choose a proper PI with 
a tolerable average hiccup ratio and overhead. 

7 Conclusion 
In this paper, we have proposed an efficient approach, 
called the sliding window approach, which can sup-
port interactive display for continuous media with a 
little overhead of prefetching. From the simulation 
results, vî e have observed that the smaller the size of a 
sliding window is, the smaller the waste of time and 
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Figure 13: The relationship between the time interval 
t and the size of buffer Buf: (a) ( = (300, 440); (b) t 
= (440, 500). 
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Figure 14: The relationship between tiie size of the 
tirne interval t and the sliding luindoiu SW. 

space once display is interrupted. Hovvever, a hiccup 
can occur when the size of the sliding windmu is not 
large enough. Moreover, we have presented a math-
ematical analysis of the sliding windmu approach to 
speed up the selection of a sliding window size. To 
support on-line interactive display, we have extended 
the sliding tvindoiu approach to the dynamic sliding 
ivindom approach. From the simulation results, we 
have observed tha t the probability of a hiccup is de-
creased as the amount of Information of previous re
trieval is increased. How to support on-line interactive 
display for continuous media at any desired display 
speed rate is a future research direction. 
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Parallel database systems are gaining popularity as a solution that provides high performance 
and scalability in large and growing databases. A parallel database Sfstem exploits multiprocess-
ing to improve performance. Parallel database architectures can be broadly classiHed into three 
categories: shared rnemory, shared disk, and shared notbing. An important question, however, is 
which arcbitecture should be used for a specific c/aCabase application. Each architecture bas its 
strengtbs and \veaknesses. In this paper, simulation models for the three main architectures are 
presented. Using these models, a number of experiments were conducted to compare the system 
performance of these architectures under different \vorkloads and transaction models. The goal 
of this \vork is to aid the decision making process of which architecture is better satisfying the 
requirements of a given database application. 

1 Introduction ers. Some database systems require more performance 
or get larger than what they were originally designed 

Indisputably, large and complicated databases are no fo '̂ Parallel computers easily adapt for this by adding 
longer unusual applications in our daily life, with the '"O"̂ « components to the original system. Parallehsm 
expectation of further growth of such databases. A di- *« t^knig plače in several academic as well as commer-
rect result of having large and complicated databases is "''^' products. Examples of academic systems include 
the need of efficient systems to handle the new require- ^amrna and Bubba. Tandem NONStop SQL, Tera-
ments of the applications involving these databases. ^l^*^' IBM's DB2, and Oracle parallel server are few 
A recent trend in the computer industry, and in the examples of commercial products. 
database technology, is the use of parallel comput- An important question, however, that is faced when 
ers instead of large expensive mainframes. There are using parallel computers to develop database systems 
two reasons behind the movement towards parallelism. is what architecture should be used. Architectures 
The first is related to the priče of the system as a paral- for parallel databases can be categorized into: shared 
lel computer, using commodity hardvvare devices such memory, shared disk, and shared nothing comput-
as cheap microprocessors, can give the same perfor- ers [2, 4]. Several qualitative studies were introduced 
mance of a large mainframe but at a fraction of the and recommended one architecture over the other [17]. 
cost [12]. Functionality is the second motivation be- There is a need for more concrete studies that quan-
hind parallelism. The technology of single processor titatively compare these architectures. This can be 
computers is bounded by the speed of light, suggest- reached using analytical models, empirical analysis, or 
ing the use of several processors that work together simulation. Among these methodologies, simulation 
in harmony to perform a large task [12]. Specifically has the advantage of a great deal of flexibility and 
for database systems, experiences with input/output provides more insights about the way the simulated 
(I/O) bottleneck found in large mainframes speed up systems may behave. However, an important point us-
the steps towards parallel systems. Scalability is an- ing simulators is that čare must be taken in modeling 
other important issue in motivating parallel comput- the relevant aspects of the simulated object, otherwise 
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incorrect and misleading results may arise. 
In this paper, simulation models for the main par-

allel database systems are developed. Based on these 
models, a number of experiments were conducted to 
investigate the performance of the three main architec-
tures under different workload and transaction models. 
It turns out that each architecture has proven some 
strengths for some specific workload and transaction 
model. This indicates that having a prior expectation 
of the transaction type and the amount of workload in 
a database application can help in choosing the most 
suitable architecture for the application. 

The rest of this paper is organized as follows. Sec-
tion 2 is an introduction to parallel database systems. 
An overview of the previous work in this field is given 
in Section 3. Section 4 is devoted to introducing the 
simulators for the various parallel database architec-
tures. The experiments performed and results ob-
tained are discussed in Section 5. Finally, Section 6 
concludes this paper. 

2 Parallel Database Systems: 
Alternative Architectures 

Several parallel architectures have been developed. 
Shared memory, shared disk, and shared nothing are 
the main architectures of parallel database systems. 
Each architecture has some advantages and disadvan-
tages. Recently, hybrid architectures are being investi-
gated to combine the virtues of the three architectures 
and overcome their individual shortcomings. To com-
pare parallel database systems, we need to define the 
criteria upon we base the comparison. In the follow-
ing, we discuss the performance indexes along with the 
various architectures of parallel database systems. 

2.1 Parallel Database Performance 
Indexes 

The performance of a database system can be eval-
uated by several measurements. Response time and 
throughput are the most popular measures. This is 
because they are easy to measure and they directly af-
fect the users of the database system. Response time 
can be loosely defined as the time required to per-
form an operation submitted by a user of the system. 
Throughput is how mush work can be performed in a 
unit time. Other performance measurements include 
system availability, and extensibility. System avail-
ability is the probability that the system is available 
during a time interval despite failure in some of the sys-
tem components [4]. System extensibility is the ability 
of smooth growth of the system by adding more com
ponents to it to adapt for growth in the database size 
and/or the functionality required. Mainly two metrics 
can be used to measure the extensibility of a system: 

Pl ( R2 
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Figure 1: Shared Memory 

scaleup and speedup. Scaleup can be defined as the 
ability to grow the problem size by adding more com
ponents to the system, while maintaining the same 
performance. Speedup is the performance gain due to 
increasing the power of the system, while fixing the 
problem size [4]. 

Using parallelism within the database can in-
crease system performance significantly. Many par
allel database systems provide a near linear speedup 
and scaleup. Speedup can be gained by incorporat-
ing intra-query parallelism. This parallelism can be 
reached by partitioning the data and using the ex-
isting sequential routines, or by vvriting new special 
parallel routines for the queries. Complicated queries 
can be divided into subtasks that can work in parallel. 
Scaleup, on the other hand, can be gained by using 
inter-query parallelism in which several queries can be 
performed independently increasing the overall system 
throughput. 

2.2 Shared Meniory Architecture 

In shared memory architecture, also named shared ev-
erything, the system consists of a number of processors 
ali connected to one shared memory and one logical 
shared disk (Figure 1). Communication betvveen pro
cessors comes for free by using the shared memory. 
Systems following this architecture are characterized 
by excellent load balance. The mairr disadvantage of 
these systems is the limited scalability and availabil-
ity. Limited scalability is imposed by the fact that aH 
of the processors compete to use the shared memory. 
This puts an upper limit on the number of processors. 
Availability may also be limited, for instance if the 
shared memory is failed the entire system is down. 

2.3 Shared Disk Architecture 

Shared disk architectures provide each processor by its 
own private memory, with one global (logical) shared 
disk (Figure 2). Processors rro longer compete for a 
shared memory. They, however, compete to access the 
shared disk. This leads to a better processor scaleup, 
which is in the range of the hundreds. These systems 
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stili have a good load balance. Availability is much 
better than shared rnemory, vvith the fact that failure 
of the shared disk means a failure to the entire sys-
tem though. In practical systems, the shared disk is 
physically several disk modules connected through a 
network to ali the processor elements. This provides a 
high reliability to the disk as a whole. 

A shared nothing system can be thought of as a 
number of autonomous computers, each has its own 
pri vate memory and disk, and are connected by an 
interconnection netvvork (Figure 3). The main advan-
tage of this architecture is the ability to scaleup to 
thousands of processors. Also it has high availabil-
ity and reHability. In fact, the failure of one node 
should not affect the rest of the nodes. Availability can 
be reached by replicating data in the different nodes 
within the system. Load balance and skew (variance 
well exceeds the mean due to inappropriate data par-
titioning scheme) are the major problems faced in this 
architecture. Also, adding new nodes may require re-
organizing the data within the entire system. 

2.4 Hybrid Architecture 
2.5 Shared Nothing Architecture 
As it is apparent from the previous discussion, each 
of the various architectures has some advantages and 
some disadvantages. While shared memory and shared 

disk architectures have good load balance, they have 
limited scaleup and limited availability. Shared noth
ing has the advantages of high scalability and high 
availability but suffers from load balance problem. A 
hybrid architecture is to have a shared nothing system 
with nodes that are more powerful than a single com-
puter. The nodes within the shared nothing system 
can be a shared memory or shared disk systems. This, 
while preserving the scalability and availability, adds 
the load balance that exists in the shared memory and 
shared disk systems. Figure 4 illustrates this idea. 

3 Related Work 
While there exit several commercial parallel database 
systems (such as Tandem NonStop SQL and Teradata 
system) and research ones (Gamma and Bubba for ex-
ample), yet it is not clear whicli is the best architec
ture. Many researchers have investigated the parallel 
database architectures. Many of the researchers in this 
area investigated and implemented one specific archi
tecture as in the čase of Bubba and Gamma. 

Bubba is a shared nothing parallel database [3]. The 
machine consists of several nodes connected through a 
message-passing interconnect. Parallelism is achieved 
mainly through data partitioning, where data are hor-
izontally clustered across systems nodes using either 
hashing or range partitioning. Bubba incorporates 
function shipping instead of data shipping. In this 
strategy, an operation is sent to the node where the 
data reside, reducing the overhead of sending large 
amount of data betvveen nodes. 

Gamma is another example of shared nothing re-
lational parallel database machine that operates on 
Intel iPSC/2 hypercube with 32 processors and 32 
disk dri ves [5]. As in Bubba, parallelism is achieved 
through data partitioning. Data is partitioned hori-
zontally among the system disk drivers using a round 
robin, hashing, or range strategy. 

An instance of a commercial shared nothing 
parallel database machine is the NCR/Teradata 
DBC/1012 [14]. The machine is a dedicated rela-
tional database system. It consists of several nodes 
connected through a special interconnect named Y-
net. The machine basically offloads the database work 
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from a host computer by accepting database requests 
from the host computer, performing the database op-
eration required, and returning the result back to the 
host computer. The machine can perform both oniine 
transactions and decision support systems (DSS) op-
erations. Onhne transactions can work with one DSS 
on the background. Parallelism is achieved through 
data partitioning. 

Other researchers gave a qualitative comparisons 
between the various architectures. In their paper, 
DeWitt and Cray gave an introduction to parallel 
database systems and described the three parallel ar
chitectures [4]. They described three data partitioning 
techniques (round-robin, hash, and range partition
ing) . A discussion of intra- and inter-query parallelism 
was introduced. They provided an overview of some 
industrial and academic parallel database systems in-
cluding Tandem Non Stop SQL, Teradata, Bubba, and 
Gamma. Valduriez and Rodin in their papers classi-
fied the parallel database systems, again, into three 
architectures [16, 17]. They discussed the advantages 
and shortcomings for each architecture. Finally, they 
argued for a shared something architecture: a hybrid 
between shared nothing and shared disk systems. 

A third group investigated specific aspects of one of 
the architectures. Helal et al. examined the perfor-
mance of parallel database systems in shared nothing 
architecture [9]. They considered two different tech-
niques for concurrency control (dynamic locking with 
general waiting and dynamic locking with no waiting). 
In their work, to sol ve the skew problem, they sug-
gested a dynamic data reallocation technique to redis-
tribute the most accessed data from a loaded node to 
a less loaded one, without blocking the entire system. 

This work takes a global overview of the various par
allel database systems. The study is a quantitative in 
contrast to the qualitative research introduced before. 
Simulation models are developed to provide a concrete 
and accurate comparisons among the various architec
tures taking into consideration the different aspects 
that impact the database system performance. Sev
era! experiments were conducted to measure the sys-
tem performance under different workloads and trans-
action models. For a more comprehensive study and 
experimentation work refer to [13]. 

4 Simulation Models 
This section introduces tlie simulators we developed to 
compare the different parallel database architectures. 
As discussed earlier, there are three main configura-
tions for parallel database systems: shared memory, 
shared disk, and shared nothing. Since every archi
tecture has its own characteristics, it is more efficient 
to provide a separate simulator for each architecture. 
Simulators for hybrid architectures can be easily de
veloped by tuning the shared nothing simulator. 

4.1 Shared Memory Simulation Model 
Figure 5 gives the model for the shared memory ar
chitecture. As shown in the figure, there is only one 
logical I/O unit that is shared among ali processors. 
The I/O system may be more than one unit as in the 
čase of distributed shared memory (DSM) and redun-
dant arrays of inexpensive disks (RAID), but with the 
condition that aH are shared among aH system pro
cessors. This condition suggests the use of centralized 
deadlock detection technique, which is conveyed in the 
figure through the use of one shared lockup table. For 
details on deadlock detection, and database concept 
in general, refer to [6]. The scheduling of transaction 
operations to processors is based on the load of the 
processors. 

Initially, a number of transactions are generated and 
are input to the transaction scheduler. The trans
action scheduler schedules a transaction, from those 
waiting in its queue, to the least busy processor. Ev-
ery processor originally is assigned a unique sequence 
number. When several processors have the same load, 
the tie is broken by choosing the processor with the 
lowest sequence number. If the scheduled operation is 
a computation only, i.e. no I/O, the processor executes 
it. If the scheduled operation is an I/O, the transaction 
has to go througli the lockup table manager to request 
a lock for the data item to be accessed. If the lock 
is granted, the transaction proceeds to the I/O server 
to access the required data item. Othervvise (lock is 
failed) a deadlock detection routine is invoked to ex-
amine if the transaction sliould be aborted or not. In 
the čase there is a deadlock, aH of the locks previously 
given to the transaction are freed and the transaction 
itself restarts again. If there is no deadlock, the trans
action is blocked till it can gain the lock for the re-
quired data. Upon reactivating a blocked transaction, 
it is scheduled again by the transaction scheduler to 
a processor that may be different from the one it was 
previously scheduled to. When a transaction finishes 
its computation or I/O operation, it is examined to 
see if it is entirely finished, so it can be committed. 
If not, the transaction goes through the transaction 
scheduler again for further processing. If the transac
tion is to be committed, it frees aH of the locks it has, 
reactivating aH of the blocked transactions waiting for 
those locks. The transaction then exits the system 
and another transaction is generated in its plače. This 
procedure continues till the simulation time finishes. 

4.2 Shared Disk Simulation Model 
Figure 6 gives the model for shared disk parallel 
database. Processors of the system are assumed to 
be fully connected to each other through a reliable 
interconnect. As shown in the figure, there is only 
one logical shared disk, even though this shared disk 
can be physicaHy a collection of several disks that can 
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Figure 5: Shared Memory Model 
(TS: Transaction Scheduler, Pn: Processor nuraber n - assuming n processors in 

the system, LT: Lockup Table, DS: Disk Scheduler) 

work in parallel as in the čase of RAID. In the čase 
of RAID, a disk scheduler is required to determine 
which disk sliould be operated to access a specific data 
item. Information can be exchanged between proces
sors through message passing. The shared disk sug-
gests a centralized lockup table. Each processor bas 
its own memory module that is not shared with other 
processors, and a lockup table which is a copy of the 
centralized one. Any update to the processor local 
lockup table should be followed by updating the cen
tralized one in order to convey the locking Information 
to the other processors. 

The simulation process is almost the same as in the 
shared memory čase. Like the shared memory model, 
processors are scheduled to transactions based on the 
load of the processor: the least busy processor is cho-
sen. Communication overhead is encountered to ship 
an operation from the scheduler (which is assumed to 
be centralized) to the scheduled processor. 

4.3 Shared Nothing Simulation Model 
Figure 7 models the shared nothing parallel database 
systems. Every processor has its own lockup table 
and its I /O module as shown in the figure. Processors 
of the system are assumed to be fully connected to 
each other through a reliable interconnect. Distributed 
deadlock detection is implemented. 

The simulation process is almost the same as in the 
shared memory and shred disk systems with one major 
difference. In scheduling processors to transactions, 
the most suitable processor for the transaction (based 

on the location of the data needed for the transaction 
operations) is chosen. If a transaction is reactivated 
after being blocked, it does not go through the trans
action scheduler. Instead, the transaction continues at 
the same processor (as the scheduling process is based 
in the location of data). As in the shared disk, commu
nication overhead is encountered to ship a transaction 
to the scheduled processor. 

5 Experimentation 
This section presents some of the results of the exper-
iments conducted to compare the three architectures. 
Unless otherwise stated, table 1 gives the parameters 
used to conduct the experiments. Without loss of gen-
erality, the database is assumed to consist of one large 
table. On having several disk units, the database ta
ble is range partitioned among them. Twp, models of 
transactions were used in the experiments: short-term 
debit/credit and long-term DSS models. Workload is 
modeled as the number of transactions running con-
currently on the system. The main measurement taken 
out of the experiments is the average response time. 
The simulators are implemented using C language un-
der UNIX. This choice is made based on the popular-
ity of .that environment compared to other specialized 
simulation languages. 

Most efforts have been made to ensure that the im
plemented simulators behave correctly. Toward this 
end, the random number generator is disabled and 
carefully selected data are used to test and debug the 
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Figure 6: Shared Disk Model 
(S: Transaction Scheduler, C: Communication link, Pn: Processor number n, 

LTn: Lockup Table that belongs to processor n, Mn: Memory module that belongs to 
processor n, DS: Disk Scheduler) 

programs. While not closely compared to real systems, 
the results obtained agree to a large extent witli our in-
tuition about how the simulated systems bebave. Fig
ure 5.3 gives the results obtained from experimenting 
the simulators for the three architectures along with 
comparisons among them. The experiments are con-
ducted for number of processors ranging from 1 to 10 
because we did not find much enhancement in perfor-
mance if the number of processors increases beyond 
this limit. For the same reason, we selected the num
ber of disk units (d in the figure) to range from 1 to 
10. Before going into the details of these experiments, 
the following section briefly discusses the transaction 
models used. 

5.1 Transaction Models 

An important factor that affects the system perfor-
mance is the nature of the transactions performed 
on the database. A straightforward classification of 
database transactions is the duration of the trans
actions (how many operations within a transaction). 
Some transactions are fine grained, debit/credit in na
ture. Others are coarse grained and may require lock-
ing the entire database such as those involved in deci-
sion support applications. Some deductive databases 
can be categorized as medium grained. 

There exist several benchmarks (such as TPC-A, 
TPC-B, and TPC-C [8]) to measure transactional 
database performance. To adapt with our abstracted 
simulation models, we have decided to develop two 
transaction models. The first models the update, fine 

grained transactions. The records accessed by a trans
action following this type are few and they are related 
to each other. This type of transactions is typical in 
debit/credit applications. The model developed takes 
the form: 

- operationl: read recordlD 

- operation2: process 

- operation3: write recordlD 

- operation4: read (recordID-M) 

recordlD (record Identification number) in operation 
1 is generated at random. The record accessed by 
operation 4 is simply calculated by adding 1 to the 
one generated for operation 1. 

The second type of transactions is typical in DSS. 
In this type, transactions are characterized by being 
long and the records accessed by a transaction are not 
related. As in the above model, the database is as-
sumed to consist of one table. The model developed 
for this type is: 

- operationl: R / P (recordlD / computation 
amount) 

- operation2: R / P (recordlD / computation 
amount) 
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Figure 7: Shared Nothing Model 
(S: Transaction Scheduler, C: Communication hnk, Pn: Processor number n, 

LTn: Locimp Table that belongs to processor n, DSn: Disk Scheduler that belongs to 
processor n) 

Table 1: system parameters 

eprocessor speed 
memory access time 
disk access time 
processing overhead encountered 
in an I/O operation 
communication link latency 

100 MIPS 
0.1 microseconds 
10000 microseconds 
25000 instructions 

5000 microseconds 

where R / P denotes either read or process operation 
(which is selected at random) and recordlD / compu
tation amount is the record ID to be accessed (in čase 
of read operation) or the amount of computation (in 
čase of process operation). recordlD in operation 2 
has no relation with recordlD in operation 1 and is 
selected at random. 

5,2 Shared Memory, Shared Disk, and 
Shared Nothing Experimentat ion 

Charts (a, b) in Figure 8 give the results obtained in 
experimenting the shared memory system with trans-
actions following the debit/credit model under two dif-
ferent vvorkloads. Low vvorkload is modeled by running 
10 concurrent transactions: Chart (a), and high work-
load is modeled by running 1000 concurrent transac
tions: Chart (b). While increasing number of proces-

sors in this čase does not significantly affect the sys-
tem, parallelism in I/O decreases the average response 
time (hence, enhances the system performance). That 
is because this type of system is I/O bound, and the 
shared disk imposes the main bottleneck in the system. 

Chart (c) examines systems running transactions 
following the DSS model. In this model, processing 
time exceeds the I/O time. Fiom the chart, parallelism 
is taking plače in processing units rather than in I/O 
units. However, due to the bottleneck encountered in 
the shared memory, the system performance saturates 
at some point regardless of liow many processing, or 
I/O units are used. 

Charts (d-f) in Figure 8 give the results obtained 
in experimenting the shared disk system. The behav-
ior of the system is similar to what we have in the 
shared memory. While there is no shared memory, 
communication delays have an impact on the system 
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performance. 
Charts (g-i) in Figure 8 examine shared nothing sys-

tems. The behavior of the system is essentially the 
same as in the cases of shared memory and shared disk. 
While every processor has its own memory and disk 
modules, communication overhead is the main suffer-
ing in the system. 

5.3 Parallel Database Architectures: 
Comparison 

This section concludes the experimentation study by 
comparing the performance of the three architectures. 
Charts (j-1) in Figure 8 give such comparison for sys-
tems running short-term transactions following the 
debit/credit model for the two workloads, and the DSS 
model. 

In Chart (j), the transaction model is debit/credit 
and the number of concurrent transactions running in 
the systems is 10. In the shared nothing system, a 
processor is scheduled for an operation based on the 
location of the data record to be accessed by the op
eration. For the debit/credit of transaction model, 
records to be accessed within a transaction are related. 
This leads to limiting the scheduling overhead for a 
transaction to only one scheduling operation most of 
the time. This way, a very low communication and 
scheduling overhead is encountered within the system. 
On the other hand, a transaction needs to be scheduled 
for very operation in shared disk and shared memory, 
as the criteria used is the load of the processor not 
the location of data. This leads to a high scheduling 
overhead. Beside this overhead, the shared disk sufFers 
from its need to communication within the scheduling 
operations to ship transaction operations to proces-
sors. This explains why shared nothing performs the 
best among the three systems in such transaction type 
and vvorkload. 

Chart (k) compares the three systems for heavy load 
debit/credit transactions. The above arguments hold 
here again with an exception in the shared memory 
system vvhich suffers from a contention in the shared 
memory under the heavy load. The shared disk does 
not have such a problem as every processor has its 
own memory module. This gives the reasons why the 
shared nothing system gives the best performance fol-
lowed by the shared disk. 

Chart (1) compares the three system for DSS trans
actions. It is found out that the shared memory and 
shared disk give a much better performance than the 
shared nothing, with the shared memory is the leading 
system. In the DSS model, a transaction is long and 
the data accessed by its operations are not related. 
For the shared nothing system, as transaction opera
tions are scheduled based on data location, a transac
tion needs to be scheduled almost for every operation. 
This leads to a high overhead in both scheduling and 

communication. In shared memory and shared disk, 
scheduling is based on the processor workload and this 
evenly distributes the load on the processors leading 
to a better performance. The communication overhead 
encountered in the shared disk system, however, puts 
it in the second plače after the shared memory system 
which has the communication comes for free through 
the shared memory. 

6 Conclusion 
Based on simulation, this study compares the perfor
mance of the main architectures of parallel database 
systems. We developed three simulators for the shared 
memory, shared disk, and shared nothing parallel 
databases. A large number of experiments were con-
ducted using these simulators. Two transaction mod-
els were used throughout the study: short-term trans
actions with related operations, and long-term trans
actions with unrelated operations. 

For the three systems, we found out that for fine 
grain transactions where the I/O time dominates the 
processing time, the parallelism in the disk units is 
more effective than it is in processing units. For 
medium and course grained transactions where the 
processing time is comparable to or exceeds the I/O 
time, parallelism in processing units can improve sys-
tem performance. 

Deciding on the best architecture for a database sys-
tem depends heavily on the application requirements 
and the nature of operations involved in the applica
tion. When the transactions follow the debit/credit 
transaction model, the shared nothing provides the 
best performance among the three architectures (es-
pecially for heavy loaded systems). Through function 
shipping and as the operations of a transaction are 
related, no much communication is required. This is 
why shared nothing provides almost a linear speedup. 
For decision support system workload, transactions are 
long and the operations are not related. This raises a 
communication overhead. Through a good load bal-
ance, shared disk and shared memory systems provide 
better performance than shared nothing. The memory 
contention found in the shared memory is offset by the 
communication overhead involved in the shared disk. 
This gives the reason why the shared memory stili pro
vides the best performance in such transaction model. 
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Decision table decomposition is a machine learning approach that decomposes a given decision 
table into an equivalent hierarcby of decision tables. Tlie appioach aims to discover decision tables 
that are overall less complex than the initial one, potentially easier to interpret, and introduce 
new and meaningful intermediate concepts. Since an exhaustive search for an optimal hierarchy 
of decision tables is prohibitively complex, the decomposition ušes a suboptimal iterative algo
rithm that requires the so-called partition selection critcrion to decide among possihle candidates 
for decomposition. This article introduces two such criteria and experimentally compares their 
performance with a critcrion originally used for the decomposition of Boolean functions. The 
experiments highlight the differences bet\veen the criteria, but also sho\v that in aH three cases 
the decomposition may discover meaningful intermediate concepts and relatively compact decision 
tables. 

1 Introduction bles. As each decision table represents a concept, the 
result of decomposition can be regarded also as a con-

A decision table provides a simple means for concept cept hierarchij. 
representation. It represents a concept with labeled Each single decomposition step aims to minimize the 
instances, each relating a set of attribute values to a joint complexity of G and H and executes the decom-
class. Decision table decomposition is a method based position only if this is lower than the complexity of F. 
on the "divide and conquer" approach: given a deci- Moreover, it is of crucial importance for the algorithm 
sion table, it decomposes it to a hierarchy of decision to find such partition of attributes X into sets A and 
tables. The method aims to construct the hierarchy B that yields G and H of the lowest complexity. The 
so that the new decision tables are less complex and criteria that guide the selection of such partition are 
easier to interpret than the original decision table. called partition selection criteria. 

The decision table decomposition method is based Let us illustrate the decomposition by a simple ex-
on function decomposition, an approach originally de- ample (Table 1). The decision table relates the input 
veloped for the design of digital circuits [2]. The attributes xi, X2, and X3 to the class y, such that 
method iteratively applies a sinj/e rfecom/)05«i«on sie;?, V - F{xx,xi,x-i). There are three possible parti-
vvhose goal is to decompose a function ?/ = F(X) into tions of attributes that yield three different decomposi-
2/ = G{A,H{B)), where X is a set of input attributes tions %j = Gi{xx,Hx{x2,X'i)), y = G2{x2,H2{xi,X3)), 
xi,... ,xn, and y is the class variable. F, G and i? V = G3{x3,H3{xi,X2)): The first two are given in 
are functions represented by decision tables, i.e., pos- Figure 1, and the comparison shows that: 
sibly incomplete sets of attribute-value vectors with 
assigned classes. A and B are nonempty subsets of ' l ' f ^°" '̂̂ '̂̂ ^ ,, '" *̂ °̂ decomposition y = 
input attributes such that AuB = X.The functions f î "̂ '̂ .̂ f̂''""̂ l̂ """^ T ' 
G and H are developed by decomposition and are not . ^^"^ V - G2(x2,H2(xi,X3)), 
predefined in any way. Such a decomposition also dis- _ t^e new concept a = H^ (a;2,^3) ušes only three 
covers a new intermediate concept c = H{B). Since ^^lues, whereas that for H2{xi,X3) ušes five, 
the decomposition can be applied recursively on G and 
H, the result in general is a hierarciuj of decision ta- — it is hard to interpret decision tables G2 and H2, 
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XI 

l o 
l o 
l o 
l o 
l o 
l o 
med 
med 
med 
med 
med 
med 
h i 
h i 
h i 
h i 
h i 
h i 

X2 

l o 
l o 
med 
med 
h i 
h i 
l o 
l o 
med 
med 
h i 
h i 
l o 
l o 
med 
med 
h i 
h i 

X3 

l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 
l o 
h i 

y 
l o 
l o 
l o 
med 
l o 
h i 
med 
med 
med 
med 
med 
h i 
h i 
h i 
h i 
h i 
h i 
h i 

Table 1: An example decision table. 

•vvhereas by inspecting Gi and Hi it can be ea3y to 
see that ci = MIN(a;2,a;3) and y = MAX(a;i,ci). 
This can be even more evident with the reassign-
ment of ci's values: 1 to lo, 2 to med, and 3 to 
h i . 
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Figure 1: Two different decompositions of the decision 
table from Table 1. 

The above comparison indicates that the decompo
sition y = G2ix2,H2(xi,X3)) yields more complex and 
less interpretable decision tables than the decomposi
tion y — Gi{xi,Hi{x2,X3)). The questions of interest 
are thus: 

1. How do we measure the overall complexity of orig
inal decision table and of the decomposed system? 

2. Which are the criteria that can guide the single 
decomposition step to chose among possible de
compositions? 

3. How much Information is contained within the hi-
erarchical structure itself? 

4. How does interpretability relate to the overall 
complexity of decision tables in the decomposed 
system? Is a less complex system also easier to 
interpret? 

Some of these questions were already addressed in 
the area of computer aided circuit design where de
composition is used to find a circuit of minimal com-
plexity that implements a specific tabulated Boolean 
function. There, the methods mostly rely on the com-
plexity and partition selection criterion known as De
composed Function Cardinality (DFC, see [21]). How-
ever, a question is whether this criterion can be used 
for the decomposition of decision tables of interest to 
machine learning, where attributes and classes usu-
ally take more than two yalues. Moreover, the main 
concern of Boolean function decomposition is the min-
imization of digital circuit, leaving aside the question 
of comprehensibility and interpretability of the result-
ing hierarchy. 

This article is organized as follows. The next section 
reviews related work on decision table decomposition 
with the emphasis on its use for machine learning. The 
decomposition algorithm to be used throughout the 
article is presented in section 3. Section 4 introduces 
two new partition selection criteria that are based on 
the Information content of decision tables (DTIC) and 
on the cardinality of newly discovered concepts (CM). 
That section also discusses how DFC and DTIC may 
be used to estimate the overall complexity of derived 
decision tables, and shows how DTIC may be used to 
assess the Information content of the discovered hier-
archical structure itself. Section 5 experimentally eval-
uates the different criteria and complexity measures. 
Section 6 summarizes the results and concludes the 
article. 

2 Related work 

The decomposition approach to machine learning was 
used early by a pioneer of artificial intelligence, A. 
Samuel. He proposed a method based on a signature 
table system [22] and successfully used it as an evalu-
ation mechanism for checkers playing programs. This 
approach was later improved by Biermann et al. [3]. 
Their method, however, did not address the problem 
of deriving the hierarchy of concepts, which was sup-
posed to be given by a domain expert. 

A similar approach had been defined even earlier 
vvithin the area of switching circuit design. In 1956, 
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R.L. Ashenhurst reported on a unified theory of de
composition of stvitching functions [2]. The decom
position method proposed by Ashenhurst was used 
to decompose a completely specified truth table of a 
Boolean function to be then realized with standard 
binary gates. Thus, the method could construct con-
cept hierarchies as well as their corresponding decision 
tables. Most of other related work of those times is re
ported and reprinted by Curtis [8]. 

Recently, the Ashenhurst-Curtis approach was sub-
stantially improved by research groups of M. A. 
Perkowski, T. Luba, and T. D. Ross. In [18], 
Perkowski et al. report on the decomposition ap
proach for incom,pletely specified switching functions. 
Luba [12] proposed a method for the decomposition of 
multi-valued sniitching functions in which each multi-
valued variable is encoded by a set of Boolean vari-
ables. A decomposition of fc-valued functions was pro
posed by Files et al. [10]. The authors identify the 
potential usefulness of function decomposition for ma-
chine learning, and Goldman [11] indicates that the 
decomposition approach to switching function design 
might be termed knoivledge discovertj, since a func
tion not previously foreseen might be discovered. From 
the viewpoint of machine learning, however, the main 
drawbacks of these methods are that they are mostly 
limited to Boolean functions and incapable of dealing 
with noise. 

Feature discovery has been at large investigated by 
constructive induction [14]. Perhaps closest to func
tion decomposition are the constructive induction sys-
tems that use a set of existing attributes and a set of 
constructive operators to derive new attributes. Sev-
eral such systems are presented in [13, 19, 20]. 

Within machine learning, there are other approaches 
that are based on problem decomposition, but where 
the problem is decomposed by the expert and not by 
a machine. A \vell-known example is structured induc
tion, developed by Shapiro [23]. His approach is based 
on a manual decomposition of the problem. For every 
intermediate concept either a special set of learning 
examples is used or an expert is consulted to build a 
corresponding decision tree. In comparison with stan
dard decision tree induction techniques, Shapiro's ap
proach exhibits about the same classification accuracy 
with the increased transparency and lower complexity 
of the developed models. Michie [15] emphasizes the 
important role the structured induction will have in 
the future development of machine learning and lists 
several real problems that were solved in this way. 

The work presented here is based on our own decom
position algorithm [25] in which we took the approach 
of Curtis [8] and Perkowski et al. [18], and extended 
it to handle multi-valued categorical attributes and 
functions. The algorithm was demonstrated to per-
form well in terms of generalization [26], discovery of 
relevant concept hierarchies [7], and feature construc-

tion [27] in fairly complex problem domains. 

3 Decomposition algorithm 
Let F be a decision table consisting of attribute-value 
vectors that map the attributes X = {xi,... ,a;„} to 
the class y, so that y = F{X). A single decompo
sition step searches through ali the partitions of at
tributes X into a free set A and bound set B, such 
that AnB = <!), AUB = X, and A and B each con-
tain at least one attribute. Let us denote such a par-
tition with A\B and assume that a partition selection 
criterion tj){A\B) exists that measures the appropri-
ateness of this partition for decomposition (partitions 
with lower V îre more appropriate). The partition 
with the lowest ip is selected and F is decomposed to 
G and H, so that y = G{A,c) and c = H{B). Pro-
vided there exists a complexity measure 6 for F, G, 
and H, F is decomposed only if the complexity condi-
tion 6{F) > 6{G) + 6{H) is satisfied. Several partition 
selection {tj}) and complexity {9) measures are intro-
duced in the next section. 

The algorithm that implements the single decom
position step and decomposes a decision table F to G 
and H is described in detail in [25]. Here, we illustrate 
it informalIy using the decision table from Table 1. 
For every attribute partition, the method constructs 
a partition matrix with the attributes of bound set in 
columns and of free set in rows. Each column in the 
partition matrix denotes the behavior of F for a spe-
cific combination of values of bound attributes. The 
same columns can be represented with the same value 
of C. The number of different columns is equal to the 
minimal number of values for c to be used for decom
position. In this way, every column is assigned a value 
of C, and G and H are straightforwardly derived from 
such an annotated partition matrix. For each of three 
partitions for our example decision table F, the par
tition matrices with the corresponding values of c are 
given in Figure 2. 

The assignment of c's values is trivial when de
cision table instances completely cover the attribute 
space. When this is not the čase, Wan and Perkowski 
[24] proposed an approach that treats missing deci
sion table entries as "don't cares". Each partition ma-
trix can then have several assignments of values for 
C. The problem of finding the assignment that ušes 
the fewest values is then equivalent to optimal graph 
coloring. Graph coloring is an NP-hard problem and 
the computation time of an exhaustive search algo
rithm is prohibitive even for small graphs. Instead, 
Wan and Perkowski suggested a heuristic Color In-
fluence Method of polynomial complexity and showed 
that the method performed well compared to the op
timal algorithm. Although the examples used in this 
articie use decision tables that completely cover the at
tribute space, the complexity and partition measures 

file:///vell-known
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Figure 2: Partition matrices for Table 1 using three different partitions of attributes a;i, X2, and 13. 

introduced apply with no difference to incompletely 
covered cases as well. 

The decomposition algorithm examines ali decision 
tables in the evolving concept hierarchy and tlien ap-
plies a single decomposition step to the decision ta
ble and its partition that was evaluated as the most 
appropriate by ip and that satisfies the complexity 
condition e{F) > Q{G) + 6{H). If several partitions 
are scored equal, the algorithm arbitrarily selects one 
among those with the lowest number of elements in 
the bound set. The process is repeated until no de
composition is found that would satisfy the complexity 
condition. 

We illustrate this stepwise decomposition using the 
CAR domain that is described in section 5. Figure 3 
shows a possible evolving concept hierarchy obtained 
by decomposition. Each consecutive hirarchy is a re-
sult of a single decomposition step. Only the hierar-
chical structure without decision tables is shown. 

The overall time complexity of decision table decom
position algorithm is polynomial in the number of ex-
amples, number of attributes, and maximal number of 
columns in partition matrices [26]. As the latter grows 
exponentially with the number of bound attributes, it 
is advantageous to limit the size of the bound set. In 
the experiments presented in Section 5, however, the 
problems were sufficiently small to examine ali possible 
bound sets. 

The above decomposition algorithm was imple-
mented in the C language as a part of the system called 
HINT (Hierarchy INduction Tool) [25]. HINT runs on 
several UNIX platforms, including HP/UX and SGI 
Iris. 

4 Partition selection criteria 
and complexity measures 

This section reviews one and introduces two new par
tition selection criteria. For each, it also defines 
the complexity measure and corresponding complexity 

condition. Furthermore, two overall complexity mea
sures for the hierarchy of decision tables are defined, 
and, finally, a measure for estimating the Information 
content of the hierarchy itself is presented. 

4.1 Partition selection criteria 

4.1.1 Decomposed funetion cardinali ty 

Decomposed funetion cardinality (DFC) was originally 
proposed by Abu-Mostafa [1] as a general measure 
of complexity and used in decomposition of Boolean 
functions [21]. DFC is based on the cardinality of the 
funetion. Given a decision table F{X), DFC-based 
complexity is defined as: 

^DFc(î ) = ||A'|| = ni^'i | ' ""^^^ (1) 

where [a;, j represents the cardinality of attribute Xj, 
i.e., the number of values it ušes. 

The DFC partition selection criterion for decompo
sition F{X) = G{A, c) and c = H{B) is then: 

^l>mc{A\B) = ^DFc(C?) + exivc{H) 
\\A\\ + \\B\\ = C 

(2) 

The complexity condition using the above defini-
tions is 6DVC{F) > OOFC{G) + ODFC{H), or equiva-
len t ly | |X | |> | c | | | y l | | + | |B| | . 

For our example decision table (Table 1) and the 
corresponding partition matrices (Figure 2), the parti
tion selection criteria are: i/'DFc(2:i|3;2a'"3) — 9+6 = 15, 
ipDFG{x2\'J:iX3) = 15 -I- 6 = 21, and 'i/'DFc(a;3|a;i3;2) = 
12 + 9 = 21. 6DFC{F) is 18. The only partition that 
satisfies the DFC decomposition criterion is a;i|a;2a;3. 

DFCs ability to guide the decomposition of Boolean 
functions has been illustrated in several references in
cluding [21, 11]. For multi-valued logic synthesis, a 
DFC-guided decomposition was proposed in [10]. 

4.1.2 Information content of decision tables 

Decision table Information content (DTIC) is based on 
the idea of Biermann et al. [3] who counted the num-
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Figure 3: Evolving concept hierarchy discovered by decomposition of the CAR decision table. Each consecutive 
hierarchy results from a single-step decomposition of its predecessor. 

ber of different functions that can be represented by 
a given signature table schema, i.e., a tree of concepts 
whose cardinality is predefined. 

A decision table y = F{X) can represent Iž/l"^" dif
ferent functions. Assuming the uniform distribution of 
functions, the number of bits to encode such a decision 
table is then 

^DTIc(i^) = | |X| | l0g2|2/ | bits (3) 

Note that for binary functions where \y\ = 2, this is 
equal to 6DFC{F). 

When decomposing y = F{X) to y = G{A,c) and 
C = H{B), we assign a single value from the set 
{1,2 , . . . , |c|} to each of the columns of partition ma-
trix. But, each of the values has to be assigned to at 
least one instance. In other words, from |y|"^" differ
ent functions we have to subtract ali those that use less 
than \c\ values. The number of different functions with 
exactly \c\ possible values is therefore N{\c\), where Â  
is defined as: 

N{x) = a;ll^l 

Nil)= 1 

x - l 

-E N(i) 
(4) 

Furthermore, since the actual label (value of c) of 
the column is not important, there are |c|! such equiv-
alent assignments and therefore |c|! equivalent decision 
tables H. A specific H therefore uniquely represents 
A'^(|c|)/|c|! functions with exactly |c| values, and the 

corresponding Information content is: 

^ D T I c ( ^ ) = l 0 g 2 i V ( | c | ) - l 0 g 2 ( | c | ! ) b i t s (5) 

The DTIC partition selection criterion prefers the 
decompositions with simple decision tables G and H 
and low Information content, so that; 

V'DTIC(A|B) = ^DTICCG) + e[)TIc(^) (6) 

The DTIC-based complexity condition is: 

^DTIC (F) > ^DTIC (G) + 0[)TIC (H) (7) 

For Table 1, DTIC evaluates to: V'DTic(a:i|a;2a;3) = 
20.76 bits, VDTic(3;2|a:ia;3) = 27.68 bits, and 
^DTic(a;3|a;ia;2) = 30.39 bits. 5DTIC(-F) is 28.53 bits, 
and, in contrast to DFC, two partitions qualify for de
composition. Among these, as with DFC, the partition 
a;i |a.-22;3 is preferred. 

4.1.3 Column inultiplicity 

Column multiphcity (CM) is the simplest complexity 
measure introduced in this article and equals to the 
cardinality of c (|c|), also referred to by Ashenhurst 
and Curtis as column multiplicity number of partition 
matrix [2, 8]. Formally, 

i^cu{A\B) = \c\ (8) 

The idea for this measure came from practical 
experience with DEX decision support system [5]. 
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There, the hierarchical system of decision tables is con-
structed manually and it has been found that decision 
tables with small number of output values are easier 
to construct and interpret. 

For our example and similarly to DFC and DTIC, 
CM also selects the partition a;i 1x2x3 with IIJCM — 3. 
The remaining two partitions have V'CM(3;2|3;ia;3) = 5 
and i/'CM(a;3|a;i2;2) = 6 . 

Unlike DTIC and DFC, CM can not be simply 
summed up to determine the joint complexity of a set 
of decision tables, which is needed to determine the 
complexity condition. Consequently, when we employ 
CM to guide the partition selection, we use DTIC to 
determine the decomposability. 

4.2 Complexity estimation for 
decision table hierarchy 

Using DFC, the overall complexity of decision tables 
in the concept hierarchy is the sum of ^DFC for each 
decision table. Similarly, for DTIC, the complexity 
estimation is again the sum.of DTIC complexities of 
each of the decision tables, with the distinction that 
^DTic is used for the decision table at the root of the 
hierarchy and ^DTIC ^̂ ^ ^^^ other decision tables. 

For example, consider the two concept hierarchies 
from Figure 1. Their overall complexities as measured 
by DFC are 15 and 21, respectively, and 20.76 bits 
and 27.68 bits as measured by DTIC. These measures 
confirm that the first decomposition is less complex 
and thus preferred to the second one. The original un-
decomposed decision table had DFC equal to 18 and 
DTIC equal to 28.53 bits. Therefore, in terms of DTIC 
both decompositions reduced the complexity, while us
ing DFC this happened only with the first one. 

Note that the so-obtained DTIC complexity estima
tion is just an approximation of the exact complex-
ity that would take into account the actual number 
of functions representable by a multi-level hierarchy. 
This is because DTIC is designed for a single table 
only and does not consider the reducibility [3] that oc-
curs in multi-level hierarchies and effectively decreases 
the number of representable functions. Therefore, the 
estimated overall DTIC is the upper bound of the ac
tual complexity. 

4.3 Structure information content 

Using DTIC we can assess both the amount of informa
tion contained in the original decision table and con-
tained in the resulting decision tables that were con-
structed by decomposition. The difference of the two 
is the information contained in the hierarchical struc
ture itself. We call this measure structure information 
content (SIC). The more informative the hierardiy, the 
overall less complex the resulting decision tables. 

For the two decompositions in Figure 1, the corre-
sponding structure information contents are 7.77 bits 
and 0.85 bits, respectively. Since the first SIC is con-
siderably greater than the second one, the first struc
ture is more informative and its decision tables more 
compact. 

5 Experimental evaluation 

To evaluate the proposed partition selection criteria 
and complexity measures, we used three artificial and 
three real-world domains that were selected so that 
their concept hierarchies vvere either known in advance 
or could have been easily anticipated. For each do-
main, the decomposition aimed to discover this hierar-
chy. For evaluation, we qualitatively assess the similar-
ity of the two hierarchies and quantitatively compare 
them by using the proposed complexity measures. 

Each of six domains is represented with the ini-
tial decision table containing instances that completely 
cover the attribute space. Although the experiments 
could as well be done with sparser decision tables (see 
[25]), we wanted to focus in this article only on the dis-
covery of concept hierarchies. Note that the proposed 
partition selection measures depend only on cardinal-
ities of attributes and concepts, and not on the actual 
number of instances in decision tables. Furthermore, 
we have shown in [26] that by increasing the prob
lem space coverage by training instances, the discov
ered concepts converge to those from complete training 
sets. 

The results of decompositions are shown as concept 
hierarchy structures, where, unless otherwise noted, 
the labels of intermediate concepts indicate the order 
in which they were discovered. 

5.1 Artificial domains 

Three artificial domains vvere investigated: 

1. a Boolean function 

y = (xi OR X2) AND X3 AND (14 XOR sg), 

2. a six-attribute palindrome function, 

3. a three-valued function 
2/= MIN(a;i, AVG(a;2,MAX(a;3,X4),X5)). 

For the first function, the initial decision table has 
2^ = 32 instances, 6IDFC = 32 and 6IDTIC = 32 bits. 
While decomposition with DTIC and CM discovered 
the anticipated hierarchy, the DFC-guided decomposi
tion terminated too soon because the complexity con
dition did not allow to decompose the decision tables 
any further (see Figure 4). Note that the overall DFC 
is the same for ali discovered hierarchies, while the 
structure information content is higher for those dis
covered by DTIC and CM. The decision tables (not 
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DFC = 16 
DTIC = 12.42 bits 
SIC = 19.58 bits 

2//2 

cl/2 c3/2 

2:3/2 c2/2 0:4/2 15/2 

a;i/2 0:2/2 

DFC = 16 
DTIC = 14.99 bits 
SIC = 17.01 bits 3:1/2 0:2/2 0:3/2 

Figure 4: Decomposition of decision table representing the function y = (a:i OR 0:2) AND 0:3 AND (0:4 XOR 
0:5) guided by DTIC and CM (left), and DFC (right). 

DFC = 20 
DTIC = 15.23 bits 
SIC = 48.77 bits 

y/2 

c l / 2 c2/2 

c3/2 

/ \ 
a:i/2 XQ/2 

c4/2 0:3/2 0:4/2 

X2/2 0:5/2 

DFC 
DTIC 
SIC = 

2:3/2 

2//2 

0:4/2 c l / 2 

0:2/2 0:5/2 c2/2 

= 20 / \ 
= 17.80 bits ^ ^ 

•• 46.20 bits a:i/2 0:5/2 

Figure 5: Decomposition of decision table representing the palindrome function guided by DTIC and CM (left), 
and DFC (right). 

2//3 

XxlZ c l / 3 

0:2/3 c2/3 0:5/3 

0:3/3 0:4/3 

DFC = 45 
DTIC = 66.04 bits 
SIC = 319.11 bits 

1 

0:1/3 

c3/5 

0:2/3 0:5/3 

f/3 

c2/3 

c l / 3 

0:3/3 0:4/3 

DFC = 
DTIC = 

sic = . 

2//3 

0:1/3 c3/3 

0:5/3 c l / 5 

0:2/3 c2/3 

42 0:3/3 0:4/3 
= 59.77 bits 
325.38 bits 

Figure 6: Decompositions of the function y = MIN(o:i, AVG(o:2,MAX(a;3,o:4),o;5)): the anticipated hierarchy 
(left), the hierarchy discovered using CM (middle), and DFC and DTIC (right). The complexity and information 
measures for the latter two decompositions are the same. 
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shown in the figure) were checked for interpretability 
and were found to represent the expected functions. 

The second function y = PAL(a;i,a;2,-•• ,X6) re-
turns 1 if the string a;i . . . ^e is a palindrome and re-
turns O othervvise, i.e., y = {xi = xe) AND (0:2 = 
zs) AND (3:3 = 14). In the first experiment, six 
Boolean attributes xi .. .XG were used. The initial 
decision table has ^DFC = 64 and ^DTIC = 64 bits. 
Again, the decomposition with DFC stops sooner 
and the domain favors the decomposition using CM 
and DTIC. However, for both this and previous čase 
a DFC-guided decomposition could discover the ex-
pected hierarchy if the corresponding complexity con-
dition would be changed to ^ D F C ( ^ ) > ^DFC(G) + 
^DFc(-f^)- The same experiment was repeated with 
three-valued attributes ari.. .X6- This tirne, however, 
aH three criteria lead to the same and anticipated con
cept hierarchy. 

The third function y = MIN(a;i, AVG(x2, 
MAX(a;3,a;4),a;5)) ušes ordinal attributes Xi...X5 
that can take the values 1, 2, and 3. While MIN 
and MAX have the standard interpretation, AVG com-
putes the average of its arguments and rounds it to 
the closest integer. The initial decision table has 
6'DFC = 243 and 6IDTIC - 385.15 bits. The antici
pated and discovered hierarchies are shown in Figure 6. 
Quite surprisingly, in ali three cases the decomposition 
yields a hierarchy with a higher structure Information 
content than expected by introducing an additional 
five-yalued intermediate concept. If this were removed, 
the discovered hirarchy and decision tables would have 
been the same as anticipated. It is also interesting to 
note that the hierarchy discovered using CM on one 
side and DFC or DTIC on the other are different but 
of the same complexity. This example illustrates that 
for a specific domain there may exist several optimal 
concept hierarchies with regard to complexity. 

5.2 D E X models 
An area where concept hierarchies have been used ex-
tensively is decision support. There, the problem is 
to select an option from a set of given options so 
that it best satisfies the aims or goals of the decision 
maker. DEX [5] is a multi-attribute decision support 
system that has been extensively used to solve real-
world decision making problems. DEX ušes categori-
cal attributes and expects the concept structure and 
corresponding decision tables to be defined by the ex-
pert. The formalism used to describe the DEX model 
and its interpretation are essentially the same as with 
concept hierarchies studied in this article. This makes 
decision models developed by DEX ideal benchmarks 
for the evaluation of decision table decomposition. In 
this article, we use the following three DEX models: 

CAR: A model for evaluating cars based on their priče 
and technical characteristics. This simple model 

was developed for educational purposes and is de-
scribed in [4]. 

EMPLOY: This is a simplified version of the mod
els that were developed with DEX for a common 
problem of personnel management: selecting the 
best candidate for a particular job. While the 
realistic models that were practically used in sev
eral mid- to large-size companies in Ljubljana and 
Sarajevo consisted of more than 40 attributes, the 
simplified version ušes only 7 attributes and 3 in
termediate concepts and was presented in [6]. 

NURSERV: This model was developed in 1985 to rank 
applications for nursery schools [17]. It was used 
during several years when there was excessive en-
rollment to these schools in Ljubljana, and the 
rejected applications frequently needed an objec-
tive explanation. The final decision depended on 
three subproblems: (1) occupation of parents and 
child's nursery, (2) family structure and financial 
standing, and (3) social and health picture of the 
family. 

The CAR and NURSERV datasets are available from 
the UCI Machine Learning Repository [16]. 

The goal of this experiment was to reconstruct these 
DEX models from examples. The learning instances 
were derived from the original models, vvhere for aH 
combinations of input attributes the class was deter-
mined by the corresponding model. The examples 
were stated as attribute-value vectors, hiding from 
the decomposition method any underlying conceptual 
structure of the domain. 

The discovered hierarchies are given in Figures 7, 8, 
and 9. In ali cases, the decomposition guided by DFC, 
DTIC, and CM found the same hierarchical structures 
and corresponding decision tables. Using DFC and 
DTIC, the order in which new intermediate concepts 
were found was the same but different to the one us
ing CM. For example, in EMPLOV, DFC and DTIC-
guided decomposition discovered cl first, vvhile, using 
CM, this concept was discovered as the last one. 

AH the discovered hierarchies have higher Informa
tion content than the original ones. Also, the over-
all complexity of decision tables is lower according to 
both DFC and DTIC. Most importantly, the discov
ered concept hierarchies are very similar to the origi
nal ones. In fact, if c3 would be removed from CAR 
(making c4 directly dependent on lugboot, doors, and 
persons), the two Jiierarchies would be the same. The 
same applies to EMPLOV and NURSERV if cl and 
c2 are removed, respectively. In other words, the de
composition found the same concept hierarchies as the 
original ones but additionally decomposed the deci
sion tables for comfort (CAR), employ (EMPLOV), 
and struct+f inan (NURSERV). In this way it obtained 
less complex decision tables. 
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car/4 car/4 

price/4 tech/4 c2/4 cl/4 

buying/4 maint/4 comfort/4 safety/3 buying/4 maint/4 c4/3 

lugboot/3 doors/4 persons/3 

safety/3 

lugboot/3 c3/4 

DFC = 77 
DTIC = 126.75 bits 
SIC = 3329.25 bits 

DFC = 65 doors/4 persons/3 
DTIC ^ 107.90 bits 
SIC = 3348.10 bits 

Figure 7: The original concept hierarchy of CAR (left) and the decompositions based on CM, DFC and DTIC 
(right). 

einploy/4 employ/4 

educat/3 

/ \ per-char/3 
for_lang/3 \ 

degree/5 

exper/5 

age/5 

DFC = 91 
DTIC = 145 bits 
SIC = 35855 bits 

i n t e l / 4 work_app/3 /x 
coinm/4 manag/3 

c2/3 
c5/3 

for_lang/3 
degrež/5 / exper/5 

age/5 
DFC = 85 coDrai/4 nianag/3 
DTIC = 128 bits 
SIC = 35872 bits 

Figure 8: The original concept hierarchy of EMPLOY (left) compared to the hierarchy discovered by CM, DFC, 
and DTIC-guided decomposition (right). 

nursery/5 nursery/5 

employ/4 

parents/3 struct+finan/3 

soc+health/3 

health/3 

c4/4 c5/3 

soc ia l /3 
has_nurs/5 

finance/2 / housing/3 

structure/3 

parents/3 
has_nurs/5 

c l / 3 
health/3 

soc ia l /3 

c3/3 c2/3 

DFC = 94 form/4 chi lds/4 
DTIC = 169.20 bits 
SIC = 29922.99 bits 

form/4 \ \ housing/3 

I3PQ _ 82 chi lds/4 finance/2 
DTIC = 132.95 bits 
SIC = 29959,24 bits 

Figure 9: The original (left) and discovered concept hierarchy using CM, DFC and DTIC criteria (right) for 
NURSERY. 
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The derived decision tables were compared to the 
original ones and found to be the same but in the 
names used for instance labels (the decomposition ušes 
abstract labels while the original decision tables use 
meaningful names). The only exception are decision 
tables for tech and comf ort in the CAR domain, where 
the decomposition succeeded to find a more compact 
representation. 

6 Conclusion 

We investigated the appropriateness of three partition 
selection measures for decision table decomposition: 
decision table Information content (DTIC) and col-
umn multiplicity (CM) introduced in this article, and 
decomposed function cardinality (DFC) that has al-
ready been used primarily for the decomposition of 
Boolean functions. 

The experimental evaluation exposed the deficiency 
of DFC when decomposing a decision table that ex-
presses a Boolean function. This may be alleviated 
by relaxing the DFC compIexity condition. In more 
complex domains with multi-valued attributes, the de
composition guided by any of the proposed criteria 
discovered concept hierarchies that were very similar 
to those expected. Furthermore, the discovered hi
erarchies were equal to or even better than the an-
ticipated ones in terms of the complexity of decision 
tables and structure Information content. The order 
under which the intermediate concepts were discov
ered was the same for DFC and DTIC, but different 
for CM. A qualitative evaluation of derived hierarchies 
reveals that, in general, the discovered decision tables 
represent meaningful and interpretable concepts. 

Although less complex in definition and easier to 
compute, DFC and CM both stand well in compari-
son with a more complex partition selection measure 
DTIC. Also comparable is the utility of DFC and 
DTIC to assess the complexity of the original and de
rived decision tables, although we have shown that 
DFC-based measure performed worse on two Boolean 
functions. Overall, while DFC and DTIC have better 
theoretical foundations than an intuitive partition se
lection measure CM, the experimental evaluation does 
not indicate that any of these is to be strictly preferred 
over the other. 

The decision table decomposition was primarily de-
veloped for switching circuit design. However, ex-
periments in non-trivial domains like DEX's strongly 
encourage further research and development of this 
method for machine learning and knowledge discov-
ery. As the method has recently been extended to deal 
with continuous attributes [9] and noise [25], further 
research is needed to assess the quality of correspond-
ing partition selection criteria under these extensions. 
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Object-based parallel programming allows for the expression of ideal programs, \vhich do not 
specify the mapping of objects to machine nodes. A parallel machine can efRciently execute ideal 
programs only if a runtime tool dynamically takes the appropriate placement decisions. This 
paper presents a new distributed adaptive load balancing algorithm, called PWF (Probabilistic 
Wave Front). It ušes simple heuristics that guide the dynamic allocation of objects on the nodes 
of a parallel machine and their migration among the nodes. Experimental results show that PWF 
constantly outperforms both the random algorithm and the ACWN (Adaptive Contracting Within 
Neighborhood) one and therefore succeeds in accurately placing objects on the nodes of a parallel 
system. 

1 IntroductlOn how to redlstrlbute the already allocated ones.^ Be-
cause of the extreme flexibility offered by dynamic cre-

While technological factors are making parallel com- ation and interconnection of objects, it is very difficult 
puters more and more cost-effective and are imposing to statically predict the shapes and the extents of the 
a common architectural organization made by a collec- structures to which the computation will give rise at 
tion of nodes (processor-memory pairs) connected by runtime, and so to give an automatic, static solution 
a communication network [C], developing efficient and to the problem of devising an efficient object place-
portable parallel programs is stili liard [4]. In fact, ment policy aimed at minimizing the total execution 
programmers are stili forced to use rather low-level time of a parallel program. Therefore, two possible 
programming models and languages and to cxplicitly approaches are: 
manage computational resources. 

In the search for a solution to these problems, the - To explicitly program, for each group of objects in 
use of the object-based paradigm [17] has stirred the the application, a partition and distribution strat-
interest of the parallel computing community. In fact, egy (PDS). In this čase, reusability and scalability 
it combines well with parallelism, since their logical are greatly enhanced by adopting methodologies 
autonomy makes objects a natural unit for parallel ex- for modular specification of PDSs. [12]. 
ecution [2, 11], and allows for the expression oi ideal, ~ . ^ - i . i i . i . j , . ' . , , ,, f 1 .,, — lo use an automatic placement roo/that dynam-i.e. architecture-independent, parallel algorithms. • n i • i i ^ n ^ i i • ^ ^ , „ , rr. • . ically decides where to allocate each new object 

In order to automatically and efhciently map an j -c j u i J- ^ u i. û i J n 
. , , , . , , . . and II and how to redistribute the already allo-
ideal algorithm onto an architecture, an appropriate , , 
object placement policy is needed. It must specify 
both where to allocate each new object and if and xhis paper examines the problem of the automatic 

'This research was supported in part by the Italian Organiza- ' Generally, efflcicncy depends aiso on the scheduling policy 
tion for Univcrsity and for Scientific and Technological Research that each node adopts in selecting the next object ready to run, 
(M.U.R.S.T.) under grants "60%" and "40%". but we disregard this dependency here. 
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placement of objects and proposes the PWF {Prob-
abilistic Wave Front) algorithm, a new distributed 
adaptive load balancing algorithm based on some sim-
ple heuristics that guide the dynamic allocation of ob
jects on the nodes of a parallel machine and their mi-
gration among the nodes. In order to verify the ef-
fectiveness of the proposal, we included the PWF, the 
ACWN [14, 15] and the random load balancing al-
gorithms in an Actor [1] programming environment 
running on a Transputer network. Experimental re-
sults show that the PWF algorithm constantly out-
performs the other two and therefore succeeds in ac-
curately placing objects on the nodes of our parallel 
system. 

In the programming model adopted, objects, which 
unify both data and code in a local state, are dy-
namically created and referred through system-wide 
identifiers. They manifest a pure reactive nature and 
interact with other objects only via message pass-
ing. The communication mechanism is point-to-point, 
asynchronous and one-directional. Messages are even-
tually delivered to their destinations, but transmis-
sion order is not necessarily preserved at delivery. Un-
bounded queues associated to receiving objects buffer 
incoming messages, before they are serially processed. 
Functional interactions among objects are modeled 
with the use of continuations. 

The structure of the article is as follows. In the 
following two sections, we describe a framevvork for 
dynamic placement of objects and then present and 
discuss the PWF algorithm. In the last three sections, 
we describe how to tune the algorithm for obtaining 
the best performances, illustrate a set of experimental 
results that prove the effectiveness of our proposal and 
present the conclusions. 

2 A frainework for dynamic 
placement of objects 

The study of provably efhcient on line scheduling algo-
rithms for parallel programs whose computations are 
revealed only at runtime is stili in its infancy and some 
theoretical results are available only for a few kinds of 
applications and for specific computational models [3]. 

Therefore, in order to achieve good speedups, exist-
ing object-based programming environments pragmat-
ically adopt dynamic placement algorithms based on 
heuristics that essentially try to satisfy the two goals 
of load balance and locality. Load balance guarantees 
that, at each moment during the computation, ali the 
nodes of the machine have sufRcient work to do. In-
stead, locality reduces network traffic, by decreasing 
the distance between data and the node where it is 
needed. Unfortunately, these goals are in conflict, in 
that load balance benefits from the uniform distribu-
tion of objects across the network, while locality is fa-

vored by the concentration of objects on a few nearby 
nodes.^ 

Information collected by dynamic placement algo
rithms is very often limited to load Information and 
so these algorithms are generally referred to as dy-
namic load balancing algorithms (DLBAs), even if lo-
cality concerns are to some extent taken into account. 

In general, among ali the balancing algorithms cited 
in the literature, the distributed adaptive ones (DAL-
BAs) give better chances of achieving good perfor-
mance and scalability [5, 10, 13, 9]. These algorithms, 
in the context of object-based computations, run on 
each machine node in order to execute the following 
activities: 

1. updating local load and state; 

2. exchanging with other nodes load balancing mes
sages (LBMs) derived from local states; 

3. choosing the node where to allocate a new object; 

4. deciding if and how to redistribute some of the 
already allocated objects. 

In order to set up a framework for DALBAs in 
the context of object-based programming models, we 
spend a few words on each activity and on the main 
strategies that each one can adopt. 

Updating local load and s t a t e . The basic activ-
ity performed by a DALBA running on a node is to 
evaluate the local load. Because messages exchanged 
among objects are the driving force, a good measure of 
the current load may be the number of "serviceable" 
messages waiting to be processed on the node. This 
measure is sufRciently accurate when ali the messages 
in the computation have near equal elaboration times, 
as it is often the čase in applications characterized by 
rather small-grained objects. 

Another DALBA activity is to handle local state, 
vvhich often includes both data derived from received 
LBMs and some adaptive indices and thresholds. 
Therefore, local state allows each DALBA to relate 
local load with the load of other nodes and to adapt 
its activities and strategies to the changing load con-
ditions in tlie system. 

Exchanging information. Nodes exchange Infor
mation in the form of LBMs vvhich can be commu-
nicated either periodically or when load changes by 
prefixed amounts. The latter solution avoids exchang-
ing useless information, but, in any čase, the amounts 
should be tuned for the specific appHcation in order to 
realize a trade-off between communication costs and 
accuracy of exchanged information. 

•^Even if in modern interconnection netvvorks latencies are 
relatively insensitive to distance, many long distance messages 
may result in link contention and consequently degrade network 
throughput. 
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Load in a LBM can be specified either as an abso-
lute value or as an estimate expressed as a value in a 
finite number of alternatives, such as light, moderate, 
or heavy. The latter solution is to be preferred be-
cause it lets each sending node evaluate its own load 
condition. 

In order to assure scalability to DALBAs, each node 
hcis to exchange Information only with a subset of the 
other ones. In the čase of multicomputers and geo-
graphically or hierarchically distributed systems, this 
subset can coincide with the physical neighbors of the 
node, so contributing to reduce network traffic. In-
stead, in the čase of a fully connected distributed sys-
tem, it is necessary to adopt a node-grouping strategij, 
in order to determine for each node both a receiving 
set and a sending one. Each node sends LBMs onIy 
to the members of its sending set and receives LBMs 
only from the members of its receiving set. The node-
grouping strategy must satisfy some minimal require-
ments [16]: 

— sets must be "reasonably" small and of similar 
size; 

— for each pair of nodes a and h, h must be "reach-
able" from a, i.e. either a and b must belong to 
the same receiving set or a node x must exist, such 
as X is reachable from a and b is reachable from 
X. 

This last requirement guarantees that, if necessary, a 
creation or migration request that originates from a 
node can reach any other node. 

In the following, we say that node a is a "neighbor" 
of node b if either a is a physical neighbor of 6 or a 
belongs to the receiving set of b. 

Taking the allocation decision. Whatever the 
allocation strategy adopted, allocation must be guar-
anteed to take plače in a finite time. This can be 
assured by limiting to some maximum value the num
ber of "hops" traveled by the allocation request. In 
particular, a small maximum value promotes locality 
together with fast and low-cost object creation, but 
may prevent quick load spreading and so cause a loss 
of efficiency at the beginning of the computation. 

Reducing the maximum number of hops to zero cor-
responds to adopting a purely local allocation strategy 
and so to using the only redistribution mechanism in 
order to gain load balancing. This is generally inappro-
priate, in that redistribution induces high overheads. 
Instead, a strategy which allocates objects on the ba-
sis of local State of nodes should be adopted, in order 
to reduce the probability of redistributing objects and 
so increasing the efRciency of balancing. 

Taking the migration decision. Object redistri
bution is necessary when, despite a good initial alloca
tion, some nodes move towards light load conditions. 
In migrating objects, a DALBA can adopt a sender 

initiated strategy or a receiver initiated one or a mix 
of them [13, 18]. Anyway, in order to preserve locality, 
an object should not be migrated many times and, in 
order to reduce communication overhead, the amount 
of load to move should be obtained from a small num
ber of objects and by minimizing the total number of 
transferred bytes. 

3 The P W F Algorithm 
The PWF {Probabilistic Wave Front) algorithm is a 
new DALBA, based on the framework set up in the 
previous section, and applicable to object-based, par-
allel programming environments running on systems 
made up of a number of nodes communicating only 
by means of message passing. The only assumptions 
about the communication network are that message 
passing is reliable and, for each node, a set of neigh-
boring nodes is defined in such a way as to satisfy the 
minimal requirements stated in the previous section. 
Messages need not arrive in the same order they are 
sent, but, if this happens among neighbors, the per-
formance of PWF improves. 

The name PWF has been chosen in order to make 
explicit the two main characteristics of the algorithm: 

— Objects diffuse through the system according to 
the simple rule that the number of hops traveled 
by each request of creation or migration is at most 
one. 

— The candidate node on which to create a new ob
ject, is firstly selected by a simple round-robin 
strategy among the neighbors of the node where 
the request occurs, and then passes a validation 
step, based on a probability value that depends 
on its load level. 

The PWF algorithm is based on the following main 
assumptions: 

— Each node "sees" only a subset of the other nodes 
(its neighbors) and so stores load Information only 
relative to these nodes and exchanges LBMs and 
requests of creation and migration only with these 
nodes. 

— Local load is measured as the number of ser-
viceable messages waiting to be processed on the 
node. 

— Load in LBMs is expressed as a value in a finite 
number of alternatives, deri ved from the actual 
load value by using some appropriate thresholds. 

— Some of the thresholds are adaptively modified. 

— The load of a node is known to each of its neigh
bors only indirectly through a probability value. 
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Symbols Meanings 
NS 
0..NS-1 
thisNode 
N 
N' 
load 
idie, light, medium, heavy 
level 
IT 
LT, HT 

LTo, HTo 
AT 
last 
succ(n) 

MP 

Pn 

rthisNode 

f 

M 
random() 
send msg to S 
m igrate AL to n 

Number of nodes in the system 
Identifiers of nodes in the system 
Identifier of the node running the PWF algorithm 
Set of identifiers of thisNode neighbors, totally ordered 
Set N U {thisNode}, totally ordered 
Current load value of thisNode (initialized to 0) 
Load levels of a node 
Current load level of thisNode (initialized to light) 
idIe level threshold (level = idIe iff load < IT) 
Current light and heavy level thresholds 
(level = light iff IT < load < LT 
level = medium iff LT < load < HT 
level = heavy iff load > HT) 
Initial values of LT and HT (received by PWF at the beginning of computation) 
Adaptive increase of LT and HT (received by PWF at the beginning of computation) 
The node in N' where the last creation was made (initialized to anyone of N values) 
Vn € N', returns the node immediately following n in N', if it exists; 
the first node in N', othervvise 
Probability value for a medium load level (O < MP < 1) 
(received by PWF at the beginning of computation) 
Vn € N, current probability value of node n, equal to: 
0 if n is known to have a heavy load level; 
1 if n is known to have a light or idIe load level; 
MP if n is known to have a medium load level 
Current probability value of thisNode, equal to: 
O if Pn = 1, Vn G N; 1 otherwise 
A real value in [O, 1], which determines the maximum fraction of neighbors 
to involve in a migration (received by PWF at the beginning of computation) 
Set of neighbors to involve in a migration (M C {n : n € N A Pn ?̂  1}) A (| M |< [f x | N |J) 
Returns a random real value in [O, 1[ 
Sends the message msg to ali the nodes in the set S 
Migrates to node n a load at most equal to AL 

Table 1: Symbols and their meanings. 

Moreover, on each node, a further probability 
value synthesizes the aggregate load of neighbors. 

updateLoad(dl): 
load *— load + (// 
if load > HT then 

if level ^ heavy then 
level -*— heavy 
send {thisNode^ heavy) to N 

elsif load > LT then 
if level ^ medium then 

level ^~ medium 
send {thisNode, medium) to N 

elsif load > IT then 
if level > light then 

level <~ light 
send {thisNode,light) to N 

eisif level = light then 
level +— idle 
send {thisNode, idle, \M\) to M 

Figure 1: The updateLoad component. 

In detail, the PWF algorithm consists of the 

three components updateLoad, handleLBM, and select-
edNode, which are executed on each node of the sys-
tem. They are respectively described in Figures 1, 2, 
and 3. The symbols adopted and their meanings are 
described in Table 1. 

updateLoad(dl) runs each tirne the node changes its 
load by a quantity dl, which can be either positive 
(a new message is received by an object residing on 
the node or an old message becomes serviceable) or 
negative (a message is processed by an object on the 
node or some object is migrated or a message becomes 
temporarily unserviceable). It is up to this component 
to notify each load level variation to ali the neighbors, 
by sending them appropriate LBMs consisting of two 
fields: the identity of the sender node and its new load 
level. Only in the čase of a light to idle transition, when 
migrations are to be activated, the LBMs include, as 
a third field, the cardinality of M, to be used by the 
target nodes in order to evaluate the amount AL of 
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handleLBM(sender, nevvLcvel, m): 
č a s e neiuLevel of 

heavy: P^ende,- <- O 
PthiaNode <— 1 
if P„ = O Vn € W t h e n 

IIT +- / /To + A T 
LT <- LTa + A T 

niedium: Paender *— M P 
PthiaNodu *— 1 
/ / T <- / /To 
L T <- LTo 

light: Ps^nder <- 1 
if P„ = 1 Vn e Af t h e n 

PthitNodts *— O 
/ / T <- / /To 
L T <- LTo 

idle: Psender <— 1 
if P„ = 1 Vn e JV t h e n 

PthisNode <— O 
/ / T <- / /To 
L T <- LTo 
if load > LTo t h e n 

A L <- 7nm(f(LTo- IT)/m], 
load-LTo) 

migrate A L to sender 

Figure 2: The handleLBM component. 

selectedNode(): 
r e p e a t 

last <— succ{last) 
u n t i l random{) < Pia»i 
r e t u r n s last 

Figure 3: The selectedNode component. 

load to be migrated. In this čase, notification is limited 
to a set M containing at most a fraction f of heavy 
or medium load neighbors; obviously, in forming M, 
heavily loaded neighbors are to be preferred. 

handleLBM(sender, nevvLevel, m) runs each tirne the 
node receives an LBM from one of its neighbors. This 
component updates probability values and the thresh-
olds LT and HT; moreover, when required, it com-
mands object migrations. As migrations tend to ele-
vate the load of the idle node to LTo, by knowing that 
m neighbors are involved in the migration, the amount 
of load AL to be migrated is evaluated as the m-th part 
of LTo-IT. Obviously, if necessary, this amount is re-
duced in order to guarantee a load level on the node 
at least equal to medium. Therefore, a migration can 
never cause a node to move to a light or idle load level. 

selectedNode() runs each time a request to create 
a new object rises on the node and consists of two 
possibly repeated steps: 

— a candidate node in the set N' is selected, accord-
ing to a round-robin strategy; 

— the candidate node is validated if a randomly gen-
erated real number in the range [0,1[ is lesser than 
the current probability of the node. 

It must be noted that, according to the probability 
values assigned to nodes: 

— a node is selected in a number of steps at most 
equal to the cardinality of N'; 

— a heavily loaded neighbor is never validated; 

— a lightly loaded neighbor is always validated; 

— a medium loaded neighbor is validated with prob-
ability M P; 

— a creation is always remote, as long as ali the 
neighbors are lightly loaded; 

— a creation is always local, as long as ali the neigh
bors are heavily loaded. 

The strategies adopted in the PWF algorithm are at 
the same time simple, and therefore efRciently imple-
mentable, and effective in guaranteeing the accuracy 
of balancing. 

As to simplicity, it is worth noting that: 

— Measuring the load as the number of serviceable 
messages waiting to be processed on the node re-
quires only counting. 

— Nodes involved in Communications are always 
neighbors. 

— LBMs are sent only when transitions in load lev-
els occur. The many LBMs generated by the 
oscillations of load around a threshold can be 
avoided by an "hysteresis mechanism" that splits 
each threshold into two, with the lower one to be 
used when load decreases and the upper one when 
load increases. 

— Allocation of a new object is guaranteed to take 
plače after at most one delegation, so that each 
object is created either locally or onto a neighbor 
of the node where the creation request arises. 

Instead, accuracy of balancing is assured by the fol-
lowing algorithm behaviors: 

— Both non-local allocation and redistribution of ob-
jects are pursued. The adopted allocation strat-
egy significantly reduces the probability of expen-
sive migrations, which remain however necessary 
to contrast both residual load imbalances, typical 
of highly dynamic computations, and structural 
ones occurring in the final phases of computations. 

— Initially, when nodes are not loaded yet, allocation 
is mainly controlled by the round-robin selection 
strategy, so guaranteeing a quick load spreading. 
Later, when nodes tend to be more heavily loaded, 
allocation becomes mainly controlled by the vali-
dation step, so assuring a more accurate selection 
of the destination. 

— Adaptively incrementing the thresholds LT and 
HT of a node, when ali its neighbors are heavily 
loaded, delays the transition of the node towards 
higher load levels, so enabling it to receive further 
work from its neighbors. 
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4 Choosing parameters 
The performance of tlie PWF algorithm depends on 
the values chosen for the parameters LTo, H To, M P, 
IT, AT, and f. 

Load distribution is essentially controUed by the val
ues of the thresholds LTo and HTo that should be 
chosen according to the expected maximum load per 
node EML. Practically, this value can be approximatcd 
by MMLRAf^jjoM i the average of the maximum loads 
measured on each node during a preliminary run which 
makes use of the random balancing strategy, chosen 
in order to eliminate any dependence from balancing 
parameters. Our experience shows that the best per-
formances are obtained when LTo and HTo are respec-
tively set to the 40% and 80% of EML. In particular: 

— lou^er LTo values may prevent a quick load spread-
ing, so determining imbalances and consequentIy 
inducing expensive load redistribution; 

— higher values may cause objects to be spread out 
even when it is not actually necessary, by giving 
rise to both a wasteful communication overhead 
and a loss of computation locality. 

Analogous considerations can be made for the thrcsh-
old HTo. In fact, lower values may inducc load imbal
ances, because objects tend to be locally created, while 
higher values may cause object creations on heavily 
loaded nodes. 

Even if MP may assume values in the range ]0, 1[, 
its value should be about ^. In fact, the choice of an 
extreme value in the range corresponds to reduce the 
two thresholds LTo and HTo to only one. In particu
lar, MP=0 corresponds to set HTo equal to LTo, while 
MP=1 corresponds to set LTo equal to HTo. Moreover, 
in order to choose an accurate value of MP, both the 
kind of computation and the connectivity level of the 
network should be taken into account. In particular, if 
the object creation activity is rather evenly distributed 
among nodes and the average number of neighbors in 
the system is high, it is likely that a medium loaded 
node will move towards a heavy load condition. In 
this čase, in order to exploit computation locality and 
limit the overhead due to object spreading, M P should 
assume a value lesser than i . Conversely, if the object 
creation activity is limited to a few nodes and the av
erage number of neighbors in the system is low, it is 
likely that a medium loaded node will move towards 
a light load condition. In this čase, in order to favor 
object spreading, M P should be set to a value higher 
than | . Anyway, our experience shows that the best 
results are obtained with M P values ranging from 0.4 
and 0.6. 

The value of the IT threshold determines when a 
node that is going to become idie requests work from 
some of its neighbors. Therefore, too low a value could 
excessively delay redistribution, so as not to impede 

the node from becoming idie. On the contrary, too 
high a value could cause an anticipated and useless 
redistribution, so inducing a wasteful overhead. 

As already said, the adaptive increase of the thresh
olds LT and HT by the quantity AT, when neighbors 
are aH heavily loaded, aims at delaying node transition 
tovvards higher load levels, so enabling it to receive fur-
ther work from its neighbors. Therefore, if AT is set 
to a too low value, the delay effect is negligible. On 
the contrary, too high a value may cause imbalances 
because of the out to date load Information kept on 
neighbors. 

The value of f determines the number of neighbors 
to involve in a migration. It should be set accord
ing to the kind of computation. In fact, in a highly 
dynamic computation, there raay be load imbalances 
among nodes and a node is likely to be surrounded by 
neighbors in very different load conditions. In such a 
situation, f should be set to a low value, so that the 
amount of load to be migrated to an idie node tends 
to be provided only by the most loaded neighbors. On 
the contrary, in a computation characterized by rather 
regular load conditions, an idie node is likely to be 
surrounded by lightly loaded neighbors. Therefore, f 
should be set to a high value, so that the amount of 
load to be migrated to an idie node tends to be pro
vided by a greater number of lightly loaded neighbors. 

5 Experimental results 
In order to prove the effcctiveness of our proposal, we 
have compared the PWF algorithm with the random 
and the ACWN {Adaptive Contracting Within Neigh-
borliooil) ones [14, 15]. These algorithms were chosen 
for the follovving reasons: 

— The random algorithm achieves quite a uniform 
load distribution with a minimum exploitation of 
system resources, but neither it assures any locčil-
ity to the computation, nor is it adaptive. 

— The ACWN algorithm gets a good load distribu
tion, assures a high locality to the computation, 
and is adaptive, but it induces some communica
tion and computing overheads. 

The three load balancing algorithms have been inte-
grated into ASK (Actor System Kernel), the runtime 
support of AL-I—I- [7], a semantic extension of C+-I-, 
implemented through a class library which provides 
an object-oriented interface for Actor programming. 
The prototype implementation of ASK has been de-
veloped in the 3L Parallel C programming language. 
It runs on an INMOS system which consists of a net-
work of sixteen T800 Transputers, clocked at 20 MHz, 
with links at 20 Mbits/s, and each equipped with 1 
Mbyte of RAM with two wait states. A PC acts as a 
host system and I/O server. ASK runs at the top of 
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Algor i thm 
N - Q U E E N S 

Board size: 9 x 9 

Avcrage number n of objects 
created on each nodc 

Random 
Standard deviation an ACWN 

PWF 

Average number m of messages 
processed on each node 

Average processing time grain 
for each message g (mscc) 

Standard deviation a^ (msec) 
Minimum grain gmin (msec) 
Maximum grain gmax (mscc) 

Number of columns 
searclicd by eacli object 
1 

503 
9 

13.5 
11.4 

525 

1.1 
0.8 
1.1 
1.9 

2 

244 
10.8 
15.2 
12.3 

266 

1.8 
0.9 
1.3 
2.8 

4 

102 
16.1 
16.7 
13 

124 

3.6 
2.1 
1.3 
6.1 

6 

65 
22.2 
18.1 
13.9 

87 

6.0 
3.7 
1.3 

10.5 

Table 3: Main characteristics of n-quecns. 
2 3 4 5 

Granularity (millisec) 

a low-level network environment that provides node-
to-node asynchronous communication and routing be-
tween non-adjacent nodes, for both ring and 2D Torus 
topologies. 

Here we show the experimeiital results obtained 
on three sample programs, characterized by difFerent 
computation structures and communication patterns, 
which stress in difFerent ways the dynamic properties 
of the balancing algorithms tested: 

— Range-add, \vhich ušes a "divide-and-conquer" 
strategy in order to compute in parallel the sum 
of ali the integers in the range betvveen O and 10 
millions. The computation is characterized by a 
binary tree structure, where each leaf object adds 
the numbers in the received range and passes on 
the sum to its parent, while each internal object 
splits the received range into two, passes on them 
to two new created objects, receives back the two 
sums, combines them and passes on the result to 
its parent. 

— N-queens, which realizes a concurrent search of ali 
the solutions to the problem of placing n queens 
on an n x n chessboard in such a way that no queen 
may be taken by any other queen. The computa
tion is characterized by a highly dynamic struc
ture whose shape cannot be predicted at compile-
time. Each search object receives a chessboard 
with a partial solution, i.e. i queens safely placed 
on the first i columns, and tries to extend it by 
finding ali the safe positions on the (i-l-l)-th col-
umn. Whenever a safe position is found, the new 
partial solution is passed to a new search object 
that tries to extend it further. 

— Tsp, which generates a solution of the travel-
ing salesman problem, by finding a "minimum-
distance" route a sales representative may follow 
in order to visit each city in a given list exactly 
once. The computation has a tree structure whose 

Figure 4: Efficiency of range-add. 

size cannot be predicted at compile-time. Search-
ing starts by creating n-1 objects and proceeds 
in parallel according to a "brancli and bound" 
scheme. Each object receives a different partial 
route, extends it by adding one city, evaluates the 
new partial distance and, only if it is less than 
the one stored in a minimum object, passes it to 
a new object. This action continues repeatedly, 
until the number of cities to add to partial routes 
is equal to a value fixed at computation start up. 
Then, objects complete the received partial routes 
with ali the remaining cities. 

Tables 2, 3, and 4 summarize the main characteris
tics concerning the executions of these programs. In 
particular, each table reports, for a given problem size 
and different grain sizes, the following features: 

— object distribution, i.e. the average number (n) of 
objects created on each node and, for each balanc
ing algorithm, the standard deviation of n (o-,j)j 

— the average number (m) of messages processed on 
each node; 

— the minimum {gmin), maximum {gmax), and aver
age {g) message processing times (grain), as well 
as the standard deviation oi g (cTg). 

Instead, Figures 4, 5, and 6 show, for each bal
ancing strategy, the efficiencies, expressed in percent-
ages, gained by the tested algorithms for different grain 
sizes. These results are the best ones we were able to 
obtain by setting, for each application, the parameters 
of the PWF and ACWN algorithms. 

Efficiency is computed as the ratio of the real 
speedup to the number of processing nodes. The real 
speedup is the ratio of the time needed by the best se-
rial algorithm running on a single node of our machine 
to the time needed by the parallel algorithm running 

file:///vhich
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Algorithm 
RANGE-ADD 
Total number of 

operations: 10,000,000 

Average number n of objects 
created on each node 

Random 
Standard deviation cr„ ACWJ 

PWF 

Average number m of messages 
processed on each node 

Average processing tirne grain 
for each message g (msec) 

Standard deviation Ug {msec) 
Minimum grain gmin (msec) 
Maximum grain gmax (msec) 

Number of sums carried out 
by each leaf object 

2,500 

500 
8.9 

f 17.2 
13 

1000 

1.5 
2.6 

0.001 
6 

5,000 

250 
10.3 
18.3 
14.4 

500 

3.0 
5.2 

0.001 
12 

7,500 

166 
12.8 
19.7 
15.8 

332 

4.5 
7.8 

0.001 
18 

10,000 

125 
14.2 
21.1 
16.5 

250 

6.0 
10.4 

0.001 
24 

Table 2: Main characteristics of range-add. 

Algorithm 
TSP 

Number of cities: 8 

Average number n of objects 
created on each node 

Random 
Standard deviation CT« ACW. 

PWF 

Average number m of messages 
processed on each node 

Average processing time grain 
for each message g {msec) 

Standard deviation a g {msec) 
Minimum grain gmin {msec) 
Maximum grain gmax {msec) 

Number of cities a leaf object 
tries to add to a partial route 

1 

428 
9.3 

r 16.1 
12.3 

1,284 

0.1 
0.2 
0.01 
0.4 

2 

271 
10.1 
16.9 
13.9 

813 

0.2 
0.3 
0.01 
0.8 

3 

113 
14.4 
17.3 
14.4 

339 

0.3 
0.4 
0.01 
1.6 

4 

34 
23.1 
18.8 
15.2 

102 

0.6 
1.6 

0.01 
6.0 

Table 4: Main characteristics of tsp. 
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2 3 4 
Granularity (millisec) 

Figure 5: Efficiency of n-queens. 

0.2 0.3 0.4 0.5 0.6 0.7 
Granularity (millisec) 

Figure 6: Efficiency of tsp. 

on ali the available nodes. Figure 4 also shows the effi-
ciency gained by the range-add algorithm when a pro-
grammed placement strategy, which is both optimized 
for the specific problem and parametric with respect 
to the input size, is adopted. The results achieved by 
employing this strategy can be regarded as an upper 
limit to cfRciency, since they are obtained with opti-
mal balancing conditions and without any overhead. 
The low levels of efRciency shown in Figure 6 are to 
be attributed to the characteristics of the runtime ker-
nel that is not able to adequately support fine-grained 
computations. 

Moreover, Figures 7, 8 and 9 show, for a particular 
execution of each algorithm, how efficiency depends 
on the adopted values of LTo, HTo and MP. The other 
balancing parameters have the following values: IT=2, 
AT=0.1xHTo andf= l . 

Tables 5, 6 and 7 also report the MML values and 
their standard deviations for the three balancing algo-
rithms used. 

The experimental results show that PWF con-
stantly outperforms both the random algorithm and 
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Figure 7: Efficiency of range-add versus LTo, HTo and 
MP. 

10,000 sums for each leaf object 

RANDOM 
ACWN 
PWF (LTo=10,HTo=20,MP=0.6) 

MML 

24.8 
36.1 
20.9 

(^MML 

7.4 
11.3 
3.6 

Table 5: MML values and their standard deviations 
for the execution referred in Figure 7. 

the ACWN one. 

3 columns searched by each object 

RANDOM 
ACWN 
PWF (LTn=5,HTo=10,MP=0.5) 

MML 

12.4 
10.9 
8.7 

(^MML 

6.1 
3.3 
2.1 

Table 6: MML values and their standard deviations 
for the execution referred in Figure 8. 

For the range-add program, the results can be ex-
plained by observing that: 

- Computation is characterized by few data Com
munications, so that locality is not very impor-
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Figure 8: Efficiency of n-queens versus LTo, HTo and 
MP. 

tant and therefore even the random strategy can 
obtain satisfactory results. 

An even load distribution is important, particu-
larly in the final phase of the computation when 
the partial results are coUected tovvards the root of 
the computation tree. Such a distribution should 
be preferably obtained by a shrewd initial place-
ment of objects, because redistribution can induce 
a high overhead owing to the fine grain of the 
computation. Therefore, in the end, PWF out-
performs both its two competitors thanks to its 
more accurate load distribution. 

4 cities for each leaf object 

RANDOM 
ACWN 
PWF (LTo=2,HTo=5,MP=0.6) 

MML 

7.6 
6.9 
4.5 

CMML 

3.2 
1.8 
0.8 

Table 7: MML values and their standard deviations 
for the execution referred in Figure 9. 
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Figure 9: EfRciency of tsp versus LTo, HTo and MP. 

For the n-queens program, the results can be ex-
plained by observing that: 

- Computation is highly dynamic, so that keeping 
well-balanced load conditions during the whole 
execution is strategic. Therefore, the random 
strategy, vvhich is not able to react to load unbal-
ances, does not achieve satisfactory results, even 
if computation prevails over communication and 
so locality is not very important. 

- The ACWN algorithm gets a poorer perfor-
mance than the PWF one because it is penalized 
by higher computation and communication over-
heads essentially due to the traveling of object 
creation requests before being accepted for execu-
tion. 

In the tsp program, the computation is fine-grained 
and is characterized by many Communications and by a 
quickly variable structure at runtime. Therefore, dur
ing the whole computation, it is important to maintain 
both computation locality and an even load distribu
tion. Consequently: 

- The random algorithm performs worse than the 
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other two because it is neither adaptive, nor does 
it assure any computation locality. 

The PWF algorithm prevails over the ACWN one 
because it induces a lower overhead and carries 
out cheaper object redistribution. 

6 Conclusion 

The proposed PWF algorithm is based on simple 
heuristics and is applicable to object-based, paral
lel programming environments running on distributed 
memory architectures. The main characteristics of the 
algorithm are: 

1. It is fully distributed and scalable with the num-
ber of nodes in the system. 

2. It exploits limited load information on each node 
that comes only from neighbors. 

3. It is able both to promote an even load distribu-
tion and to exploit computation locality, without 
inducing a great use of computing resources. 

The experimental results are encouraging in that 
they show that the PWF algorithm behaves better 
than the ACWN algorithm, which is one of the few 
DALBAs explicitly designed for object-based environ
ments. 

From our experimental tests, we also deduced that 
the PWF algorithm exhibits a rather stable behavior 
with the varying of the thresholds that characterize 
the algorithm. Therefore, it is generally simple and 
quick to find out the best values of the thresholds for 
a given user application. 
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In this paper we present a semi-automatic aerial image interpretation systeni. Tlie knowIedge, 
to be incorporated into the system in order to identify tlie best solution for tlie otherwise under-
constrained problem of image interpretation, is structured in a logical way and distributed over a 
set of knowledge sources in a blackboard system. Each knowledge source applies the knowledge 
representation method which is best suited for its type of knowledge. In the instances where the 
knoivledge represented in the system is insufEcient, tlie system will suffer from an optical illusion 
and the Imman supervisor will have to correct tlie solution stored on the blackboard. The main 
goal of the system is to free the human image interpreter from the routine object vectorization 
part ofthe work and aUow him/her to focus on the interpretation ofthe presence ofspecific objects 
at certain positions. 

1 Introduction 

For decades photo-interpreters have been looking at 
photographs, using a magnifying glass to observe 
smaller details. Some computation aids were ap-
phed to perform elementary conversions from dis-
tances measured on the photograph to approximate 
real world distances, based on an average scale for the 
photograph. Nowadays they use a computer for visu-
aUzing scanned images, performing resolution changes 
and some simple computations but apart from that 
not a lot has changed. Instead of drawing on the pa
per copies of the photographs and preparing a report 
on a typewriter, a photo-interpreter now vectorizes on-
screen and ušes some word processor, but he/she is 
essentially stih performing the same basic operations. 

Most commercial software packages which combine 
aerial image manipulation with the management of 
vector-style geographical information stili require the 
user to perform the passage from raster to vector infor
mation manually. Some have limited automatic line-
follovving capabilities but these are most often not use-
ful in an operational environment. What these soft-
ware packages excel in however, is their huge libraries 
of image processing techniques. The image can be fil-
tered in order to obtain a smoother, noise-filtered im
age, to make the image sharper and eliminate some 
unwanted blurring effect, to detect edges, etc. 

Unfortunately, experience shows that in practice 
most photo-interpreters don't use these features. They 
claim that the human visual system is the best pos-

sible adaptive filter there is and that whichever type 
of filtering can never result in an image with a higher 
information content than the original image. There-
fore they prefer to perform their interpretation on the 
original, unfiltered image. 

When one looks at the evolution in the field of earth 
observation data acquisition systems, it becomes obvi-
ous that the flux of aerial and satellite imagery will 
grow exponentially, whereas the number of trained 
photo-interpreters does not. Therefore the real chal-
lenge for computer system developers in the field of 
scene analysis is to build a semi-automatic system 
which relieves the human photo-interpreter from the 
routine part of his work. The photo-interpreter can 
then focus on those parts of the job for which his/her 
human intelligence and intuition are indispensable. In 
this paper we will present a possible layout for suCh a 
system. First we will discuss in section 2 the fact that 
scene analysis is essentially an ill-posed problem and 
that therefore a priori knowledge has to be integrated 
in the system in order to regularize the problem and 
obtain a single, unique solution. In section 3 we briefly 
sketch the classic image analysis paradigm and we ex-
plain why this doesn't suit our needs. This knowledge 
will be analyzed in further detail in section 4. We will 
show that each type of knowledge ideally requires a 
different type of representation method. In section 5 
a system design will be presented vvhich allows us to 
realize this requirement and furthermore offers us an 
interesting problem solving method. A prototype of 
this system has been developed and will be described 
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in section 7. Finally, in section 8 we will present our 
conclusions. 

2 lU-posed problem 

Hadamard introduced the notion of ill-posedness in 
the field of partial differential equations [?]. A prob
lem is well-poscd when a solution exists, is unique and 
depends continuousbj on the initial data. It is ill-posed 
when it fails to satisfy at least one of these criteria. 

Ill-posed problems have been a mathematical curios-
ity for many years. Nowadays they arouse great inter-
est since many problems of practical interest turned 
out to be ill-posed, such as the under-constrained in-
verse problem of scene analysis where one tries to ob-
tain Information about the 3D world from a 2D image. 
This is illustrated in example 2.1. 

Example 2.1 In figure 1 it is impossiblc 
to teli whether the object, shown in the image, 
is in reality a cube, a piece of cardboard with a 
cube drawn upon it or some sort of a dcformed 
cube. 

mnimagc 

mn? 

mntop 

mnfront 

1 II 
mnright 

D 

mntop 

mnfront mnri glit 

mntop 

D 
mnfront 

• 
mnright 

D 
Figure 1: Extract 3D Information from 2D data 

In order to sol ve an ill-posed problem, well-
posedness must be restored by restricting the class of 
admissible solutions using a priori knoiuledge. Sev-
eral techniques exist, such as variational regularization 
using a quadratic stabilizer. Often realistic a priori 
knowledge requires non-quadratic functionals in order 
to be implemented, resulting in a no longer convex so
lution space and thus the need to use stochastic meth-
ods to escape from local minima [?]. 

Another regularization method consists of choosing 
a discrete solution space with finite dimensions and 
imposing generic constraints. This may seem like a 
harsh restriction at first but this isn't really so. Indeed, 
our real world is highly structured and is constrained 
by physical laws to a number of basic patterns. The 

apparent complexity of our environment is produced 
from this liraited vocabulary by compounding these 
basic forms in different combinations. If the intrinsic 
compIexity of our environment were approximately the 
same as its apparent complexity, there would be no 
lawful relations and no intelligent prediction. This is 
illustrated in example 2.2. 

mn(a) mn(b) 

mn(c) mn(d) 

Figure 2: Complexity of real world images 

Example 2.2 In figure 2, image (a) shows 
a matrix with random pixel values. It is clear 
that this image doesn't correspond with a real 
world scene. Image (b) already has a certain 
structiire sincc the gray-values are distributed 
in a limited number of homogeneous regions. 
Nevertheless it is immediately clear to the 
human observer that this image does not 
represcnt a real vvorld scene. Image (c) ušes the 
same gray-values as (b), with similarly sized 
regions. Yct, a human observer will interpret 
this image EIS an aerial image or a sketch 
thereof. This is because the structure of the 
regions is compatible with the a priori 
knowledge a human observer has acquired over 
the yeaj:s about his real world environment. 
Image (d) shows the aerial photograph from 
wliich the sketch in (c) was derived. 

It is the internal structuring of our environment that 
allows us to reason successfully using the simplified de-
scriptions we typically employ [?]. Different techniques 
have been described for determining these generic con
straints, based on engineering, statistical, biological, 
and physical approaches [?]. 

In example 2.1, restricting the solution space to 
cubes and ellipsoids would regularize the problem since 
only one of the proposed solutions wouId then be com
patible with this a priori knowledge. 

An example of the use of constraints based on phys-
ical laws is given in example 2.3. 

Example 2.3 When the front view is 
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mnfront vi( \Tnnside view a)inside view (b) 
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Figure 3: Candle example 

given, a human observer •vvill immediately think 
of the situation depicted in side view (a), 
naniely a candle put on top of a pedestal. The 
solution shown in side view (b) is immediatcly 
discarded even though it would result in the 
same front view. Tliis is because we use our a 
priori knowledge of the law of gravity which 
teaches us that a situation as depicted in side 
view (b) is impossible in the real world. 

When the a priori assumptions are violated in spe-
cific instances, the obtained solution may not corre
spond to the real world situation. The algorithm then 
suffers from an optical illusion. 

3 Classic Paradigm 

The aim of scene analysis is to render explicit the in-
formation which is implicit in the image. A very popu-
lar approach is to build a bottom-up hierarchy of ever 
more abstract higher-level Information layers from the 
image pixel level up to the level of real world objects 
[?]. In a first phase low-level.features, such as con-
tours and regions with certain attributes, are extracted 
from the image, resulting in a map-like representation, 
vvhich Marr called "primal sketch" [?]. These features 
are then grouped into more complex elements at a 
higher level of abstraction. Finally the highest-level 
structures are matched against stored models, vvhich 
are generalized relational structures representing pro-
totype elements that correspond to general types of 
images. This is illustrated in exa:mple 3.1. 

Example 3.1 In figure 4 image (a) shows 
the lowest layer, the input aerial image. A 
Sobel edge detector is applied to this image, 
resulting in image (b). The raster Information 
in (b) is converted to line segments, shown in 
(c). The segments are joined and gaps are 
filled in order to obtain the completed edge 
representation, shown in (d). These edges 
enclose a series of regions, ri . . . TA shoivn in 
(e). The combination oi these regions, taking 
into account their characteristics as well their 
neighborhood relations, shown in (f), will then 
be matched with a series of reference models in 

mn(a) image 

mn(b) edges 

mn(c) edge segments 

mn(d) completed edg is 

mn(e) regions 

mn(f) relations 

Figure 4: Classic paradigm 
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order to deduce that we're actually seeing a 
house. 

Due to the fact that scene structure is under-
determined by local image data [?], unverifiable large-
scale assumptions (eg. isotropy, smoothness, ...) have 
to be imposed with this classic approach. As a re-
sult, techniques based on these assumptions are often 
fragile and error-prone. We therefore have to organize 
real world scene analysis knowledge in an efficient way 
and incorporate it into the automatic interpretation 
system. 

4 Adding scene analysis 
knowledge 

Scene analysis knowledge is a qualitative knowledgc. 
Reichgelt describes qualitative knowledge as any kind 
of knowledge that doesn't always allow a correct and 
consistent match between the represented objects and 
the real world but can nevertheless be used to get an 
approximate characterization of the behavior of the 
modeled domain [?]. 

A complex, real-world problem such as scene analy-
sis cannot be formalized in a niče and neat way. Most 
often not ali the Information needed is available. The 
available Information will furthermore not be 100% 
correct and consistent and may thus prove and dis-
prove a fact with the same theory. Therefore, inference 
techniques which deal with partially incorrect, incom-
plete and/or inconsistent knowledge have to be used. 

A human expert solves common problems witliin 
his/her field of expertise without much reasoning. 
When he is faced with an unfamiliar situation, he re-
lies on a more profound domain knowledge and will 
solve the problem using more elaborate models. This 
is illustrated in example 4.1. 

mn(a^»i?-«f —o — a « 
mn(b^TELLIGENCE 

mn(d) 

Figure 5: Simple versus elaborate reading model 

Example 4.1 In figure 5 some words are 
shown. The human observer will immediately 
recognize the word in (b), whereas the words in 
(a) and (c) require a more important effort 
since the structure used to combine individual 
characters into a single word is a bit unusual. 
The simple left-to-right 
all-characters-straight-up model we typically 
use, doesn't apply here so the reader has to 
discover the words using a more elaborate and 
therefore slower reading-model. 

We will thus have to implement at least two levels of 
knovvledge representation. The first level contains very 
efficient knowledge that immediately produces approx-
imate results whereas the second level consists of a 
more complicated model with more expensive problem 
solving methods. Both forms of knowledge are closely 
connected and it would be hard to assign a certain 
piece of knovvledge to either of the two. Both proba-
bly represent the same kind of knovvledge but simply 
at a different level of detail. Neither level can be omit-
ted. Alongside a set of detailed, correct rules, a set of 
simple rules should be known. Although incorrect in 
some exceptional cases, they combine high predictiv-
ity \vith efficiency. Ali other things being equal, they 
are furthermore more likely to be predictive for future 
data. 

We propose to classify the scene analysis knovvledge 
according to the foUovving scheme [?, ?]: 

- scene description 

- geographical database: vvhen a geograph-
ical database of a sufficiently large scale (e.g. 
1/10.000), so as not to undergo displacements due 
to generalization, is available, it vvill be consulted 
by the scene analysis system in order to collect a 
priori knovvledge. 

- input by a human operator: a human op
erator could prepare a scene by marking already 
certain key elements in the scene serving as a pri
ori knovvledge for the automatic system. He may 
also foUovv the evolution of the semi-automatic in
terpretation process using the graphical user in-
terface and intervene by adding or removing ob
jects in order to steer the system or correct the 
intermediate partial solution. 

— scene independent knovvledge 

- interpretation strategij: it is vvell known that 
our eyes don't move in a smooth and continu-
ous manner vvhen vievving an image. They go 
briefly over numerous fixation points, separated 
by jumps, and concentrate on those features con-
veying salient Information [?]. The human mind 
doesn't scan from left to right and top to bot-
tom like most image processing algorithms do. 
A trained image interpreter vvill steer his/her fo-
cus of attention based on hypotheses generated by 
previously interpreted objects as vvell as on a set 
of standard operating procedures. For instance in 
a suburban area first look for roads in a dovvn-
sampled copy of the image and after that look for 
buildings alongside the roads in the full-resolution 
image. For the image in figure 6 the attention 
vvill first be focused on the houses and the road 
and only thereafter on smaller details such as the 
driveways, cars, svvimming pools, ... 

file:///vith
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- generic constraints: this knowledge imple-
ments general physics laws (e.g. relationships be-
tween a building and its shadGw), administrative 
regulations regarding land-use as well as the expe-
rience a human operator has acquired after years 
of practice, expressed as series of rules of thumb. 
It can best be represented by a set of global rules 
acting on clusters of objects, of the same or of dif-
ferent types. The rules will judge the geometric 
relationships between the objects within a cluster 
[?]. In a multi-sensor system this knowledge vvill 
be sensor-independent. 

- object-tijpe specific knotvledge: this is the 
knowledge which allows one to distinguish a cer-
tain type of object from ali other types. It is 
most often expressed as a list of conditions on 
image features such as contours, texture and the 
gray-value histogram (e.g. a building is rectangu-
lar or L-shaped with certain limits on its dimen-
sions). This knowledge will in general be sensor-
dependent. 

Figure 6: Aerial photo 

The interaction between the local and global part of 
the scene analysis knowledge is very important since 
neither can do the job alone. This is illustrated in 
examples 4.2 and 4.3. 

E x a m p l e 4 .2 In figure 7 we see that using 
local Information about the features alone, as 
is given in window (a), we cannot uniquely 
identify their type. However, when we take 
into account the relative positions and 
orientations of the features, information which 
is available to the observer in window (b), we 
inimediately observe that they are nothing else 
but the characteristic features of a face. 

E x a m p l e 4 . 3 In figure 8 five parts of an 
image are shown which were cut out of an 
aerial image. Given only the local information 
of the objects themselves and a very limited 
part of their immediate surroundings, it is 
clearly difficult to identify them. This might be 
our first guess: 

mn(a) mn(b) 

Figure 7: Local versus global knovvledge (I) 

(a) truck with tractor and trailer 
(b) factory building 
(c) car 
(d) cooling tower of power plant 

or a silo 
(e) fliglit of stairs 

However, when we look at these objects in tlie 
original image, from their position relative to 
the houses and roads we learn that we had it 
completely wrong. These are the correct 

(a) small building in backyard 
(b) low greenhouse 

ansvvers; (c) car 
(d) swimming pool 
(e) driveway 

This goes to show that the relative position 
with respect to other objects is indispensable 
when trying to recognize an object in an 
image. 

mn(b) 

\ 
't. ' -' — « - -'-

\ 
t 

i 
-J mn(d) 

mn(e) 

Figure 8: Local versus global knowledge (Ila) 
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5 General system lay-out 

Figure 9: Local versus global knowledge (Ilb) 

One could consider tackling the image interpretation 
problem using a "generate-and-test" approach. Un-
fortunately, a complex problem like scene analysis is 
combinatorially explosive so that generating ali pos-
sible Solutions vvould be a sheer impossible task. It 
would furthermore be impossible to build a generator 
which produces only a limited set of possible solutions 
yet always containing the correct solution. 

We will therefore base our problem solving strategy 
on the technique of generating and fusing uncertain 
and partial solutions to construct solutions, using an 
island-driven approach. A relatively reliable partial 
hypothesis is designated as an island of certainty and 
the hypothesis building process pushes out from this 
island in a number of directions into the ocean of un-
certainty surrounding it. Image processing modules 
will generate low-level features which will be combined 
into candidate objects, forming partial solutions. This 
bottom-up hypothesis generation will be linked to a 
model-driven top-down analysis. The top-down anal-
ysis will verify the presence of the expected character-
istic features for a specific type of object. The sys-
tem will try to extract from the images any features 
that were for some reason missed during the bottom-
up pass. 

Fitting aH the above-mentioned types of knowledge 
in a single knovvledge representation scheme would in-
volve compromising and would thus result in a sub-
optimal solution. The general strategy can be well 
represented using a a goal-reduction scheme [?]. The 
generic constraints will be expressed by human photo-
interpretation experts. They will use natural language 
rules, based on vague terms. This set of rules will be 
imposed using a fuzzij production rule sijstem. For 
the composition of the fuzzy relations several tech-
niques are mentioned in the literature. We use the 
max-min method as it is used by Zadeh in his approx-
imate reasoning based on linguistic IF-THEN rules. 
It is claimed that this method corrcctly reflects the 
approximate and interpolative reasoning used by hu
man beings when using natural language propositions 
for deductive reasoning [?] [?]. The knowledge re-
lated to each object type is necessary when evaJuat-
ing or extracting a single object without taking into 
account other objects in the scene. This knowledge 
varies strongly from one type of object to another. It 
will be integrated in the implementation of local de-
tectors, each one dedicated to a specific type of object. 
Different sensors will require different local detectors 
for specific object-types. 

The blackboard problem-solving model is particu-
larly well suited for this type of complex problems. 
It supports the incremental development of solutions, 
can apply different types of knowledge and can adapt 
its strategy to a particular problem situation [?, ?]. 



ADVANCES IN COMPUTER ASSISTED ... Informatica 22 (1998) 231-243 237 

It allows the use of independent knowledge sources in 
order to represent the different types of lcnowIedge as 
shown in figure 10. 

mnhuman operator 

mnhuman operator 

mnblacl^board 

— 

mnPTTT 

mnstrategy 

mnglobal rules 

mndatabase 

mnlocal detectors 

1 i 

mninput data 

Figure 10: System design 

The incorporation of knowledge at two levels of de-
tail \vithin the system, which was mentioned earUer, 
will be implemented at the level of the "generic con-
straints" rule base by combining specific rules together 
with more general ones, as well as at the level of the 
local detectors by placing "quick and dirty" detectors 
together with "slow and dedicated" ones at the dis-
posal of the local detector manager [?]. 

The blackboard model is quite popular with scene 
analysis systems (e.g. Sacap [?], Messie [?], ...). There 
is, however, no consensus on the way the scene analysis 
knowledge is to be distributed over a set of knowledge 
sources. 

6 Knowledge sources 

6.1 "VVorld-model 

With the basic system design, shown in figure 10, dif
ferent types of Information will be stored in the same 
shared memory, namely the central blackboard. This 
will result in a heterogeneous mixture of data, the ob
jects which form the partial solution together with the 
transactions between knowledge sources, aH posted on 
the same blackboard. 

In order to structure ali these data elements we 
could have used different panels within the blackboard. 
We have however decided to split the blackboard in a 
knowledge source, called "world-model" and contain-
ing the partial solution, and the blackboard, contain-
ing the transactions. The resulting system design is 

mnworlc 
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- mnblack-
mnboard 

mnGUI 

mnstrategy 

mnglobal rules 

mndatabase 
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mninput data 

Figure 11: System design with world-model 

shown in figure 11. This solution allow to add a series 
of methods which can be applied to the solution on 
demand, such as geographical queries on the objects 
in the partial solution. It is indeed very useful to be 
able to perform queries like "obtain a list of ali build-
ings around a certain road segment". This wouldn't 
have been possible when using panels within the black
board. 

6.2 Local knowledge 

The local Information about object types, defined in 
section 4, will be stored at two places. 

For each type of Information element an object pro-
totype will be pre-defined. Whenever the system de-
tects a possible instance of an Information element, 
a candidate object will be created as a realization of 
the appropriate object prototype. These object pro-
totypes store Information using a frame based knowl-
edge representation method [?]. Each object contains 
a series of attributes as well as a number of methods, 
respectively storing and applying local knowledge. 

Another part of the scene independent object-type 
specific knowledge is implemented by the local detec
tors. They use it to look for specific features or Infor
mation elements in the input data. 

An example hereof is shown in figure 12. A local de
tector, specialized in the extraction of houses, is pre-
sented with (part of) an aerial image and produces a 
series of candidate house objects as its output. The 
local model of a house, used by the detector, is that 
of a rectangle with a smooth interior. This results in 
four correct candidates (/isi, /iS2, /1S4, /iss) and two in-
stances where the local knovvledge was not sufficient 

file:///vithin
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to describe the complex real world environment and 
false candidates were generated (/issj/ise). One can 
furthermore observe that some of the houses, present 
in the scene, were not extracted by the local detector. 

Figure 12: Local detector for the extraction of houses 
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Figure 13: House object stored in world-model 

Each of these houses is stored in the world-model as 
an object with attributes and methods, as shown in 
figure 13. 

6.3 Global knowledge 

In a real world environment it is impossible to define 
the spatial data analysis global constraints in an exact 
mathematical way. On the one hand our understand-
ing of this problem is at a qualitative and declarative 
level, based on vague linguistic terms. On the other 
hand we need a method for applying this knovvledge 
in a numerical way to the instances of the pre-defined 
object prototypes that were extracted from the input 
aerial images. We will therefore use a fuzzy production 
rule system to represent the scene independent inter-
object knowledge in the global rules knowledge source 
since it allows us to acquire knovvledge symbolically 
yet process the data numerically [?]. 
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Figure 14: Canonical form of a fuzzy production rule 
system 

A fuzzy production rule system can be written in 
canonical form, shown in figure 14. The unconditional 
restrictions Ri.. .Rr can be expressed as conditional 
restrictions with a conditional part which is ahvays 
true in order to obtain a uniform formalism. In the 
thus resulting set of conditional restrictions Ri... iž̂ v̂  
both the condition and the restriction are a concate-
nation of atomic terms, as thcre are: 

primary terms: labels of fuzzy subsets of the 
universe of discourse, 
"not", 
"and", "or", 
linguistic modifiers ("very", 
"much", "slightly", ...), 
operating on primary terms, 
parentheses. 

The rules will thus be expressed in the following 
form; for rule r = 1.. .Nr'-

negation: 
connectives: 
hedges: 

markers: 

IF (xiis Air) AND (a;2 is Air) ••• 
AND (."KAfi is.Ajv.r) 

THEN (2/1 is Bir) AND (1/2 is B-^r) ••• 
AND ivN^ is BN^r) 

with input fuzzy sets Ajr defined on universes Xi S Xi 
and output fuzzy sets Bjr defined on universes yj G Yj. 
The variables Xi and yj actually refer to the attributes 
of the objects in the world-model. The fuzzy sets 
Air and Bjr are expressed using following member-
ship functions (with F{z) denoting the family of fuzzy 
sets defined on z). 

Air e F{xi) ; 
Bjr e Fivj) ; 

fiAiA^i) ••Xi -^ [0,1] 
f^BjAyj)-yj^[OA] 

Consider once more the situation in figure 12. Let's 
suppose that a road detector would have detected the 
road rdi shown in figure 15. As an example we will 
then consider follovving rules, expressed on the dis-
tance d between a house and the nearest road and on 
the confidence c we have in this candidate house, 
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Figure 15: Result of road detector 
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with the membership functions as shown in figures 16 
and 17. In the example of figure 15, this will result 
in a high confidence in the objects {hsi,hs2, /1S4, /iss), 
whereas the candidates (/IS3,/ISG) will be assigned a 
low confidence. If no other objects support these last 
houses through rules which increase their confidence, 
they will be eliminated from the world-model in the 
long run. 

mnTooSllORT 

mn2m mnSm mnd 

mnTvPiCAL 
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mul 

mbflj 
mn2nn5mmn30mn50rmnf/ 

mnToLONG 
n 

moL 
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Figure 16: Input membership functions 

If we were to recompute the complete rule base ev-
ery tirne an input value of one the rules changes, every 
single change would create an avalanche of computa-
tions since the outputs of the rules are the same object 
attributes as those which serve as inputs for the pro-
duction rule system. For this reason another way of 
managing the processing to be performed by the pro-
duction rule !>ystem has been developed. 

The rules are stored as .prototypes.in the;glo.bal, 
rules knowledgG sourcc. Whenever a new combina-
tion of objects, corresponding to the antecedents re-
quired by a specific rule, appears on the blackboard 

mn-1 mnO 

mnHiGll 

mnl mn2 mnc 

mn-1 mnO mnl mn2 mnc 

Figure 17: Output membership functions 

and is added to the world-model, an instance of this 
rule is created and posted on the blackboard by the 
global rules knovvledge source. For this reason, when-
ever a new object is posted on the blackboard, for 
each relevant rule prototype ali possible combinations 
of its antecedent objects containing this new object 
are requested from the world-model. For each of these 
combinations a rule instance will be derived from the 
prototype, its input and output variables pointed to-
wards the attributes of the objects in the combination 
and posted on the blackboard. It is then added to the 
worId-model, where it will be linked to its antecedent 
and consequent objects. This results in a high-level 
network, representing the solution hypothesis together 
with the local and global knowledge supporting is. An 
example hereof is shown in figure 18. 

6.4 Strategy 

When a human expert analyzes spatial data, his focus 
of attention doesn't move in a smooth and continuous 
manner. His eyes jump rapidly from one fixation point 
to another, concentrating on those features which con-
vey salient Information [?]. The Identification of spe
cific objects at certain positions in the scene will give 
rise to hypotheses which then influence the path the 
focus of attention follows across the scene. 

It is the task of the strategy knowledge source to 
steer, the focus of attention of the semi-automatic data 
analysis system based on the types of input data avail-
able as well as on the state of the partial solution in 
such a way that the best possible solution is obtained 
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Figure 18: High-level network 

in a minimum of tirne. 
The strategy knowledge source ušes a goal reduction 

scheme to represent its knowledge. In such a scheme 
every goal is iteratively split into a conjunctive or dis-
junctive set of sub-goals at a Iower level until these sub-
goals themselves correspond to simple actions wliich 
must be undertaken. As an example a small part of 
such a goal reduction tree applied to scene analysis is 
given in figure 19. In this example different strategies 
are defined as a function of the available image-types 
(visual VIS, thermal infrared THIR or synthetic aper-
ture radar SAR) at the input. 

The user can also define a series of different strate
gies for specific tasks he has to perform. 

7 Prototype 

7.1 Prototype definition 

At present a prototype has been developed which im-
plements the system described in section 5. The cen
tral blackboard, the different knowledge sources and 
the local detectors are aH built as independent exe-
cutables. The blackboard and the different knowledge 
sources communicate using TCP/IP sockets as inter-
process communication technique. The local detec
tors are actually scripts which call a series of executa-
bles with specific parameters and in a well-defined or-
der. They are launched by the local detector manager 
knowledge source. 

The blackboard module checks at startup its hosfs 
services database for a "blackboard" service definition. 
If this is found, the central blackboard will listen on the 
corresponding port number for incoming requests from 
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Figure 19: Strategy goal reduction scheme 
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the knowledge sources. When no appropriate service 
definition is found the blackboard module looks for 
and ušes the first free port within the user-assigned 
range of port numbers. It then writes the name of its 
host as well as the port number on which it listens to 
a configuration file. 

The knowledge sources read this configuration file 
and connect to the blackboard server on the speci-
fied port number of the specified host. The knowledge 
source clients communicate with the central black
board server through atomic read and write operations 
in order to preserve the integrity of the blackboard 
data. 

When the directory, where the executables are lo-
cated and the configuration file is stored, has been 
mounted using NFS on different workstations, the dif-
ferent knowledge sources can be run in vvhichever com-
bination on this cluster of workstations. 

At present a prototype of the different knowledge 
sources, as shown in section 6, have been developed 
as well as a limited number of local detectors. Where 
local detectors are missing and this would hinder the 
testing of the system, these have been simulated. In 
this way the expert-system part of the scene analysis 
system could nevertheless be evaluated. 

7.2 Results &c Future work 
Our preliminary tests have shown that the system 
functions well for the typical configurations of input 
data which were considered when designing the lo
cal detectors and when vvriting the global rules and 
the strategy. It is quite clear however that in order 
to test the validity of the global rules a much larger 
amount of test images is needed. This will also show 
the shortcomings of the already developed local detec
tors in certain specific circumstances and thus lead to 
the development of some extra, complementary local 
detectors. 

The system has a distinct advantage over other sys-
tems which only incorporate the typical local Informa
tion handling routines. Indeed, it will itself operate 
these local routines, with varying parameters, allow-
ing for a certain number of false candidates since it will 
thereafter weed out most of the false candidates using 
the knowledge contained in the global rules knowledge 
source. The high-level, expert system part here plays 
the role of a filter, eliminating the "noise peaks" corre-
sponding to false candidates. Simulations with noisy 
detectors have shown that this will only function up to 
a certain level of false candidates. Beyond that level 
the system will start discovering fake structures in the 
set of false candidates, which will reinforce its confi-
dence in these false candidates and may even suppress 
correct candidates in the same region. 

Because of the fact that the rules can themselves ini-
tiate specific requests for the detection of new objects 

without any control by the strategy knowledge source, 
the risk is very real that an explosion of requests oc-
curs. Indeed, for each request a local detector will be 
launched, potentially generating a number of objects 
which themselves may give rise to even more detection 
requests via the global rules which vvill be applied to 
them. For this reason we have decided to add a lo
cal detector manager knowledge source to the system, 
as shown in figure 20, which vvill sort the detection 
requests, monitor the system load and launch new de
tectors whenever this is possible without saturating or 
over-loading the system. 
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Figure 20: Adapted system design with local detector 
manager 

We have furthermore found the need for rules which 
disappear after being fired as well as for rules which 
are computed only once and then disappear whether 
they're fired or not. An example of the first type 
would be a rule which applies to the cluster of a road 
and a perpendicular road segment connecting to it and 
checks vvhether a prolongation of this side-road exists 
at the opposite side of the main road. Once this rule 
was fired, a detection request will have been posted 
on the blackboard and a local detector will have been 
launched to perform the verification. There's no need 
to re-verify this several times using the same rule and 
therefore the same parameters for the local detector. 
An example of the second čase is a rule which checks 
whether the positions of a house and a nearby road 
are compatible. Whichever decision is taken by the 
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rule, the house and road won't start walking around in 
the world-model so their relative position won't change 
and therefore the inputs of the rule won't change ei-
ther. 

In ali, we can say that the way in which the knowl-
edge is structured in the system is the major advantage 
of the approach we've presented. The user has a good 
grip on the knowledge the system applies thanks to 
the clear logic as to which knowledge goes where. The 
way in which the objects, representing the solution, 
are combined with the rules, raising or lowering their 
confidence, in a single network in the world-model has 
shown to be very useful. The network allows the user 
to examine immediately what the influence of every 
single one of the global rules is on each of the objects 
to which it is applied. What we have ascertained how-
ever is the fact that some ideas we had where hard to 
implement with the structure as it is at present. We 
will therefore add in the next version of the system 
some extra knowledge sources, one of which will realize 
perceptual grouping at the level of the objects in order 
to detect different types of structures of objects, such 
as buildings lying on a parabola, cars equally spaced 
in a parking lot, etc. 

8 Conclusion 

Due to the ever increasing amount of available earth 
observation Information, the need for semi-automatic 
systems, which aid the human expert in his analy-
sis, will continue to grow. Aside from the well-known 
point and raster data manipulation techniques with 
which actual systems are already equipped, these semi-
automatic aids will furthermore allow a user to inte-
grate a part of his knowledge into the system in the 
form of a general strategy, global rules and local de-
scriptions. 

These systems will then be able to relieve the human 
expert from the routine part of his work and allow him 
to focus on "special cases" or on the interpretation of 
•why certain features occur at certain positions without 
first having to extract them manually from the input 
data. 

It is obvious that an experienced human data ana-
lyst will always outperform any artificial system when 
it comes down to the completeness of the analysis or 
the handling of exceptionalcašes. A human operator 
on the other hand has the disadvantages of a higher 
operating cost and a dislike for routine duties. There
fore if we combine both systems, we will obtain an in-
crease in productivity with the same quality as when 
compared to the human expert alone. 
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5. Semantics-oriented methods of natural 
language analysis, conceptual Information 
retrieval in textual data bases. 

6. Computational lexical semantics, ontolo-
gies for NLP. 

7. Understanding of metaphors and meto-
nymy. 

8. Anaphora resolution. 

9. Generation of natural language discourses. 

10. Parallel conceptual processing of natural 
language texts. 

11. Intelligent text summarization. 

12. New directions in NLP. 

Informatica 22 (1998) No. 4, in an enlarged 
volume, is fixed as the special issue. 

Time Table and Contacts 

The deadline for the paper submission in four 
copies is July 30, 1998. 

Printed-paper mail address: 
Prof. A.P.Zeleznikar, Jožef Štefan Institute, 
Jamova c. 39, SI-1111 Ljubljana, Slovenia. 

Correspondence (e-mail addresses): 
— anton.p.zeleznikar@ijs.si 

Prof. Anton P. Zeleznikar, Slovenia 
— vaf@nw.math.msu.su 

Prof. Vladimir A. Fomichov, Russia 
— kitano@csl.sony.co.jp 

Prof. Hiroaki Kitano, Japan 

Format and Reviewing Process 

As a rule, papers should not exceed 8,000 
words (including figures and tables but exclud-
ing references. A full page figure should be 
counted as 500 words). 
Ideally 5,000 words are desirable. 

Each paper will be reviewed by at least two 
anonymous referees outside the author's coun-
try and by the appropriate editors. 

In čase a paper is accepted, its author 
(authors) will be asked to transform the 
manuscript into the Informatica M ^ style 
(available from ftp.arnes.si; directory: /maga-
zines/informatica). 

For more Information about the Informatica 
and the Special Issue see 

FTP: ftp.arnes.si 
with anonymous login or 

URL: 
http://turing.ijs.si/Mezi/informat.htm. 

mailto:anton.p.zeleznikar@ijs.si
mailto:vaf@nw.math.msu.su
mailto:kitano@csl.sony.co.jp
ftp://ftp.arnes.si
ftp://ftp.arnes.si
http://turing.ijs.si/Mezi/informat.htm
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First Call for Papers 
International Conference on 
Systenis, Signals, Control, Computers (Sscc'98) 
International Association for the Advancement of Methods 
for Systeni Analysis and Design (laamsad) 
and Acadeniy of Nonlinear Sciences (Ans) 
Announce the International Conference on 
Systems, Signals, Control, Computers (Sscc'98) 
Durban, South Africa (September 22-24, 1998) 

and Invite Potential Authors for Submission of Papers 

A preUminary WEB home page can be accessed on 
h t t p : / / n sys .n t ech . ac . za / i a amsad / 

SSCC98test.html 
This home page will become pubhc when Interna
tional Programme Committee membership become 
confirmed. 

Honorary Chairman: Academician V.M.Matrosov 
(Russia) 
Conference Chairman: V.B.Bajic (South Africa) 

Advisory Board: 
V.B.Bajic (South Africa), J.Brzobohaty (Czech Re-
pubhc), P.Daoutidis (USA), W.Hide (South Africa), 
C.Morabito (Italy), V.V.Kozlov (Russia), P.Leach 
(South Africa), P.C.Muller (Germany), L.Shaikhet 
(Ukraine), E.Rogers (UK), H.Szu (USA). 

International Programme 
Committee: 
V.Apanasovich (Belarus), V.B.Bajic (South Africa), 
C.Berger-Vachon (France), J.Brzobohaty (Czech 
Republic), M.Campolo (Italy), P.Daoutidis(USA), 
T.Fukuda(Japan), Z.Gajic (USA), M.Gams (Slove-
nia), J.Gil Aluja (Spain), Ly.T.Gruyitch (France), 
H.Hahn (Germany), M.Hajek (South Africa), 
R.Harley (South Africa), W.Hide (South Africa), 
M.Jamshidi (USA), V.Kecman (New Zealand), 
B.Kovacevic (Yugoslavia), V.Krasnoporoshin 
(Belarus), V. V.Kozlov (Russia), P.Leach (South 
Africa), L.K.Kuzmina (Russia), V.Milutinovic (Yu-
goslavia), C.Morabito (Italy), P.C.Muller (Germany), 
H.Nijmeijer (The Netherlands), D.H.Owens (UK), 
D.Petkov (South Africa), K.M.Przyluski (Poland), 
E.S.Pyatnitskii (Russia), E.Rogers (UK), L.Shaikhet 
(Ukraine), A.V.Savkin (Australia) H.Szu (USA), 

E.LVerriest (USA), R.Vrba (Czech Repubhc), J.Zislci 
(Czech Republic). 

Local Organizing Committee: 
V.Bajic, P.Govender, R.Hacking, M.Hajek, 
M.McLeod, K.S.Moodley, R.Papa, C.Radhakishun, 
A.Singh. 

Address Of The Conference 
Office: 
Sacan, P.O.Box 1428, Link Hills 3652, Durban, 
South Africa Tel./Fax: (+27 31) 204-2560 e-mail: 
baj ic .vSrnnfolozi .ntech.ac.za 

Supporting Organizations: 
SANBI - South Afričan National Institute for Bioin-
formatics (South Africa) 
SAICSIT - South Afričan Institute for Computer Sci-
entists and Information Technologists (South Africa) 
CER - Centre for Engineering Research, Technikon 
Natal (South Africa) 
M L Sultan Technikon (South Africa) 

General Information 
1998 year is the year of Science and Technology in 
South Africa. The intention of the Department of 
Arts, Culture, Science and Technology of South Africa 
is to make South Africans more aware of how Science 
and Technology afFects them in every-day life. Such a 
national initiative is in a way a very good environment 
for a conference like this: one that has a broad scope 
and spans many different fields. At the same time 
an opportunity is given to the research community of 

http://nsys.ntech.ac.za/iaamsad/
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South Africa to interact more directly with overseas 
peers. 

Aims And Scope 
The Conference is broad in scope and will provide a 
forum for the exchange of the latest research results 
as applied to different branches of science and technol-
ogy. The areas of interest include concepts, techniques 
and paradigms associated with systems, signals, con-
trol and/or computers. 

Domains of application include informatics, bio-
medical technology, economics, management, diverse 
engineering and science fields and applied mathemat-
ics. Artificial intelligence techniques are of particular 
interest, as well as reports on industrial applications. 

The conference will include several plenary and in-
vited lectures from world renowned scientists and reg-
ular papers. A number of special and invited ses-
sions will also be organised, deahng with focussed ar
eas of interest. The proposals for these special sessions 
should be submitted at the same time as the abstracts. 
A special session cannot have less than three papers 
or more than six. 

The official language of the conference is English. 

Manuscript Submission And 
Review Process 
Three copies of the extended abstract (at least two 
pages) should be sent to the Conference Office at the 
address given below. Full papers are preferred. Pa
pers in Microsoft Word can be sent by e-mail. Ali 
submissions will be revievved by members of the Inter
national Programme Committee; additional revievvers 
will be consulted if necessary. The submissions will 
be reviewed as soon as they arrive; the average review 
time is about four weeks. Authors of accepted papers 
will thereafter be informed (by e-mail if available) of 
the required format for camera-ready paper submis
sions. In order for reviewers to be able to assess the 
submissions, the extended abstract has to provide suf-
ficient information about the background to the prob
lem, the novelty of the obtained results and the results 
achieved, the conclusions dravvn and some references. 
Up to five keywords should be provided. Ali submit
ted papers have to be original, unpublished and not 
submitted for publication elsewhere. 

Proceedings 
Ali accepted papers will be published in the Confer
ence Proceedings, which will be issued by a renowned 
International publisher. 

Important Notice 
Although we expect that the authors of accepted pa
pers vvill present the papers at this Conference, we rec-
ognize that circumstances may prevent authors from 
participation at the Conference. In such cases the ac
cepted papers will be published if the authors inform 
organizers of their non-attendance at the Conference 
by 15th May 1998. However, conference fees according 
to estabhshed rules have to be pre-paid in order that 
papers appear in the Proceedings. 

Conference Fees 
The conference fee for one participant covers the publi
cation of two papers (each with a maximum of five A4 
pages in length) according to the required format; one 
volume of the Proceedings in which the paper (s) ap-
pear(s); refreshment during the conference; one lunch 
and a banquet. Additional volumes of the Proceedings 
can be purchased for US$ 55.00. Authors of multiple 
papers are to pay additional fees for extra papers ac
cording to the specified rule. Social programme and 
tourist visits will be provided at extra cost. 

Reduced registration fee of US$ 280.00 (South 
Africans R 1120.00) is applicable for early received, 
reviewed and accepted papers for which fee is paid by 
February 25, 1998 - prospective authors are encour-
aged to take advantige of this convenience; otherwise 
the following rates apply: 

Early registration fee: US$ 350.00 (South Africans 
R 1400.00) 

Late and on-site registration fee: US$ 400.00 (South 
Africans R 1600.00) 

Študent fee: US$ 200.00 (South Africans R 800.00) 
- to qualify for the študent scale of fees, ali authors 
mentioned on the paper have to be current students; 
written proof has to be provided at the time of pay-
ment 

Payment in South Afričan rands is possible only 
when ali authors of the papers are South Afričan resi-
dents; written proof has to be provided at the time of 
payment. 

Deadlines 
Extended Abstracts and Special Session Proposals: 
- submission by mail (15th February, 1998) 
- submissions by e-mail (15th January, 1998) 
Notification of acceptance (15th April, 1998) 
Submission of papers in camera ready form (15th May, 
1998) 
Early payment of conference fees (15th May, 1998) 
Late payment of conference fees (31 June, 1998) 
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THE MINISTRV OF SCIENCE AND TECHNOLOGY 
OF THE REPUBLIC OF SLOVENJA 

Address: Slovenska 50, 1000 Ljubljana, Tel: +386 Gl 
1311 107, Fax: +386 61 1324 140. 
WWW:http://www.mzt.si 
Minister: Lojze Marinček, Ph.D. 

The Mini5,try also includes: 
The Standards and Metrology Institute of the 
Republic of Slovenia 
Address: Kotnikova 6, GlOOO Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 314 882. 

Slovenian Intellectual Property Office 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 318 983. 

Office of the Slovenian National Commission 
for UNESCO 
Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61 
1311 107, Fax: +386 61 302 951. 

Scientific, Research and Development 
Potential: 

The Ministry of Science and Technology is responsible 
for the R&D policy in Slovenia, and for controlling 
the government R&D budget in compliance with the 
National Research Program and Law on Research 
Activities in Slovenia. The Ministry finances or 
co-finance research projects through public bidding, 
while it directly finance some fixed cost of the national 
research institutes. 

According to the statistics, based on OECD (Fras-
cati) standards, national expenditures on R&D raised 
from 1,6 % of GDP in 1994 to 1,71 % in 1995. Table 2 
shows an income of R&D organisation in million USD. 

Objectives of R&D policy in Slovenia: 

— maintaining the high level and quality of scientific 
technological research activities; 

- stimulation and support to collaboration between 
research organisations and business, public, and 
other sectors; 

Total investments in R&D (% of GDP) 1,71 
Number. of R&D Organisations 297 
Total number of employees in R&D 12.416 
Number of researchers 6.094 
Number of Ph.D. 2.155 
Number of M.Sc. 1.527 

Table 1: Some 

Bus. Ent . 
Gov. Inst. 
Priv. 11]) Org. 
Iligli. Edu. 
TOTAL 

R&D indicators for 1995 

1993 
51 

482 
10 

1022 
1505 

Ph .D . 
1994 

93 
574 

14 
1307 
1988 

1095 
102 
568 

24 
1461 
2155 

1993 
196 
395 

12 
426 

1029 

M.Sc. 
1984 

327 
471 

25 
772 

1595 

1995 
330 
463 

23 
711 

1527 

Table 2: Number of emplojees with Ph.D. and M.Sc. 

— stimulating and supporting of scientific and re
search disciplines that are relevant to Slovenian 
national authenticity; 

— co-financing and tax exemption to enterprises en-
gaged in technical development and other applied 
research projects; 

— support to human resources development with 
emphasis on young researchers; involvement in In
ternational research and development projects; 

— transfer of knowledge, technology and research 
achievements into ali spheres of Slovenian society. 

Table source: Slovene Statistical Office. 

Business Enterprises 
Government Institutes 
Private non-profit Organisations 
Higher Education 
TOTAL 

Basic Research 
1994 

6,6 
22,4 
0,3 

17,4 
46,9 

1995 
9,7 

18,6 
0,7 

24,4 
53,4 

Applied Research 
1994 
48,8 
13,7 
0,9 

13,7 
77,1 

1995 
62,4 
14,3 
0,8 

17,4 
94,9 

Exp. 
1994 
45,8 

9.9 
0,2 
8,0 

63.9 

Devel. 
1995 
49,6 

6,7 
0,2 
5,7 

62,2 

Total 
1994 1995 

101,3 121,7 
46,1 39,6 

1,4 1,7 
39,1 47,5 

187,9 210,5 

Table 3: Incomes of R&D organisations by sectors in 1995 (in million USD) 

http://www.mzt.si
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Jožef Štefan (1835-1893) was one ofthe mostpromi-
nent phtjsicists of the 19th centunj. Bom to Slovene 
parcnts, he obtained his Ph.D. at Vienna University, 
where he was later Director of the Phijsics Institute, 
Vice-President ofthe Vienna Acadcmtj of Sciences and 
a member of several scientific institutions in Europe. 
Štefan explored many areas in hijdrodijnamics, optics, 
acoustics, electricitij, magnetism and the kinetic the-
ory of gases. Among other things, he originated the 
law that the total radiation from a black body is pro-
portional to the 4th power of its absolute temperature, 
knovm as the Stefan-Boltzmann law. 

The Jožef Štefan Institute (JSI) is the leading inde-
pendent scientific research institution in Slovenia, cov-
ering a broad spectrum of fundamental and apphed 
research in the fields of physics, chemistry and bio-
chemistry, electronics and information science, nuclear 
Science technology, energy research and environmental 
science. 

The Jožef Štefan Institute (JSI) is a research organ-
isation for pure and apphed research in the natural 
sciences and technology. Both are closely intercon-
nected in research departments composed of different 
task teams. Emphasis in basic research is given to the 
development and education of young scientists, while 
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the devel
opment of the national economy and society in general. 

The Institute is located in Ljubljana, the capital of 
the independent state of Slovenia (or S^nia). The 
capital today is considered a crossroad between East, 
West and Mediterranean Europe, offering excellent 
productive capabilities and solid business opportuni-
ties, with strong International connections. Ljubljana 
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče, 
Bern and Munich, ali within a radius of 600 km. 

In the last year on the site of the Jožef Štefan Insti
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technological 
development to foster synergies between research and 
industry, to promote joint ventures between university 
bodies, research institutes and innovative industry, to 
act as an incubator for high-tech initiatives and to ac-
celerate the development cycle of innovative products. 

At the present time, part of the Institute is be-
ing reorganized into several high-tech units supported 
by and connected within the Technology park at the 
Jožef Štefan Institute, established as the beginning of 
a regional Technology park "Ljubljana". The project 
is being developed at a particularly historical mo
ment, characterized by the process of state reorganisa-
tion, privatisation and private initiative. The national 
Technology Park will take the form of a shareholding 
company and will host an independent venture-capital 
institution. 

At present the Institute, with a total of about 700 
staff, has 500 researchers, about 250 of whom are post-
graduates, over 200 of whom have doctorates (Ph.D.), 
and around 150 of whom have permanent professor-
ships or temporary teaching assignments at the Uni-
versities. 

In view of its activities and status, the JSI plays the 
role of a national institute, complementing the role of 
the universities and bridging the gap betvveen basic 
science and applications. 

Research at the JSI includes the following ma
jor fields: physics; chemistry; electronics, informat-
ics and computer sciences; biochemistry; ecology; re-
actor technology; applied mathematics. Most of the 
activities are more or less closely connected to infor
mation sciences, in particular computer sciences, ar-
tificial intelligence, language and speech technologies, 
computer-aided design, computer architectures, biocy-
bernetics and robotics, computer automation and con-
trol, professional electronics, digital Communications 
and networks, and applied mathematics. 

The promoters and operational entities of the 
project are the Republic of Slovenia, Ministry of Sci
ence and Technology and the Jožef Štefan Institute. 
The framework of the operation also includes the Uni-
versity of Ljubljana, the National Institute of Chem-
istry, the Institute for Electronics and Vacuum Tech-
nology and the Institute for Materials and Construc-
tion Research among others. In addition, the project 
is supported by the Ministry of Economic Relations 
and Development, the National Chamber bf Economy 
and the City of Ljubljana. 

Jožef Štefan Institute 
Jamova 39, 61000 Ljubljana, Slovenia 
Tel.:-»-386 61 1773 900, Fax.:-|-386 61 219 385 
Tlx.:31 296 JOSTIN SI 
WWW: http://www.ijs.si 
El-mail: matjaz.gams@ijs.si 
Contact person for the Park: Iztok Lesjak, M.Se. 
Public relations: Natalija Polenec 

http://www.ijs.si
mailto:matjaz.gams@ijs.si
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INVITATION, COOPERATION 

Submissions and Refereeing 
Please submit three copies of the manuscript with good 
copies of the figures and photographs to one of the editors 
from the Editorial Board or to the Contact Person. At least 
two referees outside the author's country will examine it, 
and they are invited to make as many remarks as possible 
directly on the manuscript, from typing errors to global 
philosophical disagreements. The chosen editor will send 
the author copies with remarks. If the paper is accepted, 
the editor will also send copies to the Contact Person. The 
Executive Board will inform the author that the paper has 
been accepted, in which čase it will be published within one 
year of receipt of e-mails with the text in Informatica I ^ I ^ 
format and figures in .eps format. The original figures 
can also be sent on separate sheets. Style and examples of 
papers can be obtained by e-mail from the Contact Person 
or from FTP or WWW (see the last page of Informatica). 

Opinions, ncws, calls for conferences, calls for papers, etc. 
should be sent directly to the Contact Person. 

g U E S T I O N N A I R E 

I I Send Informatica free of charge 

I I Ves, we subscribe 

Please, complete the order form and send it to Dr. Rudi 
Murn, Informatica, Institut Jožef Štefan, Jamova 39, 61111 
Ljubljana, Slovenia. 

Since 1977, Informatica has been a major Slovenian sci-
entific journal of computing and informatics, including 
telecoramunications, automation and other related areas. 
In its 16th year (more than five years ago) it became truly 
International, although it stili remains connected to Cen
tral Europe. The basic aim of Informatica is to impose 
intellectual values (science, engineering) in a distributed 
organisation. 

Informatica is a journal primarily covering the European 
Computer science and informatics community - scientific 
and educational as well as technical, commcrcial and indus-
trial. Its bcisic aim is to enhance Communications between 
different European structures on the basis of equal rights 
and International refereeing. It publishes scientific papers 
accepted by at least two referees outside the author's coun-
try. In addition, it contains Information about conferences, 
opinions, critical examinations of existing publications and 
news. Finally, major practical achievements and innova-
tions in the computer and Information industry are pre-
sentcd through commercial publications as well as through 
independent evaluations. 

Editing and refereeing are distributed. Each editor can 
conduct the refereeing process by appointing two new ref
erees or referees from the Board of Referees or Editorial 
Board. Referees should not be from the author's country. 
If new referees are appointed, their names will appear in 
the Refereeing Board. 

Informatica is free of charge for major scientific, educa
tional and governmental institutions. Others should sub
scribe (see the last page of Informatica). 

ORDER FORM - INFORMATICA 

Name: Office Address and Telephone (optional): 

Title and Profession (optional): 

E-mail Address (optional): 

Home Address and Telephone (optional): 

Signature and Date: 
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