
^olume 23 Number 1 April 1999 ISSN 0350-5596

Informatik
An International Journal of Computing
and Informatics

Special Issue:
Parallel Computing on
JNretworks of Computers

The Slovene Society Informatika, Ljubljana, Slovenia

I Informatica
;•• ^ An International Journal of Computing and Infbrmatics
i: ".
!- Basic info about Informatica and back issues may be FTP'ed from f t p . a r n e s . s i in
3 magazines/informatica ID: anonyinous PASSWORD: <your mail address>

FTP archive may be also accessed -vvith WWW (worldwide web) clients with
M URL: ht tp : / /www2.i js .s i /~inezi / informat ica .html

.̂ Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring,
I Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot

12, 1000 Ljublj'ana, Slovenia.
The subscription rate for 1999 (Volume 23) is
- DEM 100 (US$ 70) for institutions,
- DEM 50 (US$ 34) for individuals, and
- DEM 20 (US$ 14) for students
plus the mail charge DEM 10 (US$ 7).

J Claims for missing issues will be honored free of charge within six months after the publication date
of the issue.

IMgS Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship; Fergus F.. Smith, AMIDAS d.o.o., Cankarj"evo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription niay be placed by telephone or {ax using any major credit card. Please call
Mr. R. Murn, Jožef Štefan Institute: Tel (+386) 61 1773 900, Fax (+386) 61 219 385, or send checks
or VISA card number or use the bank account number 900-27620-5159/4 Nova Ljubljanska Banka
d.d. Slovenia (LB 50101-678-51841 for domestic subscribers only).

According to the opinion of the Ministry for Informing (number 23/216-92 of March 27, 1992), the
scientific journal Informatica is a product of informative matter (point 13 of the tariff number 3), for
which the tax of trafRc amounts to 5%. '

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Leucirčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences (Janez Peklenik)

Informatica is surveyed by: Al and Robotic Abstracts, Al References, ACM Computing Surveys,
Applied Science &: Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature
Index, Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Engineering Index,
INSPEC, Mathematical Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt fiir
Mathematik, Linguistics and Language Behaviour Abstracts, Cybernetica Newsletter

The issuing of the Informatica journal is 6nancially supported by the Ministry for Science and Tech-
nology, Slovenska 50, 1000 Ljubljana, Slovenia.

Post tax payed at post 1102 Ljubljana. Slovenia taxe Percue.

enajfflsss^sisS^gS

ftp://ftp.arnes.si
http://www2.ijs.si/~inezi/informatica.html

Informatica 23 (1999) 1-3

Clustering-in Search for Scalable Coinmodity Supercomputing

The history of computing can be viewed as a con-
stant search for computational power. As soon as a
new, more powerful, computer is developed a larger
problem to be solved appears on the horizon. This
need for computational power, instead of leveling off,
is growing day by day. During recent decades differ-
ent high performance computer systems attempted to
satisfy the power-hungry users. The most common
systems were:

- Vector Computers (VC)

- Massively Parallel Processors (MPP)

- Symmetric Multiprocessors (SMP)

- Cache-Coherent Nonuniform Memory Access
Computers (CC-NUMA)

- Distributed Systems

Although vector computers provided the break-
through needed for the computational research to
emerge as an independent science, they were only a
partial answer as they could deliver top performance
only for a few classes of problems. Many powerful scal­
able MPP systems have been built, but most of them
have failed commercially due to their high cost and a
low performance/price ratio. Symmetric multiproces­
sors are attractive, but they suffer from the scalability
problem. Non-uniform memory access computers ad­
dress some scalability and cost issues, but they suffer
from a single point of failure as they use a single op-
erating system kernel across aH nodes (as in SMPs).
Distributed systems are scalable but they do not offer
ease of use or means for fast communication, which are
essential requirements for efficient execution of parallel
applications.

Recent years have witnessed a new direction of
search for computational power - cluster computing
(CC). (A cluster is a computer system that forms, in
varying degrees, a single unified resource composed of
severa! interconnected computers.) Although cluster-
ing or cluster computing has been around for more
than 25 years it did not gain momentum until three
technology trends converged in the 1980s: develop-
ment of high performance microprocessors, emergence
of high-speed networks and maturation of standard
tools for high performance distributed computing. An-
other trend which is also worth mentioning in this con-
text is the increased need for computing power in com-
mercial applications coupled with the high cost and
low accessibility of traditional supercomputers. .

In recent years, the availability of high-speed
networks and high performance microproces-
sors/workstations as commodity components make

networks of workstations an appealing vehicle for
cost-effective parallel computing. Clusters/networks
of computers (workstations, PCs or SMPs) built using
commodity hardware and software (such as Linux,
PVM, or MPI) play a major role in redefining the
concept of high performance computing. As a whole,
clusters are becoming an alternative to MPPs and
supercomputers in many areas of application.

This Special Issue is a result of an extremely large
number of submissions that we received for the Spe­
cial Issue of the Parallel and Distributed Computing
Practices (PDCP) Journal [3]. Among more than five
dozens of submissions, 24 papers have received very
high recommendation from reviewers. We could not
publish them ali in PDCP but we were able to find a
home for them here in INFORMATICA. A half of the
selected papers will appear in PDCP and the remain-
ing half appears in this issue. The focus of this Special
Issue will be on both hardware and software aspects
of cluster computing.

There are many ways of looking at cluster comput­
ing. Typically we consider them to be a number of
raachines physically connected via a wired network.
This does not need to be the čase in the future. We
thus start from the paper by H. Zheng, et. al. Mo-
bile Cluster Computing and Timeliness Issues which
presents an overview of research issues involved in mo-
bile cluster computing. In particular, they consider
problems involved in cluster nodes migrating between
cells of a wireless network. The next paper returns
back to Earth and considers how the modern high-
speed netvvorks can be used to facilitate cluster com­
puting. In High-Performance Cluster Computing over
Gigabit/Fast Ethernet, J. Sang, et. al. consider cluster
computing over Fast Ethernet and present practical re-
sults obtained using the NAS parallel benchmark. The
last paper addressing the global issues is The Remote
Enqueue Operation on Netuiorks of Workstations by
M. Katevenis, et. aJ. It contains an overview of com­
munication mechanisms necessary to support cluster
computing. In the paper a remote-enqueue atomic op­
eration is introduced and compared with other possible
alternatives.

The second group of papers is devoted to the load
balancing and scheduling issues of clustering. In Pre-
serving Mutual Interests in High Performance Com­
puting Clusters O. Kremien et. al. address one of
the drawbacks of the PVM environment (use of a sim-
ple round-robin process allocation policy) by adding
to the environment a resource manager. This enables
them to facilitate effectively the construction of clus­
ters built of heterogeneous computers. Another ap-
proach to load balancing is presented by A. Bevilac-
qua in A Dynamic Load Balancing Method on a Het-

Informatica 23 (1999) 1-3

erogeneous Cluster of Workstations. His load balanc-
ing algorithm is based on the dynamic data assign-
ment and its performance is studied for a 3D image re-
construction problem. In Minimizing Communication
Conflicts with Load-Skeiving Task Assignment Tech-
nigues on Nettvork of Workstations W.-M. Lin and W.
Xie study the load balancing problem for low speed
networks. They present an algorithm which is par-
ticularly well suited for the bus-based communication.
Finally, in Scheduling of I/O in Multiprogrammed Par­
allel Systems, P. Kwong and S. Majmudar address the
effective management of parallel I/O for cluster com-
puting. They develop a simulation model and compare
the performance of various I/O scheduling strategies.

The next two papers are devoted to fault toler­
ance. D. Kebbal et. al. in Fault Tolerance of Par­
allel Adaptive Applications in Heterogeneous Systems
discuss fault tolerance for heterogeneous adaptive sys-
tems. The proposed fault tolerance policy based on
optimized coordinated checkpointing is shown to be
an effective strategy allowing a recovery from failure
by involving only a minimal part of the failed applica-
tion. A fault tolerance approach based on utilization of
idle cycles of computers in the cluster is proposed by T.
Setz in Fault Tolerant Execution of Compute-Intensive
Distributed Applications in LiPS. The proposed ap­
proach alleviates the need for application-wide syn-
chronization used to generate sets of consistent check-
points.

The last three papers are devoted to application de-
velopment. E. Manolakos and D. Galatopoullos in
JAVAPORTS: An Environment to Facilitate Parallel
Computing on a Heterogeneous Cluster of Worksta-
tions shows the use of Java language for high per­
formance computing. They demonstrate experimen-
tal results shovving that a good performance can be
achieved even on a relatively slow lOMbs Ethernet
based cluster of workstations. In Structured Performa-
bility Analysis of Parallel Applications, J. Dougherty
presents a unified performance and dependability eval-
uation methodology for practical large-scale parallel
applications. Experimental results comparing the per­
formance obtained on a network of DEC Alpha Sta-
tions with the performance predicted by the theoret-
ical model are presented. Finally, D. Helman and J.
JaJa in Sorting on Clusters of SMPs discuss practical
issues involved in developing an efficient sorting algo­
rithm for a cluster of DEC SMP Alpha servers.

We would like to express our deep gratitude to Prof.
M. Gams, Managing Editor of INFORMATICA who
agreed to publish this Special Issue on a very short
notice. This issue would not be possible without the
help of referees (listed below) who worked very hard
to review aH the submitted papers. We would like to
thank them ali.

We hope you will find this special issue interesting.

Guest Editors

Rajkumar Buyya
Co-Chair
IEEE Task Force on Cluster Computing (TFCC)
School of Computer Science and Software Engineering
Monash University
Clayton Campus, Melbourne, Australia.
Email: rajkumar@ieee.org;
URL: http://www.dgs.monash.edu.au/~rajkumar/tfcc/

Marcin Paprzycki
Coordinator,
IEEE TFCC Tech. Area-Algorithms and Applica­
tions
Department Computer Science and Statistics
University of Southern Mississippi
Hattiesburg, MS 39406, USA
Email: m.paprzycki@usm. edu;
URL: http://orca.st.usm.edu/marcin/

References

[1] R. Buyya. High Performance Cluster Computing:
Systems and Architectures. Volume 1, 1/e, Prentice
Hali PTR, NJ, 1999.

[2] R. Buyya. High Performance Cluster Computing:
Programming and Applications. Vol. 2, 1/e, Pren­
tice Hali PTR, NJ, 1999.

[3] R. Buyya and C. Szyperski. Special Issue on High
Performance Computing on Clusters. Parallel and
Distributed Computing Practices (PDCP) Jour­
nal, Vol. 2 (2), June 1999.

[4] G. Pfister. In Search of Clusters. 2/e, Prentice
Hali PTR, NJ, 1998.

[5] T. Sterling, J. Salmon, D. Becker, and D. Savar-
rese. How to Build a Beouiulf. The MIT Press,
1999.

[6] B. Wilkinson and M. Allen. Parallel Programming
Technigues and Applications Using Netvaorked
Workstations and Parallel Computers. Prentice
Hali, NJ, 1999.

Reviewers

Alessandro Bevilacqua
Alfred Weaver
Amin Vahdat
Amitabh Dave
Amy Apon
Andrzej Goscinski

mailto:rajkumar@ieee.org
http://www.dgs.monash.edu.au/~rajkumar/tfcc/
http://orca.st.usm.edu/marcin/

Informatica 23 (1999) 1-3

Benedict Gomes
Biersack Ernst
Boleslaw Szymanski
Boris Weissman'
Cho-Li Wang
Chung-Ta King
Dan Hyde
David Bader
Davide Rossetti
Domenico Talia
Dorina Petriu
Dror Feitelson
El-ghazali Talbi
Erhan Saridogan
Gangan Agrawal
Gihwan Oho
Giuseppe Ciaccio
Harjinder Sandhu
Hye-Seon Meeng
Jamel Gafsi
Jay Fenwick
Jianyong Wang
John Dougherty
Kennith Birman
Lars Rzymianowicz
Lori Pollock
Liiis Silva
Maciej Golebiewski
Mark Baker
Mark Clement
Marrianne Winslett
Matliew Chidester
Michele Colajanni
Orly Kremien
Paddy Nixon
Paul Roe
Putchong Uthayopas
Quinn Sneli
Rainer Fraedrich
Rajeev Raje
Rajeev Thakur
Ricky Kwok
Robert Brunner
Robert Todd
Samuel Russ
Toni Cortes
Yong Cho
Yoshio Tanaka
Yu-Kwong Kwok

Informatica 23 (1999) 5-17

Mobile Cluster Computing and Timeliness Issues

Haihong Zheng, Rajkumar Buyya^, and Sourav Bhattacharya
Dept. of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-5406, USA
Email: haihoiigz@asu.edu, rajkumar®ieee.org, sourav@asu.edu

Keywords: Cellular Network, Cluster Computing, Handover, Hypercube Topology, Mobile Cluster Computing,
Mobile IP, Multicast, Rerouting, Timeliness, Triangle Mesh.

Edited by: Marcin Paprzycki

Received: December 15, 1998 Revised: February 25, 1999 Accepted: March 1, 1999

With the rapid advancement and extensive deployment of cluster computing and mobile commu-
nication, the integration of these two technologies has become feasible and lead to the emergence
of a new paradigm called mobile cluster computing (MCC). Among the issues that need to be
addressed before MCC can become a reality, the timeliness issue is an important one, especially
\vhen mobile nodes within a computing cluster migrate from one celi to another celi in a cellular
wireless network. In this paper, we Brst dehne and analyze the potential application environment
of mobile cluster computing. We also present a generic architecture of a mobile cluster computer
and several potential research issues of mobile cluster computing. In the rest of this paper, we
focus on the timeliness issue of routing and multicast when handover occurs, along with several
solution approaches based on different system architectures.

1 Introduction

During the past decade many diiferent computer sys-
tems supporting high performance computing have
emerged. Among several common systems, clusters'^
have become increasingly popular to prototype, de-
bug and run parallel applications [1]. Since individ-
ual workstations have become increasingly powerful,
and the communication bandwidth between them is
increasing and latency is decreasing, clusters can pro-
vide similar (or sometimes better) performance relia-
bility as well as fault tolerance as the traditional main-
frames or supercomputers.

In addition, we observe that, as a result of the
rapid development of mobile wireless networking sys-
tem, users can access Information across distributed
sites and exploit the capacities of the global network
at any tirne without regard to the location or mobil-
ity of the end units. This suggests that in addition to
stationary nodes, mobile nodes will enter the cluster
computing arena and result is the emergence of a new
paradigm called "Mobile Cluster Computing" (MCC).

Another boost to our proposition for MCC is the
recent emergence of mobile processors from industry
dominant microprocessor vendors [2]. They include

^Currently associated with the School of Computer Science
and Software Engineering at Monash University, Melbourne,
Australia.

•^Cluster is a collection of interconnected computers working
together as a single system.

Intel Mobile Pentium II [3], Intel Celeron [4], and Mo­
bile AMD-K6-2 [5] processors.

The mobile processors run at a lower voltage than
desktop processors and operate within the thermal en-
velope of today's notebook designs. The primary ad-
vantage of the lower voltage, lower power mobile pro­
cessors, is extended system battery life.

These mobile processors are compatible with exist-
ing software and offer leading-edge 3D and multimedia
performance; in near future, they aim to provide sup-
port for high-performance notebook computing.

Although, due to the transmission latency and poor
reliability of wireless media, mobile nodes may not be
the best choice to participate in a cluster providing. a
high-performance computation facility for large-scale
and grand-challenge applications, there are many ap­
plications that will benefit from clustering regardless.
Further, this scenario will change as technology be-
comes mature. In these applications several of its par-
ticipating nodes may need to be mobile. Examples
include oil rig sensors, sensors and monitors in earth
quake detection/prediction, marketing representatives
travelling ali over the country/world with laptops and
sales data feeding in, disaster management systems,
battlefield command systems, SWAT teams, and stock
market wizards. A few sample applications of MCC
include the following:

- A scientific, nomadic environment. For example,
scientists stationed at several different cities may

mailto:haihoiigz@asu.edu
mailto:sourav@asu.edu
file:///vhen

Informatica 23 (1999) 5-17 H. Zheng et al.

gather seismic data and employ a parallel algo-
rithm that predicts future seismic activities.

— Embedded military supercomputing applications
in vvhich fault tolerance is a concern. For example,
tanks, trucks, planeš, etc. may be connected via
a wireless network. They can gather data, send it
to other nodes in the network, and use distributed
algorithms to make decisions based on that data.

— Intelligent incast or multicast in which strict tirne
deadlines are used to steer immediate actions. For
example, consider the study of a weather phe-
nomenon such as tornadoes. Several mobile nodes
may gather data, send it to other nodes and use
the data to make predictions about the path of
the tornado.

Applications of this nature can be executed on a sin-
gle system, but the data sources are inherently at dis-
tant mobile locations and thus necessitate the need for
sharing mobile resources. Even in a normal environ-
ment mobile computers may be used extensively. The
idle CPU cycles of these mobile nodes can be used to
process whole or part of the input or output of a large
scale application in cooperation with other mobile or
stationary nodes. Therefore, mobile cluster computing
is expected to play an important role in the modem
computing era and mobile network systems.

Furthermore, in čase of mobile cluster computing
there is no need to invest in a new backbone infras-
tructure. The existing wireless network infrastructure
(such as a cellular netvvork system, PCS, satellite
communication system, wireless LAN) can act as a
communication backbone for mobile cluster comput­
ing. Among several wireless netvvork configurations,
a cellular structure is the most commonly used
one, where the wireless service area is physically
partitioned into different cells. Regardless of whether
communication is cellular/stellite-based, they are ali
based on the wireless media and provide communi­
cation environment to the mobile users. Therefore,
the infrastructure of mobile cluster computing can
be built based on the combination and collaboration
of the general cluster computing and the wireless
network.

Contribution: In this paper, we define and analyze
the application environments for mobile cluster com­
puting. We have raised the potential research issues in
mobile cluster computing, among them the timeliness
issue in mobile cluster computing, especially during
handover events, has been identified and addressed in
detail. The contributions of this paper include block-
based route optimisation which focuses on timeliness
issue in rerouting during handover, and severa! mul­
ticast tree reconstruction algorithms that address the
timeliness issue in multicasting during handover.

2 A Mobile Cluster Computer
and its Architecture

A cluster generally refers to two or more computers
(nodes) connected together with each node having the
"strong sense"^ of cluster membership [1]. A mo­
bile cluster, in addition, consists of mobile and sta-
tionary nodes (see Figure 1). The nodes of a mobile
cluster communicate either using a wireless network
(e.g., cellular network) and/or high speed wired net-
work system. It does not matter where the nodes are
and what kind of backbone is used to support the
nodes, these nodes can communicate and collaborate
with each other just as in a general computing clus­
ter. That is, a mobile cluster consists of both mobile
and non-mobile nodes interconnected through either
physical interconnect or wireless network and work in
a coordinated manner transparently sharing workload
among themselves. In addition, a mechanism for au-
tomatic detection of node status-whether it is static
or mobile-and communication via either physical or
vifireless netvvork is appropriately supported.

The following are the basic components of mobile
cluster computers:

- Multiple High Performance Computers (PCs,
Workstations, or SMPs)

— State-of-the-art Operating Systems (Layered or
Micro-kernel based)

— High Performance Networks/Switches (such as
Gigabit Ethernet and Myrinet)

- Network Interfaces Cards (NICs) (e.g., wireless
NIC)

— Wireless Network Infrastructure (e.g., cellular
network system)

- Hardware (such as Base station, MTSO,
PSTN)

- Operating System Kernel (such as mobility
management, channel resource management,
registration)

— Fast Communication Protocols and Services (such
as Active and Fast Messages)

- Mobile Communication Protocols like Mobile IP

- Cluster Middleware (Single System Image (SSI)
and System Availability Infrastructure)

- Hardware (such as Digital Memory Channel,
hardware DSM, and SMP techniques)

^It referes to the appearance of a collection of independent
nodes as a single unified resource and of course, ali nodes must
aim towards this.

MOBILE CLUSTER COMPUTING . . . Informatica 23 (1999) 5-17

Sequential Applications

Parallel Applications

Parallel Programming Environments

Cluster Middievvare

(Single System Image and Availability Infrastructure)

PC/Workstation

[comm. S/W~|

Wireless Net
H/W Interface

PCAVorkstation

Wireless Network

PC/Workstation

[comm. S/W~l

Wired Net
H/W Interface

Wireless Network

a High Speed VVired Network

Figure 1: Mobile Cluster Computing Generic Architecture.

Informatica 23 (1999) 5-17 H. Zheng et al.

- Operating Systera Kernel or Gluing Layer
(such as Solaris MC and GLUnix)

- Applications and Subsystems

- Applications (such as system manage-
ment tools and electronic forms)

- Runtime Systems (such as software
DSM and parallel file system)

- Resource Management Systems (such as
LSF and CODINE)

- Parallel Programming Environments and Tools
(such as compilers, PVM, and MPI)

— Applications

- Sequential

- Parallel or Distributed

The network interface hardware acts as a commu-
nication processor and is responsible for transmitting
and receiving packets of data between cluster nodes
via a network/switch which could be ATM, fast Eth­
ernet, wireless network, etc. When a wireless net-
work is involved to provide communication methods
between nodes within a cluster, cluster computing re­
search should consider a lot of issues that the char-
acteristics of mobility in a wireless network bring up.
For example, when the mobile node is an Internet node
assigned with an IP address, mobile IP, one of the com­
munication protocols, may need to be included to pro­
vide a seamless connection across the Internet when
the mobile node is roaming.

Communication software offers the means of fast
and reliable data communication among cluster nodes
and to the outside world. Often, clusters with a spe-
cial network/switch like Myrinet use communication
protocols such as active messages for fast communi­
cation among its nodes. They potentially bypass the
operating system and thus remove the critical commu­
nication overheads providing direct user-level access to
the network interface.

The cluster nodes can work collectively, as an in-
tegrated computing resource, or they can operate as
individual computers. The cluster middleware is re­
sponsible for offering an illusion of a unified system
image (single system image) and availability out of a
collection of independent but interconnected comput­
ers.

Programming environments can offer portable, ef-
ficient, and easy-to-use tools for development of ap-
plications. They include message passing libraries, de-
buggers, and profilers. It should be noted that clusters
could be used for the execution of sequential or parallel
applications.

2.1 Infrastructure of Mobile Network
The infrastructure of mobile cluster computing mainly
consists of conventional computing clusters and mobile
networks. Mobile networks (wireless network along
with wired network) provide connectivity and commu­
nication methods between nodes within a computing
cluster, on which cluster computing relies at the higher
layer. There are many implementation technologies of
mobile networks as shown in Figure 2.

At the physical and MAC layers in OSI model, a
non-exhaustive list of wireless networks is as follows.

— Satellite Communication

— Cellular Networks
— PCS
— Wireless LAN
— Microwave Communication
— High-speed Laser Links

For example, a cellular network system physically
partitions the service area of wireless networks into
different contiguous cells. Cells have the connotation
of geographical area served by a base station. Base
station consists of a transmitter and two receivers per
channel, a controller, an antenna system, and data
links to the cellular office. The base station acts as
the user-to-MTSO interface. The Mobile Telephone
Switching Office (MTSO) is the physical provider of
connections from the cellular radio through the base
station to the local exchange carrier. The connection
can be on either a landline or a microwave radio system
between the points.

Another example is wireless LAN which provides
wireless connection for mobile nodes within a small
area, such as a building. Currently, a lot of commercial
products of wireless LAN have emerged, some of which
can reach the transmission rate of lOOMbps. The fol-
lowing list is several examples of some wireless LAN
implementation.

— http://www.radiolan.com/

— http://www.wilan.com/

— http://www.ccsinc.net/

— http://www.kcnet.com/dceclan/

— http://www.dataequip.com/

At the network layer, a lot of mechanisms have
been proposed or implemented to route the message
throughout the entire network system even when the
mobile node is roaming around. Such as wireless ATM,
dial-up cellular phone connection, mobile IP, etc. For
example, the lETF solution to route message for a mo­
bile Internet host is mobile IP. The current research
status and some implementation of mobile IP can be
found at the following web-sites.

http://www.radiolan.com/
http://www.wilan.com/
http://www.ccsinc.net/
http://www.kcnet.com/dceclan/
http://www.dataequip.com/

MOBILE CLUSTER COMPUTING Informatica 2 3 (1999) 5-17

Cluster Computing

Wireless
ATM

Mobile IP Dial-up Cellular Phone Connection

Satallite
Communication PCS Cellular

Network
Wireless

LAN
• • • HIgh-Speed Laser

Connection
Microwave

Communication

Layer 3

Layer 2
Layer I

Figure 2: Infrastructure of Mobile Networks.

- National University of Singapore, Mobile IP for
Linux - http://mip.ee.nus.sg/

- SUNY, Binghamton -
http://anchor.cs.binghamton.edu/~mobileip

- Stanford - http://mosquitonet.Stanford.EDU/
softvvare/mip.html

- http://www.cs-ipv6.lancs.ac.uk/MobilelP

- http://www.ikv.de/products/roamin.html

Based on the services provided by the network layer,
nodes (no matter mobile or stationary) could commu-
nicate and collaborate with each other and process the
large-scale computing.

In summary, the wireless network infrastructure
provides a communication scheme to every node in a
computing cluster in the same way as wired network
does. However, due to the introduction of mobility
into cluster computing, a lot of new issues come up.

3 Research Issues
Similar to the mobile cellular system, the character-
istics of mobility brings up a number of new research
topics to mobile cluster computing.

There are a large number of research issues existing
in mobile cluster computing, including the following:

- how to balance the long latency of vvireless media
and high speed fixed netvvork and perform syn-
chronisation;

- how to provide a complete transparency to users
without the knowledge of the underlying system
which includes both mobile nodes and stationary
nodes;

- how to manage the resources and process the
scheduling among different nodes to maximise
their throughput.

Ali of these issues are very critical to the performance
of mobile cluster computing and further research on
these issues is needed. In this paper, we concentrate
on the timeliness issue in mobile cluster computing.

One of the most important issues in mobile clus­
ter computing is the timeliness of handovers that oc-
cur in the cellular network system. (The set of op-
erations performed when a mobile node moves from
one geographical celi to another adjacent celi is called
handover [6]). When handover takes plače, not only
the channel resource occupied by the node should be
managed to maintain the connectivity, but also the
information sent to or from the mobile node should
be rerouted to the new celi to which the mobile node
is heading. In addition, if a mobile node is within a
multicast application when a handover happens, the
entire multicast tree [8] may need to be reconstructed.
If the time spent on the resource reallocation, rerout-
ing and its corresponding optimisation, and rebuilding
the multicast tree is too long, the information sent to
or from the migrating node may be lost and this may
result in the serious failure of the entire cluster appli­
cation. Therefore, within a computing cluster, timeli­
ness becomes an important issue when a mobile node
switches from one celi to another.

4 Research Focus: Timeliness
Issue in Mobile Cluster
Computing

Timeliness is a critical issue in many computing and
communication applications, especially in real-time
systems. A real-time system is one in which the cor-
rectness of the system depends not only on the logical
results, but also on the time at which those results
are produced. Messages transmitted in such systems
must be received by a deadline or they are lost. Such a
real-time deadline, i.e., timeliness issue, is a key com-
ponent of the QoS (Quality of Service) requirement.
However, even if the system does not have the real-
time requirement, timeliness issue is stili an impor­
tant component to provide a high QoS to users. For
example, in a TCP/IP netvvork, if an end-to-end ac-
knowledgement doesn't reach the source node (e.g.,
due to netvvork congestion) before the timer expires,
the source node will resend the message which would
increase the network load and thus deteribrate the net-

http://mip.ee.nus.sg/
http://anchor.cs.binghamton.edu/~mobileip
http://mosquitonet.Stanford.EDU/
http://www.cs-ipv6.lancs.ac.uk/MobilelP
http://www.ikv.de/products/roamin.html

10 Informatica 23 (1999) 5-17 H. Zheng et al.

work performance. Therefore, the timeliness issue not
only exists in real-time systems but also in a normal
system vvhere timing is an important issue.

Similarly, the timehness of an operation is an im­
portant issue in MCC under several circumstances. A
few of them are identified and discussed below.

4.1 Resource Management

When a mobile node moves from one celi to another
celi, the channel used in the old celi may not be
reusable in the new celi due to co-channel or adjacent
channel interference or low signal strength leading to
node isolation from the rest of the cluster. If a new
channel that needs to be used has not been allocated
to the node within a short time period, the call may
be dropped by the user due to the long waiting-time
in a cellular telephone system, or, the messages trans-
mitted will be delayed, resulting in retransmission in
a mobile data communication system. If such a de-
lay occurs in a time-critical system, the message may
not be able to meet the real-time deadline and could
get lost, thus leading to the failure of an entire ap-
plication [9]. The system resources need to be man-
aged (using checkpointing and migration techniques)
to handle sudden unavailability of resources.

4.2 Topology Management

Timeliness is also an important issue in network topol-
ogy management. Various types of logical topologies
have been proposed, such as a ring topologij vvhere each
node has exactly two neighbours, a 2-rfmesh [7] which
is a planar structure that has nodes arranged in a grid
of rows and columns, a tree topologij which has a regu-
lar and hierarchical structure of node levels which cre-
ates a tree appearance by having each lower level con-
tain more nodes than the previous level, etc. When a
mobile node roams and leaves its original position, the
pre-defined topology is destroyed and the fragmented
topology has to be reconstructed by selecting a new
node as the alternative to the migrated one. The time
spent on such reconstruction should not be too long,
otherwise neither the cluster computing nor the nor­
mal network communication would show satisfactory
performance.

4.3 Rout ing

In a mobile netvvork system with mobile IP protocol,
any mobile node is allowed to move about, changing
its point of attachment to the Internet, while contin-
uing to be identified by its home IP address. Cor-
responding nodes sending IP datagrams to a mobile
node send them to the mobile node's home address
by forcing aH datagrams for the mobile node to be
routed through its home agent. Thus, datagrams to
the mobile node are often routed along paths that are

significantly longer than optimal. Route optimisation,
an extension of mobile IP, provides a means for nodes
to bypass the possibly lengthy route to and from that
mobile node's home agent by tunnelling their data­
grams directly to the foreign agent. However, when a
mobile node rapidly or frequently moves from one celi
to its neighbouring celi, route optimisation would be
processed too frequently. Since the binding Informa­
tion transfer and the computation of an optimal route
at the corresponding node and aH intermediate nodes
are ali time consuming processes, timeliness becomes
an important issue in such an environment.

4.4 Multicast

Multicasting is an important paradigm of end-to-end
communication, where simultaneous transmission of
messages are required from a source to a group of des­
tinations. To route these messages, a multicast tree
is required to replicate the data available at the root
node of the tree and forward the data along various
branches leading to destinations at leaf nodes of the
tree. However, in a mobile network system, when han-
dover occurs, the multicast tree would be changed by
constructing a new route and deleting the original un-
used route. Since the time spent on the multicasting
tree reconstruction may become significant if many
mobile nodes are involved in the multicast tree, the
timeliness issue should be considered carefully for each
multicast tree reconstruction algorithm.

4.5 Message Interaction Pa t t e rn
between Different Activities

In a mobile cluster computing system, the nodes in the
cluster communicate with each other over networks.
Different nodes are responsible for different tasks and
have different message interaction patterns. When one
or several nodes are vvaiting for the message sent by
a mobile node that happens to have a longer pro-
cessing time than expected due to handover or some
other time consuming activities, the normal operation
of these nodes has to be paused until the message from
the mobile node becomes available. Such blocking may
significantly deteriorate the performance of the entire
cluster computing application. Thus the timeliness is­
sue also appears to be an important issue in a message
Interactive cluster computing environment.

4.6 Synchronisation of Cooperative
Activities

In most cluster computing applications, the results
from individual tasks distributed among several nodes
will eventually be collected and processed by one node,
which then generates the final result. If one or more
nodes delay the assigned task and do not provide the

MOBILE CLUSTER COMPUTING Informatica 23 (1999) 5-17 11

result in tirne due to unexpected events, the final re-
sult cannot be generated within a stipulated tirne. It
might lead to failure in a real-time application or re-
processing due to non-synchronisation of the results
from other delayed tasks.

5 State-of-the-Art

A lot of research has been conducted in the area of
mobile message rerouting based on different system ar-
chitectures. To successfully reroute a message for the
mobile node which is roaming on the Internet, mo­
bile IP [12] is most popularly used. With mobile IP,
when a mobile node migrates from one access point
to another, the home network of the mobile node will
transfer the message between the mobile node and the
correspondent node via the foreign network. Thus, for
every message meant for the mobile node, it is required
to be routed through the home network. This route is
efficient when the agent in the home network resides
along or near the best route between the correspondent
node and the mobile node. Since it is possible for the
home agent to be far away from the best or the optimal
route between the mobile node and the correspondent
node, a route optimisation procedure that would aim
to compute a direct and efRcient route between the mo­
bile node and the correspondent node is suggested in
the route optimisation draft [13] to improve mobile IP.
In [14] the operation of mobile computers using IPv6
which enables mobile computers to cache the home
network and a care-of address, is specified. The cor­
respondent node then can compute a direct optimum
route to the foreign network (care-of address).

A large amount of research has been conducted
in real-time multicast. Dijkstra's shortest path algo-
rithm [15] and the Steiner tree generation problem [16]
employed for the delay optimisation and the cost op­
timisation constraints in the real-time multicast can
produce traffic and tree height minimised real-time
multicast trees. Some heuristics for the Steiner tree
problem have been developed that take polynomial
time and produce new optimal results [17]. In [18]
the KMB algorithm works under the assumption that
a network is abstracted to a complete graph consist-
ing of edges that represent the shortest paths between
the source node and the destination nodes. The dy-
namic update of the tree if destination nodes join or
leave the tree occasionally is examined in [16]. The
dynamic algorithm proposed for the multipoint prob­
lem satisfies the bandwidth constraints based on the
minimum spanning tree algorithms proposed for the
Steiner tree problem. In [19] the optimisation on both
traffic cost and delay is discussed; however, the authors
assume that the cost and delay functions are identical.
A source-based multicast algorithm that can set the
variable delay bounds on destinations and can handle
variants of network cost optimisation goals is proposed

in [20]. Finally, in [21] real-time multicast application
which is required to meet specified time and geograph-
ical constraints is considered. This study improves
steadiness and tightness metrics, defined as functions
of maximum and minimum individual point-to-point
delay.

6 Timeliness Issue in Routing
and Handover

In cellular wireless networks, a mobile node that roams
from one celi to a neighbouring celi could be a cellular
handset or an IP node assigned with an IP address.
No matter what type of mobile node it is, when the
handover occurs, the Information sent to or from the
mobile node should be rerouted in time. However, in
current research, for different type of mobile nodes,
the mechanism of rerouting and route optimisation is
different and thus the corresponding timeliness issue
is addressed in a different manner.

6.1 Timeliness Issue in IVIobile IP

The basic lETF mobile IP protocol provides for trans­
parent packet routing to mobile hosts on the Internet.
This protocol suggests that aH the packets must pass
through the home agent, which will then tunnel them
to the current foreign network. A proposed extension
of mobile IP is a route optimisation scheme of sending
a binding update message to the correspondent node
so that it could perform optimisation in the route to
the mobile node. In this approach, the correspondent
node is required to maintain a binding cache, which
is basically a tuple consisting of the foreign network
the mobile node is currently in, the home agent of the
mobile node, and the time for which the mobile node
will be in the current foreign network. An extension
to the route optimisation scheme has also been pro­
posed which suggests an approach where the home
network sends Information about the mobile node's
current location via a piggy-back message. The cor­
responding node then communicates directly with the
mobile node. This approach has the additional advan-
tage that it does not require the binding cache or the
binding list to be present.

The current research indicates that there are two
different perspectives to a node's mobility. In the first
scenario, the mobile node is a station with a fixed
IP. The mobile node then moves from the home net-
work to a foreign network. The problem in mobile IP
is maintaining connectivity within this mobile node
after it moves to the new location (i.e., foreign net-
work) provided it has the same IP as earlier. The
mobile IP protocol addresses this problem with the
"tunnelling" solution. The Route optimisation based
on this is improved by constructing an optimum route

12 Informatica 23 (1999) 5-17 H. Zheng et al.

between the correspondent node and the mobile node.
In the second scenario, the mobile node is relatively
more 'mobile' than it is in first scenario. In a cellular
environment, the node is continuously moving between
cells, i.e, it is rapidly initiating handovers. In such a
situation, an idea has been proposed that alternate
routes should be established between the correspon­
dent node and the mobile node so that connectivity
could be maintained, even under continuous and rapid
handovers.

Consider the integration of the above two scenarios,
where the mobile node is an Internet host, and is con-
nected to the Internet via a base station and an onward
wired link. The mobile node has a fixed IP address and
also rapidly initiates handovers. To effectively main-
tain the connectivity under such a situation, one would
look for a combined solution. Therefore, under this
problem scenario, the home network would tunnel the
datagram to the foreign network, until such tirne an
alternate route is not established (via the route opti­
misation philosophy). But when the mobile node is in
continuous motion, route optimisation should be per-
formed each time a handover occurs. Since the route
optimisation is a time consuming task, it may delay
the messages rerouting to the right destination. In
addition, if such a route optimisation is performed fre-
quently the network system will get burdened perform-
ing this task instead of the normal communication.

To solve this problem, we propose that it is not nec-
essary to perform the route optimisation after each
handover, but the optimisation should be based on the
motion pattern of the mobile node [22]. Note that the
handover here has two connotations: a change in the
wireless link and a change in the point of contact. If
the binding indicates that the mobile node has an ex-
tended period of stay in the foreign network, then the
route optimisation needs to be carried out so that the
following new messages could be rerouted to the mo­
bile node quickly. However, if the mobile node is to be
in the present foreign network for only a short period
of time (either because it is continuously in motion or
for some other reason), then route optimisation is not
necessary because potential handover may happen in
a short period of time. So the messages are stili for-
warded from the home netvvork to the foreign network
instead of finding a new route from the corresponding
node to the foreign network and then routing ali the
following messages.

A simulation model has been conducted in [22] that
aims to simulate the above circumstance, where mo­
bile node movement has been modelled in four differ-
ent patterns - linear single dimension movement, com-
pletely haphazard movement, straight movement and
ran dom movement. It compared the performance of
the above two approaches, one of which carried out
a route optimisation over every handover, while the
other advocates forwarding, where the packet meant

for a mobile node in a foreign network via the home
network. The simulation results indicate that the over-
all cost of our approach is less than that of the former
approach.

6.2 Timeliness Issue in Cellular ATM
System

Like the handover process in mobile IP, efRcient han­
dover schemes have been proposed that aim to reduce
latency for a cellular ATM network. The virtual con-
nection tree (VCT) concept where virtual circuits are
pre-established from the root of the tree to each base
station was proposed in [10]. Therefore, a handover
involves only the switching between virtual circuits.
In [10] it was claimed that admission control is invoked
only in new virtual connection establishment and the
handover, which is cross to the adjacent virtual con­
nection. Since the geographical area spanned by a vir­
tual connection tree may cover large area and contain
many base stations, the frequency of the admission
control involvement is stili low. Hence, the related
handover problems caused by small cells are avoided.
On the other hand, [11] doubted the low admission
control involvement of the connection tree during a
mobile handover, and pointed out that the connection
tree generates large overhead during a handover due to
call admission processing in every node along the new
route. To address this drawback, we proposed a mo­
bile virtual path netvvork architecture (MVPA) where
the pre-defined virtual path topology eliminates the
need for elaborate call routing functions and svvitch-
ing table. Also, call admission control decisions only
need to be executed in the mobile ATM switch (MAS)
and the area communication server (ACS).

Hovvever, both VCT and MVPA ignore the fact that
a large portion of the vvireless communication is usu-
ally in the same area covered by the same VCT or
ACS, vvhich is generally defined as a local trafRc. With
the VCT or MVPA approaches, aH local traffic stili
has to go through the VCT root or ACS even if the
source and destination mobiles are covered by differ-
ent MASs under the same ACS. The route via the root
may not be the shortest path, and is likely to delay the
transmission of messages, and also creates a large and
unnecessary overhead. As a remedy, [23] proposes a
cross-tree concept, namely virtual circuit cross-tree,
to separate the local and across tree traffic. Similar to
the routing in VCT, the traffic across different virtual
connection tree vvould be sent to the root and trans-
mitted to another virtual connection tree. Hovvever,
for the local traffic vvithin the region covered by the
same virtual connection tree, it vvill be more efficient
to route the traffic from the source node to its nearest
parent controller vvhich is able to route the traffic to
the destination.

When a handover happens, the mobile node may

MOBILE CLUSTER COMPUTING ... Informatica 23 (1999) 5-17 13

move within or across a VCT region. In order to
quickly reroute each handover virtual connection to
the new celi, a remote and local mobile rerouting path
architecture is needed. In this architecture, admission
control is not necessary for every handover, but only
for the handover across an adjacent region. When lo­
cal trafRc is the major trafRc, the latency and overhead
resulting from handover could be improved a lot than
the original VTC and MVPA approaches.

7 Timeliness Issue in Multicast
and Handover

Current trends in networking application, such as mul-
timedia, indicates that there will be an increasing de-
mand in future network for mobile multimedia com-
munication. Multimedia applications require support
from the underlying broadband network at the end-
to-end communication level. Multicasting is an im-
portant paradigm of end-to-end communication. It is
a type of group communication which requires simul-
taneous transmission of messages from a source to a
group of destinations. The route of multicast can be
viewed as a tree which is a data distribution path con-
sisting of the router nodes and links to carry the data
flow from a source to destinations. The routing sys-
tem replicates the data at the root node of a tree and
forwards the data along various branches leading to
destinations at the leaf nodes of the tree.

In the cluster computing arena, multicast is also an
often used method to distribute message from one node
to multiple nodes within a computing cluster. The
same principle applies to the mobile cluster computing
applications. If a mobile node is a member of a com­
puting cluster as well as a multicast tree which is used
to distribute messages among multiple nodes within
the cluster, when it handovers from one celi to another
celi, the multicast tree may need to be changed by con-
structing a new route to handover mobile and delet-
ing the original unused route. Since such multicast
tree reconstruction is a time consuming process, time­
liness becomes an important issue which the network
designer should consider. If the reconstruction takes
too long, the message sent to the handover node may
be delayed or even be lost, then the message received
by different nodes will not be synchronised vvhich will
lead to the retransmission or pending of some of the
processes.

Many cellular networks follow a centralised network
management scheme that ušes a base station organi-
sation where ali communication between nodes is han-
dled by the base stations. Another option for the cel­
lular networks is to use a distributed network manage­
ment scheme, which is called an ad-hoc cellular net-
work, where several mobile nodes come together in a
small area and establish peer-to-peer communication

among themselves without the use of the base station.
In this section, we discuss timeliness issue in multicast
and handover under two types of mobile wireless net-
works: base-station-oriented and ad-hoc netvvork. The
type of nodes constituting the multicast tree in these
two networks are different. In base-station-oriented
cellular network, the multicast tree is composed by
the base stations and the mobile nodes, where the base
stations are the intermediate nodes of the tree and the
mobiles are the leaf nodes of the tree. However in ad-
hoc networks, since there is no base-station, ali nodes
in the multicast tree are mobile nodes. These nodes
connect with each other according to a logical topology
and one or many of them may be selected as leader(s)
to perform multicast just as a base-station does in the
base-station-oriented network.

7.1 Timeliness Issue of Multicast and
Handover in Base-Station
Oriented Network

Timeliness is a key component of the QoS require-
ments, and this is commonly measured as end-to-end
delay. The purpose of our research is to maintain the
end-to-end delay of the multicast session under a toler-
able value during handover in a cellular network [24].
We first discuss the timeliness issue of multicast when
the handover occurs in a cellular network. Then we
commence with a triangle mesh topology. .We also
propose a new multicast tree reconstruction algorithm
under the proposed triangle mesh topology.

7.1.1 Timeliness Issue in Handover and
Multicast

When a mobile node handovers from one celi to an­
other celi, the packets should be rerouted from the
old base station to the new base station. If the mobile
node is also within a multicast tree, when handover oc­
curs, it may no longer receive any multicast messages
if the new base station is not within the same tree and
will not forward further multicast message to it. Un­
der such circumstance, not only normal rerouting but
also multicast tree reconstruction should be accom-
plished before the handover switching is finished so
that the normal communication and multicast session
would not be broken. Hence, there are two timeliness
aspects we should consider during handover and mul­
ticast. One is the time to reroute the messages which
has been discussed in the last section, the other is the
time for a multicast message to reach the destination
which is the focus of this research.

7.1.2 Multicast Tree Reconstruction

Multicast tree reconstruction is applied to adjust the
multicast tree and to prepare for the potential han­
dover. It aims to guarantee that the multicast tree can

14 Informatica 23 (1999) 5-17 H. Zheng et al.

maintain the timeliness requirement even after been
reconstructed. Due to the time cost of reconstructing
the tree, we propose to keep a suitable multicast tree
which satisfies the timeliness requirement during the
multicast session by just adding a hop into the original
multicast tree instead of reconstructing a new one af­
ter each handover. Such a new multicast tree may not
be the optimum tree, but the reconstruction time has
been reduced significantly by avoiding the global com-
munication and tree construction (while satisfying the
timeliness requirement of multicast). This "just add
a hop" multicast tree reconstruction approach is ad-
vantageous even when frequent handovers happen to
a mobile node, because if during each handover pro-
cess, the multicast tree should be reconstructed glob-
ally, the system resources would be exhausted by a
new tree construction instead of the normal commu-
nication. But when such a non-optimal tree cannot
satisfy the timeliness requirement of multicast, a new
multicast tree is required to be constructed. The pro-
cess of deciding when to reconstruct the tree is called
multicast tree optimisation condition judgement. This
judgement assumes the direction of the next handover,
estimates the end-to-end delay of the new path by
adding a hop to the original path, and then compares
such delay with the timeliness requirement. If the time
delay along the new path is stili within the tolerance of
the normal multicast requirement, the new multicast
tree construction should be initiated.

7.1.3 Triangle Mesh

Before the introduction of the new multicast tree con­
struction and reconstruction algorithm, we commence
with a new cellular network topology. In cellular net-
work, hierarchical topology is the most commonly used
model where PSTN, central controllers, base stations
and mobile users construct a hierarchical architecture.
AH the traffic across the inter or intra-region cells
will pass through the central controllers; this makes
the cellular network system constructed as a multiple
layer star topology with the central controUer acting as
the star centre. This topology is indeed a centralised
topology where the central controUer may become the
bottleneck during a heavy loaded traffic hour. To solve
this problem, we commence with a new topology where
each base station is connected with other base sta­
tions in its neighbouring cells. In this way, the intra-
region traffic are processed by base stations themselves
through the physicaJ links while the central controllers
only handle the inter-region traffic. If we idealise every
celi as a regular hexagon, the entire connection among
the base stations is a triangle mesh. We also retain the
hierarchical architecture at a higher level as it used to
be.

Figure 3: Triangle Mesh.

7.1.4

Figure 4: Optimised Triangle Mesh.

Multicast Tree Construction and
Reconstruction in Triangle Mesh

In the cellular network with the above topology which
combines hierarchical architecture and triangle mesh
architecture together, there are two types of handover
- intra-region handover and inter-region handover. We
focus on the intra-region handover in this research,
while our algorithm over triangle mesh can be easily
extended to the whole network.

As shown in Figure 3, a triangle mesh can be divided
into the six areas along three lines across a source node.
Since each line in a sparse direction will not be the part
of the shortest path from the source node to the des-
tination node, we can erase aH the lines in the sparse
direction inside every area. This is shown in Figure 4,
where the triangle mesh changes to quarter 2D mesh in
each of the six areas. To construct the multicast tree
in this quarter 2D mesh, we distribute ali the nodes

MOBILE CLUSTER COMPUTING ... Informatica 23 (1999) 5-17 15

into six areas and get the common least ancestor node
of every area. Then inside every area, we construct
a submulticast tree which has the root at the com­
mon least ancestor node by using any of the existing
2D mesh multicast tree construction algorithms. With
such a construction, we can get a multicast tree on a
triangle mesh, which satisfies the condition that the
path from the source node to every destination is the
shortest path.

When a mobile node handovers across cells, and
"just add a hop" approach is not able to satisfy the
timeliness requirement, multicast tree should be re-
constructed. First, we get the node that needs to be
added to the tree (i.e., the new base station in the celi
that the mobile is moving to) after last tree construc­
tion or reconstruction. Second, we get the nodes that
are not necessary to be included in the tree any more
because the mobiles inside these cells have already left
for other cells. The reason that they are stili in the
tree is the "just add a hop" approach includes them
as temporary. When the whole tree is being recon-
structed, it is not necessary to include these nodes in
the tree. If these nodes are leaf nodes, we remove them
from the tree and also disconnect the links connecting
them from other nodes. Then we check their parent
nodes applying the same method and repeat the pro-
cess until there is no node that is not necessary to be
included into the new multicast tree. Finally, for every
node that needs to be included into the new tree, we
calculate the shortest path from ali the nodes inside
the tree to it, and use the shortest one that can sat-
isfy the end-to-end delay requirement for each node.
Then we add the node into the tree and set up the
corresponding links. The multicast tree is then recon-
structed.

7.2 Timeliness Issue of Multicast and
Handover in Ad-hoc Network

In ad-hoc cellular networks, the timeliness issue be­
comes more important and needs serious considera-
tion because the multicast tree is composed of mobile
nodes which may handover from one celi to another
celi at any time. When handover happens, the nodes
connected to the migrating node become orphans and
the multicast tree becomes disconnected. If the tree
cannot be rebuilt soon, multicast message would not
reach ali the destinations within the time period it re-
quests. We consider the multicast tree reconfiguration
problem on an ad-hoc cellular network. Our purpose
is not to generate the 'best' multicast tree, but to re-
construct a disconnected one [25].

For ease of multicast operation, rapid maintainabil-
ity and other well known advantages of symmetric
topologies, we embed the multicast tree on the top of a
mesh of hypercubes topology for the intra- and inter-
cell networks. In this logical topology, nodes within

each celi are connected as a binary hypercube, while
the nodes across the cells are connected as a hexagonal
mesh. Heuristics multicast algorithms for hypercubes
are proposed in [26], and anyone of them can be used
to construct the initial multicast tree. We focus our
discussion on the timeliness issue of the multicast tree
reconstruction when the handover happens to a mobile
node.

In ad-hoc cellular network, an orphan node is cre-
ated when its parent node migrates. A node can also
become an orphan, if it migrates and it is a destination
node in the multicast tree. We identify three possible
situations for creation of the orphan nodes.

— First, the migratory node is a lead node. Since
this node migrates to a new celi, it becomes an
orphan and it is necessary to find a new parent
node belonging to the multicast tree.

— Second, the migratory node is an intermediate
node, but not a multicast destination. In this
čase, the migratory node itself does not need to
re-connect to the multicast tree. But, its children
nodes become orphans and are required to find
new parents.

— Third, the migratory node is an intermediate
node, and is also a multicast destination. In this
čase, the migratory node needs to find a new par­
ent after moving into the new celi, and at the same
time its children become orphans and each one of
them is required to find a new parent node.

Regardless of whether the node became an orphan
due to its own migration, or its former parent node's
migration, the net effect is identical, i.e., the fact that
it is required to find a new parent. To accomplish
that, a rapid replacement of the migrated node into the
hypercube topology is first needed, and then a rapid
reconfiguration of the multicast tree is required.

To keep the maximum distance from the root to any
one of the leaf nodes minimised, it is preferred to cre-
ate a balanced tree, instead of a skewed one. In doing
so, if the multicast tree is uniformly spread and bal­
anced to begin with, then during each tree reconstruc­
tion phase, if the orphan node (s) can connect to a new
parent belonging to a tree at the same level as that of
the previous parent, then the balanced property of the
tree remains unchanged. Otherwise, the tree may be­
come progressively imbalanced. As the tree gets more
and more imbalanced, some of the leaf nodes will get
unduly away from the root, causing additional mes­
sage transmission delay. Hence our design objective is
to have an orphan node get a parent whose tree level
is most similar to that of the node's former parent.
We propose two approaches below for rapid multicast
tree reconstruction based on the proposed hypercube
topology.

16 Informatica 23 (1999) 5-17 H. Zheng et al.

7.2.1 R R R Approach

The first solution approach, named "Request-Reply-
Rejection" (RRR) is designed to operate at run-time,
i.e, to be invoked at a time the multicast tree gets frag-
mented (due to node migration) and is required to be
connected or reconstructed. With this approach, when
a node migrates, an orphan node at the l-th level will
attempt to find a parent so that orphan node request
other nodes to be their parent. The node receiving the
request either accepts or rejects the request depending
on whether or not the timeliness constraints of message
transmission can be satisfied. AIso the node requested
and accepting to be the new parent must be a hyper-
cube adjacent to the requesting one (i.e., the orphan).
This RRR algorithm can also be used to improve the
multicast tree. During the system idle time, any node
connected to a parent may use the same approach
to find a more optimal parent, and consequently up­
date the multicast tree. To maintain a "good shape"
multicast tree, and avoid creating a skevved shaped
one, ideally, each reconstruction step should maintain
a height-balanced tree, where the difFerence between
the maximum and minimum height of the leaf is at
most one. However, including this check in each step
of the RRR algorithm can make the aJgorithm com-
putationally expensive. Besides, there is no guarantee
that among the available set of topologically adjacent
parents of the orphan node at least one would offer
height-balance maintaining connection. Our proposed
approach is to first list aJl the available parent nodes
and their topological adjacency. Next, these available
parent nodes are sorted in the tree level discrepancy
frora the previous parent of the orphan node. Clearly,
the first element of the sorted list would offer a parent
node that is closest in tree height level to the former
parent of the orphan node.

7.2.2 LAP Approach

Another approach, named "Look-ahead Alternate Par­
ent" (LAP) is based on precomputed alternate multi­
cast tree reconstruction techniques. It is required to
execute the RRR algorithm or an equivalent one in
the background. In the LAP algorithm, each node
has a local parent table containing the current par­
ent and a number of alternate parents computed in
the background. Due to one or more node migrations,
when orphan node(s) are created, each orphan node
readily selects one alternate parent from its alternate-
parent table. Ideally, this approach would be able to
reconstruct the multicast tree in zero waiting time;
however, in practice a small table lookup delay would
be involved. Also, if the alternate parent table is not
ready and available, then associated delays for exe-
cuting RRR algorithm in the background would also
account as a foreground delay.

8 Conclusion

We have discussed the architecture of mobile cluster
Computer, timeliness issue of rerouting, and multicast
when handover occurs in the mobile cluster comput-
ing area. Several solution approaches based on differ-
ent system architectures have been discussed. To suc-
cessfully reroute the message from the home network
to the corresponding node when a mobile node han­
dover occurs a mobile IP tunnels the message from the
home network to the foreign network until route opti­
misation is accomplished. To accommodate the situa-
tion when mobile node handovers occur frequently and
rapidly, we propose the idea to delay the route optimi­
sation to a certain period and tunnel the message from
the home netvvork to a new foreign network so that the
the system would not get burdened by frequent route
optimisation. In an ATM-based cellular network, the
messages are rerouted from the base station of the mo­
bile node to the central controller, which makes the
central controller to become the bottleneck and thus
the timeliness requirement may not be meet. We pro­
pose that base stations within the same region com-
municate with each other and process the intra-region
rerouting by themselves. For the timeliness issue in
multicast during handover, we propose the "just add
a hop" idea based on a base-station oriented triangle
mesh topology so that the multicast tree construction
and reconstruction become more efficient. In addition,
in an ad-hoc cellular network, we commence with a
hypercube topology where two approaches-RRR and
LAP-are proposed to accelerate the multicast tree re­
construction.

With rapid developments/progress in the area of
cluster computing, reliable wireless communication,
mobile computing, and availability of applications that
exploit this integrated infrastructure, mobile cluster
computing is poised to become a reality in the coming
21st century.

Acknowledgments

We thank Toni Cortes (Universitat Pohtecnica de
Catalunya, Spain), Dan Hyde (Bucknell University,
USA), Lars Rzymicmowicz (University of Mannheim,
Germany), Norm Matloff (University of California,
Daviš, USA), Alessandro Bevilacquai (INFN Istituto
Nazionale di Fisica Nucleare, Italy), Alfred C. Weaver
(University of Virginia, USA), and Harjinder Sandhu
(York University, Canada) for their suggestions and
comments.

References
[1] M. Baker and R. Buyya, "Cluster Computing at a

Glance", High Performance Cluster Computing: Archi-

MOBILE CLUSTER COMPUTING .. Informatica 23 (1999) 5-17 17

tectures and Systems, Vol. 1, 1/e, Prentice Hali, NJ,
USA, 1999.

[2] Intel, "Mobile Computing",
http://www.intel.com/mobile/

[3] Intel, "Mobile Pentium 11 Processors",
http://www.intel.com/mobile/pentiumii/

[4] Intel, "Mobile Celeron Processor",
http://www.intel.com/mobile/celeron/

[5] AMD. "Mobile Processors",
http://www.amd.com/products/cpg/mobile.html

[6] A. Noerpel and Y. Lin, "Handover Management for a
PCS Network", IEEE Communications Magazine, Vol.
3, No. 6, pp. 18-24, Dec. 1997.

[7] P. McKinley, H Xu, A-H. Esfahanian and L. Ni,
"Unicast-based Multicast Communication in Wormhole-
routed Networks", IEEE Trans, on Parallel and Dis-
tributed Systems, Vol. 5, pp. 1252-1265, Dec. 1994.

[8] S. Bliattacharya, C. Albert, and W. Tsai, "Fault-
tolerant Multicast on Hypercubes", Journal of Parallel
and Distributed Computing, Vol. 23, pp. 418-428, 1994.

[9] H. Zheng and S. Bhattacharya, "Working Set in Chan-
nel Management in Cellular Networks", Proceedings of
ISADS'99 Conference, Mar. 1999.

[10] Acampora and M. Naghishineh, "An Architecture and
Methodology for Mobile Executed Handoff in Cellular
ATM Networks", IEEE JSAC, Oct. 1994, pp. 1365-1375.

[11] H. Vogel, "A Networking Concept for Wide Area Mo-
bility and Past Handoff in ATM Networks ", IEEE
Globecom, v2. 1997, pp.1124-1128.

[12] B. Lancki, A. Dixit, and V. Gupta, "Mobile IP: Sup-
porting Transparent Host Migration on the Internet",
Linux Journal, Aug. 1996.

[13] C. Perkins and D. Johnson, "Route Optimisation in
Mobile IP", Internet draft, Nov. 1997.

[14] D. Johnson and C. Perkins, "Mobility Support in
IPv6", lETF mobile IP IVorking Group, Mar. 1998.

[15] E. Dijkstra, "A Note on Two Problems in Connection
with Graphs", Numerische Mathematik, Vol. 1, pp. 269-
271, 1959.

[16] B. Waxman, "Delay-bounded Steiner Tree Algorithm
for Performance-Driven Layout", Journal on Selected
Areas in Communications, Vol. 6, 1617-1622, Dec. 1988.

[17] H. Takahcishi and A. Matsujama, "An Approximate
Solution for the Steiner Problem in Graphs", Mathemat-
ica Japonica, Vol. 6, pp. 573-577, 1990.

[18] L. Kou, G. Markowsky, and L. Berman, "A Fast Al­
gorithm for Steiner Trees", Acta Information, Vol. 15,
pp. 141-145, 1981.

[19] K. Bharatkumar and J. Jaffe, "Routing to Multiple
Destinations in Computer Networks", IEEE Trans, on
Communications, Vol. COM-31, pp. 343-351, 1983.

[20] Z. Qing, M. Parsa, and J. Garcia-Luna-Aceves,
"A Source-based Algorithm for Delay Constrained
Minimum-cost Multicast", Infocom'95, 1995.

[21] M. Pokam and G. Michel, "Guaranteeing Spatial Co-
herence in Real-time Multicasting", International Sym-
posium on Information Theory, pp. 41, May 1995.

[22] S. Palangala and S. Bhattachcu:ya, "Finding When
Route Optimisation Is Necessary", Technical Report,
CSE Dept. of Arizona State University, Dec. 1998.

[23] C. Yu and S. Bhattacharya, "Message Delivery Delay
Refinement of Large Scale Dynamic Networks", Techni­
cal Report, CSE Dept. of Arizona State University, Dec.
1998.

[24] Y. Chen, C. Yu, and S. Bhattacharya, "ReaJ-time
Multicast Reconstruction of Handover Process on Cel­
lular Network", Technical Report, CSE Dept. of Arizona
State University, Oct. 1998.

[25] B. Gannod and S. Bhattacharya, "Real-time Mul­
ticast in Wireless Communication", Real-time Special
Issue of Parallel and Distributed Computing Practices
Journal, Vol.2 (1), 1999.

[26] Lan Y., Esfahanian A-H., and Ni L.M., "Multicast
in Hypercube Multiprocessors", Journal of Parallel and
Distributed Computing, Vol. 8, 1990.

http://www.intel.com/mobile/
http://www.intel.com/mobile/pentiumii/
http://www.intel.com/mobile/celeron/
http://www.amd.com/products/cpg/mobile.html

Informatica 23 (1999) 19-27 19

High-Performance Cluster Computing over Gigabit/Fast Ethernet

Janche Sang
Department of Computer and Information Science, Cleveland State University, Cleveland, OH 44115
Phone: 216 6874780, Fax: 216 6875448
Emaih sčing®cis.csuohio.edu

Chan M. Kim, Thaddeus J. Kollar, and Isaac Lopez
NASA Lewis Research Center, Cleveland, OH 44135
E-mail: {Chan.M.Kim, Thaddeus.J .Kollar , Isaac.Lopez}@lerc.nasa.gov

Keywords: Cluster Computing, Gigabit Ethernet, Parallel Computation, Performance Measurement

Edited by: Rajkumar Buyya and Marcin Paprzycki
Received: September 1, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Clusters of workstatioDS are often considered to be an attractive platform for low-cost supercom-
puting, especiaUy if a high-speed network is used to interconnect high-end workstations. In this
paper, we investigate distributed network computing on a tree-structure cluster which consists of
intermediate and leaf workstations. The intermediate workstations are interconnected together
by a Gigabit Ethernet full-duplex repeater and can be used as a gigabit cluster testbed. The leaf
workstations are connected to intermediate workstations via Fast Ethernet and form a lOOMbps
cluster testbed. We study the performance characteristics involving end-to-end communication
and coUective communication. The performance of the lOOMbps cluster and the gigabit cluster
are empirically evaluated by using a mobile-thread based parallel simulation application and the
NAS Parallel Benchmarks. We also discuss the factors which may affect the performance of cluster
computing.

1 Introduction
Recently the distributed network computing environ-
ment has become a cost-effective computing infrastruc-
ture because it provides aggregate resources of compu-
tational power, communication, and storage[ll]. This
environment usually consists of a cluster of worksta-
tions which axe connected to a Local Area Network
(LAN) such as Ethernet for Information exchange and
coordination among the processors.

Ethernet, also known as a CSMA/CD network, is
the most widely used type of LAN. Originally evolved
from a link of coaxial cable, it is usually implemented
as a 10 Mbps twisted-pair cable network wired with
hubs. Though the power and performance of desk-
top computers have grown tremendously, Ethernet
could stili provide a surplus of bandwidth in the late
1980s. However, in the early 1990s, with more and
more data-intensive and communication-oriented ap-
plications, the demand for more network bandwidth
was reaching a critical stage. In 1995, Fast Ethernet,
an updated standard based on the previous 10 BaseT
network, was derived to provide a tenfold increase in
performance.

The relationship between computing and communi­
cation technology is like a swinging pendulum. That
is, the performance bottleneck may be either in the

communication systems or in the computers when
time changes. Recently, the increase in microproces-
sor speeds has exceeded the capability of Fast Eth­
ernet connections. To meet the demand for greater
network capacity, the Gigabit Ethernet standard was
completed and approved in 1998. It adapts existing
technology by layering the well-understood and well-
characterized IEEE 802.3 MAC on top of the already
developed and tested physical layer of the ANSI stan­
dard Fiber-Channel with an 8B/10B block coding sys-
tem. Table 1 briefly compares the technology between
the Fast Ethernet and the Gigabit Ethernet. A de-
tailed description about Gigabit Ethernet and Fast
Ethernet can be found in [15] and in [7], respectively.

The Advanced Computational Concepts Laboratory
(ACCL), located at NASA Lewis Research Center,
seeks low-cost high-performance solutions to analyze
data for NASA aerophysics applications. The Gigabit
Ethernet was chosen by ACCL to fulfiU the needs of a
cluster environment for its high throughput and sim-
ple deployment. We utilized a two-level tree-structure
network topology to construct the parallel testbed.
The two-level cluster consists of intermediate and leaf
workstations. The intermediate workstations are con­
nected together by a Gigabit Ethernet full-duplex re­
peater and can be used alone as a gigabit cluster
testbed. The leaf workstations are connected to in-

http://csuohio.edu
http://nasa.gov

20 Informatica 23 (1999) 19-27 J. Sang et. al.

Network Type

Fast Ethernet
(100Base-X)
Gigabit Ethernet
(1000Base-X)

Data Rate

100 Mbps

1000 Mbps

Wire Type

STP, Single-mode
and multimode fiber
STP, Cat. 5 UTP,
Multimode fiber

Coding

4B/5B

8B/10B

Slot Time

512 bit-time
(5.12 lis)
4096 bit-time
(4.096 fJ.s)

Interframe Gap

96 bit-time
(960 ns)
96 bit-time
(96 ns)

Table 1: Fast Ethernet vs. Gigabit Ethernet

termediate workstations via Fast Ethernet and form a
lOOMbps cluster testbed.

The objectives of this research were to determine the
performance characteristics and associated overheads
of Gigabit/Fast Ethernet LANs, to empirically exam-
ine the performance differences between the gigabit
cluster testbed and the lOOMbps cluster testbed, and
to study the factors which may affect the performance
on the cluster testbeds. We first measured the end-
to-end communication Iatency and throughput. We
observed that a high end workstation (such as Pen­
tium II 400MHZ) can saturate a lOOMbps LAN, but
can only generate 20% of the traffic of a Gigabit Eth­
ernet. Then, we used a message passing library based
on the MPI standard to measure the performance of
coUective communication on different cluster testbeds.
CoUective communication operations, such as barrier,
scatter, gather, broadcast, e tc , are the major com-
ponents of message-passing based parallel programs.
These operations allow a group of processes running
on different computers to synchronize and exchange
data by invoking the same function with matching ar­
gument s.

We also conducted experiments by running dis-
tributed applications on the two experimental plat-
forms. For computational intensive applications, per­
formance can be improved through a good compiler
with efRcient code optimization capability. For com­
munication intensive applications, in addition to the
network speeds, matching the coUective communica­
tion structure with the cluster interconnection network
topology can greatly reduce communication overheads
and hence improve performance.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe the configuration of
the testbed system. Section 3 presents the end-to-end
and coUective communication characteristics. In Sec­
tion 4 we extensively evaluate the performance of the
clusters. A brief conclusion is presented in Section 5.

2 System Environment

A two-level tree-structure network topology is used
to construct the cluster testbed. The tree clus­
ter consists of a gigabit full-duplex buffered repeater
PacketEngines® FDR12^^, a server with 9GB disk,
eight intermediate workstations (400MHz 128MB Intel

P6, named pageOl - pageOS), and thirty-two dual-CPU
end-nodes (400MHz 512MB Intel P6, named gruntOl
- grunt32). The FDR12^'^ connects the server and
the intermediate workstations via PacketEngines®
G - NIC'^'^ interface cards at lOOOMbps rate. Each
of these eight intermediate workstations branches out
to connect four leaf workstations with a four-port
Adaptec® ANA^'^ - 6944A Fast Ethernet adapter.
Figure 1 depicts the network topology of the P6 clus­
ter. The advantage of the tree-structure setting is that
it provides us two cluster-computing testbeds: one is
the gigabit cluster of the page machines and the other
is the 100 megabit cluster of the grunt workstations.

The FDR12^^ is a buffered repeater which merges
switched and shared design concepts[10]. Therefore,
it can achieve switch-like performance while maintain-
ing the lower cost of a shared hub. The FDRU'^'^
provides 12 ports and each of which is full-duplex and
collision-free. When a frame arrives at a port, it will be
buffered (like a switch) and forwarded to every other
port without address filtering (like a hub). If several
frames are received/buffered at the same tirne on dif­
ferent ports, the round-robin arbitration mechanism
is used to ensure fair allocation of bandwidth among
ports. Since it is full-duplex, the ideal aggregate band-
width can be up to 2 gigabits per second.

Both of the eight intermediate workstations (named
pageOl - pageOS) and thirty-two leaf workstations
(named gruntOl - grunt32) are running the LINUX op-
erating system. There are two possible ways to set up
the intermediate workstations to forward packets be-
tween leaf nodes. One is configured as bridges and the
other is set up as routers. It was decided to try bridg-
ing first because bridging functions are implemented
in the data link layer which is more efRcient and more
versatile than the network layer where routers are lo-
cated. Our experience of setting up the intermediate
workstations as bridges was unsuccessful. This is be­
cause the maximum size of a packet in Gigabit Ethenet
is larger than the maximum size in Fast Ethernet and
hence packet fragmentation is necessaj:y if a very large
packet sent from Gigabit Ethenet to the Fast Ethernet.
Unfortunately, a recent version LINUX bridge by itself
couldn't handle packet fragmentation. Currently, we
successfully set up the intermediate workstations to
support IP forwarding capability, though the router
and servers would ali have to keep big routing tables.

CLUSTER COMPUTING OVER GIGABIT LANS Informatica 23 (1999) 19-27 21

grant05-08

grunt09-12

gmnt25-28

grunt21-24

gruntl3-16 gruntl7-20

Figure 1: Network Topology of the P6 Cluster

3 Communication
Characteristics

3.1 Latency

To measure end-to-end message passing performance,
we used the ping command which is based on the
ICMP protocol. This command sends an ICMP
ECHOJR.EQUEST message of a fixed size from one
node to another and then waits for the response back.
The message size was varied from 1 byte to 40K bytes,
For each message size, we repeated the experimentse
30 times and then calculated the average of the round-
trip latency.

We chose three different pairs of nodes which repre-
sented possible message passing paths in the tree clus­
ter. The first pair was from pageOl to page02 via the
FDR. The second pair was from gruntOl to grunt02
via the intermediate node pageOl. The third pair was
from gruntOl to gruntOS by way of pageOl, FDR, and
page02. Figure 2 illustrates the round-trip message
passing times for these three different pairs. The third
pair required the longest time because it took 4 hops
to reach the other end. The first pair was the fastest
one because it is a direct link via Gigabit Ethernet. It
can be observed that the summation of the latenceies
of the first and the second pairs are roughly equal to
the latency of the third one.

3.2 Throughput

We used two hosts, one sender and one receiver, to
estimate the maximum throughput over the hnk. The
sender transmits a TCP/IP message across the hnk
to the receiver, as fast as it can. The receiver ušes

grunl01-pageOl-FDR-page02-gmnt05 •*—
grunt01-page01-grunt02 -*—

page01-page02 - n -

O 5000 10000 15000 20000 25000 30000 35000 40000 45000
Message Size [Kbytes)

Figure 2: Round-trip Latency

the function gettimeofday() to measure the time to
receive the message. The two hosts exchaiiged initial
synchronization messages using the three-way hand-
shake protocol to ensure the connection was estab-
lished before timing operations began. This tech-
nique has been widely used in network throughput
measurement[2, 5, 8, 13]. We used TCP because it
can provide reliable transmission.

We first chose two end workstations (e.g. gruntOl
and grunt02, or gr^mtOl and grunt05) and found that
the maximum TCP throughput could be up to 94
Mbps. This is because the bottleneck in the com­
munication path grunt01-page01-grunt02 (or gruntOl-
page01-FDR-page02-grunt05) is between the page and
grunt machines (i.e. lOOMbps) .

We then selected two intermediate workstations to
be the sender and the receiver (e.g. pageOl and

22 Informatica 23 (1999) 19-27 J. Sang et. al.

i
I

grunl • 4 processora -»—
grunt • 8 processors -<—
page-4processors -o--
page-8procossor| •><-

20000 40000 60000 eOOOO 100000 120000 140000
Message Size (Kb/tes) Log(Message Size in byte5)

Figure 3: TCP Throughput over Ethernet family Figure 4: Performance of MPI_Scatter

page02). We found that the maximum throughput
is only 192Mbps which is only 19.2% of the total
iGbps bandwidth. This means that even the high-
end 400MHz P6 workstation is not fast enough to sat-
urate the network traffic due to some protocol stack
overheads such as copying the data between user and
kernel address spaces, transferring data from memory
to interface, etc.

Similar empirical results can also be found in [5], [8]
and [12] which showed that the slower-speed worksta-
tions such as SPARC4 and SPARC5 can not produce
trafHc to saturate the 155 Mbps ATM network. Our
early results presented in [12] showed that faster-speed
Ultral stations can saturate fast Ethernet and gener-
ate up to 125 Mbps in an ATM network. Like a pen-
dulum swinging, at any given the computing speed
may outpace that of the Communications infrastruc-
ture, or vice versa. For example, an early paper which
measured the Ethernet performance showed that using
VAX780 or Sun 11 the maximum throughput was only
around 750K bits/sec , much less than 10 Mbits/sec
[2].

We also used four pairs of stations to send/receive
packets simultaneously and then calculated the to­
tal throughput by summing up the result from each
pair. We found that the aggregate throughput was
770Mbps. If each station ran both sender and receiver
programs, the throughput could be up to 954Mbps
which was very close to the lOOOMbps maximum band-
width.

3.3 M P I Collective Communication

MPI (Message Passing Interface) is a standard spec-
ification for writing portable message-passing paral-
lel programs. It features a range of functionality, in-
cluding point-to-point, with synchronous and asyn-
chronous communication modes, and collective com­
munication such as barrier, scatter, gather, broadcast,

— ... —
^ . • - -

¥. — y t r " ^

. . O - " "

.^''
...-S''

grunt - 4 processors -•— '.
grunt - 8 procossors -*--
p a g o - 4 processors -P--
pago • 8 processors - •x -

4y
_,•''

6 8 10 12
ljog(Message Size in byte5)

Figure 5: Performance of MPLGather

etc. A collective operation is executed by having aH
processes in the group invoke the common communi­
cation function, with matching arguments. There are
multiple implementations of MPI. We used MPICH [6]
which is developed by Argonne National Laboratory
and Mississipe State University because of its wide
availability. MPICH was built using the P4 device
layer, so ali communication was performed on top of
TCP sockets. Parallel programs can be started by the
rapann front-end shell script which takes the name of
the program and the numbers/names of the processing
nodes (via the options -np and -machinef i l e) to use
and then remotely spawns the processes on the cluster.

Collective communication operations are commonly
used in parallel programs. Their performance is of
great interest. For example, earler study in [9] made
a comparison of the collective communication perfor­
mance betvveen two programming environments. We
chose the following test cases as the benchmarks:

— MPI-Sca t t e r distributes the ith block of an n-
block array, (n is the number of processors in
the processor group) to the ith processor in the

CLUSTER COMPUTING OVER GIGABIT LANS Informatica 23 (1999) 19-27 23

1.4

1.2

0.8

0.6

0.4

0.2

•

•

•

/

:--""

grunt cluster -•—
pageclusier -^—

-

-

^

•

•

Number of Processors

Figure 6: MPLBarrier Synchronization Time

group.

- MPI_Gather reverses the function of
MPLScatter by collecting ali of the n blocks from
the other processors in the group.

- MPI_Barrier blocks the caller until ali processes
in the group have called.

Figure 4 and Figure 5 shows the tirne of MPLScatter
and MPLGather, respectively, on four and eight work-
stations as a a function of the message size. For the
comparison purpose, the experiments were performed
on both of the grunt and the page clusters. Since the
MPICH collective communication operations are im-
plemented on top of the point-to-point layer, it can be
observed that the communication times grow signifi-
cantly for large message sizes (i.e. i IK bytes) when
they are doubled the size.

We also measured the performance of the
MPI_Barrier synchronization time by varying the num­
ber of processors in the processor group. The result is
depicted in Figure 6. It can be seen that the synchro-
nization times are in the same level when the number
of processors varied from 5 to 8. It is also true when
using 3 processors and 4 processors. That is, the syn-
chronization time t and the number of processors n
have the following relationship:

t = C* \log{n)]

where c is a constant.
This is because the MPICH implements the bar-

rier function using the "power-of-two"-based algo-
rithm which can provide good scalability.

4 Performance Measurements
of Distributed Applications

We used a parallel simulation application and the
NAS Parallel Benchmarks to evaluate the scalabil-

ity/performance of the clusters. We also studied the
factors which may affect the performance of cluster
computing.

4.1 Mobile-Thread based Parallel
Simulation

A parallel discrete event simulation consists of collec-
tion of cooperating LPs, each representing one or a
set of physical processes(PPs)[4],. Each LP has its
own local simulation clock, an event calendar, and in-
put and output communication channels for interac-
tion with other LPs. In our model, an LP is also a
host to a set of lightweight processes (i.e. threads),
and shared objects (e.g. facilities), as shown in Fig­
ure 7. Processes are used to model active components
of a system. In contrast, facilities are objects used to
model passive system components with mutually ex-
clusive access. That is, processes are dynamic entities
which can request access to static facility entities, use
these facilities for a time period, and eventually release
them to proceed with different activities.

To represent our model formally, assume that an LP
hosts processes pi, pi, • • •, and p„. Let ipj denote the
reactivation time of the process pi and T' represent
the time of the next process to be executed in this
LP. That is, T' = m.mi{tp.]. To guarantee a correct
execution of the simulation, each LP must satisfy the
causality constraint: events executed by an LP are in
nonincreasing temporal order. Note that if a conser-
vative algorithm[3] is used, the next process can be
reactivated if the time T' is no greater than the time
raink{tc^} where ic,, are the clock values of the incom-
ing channels. In other words, each LP may execute a
next event e from its list of candidate events only after
it is guaranteed that it will not receive an event with
timestamp smaller than the timestamp of event e from
any other LP. This can be accomplished through the
use of a lookahead mechanism.

To parallelize process-oriented simulations, our ap-
proach was to distribute passive objects across proces­
sors, guaranteeing ali processes (i.e. threads) easy ac­
cess to these objects. Naturally, a problem arises when
a process executing on some processor requires access
to an object that is not located on the same processor.
For example, a process hosted by processor A may re-
quire access to a resource or facility object situated on
processor B. Our solution is to move the requesting
process, along with its simulation timestamp, to the
site on which the passive object is located. Consider
the situation where a process on some host attempts to
make consecutive access requests to an object on some
remote host. Such a situation can be seen in Figure 7,
where we assume that customer Co makes a series of
access requests to facilities F„, • • •, F2n-i located on
a remote host after it leaves facility F„_i. Migrating
the process to the remote host will reduce the cost of

24 Informatica 23 (1999) 19-27 J. Sang et. al.

No. of procs

8x64
(Speedup)
16x256

(Speedup)

1

425
1

3372
1

2

283
1.5
1984
1.7

4

167
2.6
994
3.4

8

88
4.9
505
6.7

16

46
9.3
258
13.1

32

25
17.1
133
25.4

Table 2: Times (in seconds) for simulating closed
queueing network on the grunt cluster

communication since the series of access requests will
now be made locally instead of remotely.

We ported our mobile-thread based parallel simula-
tion system [14] on the cluster testbed. This system
was built on top of a thread library which has thread
migration capability. We conducted experiments by
running this simulation system to simulate a closed
queueing netvvork on the grunt cluster. An M x N
closed queueing netvvork consists of M tandem queues,
each containing N FIFO servers. A job which arrives
at a queue is served by the N servers sequentially. Af-
ter completing service at the last server in a queue, the
job is routed back to the front of any queue based on
a given probability.

In the simulation exercise, we executed a 8 x 64
closed queueing network model and a 16 x 256 closed
queueing network model, each initialized with a to-
tal of 2048 jobs. For simplicity, the probabilities on
the arcs routing customers back to the start of each
A^ -̂server tandem queue are made equal. Table 4.1
shows the performance figures obtained on the grunt
cluster, giving both the time in seconds as well as
speedup. Particularly good speedup was obtained for
the 16 X 256 network model because of its larger com-
putation granularity.

4.2 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [1] were devised
by the Numerical Aerodynamics Simulation (NAS)
program at NASA Ames Research Center to study the
performance of parallel supercomputers. The NPB 2.3
are a set of eight problems which consists of five kernels
which highlight specific areas of machine performance,
and three pseudo-applications which simulate compu-
tational fluid dynamics(CFD). We briefly describe the
benchmarks which we used in our experiments below.

- Kernel CG ušes the conjugate gradient method
to approximate the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix. The
communication patterns in this benchmark are
unstructured and long distance.

- Kernel EP generates pairs of Gaussian random
deviates and tabulates the number of pairs in suc-
cessive square annuli. This application is "embar-
rassingly parallel" because the only communica­

tion is summing up a 10-integer list at the end of
the program.

- Kernel IS performs ranking an unsorted se-
quence of integer keys that are uniformly dis-
tributed among processors. This benchmark re-
quires frequent communication and the pattern
of communication is a fully connected graph.

- Kernel MG executes four iterations of the V-
cycle multigrid algorithm to obtain an approx-
imate solution to the discrete Poisson problem
V^u = II on a 3-dimensional grid with periodic
boundary conditions. The communication pat­
terns are highly structured and both short and
long distance data communication are required.

- Application LU solves a finite difference dis-
cretization of the 3-D compressible Navier-Stokes
equations by using a symmetric successive over-
relaxation (SSOR) numerical scheme.

- Application BT and SP are both based on
Beam-Warming approximate factorization which
decouples the x ,y, and z dimensions, resulting in
three sets of narrow-banded, regularly structured
systems of linear equations. These systems are
scalar pentadiagonal in SP, and block tridiagonal
inBP.

The NPB 2.3 codes are implemented on top of the
MPI hbrary. Table 3 shows the execution time of run­
ning seven of the NAS Parallel Benchmarks (class A)
using different numbers of workstations. For the pur-
pose of comparison, we also ran the same benchmarks
on a 200MHZ Pentium Pro machine (ALR). As can be
seen in Table 3, the benchmark performance using one
400 MHZ Pentium II can be two times faster than a
200MHZ Pentium Pro.

There is no doubt that faster microprocessor can im-
prove the performance. Same reason can be applied to
a more efRcient system software. With the availability
of the Portland Group, Inc. Fortran and C compilers,
we recompiled the codes and ran the benchmarks. For
the purpose of fair comparison, we used the same code
optimization level -03 which is provided by both of the
GNU compilers and the Portland Group software. It
can be seen in Table 3 that for certain computational
intensive application (Hke LU), the performance of the
codes compiled by the Portland Group compilers can
be improved more than 20% than using widely-used
GNU compilers.

We also compared the performance of NPB (class
B with larger problem size) between different clusters
(see Table 4). For communication intensive applica-
tions (e.g. IS), the page cluster can run faster than
the grunt cluster because it ušes faster Gigabit Ether­
net. However, the page cluster runs slower for the CG

CLUSTER COMPUTING OVER GIGABIT LANS Informatica 23 (1999) 19-27 25

custO /* a lightweight process */

^ • T
J /* loop i */ I

use(f[i|,servtinie); &

custO /* a lightvveight process */
{ .

-*'»/* loop i */
usc(f|il,servtime);

migrated to continue
execution

} •

LPl on processor A

}

LP2 on processor B

Communication Networks

Figure 7: Migrating a thread to the remote machine

Benchmark

Block Tridiagonal*
Conjugate Gradient
Embarrassingly Parallel
Integer Sort
MultiGrid
Scalar Pentadiagonal*
LU solver

ALR
9081

79
691

26
196

4166
7734

1 proč
gnu

4630
69

441
24

135
3233
3659

Pg
4190

68
437

21
123

3032
2823

2 p
gnu

36
221

26
71.0

1884

roc
pg

36
219
25
63

1456

4 p
gnu

1273
26

103
23
40

913
922

roc
pg

1163
26

102
22
37

867
766

8/9*
gnu
778
24
52
18
20

508
418

proč
pg

729
24
52
17
17

488
382

16 proč
gnu pg
421

22
26
16
11

293
240

402
22
26
16
10

281
225

Table 3: Performance of NAS Parallel Benchmarks (class A) on Grunt Cluster (Unit: seconds, *: requires
square number of processors)

•TTim-

•J r
,'\^'.l:^ .Li::u

• • - • • • - • • l - H H H l - I B i - j H H l - H ^ - H H I - H J H - H B

Figure 8: Profile of the IS Benchmark

26 Informatica 23 (1999) 19-27 J. Sang et. al.

Benchmark
Grunt (512MB, lOOMbps))
Page (128MB, lOOOMbps)

CG
512
527

EP
196
195

IS
76
55

MG
86
90

Table 4: Performance of NAS Benchmarks (class B)
using 8 processors on different clusters (Unit: second)

and MG applications. This may be due to the smaller
size of memory on each page machine.

For understanding parallel program behavior, the
MPICH library supports profiling functions which are
very useful in debugging and in performance anaJy-
sis. For example, in order to know more about the
program behavior of the IS benchmark, we used the
option -mpilog to compile the code and then invoked
the Tcl/Tk script upshot to graphically display the
timeline of each process. Figure 8 depicts a screen
dump for the IS benchmark profile.

It is worth to mention that the users cannot be to-
tally unaware of the cluster structure, especially for
running communication intensive applications. Use
the IS benchmark as an example. If we selected follow-
ing eight grunt machines "gruntOl, gruntOS, grunt09,
gruntlS, • • •, grunt29 " (i.e. one from each page do-
main), the performance was very poor because the
communication latency was large. More interesting
is that, even if we chose the eight machines closely
together and specified the following order "gruntOl,
grunt02, gruntOS, grunt04, • • •, gruntOS " in the file
machines. LINUX, the program execution time was stili
around 87 seconds. Finally, after we rearranged the
order to be "gruntOl, grunt05, grunt02, grunt06, • • •,
gruntOS ", the performance was improved as shown in
Table 4. The reason is due to the better matching
between the cluster's tree structure and the "power-
of-two" communication pattern in MPICH. Using the
profiling function, we found that the communication
time was greatly reduced.

5 Conclusion
In this paper, we have extensively measured the perfor­
mance of cluster computing over Gigabit/Fast Ether­
net LANs. Our measurements demonstrate that the
high-end 400MHZ Pentium II can easily saturate a
lOOMbps Fast Ethernet LAN, but can only generate
20% of the traffic of a Gigabit Ethernet. Since a Giga-
bit Ethernet can provide enough backbone bandwidth,
mixing Gigabit Ethernet and Fast Ethernet for high-
performance cluster computing is truly promising.

The flexible tree-structure setting gives us two ex-
perimental platforms: a gigabit cluster and a lOOMbps
cluster. We have conducted several experiments by
running distributed applications on the two platforms.
Our measurements show that application performance

can be improved by using faster processors, more mem-
ory, greater bandwidth networks, or even through bet­
ter compiler with efRcient code optimization capabil-
ity. Our experiences also suggest that, for communi­
cation intensive applications, matching the collective
communication patterns with the cluster interconnec-
tion network topology can reduce communication over-
heads and hence improve performance.

Acknowledgements
The authors would like to thank Yan Hu for her
help with the netvvork communication measurements.
This research was supported by NASA LeRC Summer
Faculty Research Fellovvship, Ohio Board of Regents
equipment grant, Packard Bell Equipment Sponsor-
ship, and CSU EFFRD award.

References
[1] D. Bailey, T. Harris, W. Saphir, and R. Wijn-

gaart. The NAS Parallel Benchmarks 2.0. Tech-
nical report, Rech. report NAS-95-020, NASA
Ames Research Cneter, 1995.

[2] L. Cabrera, E. Hunter, M. J. Karels, and D. A.
Mosher. User-Process Communication Perfor­
mance in Networks of Computers. IEEE Trans,
on Softivare Engineering, 14(l):38-53, Jan. 1988.

[3] K. M. Chandy and J. Misra. Distributed simu-
lation: A čase study in design and verification of
distributed programs. IEEE Trans, on Softtvare
Engineering, 5(5):440-452, May 1979.

[4] R. Fujimoto. Parallel discrete event simulation.
CACM, 33(10):30-53, 1990.

[5] J. C. Gomez, V. Rego, and V. S. Sunderam. Ef-
ficient MultiThreaded User-Space Transport for
Network Computing: Design and Test for the
TRAP Protocol. Journal of Parallel and Dis­
tributed Computing, 40(1), Jan. 1997.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjel-
lum. A High-Performance, Portable Imple-
mentation of the MPI Message passing In-
terface standard. In http://www.mcs.anl.gov/
mpi/mpicharticle/paper.html, Argonne National
laboratory, 1996.

[7] H. W. Johnson. Fast Ethernet: Dawn of a New
Network. Prentice Hali, Upper Saddle River, NJ
07458, 1996.

[8] M. Lin, J. Hsieh, D. Du, J. Thomas, and J. Mac-
Donald. Distributed Network Computing over
Local ATM Netv^^orks. IEEE Trans, on Selected

http://www.mcs.anl.gov/

CLUSTER COMPUTING OVER GIGABIT LANS Informatica 23 (1999) 19-27 27

Areas in Communications, 13(4):733-748, May
1995.

[9] A. Matrone, P. Schiano, and V. Puoti. LINDA
and PVM: a Comparison between two Environ-
ments for Parallel Programming. Parallel Pro-
gramming, 19:949-957, 1993.

[10] Packet Engines. FDR12 User Guide, 1997.

[11] D. K. Panda and L. M. Ni. Special Issue on Work-
station Clusters and Network-Based Computing:
Guest Editors' Introduction. Journal of Parallel
and Distributed Computing, 40(1), Jan. 1997.

[12] J. Sang, Y. Hu, and M. Tichinel. Experimen-
tal Evaluation of Network Computing over Past
Ethernet/ATM LANs. In Proceedings of the the
International Conference on Netmorks and Com-
munication Systems, May 1998.

[13] J. Sang, C. Lin, and M. Wang. Experiences with
Network-based Computing over Wireless Links.
Int 'I Journal of Parallel and Distributed Systems
and Networks, 1999.

[14] J. Sang, E. Mascarenhas, and V. Rego. Mobile-
Process Based Parallel Simulation. Journal of
Parallel and Distributed Computing, February
1996.

[15] R. Seifert. Gigabit Ethernet. Addison-Wesley,
Reading, Mass., 1 edition, 1998.

Informatica 23 (1999) 29-39 29

The Remote Enqueue Operation on Networks of Workstations

Manolis G.H. Katevenis^ Evangelos P. Markatos^, Penny Vatsolaki and Chara Xanthaki
Institute of Computer Science (ICS)
Foundation for Research & Technology - Hellas (FORTH), Grete
P.O.Box 1385 Heraklio, Grete, GR-711-10 GREEGE
h t t p : / / a r c h v l s i . i c s . f o r t h . g r

Keywords: cluster computing, networks of workstations, high-performance computing, message passing

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 5, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Modern networks of workstations connected hy Gigabit networks have the abihty to run high-
performance computing apphcations at a reasonabie performance, but at a significantly lower cost.
The performance of these apphcations is usuaUy dominated by their efEciency of the underlying
communication mechanisms. However, efhcient communication reguires that not only messages
themselves are sent fast, but also notiBcation about message arrivaJ should be fast as weU. For
example, a message that has arrived at its destination is worthless until the recipient is aJerted to
the message arrival.
In this paper we describe a new operation, the remote-enqueue atomic operation, which can be used
in multiprocessors, and workstation clusters. This operation atomically inserts a data element in a
queue that physically resides in a remote processor's memory. This operation can be used for fast
notification of message arrival, and for fast passing ofsmall messages. Compared to other software
and hardware queueing alternatives, remote-enqueue provides high speed at a low implementation
cost without compromising protection in a general-purpose computing environment.

1 Introduction

Popular contemporary computing environments are
comprised of powerful workstations connected via a
network which, in many cases, may have a high
throughput, giving rise to systems called vjorksta-
tion clusters or Networks of Workstations (NOWs) [1].
The availability of such computing and communica­
tion power gives rise to new applications like multime-
dia, high performance scientific computing, real-time
applications, engineering design and simulation, and
so on. Up to recently, only high performance paral-
lel processors and supercomputers were able to sat-
isfy the computing requirements of these applications.
Fortunately, modern workstations connected by Giga­
bit networks have the ability to run most applications
that run on supercomputers, at a reasonable perfor­
mance, but at a significantly lower cost. This is be-
cause most modern Gigabit interconnection networks
provide both low latency and high throughput. How-
ever, efficient communication requires that not only
messages themselves are sent fast, but also notifica­
tion about message arrival should be fast as well. For
example, a message that has arrived at its destination
is worthless until the recipient is alerted to the message
arrival.

^Evangelos P. Markatos and Manolis G.H. Katevenis are also
with the University of Grete.

In this paper we present the Remote Enqueue atomic
operation, which allows user-level processes to enqueue
(short) data in remote queues that reside in various
workstations in a cluster, with no need for prior syn-
chronization. This operation was developed within the
Telegraphos project [18], in order to provide a fast
message arrival notification mechanism. The Tele­
graphos network interface provides user applications
with the ability to read/write remote memory loca-
tions, using regular l oad / s t o r e instructions to remote
memory addresses. Sending (short) messages in Tele­
graphos can be done by issuing one or more remote
write operation, which eliminates traditional operat-
ing system overheads that used to dominate message
passing. Thus, sending (short) messages can be done
from user-level by issuing a few s to re assembly in­
structions. Although sending a message can be done
fast, notifying the recipient of the message arrival may
take significant overhead. For example, one might use
a shared flag in which the sender writes the memory
location (in the recipienfs memory) where (and when)
the message was written. When the recipient checks
for messages, it reads this shared flag and finds out
if there is an arrived message and where it is. How-
ever, if two or more senders attempt to send a message
at about the same tirne, only one of them will man-
age to update the flag, and the other's update will be
lost. A solution would be to have a separate flag for

http://archvlsi.ics.forth.gr

30 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al.

each possible sender. However, if there are several po-
tential senders, this solution may result in significant
overhead for the receiver, who would be required to
poli too many flags. Arranging the flags in hierarchi-
cal (scalable) data structures might reduce the polling
overhead, but it would increase the message notifica-
tion arrival overhead.

Our solution to the message arrival notification
problem is to create a remote queue of message ar­
rival notifications. A remote queue is a data structure
that resides in the remote node's main memory. Af-
ter writing their message to the receiver's main mem-
ory, senders enqueue their message arrival notifications
in the remote queue. Receivers poli their notification
queues to learn about arrived messages. Although en-
queueing notifications in remote queues can be done
completely in software, we propose a hardware remote
engueue operation that atomically enqueues a message
notification in a remote queue. The benefits of our ap-
proach are:

— Atomicity at low cost: to prevent race conditions,
ali software-implemented enqueue operations are
based on locking (or on f etch.and.i^ atomic) op­
erations that appropriately serialize concurrent
accesses to the queue. These operations incur the
overhead of at least one network round-trip delay.
Our hardware-implemented remote enqueue op­
eration serializes concurrent enqueue operations
at the receiver's network interface, alleviating the
need for round-trip messages.

— Low-latency flow control: Most software enqueue
operations may delay (block) the enqueing pro-
cess if the queue is full. For this reason, most
software-implemented enqueue operations need to
read some metadata associated with the remote
queue in order to make sure that the remote queue
is not full. Unfortunately, reading remote data
may take at least one round-trip network delay.
In our approach, the enqueueing operation al-
ways succeeds; if the queue fills up after an en-
queue operation, a software handler is invoked
(at the remote node) to allocate more space for
the queue. Since our remote enqueue operation is
non-blocking, and does not need to read remote
data, it can return control to its caJling processes,
as soon as the data to be enqueued have been
entered in the sender's netvvork interface, that is
the remote enqueue operation may return control
within a few (network interface) clock cycles - usu-
ally a fraction of a microsecond.

The rest of the paper is organized as follows: Section
2 surveys previous work. Section 3 presents a sum-
mary of the Telegraphos workstation cluster. Section
4 presents the remote enqueue operation, and section
5 summarizes this paper.

2 Related Work

Although networks of workstations may have an (ag-
gregate) computing power comparable to that of su-
percomputers (while costing significantly less), they
have rarely been used to support high-performance
computing, because communication on them has tra-
ditionally been very expensive. There have been sev­
eral projects to provide efficient communication prim-
itives in networks of workstations via a combina-
tion of hardware and software: Dolphin's SCI inter­
face [19], PRAM [24], Memory Channel [13], Myrinet
[6], ServerNet [26], Active Messages [12], Fast Mes­
sages [17], Galactica Net [16], Hamlyn [9], U-Net [27],
PCI-DDC [28], NOW [1], Parastation [29], StarT Jt
[15], Avalanche [10], Panda [2], SHRIMP [4] and oth-
ers provide efficient message passing on networks of
workstations usually based on memory-mapped inter-
faces. We view our work as complimentary to these
projects. Most of them have developed novel efficient
mechanisms to send data between two diflFerent work-
stations in a cluster. We complement the mentioned
previous work by proposing a fast message notifica­
tion mechanism that can improve the performance of
aH these message passing systems.

Brewer et. al proposed Remote Queues, a com­
munication model that is based on enqueueing and
dequeuing Information in queues in remote processors
[8]. Their model is mostly software based, but it can
also it can be tuned to exploit any existing hardware
mechanisms (e.g. hardware queues) that may exist in
a parallel machine. Although their work is related to
ours we see two major differences:

- Remote gueues combine message transfer with
message notification: the message itself is en-
queued in the remote queue. The receiver reads
the message from the queue and (if appropriate)
copies the message to its final destination in its
local memory. In our approach we assume that
the message has been posted directly to its final
destination in the receiver's memory, and only the
notification of the message arrival need to be put
in the queue - our approach results in less mes­
sage copy operations. Suppose for example that
the sender and the receiver share a common data
structure (e.g. a graph). Using out approach, the
sender deposits its Information directly in the re­
mote graph, where the receiver will read it firom.
On the contrary, in the remote queues approach,
the messages are first placed in a queue, and the
receiver will have to copy the messages from the
queue and put their Information on the common
graph, resulting in one extra copy operation. Re-
cent commercial netvvork interfaces like the PCI-
DDC [28], the Memory Channel [13] and the PCI-
SCI [19] efficiently support our approach of the
direct deposit of data in the receiver's memory.

THE REMOTE ENQUEUE OPERATION Informatica 23 (1999) 29-39 31

— Remote Queues have been designed and imple-
mented in commercial and experimental mas-
sively parallel processors that run parallel appH-
cations in a controlled environment, supporting
Uttle or no multiprogramming. Our approach
has been designed for low-cost Networks of Work-
stations that support both sequential and paral­
lel applications that need to be separated (pro-
tected) from each other. Designing for a general-
purpose multiprogrammed environment is consid-
erably more difficult and complicates several de-
tails of the design.

In single-address-space multiprocessors, our remote
enqueue operation can be completely implemented in
software using any standard queue library. Brewer et.
al propose such an implementation on top of the Cray
T3D shared-memory multiprocessor [8]. Any such im­
plementation (including the one in [8]) suffers from
software overhead that includes at least one atomic op­
eration (to atomically get an empty slot in the queue),
plus several remote memory accesses (to plače the data
in the remote queue and update the remote pointers).
This overhead is bound to be significant in a Network
of Workstations.

In many multiprocessors, nodes have a network co-
processor. In these cases, the remote enqueue oper­
ation can be implemented with the help of this co-
processor. The co-processor implements sophisticated
forms of communication with the processes running on
the host processor. For example, a process that wants
to enqueue a message in a remote queue, sends the
message to the co-processor, which forwards it to the
co-processor in the remote node, which in turn places
the message in the remote queue. Although the exis-
tence co-processors improves the communication abil-
ities of a node, it may result (i) in software overhead
(after aH they are regular microprocessors executing a
software protocol), (ii) in more data copy operations,
and (iii) in increased end-system cost.

3 The Telegraphos NOW
The Remote enqueue operation described in this paper
is developed within the Telegraphos project [22]. Tele­
graphos is a distributed system that consists of network
interfaces and switches for efficient support of parallel
and distributed applications on a workstation cluster
(shown in Figure 1). We call this project Telegraphos
or Trj\e^pa(j)o<; from the greek words Tr]\e meaning
remote, and 'ypQ.4)UJ meaning write, because the cen­
tral operation on Telegraphos is the remote write op­
eration. A remote write operation is triggered by a
simple s t o r e assembly instruction, whose argument is
a (virtual) memory address mapped on the physical
memory of another workstation. Figure 2 shows il-
lustrates how process Pj- sends a message to processor

/ ALPHA workstation
(TurboChannel

f/ /Host Interface Board(HIB)
,—11 i-i^-^ Switch Boards •

Figure 1: The Telegraphos Workstation Cluster.

Mi

network packet

Mj

A: m

Shared Viitual Address Space

Figure 2: Message Passing by Remote Writes.
Processor Pj issues a s to re instruction, which is
snooped by the network interface. The address A and
the data D of the instruction are packed in a message
and sent to processor Pj in a network packet. When
the packet reaches its destination, processor Pj will
store the data D into its address A.

Pj by issuing an assembly s to re instruction. The re­
mote write operation makes possible the (user-to-user,
fully protected) sending of short messages with a sin-
gle instruction. For comparison, traditional worksta-
tion clusters connected via FDDI and ATM take sev­
eral thousands of instructions to send even the shortest
message across the network.

Telegraphos provides a variety of hardware primi-
tives which, when combined with appropriate software
will result in efRcient support for shared-memory ap­
plications. These primitives include:

— Single remote memory access: On a remote mem-
ory access, traditional systems require the help of
the operating system, which either replicates lo-
cally the remote page and makes a local memory
access, or makes the single remote access on be-
half of the requesting process. To avoid this oper­
ating system overhead, Telegraphos provides the
processor with the ability to make a read or write
operation to a remote memory location vvithout
replicating the page locally and without any soft-
ware intervention; j ust like shared-memory multi-

32 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al.

processors do [3].

— Access counters: If a page is accessed by a pro­
cessor frequently, it may be worthwhile to repli-
cate the page and make ali accesses to it locally.
To allow informed decisions, Telegraphos pro-
vides access counters for each remotely-mapped
page. Each time the processor accesses a remote
page, the counter is decremented, and when it
reaches zero an interrupt is sent to the processor
which should probably replicate the page locally
[7, 20, 21].

— Harduiare multicasting: Telegraphos provides a
write multicast mechanism in hardware which can
be used to implement one-to-many message pass-
ing operations, as well as an update-based mem-
ory coherence protocol. This multicast mecha­
nism ušes a novel memory coherency protocol that
makes sure that even when severaJ processors try
to update the same data and multicast their up-
dates at the same time, they will ali see a consis-
tent view of the updated data; details about the
protocol can be found at [22].

— User-level DMA: To facilitate efficient message
passing, Telegraphos allows user-level initiation
of ali shared-memory operations including DMA.
Thus, Telegraphos does not need the involvement
of the Operating System to transfer Information
from one workstation to another [23].

The Telegraphos network interface has been proto-
typed using FPGA's; it plugs into the TurboChannel
I/O bus of DEC Alpha 3000 model 300 (PeHcan) work-
stations.

4 Remote Enqueue

4.1 Message Passing via Remote
Writes

In a shared-address space multiprocessor that supports
efficient remote-write operations (like Telegraphos)
message passing is performed by issuing remote-vvrite
operations from user space. In this way, the sender di-
rectly deposits the message to its final destination in
remote memory, which is accessed using regular load
and store assembly instruction (just like local mem-
ory). Although message passing via remote-writes is
very efficient, notifying the sender that a message has
arrived becomes complicated. Figure 3 shows several
potential senders Pi to Pjv and one receiver P. Each
sender has mapped a buffer in P's local memory and
sends messages to P by writing the message directly
to this buffer. However, it becomes increasingly dif-
ficult for P to know when and from which source a
message has arrived. One could propose that P gets

Figure 3: Multi-source message arrival notifica­
tion.

interrupted each time a message arrives. However, in-
terrupts would add significant overhead to message-
passing, since they are usually handled by the oper­
ating system kernel, which would undermine the ef-
ficiency of user-level message passing. To avoid the
operating system involvement, we could use one "ar­
rival bit" for each buffer. When a message is sent,
the corresponding arrival bit is set as well. Hovvever,
when the number of potential senders becomes high,
polling a large number of arrival bits would jeopardize
the scalability of this solution. To achieve a scalable
notification mechanism we could use a tree of arrival
bits, but such a mechanism would complicate program-
ming and increase the latency of message arrival no­
tification. What we propose to do is to have a queue
of message arrival notifications. For each new mes­
sage, the sender enqueues a notification in the queue.
When the local processor wants to check for messages,
it reads the head of the notification queue. Although
the queue can be managed completely in softvvare, we
propose that enqueueing should be done in hardware
using the "remote enqueue" operation, while dequeu-
ing can be done in (user-level) software. We avoid a
completely-software solution since this would require
synchronization using atomic operation which would
add significantly to the overhead of enqueueing.

4.2 The Remote Enqueue Operation

We propose a new atomic operation, the remote en-
queue (REQ) atomic operation. The REQ atomic op­
eration is invoked with two arguments:,

— REQ(vaddress,data), where vaddress is the virtual
address that uniquely identifies a remote queue
(a remote queue always resides on the physical
memory of a difFerent processor from the one in-
voking the REQ operation), and data is a single
word of Information to be inserted in the queue.
This Information is most usually a virtual address
(pointer) that identifies the message body that the
processor invoking the REQ operation has just
sent to the processor that hosts the queue in its

THE REMOTE ENQUEUE OPERATION Informatica 23 (1999) 29-39 3 3

addr —«•
0

1

2

3

4

•
•

^•^-l

size

size

tail

liead

ptr to nxt Q buffer

•
•
•

Figure 4: Layout of a da ta bufFer. A remote queue
is just a Hnked list of such buffers. The first three
words of the bufFer are reserved to store the size, the
tail, the head, and the pointer to the next Q bufFer.

oF an extra adder, and the performance cost of a word-
length addition. In our system instead, where the addr
is a multiple of a power of two, and both head and tail
are always less than this power of two, we calculate
the pointer to the head (or the tail) of the queue by
performing an inexpensive OR operation instead of an
expensive addition.

4.3 The Enqueue Operation

When processor A wants to enqueue some data in
the remote queue that starts in the virtual address
vaddress and that that physically resides on processor
B's memory, it invokes the REQ(vaddress,data) atomic
operation. A portion of this operation in implemented
on the sender node's network interface, and the rest is
implemented on the receiver node's network interface.

memory.

We define a remote queue to be a portion of a re­
mote processor's memory that is managed as a FIFO
queue. This FIFO queue is a linked list of buffers
which are physically allocated in the remote proces-
sor's memory. Data are placed in this FIFO queue by

' the remote engueue (REQ) operation, implemented in
'hardware. Data are removed from this FIFO queue
with a dequeue operation which is implemented in user-
level software.

The following limitations are imposed to the buffers
of a remote queue, for the hardware remote enqueue
operation to be efficient:

- The starting address of each bufFer should be an
integer multiple oF the buffer size, which is a power
of two.

- The maximum buffer size is 64KB (for a 32-bit
word processor).

- IF the bufFer size is larger than the page size, each
bufFer should be allocated in contiguous physical
pages.

The layout of the bufFer is shown in figure 4; The
head and tail are indices in the data buffer. A queue
is a linked list of such data buffers. For a 32-bit-word
processor, both tail, and head are 16 bit quantities,
and not full memory addresses. The reason is that,
in traditional systems (where tail and head are full
addresses), we calculate the pointer to the head (or
the tail) of the queue by adding addr with head (or
tail), meaning that we need to pay the hardware cost

^The Telegraphos network always delivers remote data in-
order from a given source to a given destination node. Thus,
data can never arrive before the corresponding REQ operation
is posted.

The Sender Node : When the software issues a
REQ(vaddress,data) atomic operation, the local net-
work interface takes the following actions:

— It prepares a remote-enqueue-request packet to
be sent to the remote node that contains paddress
(the physical address that corresponds to virtual
address vaddress), and data, and

— It releases the issuing processor, which is able to
continue with the rest of its program, without
having to wait for the remote enqueue operation
to complete.

The Receiver Node : When the destination node
receives a remote-enqueue-request packet it extracts
the paddress and data arguments from the packet and
performs the remote-enqueue operation as the follow-
ing atomic sequence of steps:

- Writes the data to the buffer entry pointed by the
tail index (the address of the entry is calculated
as (paddress OR tail).

- Increments the tail by 1 modulo bufFer size (if the
tail equals the size of the bufFer, then tail gets the
value oF the first available bufFer location: 3 (see
figure 4)).

- IF the buffer overflows {tail = head), the net-
work interface stops accepting incoming network
requests, and sends an interrupt to the (destina­
tion) processor.

The hardware finite state machine (FSM) of the
destination HIB for the remote enqueue operation
"req(addr, data)" is shown in table 1.

34 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al.

FSMO
1. read (address) -> (size, tail) // read tail and size of Q

2. write (address DR tail)<- (data) // insert new element in Q

// Note: (address OR tail) points to the first free element in the Q
// thus: no adder is needed

3. tmp <- (tail + 1) // increment tail modulo size
// if (tmp == size) then tail = 3

4. if (tmp & size) then
tail <- 3

else
tail <- tmp

// Note: if (tmp == size) then (tmp & size) == 1
// else (tmp & size) == O,

// thus the comparison can be implemented with AND
// gates instead of a general purpose comparator

5. read (address+1) -> (size.head) // read head of Q

6. if (head == tail) then

stop_accepting_network_reqiiests()
interrupt host (overflov)

else
write (address) <- (size,tail)

Table 1: Finite State Machine for the Remote Enqueue Operation.

Hardware Diagram: The Telegraphos datapath
for the remote enqueue operation (at the receiver side)
is shown in figure 5. The whole operation is controlled
by five control signals: LDO, RDO, WRO, RDI, and
WR1, that are generated by a simple Finite State Ma­
chine in the above order.

— LDO loads the ADDRESS and DATA registers
with the address and data that are the arguments
of the remote enqueue operation.

— RDO starts the reading of the {size, tail) pair from
address.

— WRO starts the writing of the data into the remote
queue at address address OR tail

— RDI starts the reading of the {size, head) pair
from {address + 1).

— Finally, WR1 writes the new {size, tail) pair into
address

4.4 Handling Buffer Overflow

When the current buffer fills up, an interrupt is sent
to the processor which starts executing the operating
system. The actions that the operating system should
take are:

- Copy the contents of the full buffer into an empty
one. Mark the previously overflowed buffer as
empty.

- Link the new buffer into a queue of buffers associ-
ated with this queue. The next field in the queue
is used for this purpose.

— Enable the Netvvork Interface to handle aH re-
quests.

4,5 Dequeuing and Queue Handling in
the Receiver Software

In this section we outline how the dequeue operation
can be efficiently implemented in software at user-
level. A straightforward implementation of the de-
queue operation would be:

deq(queue)
{

buffer = f ind_las t_buffer () ;
if (is_empty(buffer) {

if (i s _ f i r s t (b u f f e r , queue))
r e tu rn EMPTY_qUEUE ;

e l s e {
dea l loca te (buf fe r) ;
buffer = f ind_las t_buffer () ;

}
}
r e s u l t = buffer[head] ; head ++ ;
if (head == s ize)

head = 3 ;
r e tu rn r e s u l t

}

Unfortunately, the above solution does not always
work, because it is executed in user-space, and as such.

THE REMOTE ENQUEUE OPERATION Informatica 2 3 (1999) 29-39 3 5

it may be interrupted at any time. For example, con-
sider the following scenario:

— A dequeue operation starts executing, taking an
element from the head buffer (say A) of the queue.

— Before the operation completes, it is interrupted.

— In the meanwhile, the head biifFer overflows, the
operating system takes control, copies the buffer
A into an empty one (say B), resetting the previ-
ously fuU buffer A.

— Some more remote enqueue operations are exe-
cuted, completely overwriting the previous data
on A (which have been safely copied iiito the re-
cently allocated buffer B).

— The dequeue operation eventually resumes exe-
cution trying to dequeue elements from buffer A,
which does not have the elements the dequeue op­
eration expects to find, which are now in buffer B\

Fortunatelj', on the DEC Alpha processor there is
a special mode the PAL mode which enables (super)
users to write their own code (of limited size) and run
it uninterrupted [25]. Thus, if the above code is turned
into PAL code, it \vill run uninterrupted. PAL code is
invoked via the special caLpal routine, that the DEC
Alpha processor provides. Although any user is al-
lowed to call a PAL function, only the super user is
a.llowed to install new PAL functions, thereby protect-
ing the integrity of the system.. Thus, the above men-
tioned race conditions disappear because the dequeue
operation runs uninterrupted in PAL mode.

Although PAL calls are an elegant way of execut-
ing short sequences of instructions uninterrupted, they
are specific to the Alpha processor. Moreover, in-
terrupt disabling (and of course PAL calls) is an ef-
fective way of synchronization only in uniprocessors.
Disabhng interrupts in symmetric multiprocessing sys-
tems that share a common network interface does not
necessarily guarantee the absence of race conditions.
For this reason, we have developed a more general so-
lution that allows dequeue operations to proceed at
user-level without the need to invoke PAL calls. Our
solution is based on the collaboration between the op­
erating system and the library that implements the
dequeue operation. We assume the existence of a "do-
not-preempt-me" bit (per queue) that is shared by the
user application and the kernel. ^ When the applica-
tion is about to execute a dequeue operation, it sets
the "do-not-preempt-me" bit. When the dequeue op­
eration completes, it resets the "do-not-preempt-me"
bit. If the queue becomes full while an application is
dequeuing something from the queue, the operating

^Similar mechanisms has been used to avoid preempting a
user-level thread while executing in a critical section [11].

system driver that handles the buffer overflow inter-
rupt, does not allocate a new buffer but sets a "fuU-
queue" fiag. When the interrupt handler returns, the
application will resume execution, and it will complete
the dequeue operation. When the dequeue operation
completes, it checks the "full-queue" flag. If the flag is
set, the application will invoke the network interface
driver (e.g. through an i o c t l call) to allocate more
space for the queue and to enable the network inter­
face to handle further enqueue operations. Thiš so­
lution works even in multiprocessor workstations that
share a single network interface, with only one addi-
tional requirement: threads that execute concurrent
dequeue operations (from the same queue) have to syn-
chronize through a lock variable (associated with the
queue). The first instruction of a dequeue operation
is to acquire the lock, and the last instruction is to
release the lock. Thus, while a thread is dequeuing
data from a queue, no other thread is allovî ed to do
the same, and thus no other thread can access shared
information like the "do-not-preempt-me" bit and the
"full-queue" flag. In čase of buffer overflow, user-level
threads should keep the lock up till the time the op­
erating system allocates more space for the queue. If
the queue fills up while at the same time a thread is
executing a dequeue operation, the operating system
allows the dequeue operation to complete; after the
operation completes it invokes the operating system
to allocate more space for the queue and to enable
further network transactions.

4.6 Issuing an Enqueue Operat ion

An enqueue operation is invoked as:
enq(vaddress, data)
(where vaddress is the virtual address of the base of
the first queue buffer and data are the data to be
enqueued). In order to create a valid remote en-
queue reguest packet, the netvvork interface needs to
know the phijsical address paddress that corresponds
to virtual address vaddress, as well as the data ar­
gument. However, users are not allowed to communi-
cate physical addresses to the network interface, be­
cause (i) they no dot know the mapping between vir­
tual and physical pages, and (ii) malicious or igno­
rant users may request enqueue operations to physi-
cal addresses on which they do not have read/write
access. To alleviate this problem we use the mech-
anism of shadow-addressing [5, 14, 23]. The method
of shadow addressing is used to securely translate vir­
tual to physical addresses and pass them to the net­
vvork interface from user-level processes. For each vir­
tual address vaddress that is mapped in the physi-
cal address paddress, there is also a shadow address
shadow(vaddress), which is mapped in the shadow

file:///vill

36 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al.

Tmp = Tail+l

If(Tmp& size)

Tmp = 3

t
If (head ==NewTail)
Interrupt host

Figure 5: The enqueue hardware.

THE REMOTE ENQUEUE OPERATION .. Informatica 23 (1999) 29-39 37

physical address shadow(paddress).^ The shadow
function is simple and known to the network interface.
One simple shadow function is to concatenate each ad­
dress with an extra shadow bit. When the shadow bit
is set, then the address is a shadow one. For exam-
ple, OxOFFFFFFFF is a regular 33-bit address, while
OxlFFFFFFFF is its shadow address.

An access to a shadow address is always interpreted
by the network interface as a special argument passing
operation. For example, suppose that virtual address
vaddress is mapped to physical address paddress,
and that the virtual address shadow(vaddress) is
mapped into shadow(paddress). Normally, a load
(store) operation to virtual address vaddress by a user
application is translated by the TLB (page-table) into
a load (store) operation to physical address paddress
and is performed by the appropriate memory con-
troUer. Similarly, a load (store) operation to vir­
tual address shadow(vaddress) is translated by the
TLB into a load (store) operation to physical address
shadow(paddress). When, however, this operation
reaches the network interface it will be treated as an
argument passing operation, and neither a load nor a
store operation will be performed to physical address
sliadow(paddress). Thus, when the user application
wants to pass to the network interface the physical
address paddress, it makes a store operation to vir­
tual address shadow(vaddress). After TLB transla-
tion the physical address shadow(paddress) reaches
the network interface, which recognizes the shadow
address and takes the physical address paddress
by applying function shadow~^ to physical address
shadow (paddress) . •*

Thus, a remote enqueue atomic operation is issued
using a single assembly instruction as follows:

REQ (vaddress, data)
/ * pass physical address shadoiv(paddress)
** to the netmork interface */
S T O R E data T O shadow(vaddress)

atomically inserts a data element in a queue that phys-
ically resides in a remote processor's memory. This
operation can be used for fast notification of message
arrival, and for fast passing of small messages. Both
enqueue and dequeue operations can be issued from
user-level processes without any need to call the op-
erating system. Both operations enforce standard vir­
tual memory protection when accessing remote queues,
and thus they provide full protection in a general-
purposed multiprogrammed environment. Compared
to other software and hardware queueing alternatives,
remote-enqueue provides high speed at a low imple-
mentation cost without compromising protection in a
general-purpose computing environment.

Acknowledgments
This work was supported in part by ESPRIT
project 6253 "Supercomputer Highly Parallel System"
(SHIPS), funded by the European Union, through DG
III of its Commission, HPCN Unit. We deeply appre-
ciate this financial support, without which this work
would have not existed. A patent application for the
above work has been filed: E. Markatos, M Katevenis,
and P. Vatsolaki: "Notification of message arrival in a
parallel computer system", Patent application number
97410036.4, (Europe) March 19th 1997.
. Telegraphos is a collective effort, with many con-

tributors. The authors wish to acknowledge in partic-
ular Apostolos Dollas, George Kalokairinos, Manolis
Stratakis, Chara Xanthaki, and George Papadourakis,
for the design and implementation of Telegraphos I
and II. Richard Fortier, James Goodman, Robert Hy-
erle, Alasdair Ravvsthorne, and Marios Mavronico-
las have helped in various ways, at various times.
Kosmas Papachristos and George Dramitinos imple-
mented low-level operating system software for Tele­
graphos. Finally, the comments of the anonymous re-
viewers were valuable. We thank ali of them.

The processor latency of a remote write operation
on Telegraphos has been measured to be only 0.7 mi-
croseconds. Thus, the message-notification overhead
observed by the sending processor is very small - com-
parable to the latency of a local memory access.

5 Summary
In this paper we describe a new operation, the remote-
enqueue atomic operation, which can be used in mul-
tiprocessors, and workstation clusters. This operation

^The Operating System is responsible for creating both map-
pings at memory allocation (initialization) tirne.

^All sliadow addresses should be witliin the physical address
range of the networlc interface, and distinct from the normal
physical addresses used by that networl< interface.

References
[1] T.E. Anderson, D.E. Culler, and D.A. Patterson.

A Čase for NOW (Networks of Workstations).
IEEE Micro, 15(l):54-64, February 1995.

[2] H. Bal, R. Hofman, and K. Verstoep. A Com-
parison of Three High Speed Networks for Par­
allel Cluster Computing. In Proč. Ist Interna­
tional Workshop on Communication and Arch.
Support for Nettuork-Based Parallel Computing,
pages 184-197, 1997.

[3] BBN Advanced Computers Inc. Inside the
TCŽOOO'^'^ Computer. Cambridge, Mas-
sachusetts, February 1990.

38 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al.

[4] M. Blumrich, K. Li, R. Alpert, C. Dubnicki,
E. Felten, and J. Sandberg. Virtual Memory
Mapped Network Interface for the SHRIMP Mul-
ticomputer. In Proč. 21-th International Sympo-
sium on Comp. Arch., pages 142-153, Chicago,
IL, April 1994.

[5] M.A. Blumrich, C.Dubnicki, E.W. Felten, and
K. Li. Protected, User-level DMA for the
SHRIMP Network Interface. In Proč. of the 2nd
International Symposium on High Performance
Computer Architecture, pages 154-165, San Jose,

•- CA, February 1996.

[6], N.J. Boden, D. Cohen, and W.-K. Su. Myrinet:
A Gigabit-per-Second Local Area Network. IEEE
Micro, 15(1):29, February 1995.

[7] William J. Bolosky, Michael L. Scott, Robert P.
Fitzgerald, Robert J. Fowler, and Alan L. Cox.
NUMA Policies and Their Relation to Memory
Architecture. In Proceedings of the Fourth Inter­
national Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 212-221, Santa Clara, CA, April 1991.

[8] E.A. Brewer, F.T. Chong, L.Tl Liu, S.D. Sharma,
and J.D. Kubiatowicz. Remote Queues: Expos-
ing Message Queues for Optimization and Atom-
icity. In Symp. on Parallel Algorithms and Ar-
chitecures, 1995.

[9] G. Buzzard, D. Jacobson, S. Marovich, and
J. Wilkes. Hainlyn: a High-performance Net-
work Interface, with Sender-Based Memory Man­
agement. In Proceedings of the Hot Interconnects
III Symposium, August 1995.

[10] A. Daviš, M. Swanson, and M. Parker. Efficient
Communication Mechanisms for Cluster Based
Parallel Computing. Technical report, University
of Utah, Dept. of Computer Science, 1996.

[11] J. Edler, J. Lipkis, and E. Schonberg. Process
Management for Highly Parallel UNIX Systems.
Technical Report Ultracomputer Note 136, Ultra-
computer Research Laboratory, New York Uni-
versity, April 1988.

[12] T. von Eicken, D. E. Culler, S. C. Goldstein,
and K. E. Schauser. Active Messages: A Mecha-
nism for Integrated Communication and Compu-
tation. In Proč. 19-th International Symposium
on Comp. Arch., pages 256-266, Gold Coast, Aus-
traUa, May 1992.

[13] R. Gillett. Memory Channel Network for PCI.
IEEE Micro, 16(1) :12, February 1996.

[14] J. Heinlein, K. Gharachorloo, S. Dresser, and
A. Gupta. Integration of Message Passing and

Shared Memory in the Stanford FLASH Multi-
processor. In Proč. of the 6-th International Con­
ference on Architectural Support for Programming
Languages and Operating Systems, pages 38-50,
1994.

[15] James C. Hoe and Mike Ehrlich. StarT-JR: A
Parallel System from Commodity Technology. In
Proceedings of the 7th Transputer/Occam Inter­
national Conference, November 1995. Tokyo,
Japan.

[16] Andrew W. Wilson Jr., Richard P. LaRowe Jr.,
and Marc J. Teller. Hardware Assist for Dis-
tributed Shared Memory. In Proč. 13-th Int.
Conf. on Distr. Comp. Syst., pages 246-255,
Pittsburgh, PA, May 1993.

[17] V. Karamcheti, S. Pakin, and A. Chien. High
Performance Messaging on Workstations: Illinois
Fast Messages (FM) for Myrinet. In Supercom-
puting 95, 1995.

[18] Manolis G. H. Katevenis, Evangelos P. Markatos,
George Kalokerinos, and Apostolos Dollas. Tele-
graphos: A Substrate for High-Performance Com­
puting on Workstation Clusters. Journal of Par­
allel and Distrihuted Computing, 43(2):94-108,
June 1997.

[19] O. Lysne, S. Gjessing, and K. Lochsen. Run-
ning the SCI Protocol over HIC Networks. In
Proceedings of the Second International Workshop
on SCI-based Low-cost/High-perfocmance Com­
puting (SCIzzL-2), March 1995. Santa Barbara,
CA.

[20] E.P. Markatos. Using Remote Memory to avoid
Disk Thrashing: A Simulation Study. In Pro­
ceedings of the ACM International Workshop
on Modeling, Analysis, and Simulation of Com­
puter and Telecommunication Systems (MAS-
COTS '96), pages 69-73, February 1996.

[21] E.P. Markatos and C.E. Chronaki. Trace-Driven
Simulations of Data-Alignment and Other Fac-
tors affecting Update and Invalidate Based Co-
herent Memory. In Proceedings of the ACM In­
ternational Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS '94), pages 44-52, January
1994.

[22] E.P. Markatos and M. G.H. Katevenis. Tele-
graphos: High-Performance Networking for
Parallel Processing on Workstation Clusters.
In Proč. of the 2nd International Sympo-
sium on High Performance Computer Archi­
tecture, pages 144-153, Feb 1996. URL:
http://www.csi.forth.gr/ proj/arch-vlsi/papers/
1996.HPCA96.Telegraphos.ps.gz.

http://www.csi.forth.gr/

THE REMOTE ENQUEUE OPERATION ... Informatica 23 (1999) 29-39 39

[23] E.P. Markatos and M. G.H. Katevenis. User-
Level DMA without Operating System Kernel
Modification. In Proč. of the 3rd International
Symposiu'm on High Performance Computer
Architecture, pages 322-331, Feb 1997. URL:
http://www.csi.forth.gr/proj/aavg/papers/
1997.HPCA97.userJeveLdma.ps.gz.

[24] D. Serpanos. Scalable Shared-Memory Intercon-
nections. PhD thesis, Princeton University, Dept.
of Computer Science, October 1990.

[25] R. Sites. Alpha AXP Architecture. Communica­
tions of the ACM, 36(2):33-44, February 1993.

[26] Tandem Computers Inc. ServerNet Technology:
Introducing the Worlds First System Area
Network, 1996. http://www.tandem.com/
INFOCTR/BRFS-WPS/
SNTSANWP/SNTSANWP.HTM.

[27] Thorsten von Eicken, Anindya Basu, Vineet
Buch, and Werner Vogels. U-Net: A User-Level
Network Interface for Parallel and Distributed
Computing. In Proč. 15-th Symposium on Oper­
ating Systems Principles, pages 40-53, December
1995.

[28] F. Wajsbort, J-L. Desbarbieux, C. Spasevski,
S. Penain, and A. Greiner. An Integrated PCI
Component for IEEE 1355. In European Multime­
dia, Microprocessor Systems and Electronic Com-
merce Conference and Ezhibition (EMMSEC'97),
Nov. 1997.

[29] Thomas M. Warschko, Joachim M. Blum, and
Walter F. Tichy. The ParaPC / ParaStation
Project: Efficient Parallel Computing by Cluster-
ing Workstations. Technical Report 13/96, Uni-
versity of Karlsruhe, Dept. of Informatics, 1996.

http://www.csi.forth.gr/proj/aavg/papers/
http://www.tandem.com/

Informatica 23 (1999) 41-48 41

Preserving Mutual Interests in High Performance Computing
Clusters

Orly Kremien, Kemelmakher Michael and Eshed Irit
Distributed Systems Group
Department of Computer Sciences and Mathematics
Bar lian University, Ramat Gan, Israel
Phone : -1-972-3-5318052 Email : orly,kemelma,eshedi,dsg@macs.biu.ac.il
WWW : h t t p : //www. cs . biu . a c . i l : 8080/dsg

Keywords: adaptability, caching, locality, PVM, pluggability, proximity, resource sharing, scalability

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 15, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Massive network systems spanning grand geographical distances, like Internet, aim at providing
scalable resource access. Requests for resource access in such complex systems randomly arrive at
nodes. Cooperation and negotiation are required in order to better support resource sharing, i.e.
to decide whether to initiate processing of a resource request locally or locate a remote resource
and negotiate for its remote access. The problems encountered in such complex systems are brieHy
described in this paper. A measurement study in PVM is used to illustrate our approach. PVM
ušes round-robin as its default policy for process allocation to processors. The main drawbacks
of this policy are the fact that PVM ignores load variations among nodes and also the inability
of PVM to distinguish between machines of different speeds. To repair this dehciency a Resource
Manager (RM) is implemented which replaces round-robin with a scalable and adaptive algorithm
for resource sharing providing a High Performance Computing Cluster (HPCC). We propose an
implementation of a Resource Manager in PVM. The RM can be transparently plugged into PVM
to offer improved performance for its users. The design of a resource manager to extend PVM is
outlined. A prototype implementation in PVM is then measured to illustrate the utility of our
approach. Performance results favorably comparing our extended RM to the original PVM are
presented. In conclusion, our RM is extended to further expedite performance with enhanced
locality

1 Introduction seek Services and those available, which provide ser-
vices. Resource sharing in complex network systems

Both computing and networking areas are rapidly aims at achieving maximal system performance by uti-
changing. High speed networks and improved micro- lizing the available system resources efRciently. The
processor performance are making the netvvork insep- goal is to match workstations short of a service to
arable from the computers it links together. High ca- those experiencing a surplus of the same service. The
pacity clusters of workstations are becoming an ap- relationship between such a pair is termed mutual in-
peahng vehicle for parallel computing. In this environ- terest. This paradigm is used to propose a scalable
ment most machines are autonomous personal work- and adaptive resource sharing service.
stations where each is dedicated primarily to serving Requests for resource access randomly arrive at
its owner. By interconnecting multiple local clusters nodes. It is possible for some of the nodes equipped
through a high-speed communication, very large par- with the resource to have it utilized to its fullest ca-
allel systems can be built, at low additional cost, cre- pacity executing resource access requests. Other nodes
ating a large parallel-computing machine. might not be equipped with the resource at ali or pos-

These complex systems provide access to a variety sibly have its request queue lightly loaded or even idle.
of resources. There are standard resources as well as This calls for some type of cooperation and negotia-
nomadic ones. Local access suffices for some whereas tion in order to better support resource sharing, i.e.
others are far off requiring distant access. Further- whether to initiate processing of a resource request lo-
more, there are multiple instances greatly differing in cally or locate a remote node from a large set of avail-
characteristics which are accessible for each resource able ones and negotiate for its remote access. Much
type. A complex network system may be viewed as a of the computing power is frequently idle. There is
collection of services. There are workstations, which a necessity to coordinate concurrent access to system

mailto:dsg@macs.biu.ac.il
http://ac.il

42 Informatica 23 (1999) 41-48 O. Kremien et al.

resources. Without any mechanism for cooperation
among nodes, it is likely that resources on one node
will become congested while other nodes are idle, re-
sulting in poor overall systein performance. Resource
sharing in complex network systems aims at achiev-
ing maximal system performance by efficiently utiliz-
ing the system resources available.

A distinguishing feature of such complex network
systems is the inabiHty to maintain consistent global
State information at distributed points of control. A
complex network system can thus be viewed as a col-
lection of distributed decision makers taking decisions
to achieve common goals under uncertain local and
partial views of the system state. Network latencies
further comphcate these systems.

Complex network systems present serious diiEculties
in security, heterogeneity and operability, and in per­
formance. In this paper special concern is devoted to
the last two. Our aim is to first ensure that the algo-
rithm for adaptive resource sharing is feasible. It then,
must continue to be effective and stable as the system
grows. Scalable solutions are required in order to effec-
tively utilize the aggregate processing power available
and hide latencies. Such solutions strive to conceal
physical characteristics such as system size, network
topology, faults, and different sorts of latencies and
resource capacity constraints.

PVM (Parallel Virtual Machine) is a parallel and
distributed computing environment used worldwide.
It enables a collection of heterogeneous computers con-
nected by dissimilar networks to be used as a coherent
and flexible concurrent computational resource. In [12]
we describe a resource management system which pro-
vides a replacement for the round-robin policy with a
scalable and adaptive algorithm for resource sharing
[13]. This resource manager is extended in this paper
to further improve performance.

The remainder of this paper is organized as follows.
Resource sharing in a complex network environment is
described in Section 2. Section 3 details an algorithm
for preservation of mutual interests together with en-
hancements required to improve locality in a complex
network environment. PVM and its process control
are briefly described in Section 4 followed by an im-
plementation of a RM which replaces the default PVM
round-robin assignment. Initial prototype implemen-
tation measurements results are given in Section 5.
Finally, conclusions derived from this study and di-
rections recommended for future research are given in
Section 6.

2 Adaptive Resource Sharing
2.1 Introduct ion

The problem of resource sharing was extensively stud-
ied by Distributed Systems (DS) (i.e.,[16]) and Dis­

tributed Artificial Intelligence (DAI) (i.e.,[17]) re-
searchers, particularly in relation to the load sharing
problem in such systems. Distributed systems require
some mechanism for cooperation among the proces-
sors, attempting to assure that no processor is idle
while there are tasks waiting for service. Similarly, a
solution to the resource access problem attempts to
ensure that there are no such resources idling while
requests are queued at other nodes. A mutual re­
lation between two nodes in a distributed system is
identified, where one node is a service provider and
the other is a service user. One of the strengths of
large-scale distributed systems is that when a node
cannot fulfill a service request locally, it may issue a
request to another node, where the service is avail­
able. The challenge is to find a service provider and
to keep the system stable and scalable while doing so.
Load sharing algorithms provide an example of the
cooperation mechanism required when using the mu­
tual interest relation. A location policy determines the
approach used for locating a remote resource. Infor­
mation propagation, request acceptance and process
transfer policies are other components of such algo­
rithms. When incorrect information can be detected
and recovered, decisions can be based on weakly con­
sistent information which may be inaccurate at times
([7][13][18]). Weak-consistency allows inaccuracy as
well as partiality. State information can be used as a
hint for decision making enabling local decisions. Such
state information is less expensive to maintain. The
use of partial system view reduces message trafRc, as
less nodes are involved in any negotiation. For the
benefit of maximal performance a hint should nearly
always be correct.

Adaptive algorithms adjust their behavior to the dy-
namic state of the system. Thus, they are able to
better approach the full computational power of the
system. But, they also carry a lot of overhead. Their
behavior might become unpredictable when faced with
inaccurate information. Therefore, the complexity
of the algorithms should be kept as low as possible
while stili allowing for a significant performance im-
provement. Few such algorithms are subsequently de­
scribed.

2.2 Early Study

In a study by [7] the performance of location poli­
cies with different complexity levels is compared. The
research was performed on load sharing algorithms.
Three location policies were studied: random policy
(which is not adaptive), threshold policy, and short-
est policy. Random selection, which is the simplest,
yields significant performance improvements in com-
parison with the no cooperation čase. Stili, a lot of
excessive overhead is required for the remote execu-
tion attempts, many of which may prove to be fruit-

PRESERVING MUTUAL INTERESTS IN HPCC Informatica 23 (1999) 41-48 43

less. Threshold probes a limited number of nodes. It
terminates the probing as soon as it finds a node with
a queue length shorter than the threshold. Threshold
results in a substantial further performance improve-
ment. Shortest probes several nodes and then selects
the one having the shortest queue, from among those
having queue lengths shorter than the threshold. By
probing nodes before actually sending a task for re-
mote execution, the amount of data, carried by the
communication network, is decreased. However, there
is no added value to looking for the best solution. A
node should not look for the best solution but rather
an adequate one. It may thus be concluded that ad-
vanced algorithms do not necessarily entail a dramatic
improvement in performance. Many approaches sug-
gested later are based on [7] which illustrates a great
advantage because of its simplicity. Its drawback lies
in having to initiate negotiation with remote nodes
upon request. This may result in lengthy delays. To
avoid such remote message exchange state Information
regarding other nodes in the system should be main-
tained locally. In [19] such state Information is held
locally and periodically updated. A node often deletes
Information regarding resource holders which are stili
of interest. In order to better support similar and re-
peated resource access requests, cache entries of mu-
tual interest should be retained as long as they are of
interest. Such an algorithm is described next.

2.3 Flexible Load Sharing

In the Flexible Load Sharing algorithm (FLS) [13] a lo-
cation policy similar to Threshold is used. In contrast
to Threshold, FLS bases its decisions on local Informa­
tion which is possibly replicated [1] at multiple nodes.
For scalability, FLS divides a system into small sub-
sets which may overlap. Each of these subsets forms
a cache (Fig.l) held at a node. Cache members are
nodes of mutual interest which are first discovered by
(pure) random selection. Biased random selection is
used from then on in order to retain entries of mutual
interest and select others to replace discarded entries.
The cache actually defines a subset of system nodes,
within which the node seeks a partner. That way the
search scope is constrained, no matter how large the
system is as a whole. The algorithm supports mutual
inclusion and exclusion, and is further rendered fail-
safe by treating cached data as hints. It can be com-
pared to unbiased random selection where new nodes
to be included in the cache of a node are selected pe-
riodically and randomly, even if nodes sharing mutual
interests existed in the current cache. In order to min-
imize state transfer activity, the choice is biased and
nodes sharing mutucJ interests are retained. In this
manner premature deletion is avoided. In addition,
it is important to note that FLS does not attempt to
produce the best possible solution, but like Threshold,

it offers instead an adequate one, at a fraction of the
cost. By doing so, the extra (communication and pro-
cessing) overhead is saved. However, FLS presents an
added value to the algorithms discussed in [7] research:
the necessary Information for matching partners, shar­
ing a mutual interest, is maintained and updated lo-
cally on a regular basis, rather than waiting for the
need to perform the matching to actually arise in order
to start gathering the relevant Information. Cache en­
tries of mutual interest are retained as long as they are
of interest. Premature deletion is thus avoided. This
policy shortens the time period that passes between is-
suing the request for matching and actually finding a
partner having a mutual interest. The FLS algorithm
can be extended to any other matching problem in a
distributed system, as will be shortly demonstrated.

2.4 Locality Study
Another interesting approach for locating resources is
described in [14]. A local data structure which is ef-
ficiently maintained is described where state Informa­
tion is held of ali other nodes and not only those cur-
rently of mutual interest. Again this study was in the
area of load sharing. The motivation is to improve the
probability that remote requests would be directed to-
wards nodes that share a mutual interest, thus low-
ering the cost of the search for a mutual partner. A
disadvantage of this scheme is its dependency on sys-
tem size which violates scalability. In the next section
we describe in detail a scalable and adaptive algorithm
preserving mutual interests [13]. We then propose how
to enhance locality in line with [14] within this frame-
work.

3 Preserving Mutual Interests
for Resource Sharing in
Coniplex Network Systenis

In this section we describe in more detail the flexi-
ble load sharing algorithm (FLS) [13] which supports
scalable and adaptive initial allocation of processes to
processors. To enable analysis of this complex environ-
ment an idealized environment (basic čase) is initially
assumed characterized by the following:

— no message loss

— non-negligible (>0) but constrained latencies for
accessing any node from any other node

— availability of unlimited resource capacity, i.e., the
number of nodes in a cache is not limited

— the selection of new resource providers to be in­
cluded in the cache is not a costly operation and
need not be constrained.

4 4 Informatica 23 (1999) 41-48 O. Kremien et aJ.

A local cache is maintained at each node. The main
cache parameter is :

— n, the number of nodes to try to include in the
cache

A cache contains the Identification of other nodes
with mutual interest currently known to the node to-
gether with their current state. This is discussed next.

3.1 State Metric

The algorithm for preserving mutual interests defines
three states for the nodes of the system positive, neg­
ative, and neutral. with the foIlowing semantics. A
negative node experiences resource shortage; a posi­
tive node has surplus resource capacity, i.e. it is ca-
pable of serving external resource access requests; a
neutral node does not participate in resource sharing.
A node is of interest to another node if and only if these
two are of 'opposite' states. This relation is symmet-
ric and each is interested in having the other in its
cache. Therefore, a node need retain only such nodes
in its cache. The state may be determined by applying
thresholds to a resource state. Assume the existence
of positive and negative thresholds and and let r repre-
sent the load imposed on a resource at node i. The load
may be expressed as the length of the resource request
queue at the node, resource utilization, a combination
of the two or any other relevant measure applicable. A
node resource state r is thus mapped into one of three
possible states:

s t a te r

where R is the load measured. Scale is recognized
as a primary factor influencing the design, implemen-
tation and performance of complex netvvork systems
[15]. Another scalability factor of major importance
is latency (or delay). Network delays may be lengthy
and also subject to high variability [11].

Note that even under the optimistic assumptions
made, it is desired to constrain the scope of operation
and resultant overhead. To achieve this goal, the algo­
rithm takes advantage of weak-consistency which per-
mits both partiality and temporary inaccuracy. Par-
tiality is dealt with first. By constraining the view a
node has of the system to a small subset of it held
locally in a cache, a node considerably bounds inter-
action with other nodes. A node exchanges state in-
formation with ali nodes in its cache and selects from
these for possible remote resource access. Cache size
is much smaller than system-size. Cache members in­
clude a few other nodes equipped with the resource in

positive if
negative if
neutral if

R>T+
R<T_

T-<R<T+

Positive - C_}

Negative - ^m

Neutral- A

Figure 1: Resource states. A node's cache (view of the
system).

question ^. Cache access time is much faster than any
remote resource access. Having such Information avail-
able locally means that lengthy negotiation with the
name server or other nodes before a resource location
is found can be avoided. Also similar and repeated
requests are made more efficient.

An algorithm for preserving mutual interests is pre-
sented with the main aim of hiding scale. We first
present a simplified form of the algorithm for preserv­
ing mutual interests. We then extend the basic algo­
rithm to enhance locality.

3.2 Basic Algorithm for Preserving
Mutual Interests

For preserving mutual interests the following location
and acceptance policies are used. If the cache of a
node is not empty, then a remote resource is selected
from it. A request to access the resource is sent with
the command piggybacked so as to allow for imme-
diate access if the request is accepted. Otherwise a
negative acknowledgment is returned. The remote re­
source holder employs the foIlowing acceptance policy.
If the resource is available and capable of granting ex-
ternal requests, a positive acknowledgment is sent to
the request originator; otherwise a negative acknowl-
edgment is sent. Note that as a cache usually holds
Information regarding several remote locations and as
the hit-ratio is high only few requests are expected to
be rejected. These locations are treated as a hint [18]
for decision making and incorrect decisions will be ter-
minated rapidly. The Information policy is performed
upon a change in a node's local load state. This is
in preference to periodic update which can be hard
to tune. Ali cache members are then notified. A re­
mote resource access decision is thus applied within a
node, independently of its application in other nodes.
Caches may overlap. Cache membership is symmetric.
This symmetry is a key property for ensuring that a
node is kept informed of the states of the nodes in its

' If such information is not available locally, a name service
could be consulted to obtain other node identifiers. The latter
relate to the local sub-network and also neighboring ones.

PRESERVING MUTUAL INTERESTS IN HPCC Informatica 23 (1999) 41-48 45

cache. A node retains useful nodes in its cache and
discards nodes which are no longer of interest. Cache
membership is thus dynamic and adaptive, aimed at
retaining those nodes of interest and discarding others.

Two events may cause a change to the cache con-
tents: cache refresh and message receipt described
next. In the following discussion:

— d denotes the current cache for resource r at
node i

— I Ci I is the size of the cache at i

— statej denotes the current state of node i

— mutuali,s is true if nodes i and s are of 'opposite'
States, false otherwise. i.e.:

mutuali^s = {statci = positive and statCg = negative)

or {statei = negative and states = positive)

= not (statei — neutral or statcg = neutral or

statei = states)

Obviously, this predicate on nodes i and s is symmet-

ric and hence :
mutuali^s = mutualg^i

Parts of the algorithm are given as rules of the form
"guard > action" which form alternatives in a guarded
command if...[]...p... fi. Two events may cause a
change to the cache contents: cache refresh and mes­
sage receipt (described next).

Message Receipt - When a statCs message arrives
at i from node s, the following message receipt proce­
dure is invoked :

if (s^Ci and mutual;,s) =>
insert s entry < s, state, > into C;;
send a responding message state; to node s;

[] (sSCi and mutual,-,j) =>
update s entry < s, state, > in C;;

[] (sgCi and not mutual;,,) =>
discard s entry from C,-;

n (s ^C; and not mutual;,») =>
skip (ignore);

Thus, nodes with mutual interest are included and
updated while others are discarded. Hence, Cj con-
tains only nodes of mutual interest. The response in
the first čase, where s is a newly selected node of mu­
tual interest for i, acts to confirm to s that i is of in­
terest for s. The second čase ensures that s is retained
if it is stili of interest, but terminates the state ex-
change between i and s by giving no further response.
The other two cases ensure that nodes with no mutual
interest are discarded and ignored, respectively.

Cache Refresh - The current cache is refreshed
upon initialization (the cache is initially empty), and
following a resource state change^. Node i ušes the
following procedure:

{for aH nodes k € C;}:
(disseminate statei to node k;

;discard k)
if (state;=positive or state; =negative) =>

randomIy select n nodes {ji--.jn} from the set
{l,2,...,systemjize};

{for ali nodes kS{ji...j„} :
disseminate state; to node k};
[] (state;=neutral)=> skip;

fl

Extensions to achieve enhanced locality are de­
scribed next.

3.3 Extensions to achieve enhanced
locality

Following a state change at a node, the local informa-
tion about other nodes that previously had a common
interest with the node is lost. This may not always be
plausible. Consider a node that experiences a service
surplus. It may start providing the available service to
some other remote nodes. As the remote requests con-
tinue to arrive at it, it may experience a service short-
age, thus changing its state. But then, as it notifies the
other nodes it is no longer available for their requests
and the remote requests stop. It would return to its
previous, surplus, state within a short while. This sce-
nario demonstrates how state swings may occur.

Upon returning to the surplus state, the node needs
to discover nodes with a shortage for that service. In
the original algorithm this search is done from scratch:
nodes are probed randomly, in the hope that some of
them share a common interest with the local node. A
better strategy may be to save aside a cache that be-
came invalid once the local node changed states. Then,
when the node returns to the previous state, and es-
pecially in čase the return to the state occurred -vvithin
a short while, it would be plausible to first probe the
nodes that composed the old cache, which was saved
aside. Those nodes which shared a common interest
with the node before it changed its state, and there-
fore it is likely they would share this common interest
with it again, once it returns to that state. Directing
the probing towards those nodes may improve per-
formance, compared to an entirely random probing.

^Note that, since a cache only contains nodes of mutual in­
terest, it will be empty immediateljf following a state change
and consequent cache refresh. However, if the state of the node
is not N, the responding messages will quickly re-establish cache
membership. If the state is N, its cache will remain empty.

46 Informatica 23 (1999) 41-48 O. Kremien et al.

which is a total 'shooting in the dark'.
Hence, our improved FLS acts as follows: Two

caches are used to save aside data that is no longer
of interest to the local node: an old-positive-state-
cache and an old-negative-state-cache. When a node
changes its state from negative to some other state
(neutral or positive), we clean the content of the old-
negative-state, and insert to it the nodes of the current
cache, before refreshing it. Likewise, when a node is
in a positive state, and its state changes, the content
of the current cache is copied to the old-positive-state-
cache, to be saved until that Information is needed
once again. When a node state becomes positive (or
negative), and a refresh cache is in order, the nodes in
the old-positive-state-cache (or the old-negative-state-
cache) are probed first. Once the old cache nodes are
exhausted, probing is done at random, for a total of
n probed nodes, similar to the way it is done in the
original FLS algorithm.

Notice that there is no saving of cache when the
node changes state from a neutral state, and there is
no modification to the way cache refresh is done once
a node becomes neutral. This is due to the fact that a
neutral node share no common interest with any other
node (this is, in fact, the way a neutral state is de-
fined). Thus, the cache of a node in a neutral node is
always empty, and there is no sense in probing other
nodes as long as the local node is neutral. Our exper-
iments are conducted in PVM is summarized next.

4 Parallel Virtual Machine
PVM is composed of two parts - the library of PVM
interface routines, called "pvmlib", and the support
software system. The latter is called "daemon" - pvmd
and executed on ali the computers making up the vir-
tual machine. These pvmds are interconnected with
each other by a network. Each daemon is responsible
for aH the application component processes executing
on its host. There is a master daemon which con­
trols the physical configuration and acts as a name
server. Otherwise, the control of the virtual machine
is completely distributed. Process control is addressed
in the following paragraphs. PVM [4][8][9][10] pro­
cess control includes the policies and means by which
PVM manages the assignment of tasks (processes in
the PVM system) to processors and controls their exe-
cution (spawning) . The computational resources may
be accessed by tasks using the following policies: de-
fault (transparent) policy, architecture dependent pol-
icy, machine specific or a policy defined by the user
to substitute the default (round-robin) PVM process
control. In the čase of default/transparent, the next
node is selected from this pool in a round-robin man-
ner. The main drawbacks of such policy are the fact
that PVM ignores the load variations among the differ-
ent nodes and also PVM is incapable of distinguishing

between machines of different speeds. We extended
PVM to provide an alternative spawn (execution) ser-
vice which is scalable and adaptive [12]. This was fur-
ther extended to enhance locality. Initial Performance
Measurement results in PVM are described next.

5 Initial Performance
Measurement Results

We experimented on a system composed of eight Pen-
tiumll based vvorkstations that are connected by a
Fast-Ethernet LAN. Each workstation is an indepen-
dent source of load (each workstation generates se-
quence of 100 processes). PVM is the distribution
environment used. The average load imposed on the
system was 70 %. To measure performance in a cluster
environment we measured the following three cases :

— PVM (default round-robin process allocation).

— Extended PVM. This system includes Resource
Manager (RM) [12] which ušes resource sharing
service (FLS) to improve process allocation.

— Extended PVM with enhanced locality.

A hit is defined as a lookup request, which could be
answered with the current contents of the cache. We
define a miss to be a lookup request which could not
be answered with the current contents of the cache,
such as an overloaded node not finding an entry for an
underloaded node in the cache. Cache hit should be
maximized. Cases of cache miss should naturally be
minimized, although to a much lesser extent. Zhou [19]
has found that even when 50-70 % of the components
are not eligible for remote execution, load sharing can
stili be beneficial.

The percentage of probing based on previous caches
is defined to be the percentage of probed nodes which
were chosen based on their appearance on previous
caches, out of aH probed nodes. Notice that as this per­
centage increases, the percentage of successful probing,
that is probes that result in finding a node which in-
deed shares a common interest with the local node,
is also increased. Hence, our first goal, to better di-
rect the probing towards nodes that are more likely to
share a common interest with the local node, assuming
that this will increase the number of successful probes,
was indeed realized.

As the probing process becomes more efficient, the
cache is updated within a shorter while, when a node
changes it state. A faster update of the cache means it
is empty for shorter periods of time. As a consequence
the miss percentage decreases. Our results verify this
phenomena: The percentage of missed when the ex-
tended FLS is used, is lovver than that percentage for
the original FLS.

PRESERVING MUTUAL INTERESTS IN HPCC Informatica 23 (1999) 41-48 47

Figure 2: Response time benchmark. Eight Pentiumll
nodes. Each node generates 100 tasks.

It should be noted that the most noticeable decrease
in the miss percentage, in our experiment, is at nodes
where the percentage of probing based on previous
nodes is relatively low. This seems to be a paradox
at a first glance, but it is not: The nodes having the
higher percentage of probing based on previous caches,
in our experiment, are the two underloaded nodes.
Those nodes change their state extensively due to re-
ceiving jobs from the overloaded nodes. When each
of them returns to the underloaded state, it ušes the
cache that was previously valid for this state, to first
probe the nodes that were previously found to be over­
loaded (and hence share a common interest with the
underloaded node). Those probed nodes are, with high
probability, the two overloaded (on average) nodes,
and will most likely indeed be overloaded. Hence, the
underloaded nodes update the overloaded nodes about
their return to the underloaded state within a short
while. The caches of the overloaded nodes is updated
more quickly, and so it is less likely that the caches
will be found to be empty when a remote execution is
in order. Thus, the percentage of misses is decreased
for the overloaded nodes.

To conclude: Our experiment showed that probing
based on previous cache members yielded a more suc-
cessful and efRcient probing process. As a result caches
are updated faster, and are empty less frequently. The
miss ratio is thus decreased, and the number of remote
execution possible to be carried out is increased. In
our example (Fig.2) the extended FLS gives an im-
provement of 31 % in comparison to PVM. We expect
substantial improvement in complex environments like
internet.

6 Conclusions and Future
Study

This paper presented a PVM-based implementation
of an enhanced scalable and adaptive resource sharing
facility. Our system is based on commodity hardware
(PCs and networking) and software (PVM) offering
a low cost solution as an alternative to mainframes
and MPP's. Such a system adapts to state changes
which are unpredictable in a complex network environ-
ment. Simulation [11] and prototype implementation
[12] results demonstrate the utility of an algorithm pre­
serving mutual interests to such environments. This
was subsequently enhanced to optimize locality as de-
scribed in this paper. We are encouraged by the rela-
tive ease of FLS algorithm implementation as resource
sharing service and its extension and the results it pro-
vides. An extensive performance measurement study
of locality is planned.

Our current implementation supports scalable and
adaptive initial placement. It will be complemented
by migration after start-up [2] to support a general
purpose PVM-based high performance computation
ser ver. We are working on adaptation of this cluster
computation server to the Internet environment and
its technologies (like JAVA, ČORBA). Initial results
demonstrate generality of the algorithm preserving
mutual interests and usefulness to support load shar­
ing and also the dynamic parking assignment prob­
lem'. We are currently working on its customization
to e-commerce.

Acknowledgments
We gratefully acknowledge the Ministry of Science
grant no. 8500 for its financial support. We extend
our thanks to Peggy Weinreich for her valuable edito-
rial work.

References
[1] M. Baentsch, L. Baum, G. Molter, S. Rothkugel,

and P. Sturm. Enhancing the Web's Infrastructure:
From Caching to Replication. IEEE Internet Com-
puting, vol. 1(2), March - April 1997.

[2] A.Barak, A. Braverman, I.Gilderman, O. Laadan.
Performance of PVM and the MOSIX Preemptive
Process migration Scheme. Proč. 7th Israeli Conf. on
Computer Systems and Software Engineering, IEEE
Computer Society Press, 1996.

[3] A. Barak, S. Guday and R.G. Wheeler. The
MOSIX Distributed Operating System, Load Bal-
ancing for UNIX". Lecture Notes in Computer Sci­
ence, vol. 672, Springer-Verlag, 1993.

48 Informatica 23 (1999) 41-48 O. Kremien et al.

[4] A. Beguelin, J. Dongarra, G.A. Geist, W. Jiang,
R. Manchek, V. Sunderam. PVM: Parallel Virtual
Mchine, a User's Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA,
1994.

[5] S. Orane and K. Twidle. Constructing Distributed
Unix Utilities in Regis. Proceedings of the Sec-
ond International Workshop on Configurable Dis­
tributed Systems, March 1994.

[6] A. Dupuy and J. Schwartz. Nest: Network Simu­
lation Tool. Technical Report, Communications of
the ACM, vol. 33(10), October 1990.

[7] D.L. Eager, E. D. Lazowska and J. Zahorjan.
Adaptive Load Sharing in Homogeneous Distributed
Systems. IEEE Trans, on Software Eng., vol. 12(5),
pages 662-675, May 1986.

[8] G.A. Geist, J.A. Kohl, R. Manchek and P. M.
Papadopoulus. New Features of PVM 3.4. 1995
EuroPVM User's Group Meeting, Lyon, France,
September 1995.

[9] G.A. Geist, J.A. Kohl, P. M. Papadopoulus. "CU-
MULVS": Providing Fault Tolerance, Visualization
and Steering of Parallel Applications. SIAM, August
1996.

[10] G.A. Geist, J.A.Kohl, P.M. Papadopoulos and
S.L. Scott .Beyond PVM 3.4: What we have learned,
What's next, and Why. Oak Ridge National Labora-
tory, Computer Science and Mathematics Division,
Oak Ridge, URL http://www.epml.gov, 1997.

[11] M. Kapelevich and O. Kremien. Scalable Re-
source Scheduling : Design , Assessment, Prototyp-
ing. Proceedings 8th Israeli Conf. on Computer Sys-
tems and Software Engineering, IEEE Computer So-
ciety Press, 1997.

[12] M. Kemelmakher and O. Kremien. Scalable and
Adaptive Resource Sharing in PVM. LNOS Pro­
ceedings, vol. 1479, pp. 196-205, Springer-Verlag,
ISBN 3-540-65041-5,1998.

[13] O. Kremien, J. Kramer and J.Magee. Scalable,
Adaptive Load Sharing Algorithms. IEEE Parallel
and Distributed Technology, pages 62-70, August
1993.

[14] F. Krueger, N. Shivaratri. Adaptive Location
Policies for Global Scheduling. IEEE Transactions
on Software Engineering, vol. 20(6), pages 432-444,
June 1994.

[15] M. Satyanarayanan. Scale and Performance in
Distributed File System. IEEE Transactions on
Software Engineering, vol. 18(1), pages 1-8, January
1992.

[16] N. Shivaratri, P. Krueger and M. Singhal. Load
Distributing for Locally Distributed Systems. IEEE
Computer, pages 33-44, December 1992.

[17] R. G. Smith. The Contract Net Protocol: High-
Level Communication and Control in a Distributed
Problem Solver. IEEE Transactions on Computers,
0-29(12), pages 1104-1113, December 1980.

[18] D.B.Terry. Caching Hints in Distributed Systems.
IEEE Transactions on Software Engeneering, vol.
SE-13(1), pages 48-54, January 1987.

[19] S. Zhou. A Trace-Driven Simulation Study of
Dynamic Load Balancing. IEEE Transactions on
Software Engineering, vol. 14(9), pages 1327-1341,
September 1988.

http://www.epml.gov

Informatica 23 (1999) 49-56 49

A Dynaniic Load Balancing Method On A Heterogeneous Cluster
Of Workstations

Alessandro Bevilacqua
Department of Physics, University of Bologna and INFN Bologna, Viale B'. Pichat, 6/2, Bologna, Italy
Phone: +39 051 6305 163, Fax: +39 051 6305 047
E-mail: bevi la@bo. infn . i t

Keywords: dynamic load balancing, cluster of workstations, data parallelism, PVM, pool-based method,
manager-workers

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 10, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

The efficient usage of worksta,tions dusters depends Grst ofall on the distribution ofthe workload.
The foUowing paper introduces a method to obtain efficient load balancing for data parallel appli-
cations through dynamic data assignment and a simple pnority mechanism, on a heterogeneous
cluster of workstations, assuming no prior knowledge about the workload. This model improves
the performance of load balancing methods in which one or more control processes remain idle
for an extended period of tirne. In order to investigate the performance of this method we take
into consideration a problem of 3D image reconstruction that arises from events detected by a
data acquisition system. Studies of our load balancing model are performed under slight and
heavy ioad condition. Experimental results demonstrate that this model yields a substantial load
baJance, even more if workstations are heavily loaded, from exploiting the idle time ofone control
process. In addition, this strategy reduces the overhead due to communication so that it could be
successfully employed in other dynamic balancing approaches.

1 Introduction

In academic and industrial institutions inexpensive
clusters of workstations or PCs are replacing single,
more expensive, parallel machines and small symmet-
ric multiprocessor (SMP) systems can be found within
many of the powerful modem systems. Research cen-
ters like CERN ^ are developing experiments based on
clusters of thousands of LAN workstations connected
to a WAN[1].

Usually, in a LAN there are connected workstations
with varied performance levels, as well as very different
loads and variable communication times. In addition
to the heterogeneous hardware, the heterogeneity of
such MIMD systems is due to their multiuser environ-
ment that makes the workload change continuously.
To maximize the performance of these loosely coupled
parallel systems, it is essential to minimize the idle
time for each process and ensure the balancing of pro­
cesses workload. The techniques involved in load bal­
ancing and task scheduling play the key roles in achiev-
ing an equal share of total workload for each process
and help to minimize the total execution time[2, 3, 4].

There are many studies dealing with problems of
load balancing for distributed memory systems. Some
works[5, 6] assume that the processors employed are
continuously lightly loaded, but commonly the load

'The European Laboratory for Particle Physics.

on a workstation varies in an unpredictable manner.
Other studies based on data migration introduce a
large amount of communication overhead[7].

This paper presents a load balancing method for
data parallel applications, based on dynamic data as­
signment. It is suitable for a cluster of workstations
even if the load changes dynamically. This method
is based on a modified manager-workers model and
achieves workload balancing by maicimizing the useful
CPU time for ali the processes involved, even for the
manager, without introducing axiy significant overhead
due to the method itself. In addition, it can reduce the
communication time needed for distributing data and
for collecting results. This model is accomphshed by
means of a fixed ivorking process, the manager, which
holds ali the available work and satisfies, by means of
a priority queue, idle processes, the workers, asking it
for more work.

This paper consists of 7 parts. In Section 2 we
present an overview of the load balancing problem. In
Section 3 we outline the image reconstruction problem
used to test our load balancing model and the sequen-
tial algorithm that had been previously accomplished.
Section 4 describes the load balancing strategy, the
parallelized version of the previous algorithm and the
priority mechanism. Section 5 contains the results of
the experiments and an analysis of performance. Con-
cluding remarks follow in Section 6. Finally, in Section

mailto:bevila@bo.infn.it

50 Informatica 23 (1999) 49-56 A. Bevilacqua

7 we suggest future studies and appUcation fields.

2 Review

To achieve the best performance from a parallel appli-
cation in a heterogeneous computing environment, it
is important to minimize the idle time of processes and
to ensure that the workload stays evenly distributed
so that each process ends its task at almost the same
moment.

In a cluster of workstations the continuously chang-
ing workload makes the estimation of execution time
unpredictable. Works in [5, 6] show how to achieve
a good load balancing by assuming that ali proces­
sors of the workstations employed are idle or lightly
loaded during the whole computational period, but
this is not realistic in a network of workstations. In [7]
load balancing is accomplished by dynamically chang-
ing the number of virtual processors that each physi-
cal processor hcis to emulate, but this high granularity
approach produces a large communication overhead.
The load balancing method considered in [8] is de-
signed for non uniform iterative algorithm and redis-
tributes data after each iteration to balance the work-
load among aH processors. However, no re-balance is
considered during each iteration, that might take a
long time. Moreover, in the presence of a high number
of short time iterations the communication overhead
becomes large. The work presented in [9] is based on a
manager-workers model and exploits data redistribu-
tion for achieving load balancing. The manager directs
the workers to shift data among themselves to obtain
a more balanced condition, even within an iteration,
but the goodness of this method is strongly dependent
from theirs image processing applications. Moreover,
even if that load balancing scheme tries to minimize
communication costs, under certain conditions it may
introduce a large overhead due to communication and
it does not minimize the idle time of processes anyhow.

Our load balancing scheme gives a method to mini­
mize the idle time of each processor involved and to re-
duce the communication overhead, by increasing data
locality. In addition, it could be applied to already
existing load balancing methods.

that has been previously injected. The image arises
from the measurement of the radiopharmaceutical dis-
tribution inside the body. PET imaging consists of two
steps. First, the data acquisition system detects the
number of pairs of opposite photons {events, deri ved
from positrons annihilation); then, through a recon-
struction method, we can obtain the original distribu-
tion, hence the related image.

In this test, the detector system is an experimen-
tal apparatus[ll] made of two pairs of detectors po-
sitioned on a rotating gantry at 90 degrees from each
other. After filling a phantom[12] with a radiophar-
maceutic, the emission was measured. The tomograph
rotated on a radius of 76mm by 90 degrees in 20 dis-
crete steps around the phantom and detected a total
amount of lO'̂ events. The program that manages this
acquisition system periodically stores on a file a block
of 10000 events, 18 bytes an event, and it adds con-
trol data such as the time employed for the acquisition
and the angle of rotation. This file will be the input
file for the application. The processed events range
from 70 to 90 percent of the total number of events,
for statistical, physical and electronic reasons. This
non-homogeneous data processing represents another
cause of load unbalancing.

To solve the problem of image reconstruction
we accomplished a 3D "weighted" backprojection
method[ll].

The phantom to be reconstructed lays into a volume
of 40x40x40mm^ represented by a 3D matrix M of di-
mension N^, where N depends on the resolution of the
final reconstructed image (here N=128). Let the voxel
be a matrix element, and the event line be the ideal
line joining the detectors, along which a pair of pho­
tons travels in opposite directions. Of course, the other
details involved in this method are not described here
because they would deviate attention from the purpose
of this study. Fundamentally, this method consists of
filling with weighted values w, for any accepted event,
aH voxels crossed by the event line. It is important to
note that the amount of intersected voxels changes as
considering varied event lines; thus producing a differ-
ent computational load for each event.

Here briefly outlined the kernel of the sequential
algorithm, in a pseudo-code:

3 Image reconstruction
problem and sequential
algorithm

We give here a short description of this image recon­
struction problem and of the acquisition system we
used to test the performance of our load balancing
model.

Positron Emission Tomography (PET) is a tomo-
graphic method[10] that allows imaging of any body

1. while (there are blocks in the file) do
2. READ one data block
3. for (each accepted event) do
4. for (each crossed voxel) do
5. for (x from 1 to r) do
6. M(ia;, j j , ka;) = M(i^, j;t , kj;) -f w
7. WRITE M

where r depends on the resolution of the reconstructed
object.

Even if a 2 bytes integer matrix expresses the fi-

A DVNAMIC LOAD BALANCING METHOD Informatica 23 (1999) 49-56 51

nal volume, M is a 4 bytes float type matrix during
the reconstruction steps. It requires 8MB that are the
main memory requirements of this algorithm. As seen,
there are no data dependencies among blocks and if
we duplicate M on each process memory, then the re­
construction procedure between code lines 3-6 can be
executed independently.

4 Load balancing model

4.1 Load balancing strategy

Dynamic load baJancing methods can be divided into
two main categories[3]. In peer-based methods, the
work is initially distributed among different processes
and among them data migration is required to achieve
load balancing. In pool-based methods, one process has
the whole work and idle processes ask it in order to get
more work[13].

To investigate a method for extracting maximum
performance from the system and also from each
process, attention is focused on pool-based methods,
which introduce a smaller overhead due to interpro-
cessor comraunication. Hence, in this load balanc­
ing scheme a fixed process, called manager process,
has ali the available work and idle processes, called
vjorkers, ask this fixed process for more work. In
the canonical manager-workers scheme the workers are
self-scheduled and the manager remains idle and ready
to satisfy requests as they arrive; however, it performs
only control issues, as in [9]. In the present paper, we
name our model the "working-manager modef: the
manager ušes its idle time to process data itself and
pushes the incoming requests into a circular queue by
using a FIFO strategy. During the execution the man­
ager checks this queue with a dynamically variable fre-
quency.

The heuristic method is simple: when the manager
does not perform any control task it must work, but
it should never choose working over managing. As it
will be seen, this strategy reduces the overhead due to
communication such that it could be successfully em-
ployed in a few dynamic balancing approaches affected
by high communication costs. Further, we introduce
a priority mechanism, which in some cases yields a
significant improvement.

4.2 Parallel algorithm

As shown above for the sequential algorithm, the
reconstruction procedure can be executed indepen-
dently, making it possible to parallelize at line 1 in
the code.

After the initial data have been divided among pro­
cesses in a block cycle manner, each process starts
working on its local data. When a worker runs out

of work, it gets a block from the manager, but while
each process has work to do, also the manager vjorks.

To accomplish the working-manager model we fol-
low the master-slave paradigm, in vi'hich a separate
master program is responsible for processes (slaves)
spawning, data assignment and collection of results.
Then, we implement the SPMD model, in which one
code runs on each processor, to avoid keeping apart the
master tasks from the slaves ones and to consider a fu-
ture porting on monotasking MPP systems (e.g.' the
CRAY T3E machine). The code is written in C lan-
guage by using PVM libraries for message passing[14].

Here is a brief description of the kernel of the
parallel algorithm. Again, by using a pseudo-code:

8. while (there are blocks) do
9. if (master) then CALL scheduler

10. else RECV data
11. for (each accepted event) do
12. if (master AND {event mod Q) = 0) then

CALL scheduler
13. CALL compute
14. SEND End-Of-Block signal
15. if (master) then WRITE M

where event is the sequential order number of the
accepted event, Q is an integer number, RECV
(blocking) and SEND (asynchronous) are PVM
routines, compute is a fragment of the reconstruction
method. scheduler has the follovving pseudo-code:

16. while (N_RECV End-Of-Block signal) do PUSH
[procnum, prioritg)

17. while (queue not empty OR procnum is master)
do

18. READ data
19. if (queue not empty) then
20. POP {head)
21. SEND data

PUSH and POP are the typical operations over
queues, procnum is the sender process identifier, head
is the first process in queue, N_RECV is a PVM non-
blocking routine. The following sub-section deals with
the priority mechanism.

In the sequential algorithm line 11 is located inside
the reconstruction procedure, as it should logically be
- the cycle for also belongs to the reconstruction step.
We can observe how it is possible to break off a com­
puting procedure for inserting a call to scheduler. the
manager temporarily leaves its worker j ob to deal with
its manager task.

This procedure is incorrectly called scheduler, mean-
ing that the manager acts there as if it was a sched­
uler. In the algorithm, the time slice that the man­
ager ušes between two subsequent scheduling inside
the computing procedure is dynamically determined

52 Informatica 23 (1999) 49-56 A. Bevilacqua

by "event mod Q", but it could be utihzed any other
cydic mechanism. A disadvantage in using this dy-
namic timing technique could occur if a too high value
for Q were considered - the manager would become
too busy in worker tasks. In this čase, it could be said
that the manager works instead of accomplishing its
prior issues. However, this is a hypothetical condition
because usually the computing time needed to process
an event and the scheduling time slice should differ
from a few order of magnitudes.

4.3 Priori ty queue

Scheduling policies work in conjunction with priority
levels: the higher the priority of a process, the more
the process is executed. Each process begins its exe-
cution with a base priority that can change as the ap-
plication runs, depending on the application require-
ments.

The topic of process load measurement is associated
to problems deahng with load balancing, even more
if the environment is a multitasking system. Many
studies show how the amount of processed data can
be used as workload estimation[9, 15, 16]. We use
the ratio between the accepted events and the block
execution time as a performance index (the speed of
the process) [17]. The priority mechanism assigns the
highest priority to the fastest process, so that it may
execute more blocks.

Let i be the order number of a block computed by a
process and Ei the number of accepted events for that
block. Then the priority P of a process to compute
the next block i+1 is its current speed:

Pi+l —
Ei

(Te + Te) (1)

It is important to recognize that in a heterogeneous
system it does not mean that there is prior knowledge
about each block execution time; it only gives us Infor­
mation on a block arising from the previous one. Here
Te is the execution time and Te is the communication
time needed to transfer the data block from the end-
ing of the SEND, performed by the manager (line code
21), to the beginning of the RECV (Hne code 10), per­
formed by the worker. Both timing measures refer to
the elapsed time. Even if we make the worker pay for
the manager also, it has been verified that under var-
ious load situations, for each block Te>Tc, therefore
the linear order index of the priority queue is computed
by considering Tg only.

Many load balancing methods suffer due to the last
task processing[18]. In fact, execution ends as the last
task ends. In our scheduling approach the worst čase
consists of a condition in which ali processes are end-
ing except for the slowest one, which is queued and it
is going to receive the last block. To avoid this, we

must know when the running processes will end, their
performance and a rough estimation of the last block
execution time for each process.

By using certain peculiarities of the test problem
and keeping statistics of aH the events already pro­
cessed, we can give a rough gualitative estimation of
Ej for each one of the last n blocks, where n is the
total number of processes involved, while they are pro­
cessed. Thus, by means of Ej and the current speed
Pj+i we can deduct an estimation of the block execu-
tion time Tg. Consequently, for each processing block
we can approximately estimate ivhen it will finish. Let
RTj be the remaining execution time of the process j
(one of the last n running processes) and TLj be its
expected execution time on the last block; then, the
most likely process to receive the last block is the one
for which (RTj-I-TLj) is minimum.

5 Performance analysis and
experiniental results

The cluster used consists of 4 workstations, connected
to a LAN by a 100Mbit Ethernet, except for W3, that
mounts a 10Mbit adapter:

Wl) SMP system: 2 Pi l 400Mhz, 512MB;
W2) SMP system: 2 PPro 200Mhz, 128MB;
W3) AMD K6-3D, SOOMhz, 64MB;
W4) DEC AXP 4/200, 200Mhz, 256MB.

Workstations are listed according to their performance
on the sequential algorithm with lightly loaded ma-
chines (i.e. Wl is the fastest one).

The operating system is Linux 2.0 for aH the work-
stations except for AXP, that comes with its native
OSF/1; PVM is the communication library and gcc
the C compiler. As we can see this is a low-cost clus­
ter, with no cost software, but OSF/1.

Most of the difRculty in studying job performance
of a heterogeneous cluster arises from its multi-tasking
environment, in which different tasks running on each
node may change in an unpredictable way the work-
load of the workstations belonging to the cluster.
When studying the performance of a parallel appli­
cation, one must take into consideration those tasks
that produce the so-called external load and limit the
resources for our jobs.

The aim of our measurement is to evaluate the im-
provement introduced by forcing the manager to work,
with lightly and heavily loaded workstations. In the
latter čase, to get more reliable results, an artificial
external load is added by running on each processor
the same Monte Carlo simulation, a very CPU inten-
sive job which keeps the external load unchanged dur-
ing the execution of our tasks (same results have been
obtained by utilizing I/O intensive jobs). Since we
are not interested in absolute measurements[18] of the

A DVNAMIC LOAD BALANCING METHOD Informatica 23 (1999) 49-56 53

performance of this test application the external load
is not exactly quantified, unlike other studies[17], but
we keep it constant. Further, we do not quantify the
communication tirne because this method does not in-
troduce any extra overhead due to communication.

This test is accomphshed by using 6 processes, one a
processor. To get rehable performance data, 10 execu-
tions occurred for each measurement and the reported
values are the averaged ones.

The focus is on the following time measures, using
the Unix/Linux OS times routine:

— idle time: the mean CPU idle time, since a worker
sends the End-Of-BIock signal (code line 14) until
it receives next data (code line 10);

— CPU computing time: the CPU time it takes to a
process to produce its local result;

— global ezecution time: the elapsed time due to ob-
tain the final result;

— unbalancing time: difFerence in absolute value be-
tween the global execution time and the elapsed
time of the first ending process, after it has sent
its result.

We give the percentage of idle time compared with
the total CPU computing time and the percentage of
the unbalancing time compared with the global execu-
tion time.

The overhead introduced by this method is due to
the execution of the scheduler procedure. We kept
statistics about the duration of the scheduler with an
empty queue and it takes a CPU time ranging from
5-10-^s for Wl slightly loaded to O.SlO-^^s for W4
heavily loaded and an averaged value of 80-10~^s.

In these tests we selected Q=50 (line 12). It has
been empirically seen that values less than 50 do not
yield any significant improvement, but when Q in-
creases over 100 it makes the idle time increase rapidly.
When considering a mean value of about 7500 accepted
events, there are almost 150 calls a block. Thus, the
overhead Tib introduced by our load balancing scheme
is:

T;6 = (150 • 10^) • (80 • 1 0 - ^) = 12s (2)

This is less than 0.5% on the average of ali the CPU
execution times.

In ali the figures comparing the working-manager
method ("M") with the canonical one, in which the
manager does not work: both situations were accom-
plished with heavily ("H") and shghtly ("S") loaded
•vvorkstations.

In Fig.l ali 16 execution times are expressed in
seconds with workstation W« acting as master and
in Fig.2 the improvements introduced by making the

manager work. The first result consists of an improve­
ment on each workstation independently from the ex-
ternal load; further, W4, the slowest workstation of the
cluster, has greater improvement in a heavily loaded
system.

As expected, the improvement is proportional to the
manager capability, and it decreases with a slow host
as master. Wl is a powerful dual processor system:
thus, having a manager that works a lot means adding
a poiverful resource; oppositely for a slow workstation.

Fig.3 shows the trend of the ratio between the mean
CPU idle time and the total CPU execution time. Here
it is essential to recognize that when the manager does
not work we do not take into consideration its idle time
(always more than 99%) to compute the mean value
(i.e. this is the workers only idle time). This might be
more correct, being it also involved in the execution,
and results would be much better for our method, here
we would rather show that we exploit ali the idle time
of the manager by not increasing the mean idle time
of the workers: our heuristic method is accomphshed.

Global execution time

B

V.

1

ouuu

5000

4000

3000

2000

1000

JI

"

^

^

H —*—

SM — » ^

Wl W2 W3 W4

Fig . 1: global execution time with the master hosted in the

workstatioii Wi, under heavy (H) and slight (S) load condition,

with (M) and without the manager working.

Performance improvement
30%

25%

20%

15%

10%

5%

0%

HM •
SIVI

Wl W2 W3 W4

F ig . 2; performance improvement obtained by making the

manager work, under both cases of heavy (HM) and slight (SM)

load conditions, with the master hosted in the workstation Wi.

Mean CPU idle time rate
6%

5%

4%

3%

2%

1%

0%
Wl W2 W3 W4

Fig . 3: percentage of the mean CPU idle time on the total

CPU time with the master hosted in the workstation Wi, under

54 Informatica 23 (1999) 49-56 A. Bevilacqua

heavy (H) and slight (S) load condition, with (M) and vvithout
the manager working.

Unbalancing time rate
1.5%

1.0%

0.5%

0.0%
Wl W2 W3 W4

Fig. 4: percentage of unbalancing time expressed as the ratio
betvveen |TMAX - TMIN| and the elapsed time of the appli-
cation, vvhere TMIN and TMAX are the elapsed time it takes
respectively to the flrst and to the last process to get results.

Speedup

Wl W2 W3 W4

Fig. 5: speedup values Sj expressed as the ratio between Ta
and Tp, respectively the time of the sequential and the parallel
algorithm on Wj.

Efficiency
100%

80%

60%

40%

20%

0%

H •
•HiM •

S •
S M •

W l W 2 W 3 W 4

Fig. 6: "weighted" efflciency defined as the ratio between Sj
and the weight (P^/Pi) of the workstation Wi

In fact, in aH cases under both heavy and slight load
conditions, values are better when the manager works,
except in the čase of W4 (HM). This is more than we
expected.

In this model, the manager keeps some blocks for it-
self: this increases data locality and reduces the com­
munication time, thus the mean idle time that pro-
cesses spend waiting for data.

In Fig.3 the anomalous behavior of W3 in slight load
condition is due to the communication overhead. We
must keep in mind that it has a bandwidth of one tenth
compared with the bandwidth of the other worksta-
tions connected to the LAN. Lines H and HM show
how the increasing of the communication latency time
in ali the heavily loaded workstations reduces the gap
between bandwidths.

In Fig.4 it can be seen that in aH the considered op-

tions the percentage of unbalancing stays under 1.2%
of the total execution time. The reduction of the
idle time rate obtained by making the manager work
(Fig.3), under slight load condition yields a rise in the
unbalancing time rate (Fig.4) (except for W4), even if
in terms of "seconds" these are small differences. On
the contrary, under heavy load condition latency and
overhead due to the communication time increase and
the working-manager model always improves the load
balancing. The percentage of unbalancing rate ranges
from 0.5 to 0.8 percent: it is more significant for W2
and W4, which have a lower unbalancing rate under
heavy load condition.

The working-manager model increases data locality
and cuts communication overhead: this reduces the
unbalancing rate. It becomes evident in heavily loaded
workstations and it comes out even from analyzing the
behavior of W2 and W4 in Fig.4 (H and HM). W2 is
a SMP workstation, as Wl is, and the external load
consists of two Monte Carlo simulations. Thus, even if
the load is evenly distributed between the two CPUs,
the latency time affects W2 more than Wl , also due to
Wl lOOMhz technology. Regarding W4, the manager
works slowly, distributes more blocks and spends more
time for Communications. In addition, it is made with
old technology and in heavy load condition its latency
time increases.

Each one of the lines in graph Fig.4 shows that un­
der any condition the difference between the maximum
and minimum value stays less than 0.4% ; generally,
due to the priority mechanism.

Fig.5 shows the speedup values Si defined as:

Si = T, iWi)
Tp {Wi) (3)

Ta (Wi) is the execution time it takes to the sequential
algorithm on the workstation Wi, under slight load
condition, and Tp{Wi) is the execution time of the
parallel algorithm with the master hosted on the work-
station Wi. The upper line is the "ideal" speedup Ij,
calculated as follows:

T = ^
' Pi

(4)

Pi=Ts(Wl)/Ts(Wi) is the power weight[19] of Wi
compared with that of the fastest workstation (Wl)
and PT is the power weight of the cluster, obtained
by summing over aH Pj and keeping in mind to add
twice the power weight of the SMPs. Thus we find
PQr=3.78, i.e. 3.78 times of one Wl processor, for this
cluster and this algorithm.

Finally, Fig.6 shows the "weighted" efRciency
Effj=S,/Ii. Under light load condition the efficiency
ranges from 92 (W3 SM) to 98 (Wl SM) percent:

A DVNAMIC LOAD BALANCING METHOD Informatica 23 (1999) 49-56 55

this means that the scheduhng poHcies and working-
manager model work fine.

This recognizes the magnitude of how much a cluster
of low cost workstations can improve work production,
if good algorithms run on it; as well as, by develop-
ing good balancing algorithms the hardware resources
reach maximum potential, as in the 2 processors of an
SMP system.

The priority mechanism, with few dozens blocks sig-
nificantly contributes to decreasing the global execu-
tion time until 25-30 percent, even if it is no possi-
ble to appreciate this improvement due to the short-
ness of these executions. On the other hand, for long
time executions the natural distribution of the running
tasks limits the effectiveness of this priority mecha­
nism. Nevertheless, it stays effective for the process-
ing of the last block. Even more when workstations
are heavily loaded, when a last long job may result in
a substantial loss of balance.

6 Conclusions
It is widely recognized that a network of workstations
has a lot of unused computing resources. To maxi-
mize its potential, it is necessary to write parallel al­
gorithms that evenly distribute the workload among
the workstations to maximize the load balancing and
to minimize the idle time of each workstation involved
in the computation.

This study proposes a dynamic load balancing
model for data parallel applications based on a modi-
fied manager-workers paradigm: we called it tuorking-
manager model . This model, which exploits the idle
time of the manager process to make it work, is suit-
able as is for not a large cluster of workstations. Our
model has a twofold advantage, both in terms of global
performance and load balancing. If the manager is
hosted in the most powerful workstation of the cluster,
this model achieves remarkable improvement in terms
of global performance, in both cases of heavily and
slightly loaded machines. Otherwise, if hosted in the
"slowest" workstation, this scheme leads to a desired
load balance by decreasing Communications from the
manager to the workers since the manager itself pro­
cesses some blocks, fetching them locally. Thus this
method is also suitable for clusters with high network
traffic. In addition, in the čase of heavily loaded ma­
chines, the working-manager method always performs
a better load balancing compared with the canonical
one, in which the manager does not work. In both
load conditions, except when the master is hosted in
the slowest workstation in the heavy load system, this
model always decreases the ratio between the mean
CPU idle time and the total CPU time.

Finally, experimental results show efEciency values
for this method of over 90%, confirming that this

scheduling approach exploits the whole power of each
processor.

The current implementation assumes that the clus­
ter of workstations be one pool of processes. Since our
method exploits the idle time of a manager process,
if the number of processes is heavily increased, the
manager would be more continuously engaged in its
control issues. Thus, reducing its idle time, and this
method would loose its effectiveness. However, it had
always better to split a lot of processes into different
pools. In fact, trying to exploit the manager idle time
by increasing its control issues (i.e., by increasing the
number of workers) may lead to having more requests
than the manager can satisfy. And also, this increases
the time it spends for communication.

7 Future work
The cluster used could be considered as one pool
of processors in a pool-based system. This achieves
an efficient system-wide scheduling policy, but if the
number of processes becomes large then the working-
manager method looses its effectiveness.

We intend to investigate the possibility to extend
the working-manager model to a much wider cluster,
by dividing it into small size pools and assigning a
manager to each one. In such a hierarchical structure,
a working super-manager should treat the other man-
agers like they treat their workers; therefore we would
have a structure of many pools, each one well balanced.
Within such a model, the analysis for reclustering or
data migration reduces exclusively to monitoring the
working pool managers and Communications will only
take plače among them.

Moreover, our scheme can be applied to ali the pool-
based methods, and to other already existing load bal­
ancing policies, to split large clusters into smaller ones
and to break down costs due to Communications, if
any, without loosing in terms of balancing.

Another important application can be found in the
field of the real-time event processing, arising from
the data sampled by an acquisition system, in which
data have been arranged into blocks, as in the čase
we analyzed. We are already engaged in studying
such a problem, by using another image reconstruc-
tion method, but keeping the same parallel structure
we presented.

References
[1] (1996) Technical Proposal for CMS Computing.

CERN/LHCC 96-45, p. 1-98.

[2] Diekmann R. & Monien B. (1997) Load Balancing
Strategies for Distributed Memory Machines. Com­
puter Science Technical Report Series "SFB", No.

56 Informatica 23 (1999) 49-56 A. Bevilacqua

tr-rsfb-97-050, Univ. Of Paderborn, Germany, p. 1-
37.

[3] Kumar V., Grama A., Gupta A. & Karypis G.
(1994) Introduction to Parallel Computing: Design
and Analysis of Algorithms. Benjamin Cummings,
New York, p. 1-597.

[4] Liiling R., Monien B. & Ramme F. (1991) A study
of dynamic load balancing algorithms. Proceedings
of the Srd IEEE SPDP, p. 686-689.

[5] Lee C. K. k Hamdi M. (1995) Parallel image pro-
cessing application on a network of workstations.
Parallel Computing, 21, p. 137-160.

[6] Lee C . K. & Hamdi M. (1994) Efficient parallel
image processing application on a network of dis-
tributed wbrkstations. Proč. 8th Internat. Parallel
Processing Symposium, p. 52-59.

[7] Nedeljkovic N. & Quinn M. J. (1993) Data-Parallel
Programming on a Network of Heterogeneous Work-
stations. Concurrency: Practice and Experience, 5,
4, p. 257-268.

[8] Miguet S. & Robert Y. (1991) Elastic load-
balancing for image processing algorithm. Parallel
Computation: Proč. Ist Internat. ACPC Conf, p.
438-451.

[9] Hamdi M. & Lee C. K. (1997) Dynamic load-
balancing of image processing application on clus-
ters of vvorkstations. Parallel Computing, 22, p.
1477-1492.

[10] Herman G. T. (1980) Image reconstruction from
projections: The foundamental of Computerized To-
mography. Academic Press, New York.

[11] Bevilacqua A., Bollini D., Del Guerra A., Di
Domenico G., GalU M., Scandola M. & Zavattini G.
(1998) A 3D Monte Carlo simulation of a small an-
imal Positron Emission Tomograph with millimeter
spatial resolution. Submitted to IEEE Transactions
on Nuclear Science.

[12] Webb S. et al. The spatial resolution of a rotat-
ing gamma camera tomographic facility. The British
Journal of Radiologp, 56, p. 939-944.

[13] Zhou S. & Brecht T. (1991) Processor Pool-Based
Scheduling for Large-Scale NUMA Multiprocessors.
Proceedings of the 1991 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer
Systems, p. 133-142.

[14] Geist A., Beguelin A., Dongarra J., Jiang W.,
Manchek R. & Sunderam V. (1994) PVM: Paral­
lel Virtual Machine - A Users' Guide and Tutorial
for Networked Parallel Computing. MIT Press, Lon­
don.

[15] Altevogt P. k Linke A. (1993) An algorithm for
Dynamic Load Balancing of Synchronous Monte
Carlo Simulations on Multiprocessor Systems. IBM
preprint 75.93.08, hep-lat/9310021, Germany.

[16] Meisgen F. (1997) Dynamic Load Balancing for
Simulations of Biological Aging. International Jour­
nal of Modem Phpsics C, 8, 3, p. 575-582.

[17] Schnekenburger T. k Huber M. (1994) Heteroge­
neous Partitioning in a Workstation Network. 8th
Int. Parallel Processing Symposium, Workshop on
Heterogeneous Computing, IEEE, Cancun, Mexico,
p. 72-77.

[18] Schnekenburger T. (1993) Efficiency of Parallel
Programs in Multi-Tasking Environments. PEPS
Performance Evaluation of Parallel Systems, Uni-
versity of Warwick, GB, p. 75-82.

[19] Meisgen F. k Speckenmeyer E. (1997) Dynamic
Load Balancing on Clusters of Heterogeneous Work-
stations. Report No. 97-261, Department of Com­
puter Science, University of Cologne, Germany.

Informatica 23 (1999) 57-66 57

Minimizing Communication Conflicts with Load-Skewing Task
Assignment Techniques on Network of Workstations

Wei-Ming Lin and Wei Xie
Division of Engineering
The University of Texas at San Antonio
San Antonio, TX 78249, USA
Phone: (210) 458-5529, Fax: (210) 458-5589
E-mail: wlin@voyagerl.utsa.edu

Keywords: Load Balance, Task Allocation, Communication Resource Conflict, Divide-and-Conquer, Network
of Workstations

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 9, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Communication }atency is an important factor in deciding performance ofaparallel or distributed
algorithm, especially in alow speed network environment. In a bus-based network of workstations,
a perfect}y load balance arrangement does not always lead to the best performance due to potential
communication resource conflicts. Such a situation arises when workstations tend to compete for
the shared bus after they ali Rnish their assigned workload at about the same time under such
a load arrangement. In this paper, we provide a thorough ana}ysis on how such communication
conflicts can be minimized in a bus-based system by using a load-skewing assignment method. A
probablistic model is used to analyze the needed skewing factor for cases in which computation
requirement is either a deterministic or nondeterministic quantity. Our analytical results are
closely conBrmed by various simulation and experiment outcome.

1 Introduction

Network of workstations {NOW) is regarded as a po­
tential parallel computing environment for its low cost
and flexibility. Task partition and allocation among
the workstations is a very important factor that dearly
affects the system performance. Workload is usually
partitioned equally, whenever feasible, among worksta-
tions to achieve the best balance from computational
aspect. In a bus-based NOW, such a load balance ar­
rangement does not always lead to the best possible
performance due to potential conflicts on communi­
cation resources. A more in-depth analysis is needed
to determine the best workload arrangement among
workstations to avoid such conflicts.

There have been a great deal of research works on
load balance on both homogeneous and heterogeneous
systems [4, 6, 9, 14, 16, 18, 21]. Either static or dy-
namic task allocation strategy is discussed in these pa-
pers to reach at the best load balance among proces-
sors. The most commonly used static task allocation
strategy in a distributed computing environment is the
weighted task allocation method [9], which partitions
task according to an estimated relative machine speed.
A common dynamic scheduling scheme for distributed
systems is the work stealing technique ([3],etc.) where
work is dynamically migrated from heavily loaded pro-
cessors to lightly loaded ones. None of these strategies

takes the communication latency or potential commu­
nication resource conflicts into consideration.

Communication latency is an important factor in
deciding performance of a parallel or distributed algo­
rithm, especially in a low speed network environment
or in a communication-intensive task situation. Sev-
eral methods [2, 17, 20] have been devised in an at-
tempt to compensate for the latency from the aspects
of both hardware and softwaxe. But most of these pro-
posed methods fit the well-structured unit-delay ma-
chines, such as hypercube and mesh. Although there
have been various high-speed switches and communi­
cation protocols deigned to speed up communication
in a NOW, a bus-based configuration stili represents
the most economic and widely available parallel com­
puting platform. None of the known techniques dis-
cusses the effects of communication latency on task
partition and allocation in such a bus-based environ­
ment. In this paper, we will study the relationship
between parallel computing time and task allocation
in a bus-based NOW by taking these communication
issues into account.

Divide-and-conquer approach has been shown to be
a relatively simple however widely applicable paral-
lelization strategy in solving problems in various sci-
entific and engineering areas. In a wide range of prob­
lems, especially in Artificial Intelligence, Computer Vi­
sion, Graph Theory, Computational Field Simulation,

mailto:wlin@voyagerl.utsa.edu

58 Informatica 23 (1999) 57-66 W.-M. Lin et al.

Discrete Event Simulation, e tc , usually when solved
using a number of processors, presumably "equal"
amount of subtasks are allocated to each processor.
Typically at the end of the computation of each sub-
task, communication between the subtasks is required
to reach the final result. Each such subtask can cor-
respond to a branch of a research tree, a fixed-size
block of matrix/vector elements in a sparse matrix, a
fixed-size partition of input numbers in various sort-
ing techniques, an event or a group of events in dis­
crete event simulation, etc. A nondeterministic com­
putation requirement is usually associated with each
such subtask. Under the effect of such nondetermin­
istic factors, if each subtask exhibits identical prob-
abilistic behavior, which is true in most of parallel
computations from divide-and-conquer approaches by
"equally" partitioning the task into subtasks, the ex-
ecution time of each processor can be modeled by the
same probabilistic density function [15, 10]. SPMD
(Single-Program-Multiple-Data) is a widely used par­
allel programming/execution paradigm used to solve
this kind of divide-and-conquer problems. In [10],
Lin and Yang have analyzed the performance of such
divide-and-conquer problems disregarding communi­
cation factors.

A perfect load balance for such divide-and-conquer
problems in a bus-based NOW will pose a high possi-
bility of bus contention among workstations when they
ali reach the same communication stage. This would
lead to either a simple bus conflict or even a more
problematic bus collision scenario. If such a problem
is not carefully addressed, an unpredictably significant
amount of communication delay would take plače and
seriously downgrade the overall parallel performance
and even offset any possible gain from such a parallel
execution. Due to the nature of the shared commu­
nication medium, load assigned to workstations may
have to be skewed with an amount so as to fully uti-
lize the bus for communication. In this paper, we use
a probabilistic model that assumes the computation
times of subtasks assigned to the workstations obey
a natural distribution. Such a model is capable of
coping with the aforementioned nondeterministic na­
ture of computation requirement. A thorough analy-
sis is then used to determine the amount of load-skew
needed in load distribution to reach the best overall
performance.

The rest of this paper is organized as folIows. In
Section 2, problem model and our analysis approach
are described. Simulation and experiment results are
presented in Section 3, followed by two complete par­
allel programming examples in Section 4. Concluding
remarks are made in the last section.

2 Model and Analysis
2.1 Problem Model
There are many scientific and engineering problems
that can be approached with a divide-and-conquer par­
allel strategy. For example, search problems in many
fields represent a perfect candidate for this due to their
natural problem-solving formation as a tree search pro-
cess in which the search tree can be allocated pre-
sumably "equally", in a probabilistic sense, into pro­
cessors (or vvorkstations in this study) used. Sorting
problems, image processing problems, as well as many
others ali can be approached with such a divide-and-
conquer solution technique. This problem model can
be described as: "A number of processors are used
to process, in an SPMD fashion, a given number of
tasks, aH identical in terms of probabilistic behavior in
their execution times." Namely, the probability den-
sity function {pdf) of execution time spent in a task
is identical to that of the others. Note that a task
here is referred to a large nondeterministic number of
computation steps. Any divide-and-conquer parallel
algorithm solving such problems with a run-time data-
dependent nondeterministic behavior by dividing the
tasks presumably "equally" among a number of pro­
cessors would simply lead to a result that the pdf s of
aH processors' execution times are identical. Normal
distribution as well as some others has been found to
be a very reliable modeling function for such execu-
tion times [12, 13, 19, 22]. In this paper, we focus on
using a normal distribution function as our modeling
function due to its widely found applications.

In addition to the computation model j ust de­
scribed, this study assumes that necessary communi­
cation stages are interspersed with the computation
stages. In a typical SPMD solution algorithm, these
communication requirements come from, to name a
few, data exchange for domain coverage, updating lo-
cal Solutions, combining local results into a final solu­
tion, etc. Such a communication stage usually involves
aJl processors in the system and a similar amount of
Information is originated from each processor with its
destination being either a controller (master proces­
sor) or some other processor(s) in the system. For
example, a simple one-stage divide-and-conquer algo­
rithm usually requires partial solutions to be gathered
in a processor at the end with a communication stage
after each processor finishes its assigned computation
workload. As another prevalent programming exam-
ple, a typical n-dimensional hypercube normal algo­
rithm requires n computation stages with a commu­
nication stage in between two adjacent computation
stages to exchange data between processors across a
given dimension.

For the convenience of analysis, it is assumed that
the computing environment {NOW) consists of a clus-
ter of workstations with identical computing capabil-

MINIMIZING COMMUNICATION Informatica 23 (1999) 57-66 59

ity connected via a communication bus, such as Eth­
ernet. With this assumption, we can simply focus on
behavior of the solution algorithms and problems with-
out worrying about any nondeterministic factors on
the computation times caused by the hardware. Note
that such an assumption on processor homogeneity
can be further relaxed by adopting a relative com-
puting power factor in our analysis. We also assume
here the communication protocol used between proces-
sors is message-passing, with a commonly used "non-
blocking-send" and "blocking-receive" scheme. In such
a scheme, a sending processor needs only send its mes-
sage to the receiving bufFer disregarding whether the
receiving processor has reached the corresponding re­
ceiving statement in its execution; that is, the sending
processor is allowed to proceed its execution as soon
as it finishes such a 'send' operation (statement). On
the other hand, a receiving processor when expecting
a message with a 'receive' operation (statement) can-
not proceed until the message is actually received in
its buffer.

Since a communication bus is shared among aH pro-
cessors (workstations), if ali processors reach the same
communication stage at about the same time, bus
conflicts and collisions would occur and result in un-
desired waiting time in processors, i.e., wasted CPU
time. This problem is more likely to occur if the pre-
ceding computation stage has the workload divided
"equally" among processors. Let such an assignment
scheme be denoted as "Perfectly Balanced Load As­
signment" (PBLA). Instead, if the workload assign­
ment is skewed away from the PBLA by an amount
such that degree of the aforementioned conflicts and
collisions is reduced, then a gain in overall system per-
formance can be expected.
• Deterministic Čase:

Such a "Skewed Load Assignment" (SLA) approach
can be illustrated by a simplified example as discussed
in the following. A one-stage divide-and-conquer al-
gorithm with a deterministic amount of computation
requirement is to be processed on a P-processor bus-
connected system. Let Tcomp denote the deterministic
overall computation time requirement, and Tcomm de­
note the necessary communication time for each pro­
cessor after its corresponding one-stage computation
stage. With the PBLA approach, each processor is as-
signed an identical workload of - £ ^ ^ and reaches the
communication stage at the same time with aH other
processors. Disregarding the more problematic čase of
bus 'coHision', aH processors wiH take turn occupying
the bus for a time oiTcomim assuming no packet inter-
leaving to simplify our discussion. Thus, the overall
paraHel time (denoted as TPBLA for the PBLA ap­
proach) becomes

TpBLA -I- P X Tc<

Instead, with an SLA approach, computation load can
be assigned to processors such that a processor reaches

its communication stage exactly at the instant when
another processor finishes its corresponding communi­
cation stage. Let Tcompi denote the computation load
(time) assigned to processor i, where O < i < P - L
Such an optimal condition can be satisfied with the
following assignment pattern

Combined with

/ ^ J-comp^ — -^c(

it leads to

s^ + (* ; -) X Tc<

and the total parallel execution time (denoted as
TSLA) then becomes

TsLA ^compp ^^+Tc,

P-lrp
-i ni Comparing TSLA versus TPBLA , a saving of = ^

time is achieved. Note that in a message-passing com­
munication on a bus-based system, communication la-
tency is usually dominated by software setup times,
e.g. packing/unpacking time, rather than the actual
hardware communication delay, and is insignificantly
affected by the length of message. Thus, it remains a
good approximation by assuming an identical Tcomm
for aH processors and it does not deviate much from
the original Tcomm- An example is illustrated in Fig­
ure 1 where P = 4, Tcomp — 32, and Tcomm = 1. A

Pl P2 P.l P4 Pl P2 P.l P4

D :Idle

LiJ : Communication

^ ; Computation

SLA
PBLA

Figure 1: An Illustrating Example on Deterministic
Čase

PBLA approach on the left leads to a total time of
12, whereas an SLA on the right with a load assign­
ment 01 Icompu — 0.5, Icompi — '-5, J-comp^ ~ "•")
Tcomps = 9.5, completes the execution in a time of
10.5, representing a saving of 1.5 time units.
• Nondeterministic Čase:

As described in our problem solution model, many
solution algorithms, such as maiiy sorting and search-
ing techniques, an nondeterministic computation re-
quirement is associated with each task. Such an non­
deterministic factor can come from data-dependent
decision-making statements in the algorithms. A dif-
ferent amount of load-skew than a simple Tcomm may

60 Informatica 23 (1999) 57-66 W.-M. Lin et al.

be needed due to this nondeterministic nature in or-
der to reach the best overall performance. Discussions
in this paper are restricted to one-stage divide-and-
conquer solution algorithms; however, our model can
be extended to address the cases in which such an
restriction is relaxed. Let us assume the task is par-
titioned into P subtasks, ti, O < i < P — 1, one for
each processor, in an SLA approach, and the compu-
tation time for task ij, denoted as Tj, obeys the afore-
mentioned normal distribution, i.e., T, ~ N{fii,af).
Tcomm denotes the communication requirement for
each processor as in the previous discussion. To facil-
itate a simple analysis for the SLA approach, we fur-
ther assume that the "expected" workloads are skewed
among processors in a regular equi-difference fashion,
i.e.,

S^ = fii+i — Mil 0 < J < P — 2

and 6^ is called the skeiving mass. Due to the exis-
tence of 0'i's (ci 7̂ O for a nondeterministic čase), an
optimal 6fi value that leads to the least communication
conflict is no longer a simple Tcomm as in the deter-
ministic čase. Intuitively, it is not difRcult to see that
when the variances are smaller than a certain value,
overall performance will stili benefit from an SLA ap­
proach, whereas a PBAL approach will be sufficient
when such a threshold is exceeded.

To simplify our analysis in determining the optimal
skewing mass, we further assume identical a for ali
subtasks' computing times. That is,

(To = C l : ap-\

which is not an unrealistic assumption if the skewing
amount is not large. This is due to the fact that a
changes in a square-root pace of that of /i. Due to
the nondeterministic nature in Tjs' computation re-
quirement, the imposed skewing mass -vvill no longer
be the actual ("effective") skewing amount between
processors that finish their work in the actual sequen-
tial order. To determine the difference between these
two, we let r<j> and /i<i> respectively denote the
random variable for the z-th finished subtask's compu­
tation time and its corresponding mean. Thus,

T<o> = min(To,ri,T2,.. . . ,rp_i) (1)
T<p_i> = max(ro,Ti,T2,.... ,Tp-i) (2)

Let the effective skewing mass be denoted as 6^ and
following a similar "equi-difFerence" assumption on
M<t> s

^t — y-<i+^> ~ f^<i 0 < i < P - 2

Such an assumption is made for the sake of simplifying
our analysis, and it is found to be a rather accurate
one when (5̂ is small relative to ^^'s. If we can ensure
that

^ ^ = Tcomm , O < i < P - 2

then optimal overall parallel performance is achieved.
Figure 2 shows a qualitative comparison between these

Jo Ti T2 T3

Figure 2: An Illustrative Comparison of pdfs

pdfs. The figure on the top shows the pdfs of desired
allocation pattern with an amount of skewing mass
set to (5p (which is yet to be determined), whereas
the bottom figure displays a 'statistical' result after
the actual sequential order among processors in finish-
ing their allocated tasks is found. Note that, with a
nonzero cr, /x<o> is pushed to the left compared to no
and /i<p-i> is to the right of np-i. Thus, 5^ is ex-
pected to be smaller than S^ (and Tcomm) when cr ̂ O
since

/ip-l — fj,0 /lt<p_l>
"u = ;:; ; < 7^—

• A'<o>
1

2,2 Analysis
To derive an optimal 5^ requires a very complicated
multiple integration process. We here choose to find a
bound based on a much simpler analysis.

First of ali, from the above discussion, we have

M<P-i> - M<o> = (P - l)Tc, (3)

With the assumption that Tj's are independent nor-
mally distributed random variables (Tj ~ N{(j,i,af)),
M<P_i> and /i<o> can be expressed as ([15])

M<P_i> = £{max(To,ri,...,rp_i)}
= r^[5(x)-nr=VPT.(x)]dx

li<o>= E{mia{To,Ti,...,Tp-i)}
= irjs{x) - (1 - nfjo ĉi - FT, ixmda

(4)

(5)

where Pj^ (a;) denotes the cumulative function of ran­
dom variable Tj, and

^w={; m

MINIMIZING COMMUNICATION .. . Informatica 23 (1999) 57-66 61

Since arithmetic mean of a set of non-negative num-
bers is no less than the corresponding geometric mean,
it follows that

ZiJoFrM.P f> n^^^w
Equation (4) then becomes

/

oo

[S{X) - (
-oo

^^="o>^-V]d. (6)

By further applying the following generalized Cauchy-
Schwartz inequality

Z^ p -^ p
i = 0

it becomes

^ < P - l > > j-ac>[S{x)-2_,i=o —p—\dx (-7)

Let Ti, Tj{i}, Ti[2}, • • • , r,{p_i} be a set of P identi-
cal independent distributed (i.i.d.) random variables,
where O < i < F — 1. We have

/

oo
[Six)-F.^.{x)]dx = E{m!ix{Ti,Tn,y,... ,Tnp_,y)}

-CX)

With a result in [10]

[S{x) - F^. {x)]dx = /ii + ag{P) (8)
'—oo

where

/

oo fu pu

[frMdv-i fT,{v)dvf]du
•oo ./—oo »̂ —oo

and /TJ is the pdf of random variable Tj. Note that
g{P) can be deri ved with various numerical methods
or by approximation [10]. Prom inequality relation (7)
and Equation (8),

P<p- i>> TEfJoit^i + ^^giP))
= TY:f=of^i+'^9{P) (9)

= H0 + ag{P) + ^5^

On the other hand, it is obvious that

fi<P-i>= E{max{To,Ti,...,Tp-i)}
< E{max(rp_i,rp_i{i>,... ,rp_i{p_i}} = jrjS{x)-F^^_^{x)]dx
= fip-i + (jg{P)

= fio + <7g{P) + {P - l)S^

With a similar procedure applied for /i<o>, we have

M<o> = .B{min(To,ri,...,Tp_i)}
= /r^[5(x) - (1 - nfjo'(1 - FT, (x)))]dx
= ir'js{x) -1+nfjo' (1 - PT, {x))]dx

= T Ef=V IZo[Six) -{1-FT, {x)r]dx

Again with

/

oo
[S(x) - (1 - FT,{x))'']dx = E{min{Ti,Tniy,...,Ti^p_iy)}

- O O

and an extended result from [10], it follows that

[5(3;) - (1 - FT, {x)f]dx = iii- ag{P)

Thus,

p<o>< Ti:f=oit^i-<^9{p))

= no- (Tg{P) + ^ 5 ; ,

Combined with the follovving inequaUty

H<o> = £{min(To,Ti,...,Tp-i)}
> £;{min(ro{o},ro{i},... ,To{p_i})
= no- crg{P)

a bound of ^<o> is then derived as

Ho - crgiP) < M<o> < Mo - crgiP) +

P-l
S^ (12)

Further combining the two inequality relations (11)
and (12), we then have

2ag{P) < n<P-i> - f^<o> < 2cTg{P) + {P - 1)5^
(13)

Substituting M<p-i>—M<o> with the relation in Equa-
tion (3) in Equation (13), we obtain

2(Tg{P) < (P - l)Tco,;,„ < 2ag{P) + (P - 1)5^

or simply

O
2f7

< Tcomm - p _ . g (- P) < S^c (14)

The inequaUty relation on the right gives a lower
bound for 6^ when selecting such a skewing mass in
an SLA approach. This bound is tight if the skewing
amount is not large. That is, if the skewing amount
needed is expected to be relatively smaller than /ij's,
5^ can be selected to be very close to

2(T

P - l 9{P)

(10)

where Tp_i ,Tp_i{ i} , . . . ,Tp_np_iy are again i.i.d.
random variables as defined. Combining the two in-
equality relations (9) and (10), we have

On the other hand, the left inequality relation indi-
cates that in order for any SLA approach to behefit the
overall performance, a cannot exceed a certain thresh-
old, which is represented by

a <
P^l

2

(P - l)Tco

MP)
(15)

no + c7g{P) + ^ 7 - (5 ^ < M<P-i> < ^0 + og{P) + {P •

(11)

•'inat is, a simple PBLA would be sufRcient if a exceeds
this threshold.

62 Informatica 23 (1999) 57-66 W.-M. Lin et al.

3 Simulation and Experiment
3.1 Simulation
In our simulation process to confirm the proposed an-
alytical results, the following parameters are given as
inputs: 1) mean of total computation load (/irco„p), 2)
number of workstations (P), 3) required communica-
tion time for each workstation {Tcomm), and 4) stan­
dard deviation of each subtask's load performed in a
workstation {a). Data for random variables To, Ti,
. . . , T P _ I are randomly generated according to their
corresponding normal pdfs, N{fio,cr), N{fii,a), . . . ,
N{(j,p-i,(7), respectively. By varying (5̂ (and thus ali
/Xi's), overall performance is plotted in Figure 3 (for
P = 2) and in Figure 4 (for P = 4) under different a
values. From the left figures, when a = O, the over-

TSLA

75

70

65

60

S .

Total load =100,Tcomin =10, P=2

•+*-'%

.....••»•*",...3tjsšr

a =2 - ' -
o = 4 ••!>••••
(J =6 - » —
a =8 —

(J =10 • « -
(1 = 1 2 ••<.••••
a = 1 4 -*••••

O 2 4 6 8 10 12 14 16 18 20

Figure 3: Simulation Results (P = 2)

the right figures, we can teli that picking the optimal
skewing mass always leads to the best effective skevving
mass Tcomm when a does not exceed a threshold. The
optimal skewing mass observed in our simulation is
then plotted against the corresponding a values and is
compared with the analytičal bound in Equation (14).
This is shown in Figure 5. From these, we can conclude

Figure 5: Comparison between Analytičal and Simu­
lation Results

that the analytical bound is close to the optimal skew-
ing mass we need to minimize communication conflict.
Another critical observation is that when a exceeds a
threshold (about 10 for P = 2 and 15 for P = 4), no
more skewing is needed. This also closely matches our
analytical result in Equation (15) which predicts, for
P = 2,

a <
10

2 X 0.564190

and, for P = 4,

a <
3 x 1 0

2 X 1.029376

8.86

14.57

TSLA

95

90

85 •

80

75 -

70 •

65

Total load=200, Tcomm=IO, P=4

•*N,
"hi^\

.

' ̂
+•'*.£«

y^]r

Mtšr

0=2 - - - .
CT=» ••'•••••
CT=6 -K—
(,=8 — -

0 = 1 0 -«•••• .
0 = 12 - •
o =14 • • - •

10

5u

12 14 16 18 20

Figure 4: Simulation Results (P = 4)

ali time is minimized by having 5^ = Tcomm{= 10)
just like a deterministic čase. As a increases, the op­
timal skewing mass (Ĵ j decreases as expected. From

3.2 Simulated Experiment
We further carry out a simulated experiment with a
PVM (Parallel Virtual Machine) environment on a real
bus-based NOW. A master/slave parallel program-
ming configuration is used in which a master proces-
sor collects messages from slave processors at the end
of each slave's computation process. In this experi-
ment, computing time required in each slave processor
is generated by a random number generator obeying
the aforementioned normal distribution with various
(J values. A simulated communication stage is pro-
vided by having each slave processor send a package
of 5,000 double precision floating point numbers to the
master processor. Such a communication step is mea-
sured to take an average time of Tcomm = 0.11 sec-
onds. Figure 6 and Figure 7 give the results from this
experiment for P = 2 and P = 4 respectively. Op­
timal skevving masses observed are further compared
with the derived analytical bound. Figure 8 displays
the comparison result. Again the results match very
nicely.

MINIMIZING COMMUNICATION .. Informatica 23 (1999) 57-66 63

P=2
2.4

J "

i
:S 2.2

2.1

> v , ^ _

"" ° ? * i ^ * ^

^ ";^i3r^

(5=0.00 -*— -
a-0 .02 - — -
(J-0.04 o - .
CT-0.06 -«—
(J =0.08 - • —
a=0.10 - • - -

0.05 0.1 0.15 0.2 0.25 0.3

5^(Sec)

Figure 6: Simulated Experimental Results (P = 2)

P=4

O 0.04 0.08 0.12 0.16 0.2 0.24 0.28

Sn(Sec)

Figure 7: Simulated Experimental Results (P = 4)

." NTV

ina!ytical bouinf -*—
cxperinicni ——

•' - N -

o 0,03 0.04 O.Ofi 0.08 0.1 O 0.04 0.12 0.16 0.2

Figure 8: Comparison betvveen Analytičal and Exper-
imental Results

4 Real Examples
To further verify our analysis, we use two widely used
programming examples, a parallel matrix-vector mul-
tiplication algorithm and a one-stage parallel sort-
ing algorithm. Disregarding nondeterministic factors
caused by the machines, the matrix-vector multiplica-
tion example is used to verify the deterministic čase,
while the sorting algorithm which is associated with
a nondeterministic nature in its computation require-
ment will be used for the nondeterministic čase.

4.1 Matrix-Vector Multiplication
In this matrix-vector multiplication example, a multi­
plication of an n x n matrix A and an n-component vec­
tor Y is performed with a PVM environment on a bus-
based P-workstation network. The matrix A is parti-
tioned into P disjoint submatrices >ii, O < i < P — 1,
each containing m continuous rows in matrix A. Thus,
^^_^ m = n. Each processor will calculate the cor-
responding n^ components of the result vector before
sending its results to a master processor. A simple loop
construct is used to calculate each component in the
result vector, which requires a deterministic amount of
computation tirne, the time for n multiplication steps
and n — 1 addition steps to be precise.

In this example, since the computation time re-
quired in a processor is linearly proportional to the
number of rows in A (TIJ) assigned to it, the skewing
mass Sfi can be adjusted accordingly by varying the
number of rows assigned to different processors. Ex-
periments are performed on the cases of n = 512 and
n = 1024. Figure 9 shows the performance results ver-
sus the varying parameter J^. The computing time

P-4.m«lrix.i7*-51 P-4. in«lrix«ire»ID24

10 15 20 25 30

5^ (10 •' Sec)

Tconini = 0,0087l7Sec

o 5 10 15 20 25 30 .15 40 45 50 55 60 65

Sp (I d ' ' SCC)

Tconim = 0.0fl87l7Scc

Figure 9: Performance Results of Matrix-Vector Mul­
tiplication

difference in a processor caused by assigning one ex-
tra row of A to it is measured at about 0.418msec.
The required communication time for each slave pro­
cessor is measured at Tcomm = 8.1717msec. When the
skewing mass 6^ is set at 8.36msec, i.e. by having
m+i - Ui = 20 (20 X 0.418 = 8.36), close to opti-
mal performance is observed. This skewing mass is

64 Informatica 23 (1999) 57-66 W.-M. Lin et al.

very close to Tcomm (since cr = 0), the theoretical op­
timal value. Similar prediction accuracy is observed
in the n = 1024 čase, where load skewing is set by
Hi+i — Tli •= 10. This leads to a speedup improve­
ment of 10.2% and 19.6% on the two test cases re-
spectively using the proposed SLA approach over the
simple PBLA one.

4.2 Parallel Sorting
In this example, 10,000 double-precision floating point
numbers are to be sorted with a network of P worksta-
tions. The master processor first partitions the num­
bers into P disjoint sets and then allocates each to
a distinct slave processor. Each slave processor then
performs a sequential quick sort process on its assigned
data set before sending the sorted sequence back to
the master processor. A merge process is conducted
on the master processor to reach the final sorted se-
quence. Note that the goal of this example is not to
evaluate efficiency of a parallel algorithm, but to verify
our analysis finding. With such a solution algorithm,
the exact computation time on each slave processor
(Tj) is a nondeterministic amount due to its run-time
data dependency.

In this experiment, a random number generator is
used to generate the target number sequences. By us­
ing a different modulus (which is also the range of the
generated numbers), we are able to create sequences
which would lead to different a values. This is needed
in order to measure the effects of a on the optimal
skewing mass. Four different moduli are used, 1, 10,
100 and 1000 respectively, to generate four number
sequences to be tested. Two network configurations
are used, one with P = 4 and the other with P — 8.
Communication time needed for each slave processor
to send its results back to the master, Tcomm, is mea-
sured at 0.064926sec for P = 4 and 0.050338sec for
P = 8 respectively. Experimental results are shown
in Figure 10. Note that the skewing mass (5̂ changes

" ' • • C - ' , " - . "

• ' - - - ^ i ^

""V^

0-0,011494 - * -
O-0.02S515 -
0-0.015904 0
O'0.(MJ267 " ,.

"-''" '
k^X^'-^ I ^-w

• . . . i i

o 0.01 0.02 0.0^ 0.04 0.05 0.06 0.07 O.Oi O 0.01 0.02 O.OJ 0.04 0.03 O.M 0.07 0.0!

Su(Scc|

Figure 10: Performance Results of Parallel Sorting

monotonically to the change in the sizes of data set as­
signed to the processors, although such a change is in a
non-linear fashion. With optimal 5^ selected, speedup

improvement in using the SLA approach versus the
simple PBLA ranges from 10% to 14% on the two net-
work configurations.

Experimental results on optimal skewing mass com-
pared with the derived analytica] bound are displayed
in Figure 11. In the P = 4 čase, Tcomm is measured at

0.02 0.02J 0.03 0.0) J 0.02 0.02J 0.03 0,033 0.04 0.045 0.05

Figure 11: Comparison betvî een Analytical and Real
Experiment Results

0.064926sec. Thus, the maximal a that would stili call
for an SLA approach to reduce communication conflict
is

ar <
3 X 0.064926

2 X 5(4)
= 0.09461

which is not within the scope of our experiment, as
shown in the comparison figure. In the P = 8 čase,
Tcomm is measured at 0.050338sec. Similarly, the max-
imal a that would stili require an SLA approach is

a <
7 X 0.050338
2 X 1.423602 = 0.123759

which also falls outside of our experiment scope. How-
ever, the trend of the two does indicate an excellent
match. On optimal skewing masses, the discrepan-
cies between the analytical bound and the experimen-
tal values could be a result of several factors. The
fact that a non-dedicated NOW system, rather than
a dedicated one as required in our analysis, is used
for the testbed could be a leading contributing factor.
Ignoring extra delay caused by possible collisions on
the bus in our analysis can explain why an effective
skevving mass smaller than the analytical lower bound
is sufficient in leading to optimal overall performance.

5 Conclusion
In this paper, we have provided a thorough analysis
on how communication conflict can be minimized in a
bus-based network of workstations by using a load-
skewing assignment method. The analytical model
is validated by extensive simulation and experimen-
tal results. Significant speedup improvement was also

MINIMIZING COMMUNICATION Informatica 23 (1999) 57-66 65

shown by using such a new method. Moreover, we be-
lieve that this model can be furthered extended to an-
alyze more complicated solution algorithm constructs.
A multiple-stage construct has been under investiga-
tion with very promising preliminary results.

Acknowledgeinents
This research was supported in part by the Office of
Naval Research under grant N00014-95-1-0514 and
N00014-96-1-0897, and in part by the Department of
Defense/Air Force Office of Scientific Research under
grant F49620-96-1-0472.

References
[1] v . s. Adve and M. K. Memon, "The Influence

of Random Delays on Parallel Execution Times,"
Proč. ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems,
May 1993.

[2] M. Andrews, T. Leighton, P. T. Metaxas, and L.
Zhang, "Improved Methods for Hiding Latency in
High Bandwidth Networks." SPAA '96. pp.52-61,
Padua, Italy. 1996.

[3] R. D. Blumofe and C. E. Leiserson, "Scheduling
Multithreaded Computation by Work Stealing,"
Proč. of Ann. Symp. on Foundations of Computer
Science, pp.356-368, Nov. 1994.

[4] T. Casavant and J. Kuh, "A Taxonomy of
Scheduling in General-Purpose Distributed Com-
puting Systems," IEEE Trans. Software Eng. SE-
14(2), pp.141-154, Feb. 1988.

[5] H. A. David, Order Statistics. New York: Wiley,
1981.

[6] D. L. Eager, E. D. Lazowska, and J. Zahorjan,
"Adaptive Load Sharing in Homogeneous Dis­
tributed Systems," IEEE Trans. Softmare Eng.
SE-12(5), pp.662-675, May 1986.

[7] S. Flynn Hummel, E. Schonberg, and L. E. Flynn,
"Factoring:- A Practical and Robust Method for
Scheduling Parallel Loops," Comm. of the ACM.
35(8). pp.90-101, August 1992.

[8] H. O. Hartley and H. A. David, "Universal
Bounds for Mean Range and Extrema Obser-
vations". Ann. Math. Statist. Vol.25, pp. 85-99,
1954.

[9] C. Kruskal and A. Weiss, "Allocating Indepen-
dent Subtasks on Parallel Processors." IEEE
Trans. Software Eng. SE-ll(lO), pp. 1001-1016,
Oct. 1985.

[10] W.-M. Lin and B. Yang, "Load Balancing Tech-
nique for Parallel Search with Statistical Model,"
1995 International Phoenix Conference on Com-
puters and Communications.

[11] W.-M. Lin and Z. Yun, "Performance Analy-
sis on Divide-and-Conquer Parallel Search Tech-
niques," International Conference on Parallel and
Distributed Systems, 1993

[12] D. C. Marinescu and J. R. Rice, "Synchroniza-
tion and Load Imbalance Effects in Distributed
Memory Mult-processor Systems", Concurrency:
Practice and Experience, Vol. 3, pp593-625, Dec.
1991.

[13] S. Madala and J. B. Sinclair, "Performance of
Synchronous Parallel Algorithms with Regular
Structures," IEEE Trans, on Parallel and Dis­
tributed Systems, Vol. 2, No. 1, Jan. 1991.

[14] H. Nishikawa and P. Steenkiste, "A General Ar-
chitecture for Load Balancing in a Distributed-
Memory Environment," Proč. lOth Intl. Conf. on
Distributed Computing. pp.47-54, May 1993.

[15] V. N. Rao and V. Kumar, "On the Efficiency of
Parallel Backtracking", IEEE trans, on Parallel
and Distributed Systems, Vol.4, No.4, April 1993.

[16] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, "A
Simple Load Balancing Scheme for Task Alloca-
tion in Parallel Machines," Proč. of Sym. on Par­
allel Algorithms and Architectures. pp.237-245,
1991.

[17] M. Schmidt-Voigt, "Efficient Parallel Communi-
cation with the nCUBE 2S Processor." Parallel
Computing. Vol.20, No.4, April 1994.

[18] N. G. Shivaratri, P. Krueger, and M. Singhal,
"Load' Distributing for Locally Distributed Sys-
tems," IEEE Computer, pp.33-45, Dec. 1992.

[19] A. B. Tayyab and J. G. Kuhi, "Stochastic Perfor­
mance Models of Parallel Task Systems", ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp284-285, May
1994.

[20] L. W. Tucker and A. Mainwaring, "CMMD: Ac-
tive Messages on the CM-5." Parallel Computing.
Vol.20, No.4, April 1994.

[21] Y. T. Wang and R. Morris, "Load Sharing in Dis­
tributed Systems," IEEE Trans. Computers. C-
34(3), pp.204-217. Mar. 1985.

[22] L. F. Wilson and M. J. Gonzalez, "Synchroniza-
tion and Communication in Algorithmic Struc­
tures", Proč. of the 6th IEEE Symp. on Paral,
and Distri. Processing, ppl96-203, 1994.

66 Informatica 23 (1999) 57-66 W.-M. Lin et al.

[23] W. Xie and W.-M. Lin, "Communication Conflict
Avoidance on Bus-Based Networks of Worksta-
tions with Load-Skewing Task Assignment Tech-
niques," Technical Report, Div. of Engineering,
UT-San Antonio, May 1997.

Informatica 23 (1999) 67-76 6 7

Scheduling of I /O in Multiprogrammed Parallel Systems

Peter Kwong and Shikharesh Majumdar
Department of Systems and Computer Engineering
Carleton University, Ottawa, CANADA KIS 5B6
Phone: +1 613 520 5654, +1 613 520 5727
E-mail: majuindar®sce.carleton.ca

Keywords: multiprogrammed parallel systems, parallel I/O, scheduling, performance evaluation

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 25, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Recent studies have demonstrated that significant I/O is performed by a number of parallel appli­
cations. In addition to running these applications on multiple processors, the parallelization ofI/0
operations and the use of multiple disk drives are reguired for achieving high system performance.
This research is concerned with the effective management of parallel I/O by using appropriate
I/O scheduling strategies. Based on a simulation model the performance of a number of schedul­
ing policies are investigated. Using I/O chaiacteristics ofjobs such as the total outstanding I/O
demand is observed to be useful in devising effective scheduling strategies.

1 Introduction

The continuous growth in CPU and memory speeds, as
well as the deployment of parallel processing technol-
ogy, have significantly reduced the computation times
for applications. Because of their electro-mechanical
construction, however, the access time for disks has
improved only minimally over the past twenty years
[20]. As a result, in many situations, the performance
bottleneck has shifted from the processor subsystem
to the I/O subsystem. Significant I/O is performed
in different classes of parallel applications that include
the grand challenge programs and scientific applica­
tions [20] as well as graphics software [5]. To reduce
the intrinsic problems of the slow electro-mechanical
technology used to build I/O devices, disk caches and
arrays of disks have been introduced (see [19] for ex-
ample). Another approach to improve system perfor­
mance is to use parallel I/O. Although multiple I/O
devices can potentially improve system performance,
parallelization of I/O in an application as well as ap­
propriate management of the I/O devices are required
to harness the power of the parallel I/O subsystem.
This paper is motivated by such requirements on the
effective management of parallel I/O in general and
scheduling of parallel I/O in particular.

A number of commercial shared memory as well
as distributed memory multiple processor systems are
currently in use. Examples include symmetric shared
memory multiprocessor (SMP) systems produced by
Sequent and Encore; processes or threads in an ap­
plication exchange Information through shared vari-
ables stored in the global memory provided on such a
system. Distributed memory systems on which pro­

cesses communicate through message passing include
the IntePs Hypercube and the NCube systems. Non-
uniform-memory-access (NUMA) systems such as the
Teracomputer, and the KSR-1 are hybrid between the
shared and distributed memory classes. The availabil-
ity of processors as well as high speed inter-connection
networks at a reasonable cost has created a new trend
called cluster-based computing the popularity of which
is rising rapidly. A cluster is a group of inter-connected
computers working as a unified computing resource
[24]. A network of multiprocessor workstations is an
example of a cluster system. In addition to its attrac-
tive price-performance ratio, a cluster also provides
both absolute as well as incremental scalability and
high availability.

The availability of workstation clusters and other
parallel hardware, along with tools such as restructur-
ing compilers for developing parallel application soft-
ware, are increasing the popularity of parallel systems.
A number of existing systems are dedicated to run­
ning a single computation and I/O intensive applica­
tion. However as the usage of multiprocessor and clus­
ter systems are becoming more and more widespread,
general purpose šystems that run a number of differ­
ent parallel applications are becoming popular? En-
vironments running such a variety of different appli­
cations need multiprogramming to provide user sat-
isfaction and enhance resource utilization. Multiple
parallel applications are active simultaneously on such
an environment.

Although multiprogramming provides user satisfac-
tion and improves resource utilization, a scheduler that
mediates among the demands of competing jobs is re-
quired for each resource. Existing research on resource

68 Informatica 23 (1999) 67-76 P. Kwong et al.

management in multiprogrammed parallel systems has
focused on how to schedule processors among applica-
tions in the multiprogramming mix to achieve a small
mean job response time (see for example [15, 16, 23]).
Job scheduling on a network of workstations has re-
cently started receiving attention [1] A significant
amount of research exists on processor scheduling in
both shared and distributed memory systems but is
not discussed here in detail due to limitations of space.

Existing work on parallel I/O has focused primar-
ily on environments that run a single application in
isolation. A number of I/O subsystem architectures
is discussed in the context of parallel systems in [7],
whereas a comparison of different disk configurations
that include disk striping and disk synchronization for
a transaction system workload as well as for a scien-
tific apphcation workload, is presented in [21]. The
performance of two RAID architectures and a number
of scheduling policies is considered in [2] whereas per­
formance modelling of disk drives and data caching are
considered in [22]. Characterization of file access pat-
terns exhibited by parallel scientific workload is dis­
cussed in [10]. Scheduling I/O requests for reducing
the total completion time for the schedule is discussed
in [8] whereas techniques for a co-ordinated manage­
ment of processing and I/O resources in a multipro­
grammed parallel system are presented in [23]. Re­
search on parallel file sjstems is also underway. The
Galley file system that is composed of a standard fixed
core and a set of platform dependent libraries is de-
scribed in [11]. The Hurricane file system that pro-
vides a coUection of building block objects that can be
plugged together diflferently for different system needs
is discussed in [14]. User defined file partitioning and
dynamic decomposition of files in a parallel file system
is considered in [4].

None of the existing studies described in the previ-
ous paragraph has addressed a number of basic issues
underlying the performance of parallel I/O on a mul­
tiprogrammed parallel system. The style in which an
application performs I/O, the strategies for scheduling
parallel I/O, and data distribution on multiple disks
can have significant impacts on the performance of a
multiprogrammed system. Some work on characteri­
zation of I /O and techniques for distribution of data
on multiple disks has been reported in [18] and [12]
respectively. The viability of parallel I/O on a net-
work of workstations and "the resulting performance
improvement are described in [3] and [6]. This paper
presents some new results that focus on the scheduling
of I/O requests in a multiprogrammed parallel system.
A number of scheduling pohcies are proposed and their
performances under different data distribution strate­
gies and I/O styles used by applications are discussed.

Based on an abstract simulation model of systems,
applications, data distribution, and scheduling poli­
cies, a number of high level questions that are impor-

tant for the operating system on a cluster running a
multiprogrammed parallel workload, as well as on mul­
tiprogrammed shared memory environments are dis­
cussed. The issues addressed by this research include
the following.

— Using characteristics of applications have been
found to be beneficial in CPU scheduhng on both
single as well as multiprocessor systems. Are
job characteristics important in the context of
scheduling I/O? How do the different attributes
of parallel applications affect the relative perfor­
mances of the I/O scheduling policies?

- Sharing the CPU equally among a number of com-
peting applications is found to be effective on con-
ventional multiprogrammed systems. How useful
is this principle of equal sharing in the context of
scheduling parallel I/O?

- Different ways in which an application performs
I/O, as well as strategies for replicating and dis-
tributing data over multiple disks, are found to
have a significant effect on system performance
[12]. How do these interact with the different
scheduling policies to determine the overall sys-
tem performance?

— Management of I/O may be performed in a num­
ber of different ways. A centralized management
of I/O requests may be appropriate for small
to medium scale parallel systems, whereas a de-
centralized approach is necessary for larger sys-
tems. How do the distributed and centralized ap-
proaches to I/O management affect the relative
performance of the scheduling policies?

These high level questions are investigated in the
context of multiprogrammed systems that consist of a
number of independent processing and disk resources.
Such a loosely coupled shared every thing environment
[7] is provided for example by "shared disk" clusters
described in [24]. Each set of processing resources con-
stitutes a compute server or node. These compute
servers share a common set of I/O servers or nodes.
This paper focuses on systems that run applications
characterized by large compute and I/O transfer times.
The device seek times are assumed to be much smaller
in comparison.

Computer simulations are run to investigate the
questions outlined above. The simulation results are
calculated to a 95% confidence level with an interval
which is less than ± 5% in most cases. The paper is or-
ganized as follows. The simulation model is introduced
in the following section. Descriptions of the data dis­
tribution strategies and of the scheduling pohcies are
presented in Section 3 and Section 4 respectively. The
simulation results are described in the following sec­
tion. Section 6 presents our conclusions.

SCHEDULING OF PARALLEL I/O ... Informatica 23 (1999) 67-76 69

2 The System Model

The simulation model for an open system in which
jobs arrive from the external environment consists of
two components: the model of the multiprogrammed
system and that of the application workload. The mul­
tiprogrammed system model is presented first and the
workload model is described in the following subsec-
tion.

2.1 Multiprogrammed Systein Model

The multiprogrammed system consists of the compute
and the I/O subsystems. Statistically identical jobs
run on the system. During its execution, a job does
computation, requests I/O service from the I/O sub-
system, and exits the system when ali its operations
are complete. The compute and I/O subsystems are
characterized by the number of processors, P, and the
number of independent I/O nodes, I, respectively. One
or more of these I/O nodes can be accessed in paral-
lel by the threads of the same application running on
different processors. The parallelism in I/O access is
discussed further in the follovving subsection.

Jobs arrive as a Poisson process characterized by
an arrival rate A into the compute subsystem. The P
identical CPUs in the compute subsystem are grouped
into M processor sets (job nodes). Each set has Np
CPUs, but if P is not a multiple of Np, then one of
the sets will have only P-Np*(M-l) CPUs. On a clus-
ter of workstations for example, each set corresponds
to a compute node consisting of Np processors. On
a shared memory multiprocessor this corresponds to
a static space sharing system consisting of P proces­
sors in which the degree of multiprogramming is upper
bounded by M. Each job that enters the system is sent
to the first free job node. If no job node is idle, then
the newly arrived job waits in a FIFO queue for the
first idle job node. Static scheduling of processors is
used, and once a job acquires a job node aH the pro­
cessors are held by the job until job completion. Such
a CPU scheduling strategy has, been investigated by a
number of researchers (see [24, 16] for example) and
is found to be effective in a number of different en-
vironments. Processors allocated to the same job are
sharable by the threads in the job that share the same
address space.

Following an I/O request, a thread in a job is
blocked waiting for the I/O request to finish. During
this period, the CPU on which the thread was run­
ning becomes available for use by other threads in the
same job. Processors may be shared by threads in an
application in different ways. In this research a First-
Come-First-Served policy is used and a ready thread
is assumed to run on the first available processor. An
I/O request from a job is sent to one of the I/O nodes
in the I/O subsystem. Each I/O node operates inde-

pendently, has the same speed, and is characterized by
a mean seek time ds, as well as a coefficient of varia-
tion of seek time, CV«. Note that although each I/O
node may consist of an array of disks it is modelled as
a single I/O node with a given set of seek time param-
eters. The data transfer time from the disk (also called
the I/O demand in this paper) for an I/O request is
discussed further in the foUovving subsections.

This research is concerned with the performance of
scheduling strategies characterized by large computa-
tional workloads and I/O transfer times. In ali the sim­
ulation experiments described in this paper the mean
seek time is assumed to be small in comparison to data
transfer time and is held at 1% of the mean thread
execution time. CVg is fixed at 1.0. For simphcity,
overheads associated with CPU and I/O scheduling as
well as context switching are ignored. This is appro-
priate for the qualitative nature of the questions inves­
tigated. We have also ignored the contention for the
interconnection network that connects the I/O nodes
with the job nodes. This is appropriate when the speed
of the netvvork is high such that the network delay is
small compared to the disk transfer times. Moreover
this paper is concerned with gaining insights into I/O
scheduling under a number of different data replica-
tion strategies and application classes. Isolating the
network delay from the performance analysis is also
necessary for obtaining a clear understanding of I/O
scheduling which is the focus of this paper. The per­
formance measure of interest is the mean job response
time, R. The response time of a job is the difference be-
tween the time at which the last thread in the job com-
pletes and the arrival time for the job. The mean re­
sponse time R is normalized with respect to the mean
thread computation time.

2.2 Workload models with Parallel
I/O

Jobs with a fork and join architecture, used in existing
work on processor management on parallel systems
(see [15] for example), are adapted by this research
to represent I/O performed by jobs. Research on
processor scheduling in parallel systems has ignored
the I/O performed by jobs. This fork-and-join model
is augmented to incorporate different styles in which
applications may perform I/O. Each of this I/O style
gives rise to a different job model. The workload
applied to the system in the simulation experiments is
either the 01 (Overlap # 1) or the NOP (No Overlap-
Parallel) job models (see Figure 1) introduced in
[17] and [13]. The NOP job is characterized by no
CPU-I/O overlap and the 0 1 job is characterized by
CPU-I/0 overlap. Both jobs characterized by CPU
and I/O overlap as well as no CPU and I/O overlap
have been observed in scientific programs and graphics
software [5]. Similar observations for parallel scientific

70 Informatica 23 (1999) 67-76 P. Kwong et al.

• Z«T4 Exec[riA>aTim£'

Figure 1: The Job Models. (a) 01 Model (b) NOP Model

workload have been reported by other researchers as
well. These two models are described briefly.
The 01 Model: This represents jobs which overlap
I/O with computations. A job starts by forking n^
children threads each of which reads data from an I/O
node then executes on the CPU. After completing its
computation, each thread vvrites data onto an I/O
node. When ali the children threads have completed
their writes, the job terminates (see Figure l(a)).

The NOP Model: A NOP job begins by first
reading in data. The read, however, is done using
Tli parallel I/O operations from more than one I/O
node. When ali the read operations have completed,
the job forks n^ children threads, each of which
only performs computations. When ali these threads
complete their computations, the job performs nj
parallel write operations to more than one I/O node.
After ali the writes are completed, the job terminates
(see Figure l(b)).

Two other I/O models were also investigated (see
[13]) and are not reported here for the conservation of
space.

The job models can be characterized by using a com-
mon set of parameters as well as parameters specific
to a particular I/O model. An important characteris-
tic of parallel applications, called the I/O factor, was
introduced in [17]. The I/O factor is the ratio between
the mean total I/O demand (lOD) and the mean total
CPU demand of the job: Fi — IOD/{nd * d) where
d is the mean CPU demand for a thread. The I/O
factor reflects the relative^weight of the computation
and I/O workload components of the apphcations. Ali
computation and I/O demand related parameters are
normalized with respect to the mean thread execution
time d.

The random variable for the CPU burst duration of
a thread is generated by using d as the mean and CVa
as the coefEcient of variation. For a given Fi and d,
the random variable for an I/O burst duration is gen­
erated by using the I/O request demand {I0D/2nd
for 0 1 and I0D/2ni for NOP) as the mean and CVi
as the coefRcient of variation. Generation of these ran­
dom variables is based on a bi-phase hyper-exponential

distribution ([9]).

3 Data Distribution Policies

Previous studies have shown that the way data read
or written by applications are distributed on the avail-
able disks can have a significant impact on perfor-
mance. I/O scheduling under two classes of data repli­
cation strategies are investigated: Write Anywhere
Read Anywhere ("Replicated"), and Fixed Read and
Write ("Fixed Read Write"). The Replicated policies
are further subdivided into Centralized (Replicated-C)
and Distributed (Replicated-D). In the centralized ap-
proach, a centralized dispatcher monitors the status of
ali I/O nodes (busy or idle) and requests are always
sent to an idle node. In the distributed approach, an
automatic routing of an I/O request to a node is made
without regard or knowledge of the current node status
(busy or idle). The centralized approach is appropriate
for smaller parallel systems. In larger systems, there
may be a high cost associated with maintaining such
a centralized database and a distributed approach for
I/O management may be preferable.

The Replicated policies use replication of data read
by applications whereas only a single copy of input
data is maintained by the Fixed Read Write policy.
A program's input data is assumed to be available on
aH the I/O devices for the replicated policies, whereas
the input data is available on only one disk for the
Fixed Read Write policy. For ali the policies only a
single copy of data is written, however, by the appli­
cations. Thus data written by a thread can be sent to
any one I/O node irrespective of where the data writ-
ten by other threads in the application are sent. Note
that the write operations performed by the applica­
tions are assumed to correspond to the writing of the
output results only and the written data is not read
by any thread in the application. This is appropri­
ate for a variety of different types of applications such
as scientific programs that this research is concerned
with. Replication of written data may be required in
other types of environments, such as transaction pro-
cessing systems. With the replicated data distribution
strategies any I/O node can be used to service any I/O

SCHEDULING OF PARALLEL I/O ... Informatica 23 (1999) 67-76 71

request. For FixedRW, no data repUcation is used. A
read or write operation is directed to a specific I/O
node.

In RepUcated-C, aH I/O requests are inserted into
a central queue ordered in accordance with the I/O
scheduling policy in use. A central router which knows
the busy/idle status of every I/O node initiates a
transfer between the requesting thread and the first
idle I/O node the router finds. If no node is idle, then
ali requests remain in the queue until a node becomes
free. In the Replicated-D policy, each request is sent
to one of the I nodes chosen at random with probabil-
ity l / I . At the node, requests are then placed into a
queue maintained and accessed only by the local I/O
node. The organization of the queue depends on the
scheduling policy that is described in the following sec-
tion. If the node is idle, then the request is processed
immediately.

Most existing parallel systems use the FixedRW pol-
icy that does not use any data replication. Data can
be written by an application only to specific nodes and
data can be read only from specific nodes. For Fixe-
dRW, the data read by the threads in an application
is distributed in a Round Robin fashion. With thfe
Round Robin allocation, parallelism in I/O is maxi-
mized and min{I,ni) nodes are used by an NOP ap­
plication, whereas min{I,nd) nodes are used by an 01
application. Data for the first thread is assumed to be
placed in a node k chosen at random by the simula­
tor. The data for the next thread is assumed to be
placed on A; + 1 and so on. The data for ali the threads
are placed on the nodes in such a round robin fash­
ion. When ali the nodes are used once, node k and
other nodes may be used again. The performances of
these data distribution strategies were investigated in
isolation of scheduling in [12]. Replicated-C was ob-
served to produce the best performance. However, if
the cost of maintaining a centralized database of node
status is too high on a system, a Replicated-D or Fixe-
dRW strategy needs to be adopted. The relative per­
formance of Replicated-D and FixedRW was observed
to depend on a number of different workload and sys-
tem parameters. In most situations FixedRW demon-
strated a better performance if Round Robin data
distribution was used whereas Replicated-D seems to
be preferable when a Round Robin data organiza­
tion is too expensive on the multiprogrammed system
and a simpler variant is used with FixedRW. A de-
tailed discussion of the different versions of FixedRW
is presented in [13]. Two other variants of the repli-
cated policies were also investigated by the authors
and their performances were observed to lie in between
Replicated-C and Replicated-D [13]. In order to keep
the number of experiments to a reasonable number, we
have decided to investigate the scheduling strategies
presented in the following section under three different
data distribution strategies: Replicated-C, Replicated-

D, and FixedRW (Round Robin). The first is a rep-
resentation of the best performance that can be ex-
pected in systems with centralized control. The second
is appropriate if a centralized control is not possible,
whereas the third may have to be used if the cost of
data replication is too high for the user. In ali fur-
ther discussion FixedRW will imply FixedRW (Round
Robin).

4 I /O Scheduling Policies

Existing disk scheduling algorithms such as SSTF,
SCAN, LOOK etc [24] are used on conventional sys-
tems to select one I/O request from a list of several
outstanding requests at a single I/O node. Because
these algorithms attempt to minimize the overhead
(seek times) associated with a disk access by reduc-
ing disk head movements, they are effective where disk
seek times are significant relative to the data transfer
times.

The I/O scheduling policies proposed in this pa-
per are intended for scheduling requests on systems in
which the data transfer time is much greater than the
access overhead. These policies use job characteristics
such as the age of the jobs ("JBOJF") or the total
outstanding I/O demand of the jobs ("JBSOIO" and
"JBLOIO") for determining the priority of an I/O re-
quest. For investigating the importance of equal shar-
ing a round robin scheduling pohcy ("JBRR") is in-
troduced. The performances of these four policies are
compared with the performance of a scheduling pol-
icy that does not use any knowledge of job attributes
while serving a request from the job (" JBNOT"). For
the JBNOT pohcy, I/O requests are processed on a
First-Come-First-Served (FCFS) basis.

I/O scheduling can be done either by a central
scheduler, or by a scheduler local to each I/O node.
Note that depending on the data distribution strategy
in use, any of these scheduling policies may be used to
manage a global request queue or an individual local
queue at each I/O node. A central scheduler is ap­
propriate if a centralized data replication policy such
as Replicated-C which performs centralized routing of
I/O requests is used. A local scheduler is appropriate
if the Replicated-D or FixedRW policy is used. With
a local scheduler-based approach each local scheduler
determines job priorities independent of other sched-
ulers at other nodes using only Information available
at its corresponding I/O node. At any instant, the
highest priority job at one I/O node may be different
from that at another node. A brief description of the
scheduling policies is presented next.

The JBNOT ("Not Job Based") pohcy does not as-
sign priorities to jobs. Instead it services I/O requests
on a FCFS basis. This policy is used as a perfor­
mance yardstick against which the other policies are

72 Informatica 23 (1999) 67-76 P. Kwong et al.

compared to see if job based I/O scheduling produces
any performance benefits.

The JBOJF ("Job Based-OIdest Job First") policy
gives the highest priority to the job which has been
running in the system for the longest period of time.

The JBLOIO ("Job Based-Largest Outstanding
I/O") policy gives highest priority to the job with
the largest total outstanding I/O demand. With a
local scheduling approach the total outstanding I/O
demand for a job at a given I/O node is the sum of the
demand of each I/O request issued by the job for that
node that has not yet received service. Because the to­
tal outstanding I/O demand varies between I/O nodes
and over time, job priorities also vary between I/O
nodes and over time. Consequently, the relative prior­
ities of each job must be re-evaluated by an I/O node
whenever it becomes idle. For a centralized schedul­
ing approach the total outstanding I/O demand of a
job is the sum of the demands for ali the requests stili
enqueued at the global router.

The JBSOIO ("Job Based-Smallest Outstanding
I/O") policy is identical to JBLOIO except that high­
est priority is given to the job with the smallest total
outstanding I/O demand. As with JBLOIO, the prior-
ity of each job must be re-evaluated whenever an I/O
node becomes idle.

The JBRR ("Job Based-Round Robin") policy con-
siders each job in a round robin fashion. If a job has an
outstanding request, then the I/O request is serviced
by the idle I/O node, otherwise the scheduler looks
at the next job. When ali the jobs with outstanding
I/O demands have been served once the first job will
receive consideration once again.

5 The Performance of the I /O
ScheduHng Policies

The performance of the I/O scheduling policies are
presented in this section. A factor-at-a-time approach
is used to characterize the performance of these poli­
cies: one parameter in the simulation model is varied
while the others are held at fixed values. A large num-
ber of simulation experiments are run, but to conserve
space, only a subset of the experimental results is pre­
sented and described. More data is available in [13].
Experiments are run for both the NOP and 01 job
models. The fixed valued parameters are included in
the legend of each graph that captures the result of an
experiment. The rationale for the choice of some of the
fixed factors is provided. The number of processors is
fixed at 20 because it corresponds to many medium
scale shared memory systems that are currently oper-
ational. Investigation of an appropriate degree of mul-
tiprogramming is beyond the scope of this paper. We
have fixed M = 4 which provides an intermediate value
that is reasonable for P = 20. On a cluster of work-

stations for example, this corresponds to four worksta-
tions each consisting of a 5-processor shared memory
multiprocessor. A number of such commercial-off-the-
shelf small scale SMP workstations are available at a
reasonable cost from vendors such as Hewlett Packard
and Sun Microsystems. The number of I/O nodes is
fixed at 4. Experiments with single applications with
workload characteristics used in the simulation exper-
iments showed that little incremental improvement in
response time accrues from using more than 4 I/O de-
vices. We have run experiments with other values of I
and different workload parameters (see [13]).

The results obtained under a centraUzed data repli-
cation strategy (Replicated-C) are first presented, fol-
lowed by the results from using the distributed data
replication strategy (Replicated-D) and from using the
FixedRW strategy. Results for the 0 1 model with
Replicated-C presented in Figure 2, show that a small
performance improvement is obtained by using I/O
scheduling policies based on job characteristics over
JBNOT that does not use any knowledge of job char­
acteristics, even as the system approaches saturation
(high A). The results for the NOP workload show that
the relative performance of the I/O scheduling poli­
cies diff'er only at high A, with JBSOIO performing
the best followed by JBNOT.

These results indicate that with a centralized data
replication policy such as Replicated-C and particu-
larly with the 01 I/O model, the centralized routing
of I/O requests to idle I/O nodes has a bigger impact
on system performance than using knowledge of job
attributes in I/O scheduling. For the NOP workload
some performance improvement may be achieved by
using a policy based on job characteristics such as
JBSOIO but the difference in performance among
the different policies diminish with an increase in the
variability in I/O demand [13].

Scheduling with the Replicated-D Data
Distribution Strategy
Figure 3 shows quite different results when the data
replication policy is changed from Replicated-C to
Rephcated-D. For both 0 1 and NOP, the JBLOIO
policy proves to be the worst while JBSOIO policy
proves to be the best policy. Giving a high priority
to jobs with high I/O demand can introduce large
queueing delays for smaller jobs. The success of
JBSOIO suggests that running jobs with smaller
I/O demand first can significaiitly improve the mean
job response time. JBOJF policy seems to perform
comparably with JBSOIO for an 0 1 workload, but
the second position is taken by JBNOT when the
•vvorkload is changed to NOP. The JBRR policy
performs better than JBLOIO but its performance
is inferior to JBSOIO for both the 0 1 and NOP
workloads.

An intuitive justification for the data in Figure 3 is

SCHEDULING OF PARALLEL I/O ... Informatica 23 (1999) 67-76 73

-TTJ^JJir

1

1 1

1 1

\
'

'
1 1

1 ••«'-

4

NOP

. ^ j f i ^ f ?;is^jaq H^v-^^fif'.?••*

fl!l

S,v,.^M;-«*?S*"'-« ^^^^^''^^'

0.7 ^0.3

rBKS /

Taxn../Fjf'
J^^'

m\
if' IBUDOD

0.4 OJ

Figure 2: The Performance of Scheduling Policies under Replicated-C. P = 20, 7 = 4, d«
1.0, Fi = 0.5, M = 4, Ud = 10, d = 1, CVd = 1.0, CV, = 1.0, Ui = 5

= 0.01, CVs =

30.

?0.

10.

5
!

OL

i n — j m — ^ — o — 5 1 — j f A «^^=0»

I I I I

HOP

TTOS cn cr Trtf i 0725

Figure 3: The Performance of Scheduling Policies under Replicated-D. F = 20, 7 = 4, dg = 0.01, CV«
1.0, Fi = 0.5, M = 4, Ud = 10, d = 1, CVd = 1.0, CVi = 1-0, rn = 5

74 Informatica 23 (1999) 67-76 P. Kwong et al.

presented.
It follows from Little's Law that the smaller the

number of unfinished jobs in an open system, the
better is the performance of the scheduhng poHcy.
One of the reasons behind the success of JBSOIO
is its abiUty to complete jobs quickly by associating
a higher priority with jobs that exhibit small I/O
demand. The relative performance of JBOJF and
JBNOT depends on the I/O model used. For the 0 1
model ali the threads in an application do their initial
read operations at the beginning. An I/O request
from an older 0 1 job is likely coming from a thread
that has completed its computation and is vvaiting to
write its output. Giving priority to such a job tends
to speedup the completion of these nearly completed
jobs, which minimizes the number of resident jobs
and response time. The situation is different for the
NOP model. Irrespective of reads or writes ali the
I/O requests generated by the jobs in a given phase
are generated at the same time. However when a
NOP job performs I/O the processors allocated to
the job are idle and more than one I/O requests
from the same job may be enqueued at a given I/O
node. Switching an I/O node to a different job on
the basis of its age is detrimental because it keeps
the previous job incomplete and aH the processors
used by the job unused. JBNOT seems to be giving a
better performance in this situation. JBRR prevents
monopolization of I/O nodes by large jobs and
performs better than JBLOIO. But because of the
large number of job switching that tends to increase
the average number of incomplete jobs on the system
its performance is inferior to JBSOIO.

Scheduling with the FixedRW Data Dis-
tribution Policy
The performances of the scheduling policies for the
FixedRW strategy are presented in Figure 4. The
behavior of the policies are similar to the čase in
which Replicated-D was used as the data distribution
strategy. One of the reasons for this similarity is that
unlike Replicated-C none of these strategies ušes a
centralized database for routing the I/O request and
multiple requests from the same job may be waiting
at the same node while other nodes may be idle. The
results for the FixedRW data distribution strategy
confirm the utility of using job characteristics in
scheduling. It is interesting to note that the perfor­
mance of JBOJF is comparable to that of JBSOIO
for the 0 1 workload.

6 Conclusions
Based on a simulation model this paper is concerned
primarily with effective I/O scheduling strategies for
multiprogrammed parallel systems that employ paral-
lel I /O. A number of experiments were run under vari-

ous types of workload and data distribution strategies.
Knowledge gained in terms of insights into system per­
formance and scheduling are summarized.

The Impact of Data Replication: Replication of read
data and the fiexibility of writing to any free disk seems
to improve system performance in a major way when a
centralized control is available. The effect of schedul­
ing is only secondary especially for the 0 1 model.

The Impact of Scheduling-. When a distributed rout­
ing is used with data replication or when data is
not replicated, choosing an appropriate I/O schedul­
ing policy is crucial for achieving high system perfor­
mance. Using characteristics of jobs such as the total
outstanding I/O demand and age seems to be quite ef­
fective in I/O scheduling on multiprogrammed parallel
systems. A large benefit in performance can be ob-
tained for example by using a policy such as JBSOIO
under a variety of workload conditions. JBOJF and
JBNOT are also observed to perform well for 0 1 and
NOP respectively. The Effect of Egual Sharing: Equal
sharing of I/O nodes among applications in the cur-
rent multiprogramming mix as captured by the Round
Robin scheduling policy did not perform well in most
situations. Although it prevents I/O starvation ex-
perienced by jobs, switching the I/O nodes among a
number of jobs seems to increase the number of incom­
plete jobs and deteriorate mean response time.

Implementation Issues: Although CPU scheduling
policies such as Shortest Job First that are based on
explicit knovvledge of job characteristics demonstrate
excellent performance, their exact implementation has
been difficult on general purpose systems in which it
is hard to acquire such a priori knowledge. In compar-
ison to CPU scheduling, policies based on job charac­
teristics are easier to implement in the context of I/O
scheduling. It is possible for the operating system to
keep track of the age of a job as well as to estimate the
I/O demand associated with a request. Consequently
it is possible to implement policies such as JBOJF or
JBSOIO on a real system.

Due to limitation of space we could not discuss the
experiments conducted for the investigation of the im­
pact of job characteristics on performance. Results of
the experiments described in [13] indicate that both
the variability in I/O demand and I/O factor affect
the relative performance of the scheduling policies in
a similar way. For example, an increase in CVi is
observed to produce a larger difference in the per­
formance of the scheduling policies for any given I/O
model for both Replicated-D and FixedRW data distri­
bution strategies. A larger benefit accrues from using
policies based on job characteristics such as JBSOIO
when the I/O factor is increased.

The overhead associated with the scheduling poli­
cies as well as with the dispatching of I/O requests
have been assumed to be negUgibly small in this
paper. Measuring these overheads on a real system

SCHEDULING OF PARALLEL I/O ... Informatica 23 (1999) 67-76 75

30

25

•20

rt ^5

10

5

Ol
HOP

T T T JfH CI^ TTA tr3^

BHOT

.6 O UJOi u"i U.15 U?J 1 U.?i U!J U.Vb i / j u. :i5

Figure 4: The Performance of Scheduling Policies under FixedRW. P = 20, I = i, ds = 0.01, CVs = 1.0, F;
0.5, M = 4, nd = 10, d = 1, CVd = 1.0, CVi = 1.0, n^ = 5

and understanding their performance impacts is
currently being undertaken by the authors. In this
paper we have considered systems in which data
transfer times dominate the overall disk service
time. Systems on which disk seek times can form a
significant component of the overall I/O service time
warrant investigation. Using the results presented in
this paper for implementing scheduling policies on
real systems forms an important direction for future
research. Work is underway in implementations of
these strategies and measuring their performance on
a network of workstations.

Acknowledgments
This research was supported by the Natural Sciences
and Engineering Research Council of Canada. Thanks
are due to Geoff Waddington for proof reading and to
the anonymous referees for their comments.

References
[1] A.C. Arpaci-Dussau, D.E. Culler, A.M. Main-

waring, "Scheduling with Implicit Information
in Distributed Systems", Proč. ACM SIGMET-
RICS'98/Performance'98 Joint Conf. on Measure-
ment and Modeling of Computer Systems, Madi-
son, June 1998, pp. 233-243.

[2] S. Chen, D.Townsley, "A Performance Evaluation
of RAID Architectures", IEEE Trans, on Com-
puters. Vol. 45, No. 9, October 1996, pp. 116-
1130.

[3] Y. Cho, M. Winslett, M. Subramaniam, Y. Chen,
S. W. Kuo, K.E. Seamons, "Exploiting Local
Data in parallel array I/O on a Network of Work-
stations", Proč. Fifth Workshop on Input/Output
in Parallel & Distributed Computing, 1995.

[4] P.F. Corbett, D.G. Feitelson, J.-P. Prost, S.J.
Baylor, "Parallel Access to Files in the Vesta File

System", Proč. Supercomputing '93 Conf., 1993,
pp. 472-481.

[5] R. Cypher, P. Messina, "Architectural Require-
ments of Parallel Scientific Applications with
Explicit Communication", Proč. International
Symp. on Computer Architecture, 1993.

[6] L. Diaconescu, S. Majumdar, "The Performance
of Parallel I/O on a Multiprogrammed Network
of Workstations", Proč. Parallel and Distributed
Computing and Networks, Brisbane (Australia),
December 1998, pp. 439-448.

[7] J.M. Del Rosario, A. Choudhary, "High Perfor­
mance I/O for Massively Parallel Computers",
IEEE Computer, March 1994, pp. 59-68.

[8] R. Jain, K. Somalwax, J. Werth, J.C. Browne,
"Heuristics for Scheduling I/O Operations",
IEEE Trans, on Parallel & Dist. Systems Vol. 8,
No. 3, March 1997, pp. 310-320.

[9] Kobayashi, H., "Modehng and Analysis: An
Introduction to System Performance Evaluation
Methodology", Addison-Wesley, 1981.

[10] D. Kotz, N. Nieuwejaar, et al., "File-Access
Characteristics of Parallel Scientific Workloads",
Tech Report PCS-TR95-263, Dept. of Math. and
Comp. Science, Dartmouth College, Hanover,
U.S.A, 1995.

[11] D. Kotz, N. Nieuwejaar, "Flexibility and Perfor­
mance of Parallel File Systems", Third Interna­
tional Conf. of the Austrian Committee on Paral­
lel Computing (ACPC'96), September 1996, pp.
1-11.

[12] P. Kwong, S. Majumdar, "Study of Data Dis-
tribution Strategies for Parallel I/O Manage­
ment" , Third International Conf. of the Austrian
Committee on Parallel Computing (ACPC'96),
September 1996, pp. 12-23.

76 Informatica 23 (1999) 67-76 P. Kwong et al.

[13] P. Kwong, Management of Parallel I/O in Mul-
tiprogrammed Parallel Systems, M.Eng. Thesis,
Department of Systems and Computer Engineer-
ing, Carleton University, 1996.

[14] O. Krieger and M. Stumm, "HFS: a Performance
Oriented Flexible File System Based on Building-
Block Compositions", Proč. 4th Workshop I/O in
Par. and Dist. Systems, Philadelphia (PA) , May
1996, pp. 95-108.

[15] S. Leuttenegger and M. Vernon, "The Per­
formance of Multiprogrammed Multiprocessor
Scheduling Policies", Proč. 1990 ACM SIGMET-
RICS Conf. on Measurement and Modeling of
Computer Systems, Boulder (CO), May 1990, pp.
226-

[16] S. Majumdar, S., D.L. Eager. and R.B. Bunt,
"Characterisation of Programs for Scheduling
in Multiprogrammed Parallel Systems", Perfor­
mance Evaluation, Vol. 13, 1991, pp. 109 -130.

[17] S. Majumdar, Y.M. Leung, "Characterizing Ap­
plications with I/O for Processor Scheduling in
Multiprogrammed Parallel Systems", Proč. Sixth
IEEE Symposium on Parallel and Distributed
Processing, Dallas (TX), October 1994, pp. 298-
307.

[24] W. Stallings, Operating Systems, Internals and
Design Principles (Third Edition), Prentice Hali
1998.

[18] S. Majumdar, F. Shad, "Characterization and
Management of I/O in Multiprogrammed Paral­
lel Systems", Proč. Seventh IEEE Symposium on
Parallel and Distributed Processing, San Antonio
(TX), October 1995,pp. 502-510."

[19] D.A. Patterson, G. Gibson, R.H. Katz, "A
Čase for Redundant Arrays of Inexpensive Disks
(RAID)", Proč. ACM SIGMOD Conference, June
1988, pp. 109-116.

[20] Y.N. Patt, "The I/O Subsystem: A Candidate for
Improvement", IEEE Computer, March 1994, pp.
15-16.

[21] A.L.N. Reddy, P. Banerjee, "An Evaluation of
Multiple-Disk I/O Systems", IEEE Trans, on
Computers, Vol. 38, No. 12, December 1989, pp.
1680-1690.

[22] C. Ruemmler, J. Wilkes, "An Introduction to
Disk Drive Modeling", IEEE Computer, March
1994, pp. 17-29.

[23] E. Rosti, G. Serazzi, E. Smirni, M.S. Squil-
lante, "The Impact of I/O on Program Behavior
and Parallel Scheduling", Proč. ACM SIGMET-
RICS'98/Performance'98 Joint Conf. on Measure­
ment and Modeling of Computer Systems, Madi-
son , June 1998, pp. 56-65.

Informatica 23 (1999) 77-85 77

Fault Tolerance of Parallel Adaptive Applications in Heterogeneous
Systenis

D.Kebbal, E.G.Talbi and J.M.Geib
L.I.F.L., Universite des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
Phone: +333 20 43 45 39, Fax: +333 20 43 65 66
E-mail: {kebbal, talbi, geib}@lifi.fr

Keywords: parallel adaptive programming, heterogeneous systems, checkpointing, fault tolerance

Edited by: Rajkumar Buyya and Marcin Paprzycki
Received: September 13, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

In this paper, we present a fault tolerance approach for managing application faults in parallel
adaptive environments. Parallel adaptive systems allow the application to grow as the resources
become available and to shrink when these resources are reclaimed or overloaded. Our fault toler­
ance policy ušes an optimized coordinated checkpointing algorithtn which allows roUing back the
checkpointed applications on heterogeneous architectures and redistributing the load at recovery
tirne. Furthermore, the approach permits to recover from failures by involving a minimum part
of the application in the recovery operation after a failure.

1 Introduction
The increasing performance/cost ratio of workstations
and fast communication networks have pushed net-
works of workstations (NOWs) to become popular
platforms for parallel and distributed computing. The
fault risks increase with the size of the distributed sys-
tem degrading its performance. Therefore, fault toler­
ance aspect must be taken into account.

Fault tolerance property of a system is its ability
to ensure the continuity of service despite hardware
and software faults. This can vary from guarantying a
complete service to shutting down properly the system
through operating in degrading mode.

Fault tolerance techniques have been largely studied
in the literature [1, 2]. They are based on hardware
or software solutions and they are implemented differ-
ently in the čase of uniprocessor, massively parallel or
distributed systems. Several softwaxe models used to
construct reliable distributed computing systems have
been proposed [3], among them group-oriented mod­
els, transaction models and models based on commu-
nicating processes with point-to-point communication.
These paradigms include object/action model, pri-
mary/backup model, state machine approach and con-
versations [4]. These techniques are generally based
on low-level services that provide functionality sim-
ilar to standard hardware or operating system ser­
vices with improved semantics. These services include
stable storage, atomic actions, resilient processes and
some kinds of RPC [4]. Furthermore, other type of
low-level services provide consistent Information to ali
processors in a distributed system. They include com-

mon global tirne, group-oriented multicast and mem-
bership services.

The well-known software solutions for the point-
to-point communication models are those based on
checkpointing/roll-back techniques which consist on
periodically defining a consistent global state of the
application and saving it on a stable storage. When
a failure occurs on a node, the application is rolled
back from its last checkpoint [5]. The low-level ser­
vices used by these mechanisms include particularly
stable storage and resilient processes services.

Most of the parallel and distributed programming
environments (PVM, MPI, ...) don't handle the fault-
tolerance aspect. Moreover, most of the classical
checkpointing algorithms developed don't take into
account the specific properties of some applications
which can be the basis of important optimizations.
Furtheremore, They are constrained by the hetero-
geneity problem; a process checkpointed on a specific
architecture must be restarted on the same architec-
ture.

Our purpose is to address fault tolerance in paral­
lel adaptive resource management systems through a
system called MARS. Parallel adaptive systems have
the particularity of adapting the application load to
the resource availability provided by the underlying
environments [6, 7, 8].

The remainder of the paper is organized as follows:
the following section presents some similar systems.
Section 3 introduces the MARS system and paral­
lel adaptive programming. In section 4, we describe

78 Informatica 23 (1999) 77-̂ 85 D. Kebbal et al.

briefly an algorithm for checkpointing parallel adap-
tive applications. Section 5 presents a complete fault
tolerance approach used to manage failures in the sys-
tem. Thus, a new programming interface is developed
in order to handle work automatically and to give a
framework for recovering only the failed application
components.

2 Related work
In the group-oriented models, the consistency is guar-
anteed by some mechanisms like identical process
group views and delivery order of messages. Thus we
can distinguish global order in which a lockstep mode
is used and a virtually sjjnchronous model introduced
by Isis [3] in which only a causal order required to keep
the consistency of operations is used.

Horus [9] and Relacs [10] ušes the same model but
deals with multiple partitions of the same group cre-
ated after network partition. Multiple views of the
same group may therefore exist concurrently. Thus,
new operations axe added including partition merge
and State transfer. Moreover, [10] ušes the notion of
unreachability to keep track of possibly created parti­
tions.

In Horus, a flush protocol is used when a failure is
detected or a merge operation is initiated. The pro­
tocol consists of re-sending unstable messages ^ to aH
members in the group before installing a new view of
the group. The installed view will include aH parti­
tions after a partition merge or exclude a crashed pro­
cess in the čase of failure. This protocol guarantees
that aH members in the new view deliver the same set
of messages (virtualy synchronous model). The sta-
bility property is known by keeping at each member a
matrix where each entry {i, j) contains the number of
messages sent by process i and viewed by j . Based on
this matrix, a report including the sequence numbers
of the last delivered messages is periodicalIy broadcast
to aH group members which may incure considerable
overhead.

We consider an application model consisting of a
set of distributed processes communicating through
a local area network, by sending point-to-point mes­
sages. The fault tolerance approach ušes a checkpoint­
ing mechanism and a backward error recovery scheme
to recover from failures. The checkpointing/roll-back
techniques are well used in commercial applications
in which the availability and the performance prop-
erties are the well-required properties. In contrast,
group and multicast-based models use generally costly
mechanisms like replication, multicasting and consen-
sus protocols to ensure consistency of group member-
ship and message delivery.

'A message is called stable when it is seen by aH members

Checkpointing algorithms have been largely studied
(see [1, 5]) and can be classified in three categories [11]:

- Explicit techniques in which the programmer is
responsible for the implementation and manage-
ment of the checkpointing/roll-back mechanism
[12]. Some application properties are used to
achieve efficient implementation with increased
programming complexity.

- Semi-automatic techniques which reduce this
complexity by providing checkpointing and roll-
back libraries, but they leave the management of
checkpointing to the programmer [13].

- In the user-transparent techniques, checkpointing
implementation and management are ensured by
the library. We can distinguish three sub-classes:
independent techniques in which checkpoints are
taken independently by each application process
[14]. Consistent checkpointing approches in which
the whole application is frozen at checkpoint time
and aH processes cooperate to define a consistent
recovery line [15, 5]. The third sub-class called
hybrid techniques tries to combine the advantages
of the two previous categories in order to achieve
better performance [16].

The consistent checkpointing algorithms result gen-
erally in efRcient checkpointing implementation and
management. They avoid orphan and duplicated mes­
sages and don't require determinism. In contrast, the
synchronization phase involved increases the check­
pointing cost and latency.

Some systems based on consistent checkpointing
have been developed around the PVM environment
[17]. A checkpointing algorithm for the MIST system
is presented in [18]. Its complexity in terms of con-
trol messages exchanged at checkpoint time is 0{n^).
It handles considerable amounts of data since it con-
siders the address space of aH application processes.
Fail-safe PVM [19] and CoCheck [20] use an algorithm
similar in complexity. Fail-safe includes the PVM dae-
mons in checkpointing. Moreover, they are concerned
by the heterogeneity problem since they include the
address space of aH application processes in the check­
point file.

3 Adaptive programming
Adaptive applications are those applications in which
the parallelism degree can be managed dynamically
during execution time. The application can adapt its
size to the computing load provided by the underlying
environment. The ownership aspect of vvorkstations
is respected without overloading other nodes in the
system and the idle cycles are efRciently used. Piranha

FAULT TOLERANCE OF PARALLEL ADAPTIVE Informatica 23 (1999) 77-85 79

[6], MARS [7] and CARMI [8] are examples of such
systems.

In MARS, the computation is divided into some
work units managed by a master process and allocated
dynamically to some workers. At the master level, the
programmer specifies a work server module (thread)
responsible for allocating work and receiving results
from workers. The worker body is generally a loop con-
sisting of three sequential steps: getting a work unit
from the master, processing it and putting back results
(figure 1). If a workstation is reclaimed by its owner
or becomes overloaded, the system folds up the appli­
cation by withdrawing the worker on this workstation.
The evacuated worker puts back its pending work to
the master before dying. In contrast, if a workstation
becomes idle, the system unfolds the application by
creating a new worker on the idle node.

Figure 1: Structure of a MARS application

v wt /

node
ownedor
overloaded

node I node 2 node 3 node 4
AMM = Application Master Module (master)
WM = Wori(er Module (worker)
wst '=Work Server Thread (master)
wt = Worker Thread (worker)

MARS is built on a multithreaded parallel environ-
ment called PM2 [21] which ušes PVM [17] as commu-
nication support.

4 Checkpointing parallel
adaptive applications

The checkpointing algorithm is based on "consistent
checkpointing" in the sens that it involves ali adap­
tive application components in the checkpointing op-
eration. However, it differs from the algorithms of
this category in three points: (i) It doesn't include
the whole workers address spaces in the checkpoint
file but only the work units they are processing (par-
tial work). (ii) Since the workers don't communicate
directly but only with the master, the algorithm ušes
only 0{n) messages to synchronize the workers instead
of 0(11^) required generally by consistent checkpoint­

ing algorithms. (iii) The workers resume their execu-
tion immediately after putting back the pending work.

4.1 Checkpointing
The checkpointing algorithm is described below (figure
2):

1. When a checkpointing operation is started, the
master broadcasts a request to aH its current
workers in order to put back their partial results.

2. On receiving this request, each worker suspends
its execution and starts a specific control thread
which puts back the partial results to the master.
The control thread is synchronized with the com­
putation threads in order to define a consistent
local State of the worker.

3. After receiving partial results from aH its work-
ers, the master takes its local checkpoint. The
single Unix process checkpointing tool of Condor
is used [22]. Before it takes its local checkpoint,
the master forks a new process which takes the lo­
cal checkpoint in parallel with the execution of the
application and dies. Indeed, this is similar to the
main-memory optimization except the overhead
induced by the process creation which is higher
than the thread creation in main-memory tech-
niques.

Figure 2: Checkpointing algorithm at work

stan
ckpt

ckpi reguesL
put back woik

A detailed presentation and performance evaluation
of the checkpointing/roll-back algorithm can be found
in [11].

4.2 Roll-back
Rolling back the application consists in the čase of
the master failure of getting back the application state
from the checkpoint file. Note that the determinism is
not required since the checkpoint defines a consistent

80 Informatica 23 (1999) 77-85 D. Kebbal et al.

recovery line and there are no logged messages. The
roUed back master reenrolls in the MARS run-time sys-
tem as a new application without workers. The work
units partially processed is redistributed dynamically
to the new workers created after requesting the system
for available resources at reenrollment time.

The number of new workers will be function of the
current load which can be different from their number
at failure time.

4.3 Experimental results

In order to give an idea on the performance of the
checkpointing algorithm, we have experienced the
mechanism using two applications: tabu, a parallel ver-
sion of tabu search program used to solve a QAP^
problem and prime a parallel program which finds
prime numbers belonging to a given range. Table 1
recapitulates the running time and the checkpointing
overhead induced by the mechanism with 5 mn check­
pointing period using a network of 13 workstations.
The results show that the checkpointing overhead of
the master in negligible (under 1%). The second part
of the table 1 presents average values of workers mea-
surements which do the effective work. The results
show that the checkpointing overhead is under 0.5%
for both applications.

In contrast, the size of the single checkpoint file in-
creases with the number of workers (partial work).
Thus, the mean checkpoint file size reaches 1.7 Mbytes
with a standard deviation of 76 Kbytes for tabu search
and 3.4 Mbytes with a standard deviation of 1300
Kbytes for the prime program. Fortunately, the main-
memory technique used minimizes the impact of the
file size on the checkpointing performance by alIowing
the application to resume its execution while the file
is being written on the stable storage.

4.4 Qualitative analysis

Our approach presents a number of advantages:

- Load balancing: At recovery time, the application
is rolled-back by restarting the new master from
the checkpoint file without workers. The load can
be balanced by selecting the under-loaded nodes
to start the new workers.

— Heterogeneity: In classical algorithms, rolling
back a process checkpointed on a specific archi-
tecture must be done on the same architecture.
A restored application can't benefit at the highest
degree from the availability of the system. Since
we don't deal with workers address space, the ap­
plication except the master can be restarted on
any available nodes whatever the architecture.

^Quadratic Assignment Problem

— Independence of the system load at recovery time:
Once an application is restarted, it doesn't re-
quire that the resources number be the same as
at checkpoint time. Indeed, it can restart with
less or more workers.

— Transparency: The checkpoint algorithm doesn't
require additional user interventions since it ušes
the fold service used by the MARS run-time sys-
tem itself. An API is provided to the user for
explicitly managing the checkpoint mechanism.

— Portability: The checkpointing algorithm is im-
plemented at user level, using facilities available
through standard Unix system calls and libraries.
The advantage of such an implementation is that
there is no need for kernel modification, making it
portable to various Unix flavors (SunOS, Solaris,
OSF and Linux).

Unfortunately, the approach suffers from some
drawbacks especially the overloading of the master at
checkpoint time, since it receives pending work units
from ali workers at the same time before taking its
local checkpoint.

Our approach has been used in coarse grained appli­
cations in scientific computing (Gauss elimination, ma-
trix multiplication, etc) and combinatorial optimiza-
tion (branch and bound, heuristics, etc) fields.

5 Failure detection and
recovery

We assume a distributed asynchronous system in
which the relative processors speed and the commu-
nication delay are not known a priori. The underlying
communication system ensures the sequencing and the
delivery of messages resulting in FIFO channels.

Processes fail by crashing (by prematurely halting)
alIowing then other components to detect the failure.
Failure detection is achieved by superimposing to each
process a failure detector [23] in which a "timely" fail­
ure detection approach is used.

In Isis [3], the communication transport layer is in-
tegrated with the failure detection layer to make pro­
cesses appear to fail by halting (fail-stop model). The
system ušes an agreement protocol to maintain a list
of non faulty processes. However, a process suspected
to be failed is forced to leave the system.

As we will see it in the failure recovery section, the
processes can belong to one of two classes: system and
application processes. The system processes consist
of a set of communication and resource management
daemons. The application processes consist of user
application processes. When a communication or a
resource management process crashes or is suspected

FAULT TOLERANCE OF PARALLEL ADAPTIVE Informatica 23 (1999) 77-85 81

Table 1: Running tirne and checkpointing overhead

Application

tabou
prime

VVithout
Ckpt (s)
18821
12434

Checkp
Overh (s)
127
77

%

0.67
0.62

Ciieclcp
number
63
42

Mean Number
Worl(ers/Cltpt
10.96
11.76

Mean Ckeclsp
Overhead (s)
1.05
1.26

%

0.32
0.40

to be crashed, the node that it controls is considered
entirely failed even this is caused by the interruption
of the communication channel. In contrast, the failure
of an application process may affect only that process
^. Following this classification, the failure detection
approach used in our model is achieved in two ways:
first, by requesting the communication layer ^ to in-
form some system component when a specified process
stops its execution. This is especially useful for appli­
cation processes when the crash is not due to a real fail­
ure of a node. Second, by using a timeout-based mech-
anism in which the processes are periodically "pinged"
so that a failure of a process is detected quickly. Later
if a process which was running on the failed node inter-
acts with the system, it is forced to leave the system.
This choice is motivated by the fact that these failures
can take excessive time, preventing thus the applica­
tion components depending on the computation being
done by some unreachable processes from progress.
Our adaptive system provides tools for adding new
available nodes to the system. However, the compu­
tation being done on the unreachable node can be ig-
nored and restarted from a previously saved state on
another idle node. Therefore, progress is usually guar-
anteed. One might think that this approach raises
a problem with transient failures caused by tempo-
rary unavailability of the process-overloading of the
node for example-. In practice, the timeout period
is set sufficiently high to avoid such transient prob-
lems. The first detection approach is guaranteed by a
communication daemon running on the specified node
which knows immediately for the failure of the local
processes. If such a failure is registered, the request-
ing process is informed. However, the failure detection
in this čase is fast and more efficient. The approach
can be combined with a probabilistic failure interval
ditribution to adapt the checking period so that the
communication cost can be minimized.

Subsequently, we distinguish three types of failures:
the system failure, in this čase aH applications must
be terminated, the system restarted and the applica­
tions rolled back manually. The master failure which
involves roUing back an entire application. The third
type of failures is the failure of a specific worker which
is recovered by roUing back the failed worker only. To

^The failure can be caused by a conceptual or runtime error
like memory access violation or external intrusions like explicit
interruption of the process by the user

^PVM communication library

allow partial recovery, the system must keep track of
aJl tasks assigned to each worker. However, a trans­
parent management of work is required.

5.1 Managing work transparently: A
franiework for partial recovery

In order to allow a transparent management of the
computation, a programming interface beised on de-
pendency graphs model is developed. The user can
therefore build easily his parallel application. The ap­
plication construction consists of specifying the appli­
cation tasks and describing the precedence constraints
between them.

A task is a data fragment on which some sequen-
tial actions must be applied. At the master level, the
user specifies his tasks, packs them into data struc-
tures and gives them to the library using a specific
function. Then, the library builds a work space (bag
of tasks) and a dependency graph which ensures the
execution order of tasks when allocating them.

The allocation of tasks to workers is achieved auto-
matically by a library module (the work server mod­
ule) vvithout user intervention except that the user
must specify how his data is packed and unpacked with
PVM functions. The user can interpose also when re-
ceiving pending work and results for a possible op-
timization of storage space or execution time or for
generating new tasks on-line.

The body of the worker consists generally in a loop
which begins with a library call interpreted by a trans­
parent message sent to the master. The work server
searches in the master work space for a ready task.
When it find a task, it returns it to the worker includ-
ing some other Information: the name of the thread
designed to process the task and a flag specifying if
the task has been partially processed (pending work)
or it is simply a new task (new work).

Getting the task and the thread name, the specified
worker thread can be started. When it finishes, it
calls a specific function which resturns the results to
the master.

When the system decides to fold up the worker or
a checkpointing operation is started, a specific user
function is called which puts back the pending work
and the partial results to the master.

82 Informatica 23 (1999) 77-85 D. Kebbal et al.

5.2 How recovery is achieved

The MARS system consists of a "group server" (GS)
which manages a pool of heterogeneous workstations.
On each node, resides a "node manager" (NM) which
informs systematically the GS of the node state tran-
sitions (figure 3).

Figure 3: Architecture of MARS

group
server

(NM j (NM J (NM J

ovcrload

r NM j

owner on
consolc

node 1 node 2

When the application enroUs into the system, it
starts a specific process called the mediator on the
node where the GS is running. Its roU is managing ali
application "group server" communication and rolling-
back the application on failure ^.

The fault tolerance algorithms must ensure efficient
fault detection and management as well as the con-
sistency of the fault tolerance policy by avoiding the
recovery of some application failures caused by con-
ceptual or human errors.

5.2.1 Recovery a t sys tem le vel

The failure detection at this level is achieved follow-
ing the first model described above. Thus, the GS
keeps a failure detector which looks for node managers
failures by "pinging" them periodically. When a node
manager failure is detected, the node is declared failed
and aH processes that it hosts are considered crashed.
Therefore, the GS takes the following actions:

Node failure: When a node is declared failed, the
GS is notified. Thus, it tries to recover ali the applica-
tions where the master was running on the failed node
as follows:

^Our goal is to keep a process (the mediator) with the same
rights as the application and which can survive when the vvhole
application crashes. This is motivated by the fact that the sys-
tem hasn't root privileges and the application must not execute
in root mode even the system is root

— It tries to roll back the application entirely. This
is done by calling the mediator which, giving it
a node identifier of the same architecture as the
failed one ^ within the available nodes, it rolls
back the application that it controls.

— If the roU-back is not achieved, some other
restoration attempts ^ are made. If after ali at-
tempts, the application is not roUed back, an error
is suspected, the recovery is aborted and the me­
diator is terminated.

— If the application is roUed back after one or some
attempts, some Information about the failed ap­
plication (its identity and the incarnation number
of the master) are kept in the table entry of the
failed node. This Information is used by the GS
to distinguish an application termination due to
a node failure from an abnormal behaviour of the
application (see the section on the master failure
at the application level below).

Concurrently with the applications roU-back, the GS
tries to recover the failed node within a finite time.
Otherwise, it reconfigures the system by deleting the
failed node from the configuration.

The application recovery is made immediately with-
out waiting the failed node to be available. We pro-
ceed so to avoid the eventual waiting time taken by
repairing the failed node.

Master termination The master failure can be
seen by the mediator via the communication layer as
described above or after the expiration of a timeout
period when communicating vî ith the master. There­
fore, a failure message is sent to the GS which executes
the recovery protocol:

— If the termination is not due to the failure of a
recovery attempt, the node hosting the master
is checked. If it is really failed, the master is
searched and freed from the failed masters list of
the down node using the Information kept previ-
ously.

— In contrast, if the node is alive or the master is not
found in the down node list, the system suspects a
conceptual or human error and the application is
simply terminated. This procedure is executed to
ensure a consistent state of the system. The appli­
cation recovery is invoked when the node failure
is revealed as indicated above.

Note that, the normal termination of the applica­
tion is distinguished from the master failure by a ter­
mination message sent by the master to the mediator

^This is constrajned by the master roll-back which must be
done on the same architecture as the checkpointing one

^three attempts in the current implementation

FAULT TOLERANCE OF PARALLEL ADAPTIVE Informatica 23 (1999) 77-85 83

and forwarded to the GS. The appHcation entry in the
apphcations hst is simply freed and the recovery pro­
cedure is not runned.

5.2.2 Recovery at application level

In a MARS application, the work server module allo-
cates tasks to workers and keeps their state. Figure
4 shows the transitions of a task state following the
different events.

Figure 4: Transition graph of a task and workers re-
covery

A task assigned to a worker can be in three states:
ALLOCATED, when it is allocated for the first time,
REALLOCATED for a task making the object of
more than one allocation. The CHECKPOINTING
state is the state of a task allocated to a worker being
checkpointed. When an application worker is folded,
it puts back the pending work before dying. Thus, the
work treated partially of each task kept by the failed
work is stored in the task pending-ivork structure and
its state moves to PENDING.WORK. However, the
work made previously by the evacuated worker can be
exploited.

Again the failure detection of workers is achieved at
the master level by either the information provided by
the communication layer, by timeouts when commu-
nicating with workers or explicitely by the GS when
it detects a node failure. The workers recovery is
achieved by altering the tasks state. Indeed, the fail-
ures can be viewed and managed at this level as fol-
lows:

Worker failure: When a worker terminates, the
master is informed. However, to distingish a normal
termination from a failure, the master keeps for each

worker a flag which reflects at any time the worker
state vievved by the master. If the worker terminates
while it is not in a normal terrnination state, a node
failure or a human error is suspected. Then, the worker
is recovered.

The recovery of a worker is achieved by brows-
ing the master work space serching for aH tasks as­
signed to the failed worker and altering their state
as shown on figure 4. Thus, if the task was in the
CHECKPOINTING or in the REALLOCATED
states, its pending.work structure is full. Therefore, it
moves to PENDINGJVORK state. In contrast, if
it was in ALLOCATED state, aH the work made pre-
viously is lost (the pending-ivork structure is empty)
and it becomes in the NEW-WORK state.

Master failure: If the master task fails, the follow-
ing actions are taken:

— Ali application workers are informed by the com­
munication layer or when they "timeout" when
communicating with the master. The informed
workers terminate immediately. Thus, we ensure
that there are no useless or duplicated processes
after the application recovery.

- The mediator failure detector knows about and
informs the GS. As it has been presented, the GS
determines whether the termination is due to a
node failure in which čase the recovery procedure
is invoked. Otherwise, the application is termi-
nated. If the GS decides to recover, the mediator
starts the new master which reenroUs into the sys-
tem as described in section 4.2.

Mediator failure: The mediator failure is detected
by the master and interpreted as the failure of the GS
which means that the system is going down. There­
fore, the application must terminate. The master pro-
ceeds to terminate its workers before ending.

5.3 Advantages of the approach
Although this new programming model is required for
managing failures transparently, the approach presents
some other advantages: i) a decreased programming
complexity by hiding some distributed aspects to the
user (communication, synchronisation and work allo­
cation), ii) traiisparency of failure detection and man-
agement and iii) efficiency of the recovery scheme by
involving only the failed workers in the roll-back pro­
cedure.

6 Conclusion and future work
The grow of parallel applications requirements and the
technology evolution have pushed NOWs to become

84 Informatica 23 (1999) 77-85 D. Kebbal et al.

popular platfoms for parallel and distributed comput-
ing. Such environments are shared betvveen many
users and the failures frequency is important.

Most of the parallel and distributed programming
environments (PVM, MPI, ...) don't handle the fault-
tolerance aspect. Moreover, most of the classical
checkpointing algorithms developed are constrained by
the heterogeneity problem.

Our algorithm exploits the adaptive application
characteristics to reduce the complexity of the check­
pointing algorithm both in terms of control messages
exchanged at checkpoint time which is 0{n) instead of
0{n'^) involved by classical algorithms and in terms of
storage space required by the checkpoint file. More­
over, it solves the heterogeneity problem and allows
the load redistribution at recovery time.

The major part of existing checkpointing algorithms
are not used in distributed systems. Therefore, the
failure detection and management aspects are not dis-
cussed. Our fault tolerance approach ušes simple, effi­
cient and practical tools for dealing with failures while
keeping the consistency. Although the model used
seems sometimes simple, it avoids excessive overhead
incured by some fault-tolerant mechanisms like multi-
casting, replication and total order of message delivery.
In addition, the approach presents some advantages:

- A maximum of transparency in detecting and
managing failures.

- An efficient recovery policy by rolling back only
the failed application components.

- A programming interface which provides a sim­
ple parallel programming methodology and gives
a support for scheduling applications in adaptive
environments through keeping track of applica­
tion tasks and their precedence constraints.

References

[1] G. Deconinck, J. Vounckx, R. Cuyvers, and
R. Lauwereins. Survey of Checkpointing and Roll-
back techniques. Technical Report 03.1.8 and
03.1.12, ESAT-ACCA Laboratory, Katholieke Uni-
versiteit Leuven, Belgium, Jun 1993.

[2] Observatoire Pran^is des Techniques Avancees. In-
formatigue Tolerante aux Fautes. Masson, Pariš,
France, 1994.

[3] K. P. Birman. Building secure and reliable netvoork
applications. Manning Publications Co, 1996.

[4] S. Mishra and R. D. Schlichting. Abstractions
for Constructing Dependable Distributed Systems.
Technical Report TR92-19, Department of Com­
puter Science, The university of Arizona, Aug 1992.

[5] J.S. Plank. Efficient Checkpointing on MIMD Ar-
chitectures. PhD thesis, Princeton University, 1993.

[6] D. L. Kaminsky. Adaptive Parallelism with Pi-
ranha. PhD thesis. Vale University, 1994.

[7] Z. Hafidi, E-G. Talbi, and J-M. Geib. MARS:
Adaptive scheduling of parallel applications in
a multi-user heterogeneous environment. In
ESPPE'96 proceedings, Alpe d'Huez, France, pages
119-122, April 1996.

[8] J. Pruyne and M. Livny. Interfacing Condor and
PVM to harness the cycles of workstation clusters.
Journal on Future Generations of Computer Sys-
tems, 12, 1996.

[9] R. V. Renesse, T. M. Hickey, and K. P. Birman.
Design and Performance of Horus: A Lightweight
Group Communication System. Technical Report
TR 94-1442, Department of Computer Science, Cor-
nell University, Aug 1994.

[10] Ozalp Babaoglu, R. Davoli, and A. Montresor.
Group Membership and View Synchrony in Parti-
tionable Asynchronous Distributed Systems: Spec-
ifications. Technical Report TR UBLCS-95-18,
Department of Computer Science, University of
Bologna, Italy, Nov 1995.

[11] D. Kebbal, E. G. Talbi, and J. M. Geib. A
new approach for checkpointing parallel applica­
tions. In International Conference on Parallel and
Distributed Processing Techniques and Applications,
pages 1643-1651, Las Vegas, Nevada, USA, June
1997.

[12] J. S. Plank, Y. Kim, and J. J. Dongarra.
Algorithm-Based Diskless Checkpointing for Fault
Tolerant Matrix Operations. Research Report UT-
CS-94-268, Department of Computer Science, Uni-
versite of Tennessee, Mathematical Science Section,
Oak Ridge National Laboratory, Dec 1994.

[13] J. Maier. Pact- A Fault Tolerant Parallel Pro­
gramming Environment. In Ist International Work-
shop 'Softujare for Multiprocessors and Supercom-
puters: Theory, Practice, Experience' SMS TPE 93,
St Petersburg, Russia, Feb 1993.

[14] E. N. Elnozahi and W. Zwaenepoel. On the Use
and Implementation of Message Logging. In 24th In­
ternational Symposium on Fault-Tolerant Comput-
ing, pages 298-307, Jun 1994.

[15] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3:63-75, Feb 1985.

FAULT TOLERANCE OF PARALLEL ADAPTIVE Informatica 23 (1999) 77-85 85

[16] J. Xu and R. H. B. Netzer. Adaptive Indepen-
dent Checkpointing for Reducing RoUback Propa-
gation. In 15th IEEE Symposium on Parallel and
Distributed Processing, Dallas, TX, Dec 1993.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Mauchek, and V. Sundernam. PVM: A User's
Guide and Tutorial Networked Parallel Computing.
The MIT Press Cambridge, Massachusetts London
England, 1994.

[18] J.Casas, D. Clark, P. Galbiati, R. Konuru,
S. Otto, R. Prouty, and J. Walpole. MIST: PVM
with Transparent Migration and Checkpointing.
Presented at the Srd Annual PVM user's Group
Meeting, Pittsburgh, PA, May 7-9 1995.

[19] J. Leon, A. L. Fisher, and P. Steenkiste. Fail-
Safe PVM: A Portable Package for Distributed Pro-
gramming with Transparent Recovery. Technical
Report CMU-CS-93-124, School of Computer Sci­
ence, Carnegie Mellon University Pittsburgh, Febru-
ary 1993.

[20] G. Stellner. Ressource Management and Check­
pointing for PVM. In 2nd European User's Group
Meeting, pages 131-136, Sep 1995.

[21] R. Namyst. PM2 : un environnement pour une
conception portable et une ezecution efficace des
applications paralleles irregulieres. PhD thesis,
L.I.F.L., Universite des Sciences et Technologies de
Lille, Rrance, 1996.

[22] T. Tannenbaum and M. Litzkow. Checkpoint­
ing and Migration of Unix Processes in the Condor
Distributed Processing System. Dr. Dobbs Journal,
pages 40-48, Feb 1995.

[23] T. D. Chandra and S. Toueg. Unrehable Failure
Detectors for Reliable Distributed Systems. In The
Tenth ACM Symposium on Principles of Distributed
Computing, pages 325-340. ACM press, Aug 1991.

Informatica 23 (1999) 87-95 87

Fault tolerant execution of Compute-intensive Distributed
Applications in LiPS ̂

Thomas Setz
Technische Universitat Darmstadt
Alexanderstr.lO, D-64283 Darmstadt, Germany
emailthsetz@acm.org

Keywords: Hypercomputing, Linda, Software fault tolerance, Workstation Cluster Computing

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 3, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

This paper illustraites how fault-tolerant distributed applications are implemented within LiPS
[SF96, SL97, T.99], a system for distributed computing using idle-cycles in networks of worksta-
tion. The LiPS system employs the tuple space programmingparadigm, as origina}ly used in the
LiNDA^ programming language. Additionally, applications are enabled to terminate successfuUy
in spite of failing nodes. The used mechanisms are transparent to the application programmer
and assume deterministic application behavior.
The implementation is based on periodically writing checkpoints, freezing the state of a compu-
tational process, and keeping track ofmessages exchanged between checkpoints in a message log.
The message log is kept within the tuple space machine implementing the tuple space and replayed
if an application process recovers. This allows for independent generation of - and recovery from
a checkpoint. The approach alleviates the need for application-wide synchronization in order to
generate sets of consistent checkpoints and avoids cascading roUback due to the domino-effect. As
a result of our approach, applications are able to adapt smoothly to changes in the availability of
used workstations.

1 Overview cessor architectures and UNIX^ operating system fla-
vors. The system ensures that only workstations which

Workstation computers are becoming increasingly are considered idle by their users are used within the
popular due to their high performance/cost ratio. distributed computations. The system also guarantees
With increasing numbers of workstations and the ad- successful completion of distributed computations in
vent of high-speed networks, supercomputer-like ag- spite of failing machines or network links. Within the
gregate computational power is available and can be last years, LiPS has been used to distribute computa-
used to perform useful computations. tions on about 250 workstations connected to the cam-

Application programmers working in this environ- pus network at the University of Saarbriicken (Ger-
ment must be provided with a programming system fa- many) and will be enhanced to distribute applications
cilitating the development of distributed applications. on more than 1000 machines within the next years.
This is accomplished by mechanisms shielding the pro- xhis paper presents the basic decisions taken
grammerfromthecomplexityofsystem-levelprogram- ^hen designing LiPS version 2.4. This version
ming, thus enabling him to concentrate on solving supports a software-fault-tolerant generative com-
application-level problems. For example, a heteroge- munication paradigm based on the tuple space,
neous environment of different operating systems, net- as introduced by the coordination language LiNDA
work protocols or processor architectures should be [000085].
hidden from the programmer. Implementing a dis- ^he next chapter contains an introduction to gener-
tnbuted application is also made more difficult by fre- ^ ^ j ^ ^ communication, a programming paradigm suited
quent changes in the availability of nodes and net- ^^ implement distributed computations in networks of
^^'^ workstations. Then, an introduction to the termi-

TVansparency, meaning hiding the physical imple- nology used for coping with fault-tolerance is given
mentation of a distributed application, is the utmost ^long with the model of softvvare failure patterns used
goal of every distributed programming system. throughout this paper. Next, the concept of software

The LiPS system enables users to implement dis­
tributed apphcations in heterogeneous networks of 3uNixislicensedexclusively throughX/OpenCompanyLim-
workstations, connecting machines with different pro- ited

mailto:emailthsetz@acm.org

88 Informatica 23 (1999) 87-95 T. Setz

fault-tolerance is introduced. It permits grouping soft-
ware components and strategies into layers thus sup-
plying general distributed applications with a vari-
ety of software fault-tolerance mechanisms. This sec-
tion also illustrates different methods to restart sin-
gle crashed processes within the application framework
and discusses the benefits of our approach. The gen­
eral concept of software fault-tolerance is then applied
to distributed applications implemented along the gen­
erative communication paradigm. Using layer-3 soft-
ware fault-tolerance enables the user to transpaj:ently
implement fault-tolerant applications. By relaying ali
communication activities via the tuple space, a com-
plete log of aH messages exchanged between appli­
cation processes is available in the tuple space ma-
chine, even while individual application processes are
prone to failure. Having access to a complete history
of messages exchanged per process permits recover-
ing application processes in a highly efRcient manner,
but this requires a well-suited design for the tuple-
space-machine. The last section presents the design of
our Fault-Tolerant Tuple Space Machine [Set96, Set97]
along with its integration into the LiPS system.

2 Related work

There are different approaches to integrate different
levels of fault-tolerance into tuple space based appli­
cations. Following [BDE94], these approaches can be
divided into extensions to the tuple space runtime
system [Xu 88, LX89, CKM92, PTHR93] making tu­
ple space fault-tolerant, resilient data and processes
[KS90, KS91] making tuple space and processes work-
ing on it recoverable, and transaction based or trans-
action style like language extensions enabling the pro-
grammer to define a sequence of tuple space operations
as an atomic operation which will be evaluated com-
pletely or not at ali [BDE94, BS93].

In LiPS version 2.4 we foilow the approach to re­
silient data and processes and integrate the needed
mechanisms into the tuple-space-machine. Two
runtime-systems, based on the same mechanisms are
used to integrate fault-tolerance on the system- as on
the application level.

3 Generative Communication

In order to implement distributed applications, a pro-
grammer must be supplied with primitives enabling
him to create additional processes or tasks, and to
exchange messages among them. A conventional pro-
gramming language, when augmented by inter-process
communication and process manipulation primitives,
is sufRcient for implementing distributed algorithms.
Interprocess communication (IPC) may be established
accessing the network protocols, using systems like

PVM. Another approach, which is used throughout
this work, is to use higher level paradigms as the Tuple
space based generative communication [Gel85]. These
approaches differ with respect to usability, efficiency,
and availability on different platforms. While IPC us­
ing direct access to network protocols permits highly
efficient communication, applications implemented us­
ing this approach are rather cumbersome to maintain.
The generative communication approach to IPC trades
efficiency against ease of use, due to the overhead in­
troduced by Tuple space management. This overhead
may be kept down to a reasonable amount by analyz-
ing communication patterns at compile-time.

This section describes the Tuple space based gener­
ative communication paradigm. Using this paradigm
yields elegant solutions for communication patterns
typically found in distributed applications.

3.1 The Tuple Space

The Tuple space is an associative, shared memory ac-
cessible to aH application processes. It is called as­
sociative as it contains data tuples which may be re-
trieved addressable by their contents rather than by
physical addresses, using a pattern-matching mecha-
nism. The implementation of Tuple space memory is
hidden from the user and therefore may be realized
on a shared-memory machine, a tightly-coupled paral-
lel computer, or on a network of workstations. Data
tuples consist of a list of simple data types. We distin-
guish active tuples generated with the eva l () operator
from passive tuples generated with ou t () . Active tu­
ples are used to create new threads of control within a
distributed application while passive tuples are merely
used to store data items. A set of operations (i n O ,
r d () , i npO, rdpO) is used to retrieve passive tuples.
Both blocking and non-blocking versions of tuple re-
trieval functions are available. Hence, these operations
may be used for synchronization and communication
tasks. The tuple extracting operations in () and inpO
read a data tuple and remove it from the Tuple space
. If no tuple is available, the non-blocking operation
inpO immediately returns an error as opposed to the
blocking operation in () which suspends the calling
thread until such a tuple is found. The tuple read-
ing operations rd () and rdpO return a data tuple,
again in a blocking and non-blocking manner, but do
not extract the tuple from the Tuple space . A more
elaborate description of the Tuple space can be found
in [Set96].

3.2 Benefits of the Generative
Communication

As the Tuple space is conceptually separated from
an application process, its content is not lost across
thread exits. Data tuples remain available until they

FAULT TOLERANT EKECUTION OF ... Informatica 23 (1999) 87-95 89

are consumed by some other process, which must not
necessarily be around at the time the tuple is cre-
ated. As a result, inter-process communication is de-
coupled in time. As data tuples are identified solely
by their contents, and not by any other means such
as senders' or recipients' process-ID, communication is
made "anonymous", in that communicating processes
do not need knowledge of their peers' identity. IPC
using the Tuple space thus decouples communicating
processes logically and physically. This eases appUca-
tion development when compared to using a message-
passing based paradigm.

As processes in a distributed application have no
notion of a peer's location, migrating processes in the
čase that a machine becomes unavailable due to load
increase or crash is made easier. A process may stili
retrieve messages even when it has to change to a dif-
ferent machine. This mechanism is transparent to the
application programmer as no host addresses are in-
volved. The Tuple space communication paradigm
is not tied to a particular programming language,
hardware or software environment. It may thus be
used for distributed applications running on a het-
erogeneous set of workstations. The paradigm also
allows for adapting the number of usable machines,
implementing what is called "adaptive parallelism" in
[CFGK94, GK92]. Applications may use aH available
machines, shrink down to the usage of only one, and
switch between these bounds of possibilities very eas-
ily. Finally, integrating the Tuple space based gen-
erative communication approach into a conventional
programming language requires only six additional op-
erations.

Therefore, Tuple space based applications turn out
to be an adequate choice for implementing distributed
applications running on networks of workstations.

4 Failure Models
Workstation computers are prone to failures. As a
consequence, this may lead to failures in applications
implemented using the LiPS system. Severa! failure
patterns can be distinguished:

- Crash-failures or as called in [SS83] "fail-stop-
processors", are observed when a machine halts
on an error condition, forcibly terminating ali ap­
plication processes local to the processor affected.

- Soft-fail-stop-failures are observed when a ma­
chine stops on an error, terminating ali local
application processes. But there exists storage,
possibly residing on another unaffected machine
which remains intact and is accessible.

- Omission-failures are observed when machines
sometimes fail to send or receive messages.

— Byzantine failures, where machine start sending
wrong and even contradictory Information as a
result of an error.

The LiPS system is able to čope with soft-fail-stop
failures. Data that should remain accessible in spite
of machine failures is kept in a storage called reposi-
tory. The system further deals with omission-failures
as messages are exchanged using the UDP protocol of
the TCP/IP protocol suite'*. Handling Byzantine fail­
ure is rather expensive, and these failures are rarely
observed in practice. Therefore, we will not consider
Byzantine failures in this work.

5 Software Fault-Tolerance
Distributed applications are usually based on fault-
tolerance mechanisms provided by a node operating
system. The term "software fault-tolerance", as in-
troduced in [YC83], is used to subsume methods and
software components responsible for detecting and cor-
recting errors causing a distribute application to crash
or hang, that are not already handled in the underly-
ing operating system. Software fault-tolerance may be
organized in layers - Figure 1 gives an overview. Lay-
ers are discriminated along the levels of availability
and data consistency.

Normally, distributed applications are based on the
Services delivered by the node operating system, the
so-called level O of software fault-tolerance. If a node
crashes, manual intervention is required to restart the
processes which were residing on that node. Shared
data may be lost or left in an inconsistent state.

Layer-1 software fault-tolerance is reached by pro-
viding for automatic restart of application processes
in the event of a crash. This layer provides for en-
hanced application availability, as no manual interven­
tion is required for the entire application to complete.
Restarted processes stili need to re-do their entire com-
putation, resulting in a complete loss of effort spent on
the previous run. Abort of a single process may force
the entire application to halt if shared global data is
left in an inconsistent state, thus wasting the entire
time spent computing so far.

Layer-2 software fault-tolerance requires application
processes to create checkpoints capturing a process's
state. If an application process crashes, it can be
restarted from its latest checkpoint, thereby reducing
run time spent as effort to reach the state at crash
time. Furthermore, messages sent and received in the
interval between checkpoint generation are kept in a
message log. If an application process restarts from a
checkpoint, it will receive the same set of messages it
got on its initial run and therefore will compute the

••This protocol implements a "best-effort" delivery. Data-
gram messages may be lost or duplicated by the underlying net-
work layers.

90 Informatica 23 (1999) 87-95 T. Setz

j
Software /

Fault- /

Tolerance \

Traditional /

Fault- \

Tolerance \

Highlyavailable processes

RecoveraWeFilesysteiii

Chedtpoiiiting and Recoveij

ClashdetectionaiidReslart' .,

,iMiminng,Pariiycheck

t' '' ••i'
Sifcpl'ca*(idlla--dwafe •! •

Layer4

Layer3

Layer2

Layerl

Operating

System

Hardware

Figure 1: Layering of Softvvare Fault-Tolerance Strate-
gies

2 4 6/ 8 10 12 14 16

• Checkpoint ^ Messages
'—— Recoveryline

Figure 2: Recovery

same results again. This requires computations to be
fully determined by received input messages. Restart-
ing processes from an earlier checkpoint constitutes a
backward error recovery strategy. An application pro­
cess is said to be in "recovery" state if it has not yet
reached the state at crash time. It is said to be "active"
resp. "operational" if its computation proceeds be-
yond the crash state. Layer-2 software fault-tolerance
strategies lead to increased application process avail-
ability, as well as increased message-space consistency.

A distributed application is said to be layer-3 soft-
ware fault-tolerant if data kept in a file system are
recoverable after a failure. If a process is restored
from a checkpoint image, aH files that were open at
crash time should be accessible even if the process was
restarted on another machine. Changes made to the
files must be un-done prior to restarting from a check­
point. Level-3 software fault-tolerance increases data
consistency of applications and increases process avail-
ability as processes are able to migrate to another ma­
chine.

Layer-4 softvvare fault-tolerance mechanisms are
used if an appUcation needs a very high availability.
This is accomplished by replicating several copies of
each application process on different nodes. When a
process instance fails, identical output is available from
another instance of this application process. Thus,
the application continues to perform its computation
apElrt from the time it takes to notice node failure, and
to use results produced by another process instance.
Ali it takes to implement layer-4 fault-tolerance is to
synchronize replica behavior. Layer-4 software fault-
tolerance increases process availability.

6 Recovery Design Alternatives
on the Application Level

If a process of a distributed application has to be
started from its last checkpoint, the question arises
how to treat messages sent or received by the process
since its last checkpoint. If e.g. process X in Fig­
ure 2 crashes, it may be restarted from checkpoint 0:3
without affecting other processes belonging to the ap­
plication. However, if process Y crashes at time t = 14
after sending message m, it will generate and re-send
message m to process X when restarted from check­
point 2/2.

There are two basic alternatives for dealing with this
problem. The first one, later referenced as Backvvard
Backward Error Recovery (BBER), involves undoing
ali effects caused by a process in the time interval be-
tween its last checkpoint and the time of the crash.
To undo the effects caused by a failed process on an­
other active process, the failed process will be rolled
back into an earlier state, and the other process will
be restarted from a checkpoint too. Consider process
Y failed after sending message m in the example. The
BBER strategy would then require restarting process
X from checkpoint X2 to undo the effects of re-sending
message m after Y is restarted from checkpoint 2/2 •
The second alternative, later referenced as Backward
Forward Error Recovery (BFER), ensures that a pro­
cess restarted from a checkpoint executes the same in-
structions as on its initial run. However, effects af­
fecting other processes are suppressed. Applied to the
example, process Y would be restarted from check­
point 2/2- When restarted, Y will again generate and
send m. Duplicate reception of m by X must then be
suppressed by some external means.

The BBER may lead to a "domino effect", requir-
ing the restart of other processes indirectly affected
by a process abort. If process Z crashes after send­
ing n, X, Y, and Z would need to be restarted from
their respective checkpoints Xi, yi, and zi, as they

FAULT TOLERANT EXECUTION OF Informatica 23 (1999) 87-95 9 1

received some messages sent by Z after writing its lat-
est checkpoint image. Within this context, messages
n and m are called "orphan messages". Orphan mes­
sages may lead to a domino effect which possibly af-
fects ali application processes^. Applying the BBER
strategy requires careful scheduling of checkpoints in
order to avoid orphaned messages. In the best čase
there is no Information flow at the time ali applica­
tion processes create a checkpoint image. This could
be accomplished by scheduling process Y to write its
checkpoint image y\,\ at time i = 10. At this point in
time, no unreceived messages are present in the sys-
tem. If process Z would crash after sending n, restart-
ing processes X and Y from checkpoints X2 and yi,i
would be sufficient to undo ali changes made by pro­
cess Z, which would then be restarted from checkpoint
Z2. Checkpoints X2, yi.i and 22 are said to constitute
a "recovery line", or "strongly consistent checkpoint".
The drawback is that ali processes must be considered
when writing checkpoint images for every single appli­
cation process. This requires synchronization among
ali processes in order to determine whether it is safe
to write a checkpoint image.

Applying a BFER strategy alleviates the need for
synchronization prior to taking checkpoints. Individ-
ual processes may write checkpoint images at any time.
This requires keeping the message log in some entity
surviving the process crash which is responsible for
suppressing orphaned messages and replay of already
received messages.

7 Combining Generative
Communications and
Software Fault-Tolerance

This section shows how software fault-tolerance mech-
anisms are added to programs based on the generative
communication paradigm. Applying layer-3 methods
yields an acceptable level of fault-tolerant execution
for such applications. Application of layer-3 strate-
gies to these distributed programs is then examined
in greater detail. As aH inter-process communication
is done via the tuple space, there is already a sys-
tem entity in plače to keep the message log for each
application process, unaffected by application process
crashes. This lends itself to using the BFER strategy
for process recovery.

On each machine where application processes are to
be executed, a system service program is installed. Its
task is to control and to restart application processes
in the event of a machine crash. Thus layer-l soft-
ware fault-tolerance is reached. Layer-1 software fault-
tolerance by itself is not sufficient for fault-tolerant

-•->

» © >
3 4 5 6 7

^There are more problems with BBER. An in-depth treat-
ment is given in [MN94]

Zeit
- ^ - Nachricht

• Send oder Receive Event

(j) Checkpoint Event

Figure 3: IPC using the Tuple Space

execution of applications using the generative commu­
nication approach for inter-process communication as
shared data may be left in an inconsistent state.

Layer-2 software fault-tolerance adds checkpoints
and message logging to the layer-l software fault-
tolerance mechanisms. Applications implemented us­
ing the generative communication approach for IPC
are already exchanging messages by adding and re-
moving data tuples from a global tuple space, as de-
picted in Figure 3. Tuple space operations are kept
in a per-process log. For each process, its checkpoint
image freezes the state of the particular computation
performed by the process. Messages sent or received
as the checkpoint generation are commonly referred
to as "events" and are also kept in the message log.
Figure 4 shows the message log after exchanging mes­
sages in Figure 3. The call to out () in Process A is
uniquely identified with event number 2. We use the
BFER in order to re-integrate a crashed process into
an application. It is sufficient to restart an applica­
tion process from its latest checkpoint image and to
supply messages from its message log. In particular,
duplicate output messages may now be identified and
are suppressed. When a process succeeded in taking a
checkpoint image, events prior to the checkpoint event
may be discarded from the message log. In Figure4,
event 4 for process A would no longer be present in
process B's message log as it is already incorporated
into its checkpoint taken at event 7; process B would
not receive this message again when restarted from this
checkpoint. However, when process A is restarted from
scratch after failing after event 5, the output message
generated at event 2 must be prevented from reaching
the tuple space, as this would create a duplicate tuple.
Processes are said to be in recovery state when their
communication is screened by a message log.

Distributed applications may need to access large
amounts of data kept in files. If a machine fails and
becomes unavailable, data kept on this machine is lost
and may cause the entire application to fail. Layer-
3 software fault-tolerance addresses this problem. It

92 Informatica 23 (1999) 87-95 T. Setz

- • ^ > - LIPS-System Runtime System wlth LIPS-Applicatlon Runtime System

« © >
3 4 5 6 7

Time

• Send or Receive Event

{ § Checkpoint Event

Figure 4: Message Logging

ensures that the file system environment^ inay be re-
stored when encountering an error. Layer-3 software
fault-tolerance may be implemented by replicating files
accessed by application processes. If a process is to be
restarted, aJl files required by the process have to be
copied to its working directory prior to the process
restart.

Normally, there is no need for application processes
to be highly available. Applying layer-4 software
fault-tolerance strategies is not necessary as applica­
tions are able to run to completion if layer-3 software
fault-tolerance mechanisms are applied. Replicating
individual application processes in order to gain in-
creased availability would consume additional comput-
ing power which could be used by other application
processes too.

8 The LiPS System
The main problem that arises in implementing a soft-
ware fault-tolerant system for applications based on
the generative communication paradigm deals with the
question of how to make the Tuple space resilient to
faults like machine crashes. Obviously, the solution to
this problem is replication of the Tuple space among
different machines. This approach is implemented very
efficiently in the so-called Fault-Tolerant Tuple Space
Machine [Set96, Set97] explained later in this section.

We distinguish two Fault-Tolerant Tuple Space Ma­
chines in the LiPS system. The first Fault-Tolerant
Tuple Space Machine implements the System Tuple
Space maintaining data about the system state e.g.
which machine is idle. The second Fault-Tolerant Tu­
ple Space Machine maintains the Application Tuple
Space. Figure 5 on page 92 gives an overview.

There may exist several applications concurrently

*The file systera environment of an application consists of
aH files being accessed by an application process. Processes are
expected to access files present in their working directories; in
particular, no file may be open concurrently by several processes

FTTM Fajl-TaIwartTu[MSpac«Macliini
^ ^ ^ Tiqiiil)aca«ccMt i i i i i UOPcomniuracalnn ProMna rasJilkiQ «1 ttw sanM machm

Figure 5: The different levels of the LiPS runtime
systems

each using a private Fault-Tolerant Tuple Space Ma­
chine. The System Tuple Space is shared by ali appli­
cations.

In this section, we first introduce the different com-
ponents of the runtime systems of LiPS and their co-
operation. A more detailed explanation is given in
[SL97]. The design and implementation of the Fault-
Tolerant Tuple Space Machine is explained next. A
detailed description is given in [Set96].

8.1 The L I P S Runtime Systems
We distinguish two different runtime systems within
LiPS . The system runtime system and the application
runtime system. Both are based on a Fault-Tolerant
Tuple Space Machine. The server processes of the
Fault-Tolerant Tuple Space Machine for the system
runtime system are called FixServer; those of the ap­
plication runtime system's Fault-Tolerant Tuple Space
Machine MessageServer. The relationship between the
different runtime systems described above is depicted
in Figure 5.

A designated server process called l i p s d O resides
on each machine participating in the LiPS system.
The l i p s d O processes update and retrieve Informa­
tion from the System Tuple Space. For example, node-
state Information, like load of a (the) machine can be
read (updated) easily through Tuple space operations.
l i p s d O processes update their own node-state Infor­
mation in the System Tuple Space in fixed intervals.
A machine crash can be detected if this Information is
not received in time. In this čase possible errors due
to lost data are repaired, and watchdog mechanisms
will re-integrate the crashed machine "autoraagically"
immediately after its recovery. A more detailed de­
scription of these mechanisms is given in [SF96].

Fault-tolerance on application level is implemented
with a checkpointing and recovery mechanism in-

FAULT TOLERANT EXECUTION OF Informatica 23 (1999) 87-95 9 3

^ TuplfSpsnt

— "" ~ Elhemct

^ Mcuagc Seivcr

1^^ Clien: (Arpliralion)

a A O

Figure 6: Processes of the Tuple Space Machine

tegrated into the Fault-Tolerant Tuple Space Ma­
chine. A checkpoint is correlated to the evaluation
of an eval O operation; recovery is based on the re-
execution of a failed eval () together with the replay
of the message logging of the first execution of eval () .
Message logging is provided via the Fault-Tolerant Tu­
ple Space Machine.

8.2 The Fault-Tolerant Tuple Space
Machine

The Fault-Tolerant Tuple Space Machine [Set96,
Set97] replicates the content of the Tuple space among
sever al machines. If a machine that a MessageServer
(FixServer) resides on crashes, the data are stili avail-
able on the replicas. An additionally started server
process joining the Fault-Tolerant Tuple Space Ma­
chine will be initialized with the data of an old replica.
This feature makes the Fault-Tolerant Tuple Space
Machine N fault-tolerant. In the Fault-Tolerant Tu­
ple Space Machine every tuple is tagged with a unique
ID (Sequence Number) as a result of the protocol used
to replicate data across the different machines. This
unique ID is used to speed up replication of events
among the different servers. The protocols used in
the Fault-Tolerant Tuple Space Machine are based on
those given in [ADM+93]. An in-depth description of
the protocols used and their implementation is given
in [Set96].

As depicted in Figure 6, the Tuple space is man-
aged by several Message Server s residing on different
machines. Message Server s must reside in the same
broadcast domain. The broadcast facility is utilized
to replicate messages very efficiently among the dif­
ferent servers. An additional token circulating among
the servers schedules the permission to use the broad­
cast facility - avoiding Ethernet saturation due to col-
lisions. The circulating token ships additional data en-
abling, among other things, flow control between the
replicas. Additionally, each broadcast message (tuple)
is tagged in sequence with a unique ID. This proce­
dure establishes a linear order among the tuples of
the Fault-Tolerant Tuple Space Machine and speeds

up replication.'^
As shown in Figure 6, an application process sends

requests to the Message Server which is assigned to
it. A request can either contain a tuple or a tem-
plate. In the following, we first explain how Message
Server s process a tuple, and second how templates are
processed. As the Message Server s share the same
broadcast domain, a Message Server is able to broad­
cast the tuple and hence replicate it on multiple Mes­
sage Server s with only one physical operation. At any
time only one Message Server may broadcast a tuple,
namely the Message Server holding the token mes­
sage. After a Message Server has finished broadcasting
messages (tuples), it sends the token to the next Mes­
sage Server . With respect to this token transfer, the
Message Server s form a logical ring. Messages being
broadcast are tagged with a unique sequence number.
The sequence number of the last broadcast message of
a Message Server is sent within the token. The next
Message Server intending to broadcast knows the se-
quence number of the last broadcast message and con-
tinues the sequence, thereby establishing a total order
on the messages broadcast. Within one token rota-
tion several tuples may be broadcast by each Message
Server .

If a Message Server receives a template, it first tries
for a match on its local Tuple space . If no tuple
matching the template is found, the Message Server
notifies the requesting application process (NACK).
Otherwise, if the Message Server finds a match, it must
first synchronize with the other Message Server s. In
order to notify the other Message Server s of the tu­
ple access, it is sufficient to send the sequence number
(4 bytes), the application process accessing the tuple
and the event number in its message logging (4 bytes)
as well as the type of access (1 byte) to identify the
operation to the replicas. These items of access Infor­
mation now are added to the circulating token. The
size of the token then determines the number of read-
ing and extracting Tuple space operation s which may
be replicated within one token rotation.

9 Suinmary
This paper addressed the basic design decisions made
when building version 2.4 of the LiPS system for im-
plementing fault-tolerant applications in networks of
workstations.

As the application ušes the tuple space for inter-
process communication, applications are able to adapt
smoothly to the workstation environment. Applica­
tion processes may be recovered very efRciently using

^If a broadcast message was not received on a replica, this
circumstance is easily obtained as there is a gap in the sequence
of received messages. In this čase, a retransmission could be
requested immediately.

94 Informatica 23 (1999) 87-95 T. Setz

a recovery strategy based on resilient processes and re-
silient data. The advantage of this strategy is that ap-
phcation processes are independent both in the choice
of when to take a checkpoint and when to recover from
a checkpoint. This enables exhaustive usage of idle-
time present in a workstation network as processes
may be migrated to other idle machines in the event
the processor they are running on becomes busy. The
migration of a process can be based on the mecha-
nisms used to guarantee fault-tolerance. This enables
the system to rapidly and easily adapt to changes in
machine usability such as those occurring during the
daytime.

The above design buys efRciency from the imple-
mentation of a Fault-Tolerant Tuple Space Machine,
replicating the content of the tuple space among differ-
ent machines. The LiPS system distinguishes between
two runtime systems both based on the Fault-Tolerant
Tuple Space Machine. The first runtime system, the
so-called system runtime system, provides the applica-
tions with software fault-tolerance of level 1 based on a
watchdog mechanism. The second runtime system, the
so-called application runtime system, provides the ap-
plication with software fault-tolerance of level 3 based
on checkpointing, message logging and the integration
of files into the tuple space.

References

[ADM+93] Amir Y., Dolev P., Melliar-Smith P.,
Agarwal D., and Ciarfella P. Past Mes­
sage Ordering and Membership using a Log-
ical Token-Passing Ring. In ISth Interna­
tional Conference on Distributed Computing
Systems (ICDCS), number 13 in IEEE, pages
551-560, Pittsburgh, 5 1993.

[BDE94] Bakken D. E. SuppoHing Fault-Tolerant
Parallel Programming in Linda. PhD thesis,
The University of Arizona, 6 1994. Depart­
ment of Computer Science.

[BS93] Bakken D. E. and Schlichting R.D. Support-
ing Fault-Tolerant Parallel Programming in
Linda. Technical Report 93.18, Department
of Computer Science, The University of Ari­
zona, 6 1993.

[CFGK94] Carriero N., Preeman E., Gelernter D., and
Kaminsky D. Adaptive Parallelism and Pi-
ranha. Technical Report YALEAU/DCS, Vale
University Department of Computer Science,
2 1994.

[CKM92] Chiba S., Kato K., and Masuda T. Ex-
ploiting a weaJc concistency to implement dis­
tributed tuple space. In Proceedings of the

12th International Conference on Distributed
Computing Systems, 6 1992.

[GCCC85] Gelernter D., Carriero N., Chang S., and
Chandran S. Parallel Programming in Linda.
IEEE Transactions on Computer, 1985.

[Gel85] Gelernter D. Generative Communication in
Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, January
1985.

[GK92] Gelernter D. and Kaminsky D. Supercom-
puting out of Recycled Garbage: Prehminary
Experience with Piranha. Sixth ACM Inter­
national Conference on Supercomputing, July
1992.

[KS90] Kambhatla S. Recovery with limited replay:
Fault-tolerant processes in Linda. Technical
Report CS/E 90-019, Department of Com­
puter Science, The Oregon Graduate Insti­
tute, 9 1990.

[KS91] Kambhatla S. Replication issues for a dis­
tributed and highly available Linda tuple-
space. Master thesis, Oregon Graduate In­
stitute, Department of Computer Science,
Beaverton, Oregon, 9 1991.

[LX89] Liskov B. and Xu A. A design for a
fault-tolerant, distributed implementation of
Linda. In Proceedings of the Nineteenth Inter­
national Symposium on Fault-Tolerant Com­
puting, 6 1989.

[MN94] Mukesh Singhal and Niranjan Shivaratri. Ad­
vanced Concepts in Operating Systems. Series
in Computer Science. Me Graw Hill, 1994.

[PTHR93] Patterson L. L, Turner R. S., Hyatt R.M.,
and Reilly K. D. Construction of a fault-
tolerant distributed tuple-space. In Proceed­
ings of the 1993 Symposium on Applied Com­
puting. ACM/SIGAPP, 2 1993.

[Set96] Setz T. Integration von Mechanismen zur Un-
terstiltzung der Fehlertoleranz in LiPS. PhD
Thesis, Universitat des Saarlandes, 2 1996.
Fachbereich Informatik.

[Set97] Setz T. Design, Implementation and Perfor-
mance of a Fault Tolerant Tuple Space Ma­
chine. In Proceedings: ICPADS'97: 1997 In­
ternational Conference on Parallel and Dis­
tributed Systems, December 10-13, 1997,
Seoul, Korea. IEEE, 12 1997.

[SF96] Setz T. and Fischer J. Software Fehlertoleranz
vom Level Eins in LiPS. In Clemens H. Cap,

FAULT TOLERANT EXECUTION OF .. . Informatica 23 (1999) 87-95 95

editor, Proceedings of SIWORK'96, Worksta-
tions and their applications, pages 102-112,
Universitat Ziirich, Institut fiir Informatik,
May 1996. vdf Hochschulverlag AG an der
ETH Ziirich.

[SL97] Setz T. and Liefke T. The LiPS Runtime
Systems based on Fault-Tolerant Tuple Space
Machines. In Proceedings of the Workshop
on Runtime Systems for Parallel Program-
•ming (RTSPP), llth International Parallel
Processing Symposium (IPPS'97), Geneva,
Stvitzerland, April 1997. Appeared as Tech-
nical Report, Vrije Universiteit Amsterdam,
Faculteit der Wiskunde en Informatica, No.
IR-417, februari 1997.

[SS83] SchHchting R.D. and Schneider F.B. Fail Stop
Processors: An Approach to Designing Fault
Tolerant Computing Systems. ACM Transac-
tions on Computing Systems, l(3):222-238, 3
1983.

[T.99] Setz T. Dynamic Load Adaption in LIPS.
In 7th Euromicro Workshop on Parallel and
Distributed Processing, Feb 3-5, 1999, Fun-
chal, Portugal. IEEE Computer Society Press,
1999.

[Xu 88] Xu A. A Fault Tolerant Netvjork Kernel for
Linda. Master thesis, MIT, Laboratory for
Computer Science, Cambridge, 8 1988.

[YC83] Yennun H. and Chandra K. Software Im-
plemented Fault Tolerance: Technologies and
Experiences. In Proč. of 23rd IEEE Confer-
ence on Fault Tolerant Computing Systems
(FTCS), pages 2-9, 1983.

Informatica 23 (1999) 97-105 97

JavaPorts: An Environment to Facilitate Parallel Computing on a
Heterogeneous Cluster of Workstations

EUas S. Manolakos and Demetris G. Galatopoullos
Electrical and Computer Engineering Department
Northeastern University, Boston, M A 02115, USA
Email: { e l i a s , demetris}@cdsp.neu.edu

Keywords: parallel computing, clusters, Java, component programming

Edited by: Rajkumar Buyya and Marcin Paprzycki
Received: September 10, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Wepresent the JAVAPORTS system, an environment and a set oftools that aUows non-expert users
to easily develop parallel and distributed Java applications targeting clusters of workstations. The
JAVAPORTS system can automatically generate Java code templates for the tasks (software com-
ponents) of an application, starting from a graph in which the user specifies how the tasks will
be distributed to cluster nodes. Tasks have weU defined port interfaces and may communicate by
simply writing messages to their ports, without having to know the name and location of the des-
tination task. This allows for task reusabiUty whi}e keeping the code for inter-task communication
and coordination hidden. We demonstrate that coarse grain parallel programs developed using
the JAVAPORTS system achieve good performance, even when using a lOMbs shared Ethernet
network of workstations.

1 Introduction
The clusters of workstations provide a tremendous

resource of spare CPU power at costs effectively much
lower than that of conventional parallel machines.
Clusters, with high-speed network connections, may
exhibit performance comparable to that of supercom-
puters, primarily for coarse grain parallel applications.
However, a drawback of such architectures has been
their multi-platform characteristics. The introduc­
tion of the Java programming language brought to
the table, among other valuable properties, the revolu-
tionary concept of cross-platform programming. The
JAVAPORTS system intends to utilize this capability
and provide a user-friendly programming environment
for the development of distributed concurrent appli­
cations on networks of heterogeneous workstations. It
allows programmers who may not be very familiar with
object-orientation and concurrency exploitation tech-
niques, to easily develop, map and reconfigure parallel
processing applications on heterogeneous clusters.

The JAVAPORTS environment, generates and up-
dates plug-in software components which allow the dis­
tributed application to conform to the possibly chang-
ing nature of the cluster, while keeping the coordina­
tion of components hidden. Using a simple applica­
tion configuration language, the programmer specifies
a Task Graph and assigns tasks to machines. Tasks
communicate via ports. A port is a software abstrac-
tion, which appears as a black-box to the developer
who may use methods from a Java interface to write

to, or read from, it every time s/he wants to transfer
messages between two connected tasks.

The JAVAPORTS system will parse a specified Task
Graph and generate Java code templates, one for each
defined task, which may be used to complete the im-
plementation of a specific application. The templates
are well-structured, in that the definition and regis-
tration of ports is taken čare of and only the local
computational part of a task may need to be added by
the programmer. When the developer modifies the as-
signment of tasks to machines, or adds/removes ports
to/from a task, system tools will be called to update
the affected templates while keeping the user-defined
part of the code unaltered. This scheme allows for the
reusability and incremental development of modular
software components for parallel applications.

The JAVAPORTS tasks follow the Ideal Worker Ideal
Manager (IWIM) model of anonymous Communica­
tions [1, 2] i.e. a task may exchange messages with
other tasks without knovving their identity, in contrast
to the Targeted-Send/Receive (TSR) model. Each
task is assumed to be an ideal worker who performs
some job vvithout knowing or caring about how the in-
puts it is using arrived at its ports, or where its outputs
should be delivered.

There are several on-going research projects around
the globe aiming at exploiting or extending the services
of Java in order to provide frameworks for parallel ap­
plications development in diiferent contexts. Due to
lack of space, we can only mention a few here. Java

http://neu.edu

98 Informatica 23 (1999) 97-105 E.S. Manolakos et al.

Parallel (Java//) [3] is a Java library that ušes reifi-
cation and reflection to support transparent remote
objects and seamless distributed computing in both
shared and distributed memory multiprocessors. The
JavaParty package [4] also supports transparent object
communication by employing a run-time manager re-
sponsible for contacting local managers and distribut-
ing objects declared as remote. (The JavaParty min-
iinally modified the Java language in this respect).
The JavaPP project [5] introduced the Communicat-
ing Java Threads that implement in Java the chan-
nels of Communicating Sequential Processes (CSP)
model [6]. The JavaPP is a class library that sup­
ports synchronized message passing among concur-
rent processes in a real-time setting, where deadlines
have to be respected. The JavaPP is targeting paral­
lel applications for embedded systems, where the non-
deterministic behavior of Java can be a serious draw-
back. Finally, the Javelin [7] project tries to expand
the limits of clusters beyond local subnets, thus tar­
geting large scaJe heterogeneous parallel computing. It
is motivated from the popular idea of utilizing avail-
able CPU resources around the Internet for solving
compute-intensive tasks. Javelin is composed of three
major parts: the broker, the client and the host. Pro­
cesses on any node may assume the role of a client or a
host. A client may request available resources; a host
is the process which may have and is willing to offer
such resources to a client. Both host and client register
their intentions with a broker; the broker takes čare of
any negotiations and performs the appropriate assign-
ment of tasks. The user in the Javelin system interacts
with a high-level API. A special purpose stack residing
on the client side allows the user to push and pop tasks
destined to be executed on remote nodes. Therefore
the low-level details are hidden from the user. Message
passing is a major bottleneck in Javelin, because the
messages destined for remote nodes traverse the slow
TCP or UDP stacks utilized by the Internet. How-
ever, for compute-intensive applications, such as par­
allel raytracing, Javelin has demonstrated good perfor-
mance.

Our work conceptually differs from the above men-
tioned projects in that JAVAPORTS is an environment
that forces the programmer, from early on in the
application development stage, to configure his/her
application as a coUection of interconnected concur-
rent tasks vî ith clearly marked boundaries vvhich may
exchange Information using a simple communication
mechanism. This software engineering approach is
similar to the hierarchical methodologies used for de-
signing complex digital systems with hardware de-
scription languages, such as VHDL [8]. The JAVA­
PORTS environment provides tools for capturing how
the work partitions of an application should be dis­
tributed to the processors in a cluster. That means,
the control over "what-goes-where" is given to the pro­

grammer. Once the task configuration has been de-
cided, the system will automatically generate reusable
software components, Java code templates, which may
communicate asynchronously and exchange any type
of objects using method calls to instances of the JAVA­
PORTS por t class. This frees the programmer from
having to worry about whether a communication is to
a task running locally or to a remote machine, and
from having to change her/his code every time s/he
decides to modify the allocation of tasks to machines.
The JAVAPORTS system attempts to provide, not only
a simple and user friendly environment for the rapid
prototyping of parallel applications on clusters, but
also high quality parallel code in which hiding the co-
ordination and communication details from the user
does not come at the expense of adding a prohibitively
large overhead.

In the sequel, we introduce the various elements of
the JAVAPORTS system. We first explain how a Task
Graph can be captured, then discuss the structure of
the generated Java code templates and how tasks can
communicate using read/write methods of the po r t s
interface. In section 3 we present some promising ex-
perimental results, and finally we summarize our find-
ing and point to work in progress in section 4.

2 The elements of JAVAPORTS

2.1 The Task Graph
The developer utilizes the task graph in order to

map the work partitions of the application onto the
nodes of the cluster. An example of a task graph and
its corresponding configuration file is shown in Figure
1, where the solid boxes denote tasks and the dot-
ted boxes, cluster nodes. There are three user-defined
tasks in this example, one (called the Manager) al-
located on Nodel and another two (called Workerl
and Worker2) allocated on Node2. The Manager ušes
a pair of ports to communicate with the two remote
workers.

When the user compiles the configuration file,
the JAVAPORTS system will extract the Information
needed to create, or update, the task code templates
and scripts that are necessary to launch the distributed
application. If at a later tirne the programmer modifies
the configuration file, s/he may recompile it in order
to update these templates and scripts. This recompi-
lation will not affect at aH the user-specified part of
the code template of each task. The JAVAPORTS sys-
tem will perform ali the necessary changes to be able
to execute the same application correctly on the new
cluster setup, even in the čase that the user decides
to assign ali the tasks to the same single node. The
syntax of the configuration language and the JAVA-
POKTSApplication Configuration Tool (JACT) em-

JAVAPORTS: AN ENVIRONMENT TO ... Informatica 23 (1999) 97-105 99

Node2

begin configuration
begin definitions

define
define
define
define
define

end definitions
begin allocations

allocate Taskl
allocate Task2
allocate Task3

end allocations
begin connections

connect Taskl.port[0]
connect Taskl.port[l]

end connections
end configuration

machine Node l= "corea.cdsp.neu.edu"
machine Node2= "walker.cdsp.neu.edu"
task Task l= "Manager"
task Task2= "VVorkerl"
task Task3= "Worker2"

Nodel
l\lode2
Node2

Task3.port[0]
Task2.port[0]

Figure 1: A Task Graph and the corresponding JAVAPORTS configuration file.

ployed for the development of modular, reusable soft-
ware components, are discussed in detail in [9].

2.2 Task Code Templates
The templates generated for Taskl (Manager) and

Task3 (Worker2) of Figure 1 are outlined in Figure
2. The shaded parts are created by the JAVAPORTS
system and what comes in between them corresponds
to user-added code.

The conf i g u r a t i o n O method of the I n i t class in­
stance is responsible for instantiating the port objects
for each task. The I n i t class is a JAVAPORTS sys-
tem class and is not visible to the programmer. The
Init object will perform the RMI [10] port object reg-
istrations as well as the lookups of the corresponding
peer ports. These time-consuming operations are per-
formed transparently to the user and only once during
the initialization phase of each task.

The task templates are prototype classes which im-
plement runnable objects. Each template contains a
mainO method which is responsible for spawning a
thread to run the task object. (The main() meth-
ods are depicted at the bottom shaded areas in Figure
2). The user code implementing the domain-specific
operations of a task may be entered inside the runO
method of the task template.

A Java interface, containing methods that can be
applied to port objects, is also provided. The user will
embed such method calls in his/her code every time
a task needs to exchange Information with another
task. The read and write port operations are asyn-
chronous and they are implemented by JAVAPORTS
system classes. The user program will issue reads and
writes to the local ports of the task. In succession,
the JAVAPORTS system will make calls to the RMI

runtime environment which will transparently trans-
fer the messages to the remote objects. The user does
not need to be concerned with where the destination
object is located or how the messages will reach it.

In single compute node concurrent applications, the
communication implementation remains unaltered.
Peer ports will be registered and looked up in a manner
similar to that of the distributed čase. Nevertheless,
since these operations are performed during the ini­
tialization phase of a task, no considerable overhead
is added to the computational part of the application.
We are currently investigating methods that may de-
tect and exploit the locality of tasks to reduce the over­
head incurred during message exchanges among local
ports.

2.3 The Ports Java Interface
An interface in the Java programming language is an

abstract class consisting only of public abstract meth­
ods and static fields. A class is used to implement
ali the methods included in its interface. The concept
of an interface was introduced in Java to compensate
for the lack of multiple class inheritance capabilities.
In the context of JAVAPORTS, an interface will supply
to the user ali the permitted port-to-port communi­
cation operations while keeping their implementation
hidden. This port interface currently includes the fol-
lowing methods:

-AsyncWrite(Msg, MsgKey) : It will write the Msg
message object and its personalization key MsgKey (an
integer) to a port. The message key can be used by
the receiving task in order to identify the specific mes­
sage among a list of messages received at its port. So
although the receiving task does not need to know the

http://corea.cdsp.neu.edu
http://walker.cdsp.neu.edu

100 Informatica 23 (1999) 97-105 E.S. Manolakos et al.

: i i I
5 . . . - . 1 : . . •-•: . ; • - .

// f/ser algorithm implementation goes here
Message msgl = new Message(UserData)
port [0]. Async Write(msg 1 ,key 1)
port[1]. Async Write(msg 1 ,key2)
// Codefor localprocessing goes here
ResultPointerl = port[0].AsyncRead(key3)
ResultPointer2 = port[l].AsyncRead(key4)
// Code to retrieve residts goes here

puHlic itatii. void.iniiiiiO

[^Managenlhi edd ̂
'.iii^pl^ffltmdnager!^ ncw 1.hiead(Managci 1 hrcad)

new Mdnagerft)

f . ^

ListPointer = port[0].AsyncRead(keyl)
DataPointer = ListPointer.PortDataReady()
// User algorithm implementation goes here
Message msgl = new Message(ResultData)
Port[0].AsyncWrite(insgl ,key3)

}
piiblic static void niain(^
{ . ' - , ,a.

Runnable \\'orkoi 2 J Krcdd --'ncvv \Voiilcm!(>]
1 hread worker2 =;ncvv''rhread(\Vorkel^h^d)^
\\oikei2.slart() ^ ^ \ \

Figure 2: Ltjt: Template for the Manager task; Right: Template forthe Worker2 task.

name of the sending task, it should know the key num-
ber for each message it expects at a port. This method
will execute concurrently with the task that calls it
(non-blocking write).

-AsyncRead(MsgKey): This method is issued when
a task wants to access a message object arriving at a
port. It will return a handle to an object element of
a linked list. This list is used by the port in order
to deposit the arriving messages. The task may use
this handle at any point to access the data part of a
message with key value MsgKey that has arrived at the
port.

-PortDataReady(): This accessor method will re­
turn a handle to the object in which the data part of
the incoming message was stored. The task will use
this reference in order to retrieve the data. The details
of this operation are described in the next section.

The messages exchanged between tasks are objects
of the class Message. This is a user-defined class and it
extends the Object class. Therefore, it adds the capa-
bility of encapsulating any possible type of Information
in a message. Furthermore, the user-defined variable
MsgKey is used in order to guarantee correct delivery of
messages between tasks. It is the responsibility of the
programmer to ensure that unique matching keys are
used on the messages exchanged among two communi-
cating tasks. In čase that the programmer writes two
messages with the same key to a port, the message
that arrives second at the destination port overrides
the one that arrived earlier. Therefore, it is impera­
tive that the programmer treats the MsgKey variable

with caution.
In the example of Figure 2, the Manager task writes

a message to two ports connecting it to two almost
identical worker tasks. Each worker reads its port and
after performing some computation using the received
message, it writes back the results that will be read
by the Manager. The two worker templates may dif-
fer only in the local computation part and in the keys
used in the read and write method calls. This shows
how easily templates can be reused when the commu-
nication pattern remains the same.

The user program templates are defined as part of
the JAVAPORTS system class package. Therefore, af­
ter the application implementation is completed, the
templates may be compiled and executed along with
the system classes. For cluster of workstations where
the Network File System (NFS) is available, the pro­
grammer may execute any task from any cluster node
without the need of distributing the template executa-
bles from node to node. In clusters where NFS is not
available, specialized scripts are automatically created
by the JAVAPORTS system in order to aid the user in
distributing the executables to their correct destina­
tion nodes [9].

2.4 The Communication Protocol
In this section we outline the operation of the JAVA­

PORTS system during a message communication oper­
ation between two distributed tasks. A pictorial de-
scription is provided in Figure 3, where square boxes
depict objects and the label inside a box refers to the
class from which the object was instantiated. Labels of

JAVAPORTS: AN ENVIRONMENT TO Informatica 23 (1999) 97-105 101

Figure 3: Port-to-port communication protocol using
JAVAPORTS.

arrows denote caJls to methods of the ob ject receiving
the call.

After each task thread has started, it makes a call
to the conf igure method of the I n i t object in order
to create and initialize ali its ports and connect each
one of them to its peer remote port. The conf igure
method will perform ali the appropriate calls to the
RMI environment in order to register local, and lookup
remote, ports. Subsequently, the method will return to
the calling thread a (zero-based) array of port handles.
Each port maintains a dynamically allocated linked list
of objects (denoted by dashed boxes in Figure 3) that
will be used to store incoming messages arriving at the
port.

The direction of Information flow does not affect the
way communication is realized, therefore we assume,
without loss of generality, that the manager task wants
to send a message to a worker task directly connected
to it. To do so, the manager task thread will initially
invoke the AsyncWrite method on its local port. The
parameters passed to this method are the message ob­
ject and its associated personalization key (an integer).
The remote worker task will use this key when it needs
to retrieve the data encapsulated in the message. The
AsyncWrite will spawn a Port Thread, an active object
which will be responsible for implementing the actual
message transfer to the remote port, while the main
manager task continues with the execution of its local
computation (non-blocking send). The main function
of the PortThread object is to make a remote call
to the rece ive method of the worker task port. This
method ušes the RMI serialization mechanism in order
to perform the actual transfer of the message object
to the remote port.

At the receiver's end, after initialization, the worker
thread makes a call to the AsyncRead method of
its corresponding local port, using the key for the

expected incoming message as a parameter. The
AsyncRead method simply returns a handle to an ob­
ject of the port list where the incoming message, with
a matching key value, will be deposited upon arrival.
At the appropriate point in time, i.e. when the worker
task really needs the data in this message, it may use
the handle to perform a call to the PortDataReady
accessor method of this list object. This method call
will block the worker task until a message with this
key value has arrived at the port (wait-by-necessity).
When the PortThread object of the manager makes
the call to the rece ive method of the port object of
the worker, the message will be delivered. Further-
more, this port will use the key value to pass the mes­
sage to the appropriate object in its port Hst. This list
object will be responsible to notify the (possibly wait-
ing) worker task thread that a message has arrived.
Upon notification, the worker task will exit the wait
State and check if the message that arrived is the ex-
pected one. If so, it will retrieve the data, othervvise,
it will re-enter the wait state.

The same sequence of operations may be used in the
reverse order, if it is desired to send a message from
the worker to the manager task using the same pair
of peer ports. So communication is non-blocking and
bidirectional.

3 Experimental Results

In this section we outline some experiments con-
ducted using the JAVAPORTS system and discuss the
performance results obtained. The (square) matrix-
vector multiplication problem was solved in a variety
of node configurations, exactly as it was done previ-
ously in [3] and [11].

We experimented with 1-, 2- and 3-node multiplica­
tion scenarios. In multi-node configurations, as many
tasks as nodes (machines) were used. That means,
a manager task was allocated to a node (called the
master) and in addition one worker task was allocated
per node to one (two) more node(s). The set of rows
of the multiplicand matrix needed by each node were
made available to it before the commencement of the
experiment. The manager task (running at the mas­
ter node) starts first by sending the multiplier vector
to aH remote workers; then it performs its part of the
matrix-vector multiplication and waits (as needed) for
the remote workers to send back their results, so that
it can finally construct the overall result vector. The
time it takes for the manager to distribute the mul­
tiplier vector to aH the workers as well as the time
the remote workers need to compute and send their
results back to the manager was measured and taken
into consideration in the timing analysis.

In our experiments, a size 1000 x 1000 matrix was
multiplied by a 1000 x 1 column vector. The method
CurrentTimeMillis of the System class, which re-

102 Informatica 23 (1999) 97-105 E.S. Manolakos et al.

4500

4000

3500

3000

m
6
J= 2000

1500

1000

500

r

! ! p !

M Tolal Tlm»

— O- ' - Locol Computation TIm«

• — ̂ W«lt Tirno

! ! ! p !

/v

/ y

- / y \

\ • • - • • / 7 •• -

^ ^ i > ^ \. -1 . - i / . , i. / - i

®^___^/ - i

"* o • - o • /

• • \ ' \ : f ':
Sif -

• / • • • © . •

^ • r y - i : ^^:; ; -
\ : / . . o. .

i T — i p - T ? - - « - - - ^ - - « - - w - y ^ ^ 1 . . . 1 1 1 1 '"^
9 0 0 1000

Figure 4: Timings for the Manager task. Left: 2-node scenario; Right: 3-node scenario.

turns the current time in miUiseconds, vvas used to
gather measurements. We acquired the time at the
beginning and at the end of each targeted period and
the elapsed time vvas determined by calculating the dif-
ference of the two measurements. For ali the scenarios
investigated the total elapsed times were decomposed
into their sequential components that are also plotted
in Figure 4.

The JAVAPORTS system was configured on a set
of Sun Microsystems Workstations running Solaris v.
2.5.1, connected to the same subnet (lOMbps standard
Ethernet). The type of machines used vvas either Sun
Sparc-4 or UltraSparc-1. In the 2-node scenario, both
nodes, the one running the manager task and the other
running the worker task, were Sparc-4s. In the 3-node
scenario, the node running the manager task was an
UltraSparc-1 and the other two nodes, each one run­
ning a worker task, were Sparc-4s. (Therefore, the
machines that run worker tasks were always chosen to
possess identical hardware characteristics).

In the 2-node scenario, the number of rows of the
multiplicand matrix that resided on each node was var-
ied from O to 1000. In the left panel of Figure 4 we
show the total time measured for the manager task as a
function of the number of rows allocated to the remote
worker task. (For example, 300 "remote rows" in this
figure means that the remote worker task computed
the last 300 elements of the product vector and the
manager task computed the first 700 elements). The
dashed-dotted curves depict (i) the local computation
time of the manager and (ii) the time the manager
had to wait, after its local computation is completed,
for the worker results to become available. We notice

that the minimum total time is observed when the rows
of the matrix are almost evenly split among the two
nodes. Furthermore, as the number of rows processed
by the remote worker increases, (i) the manager's lo­
cal computation time decreases, and (ii) the time the
manager has to subsequently keep waiting for worker
results to arrive increases, as expected.

In the 3-node scenario, the multiplicand matrix was
split into three not necessarily equal parts. The man­
ager task (in the master node) is first assigned a num­
ber of rows ranging from O to 1000. The remaining
rows are now split among the two worker nodes. Tho
right panel of Figure 4 summarizes the timings ob-
tained for the manager task. For each number of re­
mote rows processed collectively by the two remote
workers, we report the minimum total time observed
over several attempted work decompositions among
the two worker nodes. Similarly to the 2-node sce­
nario, the minimum total time is obtained when tho
work performed locally by the manager matches the
work performed collectively by the two remote work-
ers. The time that the manager has to wait (upon
completion of its local computation) for each worker
to return results is different, because the wait period
for Worker2 results starts after the wait period for
"VVorkerl results is completed.

The timing results for aH experiments are presented
together for visual comparison purposes in the left
panel of Figure 5. The horizontal line corresponds
to the time one workstation (Sparc-4) using a sin-
gle thread pure Java program needs to perform a
1000 X 1000 matrix-vector multiplication and is in-
cluded for reference. An 1-node (Sparc-4) concurrent

JAVAPORTS: AN ENVIRONMENT TO Informatica 23 (1999) 97-105 103

goo 10DO

7000

GOOO

5000

4OO0

3000

2000

\

Java P o r i •

JavB//

JavaPar tv

;̂ / \ ;

\ . •

i \ :.,'. -

: : lA -
• A .
r ^ ' - '

; • • / • • ; ",'\ "

^-'•••'••••: / T y

•* : ^ -^ *« i ' " : /

Figure 5: Le/t; Comparison of the 1-, 2- and 3-node scenarios. Right: Comparison of JAVAPORTS, Java// and
JavaParty, for the 2-node scenario.

JAVAPORTS implementation, using one manager and
one worker task, was also included to demonstrate the
advantage obtained by task distribution when a second
compute node is introduced to run the worker task.
The difference of these two curves quantifies the over-
head of having two JAVAPORTS concurrent tasks try-
ing to solve the problem in a single compute node. The
2- and 3-node scenarios outperform the single-thread
pure Java solution for a wide range of rows processed
remotely. Moreover, the 3-node solution is consistently
faster than the 2-node one, and their performance dif­
ference becomes more profound as the number of rows
allocated to the remote workers increases.

The JAVAPORTS system performance was also com-
pared to that of two other packages, namely the
JavaParty [4] and the Java// [3], using the same
1000 X 1000 matrix-vector multiplication problem run­
ning on 2-nodes. To obtain the JavaParty timings we
wrote our own simple Java program. Following the
guidelines of the JavaParty group the worker task was
declared as a remote class, thus allowing the system to
migrate the worker task object to the remote node. On
the contrary, the Java// results were not produced by
us, but taken from [3] where the authors used two Ul-
traSparc Sun workstations to perform the exact same
matrix-vector experiment. As it can be seen from
the plot in Figure 5, the JAVAPORTS system exhib-
ited the best performance. Note that the JAVAPORTS

and JavaParty experiments were run on two Sparc-4s
that are less powerful than the UltraSparcs used for
the Java// experiments.

We have also performed a detailed benchmark anal-

ysis of the standard Ethernet network which intercon-
nects our cluster of workstations. To do so we per­
formed the commonly used "ping-pong" experiment
between two workstations. The manager task, run­
ning on the first node, initiates the Communications
by sending a message to the worker task running on a
different node. Once the message is sent, the man­
ager task performs an AsyncRead on its local port
and waits. The worker task receives the message on
its corresponding local port and it immediately writes
it back to the port. Once the manager task receives
the message, it records the roundtrip delay and it re-
peats the same action. For each message size used,
the experiment was repeated 500 times and the av-
erage roundtrip delay was calculated. As a message
we always used an array of words (64-bit double num-
bers). In each experiment we varried the array size.
We first tried small sizes (1, 10, 100, 1000 words).
Then, for larger arrays of one thousand (1000) ele-
ments and higher, we incremented the size by one
thousand (1000), until the array was ten thousand
(10000) words long.

The average roundtrip delay for each experiment as
a function of the message size is shown in the left panel
of Figure 6. The straight line corresponds to the least
squares polynomial fit over the measured data points
(for array sizes larger than 1000 words). The coeffi-
cients of this first degree polynomial can provide es-
timates for the message setup time and the per-word
transfer time experienced when two JAVAPORTS tasks
residing on separate address spaces communicate. The
setup time is estimated to be in the order of 14.43msec

104 Informatica 23 (1999) 97-105 E.S. Manolakos et al.

500 •

450 •

400 •

350 •

g300-

E250-

- •

PM]-? 0.0007: : ; ; : / .

: : : : > [/

1000 2000 3000 4000 5000 6000 7000 800O 9000 10000

Message size (words, 1 word = 64 bits)

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (secs)

I.. I I I I I 1 I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10C00

Message size in words (1 word = 64 bils)

Figure 6: Left: Round trip delay vs. message size in Ethernet; Right: Ethernet Signature Graph.

(per message) and the transfer time 44.8/isec per word.
The netvjork signature graph [12] is also provided

in the right panel of Figure 6. Such a graph shows
the transfer speed versus the elapsed time for each
message size. As it can be observed, the Ethernet
network in our experiments reaches saturation at mes-
sages sizes of 4000 words, giving maximum through-
put in the order of 1.3 Mbps. Considering that the
maximum throughput for transfering large messages
over Ethernet is in the range of 7Mbits [12], what
was achieved is respectful performance. The underuti-
Uzation of the network can be contributed to several
factors. First, the JAVAPORTS system makes use of
RMI, whose message serialization and de-serialization
process is known to slow down message passing. Sec-
ondly, the experiments were conducted on a local area
network (LAN) at a time that its bandwidth could be
possibly shared by other users. Finally, a Network File
System (NFS) service was running on the LAN during
the experiments, which may cause some delays since
the workstations need to constantly contact their peers
for file reconciliations and updates.

4 Conclusions

We have presented an overview of the JAVAPORTS

system, an environment for flexible and modular con-
current programming, on a cluster of workstations.
The design encourages reusability by enabling the de-
veloper to build parallel application using Java in easy
modular steps. The compOnents which comprise such
designs may be manipulated through the system and
without modifying any existing user code they may
be used to reconfigure and run a parallel application
in a completely new cluster setup. The user-defined
message object may be altered to customize the needs

of transferring any type of Information across the net-
work. By giving the developer such capabilities, the
JAVAPORTS environment may be customized for spe-
cific client-server applications where a large variety of
services may be available.

Each task in the JAVAPORTS system has its own sep-
arate address space. The system was not intended to
support distributed shared memory (DSM) that would
permit sharing of objects among tasks at run-time.
However, a specific task may spawn as many threads as
the programmer desires and these threads may share
data residing in the task's address space, as in any
concurrent Java program. Message communication in
JAVAPORTS is anonymous, therefore one can "discon-
nect" a task from a port and "connect" another one to
it and stili the programmer of the task at the other end
of the connection does not need to be informed about
it, or change the communication code of this task in
any way. This plug-in capability, allows to share task
code templates among similar applications and accel-
erate application development. Users of the system
do not have to be experts in parallel computing, but
rather in the specific task they want to implement.
With the JAVAPORTS system, one can take software
components generated by different field experts and
build easily a distributed application using them.

The performance observed in small scale bench-
mark applications (also tried by other groups) is very
promising and shows that the JAVAPORTS system
strikes a good balance between added functionality
and performance. The inter-task communication pro-
tocol is quite simple and has built into it latency hid-
ding capabilities. We are not so much concerned about
performance issues, since we expect it to improve dras-
tically with the rapid advancements in JVM and RMI
implementations. We are currently designing larger
scale distributed applications using a variety of task

JAVAPORTS: AN ENVIRONMENT TO .. . Informatica 23 (1999) 97-105 105

graph configurations (star, pipeline, mesh etc) . We
are also planning to add to the system dynamic port
creation and task migration capabilities in the future.

References

[1] F. Arbab. The IWIM model for coordination of
concurrent activities. Coordination '96, Lecture
Notes on Computer Science, vol. 1061, April 1996.

[2] F. Arbab, C.L. Blom, F.J. Burger, and C.T.H.
Everaas. Reusability of Coordination Programs.
Technical Report CS-TR9621, Centrum voor
Wiskunde en Informatica, The Netherlands, 1996.

[3] D. Caromel, W. Klauser, and J. Vayssiere. To-
wards Seamless Computing and Metacomputing
in Java. Concurrency Practice and Experience,
10(11-13):1043-1061, Nov 1998.

[4] M. Philippsen and M. Zenger. JavaParty -
Transparent Remote Objects in Java. Concur-
rency: Practice and Experience, 9(11):1225-1242,
November 1997.

[5] G. Hilderink, J. Broenink, and A. Bakkers. A new
Java Thread model for concurrent programming
of real-time systems. Real- Time Magazine, pages
30-35, January 1998.

[6] C.A.R Hoare. Communicating Sequential pro-
cesses. Communications of the ACM, pages 666-
677, August 1978.

[7] B.O. Christiansen et al. Javelin: Internet
Based Parallel Computing Using Java. Concur-
rency: Practice and Experience, 9(11):1139-1160,
November 1997.

[8] Z. Navabi. VHDL: Analysis and Modeling of Dig­
ital Systems. McGraw Hill, 1998.

[9] D.G. Galatopoullos and E. S. Manolakos. De-
veloping parallel applications using the JavaPorts
environment. In International Parallel Process­
ing Symposium (IPPS/SPDP-99), April 1999, to
appear.

[10] Remote Method Invocation Specification.
Microsystems, Inc., 1996/1997.

Sun

[11] R.R. Raje, J.I. WiUiain, and M. Boyles. An asyn-
chronous remote method invocation (armi) mech-
anism for Java. ACM 1997 Workshop on Java
for Science and Engineering Computation, June
1997.

[12] Q.O. Sneli, A.Mikler, and J.L. Gustafson. Net-
pipe: A Network Protocol Independent Perfor-
mace Evaluator. In lASTED International Con-
ference on Intelligent Information Management
and Sgstems, June 1996.

Informatica 23 (1999) 107-111 107

Structured Performability Analysis of Parallel Applications

John P. Dougherty
Department of Mathematics and Computer Science
Haverford College, Haverford, Pennsylvania 19041-1392 USA
Email: jdougher®haverford.edu

Keywords: performance evaluation, clusters, NOWs, fault tolerance, Synergy

Edited by: Rajkumar Buyya and Marcin Paprzycki
Received: September 14, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

Structured Performability Analysis (SPA) is a unified performance and dependabi}ity evaluation
methodology for practical, large scale parallel applications. This evaluation can be used to guide
the developer before and during design and implementation. SPA involves a systematic set ofsteps
to decompose a large application for top-down as well as bottom-up analysis. SPA is scalable, sup-
ports variable-precision modeling, and is trackable. A brief overview of SPA is presented. This is
followed by preliminary results correlating observed performance from experiments with expected
performance from the SPA model, as well as dependability and performanbility projections.

1 Introduction

The primary purpose of parallel computing is to in-
crease realized computation speed. Significant, but of-
ten not considered as important, is dependability [7].
Dependability is a serious issue for parallel and dis­
tributed applications because increasing the number of
processors to increase performance can decrease over-
all dependability, especially for large-grained, loosely-
coupled parallel systems. Fault tolerant techniques ex-
ist for increasing dependability at the cost of perfor­
mance [11]. An analytičal measure of the relationship
between dependability and performance does not yet
exist for parallel applications [10].

A parallel application typically contains multiple
parallel processing topologies. These topologies were
classified by Flynn in [6]. Each topology has its own
characteristic relationship between performance and
dependability. Any technique to gauge the perfor­
mance and/or the dependability of the entire system
must be able to gauge the contribution of every com-
ponent relative to its cost.

An open question is, "How can the tradeoff between
performance and dependability be determined to iden-
tify optimal delivered performance for parallel appli­
cations?" The purpose of this manuscript is to present
a systematic analytical approach for investigation of
this question, and to provide a unified metric of perfor­
mance and dependability for parallel and distributed
applications.

2 Background
Parallel processing is driven by the increasing need for
computing speeds mandated by "Grand Challenge"-
type applications, and by the realization that we are
fast approaching the performance limits of present
semi-conductor materials [13, 17].

Performance evaluation techniques for parallel ap­
plications have concentrated on quantifying realized
processing rates and execution times, while disregard-
ing dependabiUty consequences.

While there are no universally accepted methods for
performance calibration of parallel applications, there
are accepted models for dependability. Typically, de-
pendability models capture the possible states a sys-
tem can reach, and then partition states into two cat-
egories: available or unavailable. Recently, depend-
ability models have been retrofitted to include perfor­
mance issues as rewards [1, 16].

As parallel applications grow in demand, they will
also grow in size and complexity. Metrics to measure
performance and dependability will need to scale so
that they are useful for current as well as future appli­
cations. It is becoming increasingly difRcult to study
large parallel systems and applications using standard,
unstructured analysis [8]. The problem addressed is
how to gauge dehvered performance (i.e., performance
considering failure) for parallel applications using a
structured analytical method.

Performability, or delivered performance, refers to
the solving of state-space type availability models that
have been augmented to include speed characteris-
tics in the form of rewards. The two most accepted
performability approaches are Markov reward models
(MRMs) [16] and stochastic reward nets (SRNs) [1].

http://ford.edu

108 Informatica 23 (1999) 107-111 J.P. Dougherty

Performability analysis is difRcult for sequential appli-
cations; analysis of parallel applications is more com-
plicated due to multiple cooperating processes, mul-
tiple processors, interprocessor communication (IPC),
and storage issues of the parallel environment.

A number of issues are relevant to this research: i.)
there is no universally accepted model of parallel pro-
cessing [15]; ii.) models for performance analysis do
not consider the runtime mapping of application to
environment; iii.) the performance function F(t) for
performability analysis often represents the probabil-
ity that a task will complete by time t [12]; and iv.)
analysis of parallel applications needs to be conducted
in steady-state.

Performance and dependability evaluation methods
need to be scalable. Programming paradigms are
emerging which increcise application size and complex-
ity. While these improvements are beneficial, it be-
comes more problematic to develop general-purpose
techniques for parallel performance and dependability
analysis.

The primary goal of this research project is to de­
velop a unified performance and dependability model
for parallel applications. This model is directly related
to practical program execution by including process-
ing rate and execution time for performance analysis.
Dependability is quantified as availability, and is ex-
pressed as a probability function.

3 Methodology

Structured Performability Analysis (SPA) ušes a three
phase methodology to reach the goals of variable-
precision and scalability. This methodology is de-
picted in Figure 1. The first phase involves a top-
down Coarse-To-Fine (CTF) Application Decomposi-
tion. This results in a Structured CTF (SCTF) graph.
The SCTF graph is then translated into its equivalent
Canonical Decomposition Tree (CDT). The CDT sets
the stage for later performability synthesis.

The second phase of SPA is Microanalysis that pro-
duces estimated performance and dependability func-
tions for each of the application components. These
functions form a performability profile for a given com-
ponent.

The last phase involves a bottom-up synthesis
termed Macroanalysis. Macroanalysis utilizes compo-
nent performability profiles, performance and depend-
ability template rules [i.e., sequential, pipeline, SIMD,
MIMD), and the application-dependent CDT to gen-
erate a performability profile of the entire applica­
tion. The result is a combined measure of performance
and dependability that considers both application-
dependent and processing environment-dependent is­
sues.

Sequential
Application

Analjrsis

SCTF Graph
of

Application

Microanalysis

Eqiiivalent
CDT

Component
Performabilitjr

Profile(s)

Macroanalysis

Postorder Traversal
of the CDT
Application

Perfbrmabilitjr
Ana]ysis

foreathSCTF
graph component

Figure 1: Overview of SPA.

Figure 2: SCTF Graph for SAG.

4 A Brief Example

Consider a standard Scatter-And-Gather (SAG) paral­
lel application. The sequence of operations in this ap­
plication includes scattering the work, computing the
work assigned, and gathering the results. Typically, a
sequential application is used for speed comparisons.

Figure 2 is an example of an SCTF graph for an
SAG application. The SCTF graph shows the typical
scatter and gather operations and system configura-
tion.

This SCTF graph is next transformed into a corre-
sponding CDT as presented in Figure 3. Note that the
vertices of the original SCTF graph in Figure 2 appear
as leaves in the CDT of Figure 3. The internal nodes
capture the structure of the original application. In
this example, the SAG application is decomposed into
a parallel (SIMD) structure nested inside a sequential
(SEQ) structure. Application components are mapped
onto the processor cluster as depicted in Figure 4.

Microanalysis involves developing a performability
profile for each distinct leaf in the CDT of Figure 3. A

STRUCTURED PERFORMABILITY ANALTSIS ... Informatica 23 (1999) 107-111 109

Scatter

W(l)

SEQ

SIMD

W(2) W(3)

Gather

**• W(p)

B "

1 20
1 «

m

t

CoiTcKtion: O ^ T
-SPA

iLuitiberof prDOCEEOia ^)

Figure 5: Peak Execution Times.

Figure 3: CDT for SAG.

Scatter

O t̂uple space 1

W(l)

(^tuple space 2

Gather

processor 1

p

W(2)

rocssoi 2 F

W(3)

masssca 3

W(p)

preoesscff p

Figure 4: Resource AUocation for SAG.

performability profile consists of functions for execu-
tion tirne, processing rate, availability, and performa-
bility of a specific component. For the SAG example,
there are three distinct types of leaves; namely, scat­
ter, gather, and worker(«). The expected execution
time of a worker process is typically the tirne needed
by the sequential application divided by the number
of replicated workers. Other functions are developed
for each CDT leaf using template rules [5].

Macroanalysis involves traversing the CDT in pos-
torder using template rules to derive functions for the
internal CDT nodes. The resulting profile at the root
of the CDT is the SPA profile for the entire applica­
tion. Macroanalysis is detailed in [5]

The primaxy contribution of this manuscript is a
scalable analytical method for assessing the combined
performance and dependability of parallel and dis-
tributed applications. While it is generally known that
certain properties of a parallel application are respon-
sible for its performance and dependability character-
istics, the exact details of these properties (and their
interdependencies toward the aggregate contribution
to overall system performance and dependability) are

generally not known.

5 Results
As a čase study, sequential and parallel matrix multi-
plication applications were implemented for a cluster
of DEC Alpha workstations interconnected via Eth­
ernet. The parallel application employed SAG, and
execution times were collected after tuning to mini-
mize synchronization overhead [4]. Process coordina-
tion was implemented using Synergy [14]. Calibration
runs were used to determine such parameters as aver-
age processor rate, IPC rate for the SPA model. Ex-
ecution time functions, both observed using Synergy
and expected using SPA, are depicted in Figure 5.

The correlation near unity between observations and
expectations support the use of SPA as a tool to eval-
uate application changes {e.g., impact of increasing
problem size), environment enhancements (e.g., im­
pact of a faster interconnection network), and/or op-
timization scenarios (e.^., processor count where time
is minimized).

SPA also produces performability projections, which
are given in Figure 6. Peak performance does not
consider the impact of partial failure. Weak delivered
performance results when no fault tolerance is imple­
mented, implying that partial failure results in total
application failure. Strong delivered performance oc-
curs when the replicated workers are designed to sup­
port failover [9].

SPA can be utilized to augment the previous ajialy-
sis to consider dependability issues as part of applica­
tion performance. Benefits of fault tolerance schemes
can then be weighed against expected costs to perfor­
mance.

6 Conclusions
The goals of the research consist of i.) a unified, struc-
tured model of speed and availability; ii.) a scalable
approach; iii.) variable-precision; and iv.) a track-
able approach. SPA achieves unified performance and

110 Informatica 23 (1999) 107-111 J.P. Dougherty

Acknowledgements

4 ;
nuniber of frooesson

This research has been supported by Yuan Shi of Tem-
ple University, who provided guidance, as well as ac-
cess to the Synergy paxallel appHcation development
environment.

The author is also grateful to David Wonnacott of
Haverford College for his help in preparation of this
manuscript, and to Nathan Doty for his review com-
ments.

Figure 6: Peak and Delivered Rates.

dependabiHty through the delivered performance func-
tions derived as part of the performabihty profile for
an application. SCTF graphs are used as performance
graphs to derive peak and delivered processing rate, as
well as availability. Derived performability provides a
method for measuring speed considering partial fail-
ure.

SPA provides a scalable methodology for studying
the speed of parallel applications. Microanalysis pa-
rameters capture the essential speed-critical factors of
both the application and the architecture. These pa-
rameters can scale independently. SPA can be used
for a variety of applications and architectures avail-
able now and in the future.

The SPA model supports variable precision to bal-
ance simplicity with detail, and provide a means for in-
creasing or reducing detail as warranted. This balance
is the responsibility of the application programmer.

SPA supports a trackable methodology because the
developer can perform top-down or bottom-up analy-
sis. The CDT captures the functional dependencies
among the application components. Macroanalysis
provides a top-down profile of application speed and
availability. Changes made at the component level can
be traced to their impact on overall application speed
and availability. This bottom-up analysis permits in-
cremental changes in the application to be studied
early in the design process, facilitating rapid proto-
typing.

Future research includes enhancements to Timing
Models to quantify communication rate simply and
accurately [3], as well as non-probabilistic measures
for dependability such as fuzzy metrics. Various ap­
plications and various platforms are currently being
investigated to ensure that SPA is not bound only to
NOWs and clusters.

SPA provides a way to investigate the internal struc-
tures of a large parallel application for both perfor­
mance and dependability contributions. The model
identifies the thresholds of key performability parame-
ters. This makes optimization possible prior to imple-
mentation and extensive experimentation.

References

[1] G. Ciardo, A. Blakemore, P.F. Chimento, J.K.
Muppala, and K.S. Trivedi. Automated genera-
tion and analysis of Markov reward models us-
ing stochastic reward nets. In C D . Meyer and
R.J. Plemmons, editors. Linear Algebra, Markov
Chains, and Queueing Models. IMA Volumes in
Mathematics and its Applications, 48: 145-191,
1993.

[2] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sa-
hay, E.E. Santos, K.E. Schauser, R. Subramo-
nian, and T. von Eicken. LopP: A practical model
of parallel computation. Communications of the
ACM, 39, 11: 78-85, November 1996.

[3] N. Doty and J.P. Dougherty. Parallel application
performance on a network of vvorkstations. Super-
computing'98, Orlando, Florida, USA, November
1998.

[4] J.P. Dougherty. Monte Carlo integration in a dis­
tributed heterogeneous environment. In Proceed-
ings of the 26th Annual Havaaiian International
Conference on System Sciences, Maui, Hawaii,
USA, January 1993.

[5] J.P. Dougherty. Structured performability anal-
ysis of fault tolerant parallel and distributed ap­
plications. Ph.D. dissertation, Computer and In­
formation Sciences, Temple University, Philadel-
phia, Pennsylvania, USA, 170 pages, January
1998.

[6] M.J. Flynn. Some computer organizations and
their effectiveness. IEEE Transactions on Com-
puters, C-21, 9: 948-960, September 1972.

[7] P. Jalote. Fault Tolerance in Distributed Sys-
tems. Englewood ClifFs, New Jersey: Prentice
Hali, 1994.

[8] P.G. Neumann. Distributed systems have dis­
tributed risks. Communications of the ACM, 39,
11: p. 130, November 1996.

[9] G.F. Pfister. In Search of Clusters. Englewood
Cliffs, New Jersey: Prentice Hali, 1995.

STRUCTURED PERFORMABILITV ANALYSIS .. Informatica 23 (1999) 107-111 111

[10] Proceedings of the Second Annual IEEE Interna­
tional Computer Performance and Dependability
Symposium. Urbana-Champaign, Illinois, USA,
September 1996.

[11] C.V. Ramamoorthy and W. Tsai. Advances in
software engineering. IEEE Computer, 29, 10:
47-58, October 1996.

[12] R.A. Sahner and K.S. Trivedi. Performance and
reliability anaJysis using directed acyclic graphs.
IEEE Transactions on Softuiare Engineering, 14,
10: 1105-1114, October 1987.

[13] S. Sahni and V. Thanvantri. Performance metrics:
Keeping the focus on runtime. IEEE Parallel and
Distributed Technology, pages 43-56, Spring 1996.

[14] Y. Shi. Parallel program scalability analysis. In
Proceeding of the Ninth lASTED International
Conference on Parallel and Distributed Comput-
ing Systems, Washington, D.C, USA, October
1997.

[15] D.B. Skilhcorn and D. Taha. Models and lan-
guages for parallel computation. ACM Computing
Surveys, 30, 2: 123-169, June 1998.

[16] K.S. Trivedi, G. Ciardo, M. Malhorta and
R.A.Sahner. Dependability and performability
analysis. In L. Donatiello and R. Nelson, editors.
Performance evaluation of computer and commu-
nication systems. Lecture Notes in Computer Sci­
ence, 729: 587-612, Springer-Verlag, 1993.

[17] P.R. Woodward. Perspectives on supercomput-
ing: Three decades of change. IEEE Computer,
29, 10: 99-111, October 1996.

Informatica 23 (1999) 113-121 113

Sorting on Clusters of SMPs

David R. Helman and Joseph JaJa
Institute for Advanced Computer Studies & Department of Electrical Engineering,
University of Maryland, College Park, MD 20742 USA
Phone: + 301 405 6758, Fax + 301 314 9658
E-mail: {helman, joseph}@umiacs.umd.edu

Keywords: Parallel Algorithms, Generalized Sorting, Sorting by Regular Sampling, Parallel Performance

Edited by: Rajkumar Buyya and Marcin Paprzycki

Received: September 8, 1998 Revised: January 25, 1999 Accepted: February 5, 1999

We introduce an efEcient algorithm for sorting on clusters ofsymmetric multiprocessors (SMPs).
This algorithm relies on a novel scheme for stably sorting on a single SMP coupled with balanced
regular communication on the cluster. The algorithm was implemented in C using POSIX threads
and the SIMPLE library of communication primitives and run on a cluster of DEC AlphaServer
2100A systems. Our experimental results verify the scalability and efficiency of our proposed
solution and illustrate the importance of considering both memory hieraxchy and the overhead of
shifting to multiple nodes.

1 Introduction

Clusters of symmetric multiprocessors (SMPs) have
emerged as the primary candidates for large scale mul-
tiprocessor systems. In spite of this trend, relatively
little work has been done to develop techniques for
designing algorithms which make effective use of the
resources available on such platforms. This task is
made difHcult by the contrasting requirements of the
platform. On the one hand, each SMP must be viewed
on its own as a hierarchical shared memory machine.
Good performance requires both good load distribu-
tion and the minimization of main memory access. On
the other hand, from the perspective of the cluster,
each node is in effect a superproccessor, and therefore
the cluster of SMPs is a collection of powerful proces-
sors connected by a communication network. Maxi-
mizing the performance of such a distributed memory
machine requires both efficient load balancing and reg­
ular balanced communication.

In this paper, we exainine the problem of sorting
on SMP clusters. Sorting is arguably the most stud-
ied problem in computer science, due in large part
to its pervasiveness. But it is also intrinsically in-
teresting because of its demanding requirements for
irregular memory access and interprocessor communi­
cation. Prom the perspective of the cluster, aiiy algo­
rithm which performs well for distributed memory ma-
chines would be a reasonable candidate. In particular,
we have identified two such algorithms in our previous
work [8, 11]. The first is a variation on sample sort
and the other is a variation on the approach of sort­
ing by regular sampling. On the other hand, from the
perspective of the individual SMP, we might consider

any algorithm which is designed for hierarchical shared
memory machines. Unfortunately, none of these algo­
rithms by itself is sufRcient to achieve efficient per­
formance on an SMP cluster. The reason for this is
that algorithms for shared memory machines typically
capitalize on the fact that accessing data associated
with another processor is no more expensive than ac­
cessing its own data in the shared memory. Assuming
the entire cluster is a shared memory platform will un-
derestimate the cost of sharing data between nodes in
the cluster. On the other hand, eificient algorithms
for distributed memory machines tend to confine in­
terprocessor communication to a minimum number of
regular balanced exchanges. As such, assuming the
entire cluster is a distributed memory platform will
exaggerate the cost of sharing data on an SMP.

We introduce a sorting algorithm for clusters of
SMPs which is a hybrid of our modified algorithms
for parallel sorting by random sampling and parallel
sorting by deterministic sampling. To our knowledge,
this is the first sorting algorithm specifically designed
for this platform. Our algorithm was coded in C using
POSIX Threads and the SIMPLE library of communi­
cation primitives [3]. We examined its performance on
a cluster of DEC AlphaServer 2100A systems linked
by an ATM network, using a variety of benchmarks
that we have identified to assess the dependence of
our algorithm on the input distribution. Our exper-
imental results verify the scalability and efiiciency of
our proposed solution and illustrate the importance of
considering both memory hierarchy and the overhead
of shifting to multiple nodes.

The organization of this paper is as follows. Sec-
tion 2 presents our computational model for analyzing

http://umd.edu

114 Informatica 23 (1999) 113-121 D. Helman et al.

algorithms for SMP clusters. Section 3 describes our
sorting algorithm for this platform. Finally, Section 4
describes the experiinental performance of our sorting
algorithm on an SMP cluster.

2 Computational Model

We measure the overall complexity of an algorithm
by the triplet {CA,Cv,Ti\f), where CA is the maxi-
mum number of communication primitives called by
any node, Cv is the maximum amount of data sent or
received by any node, and T/v is the maximum time
required by a node for local computation. Addition-
ally, we insist that ali internode communication must
be balanced. The basis for this requirement is the
experimental observation by both ourselves [4] and
other workers (e.g. [6]) that large variations result
in an inefRcient use of the communication bandwidth.
Further, utilizing regular communication has become
more important with the advent of message passing
standards, such as MPI, which seek to guarantee the
availability of very efRcient (often machine specific)
implementations of certain basic coUective communi­
cation routines. Note also that we report CA and Cv
as approximations of the actual values. By approxima-
tions, we mean that if CA or Cv is described by the
expression (cjta;*̂ + C(^k-i)X^''~^^ + ••• + cox^), then we
report it using the approximation {ckx'' + o {x''))- We
report the communication cost in this fashion because
of the dominant expense of internode communication
in a distributed memory architecture. On the other
hand, despite the importance of these memory costs,
we report only the highest order term, since otherwise
the expression can easily become unwieldy.

We measure TN, the time required for local com­
putation at a node, as follows. We view each node
as a symmetric multiprocessor (SMP) consisting of a
single level of cache and a shared main memory. In
our model, we acknowledge the dominant expense of
memory access. Indeed, it has been widely observed
that the rapid progress in microprocessor speed has
left main memory access cis the primary limitation to
SMP performance. The problem can be minimized
by insisting where possible on a pattern of contigu-
ous data access. This exploits the contents of each
cache line and takes fuU advantage of the pre-fetching
of subsequent cache lines. However, since it does not
always seem possible to direct the pattern of memory
access, our complexity model needs to include an ex-
plicit measure of the number of non-contiguous main
memory accesses required by an algorithm.

More precisely, we measure the overall complexity at
a node TN by the triplet {MA, ME, TC), where M A is
the maximum number of accesses made by any proces-
sor to main memory, ME is the maximum amount of
data exchanged by any processor with main memory,

and Tc is an upper bound on the local computational
complexity of any of the processors. Note that MA
is simply a measure of the number of non-contiguous
main memory accesses, where each such access may
involve an arbitrary sized contiguous block of data.
While we report Tc using the customary asymptotic
notation, we report MA and ME as approximations
(see above) of the actual values. We report the mem-
ory access in this fashion because of the dominant ex-
pense of memory access on this architecture. With
so few processors available, this coefRcient is usually
crucial in determining whether or not a parallel algo­
rithm can be a viable replacement to the sequential
alternative.

Hence, the overall complexity of an algorithm on a
cluster of high performance nodes is given by the five
values {CA;CV;MA;ME;TC) (though, in practice, it
is often possible to focus on a subset of these values).
Note that our approach to designing algorithms for
clusters of SMPs is distinct from models and methods
that are currently being promoted. Both the bulk-
synchronous parallel model [16] and the more recent
Queue-Read Queue-Write (QRQW) PRAM model [7]
have been promoted by the their authors as possible
"bridging models" which can span the entire array
of available architectures. The BSP model suggests
that ali platforms can be generalized as a message-
passing distributed memory architecture. This idea
has found expression in programming methodologies
(e.g. [13]) which enforce a shared-nothing paradigm
between tasks, and aH communication and coordi-
nation between tasks are performed through the ex-
change of explicit messages, even tasks on a node with
physically shared memory. On the other hand, the
QRQW model suggests that ali platforms can be gen­
eralized as a shared memory architecture. This idea
has found expression in programming methodologies
(e.g. [2]) which use a software layer to simulate coher-
ent shared memory between nodes by transparently
using messages to move around specific data or ref-
erenced memory pages. Both of these methodologies
accept inefficiencies in order to simplify programma-
bility and portability. The reason for this is that on
an SMP accessing the data associated with another
processor is no more expensive than accessing one's
own data in main memory. On the other hand, ac­
cessing the data at another SMP is far more expensive
then accessing one own data since it requires the use
of explicit message passing. Thus, assuming that the
entire platform is a distributed memory machine ex-
aggerates the cost of sharing data between processors
on an SMP, whereas assuming that the entire plat­
form is a purely shared memory machine underesti-
mates the cost in sharing data betvveen nodes in the
cluster. Hence, these current approaches lead to signif-
icant inefficiencies that will make them unacceptable
for a wide range of problems.

SORTING ON CLUSTERS OF SMPS Informatica 23 (1999) 113-121 115

3 Our Sorting Algorithms
Consider the problem of sorting n elements equally
distributed amongst N nodes, where each node has p
processors. Any algorithm which performs well on a
distributed memory platform might seem a reasonable
candidate for a cluster of SMPs. Prominent among
them are sample sort [6] and parallel sorting by regu-
lar sampling [15], each of which requires only a single
round of all-to-all communication. Hovvever, the priče
paid for a single step of communication is an irreg-
ular communication scheme and difficulty with load
balancing. No matter how the routing is scheduled,
there exist inputs that give rise to large variations in
the number of elements destined for different nodes.
In response, we have introduced two novel algorithms
which address the limitations of these two algorithms.
Our first algorithm [8] is a novel variation on (ran-
domized) sample sort, and our second algorithm [11]
is a novel variation on the approach of sorting by reg-
ular sampling. Both algorithms replace the single step
of irregular communication with only two rounds of
regular, balanced communication. Not only does this
afford us efficient and predictable communication, but
we leverage this modification to allow us to obtain two
other important results. First, we are able to sustain a
very high sampling ratio at virtually no cost, allowing
us to minimize the problem of poor load balancing.
And, second, we efRciently accommodate the presence
of dupUcate values without the overhead of tagging
each element. The resulting algorithms appear to out-
perform ali similar sorting algorithms on distributed
memory platforms,

However, to be useful on a cluster of symmetric mul-
tiprocessors, we need to show that each step of our
distributed memory algorithms can be replaced where
appropriate by a multithreaded SMP implementation.
In particular, we need to replace the sequential sort
with an efficient shared memory algorithm. With this
in mind, we will first describe a novel algorithm for
sorted on a single SMP, and then we discuss how it is
incorporated into an distributed memory algorithm to
produce an efficient algorithm for sorting on clusters
of SMPs.

3.1 Sorting on a Single SMP
Any of the algorithms that have been proposed in the
literature for sorting on hierarchical memory models
can be considered for possible implementation on an
SMP. These include balance sort [14], sharesort [1],
and simple randomized merge sort [5]. However, with-
out modifications, most are unnecessarily complex or
inefficient for a relatively simple platform such as ours.
A notable exception is the algorithm of Varman et
al. [17]. Vet another approach is an adaptation of
our sorting by regular sampling algorithm [11], which

we originally developed for distributed memory ma-
chines. The idea behind sorting by regular sampling is
to first partition the n input elements into p memory-
contiguous blocks and then sort each of these blocks
using an appropriate sequential algorithm. Then, a set
of p — 1 splitters is found to partition each of these p
sorted sequences into p subsequences indexed from O
up to (p—1), such that every element in the i"* group is
less than or equal to each of the elements in the (i+1)*'^
group, for (O < i < p - 2). Then, the task of merg-
ing the p subsequences with a particular index can be
turned over to the correspondingly indexed processor,
after which the n elements will be arranged in sorted
order. One way to choose the splitters is by regularly
sampling the input elements - hence the name Sorting
by Regular Sampling. As modified for an SMP, this
algorithm is similar to the parallel sorting by regular
sampling (PSRS) algorithm of Shi and Schaeffer [15].
However, unlike their algorithm, our algorithm accom-
modates the presence of duplicate values without the
overhead of tagging each element.

While our algorithm will efficiently partition the
work amongst the available processors, it will not be
sufficient to minimize main memory accesses unless we
also carefully specify how the sequential tasks are to be
performed. Specifically, straightforward binary merge
sort or quick sort will require log ^ memory accesses
for each element to be sorted. Thus, a more efficient se-
quential sorting algorithm running on a single proces­
sor can be expected to outperform a parallel algorithm
running on the relatively few processors available with
an SMP, unless the sequential steps of the parallel al­
gorithm are properly optimized. Knuth [12] describes
a better approach for the analogous situation of exter-
nal sorting. First, each processor partitions its ^ ele­
ments to be sorted into blocks of size § , where C is the
size of the cache, and then sorts each of these blocks
using merge sort. This alone eliminates log (j) mem-
ory accesses for each element. Next, the sorted blocks
are merged z at a time using a tournament of losers,
which further reduces the memory accesses by a factor
of loga;. To be efficient, the parameter z must be set
less than £ , where L is the cache line size, so that the
cache can hold the entire tournament tree plus a cache
line from each of the z blocks being merged. Other-
wise, as our experimental evidence demonstrates, the
memory performance will rapidly deteriorate.

The pseudocode for our algorithm is as follows:

- (1) Each processor Pi (O < i < p — 1) sorts the
subsequence of the n input elements with indices
(f) through (ii±pJl - l\ as follows:

- (A) Sort each block of m input elements
using an appropriate sequential algorithm,
where m < y . For integers we use the radix
sort algorithm, whereas for floating point

116 Informatica 23 (1999) 113-121 D. Helman et al.

numbers we use the merge sort algorithm.

- (B) For i = O up to (J ^ ^ g { ^ - l) , merge

the sorted blocks of size [mz^) using z-way

merge, where 2 < £•

- (2) Each processor Pj selects each

(T + O + 1) ^) element as a sample, for (O <

j < s — 1) and a given value of s f p < s < p- j .

- (3) Processor P{p-i) merges the p sorted subse-
quences of samples and then selects each ((A; +
1)«)"» sample as Splitter[A;], for {O <k <p- 2).
By default, the p"* splitter is the largest value al-
lowed by the data type used. Additionally, binary
search is used to compute for the set of samples
with indices O through ({k + l)s - 1) the number
of samples Est[fc] which share the same value as
Splitter [fc].

- Step (4): Each processor Pk ušes binary search
to define an index 6(ĵ fc) for each of the p sorted
input sequences created in Step (1). If we define
T^i,k) as a subsequence containing the first b^i^k)
elements in the i*'' sorted input sequence, then the
set ofp subsequences {T(^o,k),T(i,k),•••,T(^ip-i),k)}
will contain ali those values in the input set
which are strictly less than Splitter[A;] and at most

(Est[A;] X ^) elements with the same value as

Splitter[A;]. The term at most is used because
there may not actually be this number of elements
with the same value as Splitter [fc].

- Step (5): Each processor Pk merges those sub-
sequences of the sorted input sequences which lie
between indices 6(i,(fc_i)) and b(^i^i.) using p-way
merge. It is shown in [11] that no processor will

merge more than (f + 7 ~ p) elements.

It is straightforward to see how this algorithm can be
implemented as a stable integer sort, and [10] contains
an informal proof. The analysis of our algorithm is as
follows. In Step (lA), each processor moves through
a contiguous portion of the input array to sort it in
blocks of size m using an appropriate sequential sort
algorithm. If we assume that (m < j) , this will re-
quire only a single non-contiguous memory accesses to
exchange ^ elements with main memory and either

O (-) computation time to sort integers using radix

sort or O (^ log m j computation time to sort float-

ing point values using merge sort. Step (IB) involves

lodzT rounds of z-wa.y merge. Since round j will

begin with -^^ blocks of size mz^, this will require at

most p^ilLi) non-contiguous memory accesses to ex-

change '̂ " °io ^z?'" elements with main memory mem-

ory and O f ̂ log (^)) computation time. The se-
lection of s noncontiguous samples by each proces­
sor in Step (2) requires s non-contiguous memory ac­
cesses to exchange 2s elements with main memory and
0{s) computation time. Step (3) involves a p-way
merge of blocks of size s followed by p binary searches
on segments of size s. Hence, it requires approxi-
mately p log(s) non-contiguous memory accesses to ex-
change approximately 2sp elements with main mem-
ory and 0{splogp) computation time. Step (4) in­
volves p binary searches by each processor on segments

of size ^ and hence requires approximately p log (- j

non-contiguous memory accesses to exchange approx-

imately p log (?̂ j elements with main memory and

O f p l o g f ^ n computation time. Step (5) involves

a p-way merge of p sorted sequences whose combined

length is at most (f + 7 ~ p) • This requires approxi-

mately p non-contiguous memory accesses to exchaiige

approximately 2 (^ -I- j j elements with main memory

and O (^ log J) j computation time. Hence, the overall

complexity of our shared memory sorting algorithm is
given by

T{n,p) = {MA\ME;TC)

nz , / n
-f- s-l-plog -

\P
pm{z — 1)

Jogjn/pm) ^ ^\ !! + 2 "
log(^) P

Oi^-logn

for [p < s < ^], n > ps, m < ^ , and z < £• Since
the analysis suggests that the parameters m and z
should be as large as possible subject to the stated
constraints while selecting s so that (p < < s < < ^ j ,
we would expect that in practice the complexity of our
algorithm could be characterized as

Tin, p) = {ME;TC)

3.2 Sorting On a Cluster of SMPs

Both our randomized sample sort algorithm [8] and
our sorting by regular sampling algorithm [11] would
be an appropriate choice for a cluster of SMPs, but we
chose the randomized sample sort because it proved
to be slightly faster in its implementation. We repeat
the pseudocode here for convenience, where we replace
each sequential step where appropriate by a multi-
threaded SMP implementation (note that the commu-
nication primitives mentioned are described in detail
in [9]):

SORTING ON CLUSTERS OF SMPS Informatica 23 (1999) 113-121 117

Step (1): Using p threads, each node Ni (O <
i < {N — 1)) randomly assigns each of its jj ele­
ments to one of N buckets. With high probabiHty,
no bucket will receive more than ci ^ elements,
where c\ is a constant to be defined later.

Step (2): Each node Ni routes the contents of
bucket j to node Nj, for (O < j < (A'' - 1)).
Since with high probability no bucket will receive
more than ci-^ elements, this is equivalent to
performing a t ranspose operation with block size
Cl W2

Step (3): Using p threads, each node Ni sorts the
at most {aijj < ci^) values received in Step (2)
with the appropriate version of our SMP sorting
algorithm, depending on the data type.

Step (4): Prom its sorted list of (7;^ < ci^)

elements, node Âo selects each ((j + 1)7]^) el­
ement as Splitter[7], for (O < j < 7V - 2). By
default, Splitter[A'' — 1] is the largest value al-
lowed by the data type used. Additionally, for
each Splitter[_y], binary search is used to deter-
mine the values PracL[j] and Pracj^[j], which
are respectively the fractions of the total num-
ber of elements at node No with the same value
as Splitter[j - 1] and Splitter[j] which also lie be-
tween index [{j - 1) 7 j ^ -I-1) and index [jl^),
inclusively.

Step (5): Node Âo broadcasts the Splitter,
PracL, and Pracp^ arrays to the other (7V - 1)
nodes.

Step (6): Each node Ni ušes binary search on
its sorted local array to define for each of the A''
splitters a subsequence Sj. The subsequence as-
sociated with Splitter[j] contains aH those values
which are greater than Splitter [j — 1] and less than
Splitter [j], as well as PracL[j] and Pracj^[j] of the
total number of elements in the local array with
the same value as Splitter[j — 1] and Splitter[j],
respectively.

Step (7): Each node Ni routes the subsequence
associated with Splitter[j] to node Nj, for (O <
j < {N — 1)). Since with high probability no
sequence will contain more than C2^ elements,
where C2 is a constant to be defined later, this is
equivalent to performing a t ranspose operation
with block size C2-^.

Step (8); Using p threads, each node Ni merges
the A'' sorted subsequences received in Step (7) to
produce the i"* column of the sorted array. Note
that, with high probability, no node has received
more than 02;^ elements, where 03 is a constant
to be defined later.

Noting that we have estabhshed in [8] that with high
probability Ci > 2, a2 > 2.62, and C2 > 5.42, the anal-
ysis of our sample sort algorithm is as follows. Step (1)
is easily done with multiple threads by having each of
the p processors at a node move through a contiguous
block of the input array and randomly write each ele­
ment to one of A'̂ blocks. This will require (A''-M) non-
contiguous memory accesses to exchange j ^ elements

with main memory and O l-^) computation time. In

Step (2), with high probability no two nodes will ex-
change more than 2-^ elements, and so it will be suffi-
cient to use a t ranspose primitive which can transfer

at most ("̂ jyi~ ' j elements. However, it is important

to note that a ^-b iased binomial process encounters
on average -^ successes in -^ trials and so in prac-
tice it will be sufficient to use a t ranspose primitive

which can transfer approximately ("'^^Ž" ') elements

(which is what we observe experimentally in the next
section). The cost of sorting at most 2^ elements
in Step (3) using multiple threads depends on the
data type. Sorting integers using radix sort requires
exchanging U^-^^^^^^^ + '*) 7^ elements with main

memory and O (- ^ log p) computation time, whereas

sorting doubles using merge sort requires exchang-

ing (^'"^iogS"'^ + 4)] ^ elements with main mem-

ory and O (; ^ log n j computation time. (assuming

^ > ps and (p « s « 7 ^) . Again, it is impor-N

tant to note that on on average each node only needs to
sort approximately ^ elements, which in turn requires

exchanging only about (2'°«<^/gp> +'^)w^ elements
with main memory. Steps (4) and (6) each involve a
single thread performing 2N binary searches on se-
quences of size O [jf). This requires approximately
2A'log(;^) non-contiguous memory accesses to ex-
change approximately 2A''log [^) elements with main
memory and O (A''log (;^)) computation time. Step
(5) involves broadcasting 3N elements from node Â o
to the other (A^-1) processors. As discussed in [9], this
can be efficiently implemented by first performing a
s c a t t e r operation on these 3A'' elements followed by a
gather operation at each of the nodes, which together
requires transferring at total of at most {6N) elements
using balanced communication exchanges. In Step (7),
with high probability no two nodes will exchange more
than 5.42-^ elements, and so it will be sufficient to
use a t ranspose primitive which can transfer at most

[-—^^i) elements. However, it is important to
note that on average no two nodes will exchange more
than -^ elements and so in practice it will be suffi­
cient to use a t ranspose primitive which can transfer
approximately ("'^J^^ j elements (which is what we

118 Informatica 23 (1999) 113-121 D. Helman et al.

observe experimentally in the next section). Finally,
Step (8) involves merging p sorted sequences whose
combined length is at most 2.62;^. This can be eas-
ily done using multiple threads by partitioning each
sorted sequence into p blocks using the same scheme
used in our algorithm for sorting on a shared memory
platform. This requires requires exchanging ^jf^ ele-

ments with main memory and O (] ^ log p j computa-

tion time (assuming [p « s « •^] and ^ >ps).
Again, it is important to note that on on average each
node only needs to merge approximately ^ elements,
which in turn requires exchanging only about 2-^ el­
ements with main memory. Hence, with high proba-
bility, the overall complexity of our sorting algorithm
is given (for floating point numbers) by

Tin,N,p) = {CA\CV\MA\ME;TC)

4 ; 7 . 2 4 ^ ; 2 i V ^ - (^) =

\og{z) J Np

O
Np

for iV2 < (p << s <«

logn

-̂ 1 and > ps. 31nn ' ^ ^ / ' ^ ^ • ' ^ ^ ^ Tfp^J' '^""^ N
Noting that the MA non-contiguous memory accesses
comprise a insignificant proportion of the ME total
elements exchanged with memory, and recalling that
on average each processor traverses only about ^ el­
ements in Step (4), we would expect that in practice,
the complexity of our sample sort algorithm will be
approximately:

T{n,N,p) = {CA;CV;ME;TC)

4; 2 n 4 + 2
Np'

log {n/Npm) \ n
log{z) JN^'

4 Performance Evaluation
Our algorithms were implemented using POSIX
threads and run on a DEC Alpha Cluster. Our DEC
Alpha cluster consists of 10 AlphaServer 2100A sys-
tems, each of which holds 4 Alpha 21064A processors
running each at 275 MHz. Each Alpha 21064A pro­
cessor has a 16KB primary data cache and a 4MB sec-
ondary data cache. The AlphaServers are connected
using the Digital Gigaswitch/ATM and 0C-3c adapter
cards, which have a peak bandwidth rating of 155.52
Mbps. Internode communication is effected by calls to
the SIMPLE coUective communication primi ti ves [3].

We tested our code on a variety of benchmarks, each
of which had both a 32-bit integer version and a 64-
bit double precision floating point number (double)

version. See [9] for a detailed description and justifi-
cation of these benchmarks.

4.1 Experimental Results for a Single
SMP

For each experiment, the input is a single array of
elements, and the output is these elements arranged
in a single array in non-descending order. Table 4.1
verifies that as expected performance does not signif-
icantly depend on the input distribution. Because of
this independence, the remainder of this section will
only discuss performance on the single benchmark [U],
in which the input data forms a uniform random dis­
tribution.

Table 2 displays the times required to sort 4M dou-
bles (i.e. double precision floating point values) using
a single thread as a function of m and z. Notice first
that performance suffers dramatically when the block
size reaches 4MB (512K eight byte double precision
numbers), which is the limit of the cache on the Al­
phaServer. But consider the data for a given block
size - say 2K. The execution time drops as we move
from z = 2 to z = 64. This is reasonable since we
require 11 rounds of 2-way merge, 6 rounds of 4-way
merge, 4 rounds of 8-way merge, 3 rounds of 16-way
and 32-way merge, and only 2 rounds of 64-way merge,
and each round of -2:-way merge is obviously another
round where ali the input elements must be brought in
from main memory. We would then expect that mov-
ing from ^ = 64 to z = 1024 would have little effect
on the execution time since it does nothing to reduce
the memory requirements, but this turns out not to be
the čase. The explanation lies in recalling that the Al­
phaServer has both a primary and a secondary cache.
An efficient implementation of the 2-way merge in Step
(IB) would fill this 16 KB primary cache with the en-
tire tree of losers {z 12 byte records) plus a cache line
(32 bytes) from each of the z sequences being merged.
For z = 256, this primary cache is essentially filled,
and cache misses to secondary cache become an issue.
Finally, note the difference between the optimal sort­
ing time of 10.28 seconds for m = 16K and z = 256
with the time of 18.96 seconds required to sort using
only binary merge sort. Here, reducing memory access
by a combination of block sorting and 2:-way merg­
ing improved the performance by 45%. Such results
strongly support the attention that we plače in this
algorithm on the volume of main memory accesses.

Figure 1 examines the scalability of our sorting al­
gorithm as a function of the number of threads, for
different problem sizes. Bearing in mind that these
graphs are log-log plots, they show that for a fixed in­
put size n the execution time nearly halves when the
number of threads p is doubled.

SORTING ON CLUSTERS OF SMPS Informatica 23 (1999) 113-121 119

Input
Size
512K

IM
2M
4M

[U]
0.397
0.868
1.64
3.50

[G]
0.394
0.856
1.72
3.47

Benchmark
[Z]

0.320
0.741
1.39
3.00

[WR]
0.421
0.844
1.73
3.52

[DD]
0.337
0.724
1.40
3.01

[RD]
0.348
0.710
1.51
2.98

Table 1: Sorting doubles (in seconds) using 4 threads.

Block
Size
2K
4K
8K
16K
32K
64K
128K
256K
512K

IM
2M
4M

Denomination of z-Way Merge
2

18.45
17.29
16.47
15.61
15.04
14.54
14.91
15.38
18.36
19.17
18.87

8
12.09
12.11
11.33
11.37
11.71
10.99
12.19
13.63
16.52

32
11.53
10.67
10.66
10.79
11.11
11.49
11.33

64
11.21
11.21
11.31
11.44
11.52
10.59

256
12.18
12.31
12.19
10.28

1024
13.09
11.24

2048
11.51

18.96 - (No z-vfay merge is necessary for this block size)

Table 2: Time (in seconds) required to sort 4M doubles using a single thread as a function of M and z.

Scalability in Thread and Problem Size
lUJ Double Benchmark, DEC AlphaSsrver

612K 1M
Problem Size

on the single benchmark [U] (uniform distribution).

Figure 1: Scalability of sorting doubles with respect
to the number of threads, for differing problem sizes.

4.2 Experiinental Results for a
Cluster of SMPs

For each experiment, the input is evenly distributed
amongst the nodes. The output consists of the ele-
ments in non-descending order arranged amongst the
nodes so that the elements at each node are in sorted
order and no element at node Ni is greater than any
element at processor Â ,̂ for ali i < j . Note that in ali
cases the results shown for a single node were obtained
using the sorting algorithm for a single SMP.

Table 3 displays the performance of our sorting al­
gorithm as a function of input distribution for a variety
of input sizes. In each čase, the performance is essen-
tially independent of the input distribution. Because
of this independence, the remainder of this section will
only discuss the performance of our sorting algorithm

Scalabillt/ in Nodes
BM Integers

100

'?*=;; ;===
^?^fc;E-^

1 2 4 8
Number of Nodes

\-^-2-~3•^i,\

Scalability in Nodes
4M Doubles

1 0 0 .•:.:-:^r.v.v;.v;.v;;.v;.v;^^

0)
(A

E
\-

1

• - - - " - i - " - - - - "" - ' *

i

1

•

1
2 i

Number of 1

! !

k-^^
1 8
Jodes

| - 1 - 2 - 3 * 4 |

Figure 2: ScalabiUty of sorting integers and doubles
with respect to the number of nodes, for differing num-
bers of threads.

The results in Figure 2 examines the scalability of
our sorting algorithm as a function of the number of
nodes, for a variety of threads. To understand these
results, consider the step by step breakdown of the exe-
cution times shown in Table 4 for sorting 8M integers
with both 1 and 4 threads. Moving from one node
to two introduces the overhead of Steps 1-2 and 4-
8, which together account for approximately 35% and
50% of the total execution time on one node with 1
and 4 threads, respectively. This consumes the major-
ity of the time we could hope to save by sharing the
work of sorting amongst two nodes. The effect is more
pronounced for multiple threads because as our model
predicts internode communication is independent of

120 Informatica 23 (1999) 113-121 D. Helman et aJ.

Input
Size
4M
8M
16M
32M

[U]
2.76
4.89
9.36
18.71

[G]
2.79
4.86
9.54
19.31

Benchmark
[2-G]
2.72
4.80
9.30
18.68

[B]
2.74
4.76
9.19
18.27

[S]
2.73
4.85
9.28
18.54

[DD]
2.64
4.61
9.01
18.23

[RD]
2.60
4.54
8.90
18.31

Table 3: Total execution time (in seconds) required to sort a variety of double benchmarks on an 8 node cluster
using 4 threads.

the number of threads. The effect of this overhead
would be even more pronounced were it not for the
fact that the time required for Step 3 for both 1 and
4 nodes is considerably higher than we would expect
from sorting 4M integers on a single node. But moving
between 1 and 4 nodes and 1 and 8 nodes, the time
required for Step (3) scales inversely with the num­
ber of nodes, which is the expectation of our model.
The failure of communication in Steps 2 and 7 to scale
inversely with the number of nodes might at first ap-
pear surprising. However, this performance is actually
quite reasonable if we recaJl that for 2, 4, ajid 8 nodes,
each node has to send approximately 2M, 1.5M, and
0.875M integers across the network, respectively. The
clear implication of these results is that an algorithm
must be both efficient and scalable to justify the use
of multiple nodes.

Step(s)

1
2
3

4-6
7
8

Total

One Thread
1

0.00
0.00
11.19
0.00
0.00
0.00
11.19

2
0.87
1.28
7.17
0.00
1.24
0.49
11.05

4
0.41
0.92
2.39
0.00
0.84
0.27
4.83

8
0.22
0.56
1.17
0.00
0.49
0.32
2.76

Step (s)

1
2
3

4-6
7
8

Total

Four Threads
1

0.00
0.00
3.99
0.00
0.00
0.00
3.99

2
0.56
1.11
3.11
0.00
1.08
0.23
5.09

4
0.26
0.88
0.87
0.00
1.39
0.13
3.53

8
0.11
0.58
0.73
0.00
0.62
0.25
2.29

Table 4: Time required for each step of sorting 8M
integers with respect to the number of nodes using 1
and 4 threads.

The graph in Figure 3 examine the scalability of
our sorting algorithm as a function of problem size,
for differing numbers of nodes and for 1 and 4 threads.
For one thread, they show that for a fixed number of

Scatability In Problem Size
1 Thread

100

o 10
0)
CD

«
I 1

0.1

H

i;

\
=:

Sš.

Si

^
-g^

:.:

mmm
iiizz^r;
^ ̂ ^Srj!]s::::
^:vf^.T.v4.v,v-^-.-~. iv;̂ T.

1 " " "i -—
512K 1M 2M 4M

Number of Doubles

Scaiabillty In Problem Size

4 Threads

10 ~s===

—< ̂ ^ ?

r :^^-—ir : : r r

I

......

512K 1M 2M 4M
Number of Doubles

Figure 3: Scalability of sorting integers and doubles
with respect to the problem size, for differing numbers
of nodes and threads.

nodes there is an almost linear dependence between
the execution time and the total number of elements
n. The results for 4 threads are seemingly more prob-
lematic. However, a step by step breakdown of the
execution times for sorting integers in [10] shows that
the communication costs dominate the execution time
and that as the problem size increases from IM to
2M integers the communication costs actually decrease,
presumably because of a change in the communication
protocol. Once the protocol is switched, the relative
costs of communication decline and the execution time
scales with problem size as our model anticipates.

5 Conclusion

In this chapter, we introduce a efficient algorithm for
generalized sorting on clusters of symmetric muitipro-
cessors. To our knowledge, this algorithm is the first
sorting algorithm specifically designed for this plat­
form. Our algorithm was implemented and experimen-
tally shown to be scalable in both the problem size and
the number of nodes. As suggested by our computa-
tional model, our results illustrate the importance of
considering both memory hierarchy and the overhead
of shifting to multiple nodes when designing efficient
algorithms for this platform.

SORTING ON CLUSTERS OF SMPS Informatica 23 (1999) 113-121 121

References

[1] A. Aggarwal and G. Plaxton. Optimal Parallel
Sorting in Multi-Level Storage. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 659-668, 1994.

[2] C. Amza, A.L. Cox, S. Dvvarkadas, P. Keleher,
H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
Treadmarks: Shared Memmory Computing on
Networksof Workstations. IEEE Transactions on
Computers, 29(2):18-28, 1996.

[3] D.A. Bader and J. JaJa. SIMPLE: A Method-
ology for Programming High Performance Algo­
rithms on Clusters of Symmetric Multiproces-
sors. CS-TR-3798 and UMIACS-TR-97-48 Tech-
nical Report, UMIACS and Electrical Engineer-
ing, University of Maryland, College Park, MD,
May 1997.

[4] David A. Bader, David R. Helman, and J. JaJa.
Practical Parallel Algorithms for Personalized
Communication and Integer Sorting. ACM
Journal of Experimental Algorithmics, l(3):l-42,
1996.

[5] R. Barve, E. Grove, and J. Vitter. Simple Ran-
domized Mergesort on Parallel Disks. In Proceed­
ings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 109-
118, Padua, Italy, June 1996.

[6] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G.
Plaxton, S.J. Smith, and M. Zagha. A Expermen-
tal Analysis of Parallel Sorting Algorithms. The-
ory of Computing Systems, 31(2):135-167, 1998.

[7] P.B. Gibbons, Y. Matias, and V. Ramachandran.
The Queue-Read Queue-Write PRAM Model:
Accounting for Contention in Parallel Algorithms.
SIAM Journal on Computing, 1997. To appear.

[8] David R. Helman, David A. Bader, and J. JaJa.
A Randomized Parallel Sorting Algorithm With
an Experimental Study. Journal of Parallel and
Distributed Computing, 52(l):l-23, 1998.

[9] D.R. Helman. On the Design and Analysis of
Practical Combinatorial Algorithms for Multipro-
cessor Architectures. PhD thesis, Department of
Electrical Engineering, University of Maryland,
College Park, MD, 1998.

[10] D.R. Helman and J. JaJa. Sorting on Clus­
ters of SMPs. Technical Report CS-TR-3833 and
UMIACS-TR-97-69, UMIACS and Electrical En­
gineering, University of Maryland, College Park,
MD, July 1997.

[11] D.R. Helman, J. JaJa, and D.A. Bader. A New
Deterministic Parallel Sorting Algorithm With an
Experimental Evaluation. ACM Journal of Ex-
perimental Algorithmics, 3(4):l-24, 1998.

[12] D.E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley
Publishing Company, Reading, MA, 1973.

[13] S.S. Lumetta, A.M. Maimwaring, and D.E. Culer.
Multi-Protocol Active Messages on a Cluster of
SMPs. In Proceedings of Supercomputing '97, San
Jose, CA, November 1997.

[14] M. Nodine and J. Vitter. Deterministic Distribu-
tion Sort in Shared and Distributed Memory Mul-
tiprocessors. In Proceedings of the Fifth Annual
ACM Symposium on Parallel Algorithms and Ar­
chitectures, pages 120-129, Velen, Germany, June
1993.

[15] H. Shi and J. Schaeffer. Parallel Sorting by Regu-
lar Sampling. Journal of Parallel and Distributed
Computing, 14:361-372, 1992.

[16] L.G. Valiant. A Bridging Model for Parallel
Computation. Communications of the ACM,
33(8):103-111, 1990.

[17] P. Varman, B. Iyer, D. Haderle, and S. Dunn.
Parallel Merging: Algorithm and Implementation
Results. Parallel Computing, 15:165-177, 1990.

Informatica 23 (1999) 123-136 123

Problem Definition, Data Cleaning, and Evaluation: A Classifier
Learning Čase Study

Foster Provost
Bell Atlantic Science & Technology
500 Westchester Ave., White Plains, NY 10604, USA
Phone: 914-644-2169, Fax: 914-949-9589
E-mail: provost@acm.org
AND
Andrea Pohoreckyj Danyluk
Williams CoUege, Department of Computer Science
Williamstown, MA 01267, USA
Phone: 413-597-2178, Fax: 413-597-4116
E-mail: andrea@cs.williams.edu

Keywords: classifier learning, evaluation, data engineering

Edited by: Xindong Wu
Received: August 23, 1996 Revised: September 9, 1998 Accepted: December 2, 1998

Problem deGnition, data cleaning, and evaluation constitute much ofthe process ofbuilding useful,
real-world classiSers with inductive algorithms. This paper is a čase study of this process based
on a long-term project addressing the automatic dispatch of technicians to fix faults in the local
loop of a telephone network. The bottom line of the project is that simple learning technigues
can be effective. However, constructing a convincing argument to that effect is far from simple.
In particular, we had to consult multiple sources to obtain class labels, use domain knowledge to
clean up data, compare with existing methods, and evaluate with data from multiple locations.
Finally, it was necessary to use decision-analytic techniques to evaluate the cost-effectiveness of
the learned classiHers, because evaluation based on classification accuracy is misleading without
an anaJjsis of cost-effectiveness. Our view is that application studies should be helpful in guiding
future research. Therefore, we conclude by outlining useful directions suggested by our experience
on this long-term project.

1 IntroduCtlOn the effectiveness of local-loop trouble diagnosis.

This paper presents a čase study into the process of ^ e discuss several interrelated issues involved in de-
real-world classifier learning. The čase study has been termmmg the efficacy of mductive karnmg programs
taken from the long-term MAX project, which ad- ^̂ ^^'^ 'i°'"^^^- ^« *^^ ^^^f ^^""^J Z ' ^
J ,, , i- J. i u ^ i i , - - 4 .C termmation is more comphcated than merely running
dresses the automatic dispatch oi technicians to nx , .̂ , ,., . , ,
r , , . , , , , , r . i i 4. I T : ' a handiul of learning programs on a data set and com-
faults in the local loop of a telephone network. For , . P , , , r- r̂ -,
this paper, we use the term machine learning to de- P^"'^^ *^ . ^ccuracies of the resulting classifiers. To
note the automatic generation of local-loop dispatch be convincing, we had to use multiple sources for class
classifiers from historical data. ^^^^1^' "̂̂ ^ """^ '^^'^^''' knowledge to clean the data.

In the MAK domain we wish to learn classifiers for ^or the first set of experiments presented, we use error
J. , , . x u - - i . i u i i , i i . i v , 1- rate as our primary metric. However, absolute error
dispatching technicians to troubleshoot telephone line r , r • ,
problems reported by phone company customers. In '^^^' ^'^ ""^^ "̂ f̂̂ \ ^°' comparisons between the ex-
this domain, a small increase in accuracy can have a Penments because the problem formulation varies. To
large impact on the company's bottom line. For exam- f̂^̂^̂ *̂̂*̂ mter-study comparison, we also report the
ple, if we are willing to ignore details for the moment, P^rcentage decrease in error rate (PDER) a^ compared
New York State alone has over three milUon residen- "̂̂ classifying ali mstances as the most frequently oc-
tial trouble reports per year. If an erroneous dispatch ^̂ '"•̂ "̂S ^̂ ^̂ ^ ^^^^ '̂ '̂ /'̂ "'̂ ^^«^*)-
costs the company (on average) $100, then even a one- Next we discuss comparisons with existing methods,
percentage-point decrease in dispatch error rate can including both a set of experts and an existing ex-
save the company over $3 million annually. Therefore, pert system, as well as comparisons with data drawn
it is worthwhile to investigate methods for increasing from geographically disparate locations. The breadth

mailto:provost@acm.org
mailto:andrea@cs.williams.edu

1 2 4 Informatica 23 (1999) 123-136 F. Provost et al.

of this comparison study increased our confidence in
our evaluation. Finally, we discuss that an error-rate
comparison, albeit a fine starting point, is not sufii-
cient for classifier evaluation in this real-world domain.
What is important is the cost-eifectiveness of the sys-
tem, rather than its accuracy. Moreover, we show that
a naive evaluation of cost-effectiveness also is not satis-
factory, so we utilize techniques from decision analysis.
From this čase study a cost-sensitive learning method
emerges as the most effective technique.

Our view is that application studies help to guide
future research. Therefore we conclude by presenting
a summary of general lessons learned and by outlining
useful research directions suggested by our experience
on this long-term project.

2 MAX and Machine Learning
MAX (Rabinowitz et al. 1991) is an expert system
developed by NYNEX^ Science and Technology for
the purpose of troubleshooting customer-reported tele­
phone problems. MAX deals specifically with prob-
lems in the local loop, the part of the telephone net-
work between the central office and the customer's
premises.

When a customer has difficulty with his telephone
line he calls the phone company to report the problem
(the trouble). A phone company representative creates
a trouble report and also initiates electrical tests on
the customer's line, called the Mechanized Loop Test
(MLT).^ The MLT measures the electrical signature of
the customer's line and gives such information as volt-
ages and resistances. Ali this information is then sent
to a Maintenance Administrator (MA) who determines
a high-level diagnosis for the trouble, and dispatches a
technician to fix it. MAX (Maintenance Administrator
eXpert) plays the role of an MA. It gives a high-level
diagnosis of a trouble based upon MLT results, and
other information about the customer. MAX can take
one of five possible actions.

1. dispatch a cable technician (PDF);

2. dispatch an outside repair technician to the dis-
tribution wiring or customer premises (PDO);

3. dispatch a technician to the central office (PDI);

4. queue the trouble for further testing (PDT);

5. send the trouble to a human M A for diagnosis
(PSH).

The problem of local-loop diagnosis was a particu-
larly promising machine learning application for the
following reasons.

^Now Bell Atlantic. At the tirne MAX was developed,
NYNEX was the parent company of New England Telephone
and New York Telephone.

2 MLT is a product of AT&T.

1. Diagnosis in this domain is a static problem, i.e.,
ali data are gathered and the dispatch decision is
based on the values given. Difficult problems such
as incorporating time are not an issue.

2. Data are abundant.

3. A knowledge base already exists, providing a
wealth of information about the domain.

4. Small decreases in error rate can have a large im-
pact.

Machine learning is also appealing because of its
potential for generating dispatch knowledge that cap-
tures local differences and because of its potential for
tracking changes in dispatch knowledge as the network
equipment degrades or is replaced.

Several approaches to the problem of automatically
generating dispatch knowledge from data have been
investigated: (1) The application of inductive learn­
ing to generate completely new knowledge bases for
specific locations (Danyluk & Provost 1993a,b). (2)
The application of analytic and inductive learning to
modify the existing knowledge base for specific loca­
tions (Pazzani & Brunk 1993). (3) The application of
techniques to perform parameter tuning (Merz, et al.,
1996). This paper discusses the first of these only.

Unless stated otherwise, ali results reported in this
paper were generated using the C4.5 decision tree
learner (Quinlan 1993) with default settings.^ Results
given are after pruning. Numbers of test examples are
given with each set of runs. Ali results reported have
been averaged over 10 runs with independent training
and test sets chosen randomly. Unless indicated other-
wise, ali data used in the runs in this paper are taken
from a single site during a period of approximately
eight months, and are described by 22 features used
by MAX.

3 Multiple Data Sources
Determining whether learning programs can produce
effective classifiers in this domain is complicated by
a general belief that it is very difficult to ascertain
the "correct" dispatches for historical trouble records,
which has led to a general distrust of the class labels of
the examples. To produce a robust evaluation we con-
sidered three different sources for the class labels, each
of which created a slightly different learning problem.

First, we used MAX to generate class labels. If one
assumes that MAX is performing the task satisfac-
torily, the ability to learn to duplicate MAX's per-
formance is solid evidence that machine learning ap-

^Earlier results were obtained with other learning techniques,
including rule learners and neural netvvork learners, but C4.5
consistently hcis yielded results that are at least as good as the
other systems.

PROBLEM DEFINITION, DATA CLEANING, . . . Informatica 23 (1999) 123-136 125

proaches can be effective in generating dispatch clas-
sifiers from clean data. Second, we had experts gener-
ate class labels. If one assumes that the experts have
knowledge not yet captured in MAK, then it would
be useful to be able to model the classification perfor-
mance of experts.

Finally, we generated class labels by cross-
referencing a database of the resolutions reported by
technicians in the field. The class labels generated
from these resolutions are considerably noisy, due to
errors in reporting and ambiguities in translation.*
Hovvever, the ability to learn high-quality classifiers
from these data would be very useful, because the po-
tential exists to learn classifiers that capture knowl-
edge unknown to the experts, and because the volume
of data is potentially very large.

For the experiments reported in this section and the
next, we evaluate learning results in two ways: (i) we
measure error rate on independent test sets; and (ii) we
measure the percentage decrease in error rate (PDER)
of the learned concept description over the error rate
of the default class. The PDER indicates the extent
to which the learned decision tree decreases the error
rate that would result from classifying ali cases iden-
tically using the class that occurs most frequently in
the training data (for vifhich we use "the default class"
as a shorthand).

The PDER is important because different data sets
have different numbers of classes. MAK, for instance,
has the option of diagnosing cases as being the type
that need to be looked at by a human expert. These
tend to be cases where the data required to analyze the
trouble are missing. Field technicians, on the other
hand, are not allowed such latitude. Therefore, a data
set obtained from MAK will have more diagnostic class
options than a data set of troubles analyzed by field
technicians. Moreover, the machine learning studies
also have diflFerent sets of dispatch options, which are
described in detail below. Because different data sets
have different numbers of classes, comparisons of ab-
solute error rate are affected and the PDER becomes
an important measure of the relative quality of the
learned diagnostic knowledge.

3.1 Class labels obtained from MAX

As reported previously (Danyluk & Provost 1993a,b),
we used the existing MAK expert system to create a
"clean" data set from which to learn. We ran a series of
experiments with the goal of showing that given good
data we could learn knowledge to recreate MAK's be-
havior. We found that given a large enough quantity of
data, using machine learning we can duplicate MAK's
performance very well. As shown in Table 1, training
on 1000 troubles yields an error rate of 0.09; training

on 5000 troubles yields an error rate of 0.04. Although
these results show promise for machine learning as a
method of creating the knowledge base for a dispatch
system, they do not offer a solution to the problem
of generating knowledge that will increase the perfor­
mance of MAK.

Table 1: MAK data; five class problem. Size of test
set — 871. Average error rate (ER) with the default
class (PDT) = 0.54.

Training

100
500
1000
2000
5000

ER

.34

.14

.09

.06

.04

StDev

.04

.02

.01

.01

.01

Avg PDER

36.51
73.44
82.41
89.31
93.62

StDev

7.92
3.90
2.58
2.61
1.53

*Some of the codes used to describe resolutions do not map
uniquely to dispatch classes.

3.2 Class labels obtained from experts

In order to evaluate the potential of machine learn­
ing as a tool to build a better MAK, we enlisted the
help of several experts in local-loop troubleshooting.
The experts were phone company veterans with many
years of experience in the areas of maintenance and
repair of the local loop. We ran a set of experiments
testing the ability to learn dispatch knowledge from
expert-classified data. The rationale behind this set
of experiments is that if machine learning can create
knowledge that models the behavior of human experts
well, then it may be possible, albeit resource consum-
ing, to have local experts analyze large numbers of
troubles and then to learn classifiers from these data.

Table 2 shows results for one expert who analyzed
500 troubles from one site. The results show that C4.5
can model the expert's behavior fairly well as com-
pared to the default. Similar analyses of other ex-
perts' ansvvers yielded comparable results. The large
PDER suggests the potential for learning programs to
model the behavior of human experts. Unfortunately,
the size of the data set in these experiments was lim-
ited due to the limited availability of experts. The
previous results of modeling MAK suggest that 400
examples may be too few for effective learning. An
analysis of the classifiers learned from the MAK data
explains why many examples are needed: very small
disjuncts comprise a large portion of the concept de­
scription (Danyluk & Provost 1993a). Large data sets
are necessary to learn small disjuncts with confidence
(Provost & Aronis 1996).

Our intention had been to increase the volume of
data by using multiple experts to generate a larger
expert-classified data set. However, this exercise re-
vealed that there is not a high degree of agreement

126 Informatica 23 (1999) 123-136 F. Provost et al.

Table 2: Expert data; five class problem. Size of test
set = 100. Average error rate (ER) with the default
class (PDT) = 0.58.

Training

100
400

ER

.39

.35

StDev

.04

.04

Avg PDER

32.88
38.75

StDev

8.59
6.60

stumps, i.e., decision trees that split on a single fea­
ture only (Holte 1993). Vercode, generated by MLT,
is a summary of the electrical readings into 50-150
categories; the decision stumps therefore have 50-150
leaves. As the results in Table 3 show, the decision
stumps learned by C4.5 on the field data have higher
accuracy than the decision trees learned with larger
feature sets.

among experts as to the • correct classification for a
trouble. In fact, the error rate of the classifiers learned
from the expert data was approximately equal to the
error rate obtained when one expert was used to gen-
erate class labels for the evaluation of another expert.
This suggests that the problem is much more difiicult
than previously thought. It also offers an explanation
for the general distrust of class labels.

3.3 Class labels obtained from field
technicians

The third data source from which we obtained class
labels for troubles is the reporting of field technicians
who fix ("resolve") the troubles. In order to gener-
ate class labels, we translated their resolution codes
into the corresponding dispatches using a standard
mapping. As the results in Table 3 show, the per-
formance of the learned decision trees is less than in-
spiring. However, the learned trees do perform slightly
better than the default.

Table 3: Technicians' data; four class problem. Size
of test set = 863. Average error rate (ER) with the
default class (PDF) = 0.62.

AH Features
Training

100
500
1000
5000

ER

.61

.60

.59

.58

StDev

.03

.02

.01

.01

Avg PDER

0.96
3.73
4.51
6.56

StDev
5.72
3.90
2.53
2.68

Vercode Only
Training

100
500
1000
5000

ER

.62

.54

.53

.52

StDev

.04

.01

.02

.01

Avg PDER

-1.31
11.63
13.24
15.98

StDev

7.03
2.80
2.80
2.10

Quite surprisingly, we were able to increase signifi-
cantly our ability to dispatch accurately by reducing
the feature set to a single feature: vercode. Reducing
the feature set to a single feature produces decision

4 Cleaning up the Data

The experiments with class labels generated by MAX
suggest considerable promise for machine learning in
this domain. The experiments with class labels gen­
erated by the experts suggest that it is possible to
model expert behavior to some degree, but that small
expert-classified data sets are not sufficient to model
expert behavior with high accuracy. Moreover, the dis-
agreement among experts suggests that even if a given
expert's behavior can be modeled with high accuracy,
there will stili be questions about the expert's perfor-
mance. The most promising source of class labels is
the field technician database. This database is very
large and (arguably) based on fact rather than con-
jecture. Unfortunately, the learning programs had the
most difRculty modeling these data. This almost cer-
tainly is because, with the given set of features, MAX
generates class labels deterministically (and probably
so do the experts), while the technicians' class labels
are inherently probabilistic.

Analyzing the different trouble resolutions reported
by the field technicians suggests some concrete rea-
sons why machine learning programs would have a
difiicult time modeling the data. For some border-
fine resolutions at the interface between the cable and
the distribution wiring, it is not clear what the correct
dispatch should have been because the diagnosis can-
not be mapped to a dispatch unambiguously. Purther-
more, there are many cases for which the resolution is
a "Test OK." This resolution indicates that the tech­
nician retested the line in the process of attempting to
locate the trouble, and found that there was no longer
a problem. Unfortunately, it is impossible to teli the
difference between cases where there was no longer a
problem to fix (e.g., the customer's second phone had
been off the hook and was subsequently placed back
on) and cases where the manifestation of the problem
was transient (e.g., the trouble had been a short circuit
due to the presence in a cable of water that had dried
by the time the technician retested the line). Thus de-
termining what the correct dispatch should have been
is difiicult.

We wanted to evaluate whether increasing the quaJ-
ity of the field data would improve the ability of a
learning program to produce accurate classifiers. To
this end, we used prior knowledge of trouble resolu­
tions and dispatches to clean up the field data. Specif-

PROBLEM DEFINITION, DATA CLEANING, Informatica 23 (1999) 123-136 127

ically, we eliminated from the data ali. troubles for
which the resolution was "Test OK." Additionally, we
removed cases where it was impossible to determine
from the resolution codes the correct dispatch, espe-
cially borderline cases. The effect of the data cleaning
was to provide us with a set of cases for which we
have only three class labels (PDF, PDO, PDI), but
for which we have (relatively) high confidence in the
correctness of those labels. We now describe a set of
experiments that investigate the effect on learning of
cleaning up the data.

Table 4: Cleaned data; three class problem. Size of
test set = 686. Average error rate (ER) with the de-
fault class (PDF) = 0.47.

Ali Features
Training

100
500
1000
2000

ER

.41

.38

.37

.36

StDev

.04

.03

.02

.02

Avg PDER
12.04
19.31
20.72
23.23

StDev

7.52
6.94
3.94
3.25

Vercode Only
Training

100
500
1000
2000

ER

.38

.35

.35

.34

StDev

.04

.02

.01

.02

Avg PDER

18.97
26.48
26.73
27.44

StDev

10.07
3.90
2.87
4.15

As the learning results in Table 4 show, the perfor-
mance on the cleaned-up data is considerably better
than the performance on the original field data. It
is important to note that the cleaned-up data have
only three classes instead of four, and using the de-
fault yields a lower error rate than on the previous
data. However, as the results in Table 4 show, the per-
centage decrease in error rate (PDER) for the learned
concept descriptions is larger than with the original
data.

These results provide support for the conclusion
that from clean field data it is possible to learn more
accurate classifiers. It must be noted, however, that
by separating out the cases for which the final reso­
lution is unambiguous, we may also be separating out
the cases that are "easy" to diagnose. The effect of us­
ing this learned knowledge on the entire spectrum of
troubles is stili an open question, made very difficult
by our inability to know the "correct" answer.

It should be noted that an alternative problem re-
definition may also be effective. Specifically, much of
the aforementioned ambiguity can be eUminated by
combining two of the three dispatch classes. PDF
(dispatch to a cable technician) and PDO (dispatch
to an outside repair technician) both address prob-

lems in the "outside plant." There are a priori rea-
sons why it might be desirable to combine these classes
into a single "dispatch out" class. For example, train­
ing technicians to handle a larger class of problems
may eliminate the need to separate problems in the
outside plant. In order to test the hypothesis that
we could differentiate accurately between dispatching
"in" to the central ofRce and dispatching "out" to the
outside plant, we combined the two outside plant dis-
patches in the cleaned-up dataset. In doing so, we
were able to reinsert those troubles eliminated because
of PDF/PDO ambiguity. The results for the two-class
problem are given in Table 5. As the table shows, the
performance of the learned decision models is consid-
erably better than the default when trained on large
(2000 examples) data sets. In the table we report par-
ticularly high standard deviations for PDER in two
cases. Inspection of the 10 runs shows that in two
cases, the learned model performed similarly to the
default, but in the remaining eight, it outperformed
the default significantly.

Table 5: In vs out; two class problem. Size of test set
= 738. Average error rate (ER) with the default class
(PDO) = 0.09.

Ali Features
Training

100
500
1000
2000

ER

.09

.09

.08

.07

StDev

.01

.01

.02

.01

Avg PDER

0.35
-0.50
10.12
24.89

StDev

1.04
2.11

13.29
2.93

Vercode Only
Training

100
500
1000
2000

ER

.09

.09

.09

.07

StDev

.01

.01

.01

.01

Avg PDER

0.15
0.15
0.15

21.41

StDev

0.19
0.19
0.19

11.70

5 Comparison with Existing
Methods

In the previous sections we compared the ability of
learning programs to produce accurate classifiers from
several different perspectives. The use of the field data
as the source of class labels allows us to compare the
performance of the learned classifier with the perfor­
mance of MAX (and with the performance of the ex-
perts). Such a comparison has been a major compo-
nent of Bell Atlantic's evaluation of the potential for
learned knowledge to help with local-loop dispatch.

Table 6 compares the performance of the vercode

128 Informatica 23 (1999) 123-136 F. Provost et al.

decision stumps with the MAX expert system on the
three different versions of the field data (discussed
above).^ The comparison is compHcated because
MAX does not give solid dispatches on aJl the cases;
it routes some difRcult cases to a human analyst, and
for others it requests additionaJ tests. The decision
stumps, on the other hand, produce a dispatch for ev-
ery čase.

It is important that we be as fair as possible in our
comparison of the learned decision stumps and MAX.
It is inappropriate to assume that MAX is in error
each time it routes a trouble to an analyst. On the
other hand, it is unfair to penalize the learned decision
stump for being forced to make a decision on ali cases.
In order to make the comparison equitable. Table 6
reports

- error rates for MAX and for the learned decision
stump (LDS) on ali the test data

- error rate for MAX on the subset of cases for
which it chose to make a dispatch (MAX-D)

- error rate for the learned decision stump on the
subset of cases for which MAX made a dispatch
(LDS-D)

- error rate for the learned decision stump on the
subset of cases for which it was confident (LDS-
C).«

Table 7 gives the sizes of the subsets, as a percentage
of the entire dataset.

As Table 6 shows, with little exception, the learned
decision stump outperforms MAX. The increase in
performance using the learned vercode mapping over
the MAX system is one piece of evidence supporting
the conclusion that by looking at the data we can ex-
tract dispatch knowledge that can improve MAX's per­
formance.

A potential criticism of the above argument is that
the learning is fitting systematic error in the data
(and that MAX actually may be as good or better
at dispatching). Support for the contention that the
learned knowledge is not just modeling errors in the
data comes from a comparison of the effectiveness of
the learned knowledge for dispatch in other geographic
areas. In order for the effect of modeling systematic
error to generalize across locations, the error must
be systematic throughout the company. Furthermore,
since we are using a vercode decision stump, the error
must be systematic with respect to the vercode alone.
We believe that this combination is highly unlikely.

^A comparison with the experts is not included in the sum-
mary, because the small number of troubles analyzed by the
experts makes the performance of the experts incomparable.

®In ali cases, a decision was deemed "confident" only if the
estimated probability of membership in the predicted class was
at least 0.6.

To test the hypothesis that positive results are not
just from modeling local systematic error, we trained
decision stumps on the data from one location (X) and
used them for dispatch in four other areas (A,B,C,D).
As shown in Table 8, in three of the four comparisons,
the knowledge learned in one area transfers well to the
other areas. Note that this is especially true for the
Cleaned data. The number of training examples were
5000, 2000, and 3000 for Field, Cleaned, and In vs
Out, respectively. The number of test examples varies
for each site. AH numbers reported are the averages
of testing ten decision trees on ali of the data from
each of the sites A, B, C, and D. Note that we report
PDER as well as error rates, due to the differing class
distributions among the sites.

6 Cost-effective Dispatch
If the field technicians' resolutions are taken to be rea-
sonably reliable, the previous analysis seems to imply
that MAX's performance is poor. We are faced with
the issue of analyzing this seemingly poor performance
in light of evidence to the contrary. The system has
been in use for many years and has not had a negative
effect on the operations of the company. One explana-
tion could be that the technicians just do not code the
trouble resolutions correctly. However, as the results
below show, much of this seeming discrepancy can be
explained by the fact that accuracy (or error rate) is
not the best metric with which to evaluate dispatch
effectiveness.

In the domain of local-loop repair and maintenance,
the costs associated with the diagnoses vary substan-
tially. Typically, the cost associated with dispatch­
ing a trouble outside of the central office is greater
than dispatching to the central office, with the highest
cost being associated with dispatching cable techni­
cians. By analyzing the cases for which the decision,
stump and MAX differ in their dispatches, we find
that MAX is making conservative decisions with re­
spect to cost. Thus a convincing comparison of meth-
ods for local-loop dispatch must be made with respect
to cost-effectiveness in addition to accuracy (Pazzani
et al. 1994, Provost 1994). Our focus for this section
will be on the three-class version of the MAX problem
(cleaned-up data).

6.1 Evaluating Results:
Cost-EfFectiveness and Accuracy

We now consider the cost that would be incurred by
any incorrect decisions made. This task is compUcated
by the fact that, as discussed in the decision analysis
literature (Weinstein & Fineberg 1980), it is often difR­
cult to estimate costs. For instance, certain tests in the
central office might require much more time than oth­
ers, resulting in higher labor costs to determine that

PROBLEM DEFINITION, DATA CLEANING, Informatica 23 (1999) 123-136 129

Table 6: Comparison of error rates of Learned Decision Stumps (LDS) and MAX. Standard deviations are given
in parentheses, except (*), which indicates that the evaluation was performed on the entire data set, rather
than on a small test set reserved after learning.

MAK
LDS
MAX-D
LDS-D
LDS-C
Default

Field Data (4 class)
.67 (*)

.52 (.01)

.67 (.01)

.52 (.01)

.34 (.10)

.62 (.01)

Cleaned (3 class)
.79 (*)

.34 (.01)

.42 (.03)

.31 (.02)

.27 (.02)

.47 (.01)

In vs. Out (2 class)
.58 (*)

.07 (.01)

.04 (.01)

.04 (.01)

.06 (.01)

.09 (.01)

Table 7: Coverages of test data. Standard deviations are given in parentheses.

MAX
LDS
MAX-D
LDS-D
LDS-C
Default

Field Data (4 class)
100 (0.00)
100 (0.00)

99.43 (0.18)
99.43 (0.18)
9.30 (3.15)
100 (0.00)

Cleaned (3 class)
100 (0.00)
100 (0.00)

56.59 (1.90)
. 56.59(1.90)

72.19 (5.60)
100 (0.00)

In vs. Out (2 class)
100 (0.00)
100 (0.00)

55.66 (1.78)
55.66 (1.78)
99.27 (0.52)

100 (0.00)

the trouble is elsewhere. We interviewed experts to
determine, as well as we could, the error costs asso-
ciated with each of the three dispatchs (PDF, PDO,
PDI). Our best approximation is a cost ratio of 3:2:1
(PDF:PDO:PDI), with the cost of a central ofRce dis-
patch (PDI), the base cost, about $50.

A naive approach to cost-sensitive classification is
to use error costs such as these in combination with
estimates of the probabilities of the classes to deter­
mine which dispatch will yield the lowest expected cost
(EC). The corresponding naive approach to evaluat-
ing cost-effectiveness is to classify a test set with the
learned classifier and sum up the costs of each incor-
rect dispatch, using the costs defined above. This is
the approach that has been taken in most prior work
on cost-sensitivity in the machine learning literature
(Turney 1996).

This naive approach is problematic for multi-class
problems, because it assumes that after the dispatch
is identified as being incorrect, the subsequent dis­
patch will be correct. The problem can be seen clearly
in the following example. Given the 3:2:1 cost ratio
defined above, assume that the estimated probability
distribution of classes (PDF:PDO:PDI) is 0.5:0.4:0.1.
In this čase the dispatch with the (naive) minimum
expected cost is PDI: EC{PDI) = .9 * 50 = 45,
EC(PDO) = .6*100 = 60, EC{PDF) = .5*150 = 75.
However, a choice of PDI would be incorrect 90% of
the time, ajid in most cases would not make the choice

between PDO and PDF any easier.^ Indeed, such a
naive strategy yields undesirable results in practice.

The alternative is to take a more complex, decision-
analytic approach, in which the expected-cost calcula-
tion takes subsequent decisions into account. Ideally,
for determining the best dispatch for a given trou­
ble, we would like to use the frequencies of classes
at the leaves of the decision stump to estimate the
class probability distributions for ali possible combina-
tions of decisions, in order to calculate the minimum
expected-cost dispatch. However, one goal of this anal-
ysis is a comparison with the dispatch decisions of the
MAX expert system. For MAX, we know only the
first dispatch; we do not know what subsequent deci­
sions MAX would make. Thus, using the probability
distributions at the leaves of the decision stump for
more than just the first decision may give the decision
stump an unfair advantage in the comparison, because
if MAX were programmed differently, it would be able
to issue recommendations for subsequent dispatches as
well.

In sum, we are faced with a dilemma; it is obviously
important to take subsequent dispatches into account,
but we do not know what subsequent dispatches MAX
would make. To resolve the dilemma, we used the
prior probability distribution of the classes to deter­
mine likely subsequent decisions. This Information is
built into a cost matrix, so that it can be used both

În fact, we assume independence of solutions.

130 Informatica 23 (1999) 123-136 F. Provost et al.

Table 8: Comparison of error rates of knowledge learned from location X when applied to other locations.

Location
X
A
B
C
D

Field
.52 (.01)
.54 (.01)
.57 (.01)
.56 (.01)
.64 (.01)

PDER
16
19
4
7

-2

Cleaned
.34 (.02)
.25 (.01)
.38 (.01)
.21 (.01)
.51 (.04)

PDER
27
51
25
58
42

In vs Out
.07 (.01)
.05 (.01)
.07 (.01)
.03 (.01)
.18 (.01)

PDER
29
74

-12
2.3

-2.2

to evaluate the decisions of classifiers (such as MAX)
that give only a single answer, and to choose cost-
sensitive dispatches in cost-sensitive classifiers. For-
tunately, we found that there is very little difference
in cost-effectiveness between using the prior probabil-
ity distribution and the leaf probability distribution
for determining the second dispatch when the first is
wrong. We will now describe in detail the process of
building cost matrices that take subsequent (expected)
errors into account.

First let us define the function cost{x), which, based
on the cost vector, gives the cost of mistakenly choos-
ing dispatch x.

For the naive approach, the cost matrix is built by
assigning

NCost(p)(a) {o
cost{p) if p ^ a

otherwise

where p = predicted and a = actual. For
the decision-analytic approach, we assume that the
subsequent dispatch will be the minimum expected-
cost dispatch of the remaining choices, based on the
prior probability distribution. Suppose there are three
classes, X, Y, and Z, and let p = X.

nAn i(\(\ — I cost{X) + SecCost \ia^X
\P)\ ' ~]^ o otherwise

Without loss of generality, let a = F , then

SecCost =

cost{Z) if Z is the min exp-cost class
between Y and Z

O othervvise

In this čase, the expected cost of a secondary dispatch,
e.g., Y, is the probability of Y being wrong times the
cost of being wrong,^ or (1 - (p{Y)/{p{Y) +p{Z)))) *
cost(Y), where p(Y) and p{Z) are the prior probabil-
ities. The fractional probability term is due to the
removal of X as a possible correct secondary dispatch.

An example of a decision-analytic cost matrix cal­
culated from example costs and data priors is given in
Table 9. Note that ali costs here are error costs. The
cost is zero for correct dispatches.

6.2 Building a Cost-sensitive Decision
Stump

We built cost-sensitive decision stumps by record-
ing at each leaf a frequency-based probability esti­
mate for each class. The estimate was calculated as
(TP/(TP-I-FP)), where TP is the true-positive cover­
age of the leaf and FP is the false-positive coverage
of the leaf. When the cost-sensitive stump is used, it
ušes the conditional probabilities at the leaves to dis­
patch to the minimum expected-cost class, using the
decision-analytic cost matrix (built using prior proba­
bilities from the training data to determine expected
subsequent dispatches, as described above). Note that
Pazzani et al. (1994) found that estimating class prob­
abilities at the leaves of a decision tree and using
these for a minimum expected-cost calculation is not
effective at reducing cost; they account for this phe-
nomenon by noting that the probability estimates at
the leaves of a decision tree are based on small sam-
ples, and thus are inaccurate. Since we use a decision
stump, we hope that the larger numbers of examples
at the leaves will lead to better probability estimates.®

Results comparing MAX with the vercode decision
stump and cost-sensitive decision stump are summa-
rized in Table 10. The cost matrix used to generate
these results is that in Table 9. A simplistic compar­
ison of the performance of MAX, the vercode stump,
and the cost-sensitive stump (first, second, and fifth
rows of the table) shows that although the dispatches
made by the vercode decision stump are more accurate
than those of MAX, the decisions made by MAX are
more cost-effective. The cost-sensitive decision stump
reduces the cost without losing accuracy.

However, this comparison masks an important sub-
tlety. Specifically, as with the earlier error-rate com-
parisons, MAX only gives a dispatch recommenda-
tion on (approximately) 57% of the cases; the rest
are routed for further testing or for human analysis.
On other hand, the stumps give dispatch recommen-

*When Y is correct, the error cost is zero.

^Recent work suggests that cost-sensitive classification with
decision trees can be quite effective, if the probabilities are
generated using the Laplace estimate rather than a simple
frequency-based estimate (Bradford et al. 1998). The Laplace
estimate protects against unwarranted optimism due to small
samples.

PROBLEM DEFINITION, DATA CLEANING, .. Informatica 23 (1999) 123-136 131

Table 9: Cost matrix for dispatch classes in the MAX domain. Rows are predicted classes. Columns are actual
classes. Classes;(PDF:PDO:PDI) Costs:(150:100:50) Priors:(0.51:0.35:0.14)

PDF
PDO
PDI

PDF
0

100
50

PDO
150

0
200

PDI
250
250

0

dations on 100% of the cases.
In Table 10, we therefore also report the error rate

(ER) and Error Cost per Dispatch for the stumps on
those cases for whičh MAX gave a dispatch recom-
mendation (MAX-D), and on those cases for which the
stumps were confident of their recommendation (i.e.,
the probability of class membership was > 0.6).

As expected, the decision stumps perform consid-
erably better on both subsets of cases, in terms of
both error rate and cost. Perhaps surprisingly, the dif-
ference in performance between the cost-sensitive and
non-cost-sensitive stumps is no longer apparent when
they are evaluated on the subsets. This is because as
the required confidence level is raised, the behaviors
of the two types of stump are more and more similar,
eventually becoming identical. Apparently, a thresh-
old of 0.6 is sufficient (effectively) for the cost matrix
being used.

6.3 Sensitivity Analysis
While the results above suggest that it is possible to
learn cost-sensitive decision stumps that are both more
accurate and more cost-effective than MAX, we must
have confidence that this is not due to a fortuitous
choice of costs (especially since the specification of
costs is far from perfect). To this end, we perform
an analysis of the evaluation's sensitivity to changes
in the cost ratio.

For this paper, we consider varying only the ratio
PDF:PDO, holding the ratio PDO:PDI at 2:1. Con­
sider the cost ratio to be X:l:0.5 (PDF:PDO:PDI).
Figure 1 shows the effect of varying X from 1 to 3 in
increments of 0.1 on the error costs associated vî ith the
dispatches made by MAX, the decision-stump, and the
cost-sensitive decision stump, using decision-analytic
cost matrices constructed as described above. Fig­
ure 2 and Figure 3 show the effects of varying X for
the stumps when evaluated on MAX-dispatched and
confident cases, respectively.

As would be expected, the cost per dispatch of the
decision stump increases smoothly (and linearly) with
the increasing cost of making PDF errors. The deci­
sion stump always makes approximately the same per-
centage of PDF errors, so as the cost of a PDF error
increases linearly, so will the cost-per-dispatch of the

decision stump.
The performance of MAX as the cost of a PDF er­

ror increases is more interesting. Inspection reveals
that the curve representing MAX's error cost per dis­
patch is (approximately) piecevvise linear with increas­
ing PDF error cost, and the slope of each segment is
less than the slope of the decision stump curve. The
relatively low slope of each segment is due to the fact
that MAX errs on the conservative side; specifically,
it makes fewer PDF errors than the decision stump.
Thus, the growth of the overall cost per dispatch as
the PDF error cost grows will be smaller.

The discontinuity when the PDF:PDO error cost
ratio reaches 2:1 can be explained by examining the
changes in the cost matrices as the ratio increases.
In particular, consider the two cost matrix entries
DACost{PDF){PDO) and DACostiPDO)iPDF)}'^
Across the range of ratios represented in the graph,
DACost{PDF){PDO) = cost{PDF), because in
this range PDO is always the minimum expected-
cost secondary dispatch. Similarly, when the ra­
tio of the error cost of PDF to PDO is in the
range [1,2), DACost{PDO){PDF) = cost{PDO).
This explains technically why the slope of the MAX
curve is less: cost{PDO) is constant; cost{PDF) in­
creases linearly. However, when the ratio is in the
range [2,3], DACost{PDO){PDF) = cost{PDO) +
cost{PDI), because due to the prior distribution of
classes, PDI becomes the secondary dispatch of choice.
Thus DACostiPDO)iPDF) is stili constant, but it is
greater than it was over the prior range. Hence the
curve's piecewise linearity. This reasoning applies to
the vercode stump as well, though the difference in
slopes of the two line segments is very slight, and thus
difficult to recognize from the graph.

The result of these two factors is that MAX's per­
formance, in terms of error cost per dispatch, is better
than the decision stump when the ratio of the cost of
a PDF error to a PDO error is in the range (1.4,2).
As mentioned above, our problem analysis determined
(independently) that the actual cost ratio is approxi-
mately 1.5. Thus, the design of MAX and the years of
tuning its performance in the field seem to have been
effective.

'"Recall that the cost matrix entries are of the form
D ACost{predicted) (actual).

132 Informatica 23 (1999) 123-136 F. Provost et al.

Table 10: Comparison of Vercode Decision Stumps and MAX. Training sets of 2000 examples used to build the
Vercode stump and Cost-sensitive stump (ER = error rate). Independent test sets of 686 examples used to test.
Ali avgs are over 10 runs. Standard deviations are given in parentheses.

MAX (MAX-D)
Vercode stump
Vercode stump (MAX-D)
Vercode stump (Conf)
Cost-sensitive stump
Cost-sensitive (MAX-D)
Cost-sensitive (Conf)
Always dispatch PDF
Always dispatch PDO
Always dispatch PDI

Total Preds Made
56.69% (1.9)

100% (0.0)
56.69% (1.9)
72.19% (5.6)

100% (0.0)
56.59% (1.9)
70.90% (5.1)

100% (0.0)
100% (0.0)
100% (0.0)

ER
0.42 (.03)
0.34 (.01)
0.31 (.02)
0.27 (.02)
0.35 (.02)
0.33 (.01)
0.27 (.02)
0.47 (.01)
0.66 (.01)
0.87 (.01)

Error Cost per Dispatch
50.61 (3.87)
51.44 (2.35)
43.77 (2.66)
39.41 (3.00)
47.50 (2.47)
43.78 (2.58)
39.08 (2.75)
83.92 (2.41)
85.93 (2.15)
94.88 (2.67)

The graph also shows that the cost-se:nsitive stump
adjusts for the different cost ratios automatically.
Across the entire range, the cost-sensitive stump out-
performs the other two methods, although the differ-
ence is small in the range of MAX's maximal effec-
tiveness. Statistical tests on individual points do not
indicate that the difference is statistically significant,
and statistical tests on the entire curves are difficult
because of interdependencies in the generation of the
different points. However, it is not clear that statisti­
cal significance is particularly important. Even if the
performance were indistinguishable, the cost-sensitive
decision stumps are preferable for their simplicity, for
their flexibility in adapting to different cost scenarios,
and for their ease of updating. From the perspective of
business significance, a potential cost savings of two or
three dollars per dispatch is very significant. Also, it
should be noted that (as above) these comparisons are
somewhat imfair to the decision stumps, because they
are making recommendations on ali cases, vvhereas
MAX is on!y making recommendations on about half
of the cases.

Figure 2 shows that both the vercode decision
stump and the cost-sensitive decision stump outper-
form MAX across the entire range, when classifying
only those cases on which MAX makes a recommen-
dation. Again, as would be expected, the cost per
dispatch of the decision stump increases smoothly and
linearly with the increasing cost of making PDF er-
rors. It simply makes fewer of these errors when asked
to make a call on fewer cases.

Also, as expected, the vercode decision stump and
the cost-sensitive stump perform similarly in the range
[1,2), where the cost ratio PDFrPDO is relatively low.
When the PDF cost becomes increasingly large, the
cost-sensitive stump adjusts for that cost, diverting
classifications to less expensive dispatches.

An even greater disparity in error costs is seen when
the vercode stump and cost-sensitive stump dispatch
only on confident cases.

7 Summary and Discussion
For this čase study vve have selected a series of ex-
periments that highlight the variety of perspectives
that must be taken in order to determine the potential
for inductive learning programs to be applied success-
fully. The čase study highlights issues of problem def-
inition, data cleaning, and evaluation that are usually
glossed over (or simply ignored) in most published re-
ports on classifier learning. Taken in total, the results
provide solid evidence that simple inductive learning
programs can learn effective classifiers for local-loop
troubleshooting.

At first glance, the primary result is that decision
stumps can be learned that are more accurate and
more cost-effective than the troubleshooting system
currently in plače. What is more interesting, however,
is that the stumps achieve at least equivalent perfor­
mance with much less effort in design, implementa-
tion, and tuning. This suggests that dealing with new
equipment or with different local environments (e.g.,
Manhattan versus Maine) will be much easier. In the
long run, being able to do a better j ob of keeping sys-
tems vvell-tuned may magnify the differences in per­
formance observed here.

From the standpoint of the machine learning and the
knowledge discovery communities, the study is most
interesting as a counterbalance to the prevailing nar-
row view of classifier learning. In the first plače, in
most inductive learning research the correctness of the
class labels is a basic assumption that goes unques-
tioned. Perhaps more strikingly, although it is difficult
to imagine a real-world problem for which ali errors

PROBLEM DEFINITION, DATA CLEANING, Informatica 23 (1999) 123-136 133

o o

75

70

65

60

55

50

45 '

40 '

1 T - — 1 — r

-

• ,a'''
i r ' '

o = l i l i

1 1 1 i 1 ^,

J .-* ..•• -

, .B'
, • • ' '

.3 ' ' '

-

MAX-D -«—
VC Stump -+- -
CS Stump - a -

-

1 1 1 1 1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Cost Ratio, PDF:PDO

Figure 1: Effect of Varying Error Cost Ratios on Cost of Errors Made

have equal costs, equal error cost is another unques-
tioned assumption of the vast majority of research on
inductive learning.^^ This čase study shows how each
of these assumptions can lead to a misleading evalua-
tion.

7.1 Lessons Learned
Prem this čase study we can draw several general
lessons that we believe are applicable to many real-
world machine learning and data mining applications.
We have found some to echo lessons learned in other
applications work (Kohavi & Provost 1998).

Lesson 1: A single source of data gives a narrovj
vietv of the problem. In order to get the complete,
well-rounded picture necessary to present a compelling
argument for the real-world use of this technology, we
found it necessary to use multiple data sources and to
perform data cleaning based on domain knowledge.

Lesson 2: Superficial use of accuracy figures gives a
shallovi vietv of the problem. Be careful not to fall into
the trap of ignoring the accuracy of simple methods.
Ali too often the inexperienced data miner is elated
by the seemingly good performance of his (or her) fa­
vorite learning program, only to discover that a simple
method (e.g., a linear discriminant function or simple
Bayes) works just as well, or more embarrassingly, that
the class distribution is highly skewed. Hopefully, such
a discovery is made before the results are presented to

^^For a detailed analysis of this assumption, see the recent
paper by Provost, Fawcett and Kohavi (Provost, Fawcett, &;
Kohavi 1998).

someone for whom retraction would be an embarrass-
ment. This paper shows a čase where a simple method
(decision stump) actually outperforms a more complex
decision-tree learner (as well as other complex learning
programs).

Also, one should be careful not to compare incompa-
rable accuracy figures. The most obvious reason why
inter-study accuracy comparisons would not be valid is
that the different data sets have different class distri-
butions. We saw evidence of this in the section on data
cleaning; the different class distributions were due to
the fact that cleaning the data both eliminated classes
from the data and removed troubles non-uniformly
across the remaining classes. For our inter-study com­
parisons, we used the percentage decrease in error rate
for each metric over the error rate of the default class.

Lesson S: Broad comparison studies increase the
confidence in the evaluation. When arguing for the
use of inductive learning technology, the last thing you
want is to be blindsided by questions hke "How does
it compare with the (currently used) FooBar system,"
or "Well ... Brooklyn is a special čase, have you tried
data from Upstate?" We were lucky to have consid-
erable management and peer support and enthusiasm,
which is certainly not universal in real-worId applica­
tions of emerging technologies. In addition to the use
of multiple data bases, and multiple learning methods
described in Lessons 1 and 2, we also found it necessary
to produce multiple "existing" methods with which to
compare, including the existing expert system, as well
as the experts themselves. Furthermore, we found it
necessary to collect data from geographically disparate

134 Informatica 23 (1999) 123-136 F. Provost et al.

T 1 1 1 r I r

MAX-D -6 -
VC Stump on MAX-D -+-•
CS Stump on MAX-D -B-

1.8 2 2.2
Cost Ratio, PDF:PDO

Figure 2: Effect of Varying Error Cost Ratios on Cost of Errors Made. Data are restricted to MAX-dispatched
cases.

locations to demonstrate the robustness of the learn­
ing.

Lesson 4-' Don't lose sight of the real performance
task. In real-world domains, accuracy is seldom the
bottom line. More often, cost-effectiveness is. In
niany domains, difFerent errors have different associ-
ated costs, so it is important that the learned knowl-
edge produce the right trade-offs. In this domain,
not only did we find that an analysis of the cost-
effectiveness of the learned classifiers is essential, we
also discovered that merely paying lip service to cost-
effectiveness with a naive cost analysis is not sufRcient.
We had to bring in techniques from decision analy-
sis (that are seldom even mentioned in machine learn­
ing/data mining research—more below).

7.2 Implications for Inductive
Learning Research

We believe that studies such as this of the actual use
of inductive learning, in a practical application where
there is high-level support for the use of Al technolo-
gies (and therefore complexity does not come from a
distrust of the techniques), should be a guiding in-
fluence to the research community. Therefore, let us
discuss briefly the type of research results that would
have been helpful to this effort.

Dealing with potentially erroneous data was a ma­
jor issue. Most of the machine learning/data mining
literature on learning in the presence of noise discusses
random errors. However, the types of errors most of­
ten discussed in this domain (and many real-world do­

mains) usually have some degree of systematicity—
systematicity that may also appear in the evaluation
data. Furthermore, we have not performed a detailed
analysis of the effect of data cleaning. For example, we
eliminated from the data borderline cases and cases for
which we could not determine the correct resolution.
How will this affect our evaluation? We believe that
learning in the presence of possible systematic errors
is a very interesting open problem (Weiss 1995, Beers
1957, Lee 1995).

The machine learning community has spent the
last decade comparing learning programs on suites of
benchmark problems ad nauseam. However, almost ali
evaluations have been based on classification accuracy,
the result being a host of available systems that can
maximize accuracy within their inductive biases. We
believe that unless the accuracy is 100%, very few real-
world domains use classification accuracy as the prime
evaluation criterion. In fact, evaluations based on clas­
sification accuracy can be quite misleading (Saitta &
Neri 1998, Provost et al. 1998).

When we were faced with the prospect of learning
with sensitivity to the cost of errors, we found our-
selves with only a handful of small-scale, compara-
tively inconclusive studies in the machine learning lit­
erature. We believe it is time for machine learning and
data mining research to take off the blinders of clas­
sification accuracy and develop robust methods that
can provide the cost-effective classification needed in
the real world. Interested researchers can begin by
referencing work in statistics (Duda &c Hart 1973),

PROBLEM DEFINITION, DATA CLEANING, Informatica 23 (1999) 123-136 135

1
t

1

80

75

70

65

60

55

50

45

40

35

30

1 1 1 1 1 r • 1 1 1

MAX-D -6— ^_^,^
VC Stump on Conf -+-- ^
CSStumponConf B-- ^ —

/ ;

1 -'+'' -/ ^''i'"'

/ ' • ^ ' ' ' '

^-0- '^* '^ '-'*''' . - - ° "

^ « ^ - ' ^ . ,«' '
^ , - « - - ' * " ^ , , * " •

^ ^ " " ^ ^ ' ' z '

,,^^^^-'^'"
-.'CF

-'«'''
,'«'"

, - H ' ' '
,Br '

1^ 1 1 1 1 1 1 1 1 1

1.2 1.4 1.6 1.8 2 2.2
Cost Ratio, PDF;PDO

2.4 2.6 2.8

Figure 3: Effect of Varying Error Cost Ratios on Cost of Errors Made. Data are restricted to confidently
dispatched cases.

decision analysis (Henrion et al. 1991, Keeney 1982,
Weinstein & Fineberg 1980), and pattern recognition
(Dattatreya & Kanal 1985). Also, Turney (1996) pro-
vides an on-line bibliography of work on cost-sensitive
machine learning.

Acknowledgeinents

Tom Fawcett helped in developing new mappings from
field technicians' resolution codes to dispatches. Kim
Tabtiang performed the runs reported in Sections 3,
4, and 5. Peter Turney and Irene Po initiated the dis-
cussion of using a decision-analytic cost matrix, and
built the first prototype. We would like to thank
the following colleagues for valuable discussions over
the course of the Machine Learning for MAX project:
Charlie Bove, Bruce Buchanan, Jim Euchner, Tom
Fawcett, Neil Melley, Mike Pazzani, Irene Po, Henry
Rabinowitz, Jude Shavlik, Judy Spitz, Peter Turney,
Rikki Wolin, and Yuling Wu.

References

[1] Beers Y. (1957) An Introduction to the Theory of
Error. Addison-Wesley Publishing Company, Read-
ing, MA.

[2] Bradford J., Kunz C , Kohavi R., Brunk C. &
Brodley C. (1998) Pruning decision trees with mis-
classification costs. Proceedings of ECML-98, p. 131-
136.

[3] Danyluk A. P. & Provost F. J. (1993a) Small Dis-
juncts in Action: Learning to Diagnose Errors in the
Local Loop of the Telephone Network. Proceedings
of the Tenth International Conference on Machine
Learning, p. 81-88. Morgan Kaufmann PubHshers,
Inc., San Mateo, CA.

[4] Danyluk A. P. & Provost F. J. (1993b) Adap-
tive Expert Systems: Applying Machine Learning
to NYNEX MAX. Working Notes of the AAAI-93
Workshop on Al in Service and Support: Bridging
the Gap Betvoeen Research and Applications, Wash-
ington, DC, p. 50-58.

[5] Dattatreya G. R. & Kanal L. N. (1985) Decision
Trees in Pattern Recognition. In L. N. Kanal and A.
Rosenfeld (ed.), Progress in Pattern Recognition 2,
p. 189-239. Elsevier Science Publishers B.V. (North-
Holland).

[6] Duda R. O. & Hart P. E. (1973) Pattern Classifi-
cation and Scene Analgsis. John Wiley, New York.

[7] Henrion M., Breese J. S. k Horowitz E. J. (1991)
Decision Analysis and Expert Systems. Al Maga-
zine, 12, p. 64-91.

[8] Holte R. C. (1993) Very Simple Classification Rules
Perform Well on Most Commonly Used Datasets,
Machine Learning, 11, 1, p. 63-90.

[9] Keeney R. L. (1982) Decision Analysis: An
Overview. Operations Research, 30, p. 803-838.

136 Informatica 23 (1999) 123-136 F. Provost et al.

[10] Kohavi R. k Provost F. (1998) Special Issue on [23] Weiss G. M. (1995) Learning with Rare Cases and
Applications of Machine Learning and the Knowl-
edge Discovery Process, Machine Learning, 30, 2/3.

[11] Lee Y. (1995) Learning a Robust Rule Set. Ph.D.
Thesis. Department of Computer Science, Univer-
sity of Pittsburgh.

[12] Merz C. J., Pazzani M. & Danyluk A. P. (1996)
Tuning Numeric Parameters to Troubleshoot a Tele-
phone Network Local Loop. IEEE Expert, 11, 1, p.
44-49.

[13] Pazzani M. J. & Brunk C. (1993) Finding Ac-
curate Frontiers: A Knowledge-Intensive Approach
to RelationaJ Learning. Proceedings of AAAI-93, p.
328-334, AAAI Press, Menlo Park, CA.

[14] Pazzani M., Merz C , Murphy P., Ali K., Hume
T. & Brunk C. (1994) Reducing Misclassifica-
tion Costs. Machine Learning: Proceedings of the
Eleventh International Conference, p. 217-225. Mor­
gan Kaufmann, San Mateo, CA.

[15] Provost F. (1994) Goal-Directed Inductive Learn­
ing: Trading ofF Accuracy for Reduced Error Cost.
Working Notes of the AAAI-94 Workshop on Goal-
Driven Learning, p. 94-101.

[16] Provost F. & Aronis J. (1996) Scaling Up In­
ductive Learning with Massive ParalleUsm. Machine
Learning, 23, p. 33-46.

[17] Provost F., Fawcett T. & Kohavi, R. (1998) The
Čase Against Accuracy Estimation for Comparing
Induction Algorithms. Machine Learning: Proceed­
ings of the Fifteenth International Conference, p.
445-453. Morgan Kaufmann Publishers, San Pran-
cisco, CA.

[18] Quinlan J. R. (1993) C4-5: Programs for Machine
Learning. Morgan Kaufmann Publishers, Inc., San
Mateo, CA.

[19] Rabinowitz H., Flamholz J., Wolin E. & Euch-
ner J. (1991) NYNEX MAX: A Telephone Trouble
Screening Expert. In R. Smith and C. Scott (ed.),
Innovative Applications of Al 3, p. 213-230, AAAI
Press, Menlo Park, CA.

[20] Saitta L. & Neri F. (1998) Learning in the "Real
World", Machine Learning, 30, 133-164.

[21] Turney P. (1996) Cost-sensitive learning bibliog-
raphy.
http://ai.iit.nrc.ca/bibliographies/cost-sensitive.html.

[22] Weinstein M. C. k Fineberg H. V. (1980) Clin-
ical Decision Analysis. W.B. Saunders Company,
Philadelphia, PA.

Small Disjuncts. Proceedings of the Tvuelfth Interna­
tional Conference on Machine Learning, p. 558-565,
Morgan Kaufmann, San Francisco, CA.

http://ai.iit.nrc.ca/bibliographies/cost-sensitive.html

Informatica 23 (1999) 137-142 137

Research on Telework in Slovenia

Eva Jereb, Miro Gradišar
Faculty of Organisational Sciences, University of Maribor
Kidričeva 55a, 4000 Kranj, Slovenia

Keywords: telework, teleworkers, ofRce automation

Edited by: Rudi Murn
Received: April 24, 1998 Revised: September 16, 1998 Accepted: December 9, 1998

Although a lot of research on telework has been done, most of it has been carried out in USA
and EC countries. Until today there have been no studies on telework in Slovenia. This paper
presents the results ofa study oftelework in Slovenia carried out in 1997. The paper also compares
telework betv/een Slovenia and other European countries.

i Introduction
Information and communication technology provides
organisations with a new flexibility as regards where,
when and how work is performed, which gives rise to
a number of new organisational forms and new ways
of performing work [16,19]. Through the implementa-
tion of electronic Information systems, the structure,
procedures and content of office work are changing.
Increased attention is now being paid to a new form of
work known as telework. Telework allows spatially and
organisationally decentralised office work, with work
results being sent back electronically via communica­
tion netvvorks. This has only become possible in the
last few years through the developments in the areas
of distributed Information systems, office aut omation
and telecommunications [13].

In the 70's some authors had high expectations when
they believed that "ali Americans could be homework-
ers by 1990" [11]. A decade later others stated that
"by the year 2000 approximately 40% of the employees
in the US will be teleworkers". The latest estimate is
that in many development countries 10%-15% of the
workforce will be teleworking to some degree by the
end of the century [15].

In 1990 there were 2 million teleworkers in US, in
the year 1994 7.8 million and the estimations in the
year 1994 were that in 2001 there will be 30 million
teleworkers [2].

Different surveys [1,6] have shown that telework is
slowly penetrating into Euro pe as well. According to
the results of surveys in 1994 the number of telework-
ers in the five largest European Community countries
was approximately 1.1 milUon by the time. Extrapo-
lating this figure to the whole Europe gives a total of
1.25 million tel eworkers. In terms of absolute num-
bers of teleworkers, the United Kingdom had the most
with 560 000, followed by France with around 215 000
teleworkers, Germany with 149 000, Spain with 102

000 and Italy with 97 000 teleworkers.

Telework is being introduced slowly step by step.
In most cases, first the combination of working in the
company and working at home is beirig.practised. At
first teleworkers are vvorking at home for an average
of 4.2 days per month, after a year or two for about 8
days per month [3,17,20].

Because of the benefits the interesi in telework is
growing among employers and employees. Benefits to
employees are: saving on time, money and effort in
commuting to work, better concentration at work, fiex-
ible working hours, better balance between work and
family life. Telework enables taking čare of young chil-
dren, elderly or disabled relatives and allows into em-
ployment people unable to work in the traditional way,
such as disabled or handicapped people. The main
advantages to employers are: increased productivity,
better office space utilisation, reduced overhead ex-
penses, reduced travel costs, reduced electricity, food
and other costs [9,10,18].

Of course telework has its drawbacks as well. Em-
ployers are concerned about data security and loss of
control. Some are concerned about the legal rights and
normal protection in law that employees are afforded
[7]. Telework may increase the cost of living for the
teleworker (home office heating and power, food, . . .)
[8]. Teleworkers may not be keen on carrying out their
own typing, filling, and other routine office functions.
Some teleworkers may miss the social interaction of the
workplace. The feeling of belonging to a team that is
working for a common goal may be lost [4].

In the paper we discuss the methodology used in our
research, the instrument, data collecting and results.
In the end we show some results of the Empirica sur-
vey [12] carried out in 1990 in 14 European companies
parallel with results of our survey carried out in 1997
in 15 Slovenian organisations and give an conclusion.

140 Informatica 23 (1999) 137-142 E. Jereb et al.

Need for
fiexible working hours

High Medium Low No need

Worry for
promotion and career

Ves No Don't know

Importance of
personnel contacts

High Medium Low
People, who are in-
terested in telework

25% 43% 19% 13% 14% 42% 44% 57% 40% 3%

People, who are not
interested in tele-
work

13% 29% 33% 25% 21% 17% 62% 83% 13% 4%

People, who are in­
terested in telework
People who are not
interested in tele-
work

Saving on effort in commuting
Very high

6%

0%

High
16%

8%

Medium
46%

29%

Low
32%

65%

Loss of review of what's going on in company
Completely

10%

42%

Partly
72%

45%

No
15%

0%

Don't know
3%

13%

Table 2: Telework affected by psychological and sociological factors

When the results are analysed according to company
size, next trend comes to light: the greater the size of a
company, the more interest is in telework. That holds
for France, Germaiiy and United Kingdom but not for
Italy [12].

We wanted to find out how company size affects tele-
work in Slovenia. We predicted that company size does
not affect interest in teleworking and test showed that
on the risk level 0.05 we can accept our prediction.

In the end we show some results of the Empirica sur-
vey [12] carried out in 1990 in 14 European companies
parallel with results of our survey carried out in 1997
in 15 Slovenian organisations.

3 Results of teleworking
surveys in different European
countries

One of the questions we were interested in was "why
were companies interested in introducing tele\vork".
This is of course a question with two sides, that of the
employer and the employee, since telework can only
take plače when there is sufEcient convergence of in­
terest for both parties to agree to it.

We turned to the employer's side. There is in fact a
wide range of reasons companies might have for consid-
ering the introduction of remote work. We identified
six common motivations: increased productivity, re-
duced commuting costs, reduced central office's costs,
flexibility in working hours, employment of the dis-
abled and retention of scarce skills. In Table 3 we are
showing the importance of these reasons to managers
in Slovenia in 1997 and to managers in other European
countries in 1990.

As it can be seen from the table these reasons are
very important to managers from Slovenian compa­
nies. It is hard to say why but it may be due to the fact
that Slovenia is a small country with a population of 2
million which became independent in the year 1991. In
the transition to a market economy and private own-
ership, most larger companies have disintegrated and
managers of these smaller companies want to make a
good use of the telework possibilities in order to gain
bigger competitive advantage. Increased productivity
and flexibility of working hours are for our managers
the most important reasons for introducing telework.

Communication is a particularly important compo-
nent of distance working, so the employees were asked
about the use of communication media. Table 4 sum-
marises the results.

We can see that employees in Slovenia spend a lot
of time on telephoning and meetings. What I think
might be worth considering.

Table 5 shows the proportion of work done at home
or outside normal working hours by gender. We can
see that the majority do perform some of their work in
the evenings or at weekends. That goes for Slovenian
and other European companies. In Slovenia there are
more men then women who do a part of their work
at home or outside their normal working hours. In
other European countries in the 1990 there were more
women then men.

In table 6 we are showing interest in telework of men
and women in different European countries.

As we can see employees in Slovenian companies
show very high interest in televvork. Slovenia has not
been independent for a long time and maybe employ-
ees are now looking for new chances to succeed.

RESEARCH ON TELEWORK IN SLOVENIA Informatiča 23 (1999) 137-142 141

Increased productivity
Reduced commuting costs
Reduced central office's costs
Flexibility in working hours
Employment of disabled
Retention of scarce skills

Slovenian companies (1997)
Important

(%)

Table 3

Telephone

Teletex

Videotex

E-mail

Postal service

Courier

Meetings

Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990
Slovenia 1997
Europe 1990

87
71
75
83
71
52

Unimportant and
no answer (%)

13
29
25
17
29
48

Rank
order

1
4
3
2
4
5

Other European companies (1990)
Important

(%)
36
29
29
29
14
43

Unimportant and
no answer (%)

: Companies' reason for introducing telework

No use
(%)

7
46
93
98
98
99
60
84
37
29
62
69
18
25

Once a week
(%)

1
3
3
2
2
1
7
3

27
7

17
21
2

45

Several times
per week (%)

5
19
3
0
0
0

14
6

17
47
11
7

15
27

Once a day
(%)

2
8
0
0
0
0
4
5
8

11
6
2
5
3

64
71
71
71
86
57

Several times
a day (%)

85
24

1
0
0
0

15
2

11
6
4
1

60
0

Rank
order

2
3
3
3
4
1

Table 4: Employees' use of Communications medla

4 Conclusion

There are only few companies already practising tele-
work, but a lot of them are thinking about introducing
it. Although the US is currently the leader in this pro-
cess, interest in the rest of the world, particularly Eu­
rope, is accelerating. Interest in telework is seen also in
Slovenia. In the empirical research among Slovene or-
ganisations carried out in summer 1997, we found out
that managers and employees are interested in tele-
work. We found out that technology needed for tele-
work is not the basic problem in introducing telework
and that almost aH of potential teleworkers have their
own for teleworking needed equipment. The survey
also showed that technological factors and the content
and way of work performed within a specific working
plače determine its suitability for telework and that
telework is strongly affected by psychological and so-
ciological factors. We also found out that managers are
sometimes troubled by the idea facing the prospect of
managing a team of remote workers and they know
that their tasks will partly change and that also the
way of control and way of policy making will change.

Managers are also concerned about employment con-
tracts, most of them think that it would be necessary
to legally define the working conditions of teleworkers
and clearly state the unique responsibilities of both
parts.

References
[1] Action for Stimulation of Transborder Telework

and Research Activities in Europe, Telework
1995, European Commission, DG Xni-B,
h t tp : / /www.acad .by/wise /engl i sh / rd / -
reports / te lework/ai inual95

[2] Brokaw T.: NBC Nightly News, March 22, 1994,
ht tp: / /www.televorker.com/quotes.html

[3] City of Los Angeles Telecommuting Project:
Final Report, JALA International, Los
Angeles, California, March 1993, pp.26,
http://www.teleMorker.com/quotes.html

[4] Cook E.: The Teleworking Directory Enquiry
Experiment at Inverness, Telework Conference,

http://www.acad.by/wise/english/rd/-
http://www.televorker.com/quotes.html
http://www.teleMorker.com/quotes.html

142 Informatica 23 (1999) 137-142 E. Jereb et al.

Female
Male

Slovenia 1997

Europe 1990

Slovenia 1997

Europe 1990

n
%
n
%
n
%
n
%

None
24
44
18
21J
34
25
11
35

Up to 1/3
31
56
53
63
85
63

7
23

Half
0
0

12
14
8
6

10
32

At least 4/3
0
0
2
2
8
6
3

10

Table 5: Proportion of work done at home or outside normal working hours by gender

Slovenia 1997
Germany 1990
France 1990
United Kingdom 1990
Italy 1990

Interested (%)
Male

83
9
13
22
12

Female
78
8
15
23
10

Not interested or not possible (%)
Male

10
88
84
75
87

Female
18
87
82
72
89

Do not know (%)
Male

7
3
3
3
1

Female
4
5
3
5
1

Table 6: Employees interest in telework by gender in European countries

1995, http://www.hmnanities.mcmaster.cal?
misc2/telwtoc.htm

[5] Dekleva S. And Zupančič J.: Key issues in Infor­
mation systems management: a Delphi study in
Slovenia, Information & Management 31 (1996)
1-11, 1996 Elsevier Science B.V.

[6] Executive Summary of the TELDET Project
Final Report, ht tp: / /www.acad.by/wise/-
eng l i sh / rd / r epo r t s / t e l ework

[7] Flexibility & Exploitation, Telev/ork Confer-
ence, ht tp: / /www.humanit ies. mcmaster.cal?
misc2/ te lwte l .h tm

[8] Gray M., Hodson N., Gordon G.,: Teleworking
Explained, John Wiley k Sons, England 1993.

[9] Harper K.: Study shows Home Working offers big
gains for companies, Guardian, Jun 1992.

[10] Hendricks B.: Telearbeit - B. unter dem Arm,
Wirtschaftswoche Nr.42, Oktober 1993, pp. 123-
125.

[11] HuwsU.: The new homeworkers. New technology
and the changing location of white collar work,
Nottingham 1984.

[12] Huws U., Korte W.B., Robinson S.; Telework,
Towrds the Elusive OfRce, John Wiley & Sons,
England 1990.

[13] Jereb E. and Jereb J.: Personnel selection for tele-
work by an expert system, Zbornik radova, 8th

International simposium of Information Systems
IS '97, Varaždin, 24-26 September 1997, pp. 315-
326.

[14] Jereb. J and Jereb. E: Introducing the software
package OCP Office, IS'95 - 6th International
Symposium of Information Systems, September
20 -22, Varaždin, Croatia, F5-F13.

[15] Korte W.B., Kordey N., Robinson S.:
Penetration, potential and practice-
has it H ved up to expectations?, 1995,
h t tp : / /www.acad .by/wise /engl i sh / rd / -
report/telework/člnnual95

[16] Lindstrom J., Moberg A., Rapp B.: On the clas-
sification of telework, European Journal of Infor­
mation Systems (1997) 6, pp. 243-255.

[17] Neitzel W.: Nur einmal pro Woche ins Biiro -
keine ferne Vision, Die Welt, 19 Julij 1991.

[18] Nilles J.M.: Managing Telework: Strategies for
Managing the Virtual Workforce, John Wiley &
Sons, England, 1998.

[19] OECD Main Economic Industries, November
1997, h t t p : / / w w w . s i g o v . s i / c g i - b i n / s p l / -
zmar /a rh iv /og l l97 /eos l l l97 .h tml -
?laiiguage=3Dslo

[20] Wynne R., Korte W.B., Wynne N.: Telework:
Penetration, Potential and Practice in Europe,
lOS Press, England, 1995.

http://www.hmnanities.mcmaster.cal
http://www.acad.by/wise/-
http://www.humanities
http://www.acad.by/wise/english/rd/-
http://www.sigov.si/cgi-bin/spl/-

Informatica 23 (1999) 143

Call for Paper
International Multi-Conference
Information Society - IS'99
12 - 14 October, 1999
Slovenian Science Festival
Cankarjev dom, Ljubljana, Slovenia

Programme committee:
dr. Cene Bavec, chairperson,
prof. dr. Ivan Bratko, co-chair,
prof. dr. Matjaž Gams, co-chair,
prof. dr. Tadej Bajd,
mag. Jaroslav Berce,
dr. Dušan Caf,
prof. dr. Saša Divjak,
dr. Tomaž Erjavec,
prof. dr. Nikola Guid,
prof. dr. Borka Jerman Blažič Džonova,
doc. dr. Gorazd Kandus,
doc. dr. Marjan Krisper,
mag. Andrej Kuščer,
prof. dr. Jadran Lenarčič,
dr. Franc Novak,
prof. dr. Marjan Pivka,
prof. dr. Vladislav Rajkovič,
prof. dr. Ivan Rozman,
dr. Niko Schlamberger,
prof. dr. Franc Solina,
prof. dr. Stanko Strmčnik,
prof. dr. Jurij Tasič,
prof. dr. Andrej Ule,
dr. Tanja Urbančič,
prof. dr. Baldomir Zaje,
dr. Blaž Zupan

ican policies. The main objective is the exchange of
ideas and developing visions for the future of Infor­
mation society. IS'99 is a standard scientific confer-
ence covering major recent achievements. Besides, it
will provide maximum exchange of ideas in discussions,
and concrete proposals in final reports of each confer-
ence.

The multi-conference will he held in Slovenia, a
small European country bordering Italy and Austria.
It is a land of thousand natural beauties from the Adri-
atic sea to high mountains. In addition, its Central
European position enables visits to most European
countries in a radius of just a few hours drive by car.
The social programme will include trips by desire and
organised trips to Skocjan or Postojna caves. Coffee
breaks, the conference cocktail and dinner will con-
tribute to a niče working atmosphere.

Call for Papers

Deadline for paper submission: 15 June, 1999
Registration fee is 100 US $ for regular participants

(10.000 SIT for participants from Slovenia) and 50 US
$ for students (3.500 SIT for Slovenian students). The
fee covers conference materials and refreshments dur-
ing coffee-breaks.

Invitation
You are kindly invited to participate in the "New In­
formation Society - (IS'99)" multi-conference to be
held in Ljubljana, Slovenia, Europe, from 12-14 Octo­
ber, 1999. The multi-conference will consist of seven
carefully selected conferences.

Basic information
The concepts of information society, information era,
infosphere and infostress have by now been widely ac-
cepted. But, what does it really mean for societies, sci-
ences, technology, education, governments, our lives?
What are current and future trends? How should we
adopt and change to succeed in the new world?

IS'99 will serve as a forum for the world-wide and
national community to explore further directions, busi-
ness opportunities, governmental European and Amer-

More information

For more information visit
h t t p : / / a i . i j s . s i / i s / i i i d e x a . h t m l or contact
m i l i c a . r e m e t i c S i j s . s i .

The multi-conference consists of the following con­
ferences:

Information Society

12-14 October, 1999
Chairs: dr. Cene Bavec, prof. dr. Matjaž Gams
Contact person: prof. dr. Matjaž Gams
Phone: (-t-386 61) 1773 644
E-mail: matjaz.gEuns®ijs.si
Jožef Štefan Institute, Jamova 39, 1000 Ljubljana,
Slovenia, Europe

http://ai.ijs.si/is/iiidexa.html

144 Informatica 23 (1999)

Data Mining and Warehouses
Chair: dr. Dunja Mladenič, Marko Grobelnik
Contact person: Marko Grobelnik
Phone: (+386 61) 1773 272
E-mail: marko.grobelnik@ijs .s i
Address: Jožef Štefan Institute, Jamova 39, 1000
Ljubljana, Slovenia, Europe

Manufacturing Systenis and
Technologies
Chair: prof. dr. Jadran Lenarčič
Contact person: prof. dr. Jadran Lenarčič
Phone: (+386 61) 1773 378
E-mail: j a d r a n . l e n a r c i c S i j s . s i
Address: Jožef Štefan Institute, Jamova 39, 1000
Ljubljana, Slovenia, Europe

Education in Information Society
Chair: prof. dr. Vladislav Rajkovič
Contact person: Mojca Florjančič
Phone: (+386 064) 22 10 61
E-mail: mojca.f lor jancicSfov.uni-mb.s i
Address: Faculty of Organizational Sciences,
Kidričeva 55a, 4000 Kranj, Slovenia, Europe

Development and Reingeneering
of Informaton Systenis
Chair: prof. dr. Ivan Rozman
Contact person: dr. Ivan Rozman
Phone: (386 62) 2207 410
E-mail: i . rozmanSuni-mb. s i
Address: PERI, Smetanova 17, 2000 Maribor, Slove­
nia, Europe

Biology and Cognitive Sciences
Chair: prof. dr. Igor Jerman, mag. Alexis Zrimec
Contact person: mag. Alexis Zrimec
Phone: (061) 1769 200
E-mail: a l ex i s . z r imecOgues t . a rnes . s i
Address: Inštitut Bion, Celovška 264, 1000 Ljubljana,
Slovenia, Europe

mailto:marko.grobelnik@ijs.si

Informatica 23 (1999) 145

ERK'99
Electrotechnical and Computer Science Conference

Elektrotehniška in računalniška konferenca
September 23-25, 1999

Conference Chairman
Baldomir Zaje
University of Ljubljana
Faculty of Electrical Engineering
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 349, Fax: (061) 1264 630
E-mail: Baldomir.Zajc@fe.uni-lj.si

Conference Vice-chairman
Jurij Tasič
University of Ljubljana
Faculty of Electrical Engineering
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 440, Fax: (061) 1264 630
E-mail: Jure.Tasic@fe.uni-lj.si

Program Committee Chairman
Sfiša Divjak
University of Ljubljana
Faculty of Comput. and Inform. Science
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 260, Fax: (061) 1264 647
E-mail: Sasa.Divjak@fri.uni-lj.si

Programe Committee
Tadej Bajd
Genevieve Baudoin
Gerry Cain
Saša Divjak
Janko Drnovšek
Matjaž Gams
Ferdo Gubina
Marko Jagodic
Drago Matko
Miro Milanovič
Andrej Novak
Nikola Pavešic
Franjo Pernuš
Kurt Richter
Borut Zupančič

Publications Chairman
Frsmc Solina
University of Ljubljana
Faculty of Comput. and Inform. Science
Tržaška 25, 1001 Ljubljana, Slovenia
Tel: (061) 1768 389, Fax: (061) 1264 647
E-mail: Franc!Solina@fri.uni-lj.si

Advisory Board
Rudi Bric
Damjan Dittrich
Karel Jezernik

Call for Papers
for the eighth Electrotechnical and Computer Science Conference
ERK'99, which will be held on 23-25 September 1999 in Portorož, Slove-

The following areas will be represented at the conference:

- electronics,
- telecommunications,
- automatic control,
- simulation and modeling,
- robotics,
- Computer and information science,
- artificial intelligence,
- pattem recognition,
- biomedical engineering,
- power engineering,
- measurements,
- didactics.

The conference is organized by the IEEE Slovenia Section together with
the Slovenian Electrotechnical Society and other Slovenian professional so-
cieties:

- Slovenian Society for Automatic Control,
- Slovenian Meeisurement Society,
- SLOKO-CIGRE,
- Slovenian Society for Medical and Biological Engineering,
- Slovenian Society for Robotics,
- Slovenian Artificial Intelligence Society,
- Slovenian Pattern Recognition Society,
- Slovenian Society for Simulation and Modeling.

Authors •vvho wish to present a paper at the conference should send two
copies of their final camera-ready paper to mag. Andrej Trost to Faculty
of Electrical Engineering, Tržaška 25, 1001 Ljubljana. The pa;per should be
max. four pages long. More information on http:/ /www.ieee.s i /erk99/

Time schedule: Camera-ready paper due: July 20, 1999
Notification of acceptance: End of August, 1999

mailto:Baldomir.Zajc@fe.uni-lj.si
mailto:Jure.Tasic@fe.uni-lj.si
mailto:Sasa.Divjak@fri.uni-lj.si
mailto:Solina@fri.uni-lj.si
http://www.ieee.si/erk99/

146 Informatica 23 (1999)

Call For Papers
8th International Conference on Computer Analysis of Images and
Pat terns
CAIP'99
Ljubljana, Slovenia, 1-3 September 1999

Conference Cochairs
Franc Solina, Aleš Leonardis
University of Ljubljana
Faculty of Comput. and Inform. Science
Tržaška 25,
1001 Ljubljana, Slovenia
Tel:386 61 1768 389,
Fax:386 61 1264 647,
E-mail:
frane.solina,ales.leonardisOfri.uni-1j . si

Program Committee
S. Ablameyko, Belarus
J. Arnspang, Denmark
R. Bajcsy, USA
I. Bajla, Slovakia
A. M. Bruckstein, Israel
V. Chernov, Russia
D. Chetverikov, Hungary
A. Del Bimbo, Italy
J. O. Eklundh, Sweden
V. Hlavač, Czech Republic
J. Kittler, United Kingdom
R. Klette, New Zealand
W. Kropatsch, Austria
A. Leonardis, Slovenia
R. Mohr, France
M. Schlesinger, Ukraine
W. Skarbek, Poland
F. Solina, Slovenia
G. Sommer, Germany
L. Van Gool, Belgium
M. A. Viergever, Netherlands
S. W. Zucker, USA

Call for Papers
The CAIP conference is a traditional Central Euro-
pean Conference devoted to ali aspects of computer
vision, image analysis, pattern recognition and related
fields.

The conference is sponsored by lAPR, Slovenian
Pattern Recognition Society, IEEE Slovenia Section,
Faculty of Computer and Information Science at the
University of Ljubljana and Hermes SoftLab.

The scientific program of the conference will con-
sist of plenary lectures by invited speakers, contributed
papers presented in two parallel sessions and posters.
The CAIP proceedings are published by Springer Ver-
lag in the series Lecture Notes on Computer Science
and will be distributed to the participants at the con­
ference.

Scope of the Conference
— Image Analysis

— Computer Vision

— Pattern Recognition

— Medical Imaging

— Network Centric Vision

— Augmented Reality

— Image and Video Indexing

— Industrial Applications

Instructions to authors
Authors who wish to present a paper at the conference
should send five copies of their paper to one of the two
conference chairs marked CAIP'99. To enable double
blind review there should be two title pages. The first
with title, author's name, afEliation and address, tele-
phone, fax and e-mail, abstract of 200 words and up
to three keywords. The second title page should con-
sist only of title, abstract and keywords. The papers
excluding the title pages should not be longer than
10 pages. On a separate page the authors should an-
swer the following three questions about their paper:
(a) what is the original contribution?, (b) what is the
most similar work?, (c) why is their vvork relevant to
others?

A W£<^ template for the camera-ready version will
be available on the conference home page. During the
CAIP'99 review period the authors should not submitt
any related paper with essentially the same content to
any other conference.

Deadline for submission of papers: 15 January 1999

Informatica 23 (1999) 147

Registration

Information on registration will be available on the
conference home page.

Venue
The conference will be held at the Faculty of Com­
puter and Information Science at the University of
Ljubljana. Ljubljana is the capital of Slovenia. The
city which is a lively mixture of Mediterranean and
northern influences offers ali amenities within short
distance. Alpine resorts, the Adriatic coast and sev-
eral natural spas are close to Ljubljana.
The conference homepage is:
h t t p : / / r a z o r . f r i . u n i - l j . s i / C A I P 9 9

Machine Learning List
The Machine Learning List is moderated. Con-
tributions should be relevant to the scientific
study of machine learning. Mail contributions
to mlSics .uci .edu. Mail requests to be added
or deleted to inl-request@ics.uci.edu. Back
issues may be FTP'd from i c s . u c i . e d u in
pub /ml - l i s t /V<X>/<N> or N.Z where X and
N are the volume and number of the issue; ID:
anonymous PASSWORD: <your mail address> URL-
http://www.ics.uci.edu/AI/ML/Machine-Le-
arning.html

CC Al

The Journal for the integrated study
of Artificial Intelligence, Cognitive Science

and Applied Epistemology.

CC-AI publishes articles and book reviews relating
to the evolving principles and techniques of Artificial
Intelligence as enriched by research in such fields as
mathematics, linquistics, logic, epistemology, the cog­
nitive Sciences and biology.
CC-AI is also concerned with development in the areas
of hard- and software and their applications within AL

Editorial Board and Subseriptions

CC-AI, Blandijnberg 2, B-9000 Ghent, Belgium.
Tel.: (32) (9) 264.39.52,
Telex RUGENT 12.754

Telefax: (32) (9) 264.41.97
e-mail: Carine. Vanbelleghem@RUG. AC. BE

http://razor.fri.uni-lj.si/CAIP99
mailto:inl-request@ics.uci.edu
http://ics.uci.edu
http://www.ics.uci.edu/AI/ML/Machine-Le-

148 Informatica 23 (1999)

Call for Papers

Special Issue on
Group Support Systems
Informatica - An International Journal of Computing and Informatics

A special issue of the Informatica Journal will focus
on the different aspects of Group Support Systems.
Original, unpublished contributions and invited arti-
cles will be considered for the issue.

As organizations are being directed to do more with
less, personnel productivity issues are becoming more
important. No single person has the knowledge, time,
or experience to solve today's business problems, so
organizations have adopted a team approach. One of
the challenges to this team approach is to ensure the
proper make-up of the teams. Getting the maximum
mix of personnel usually means picking team members
from across the organization. Thiš can pose problems
when the organization is national, or global in geo-
graphical span. Technology to support these teams
has been in use for some time now, and research is be-
ginning to emerge showing how successful this merging
of technology and project teams has been

To be successful, research in this area should address
issues relating to the technology. It should also focus
on the effectiveness to the group, and the degree of
success in solving problems. Topics of interest to this
special issue will include, but not be limited to, the
following:

- Critical success factors for implementing group
support systems

- Factors affecting the diffusion of group support
systems

- Reliable measures for predicting successful imple-
mentation

- Cross-cultural factors affecting use

- Management issues with applying group support
systems

- Successful implementations

- Ušes for group support systems in industry

- Perceived usefulness among project teams

- Ease of use issues

- Ease of implementation issues

- Required levels of technology support

- Barriers to implementation and adoption

- Any other interesting topic that is relevant to
group support systems

Prospective authors should follow the regular guide-
Unes of the Journal and submit their work electroni-
cally. You should e-mail your rtf or PDF file to one of
the Guest Editors by the following due dates:
FuU Manuscript Due May 15, 1999
Notification of Acceptance September 15, 1999
Final revisions of accepted papers December 1, 1999
Gary Klein or Morgan Shepherd, Guest Editors
College of Business and Administration
The University of Colorado at Colorado Springs
1420 Austin Bluffs Parkway
P.O. Box 7150
Colorado Springs, CO 80933-7150
Gklein@mail. uccs . edu or mshepher@mail. uccs . edu
Marcin Paprzycki
Department of Computer Science and Statistics
University of Southern Mississippi
Hattiesburg, MS 39406-5106, USA
phone: 601-266-6639 or: 601-266-4949
FAX: 601-266-6452

Informatica 23 (1999) 149

Call for Papers

Special Issue on
Design Issues of Gigabit Networking
Informatica - An International Journal of Computing and Informatics

A special issue of the Informatica Journal will fo-
cus on the different aspects of the design of Gigabit
networking. Original, unpublished contributions and
invited articles will be considered for the issue. With
the advent of the World Wide Web, the Internet has
seen enormous growth from its roots as a network of
modest proportions, mostly used by the research and
academic community, to a large public data network.
Several thousands of corporate users and several mil-
lions of dial-in residential users have gone online in
the last few years, making the Internet a true public
data network. This accelerated growth in subscription
has led to a surge of data in the Internet backbone. In
order to keep up with this demand in service and band-
width, ali Internet service providers have scaled their
networks many times, in both size and bandwidth.
The forecast for this continuing growth is even more
astounding for the coming years. With fast emerg-
ing technologies, such as transfer of multimedia and
electronic commerce, the need to scale the network
beyond present capabilities is paramount. For this the
Internet has to scale in several dimensions, including
but not limited to bandwidth, routing, quality of ser­
vice (QoS), and customer service provisioning. To be
able to succeed, research has to investigate issues of
the backbone network (SONET/SDH). It should also
focus on the reliability of the network and the trans-
parency of any self-healing to the user. Topics of in-
terest to this special issue will include, but not limited
to, the following:

- Design infrastructure of Gigabit networking
(physical, data link and network issues)

- SONET/SDH architectures

- Protocol design for multimedia

- Fault-tolerant of backbone networks

- Routing and congestion protocols in Gigabit net-
working

- Switching issues in Gigabit networking

- QoS issues in using ATM in Gigabit networking

- Modeling and simulation

- Performance evaluation in Gigabit networking

- Management issues in Gigabit networking

— Any other interesting topic that is relevant to the
backbone infrastructure design

Prospective authors should follow the regular guide-
lines of the Journal and submit their work electron-
ically. You should e-mail your PDF or postscript
file (preferably produced by dvips and viewable by
ghostview) to one of the Guest Editors listed below:
Full Manuscript Due January 31, 1999
Notification of Acceptance July 31, 1999
Mohsen Guizani, Guest Editor
Electrical and Computer Engineering Architect
University of Missouri-Columbia/Kansas City
5605 Troost Avenue
Kansas City, MO 64110-2823.
E-mail: guizanim@vunkc.edu
Kenneth Henriksen, Guest Editor
Chief Technology Integration Architect-Sprint
M/S: KSOPKB0803
9300 Metcalf Avenue
Oveland Park, KS 66212, USA.
E-mail: henriksen@sprintcorp.com
h t tp : / / o r ca . s t . u sm.edu / in fo rma t i ca

mailto:guizanim@vunkc.edu
mailto:henriksen@sprintcorp.com
http://orca.st.usm.edu/informatica

150 Informatica 23 (1999)

Call for Papers

Special Issue on
Advances in Simulation and Control
Informatica - An International Journal of Computing and Informatics

A special issue of Informatica on the topic of "Ad­
vances in Simulation and Control" is planned for pub-
Hcation as one of four issues in 2000 year. As comput­
ing power has been increased, most of the real world
systems can be efficiently simulated and controlled in
real time with the incorporation of advanced simula­
tion and control techniques. The issue will be intended
to serve as a medium for exchanging the latest research
trends in the areas of " Simulation and Control."

Papers describing the state-of-the-art research on
various simulation and control topics including, but
not limited to, the following areas are solicited:

- Advances in Simulation and Control Methodol-
ogy,

- Fuzzy and Neural Network Techniques in Simula­
tion and Control,

- Real-time and Distributed Simulation and Con­
trol,

- Advanced Man-Machine Interfaces for Efficient
Simulation and Control,

- Simulation and Control AppUcations in Complex
Physical Systems such as Electricity Generating
Power Plants and Power Systems.

Prospective authors should follow the regular guide-
lines of the Journal and submit their work electroni-
cally (by e-mail) to one of guest editors by the follow-
ing due dates:

Important Schedules: FuU papers are due May 7,
1999 in any format of PDF, PS, MS Word or Word-
Perfect, with author notification set for November 20,
1999. Final revisions of accepted papers are due Febru-
ary 26, 2000, only in "LaTex" format. Authors inter-
ested in submitting a paper for the issue should contact
one of the guest editors listed below for submission de-
tails.

Robert M. Edwards, Guest Editor
Nuclear Engineering Department
231 Sackett Building
Pennsylvania State University
University Park, PA, 16802, USA.
Phone: +1 (814) 865-0037
FAX: +1 (814) 865-8499
Email: rmenuc@engr.psu.edu
Kwang Y. Lee, Guest Editor
Department of Electrical Engineering
The Pennsylvania State University

University Park, PA 16802, USA.
Phone: -|-1 (814) 865-2621
Fax: -hI (814) 865-7065
E-mail: kylece@engr.psu.edu
Se Woo Cheon, Guest Editor
Korea Atomic Energy Research Institute
Dukjin 150, Vuseong, Taejon 305-353, KOREA
Phone: -1-82-42-868-2261
Fax: -h82-42-868-8357
E-mail: swcheon@nanum.kaeri.re.kr

mailto:rmenuc@engr.psu.edu
mailto:kylece@engr.psu.edu
mailto:swcheon@nanum.kaer

Informatica 23 (1999) 151

THE MINISTRV OF SCIENCE AND TECHNOLOGV
OF THE REPUBLIC OF SLOVENIA

Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61
1311 107, Fax: +386 61 1324 140.
WWW:http://www.mzt.si
Minister: Lojze Marinček, Ph.D.

The Ministry also includes:
The Standards and Metrology Institute of the
Republic of Slovenia
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 314 882.

Slovenian Intellectual Property Office
Address: Kotnikova 6, 61000 Ljubljana, Tel: +386 61
1312 322, Fax: +386 61 318 983.

Office of the Slovenian National Commission
for UNESCO
Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61
1311 107, Fax: +386 61 302 951.

Scientific, Research and Development
Potential:

The Ministry of Science and Technology is responsible
for the R&D policy in Slovenia, and for controlling
the government R&D budget in compliance with the
National Research Program and Law on Research
Activities in Slovenia. The A'Iinistry finances or
co-finance research projects through public bidding,
while it directly finance some fixed cost of the national
research institutes.

According to the statistics, based on OECD (Pras-
cati) standards, national expenditures on R&D raised
from 1,6 % of GDP in 1994 to 1,71 % in 1995. Table 2
shows an income of R&D organisation in million USD.

Objectives of R&:D policy in Slovenia:

- maintaining the high level and quality of scientific
technological research activities;

— stimulation and support to collaboration between
research organisations and business, public, and
other sectors;

Total investments in R&D (% of GDP) 1,71
Number of R&D Organisations 297
Total number of employees in R&D 12.416
Number of researchers 6.094
Number of Ph.D. 2.155
Number of M.Sc. 1.527

Table 1; Some R&D indicators for 1995

Bus. Ent .
Gov. Inst.
Pr iv . np Org.
High. Edu.
TOTAL

Ph .D.
1993 1994

51 93
482 574

10 14
1022 1307
1565 1988

1995 1993
102 196
568 395

24 12
1461 426
2155 1029

M.Sc.
1994

327
471

25
772

1595

1995
330
463

23
711

1527

Table 2: Number of employees with Ph.D. and M.Sc.

- stimulating and supporting of scientific and re­
search disciplines that are relevant to Slovenian
national authenticity;

— co-financing and tax exemption to enterprises en-
gaged in technical development and other applied
research projects;

- support to human resources development with
emphasis on young researchers; involvement in In­
ternational research and development projects;

— transfer of knowledge, technologj' and research
achievements into ali spheres of Slovenian society.

Table source: Slovene Statistical Office.

Business Enterprises
Government Institutes
Private non-profit Organisations
Higher Education
TOTAL

Basic Research
1994

6,6
22,4
0,3

17,4
46,9

1995
9,7

18,6
0,7

24,4
53,4

Applied Research
1994
48,8
13,7
0,9

13,7
77,1

1995
62,4
14,3
0,8

17,4
94,9

Exp.
1994
45,8

9.9
0,2
8,0

63.9

Devel.
1995
49,6

6,7
0,2
5,7

62,2

Total
1994 1995

101,3 121,7
46,1 39,6

1,4 1,7
39,1 47,5

187,9 210,5
Table 3: Incomes of R&D organisations by sectors in 1995 (in million USD)

http://www.mzt.si

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing
Please submit three copies of the manuscript with good
copies of the figures and photographs to one of the editors
from the Editorial Board or to the Contact Person. At least
two referees outside the author's country will examine it,
and they are invited to make as many remarks as possible
directly on the manuscript, from typing errors to global
philosophical disagreements. The chosen editor will send
the author copies with remarks. If the paper is accepted,
the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has
been accepted, in which čase it will be published \vithin one
year of receipt of e-mails with the text in Informatica LM ĵX
format and figures in .eps format. The original figures
can also be sent on sep£irate sheets. Style and examples of
papers can be obtained by e-mail from the Contact Person
or from FTP or WWW (see the last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc.
should be sent directly to the Contact Person.

g U E S T I O N N A I R E

I I Send Informatica free of charge

I I Ves, we subscribe

Please, complete the order form and send it to Dr. Rudi
Murn, Informatica, Institut Jožef Štefan, Jamova 39, 61111
Ljubljana, Slovenia.

Since 1977, Informatica has been a major Slovenian sci-
entific Journal of computing and informatics, including
telecommunications, automation and other related areas.
In its 16th year (more than seven years ago) it became
truly international, although it stili remains connected to
Central Europe. The basic aim of Informatica is to impose
intellectual values (science, engineering) in a distributed
organisation.

Informatica is a journal primarily covering the European
computer science and informatics community - scientific
and educational as well as technical, commercial and indus-
trial. Its basic aim is to enhance Communications between
different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers
accepted by at least two referees outside the author's coun-
try. In addition, it conteiins information about conferences,
opinions, critical examinations of existing publications and
news. Finally, major practical achievements and innova-
tions in the computer and information industry are pre-
sented through commercial publications as well as tlirough
independent evaluations.

Editing and refereeing are distributed. Each editor can
conduct the refereeing process by appointing two new ref­
erees or referees from the Board of Referees or Editorial
Board. Referees should not be from the author's country.
If new referees are appointed, their names will appear in
the Refereeing Board.

Informatica is free of charge for major scientific, educa­
tional and governmental institutions. Others should sub­
scribe (see the last page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):

Title and Profession (optional):

E-mail Address (optional):

Home Address and Telephone (optional):

Signature and Date:

file:///vithin

JOŽEF ŠTEFAN INSTITUTE

Jožef Štefan (1835-1893) was one ofthe mostpromi-
nent physicists of the 19th centurg. Bom to Slovene
parents, he obtained his Ph.D. at Vienna University,
tvhere he was later Direčtor of the Physics Institute,
Vice-President of the Vienna Academy of Sciences and
a member of several scientific institutions in Europe.
Štefan ezplored many areas in hydrodynamics, optics,
acoustics, electricity, magnetism and the kinetic the-
ory of gases. Among other things, he originated the
law that the total radiation from a black body is pro-
portional to the 4th pouier of its absolute temperature,
knoivn as the Stefan-Boltzmann law.

The Jožef Štefan Institute (JSI) is the leading inde-
pendent scientific research institution in Slovenia, cov-
ering a broad spectrum of fundamental and applied
research in the fields of physics, chemistry and bio-
chemistry, electronics and information science, nuclear
science technology, energy research and environmental
science.

The Jožef Štefan Institute (JSI) is a research organ-
isation for pure and applied research in the natural
Sciences and technology. Both are closely intercon-
nected in research departments composed of different
task teams. Emphasis in basic research is given to the
development and education of young scientists, while
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the devel­
opment ofthe national economy and society in general.

At present the Institute, with a total of about 700
staff, has 500 researchers, about 250 of whom are post-
graduates, over 200 of whom have doctorates (Ph.D.),
and around 150 of whom have permanent professor-
ships or temporary teaching assignments at the Uni-
versities.

In view of its activities and status, the JSI plays the
role of a national institute, complementing the role of
the universities and bridging the gap between basic
science and applications.

The Institute is located in Ljubljana, the capital of
the independent state of Slovenia (or S"v'nia). The
capital today is considered a crossroad between East,
West and Mediterranean Europe, offering excellent
productive capabilities and solid business opportuni-
ties, with strong International connections. Ljubljana
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče,
Bern and Munich, ali within a radius of 600 km.

In the last year on the site of the Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technological
development to foster synergies between research and
industry, to promote joint ventures between university
bodies, research institutes and innovative industry, to
act as an incubator for high-tech initiatives and to ac-
celerate the development cycle of innovative products.

At the present time, part of the Institute is be-
ing reorganized into several high-tech units supported
by and connected within the Technology park at the
Jožef Štefan Institute, established as the beginning of
a regional Technology park "Ljubljana". The project
is being developed at a particularly historical mo­
ment, characterized by the process of state reorganisa-
tion, privatisation and private initiative. The national
Technology Park will take the form of a shareholding
company and will host an independent venture-capital
institution.

The promoters and operational entities of the
project are the Republic of Slovenia, Ministry of Sci­
ence and Technology and the Jožef Štefan Institute.
The framework of the operation also includes the Uni-
versity of Ljubljana, the National Institute of Chem-
istry, the Institute for Electronics and Vacuum Tech-
nology and the Institute for Materials and Construc-
tion Research among others. In addition, the project
is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy
and the City of Ljubljana.

Research at the JSI includes the foUovving ma­
jor fields: physics; chemistry; electronics, informat-
ics and computer sciences; biochemistry; ecology; re-
actor technology; applied mathematics. Most of the
activities are more or less closely connected to infor­
mation sciences, in particular computer sciences, ar-
tificial intelligence, language and speech technologies,
computer-aided design, computer architectures, biocy-
bernetics and robotics, computer automation and con-
trol, professional electronics, digital Communications
and networks, and applied mathematics.

Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:-h386 61 1773 900, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se.
Public relations: Natalija Polenec

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica WWW:

http://ai.ijs.si/Mezi/informatica.htin
http://orca.st.usm.edu/inforniatica/

Referees:

Witold Abramowicz, David Abramson, Kenneth Aizawa, Suad Alagič, Alan Aliu, Richard Amoroso,
John Anderson, Hans-Jurgen Appelrath, Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi
Belli, Istvan Berkeley, Azer Bestavros, Balaji Bharadwaj, Jacek Blazewicz, Laszlo Boeszoermenyi,
Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Jerzy Brzezinski, Marian Bubak, Leslie Burkholder,
Frada Burstein, Wojciech Buszkowski, Netiva Caftori, Jasen Ceddia, Ryszard Choras, Wojciech
Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, David ClifF, Travis Craig, Noel
Craske, Matthew Crocker, Tadeusz Czachorski, Milan Češka, Honghua Dai, Andrej Dobnikcir, Sait
Dogru, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel,
Jezo Dujmovič, Pavol Duriš, Hesham El-Rewini, Pierre Flener, Wojciech Fliegner, Vladimir A.
Fomichov, Terrence Forgarty, Hans Praaije, Hugo de Garis, Eugeniusz Gatnar, Jcimes Geller, Michael
Georgiopolus, Jan Golinski, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Inman
Harvey, Elke Hochmueller, Rod Howell, Tomaš Hruška, Alexey Ippa, Ryszard Jakubowski, Piotr
Jedrzejowicz, Eric Johnson, Polina Jordanova, Djani Juričič, Sabhash KaJc, Li-Shan Kang, Roland
Kaschek, Jan Kniat, Stavros Kokkotos, Kevin Korb, Gilad Koren, Henryk Krawczyk, Ben Kroese,
Zbyszko Krolikowski, Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Phil Laplante, Bud Lawson,
Ulrike Leopold-"VVildburger, Joseph Y-T. Leung, Alexander Linkevich, Raymond Lister, Doug Locke,
Peter Lockeman, Matija Lokar, Jason Lowder, Andrzej Malachowski, Bernardo Magnini, Peter
Marcer, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Roland
Mittermeir, Madhav Moganti, Tadeusz Morzy, Daniel Mosse, John Mueller, Hari Narayanan, Elzbieta
Niedzielska, Marian Niedq'zwiedzinski, Jaroslav Nieplocha, Jerzy Nogieč, Stefano Nolfi, Ftanc Novak,
Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Hubert Osterle, Wojciech Olejniczak, Jerzy
01szewski, Cherry Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Mitja Peruš, Wairen Persons,
Stephen Pike, Niki Pissinou, Ullin Plače, Gustav Pomberger, James Pomykalski, Gary Preckshot,
Dejan Rakovič, Cveta Razdevšek Pucko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Luc de Raedt,
Ewaryst Rafajlowicz, Sita Ramakrishnan, Wolf Rauch, Peter Rechenberg, Felix Redmill, David
Robertson, Marko Robnik, Ingrid Russel, A.S.M. Sajeev, Bo Sanden, Vivek Sarin, Iztok Savnik,
Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Denis Sever, William Spears,
Hartmut Stadtler, Olivero Stock, Janusz Stoklosa, PrzemysJaw Stpiczyriski, Andrej Stritax, Maciej
Stroinski, Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šile, Metod Škarja, Jifi Šlechta, Zahir Taji, Jurij
Tasič, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Wieslaw Traczyk, Roman Trobec,
Meirek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz Usowicz,
Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Zygmunt Vetulani, Olivier de Vel,
John Weckert, Gerhard Widmer, Štefan Wrobel, Stanislaw Wrycza, Janusz Zalewski, Damir Zazula,
Vanchun Zhang, Robert Zore, Anton P. Zeleznikar

http://ai.ijs.si/Mezi/informatica.htin
http://orca.st.usm.edu/inforniatica/

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European
Computer science and informatics community; scientific
and educational as well as technical, commercial and indus-
trial. Its basic aim is to enhance Communications between
different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers
accepted by at least two referees outside the author's coun-
try. In addition, it contains Information about conferences,
opinions, critical examinations of existing publications and
ncws. Finally, major practical achievements and innova-
tions in the computer and Information industry are pre-
sented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from
the Editorial Board can conduct the refereeing process by
appointing two new referees or referees from the Board of
Referees or Editorial Board. Referees should not be from
the author's country. If new referees are appointed, their
names will appear in the list of referees. Each papcr bears
the name of the editor who appointed the referees. Each
editor can propose new members for the Editorial Board or
referees. Editors and referees inactive for a longer period
can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Execu-
tive Editors -vvho examine the reviews, sort the accepted ar-
ticles and maintain appropriate international distribution.
The Executive Board is appointed by the Society Infor­
matika. Informatica is partially supported by the Slove-
nian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his
article. When accepted, publication in Informatica is guar­
anteed in less than one year after the Executive Editors
receive the corrected version of the article.

Execu t ive Ed i to r — Ed i to r in Chief
Anton P. Železnikar
Volaričcva 8, Ljubljana, Slovenia
E-mail: emton. p . zeleznikarQi j s . s i
WWW: h t tp : / / l ea .hamrad io . s i /~s51em/

Execu t i ve Assoc ia te Ed i to r (Con tac t Pe r son)
Matjaž Gams, Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1773 900, Fax: +386 61 219 385
E-mail: matjaz.gamsQijs .si
WWW: h t t p : //www2. i j s . si/~mezi/mat jaz .html

Execu t ive Associa te Ed i to r (Technical Ed i to r)
Rudi Murn, Jožef Štefan Institute

Pub l i sh ing Council :
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko čuk,
Jernej Virant

Edi tor ia l B o a r d
Suad Alagič (Bosnia and Herzegovina)
Vladimir Bajič (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jožo Dujmovič (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Ftancis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos E. Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Slovenia)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Kari H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Rakovič (Vugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Claude Sammut (Australia)
S. Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jifi Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria) •
Terry Winograd (USA)
Štefan Wrobel (Germany)
Xindong Wu (Australia)

B o a r d of Advisors :
Ivan Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

http://lea.hamradio.si/~s51em/
http://matjaz.gamsQijs.si

Volume 23 Number 1 April 1999 ISSN 0350-5596

nformatica
An International Journal of Computing and Informatics

Introduction
Mobile Cluster Computing and Timeliness Issues

High-Performance Cluster Computing over
Gigabit/Fast Ethernet

The Remote Enqueue Operation on Networks of
Workstations

Preserving Mutual Interests in High Performance
Computing Clusters
A Dynamic Load Balancing Method On A
Heterogeneous Cluster Of Workstations

Minimizing Communication Conflicts with
Load-Skewing Task Assignment Techniques on
Network of "VVorkstations
Scheduling of I/O in Multiprogrammed Parallel
Systems
Fault Tolerance of Parallel Ada,ptive Applications
in Heterogeneous Systems
Fault tolerant execution of Compute-intensive
Distributed Applications in LiPS
JavaPorts: An Environment to Facilitate Parallel
Computing on a Heterogeneous Cluster of
Workstations I
Structured Performability Analysis of Parallel
Applications
Sorting on Clusters of SMPs

1
H. Zheng, R. Buyya 5
S. Bhattacharya
J. Sang, CM. Kim 19
T.J. Kollar, I. Lopez

M.G.H. Katevenis 29
E.P. Markatos, P. Vat-
solaki, C. Xanthaki

O. Kremien 41
K. Michael, E. Irit
A. Bevilacqua 49

W.-M. Lin , 57
W. Xie

P. Kwong 67
S. Majumdar

D. Kebbal 77
E.G. Talbi, J.M. Geib
T. Setz f 87

E.S. Manolakos, 97
D.G. Galatopoullos

J.P. Dougherty 107

D.R. Helman, J. JaJd 113

Problem Definition, Data Cleaning, and .
Evaluation: A Classifier Learning Čase Study

Research on Telework in Slovenia
Reports and Announcements ,;

F. Provost 123
A.P. Danyluk
E. Jereb, M. Gradišar 137

143

