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Clustering-in Search for Scalable Coinmodity Supercomputing 

The history of computing can be viewed as a con-
stant search for computational power. As soon as a 
new, more powerful, computer is developed a larger 
problem to be solved appears on the horizon. This 
need for computational power, instead of leveling off, 
is growing day by day. During recent decades differ-
ent high performance computer systems attempted to 
satisfy the power-hungry users. The most common 
systems were: 

- Vector Computers (VC) 

- Massively Parallel Processors (MPP) 

- Symmetric Multiprocessors (SMP) 

- Cache-Coherent Nonuniform Memory Access 
Computers (CC-NUMA) 

- Distributed Systems 

Although vector computers provided the break-
through needed for the computational research to 
emerge as an independent science, they were only a 
partial answer as they could deliver top performance 
only for a few classes of problems. Many powerful scal­
able MPP systems have been built, but most of them 
have failed commercially due to their high cost and a 
low performance/price ratio. Symmetric multiproces­
sors are attractive, but they suffer from the scalability 
problem. Non-uniform memory access computers ad­
dress some scalability and cost issues, but they suffer 
from a single point of failure as they use a single op-
erating system kernel across aH nodes (as in SMPs). 
Distributed systems are scalable but they do not offer 
ease of use or means for fast communication, which are 
essential requirements for efficient execution of parallel 
applications. 

Recent years have witnessed a new direction of 
search for computational power - cluster computing 
(CC). (A cluster is a computer system that forms, in 
varying degrees, a single unified resource composed of 
severa! interconnected computers.) Although cluster-
ing or cluster computing has been around for more 
than 25 years it did not gain momentum until three 
technology trends converged in the 1980s: develop-
ment of high performance microprocessors, emergence 
of high-speed networks and maturation of standard 
tools for high performance distributed computing. An-
other trend which is also worth mentioning in this con-
text is the increased need for computing power in com-
mercial applications coupled with the high cost and 
low accessibility of traditional supercomputers. . 

In recent years, the availability of high-speed 
networks and high performance microproces-
sors/workstations as commodity components make 

networks of workstations an appealing vehicle for 
cost-effective parallel computing. Clusters/networks 
of computers (workstations, PCs or SMPs) built using 
commodity hardware and software (such as Linux, 
PVM, or MPI) play a major role in redefining the 
concept of high performance computing. As a whole, 
clusters are becoming an alternative to MPPs and 
supercomputers in many areas of application. 

This Special Issue is a result of an extremely large 
number of submissions that we received for the Spe­
cial Issue of the Parallel and Distributed Computing 
Practices (PDCP) Journal [3]. Among more than five 
dozens of submissions, 24 papers have received very 
high recommendation from reviewers. We could not 
publish them ali in PDCP but we were able to find a 
home for them here in INFORMATICA. A half of the 
selected papers will appear in PDCP and the remain-
ing half appears in this issue. The focus of this Special 
Issue will be on both hardware and software aspects 
of cluster computing. 

There are many ways of looking at cluster comput­
ing. Typically we consider them to be a number of 
raachines physically connected via a wired network. 
This does not need to be the čase in the future. We 
thus start from the paper by H. Zheng, et. al. Mo-
bile Cluster Computing and Timeliness Issues which 
presents an overview of research issues involved in mo-
bile cluster computing. In particular, they consider 
problems involved in cluster nodes migrating between 
cells of a wireless network. The next paper returns 
back to Earth and considers how the modern high-
speed netvvorks can be used to facilitate cluster com­
puting. In High-Performance Cluster Computing over 
Gigabit/Fast Ethernet, J. Sang, et. al. consider cluster 
computing over Fast Ethernet and present practical re-
sults obtained using the NAS parallel benchmark. The 
last paper addressing the global issues is The Remote 
Enqueue Operation on Netuiorks of Workstations by 
M. Katevenis, et. aJ. It contains an overview of com­
munication mechanisms necessary to support cluster 
computing. In the paper a remote-enqueue atomic op­
eration is introduced and compared with other possible 
alternatives. 

The second group of papers is devoted to the load 
balancing and scheduling issues of clustering. In Pre-
serving Mutual Interests in High Performance Com­
puting Clusters O. Kremien et. al. address one of 
the drawbacks of the PVM environment (use of a sim-
ple round-robin process allocation policy) by adding 
to the environment a resource manager. This enables 
them to facilitate effectively the construction of clus­
ters built of heterogeneous computers. Another ap-
proach to load balancing is presented by A. Bevilac-
qua in A Dynamic Load Balancing Method on a Het-
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erogeneous Cluster of Workstations. His load balanc-
ing algorithm is based on the dynamic data assign-
ment and its performance is studied for a 3D image re-
construction problem. In Minimizing Communication 
Conflicts with Load-Skeiving Task Assignment Tech-
nigues on Nettvork of Workstations W.-M. Lin and W. 
Xie study the load balancing problem for low speed 
networks. They present an algorithm which is par-
ticularly well suited for the bus-based communication. 
Finally, in Scheduling of I/O in Multiprogrammed Par­
allel Systems, P. Kwong and S. Majmudar address the 
effective management of parallel I/O for cluster com-
puting. They develop a simulation model and compare 
the performance of various I/O scheduling strategies. 

The next two papers are devoted to fault toler­
ance. D. Kebbal et. al. in Fault Tolerance of Par­
allel Adaptive Applications in Heterogeneous Systems 
discuss fault tolerance for heterogeneous adaptive sys-
tems. The proposed fault tolerance policy based on 
optimized coordinated checkpointing is shown to be 
an effective strategy allowing a recovery from failure 
by involving only a minimal part of the failed applica-
tion. A fault tolerance approach based on utilization of 
idle cycles of computers in the cluster is proposed by T. 
Setz in Fault Tolerant Execution of Compute-Intensive 
Distributed Applications in LiPS. The proposed ap­
proach alleviates the need for application-wide syn-
chronization used to generate sets of consistent check-
points. 

The last three papers are devoted to application de-
velopment. E. Manolakos and D. Galatopoullos in 
JAVAPORTS: An Environment to Facilitate Parallel 
Computing on a Heterogeneous Cluster of Worksta-
tions shows the use of Java language for high per­
formance computing. They demonstrate experimen-
tal results shovving that a good performance can be 
achieved even on a relatively slow lOMbs Ethernet 
based cluster of workstations. In Structured Performa-
bility Analysis of Parallel Applications, J. Dougherty 
presents a unified performance and dependability eval-
uation methodology for practical large-scale parallel 
applications. Experimental results comparing the per­
formance obtained on a network of DEC Alpha Sta-
tions with the performance predicted by the theoret-
ical model are presented. Finally, D. Helman and J. 
JaJa in Sorting on Clusters of SMPs discuss practical 
issues involved in developing an efficient sorting algo­
rithm for a cluster of DEC SMP Alpha servers. 

We would like to express our deep gratitude to Prof. 
M. Gams, Managing Editor of INFORMATICA who 
agreed to publish this Special Issue on a very short 
notice. This issue would not be possible without the 
help of referees (listed below) who worked very hard 
to review aH the submitted papers. We would like to 
thank them ali. 

We hope you will find this special issue interesting. 
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With the rapid advancement and extensive deployment of cluster computing and mobile commu-
nication, the integration of these two technologies has become feasible and lead to the emergence 
of a new paradigm called mobile cluster computing (MCC). Among the issues that need to be 
addressed before MCC can become a reality, the timeliness issue is an important one, especially 
\vhen mobile nodes within a computing cluster migrate from one celi to another celi in a cellular 
wireless network. In this paper, we Brst dehne and analyze the potential application environment 
of mobile cluster computing. We also present a generic architecture of a mobile cluster computer 
and several potential research issues of mobile cluster computing. In the rest of this paper, we 
focus on the timeliness issue of routing and multicast when handover occurs, along with several 
solution approaches based on different system architectures. 

1 Introduction 

During the past decade many diiferent computer sys-
tems supporting high performance computing have 
emerged. Among several common systems, clusters'^ 
have become increasingly popular to prototype, de-
bug and run parallel applications [1]. Since individ-
ual workstations have become increasingly powerful, 
and the communication bandwidth between them is 
increasing and latency is decreasing, clusters can pro-
vide similar (or sometimes better) performance relia-
bility as well as fault tolerance as the traditional main-
frames or supercomputers. 

In addition, we observe that, as a result of the 
rapid development of mobile wireless networking sys-
tem, users can access Information across distributed 
sites and exploit the capacities of the global network 
at any tirne without regard to the location or mobil-
ity of the end units. This suggests that in addition to 
stationary nodes, mobile nodes will enter the cluster 
computing arena and result is the emergence of a new 
paradigm called "Mobile Cluster Computing" (MCC). 

Another boost to our proposition for MCC is the 
recent emergence of mobile processors from industry 
dominant microprocessor vendors [2]. They include 

^Currently associated with the School of Computer Science 
and Software Engineering at Monash University, Melbourne, 
Australia. 

•^Cluster is a collection of interconnected computers working 
together as a single system. 

Intel Mobile Pentium II [3], Intel Celeron [4], and Mo­
bile AMD-K6-2 [5] processors. 

The mobile processors run at a lower voltage than 
desktop processors and operate within the thermal en-
velope of today's notebook designs. The primary ad-
vantage of the lower voltage, lower power mobile pro­
cessors, is extended system battery life. 

These mobile processors are compatible with exist-
ing software and offer leading-edge 3D and multimedia 
performance; in near future, they aim to provide sup-
port for high-performance notebook computing. 

Although, due to the transmission latency and poor 
reliability of wireless media, mobile nodes may not be 
the best choice to participate in a cluster providing. a 
high-performance computation facility for large-scale 
and grand-challenge applications, there are many ap­
plications that will benefit from clustering regardless. 
Further, this scenario will change as technology be-
comes mature. In these applications several of its par-
ticipating nodes may need to be mobile. Examples 
include oil rig sensors, sensors and monitors in earth 
quake detection/prediction, marketing representatives 
travelling ali over the country/world with laptops and 
sales data feeding in, disaster management systems, 
battlefield command systems, SWAT teams, and stock 
market wizards. A few sample applications of MCC 
include the following: 

- A scientific, nomadic environment. For example, 
scientists stationed at several different cities may 

mailto:haihoiigz@asu.edu
mailto:sourav@asu.edu
file:///vhen
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gather seismic data and employ a parallel algo-
rithm that predicts future seismic activities. 

— Embedded military supercomputing applications 
in vvhich fault tolerance is a concern. For example, 
tanks, trucks, planeš, etc. may be connected via 
a wireless network. They can gather data, send it 
to other nodes in the network, and use distributed 
algorithms to make decisions based on that data. 

— Intelligent incast or multicast in which strict tirne 
deadlines are used to steer immediate actions. For 
example, consider the study of a weather phe-
nomenon such as tornadoes. Several mobile nodes 
may gather data, send it to other nodes and use 
the data to make predictions about the path of 
the tornado. 

Applications of this nature can be executed on a sin-
gle system, but the data sources are inherently at dis-
tant mobile locations and thus necessitate the need for 
sharing mobile resources. Even in a normal environ-
ment mobile computers may be used extensively. The 
idle CPU cycles of these mobile nodes can be used to 
process whole or part of the input or output of a large 
scale application in cooperation with other mobile or 
stationary nodes. Therefore, mobile cluster computing 
is expected to play an important role in the modem 
computing era and mobile network systems. 

Furthermore, in čase of mobile cluster computing 
there is no need to invest in a new backbone infras-
tructure. The existing wireless network infrastructure 
(such as a cellular netvvork system, PCS, satellite 
communication system, wireless LAN) can act as a 
communication backbone for mobile cluster comput­
ing. Among several wireless netvvork configurations, 
a cellular structure is the most commonly used 
one, where the wireless service area is physically 
partitioned into different cells. Regardless of whether 
communication is cellular/stellite-based, they are ali 
based on the wireless media and provide communi­
cation environment to the mobile users. Therefore, 
the infrastructure of mobile cluster computing can 
be built based on the combination and collaboration 
of the general cluster computing and the wireless 
network. 

Contribution: In this paper, we define and analyze 
the application environments for mobile cluster com­
puting. We have raised the potential research issues in 
mobile cluster computing, among them the timeliness 
issue in mobile cluster computing, especially during 
handover events, has been identified and addressed in 
detail. The contributions of this paper include block-
based route optimisation which focuses on timeliness 
issue in rerouting during handover, and severa! mul­
ticast tree reconstruction algorithms that address the 
timeliness issue in multicasting during handover. 

2 A Mobile Cluster Computer 
and its Architecture 

A cluster generally refers to two or more computers 
(nodes) connected together with each node having the 
"strong sense"^ of cluster membership [1]. A mo­
bile cluster, in addition, consists of mobile and sta-
tionary nodes (see Figure 1). The nodes of a mobile 
cluster communicate either using a wireless network 
(e.g., cellular network) and/or high speed wired net-
work system. It does not matter where the nodes are 
and what kind of backbone is used to support the 
nodes, these nodes can communicate and collaborate 
with each other just as in a general computing clus­
ter. That is, a mobile cluster consists of both mobile 
and non-mobile nodes interconnected through either 
physical interconnect or wireless network and work in 
a coordinated manner transparently sharing workload 
among themselves. In addition, a mechanism for au-
tomatic detection of node status-whether it is static 
or mobile-and communication via either physical or 
vifireless netvvork is appropriately supported. 

The following are the basic components of mobile 
cluster computers: 

- Multiple High Performance Computers (PCs, 
Workstations, or SMPs) 

— State-of-the-art Operating Systems (Layered or 
Micro-kernel based) 

— High Performance Networks/Switches (such as 
Gigabit Ethernet and Myrinet) 

- Network Interfaces Cards (NICs) (e.g., wireless 
NIC) 

— Wireless Network Infrastructure (e.g., cellular 
network system) 

- Hardware (such as Base station, MTSO, 
PSTN) 

- Operating System Kernel (such as mobility 
management, channel resource management, 
registration) 

— Fast Communication Protocols and Services (such 
as Active and Fast Messages) 

- Mobile Communication Protocols like Mobile IP 

- Cluster Middleware (Single System Image (SSI) 
and System Availability Infrastructure) 

- Hardware (such as Digital Memory Channel, 
hardware DSM, and SMP techniques) 

^It referes to the appearance of a collection of independent 
nodes as a single unified resource and of course, ali nodes must 
aim towards this. 
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Figure 1: Mobile Cluster Computing Generic Architecture. 
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- Operating Systera Kernel or Gluing Layer 
(such as Solaris MC and GLUnix) 

- Applications and Subsystems 

- Applications (such as system manage-
ment tools and electronic forms) 

- Runtime Systems (such as software 
DSM and parallel file system) 

- Resource Management Systems (such as 
LSF and CODINE) 

- Parallel Programming Environments and Tools 
(such as compilers, PVM, and MPI) 

— Applications 

- Sequential 

- Parallel or Distributed 

The network interface hardware acts as a commu-
nication processor and is responsible for transmitting 
and receiving packets of data between cluster nodes 
via a network/switch which could be ATM, fast Eth­
ernet, wireless network, etc. When a wireless net-
work is involved to provide communication methods 
between nodes within a cluster, cluster computing re­
search should consider a lot of issues that the char-
acteristics of mobility in a wireless network bring up. 
For example, when the mobile node is an Internet node 
assigned with an IP address, mobile IP, one of the com­
munication protocols, may need to be included to pro­
vide a seamless connection across the Internet when 
the mobile node is roaming. 

Communication software offers the means of fast 
and reliable data communication among cluster nodes 
and to the outside world. Often, clusters with a spe-
cial network/switch like Myrinet use communication 
protocols such as active messages for fast communi­
cation among its nodes. They potentially bypass the 
operating system and thus remove the critical commu­
nication overheads providing direct user-level access to 
the network interface. 

The cluster nodes can work collectively, as an in-
tegrated computing resource, or they can operate as 
individual computers. The cluster middleware is re­
sponsible for offering an illusion of a unified system 
image (single system image) and availability out of a 
collection of independent but interconnected comput­
ers. 

Programming environments can offer portable, ef-
ficient, and easy-to-use tools for development of ap-
plications. They include message passing libraries, de-
buggers, and profilers. It should be noted that clusters 
could be used for the execution of sequential or parallel 
applications. 

2.1 Infrastructure of Mobile Network 
The infrastructure of mobile cluster computing mainly 
consists of conventional computing clusters and mobile 
networks. Mobile networks (wireless network along 
with wired network) provide connectivity and commu­
nication methods between nodes within a computing 
cluster, on which cluster computing relies at the higher 
layer. There are many implementation technologies of 
mobile networks as shown in Figure 2. 

At the physical and MAC layers in OSI model, a 
non-exhaustive list of wireless networks is as follows. 

— Satellite Communication 

— Cellular Networks 
— PCS 
— Wireless LAN 
— Microwave Communication 
— High-speed Laser Links 

For example, a cellular network system physically 
partitions the service area of wireless networks into 
different contiguous cells. Cells have the connotation 
of geographical area served by a base station. Base 
station consists of a transmitter and two receivers per 
channel, a controller, an antenna system, and data 
links to the cellular office. The base station acts as 
the user-to-MTSO interface. The Mobile Telephone 
Switching Office (MTSO) is the physical provider of 
connections from the cellular radio through the base 
station to the local exchange carrier. The connection 
can be on either a landline or a microwave radio system 
between the points. 

Another example is wireless LAN which provides 
wireless connection for mobile nodes within a small 
area, such as a building. Currently, a lot of commercial 
products of wireless LAN have emerged, some of which 
can reach the transmission rate of lOOMbps. The fol-
lowing list is several examples of some wireless LAN 
implementation. 

— http://www.radiolan.com/ 

— http://www.wilan.com/ 

— http://www.ccsinc.net/ 

— http://www.kcnet.com/dceclan/ 

— http://www.dataequip.com/ 

At the network layer, a lot of mechanisms have 
been proposed or implemented to route the message 
throughout the entire network system even when the 
mobile node is roaming around. Such as wireless ATM, 
dial-up cellular phone connection, mobile IP, etc. For 
example, the lETF solution to route message for a mo­
bile Internet host is mobile IP. The current research 
status and some implementation of mobile IP can be 
found at the following web-sites. 

http://www.radiolan.com/
http://www.wilan.com/
http://www.ccsinc.net/
http://www.kcnet.com/dceclan/
http://www.dataequip.com/
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Figure 2: Infrastructure of Mobile Networks. 

- National University of Singapore, Mobile IP for 
Linux - http://mip.ee.nus.sg/ 

- SUNY, Binghamton -
http://anchor.cs.binghamton.edu/~mobileip 

- Stanford - http://mosquitonet.Stanford.EDU/ 
softvvare/mip.html 

- http://www.cs-ipv6.lancs.ac.uk/MobilelP 

- http://www.ikv.de/products/roamin.html 

Based on the services provided by the network layer, 
nodes (no matter mobile or stationary) could commu-
nicate and collaborate with each other and process the 
large-scale computing. 

In summary, the wireless network infrastructure 
provides a communication scheme to every node in a 
computing cluster in the same way as wired network 
does. However, due to the introduction of mobility 
into cluster computing, a lot of new issues come up. 

3 Research Issues 
Similar to the mobile cellular system, the character-
istics of mobility brings up a number of new research 
topics to mobile cluster computing. 

There are a large number of research issues existing 
in mobile cluster computing, including the following: 

- how to balance the long latency of vvireless media 
and high speed fixed netvvork and perform syn-
chronisation; 

- how to provide a complete transparency to users 
without the knowledge of the underlying system 
which includes both mobile nodes and stationary 
nodes; 

- how to manage the resources and process the 
scheduling among different nodes to maximise 
their throughput. 

Ali of these issues are very critical to the performance 
of mobile cluster computing and further research on 
these issues is needed. In this paper, we concentrate 
on the timeliness issue in mobile cluster computing. 

One of the most important issues in mobile clus­
ter computing is the timeliness of handovers that oc-
cur in the cellular network system. (The set of op-
erations performed when a mobile node moves from 
one geographical celi to another adjacent celi is called 
handover [6]). When handover takes plače, not only 
the channel resource occupied by the node should be 
managed to maintain the connectivity, but also the 
information sent to or from the mobile node should 
be rerouted to the new celi to which the mobile node 
is heading. In addition, if a mobile node is within a 
multicast application when a handover happens, the 
entire multicast tree [8] may need to be reconstructed. 
If the time spent on the resource reallocation, rerout-
ing and its corresponding optimisation, and rebuilding 
the multicast tree is too long, the information sent to 
or from the migrating node may be lost and this may 
result in the serious failure of the entire cluster appli­
cation. Therefore, within a computing cluster, timeli­
ness becomes an important issue when a mobile node 
switches from one celi to another. 

4 Research Focus: Timeliness 
Issue in Mobile Cluster 
Computing 

Timeliness is a critical issue in many computing and 
communication applications, especially in real-time 
systems. A real-time system is one in which the cor-
rectness of the system depends not only on the logical 
results, but also on the time at which those results 
are produced. Messages transmitted in such systems 
must be received by a deadline or they are lost. Such a 
real-time deadline, i.e., timeliness issue, is a key com-
ponent of the QoS (Quality of Service) requirement. 
However, even if the system does not have the real-
time requirement, timeliness issue is stili an impor­
tant component to provide a high QoS to users. For 
example, in a TCP/IP netvvork, if an end-to-end ac-
knowledgement doesn't reach the source node (e.g., 
due to netvvork congestion) before the timer expires, 
the source node will resend the message which would 
increase the network load and thus deteribrate the net-

http://mip.ee.nus.sg/
http://anchor.cs.binghamton.edu/~mobileip
http://mosquitonet.Stanford.EDU/
http://www.cs-ipv6.lancs.ac.uk/MobilelP
http://www.ikv.de/products/roamin.html
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work performance. Therefore, the timeliness issue not 
only exists in real-time systems but also in a normal 
system vvhere timing is an important issue. 

Similarly, the timehness of an operation is an im­
portant issue in MCC under several circumstances. A 
few of them are identified and discussed below. 

4.1 Resource Management 

When a mobile node moves from one celi to another 
celi, the channel used in the old celi may not be 
reusable in the new celi due to co-channel or adjacent 
channel interference or low signal strength leading to 
node isolation from the rest of the cluster. If a new 
channel that needs to be used has not been allocated 
to the node within a short time period, the call may 
be dropped by the user due to the long waiting-time 
in a cellular telephone system, or, the messages trans-
mitted will be delayed, resulting in retransmission in 
a mobile data communication system. If such a de-
lay occurs in a time-critical system, the message may 
not be able to meet the real-time deadline and could 
get lost, thus leading to the failure of an entire ap-
plication [9]. The system resources need to be man-
aged (using checkpointing and migration techniques) 
to handle sudden unavailability of resources. 

4.2 Topology Management 

Timeliness is also an important issue in network topol-
ogy management. Various types of logical topologies 
have been proposed, such as a ring topologij vvhere each 
node has exactly two neighbours, a 2-rfmesh [7] which 
is a planar structure that has nodes arranged in a grid 
of rows and columns, a tree topologij which has a regu-
lar and hierarchical structure of node levels which cre-
ates a tree appearance by having each lower level con-
tain more nodes than the previous level, etc. When a 
mobile node roams and leaves its original position, the 
pre-defined topology is destroyed and the fragmented 
topology has to be reconstructed by selecting a new 
node as the alternative to the migrated one. The time 
spent on such reconstruction should not be too long, 
otherwise neither the cluster computing nor the nor­
mal network communication would show satisfactory 
performance. 

4.3 Rout ing 

In a mobile netvvork system with mobile IP protocol, 
any mobile node is allowed to move about, changing 
its point of attachment to the Internet, while contin-
uing to be identified by its home IP address. Cor-
responding nodes sending IP datagrams to a mobile 
node send them to the mobile node's home address 
by forcing aH datagrams for the mobile node to be 
routed through its home agent. Thus, datagrams to 
the mobile node are often routed along paths that are 

significantly longer than optimal. Route optimisation, 
an extension of mobile IP, provides a means for nodes 
to bypass the possibly lengthy route to and from that 
mobile node's home agent by tunnelling their data­
grams directly to the foreign agent. However, when a 
mobile node rapidly or frequently moves from one celi 
to its neighbouring celi, route optimisation would be 
processed too frequently. Since the binding Informa­
tion transfer and the computation of an optimal route 
at the corresponding node and aH intermediate nodes 
are ali time consuming processes, timeliness becomes 
an important issue in such an environment. 

4.4 Multicast 

Multicasting is an important paradigm of end-to-end 
communication, where simultaneous transmission of 
messages are required from a source to a group of des­
tinations. To route these messages, a multicast tree 
is required to replicate the data available at the root 
node of the tree and forward the data along various 
branches leading to destinations at leaf nodes of the 
tree. However, in a mobile network system, when han-
dover occurs, the multicast tree would be changed by 
constructing a new route and deleting the original un-
used route. Since the time spent on the multicasting 
tree reconstruction may become significant if many 
mobile nodes are involved in the multicast tree, the 
timeliness issue should be considered carefully for each 
multicast tree reconstruction algorithm. 

4.5 Message Interaction Pa t t e rn 
between Different Activities 

In a mobile cluster computing system, the nodes in the 
cluster communicate with each other over networks. 
Different nodes are responsible for different tasks and 
have different message interaction patterns. When one 
or several nodes are vvaiting for the message sent by 
a mobile node that happens to have a longer pro-
cessing time than expected due to handover or some 
other time consuming activities, the normal operation 
of these nodes has to be paused until the message from 
the mobile node becomes available. Such blocking may 
significantly deteriorate the performance of the entire 
cluster computing application. Thus the timeliness is­
sue also appears to be an important issue in a message 
Interactive cluster computing environment. 

4.6 Synchronisation of Cooperative 
Activities 

In most cluster computing applications, the results 
from individual tasks distributed among several nodes 
will eventually be collected and processed by one node, 
which then generates the final result. If one or more 
nodes delay the assigned task and do not provide the 
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result in tirne due to unexpected events, the final re-
sult cannot be generated within a stipulated tirne. It 
might lead to failure in a real-time application or re-
processing due to non-synchronisation of the results 
from other delayed tasks. 

5 State-of-the-Art 

A lot of research has been conducted in the area of 
mobile message rerouting based on different system ar-
chitectures. To successfully reroute a message for the 
mobile node which is roaming on the Internet, mo­
bile IP [12] is most popularly used. With mobile IP, 
when a mobile node migrates from one access point 
to another, the home network of the mobile node will 
transfer the message between the mobile node and the 
correspondent node via the foreign network. Thus, for 
every message meant for the mobile node, it is required 
to be routed through the home network. This route is 
efficient when the agent in the home network resides 
along or near the best route between the correspondent 
node and the mobile node. Since it is possible for the 
home agent to be far away from the best or the optimal 
route between the mobile node and the correspondent 
node, a route optimisation procedure that would aim 
to compute a direct and efRcient route between the mo­
bile node and the correspondent node is suggested in 
the route optimisation draft [13] to improve mobile IP. 
In [14] the operation of mobile computers using IPv6 
which enables mobile computers to cache the home 
network and a care-of address, is specified. The cor­
respondent node then can compute a direct optimum 
route to the foreign network (care-of address). 

A large amount of research has been conducted 
in real-time multicast. Dijkstra's shortest path algo-
rithm [15] and the Steiner tree generation problem [16] 
employed for the delay optimisation and the cost op­
timisation constraints in the real-time multicast can 
produce traffic and tree height minimised real-time 
multicast trees. Some heuristics for the Steiner tree 
problem have been developed that take polynomial 
time and produce new optimal results [17]. In [18] 
the KMB algorithm works under the assumption that 
a network is abstracted to a complete graph consist-
ing of edges that represent the shortest paths between 
the source node and the destination nodes. The dy-
namic update of the tree if destination nodes join or 
leave the tree occasionally is examined in [16]. The 
dynamic algorithm proposed for the multipoint prob­
lem satisfies the bandwidth constraints based on the 
minimum spanning tree algorithms proposed for the 
Steiner tree problem. In [19] the optimisation on both 
traffic cost and delay is discussed; however, the authors 
assume that the cost and delay functions are identical. 
A source-based multicast algorithm that can set the 
variable delay bounds on destinations and can handle 
variants of network cost optimisation goals is proposed 

in [20]. Finally, in [21] real-time multicast application 
which is required to meet specified time and geograph-
ical constraints is considered. This study improves 
steadiness and tightness metrics, defined as functions 
of maximum and minimum individual point-to-point 
delay. 

6 Timeliness Issue in Routing 
and Handover 

In cellular wireless networks, a mobile node that roams 
from one celi to a neighbouring celi could be a cellular 
handset or an IP node assigned with an IP address. 
No matter what type of mobile node it is, when the 
handover occurs, the Information sent to or from the 
mobile node should be rerouted in time. However, in 
current research, for different type of mobile nodes, 
the mechanism of rerouting and route optimisation is 
different and thus the corresponding timeliness issue 
is addressed in a different manner. 

6.1 Timeliness Issue in IVIobile IP 

The basic lETF mobile IP protocol provides for trans­
parent packet routing to mobile hosts on the Internet. 
This protocol suggests that aH the packets must pass 
through the home agent, which will then tunnel them 
to the current foreign network. A proposed extension 
of mobile IP is a route optimisation scheme of sending 
a binding update message to the correspondent node 
so that it could perform optimisation in the route to 
the mobile node. In this approach, the correspondent 
node is required to maintain a binding cache, which 
is basically a tuple consisting of the foreign network 
the mobile node is currently in, the home agent of the 
mobile node, and the time for which the mobile node 
will be in the current foreign network. An extension 
to the route optimisation scheme has also been pro­
posed which suggests an approach where the home 
network sends Information about the mobile node's 
current location via a piggy-back message. The cor­
responding node then communicates directly with the 
mobile node. This approach has the additional advan-
tage that it does not require the binding cache or the 
binding list to be present. 

The current research indicates that there are two 
different perspectives to a node's mobility. In the first 
scenario, the mobile node is a station with a fixed 
IP. The mobile node then moves from the home net-
work to a foreign network. The problem in mobile IP 
is maintaining connectivity within this mobile node 
after it moves to the new location (i.e., foreign net-
work) provided it has the same IP as earlier. The 
mobile IP protocol addresses this problem with the 
"tunnelling" solution. The Route optimisation based 
on this is improved by constructing an optimum route 
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between the correspondent node and the mobile node. 
In the second scenario, the mobile node is relatively 
more 'mobile' than it is in first scenario. In a cellular 
environment, the node is continuously moving between 
cells, i.e, it is rapidly initiating handovers. In such a 
situation, an idea has been proposed that alternate 
routes should be established between the correspon­
dent node and the mobile node so that connectivity 
could be maintained, even under continuous and rapid 
handovers. 

Consider the integration of the above two scenarios, 
where the mobile node is an Internet host, and is con-
nected to the Internet via a base station and an onward 
wired link. The mobile node has a fixed IP address and 
also rapidly initiates handovers. To effectively main-
tain the connectivity under such a situation, one would 
look for a combined solution. Therefore, under this 
problem scenario, the home network would tunnel the 
datagram to the foreign network, until such tirne an 
alternate route is not established (via the route opti­
misation philosophy). But when the mobile node is in 
continuous motion, route optimisation should be per-
formed each time a handover occurs. Since the route 
optimisation is a time consuming task, it may delay 
the messages rerouting to the right destination. In 
addition, if such a route optimisation is performed fre-
quently the network system will get burdened perform-
ing this task instead of the normal communication. 

To solve this problem, we propose that it is not nec-
essary to perform the route optimisation after each 
handover, but the optimisation should be based on the 
motion pattern of the mobile node [22]. Note that the 
handover here has two connotations: a change in the 
wireless link and a change in the point of contact. If 
the binding indicates that the mobile node has an ex-
tended period of stay in the foreign network, then the 
route optimisation needs to be carried out so that the 
following new messages could be rerouted to the mo­
bile node quickly. However, if the mobile node is to be 
in the present foreign network for only a short period 
of time (either because it is continuously in motion or 
for some other reason), then route optimisation is not 
necessary because potential handover may happen in 
a short period of time. So the messages are stili for-
warded from the home netvvork to the foreign network 
instead of finding a new route from the corresponding 
node to the foreign network and then routing ali the 
following messages. 

A simulation model has been conducted in [22] that 
aims to simulate the above circumstance, where mo­
bile node movement has been modelled in four differ-
ent patterns - linear single dimension movement, com-
pletely haphazard movement, straight movement and 
ran dom movement. It compared the performance of 
the above two approaches, one of which carried out 
a route optimisation over every handover, while the 
other advocates forwarding, where the packet meant 

for a mobile node in a foreign network via the home 
network. The simulation results indicate that the over-
all cost of our approach is less than that of the former 
approach. 

6.2 Timeliness Issue in Cellular ATM 
System 

Like the handover process in mobile IP, efRcient han­
dover schemes have been proposed that aim to reduce 
latency for a cellular ATM network. The virtual con-
nection tree (VCT) concept where virtual circuits are 
pre-established from the root of the tree to each base 
station was proposed in [10]. Therefore, a handover 
involves only the switching between virtual circuits. 
In [10] it was claimed that admission control is invoked 
only in new virtual connection establishment and the 
handover, which is cross to the adjacent virtual con­
nection. Since the geographical area spanned by a vir­
tual connection tree may cover large area and contain 
many base stations, the frequency of the admission 
control involvement is stili low. Hence, the related 
handover problems caused by small cells are avoided. 
On the other hand, [11] doubted the low admission 
control involvement of the connection tree during a 
mobile handover, and pointed out that the connection 
tree generates large overhead during a handover due to 
call admission processing in every node along the new 
route. To address this drawback, we proposed a mo­
bile virtual path netvvork architecture (MVPA) where 
the pre-defined virtual path topology eliminates the 
need for elaborate call routing functions and svvitch-
ing table. Also, call admission control decisions only 
need to be executed in the mobile ATM switch (MAS) 
and the area communication server (ACS). 

Hovvever, both VCT and MVPA ignore the fact that 
a large portion of the vvireless communication is usu-
ally in the same area covered by the same VCT or 
ACS, vvhich is generally defined as a local trafRc. With 
the VCT or MVPA approaches, aH local traffic stili 
has to go through the VCT root or ACS even if the 
source and destination mobiles are covered by differ-
ent MASs under the same ACS. The route via the root 
may not be the shortest path, and is likely to delay the 
transmission of messages, and also creates a large and 
unnecessary overhead. As a remedy, [23] proposes a 
cross-tree concept, namely virtual circuit cross-tree, 
to separate the local and across tree traffic. Similar to 
the routing in VCT, the traffic across different virtual 
connection tree vvould be sent to the root and trans-
mitted to another virtual connection tree. Hovvever, 
for the local traffic vvithin the region covered by the 
same virtual connection tree, it vvill be more efficient 
to route the traffic from the source node to its nearest 
parent controller vvhich is able to route the traffic to 
the destination. 

When a handover happens, the mobile node may 
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move within or across a VCT region. In order to 
quickly reroute each handover virtual connection to 
the new celi, a remote and local mobile rerouting path 
architecture is needed. In this architecture, admission 
control is not necessary for every handover, but only 
for the handover across an adjacent region. When lo­
cal trafRc is the major trafRc, the latency and overhead 
resulting from handover could be improved a lot than 
the original VTC and MVPA approaches. 

7 Timeliness Issue in Multicast 
and Handover 

Current trends in networking application, such as mul-
timedia, indicates that there will be an increasing de-
mand in future network for mobile multimedia com-
munication. Multimedia applications require support 
from the underlying broadband network at the end-
to-end communication level. Multicasting is an im-
portant paradigm of end-to-end communication. It is 
a type of group communication which requires simul-
taneous transmission of messages from a source to a 
group of destinations. The route of multicast can be 
viewed as a tree which is a data distribution path con-
sisting of the router nodes and links to carry the data 
flow from a source to destinations. The routing sys-
tem replicates the data at the root node of a tree and 
forwards the data along various branches leading to 
destinations at the leaf nodes of the tree. 

In the cluster computing arena, multicast is also an 
often used method to distribute message from one node 
to multiple nodes within a computing cluster. The 
same principle applies to the mobile cluster computing 
applications. If a mobile node is a member of a com­
puting cluster as well as a multicast tree which is used 
to distribute messages among multiple nodes within 
the cluster, when it handovers from one celi to another 
celi, the multicast tree may need to be changed by con-
structing a new route to handover mobile and delet-
ing the original unused route. Since such multicast 
tree reconstruction is a time consuming process, time­
liness becomes an important issue which the network 
designer should consider. If the reconstruction takes 
too long, the message sent to the handover node may 
be delayed or even be lost, then the message received 
by different nodes will not be synchronised vvhich will 
lead to the retransmission or pending of some of the 
processes. 

Many cellular networks follow a centralised network 
management scheme that ušes a base station organi-
sation where ali communication between nodes is han-
dled by the base stations. Another option for the cel­
lular networks is to use a distributed network manage­
ment scheme, which is called an ad-hoc cellular net-
work, where several mobile nodes come together in a 
small area and establish peer-to-peer communication 

among themselves without the use of the base station. 
In this section, we discuss timeliness issue in multicast 
and handover under two types of mobile wireless net-
works: base-station-oriented and ad-hoc netvvork. The 
type of nodes constituting the multicast tree in these 
two networks are different. In base-station-oriented 
cellular network, the multicast tree is composed by 
the base stations and the mobile nodes, where the base 
stations are the intermediate nodes of the tree and the 
mobiles are the leaf nodes of the tree. However in ad-
hoc networks, since there is no base-station, ali nodes 
in the multicast tree are mobile nodes. These nodes 
connect with each other according to a logical topology 
and one or many of them may be selected as leader(s) 
to perform multicast just as a base-station does in the 
base-station-oriented network. 

7.1 Timeliness Issue of Multicast and 
Handover in Base-Station 
Oriented Network 

Timeliness is a key component of the QoS require-
ments, and this is commonly measured as end-to-end 
delay. The purpose of our research is to maintain the 
end-to-end delay of the multicast session under a toler-
able value during handover in a cellular network [24]. 
We first discuss the timeliness issue of multicast when 
the handover occurs in a cellular network. Then we 
commence with a triangle mesh topology. .We also 
propose a new multicast tree reconstruction algorithm 
under the proposed triangle mesh topology. 

7.1.1 Timeliness Issue in Handover and 
Multicast 

When a mobile node handovers from one celi to an­
other celi, the packets should be rerouted from the 
old base station to the new base station. If the mobile 
node is also within a multicast tree, when handover oc­
curs, it may no longer receive any multicast messages 
if the new base station is not within the same tree and 
will not forward further multicast message to it. Un­
der such circumstance, not only normal rerouting but 
also multicast tree reconstruction should be accom-
plished before the handover switching is finished so 
that the normal communication and multicast session 
would not be broken. Hence, there are two timeliness 
aspects we should consider during handover and mul­
ticast. One is the time to reroute the messages which 
has been discussed in the last section, the other is the 
time for a multicast message to reach the destination 
which is the focus of this research. 

7.1.2 Multicast Tree Reconstruction 

Multicast tree reconstruction is applied to adjust the 
multicast tree and to prepare for the potential han­
dover. It aims to guarantee that the multicast tree can 
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maintain the timeliness requirement even after been 
reconstructed. Due to the time cost of reconstructing 
the tree, we propose to keep a suitable multicast tree 
which satisfies the timeliness requirement during the 
multicast session by just adding a hop into the original 
multicast tree instead of reconstructing a new one af­
ter each handover. Such a new multicast tree may not 
be the optimum tree, but the reconstruction time has 
been reduced significantly by avoiding the global com-
munication and tree construction (while satisfying the 
timeliness requirement of multicast). This "just add 
a hop" multicast tree reconstruction approach is ad-
vantageous even when frequent handovers happen to 
a mobile node, because if during each handover pro-
cess, the multicast tree should be reconstructed glob-
ally, the system resources would be exhausted by a 
new tree construction instead of the normal commu-
nication. But when such a non-optimal tree cannot 
satisfy the timeliness requirement of multicast, a new 
multicast tree is required to be constructed. The pro-
cess of deciding when to reconstruct the tree is called 
multicast tree optimisation condition judgement. This 
judgement assumes the direction of the next handover, 
estimates the end-to-end delay of the new path by 
adding a hop to the original path, and then compares 
such delay with the timeliness requirement. If the time 
delay along the new path is stili within the tolerance of 
the normal multicast requirement, the new multicast 
tree construction should be initiated. 

7.1.3 Triangle Mesh 

Before the introduction of the new multicast tree con­
struction and reconstruction algorithm, we commence 
with a new cellular network topology. In cellular net-
work, hierarchical topology is the most commonly used 
model where PSTN, central controllers, base stations 
and mobile users construct a hierarchical architecture. 
AH the traffic across the inter or intra-region cells 
will pass through the central controllers; this makes 
the cellular network system constructed as a multiple 
layer star topology with the central controUer acting as 
the star centre. This topology is indeed a centralised 
topology where the central controUer may become the 
bottleneck during a heavy loaded traffic hour. To solve 
this problem, we commence with a new topology where 
each base station is connected with other base sta­
tions in its neighbouring cells. In this way, the intra-
region traffic are processed by base stations themselves 
through the physicaJ links while the central controllers 
only handle the inter-region traffic. If we idealise every 
celi as a regular hexagon, the entire connection among 
the base stations is a triangle mesh. We also retain the 
hierarchical architecture at a higher level as it used to 
be. 

Figure 3: Triangle Mesh. 

7.1.4 

Figure 4: Optimised Triangle Mesh. 

Multicast Tree Construction and 
Reconstruction in Triangle Mesh 

In the cellular network with the above topology which 
combines hierarchical architecture and triangle mesh 
architecture together, there are two types of handover 
- intra-region handover and inter-region handover. We 
focus on the intra-region handover in this research, 
while our algorithm over triangle mesh can be easily 
extended to the whole network. 

As shown in Figure 3, a triangle mesh can be divided 
into the six areas along three lines across a source node. 
Since each line in a sparse direction will not be the part 
of the shortest path from the source node to the des-
tination node, we can erase aH the lines in the sparse 
direction inside every area. This is shown in Figure 4, 
where the triangle mesh changes to quarter 2D mesh in 
each of the six areas. To construct the multicast tree 
in this quarter 2D mesh, we distribute ali the nodes 
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into six areas and get the common least ancestor node 
of every area. Then inside every area, we construct 
a submulticast tree which has the root at the com­
mon least ancestor node by using any of the existing 
2D mesh multicast tree construction algorithms. With 
such a construction, we can get a multicast tree on a 
triangle mesh, which satisfies the condition that the 
path from the source node to every destination is the 
shortest path. 

When a mobile node handovers across cells, and 
"just add a hop" approach is not able to satisfy the 
timeliness requirement, multicast tree should be re-
constructed. First, we get the node that needs to be 
added to the tree (i.e., the new base station in the celi 
that the mobile is moving to) after last tree construc­
tion or reconstruction. Second, we get the nodes that 
are not necessary to be included in the tree any more 
because the mobiles inside these cells have already left 
for other cells. The reason that they are stili in the 
tree is the "just add a hop" approach includes them 
as temporary. When the whole tree is being recon-
structed, it is not necessary to include these nodes in 
the tree. If these nodes are leaf nodes, we remove them 
from the tree and also disconnect the links connecting 
them from other nodes. Then we check their parent 
nodes applying the same method and repeat the pro-
cess until there is no node that is not necessary to be 
included into the new multicast tree. Finally, for every 
node that needs to be included into the new tree, we 
calculate the shortest path from ali the nodes inside 
the tree to it, and use the shortest one that can sat-
isfy the end-to-end delay requirement for each node. 
Then we add the node into the tree and set up the 
corresponding links. The multicast tree is then recon-
structed. 

7.2 Timeliness Issue of Multicast and 
Handover in Ad-hoc Network 

In ad-hoc cellular networks, the timeliness issue be­
comes more important and needs serious considera-
tion because the multicast tree is composed of mobile 
nodes which may handover from one celi to another 
celi at any time. When handover happens, the nodes 
connected to the migrating node become orphans and 
the multicast tree becomes disconnected. If the tree 
cannot be rebuilt soon, multicast message would not 
reach ali the destinations within the time period it re-
quests. We consider the multicast tree reconfiguration 
problem on an ad-hoc cellular network. Our purpose 
is not to generate the 'best' multicast tree, but to re-
construct a disconnected one [25]. 

For ease of multicast operation, rapid maintainabil-
ity and other well known advantages of symmetric 
topologies, we embed the multicast tree on the top of a 
mesh of hypercubes topology for the intra- and inter-
cell networks. In this logical topology, nodes within 

each celi are connected as a binary hypercube, while 
the nodes across the cells are connected as a hexagonal 
mesh. Heuristics multicast algorithms for hypercubes 
are proposed in [26], and anyone of them can be used 
to construct the initial multicast tree. We focus our 
discussion on the timeliness issue of the multicast tree 
reconstruction when the handover happens to a mobile 
node. 

In ad-hoc cellular network, an orphan node is cre-
ated when its parent node migrates. A node can also 
become an orphan, if it migrates and it is a destination 
node in the multicast tree. We identify three possible 
situations for creation of the orphan nodes. 

— First, the migratory node is a lead node. Since 
this node migrates to a new celi, it becomes an 
orphan and it is necessary to find a new parent 
node belonging to the multicast tree. 

— Second, the migratory node is an intermediate 
node, but not a multicast destination. In this 
čase, the migratory node itself does not need to 
re-connect to the multicast tree. But, its children 
nodes become orphans and are required to find 
new parents. 

— Third, the migratory node is an intermediate 
node, and is also a multicast destination. In this 
čase, the migratory node needs to find a new par­
ent after moving into the new celi, and at the same 
time its children become orphans and each one of 
them is required to find a new parent node. 

Regardless of whether the node became an orphan 
due to its own migration, or its former parent node's 
migration, the net effect is identical, i.e., the fact that 
it is required to find a new parent. To accomplish 
that, a rapid replacement of the migrated node into the 
hypercube topology is first needed, and then a rapid 
reconfiguration of the multicast tree is required. 

To keep the maximum distance from the root to any 
one of the leaf nodes minimised, it is preferred to cre-
ate a balanced tree, instead of a skewed one. In doing 
so, if the multicast tree is uniformly spread and bal­
anced to begin with, then during each tree reconstruc­
tion phase, if the orphan node (s) can connect to a new 
parent belonging to a tree at the same level as that of 
the previous parent, then the balanced property of the 
tree remains unchanged. Otherwise, the tree may be­
come progressively imbalanced. As the tree gets more 
and more imbalanced, some of the leaf nodes will get 
unduly away from the root, causing additional mes­
sage transmission delay. Hence our design objective is 
to have an orphan node get a parent whose tree level 
is most similar to that of the node's former parent. 
We propose two approaches below for rapid multicast 
tree reconstruction based on the proposed hypercube 
topology. 
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7.2.1 R R R Approach 

The first solution approach, named "Request-Reply-
Rejection" (RRR) is designed to operate at run-time, 
i.e, to be invoked at a time the multicast tree gets frag-
mented (due to node migration) and is required to be 
connected or reconstructed. With this approach, when 
a node migrates, an orphan node at the l-th level will 
attempt to find a parent so that orphan node request 
other nodes to be their parent. The node receiving the 
request either accepts or rejects the request depending 
on whether or not the timeliness constraints of message 
transmission can be satisfied. AIso the node requested 
and accepting to be the new parent must be a hyper-
cube adjacent to the requesting one (i.e., the orphan). 
This RRR algorithm can also be used to improve the 
multicast tree. During the system idle time, any node 
connected to a parent may use the same approach 
to find a more optimal parent, and consequently up­
date the multicast tree. To maintain a "good shape" 
multicast tree, and avoid creating a skevved shaped 
one, ideally, each reconstruction step should maintain 
a height-balanced tree, where the difFerence between 
the maximum and minimum height of the leaf is at 
most one. However, including this check in each step 
of the RRR algorithm can make the aJgorithm com-
putationally expensive. Besides, there is no guarantee 
that among the available set of topologically adjacent 
parents of the orphan node at least one would offer 
height-balance maintaining connection. Our proposed 
approach is to first list aJl the available parent nodes 
and their topological adjacency. Next, these available 
parent nodes are sorted in the tree level discrepancy 
frora the previous parent of the orphan node. Clearly, 
the first element of the sorted list would offer a parent 
node that is closest in tree height level to the former 
parent of the orphan node. 

7.2.2 LAP Approach 

Another approach, named "Look-ahead Alternate Par­
ent" (LAP) is based on precomputed alternate multi­
cast tree reconstruction techniques. It is required to 
execute the RRR algorithm or an equivalent one in 
the background. In the LAP algorithm, each node 
has a local parent table containing the current par­
ent and a number of alternate parents computed in 
the background. Due to one or more node migrations, 
when orphan node(s) are created, each orphan node 
readily selects one alternate parent from its alternate-
parent table. Ideally, this approach would be able to 
reconstruct the multicast tree in zero waiting time; 
however, in practice a small table lookup delay would 
be involved. Also, if the alternate parent table is not 
ready and available, then associated delays for exe-
cuting RRR algorithm in the background would also 
account as a foreground delay. 

8 Conclusion 

We have discussed the architecture of mobile cluster 
Computer, timeliness issue of rerouting, and multicast 
when handover occurs in the mobile cluster comput-
ing area. Several solution approaches based on differ-
ent system architectures have been discussed. To suc-
cessfully reroute the message from the home network 
to the corresponding node when a mobile node han­
dover occurs a mobile IP tunnels the message from the 
home network to the foreign network until route opti­
misation is accomplished. To accommodate the situa-
tion when mobile node handovers occur frequently and 
rapidly, we propose the idea to delay the route optimi­
sation to a certain period and tunnel the message from 
the home netvvork to a new foreign network so that the 
the system would not get burdened by frequent route 
optimisation. In an ATM-based cellular network, the 
messages are rerouted from the base station of the mo­
bile node to the central controller, which makes the 
central controller to become the bottleneck and thus 
the timeliness requirement may not be meet. We pro­
pose that base stations within the same region com-
municate with each other and process the intra-region 
rerouting by themselves. For the timeliness issue in 
multicast during handover, we propose the "just add 
a hop" idea based on a base-station oriented triangle 
mesh topology so that the multicast tree construction 
and reconstruction become more efficient. In addition, 
in an ad-hoc cellular network, we commence with a 
hypercube topology where two approaches-RRR and 
LAP-are proposed to accelerate the multicast tree re­
construction. 

With rapid developments/progress in the area of 
cluster computing, reliable wireless communication, 
mobile computing, and availability of applications that 
exploit this integrated infrastructure, mobile cluster 
computing is poised to become a reality in the coming 
21st century. 
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Clusters of workstatioDS are often considered to be an attractive platform for low-cost supercom-
puting, especiaUy if a high-speed network is used to interconnect high-end workstations. In this 
paper, we investigate distributed network computing on a tree-structure cluster which consists of 
intermediate and leaf workstations. The intermediate workstations are interconnected together 
by a Gigabit Ethernet full-duplex repeater and can be used as a gigabit cluster testbed. The leaf 
workstations are connected to intermediate workstations via Fast Ethernet and form a lOOMbps 
cluster testbed. We study the performance characteristics involving end-to-end communication 
and coUective communication. The performance of the lOOMbps cluster and the gigabit cluster 
are empirically evaluated by using a mobile-thread based parallel simulation application and the 
NAS Parallel Benchmarks. We also discuss the factors which may affect the performance of cluster 
computing. 

1 Introduction 
Recently the distributed network computing environ-
ment has become a cost-effective computing infrastruc-
ture because it provides aggregate resources of compu-
tational power, communication, and storage[ll]. This 
environment usually consists of a cluster of worksta-
tions which axe connected to a Local Area Network 
(LAN) such as Ethernet for Information exchange and 
coordination among the processors. 

Ethernet, also known as a CSMA/CD network, is 
the most widely used type of LAN. Originally evolved 
from a link of coaxial cable, it is usually implemented 
as a 10 Mbps twisted-pair cable network wired with 
hubs. Though the power and performance of desk-
top computers have grown tremendously, Ethernet 
could stili provide a surplus of bandwidth in the late 
1980s. However, in the early 1990s, with more and 
more data-intensive and communication-oriented ap-
plications, the demand for more network bandwidth 
was reaching a critical stage. In 1995, Fast Ethernet, 
an updated standard based on the previous 10 BaseT 
network, was derived to provide a tenfold increase in 
performance. 

The relationship between computing and communi­
cation technology is like a swinging pendulum. That 
is, the performance bottleneck may be either in the 

communication systems or in the computers when 
time changes. Recently, the increase in microproces-
sor speeds has exceeded the capability of Fast Eth­
ernet connections. To meet the demand for greater 
network capacity, the Gigabit Ethernet standard was 
completed and approved in 1998. It adapts existing 
technology by layering the well-understood and well-
characterized IEEE 802.3 MAC on top of the already 
developed and tested physical layer of the ANSI stan­
dard Fiber-Channel with an 8B/10B block coding sys-
tem. Table 1 briefly compares the technology between 
the Fast Ethernet and the Gigabit Ethernet. A de-
tailed description about Gigabit Ethernet and Fast 
Ethernet can be found in [15] and in [7], respectively. 

The Advanced Computational Concepts Laboratory 
(ACCL), located at NASA Lewis Research Center, 
seeks low-cost high-performance solutions to analyze 
data for NASA aerophysics applications. The Gigabit 
Ethernet was chosen by ACCL to fulfiU the needs of a 
cluster environment for its high throughput and sim-
ple deployment. We utilized a two-level tree-structure 
network topology to construct the parallel testbed. 
The two-level cluster consists of intermediate and leaf 
workstations. The intermediate workstations are con­
nected together by a Gigabit Ethernet full-duplex re­
peater and can be used alone as a gigabit cluster 
testbed. The leaf workstations are connected to in-

http://csuohio.edu
http://nasa.gov
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Network Type 

Fast Ethernet 
(100Base-X) 
Gigabit Ethernet 
(1000Base-X) 

Data Rate 

100 Mbps 

1000 Mbps 

Wire Type 

STP, Single-mode 
and multimode fiber 
STP, Cat. 5 UTP, 
Multimode fiber 

Coding 

4B/5B 

8B/10B 

Slot Time 

512 bit-time 
(5.12 lis) 
4096 bit-time 
(4.096 fJ.s) 

Interframe Gap 

96 bit-time 
(960 ns) 
96 bit-time 
(96 ns) 

Table 1: Fast Ethernet vs. Gigabit Ethernet 

termediate workstations via Fast Ethernet and form a 
lOOMbps cluster testbed. 

The objectives of this research were to determine the 
performance characteristics and associated overheads 
of Gigabit/Fast Ethernet LANs, to empirically exam-
ine the performance differences between the gigabit 
cluster testbed and the lOOMbps cluster testbed, and 
to study the factors which may affect the performance 
on the cluster testbeds. We first measured the end-
to-end communication Iatency and throughput. We 
observed that a high end workstation (such as Pen­
tium II 400MHZ) can saturate a lOOMbps LAN, but 
can only generate 20% of the traffic of a Gigabit Eth­
ernet. Then, we used a message passing library based 
on the MPI standard to measure the performance of 
coUective communication on different cluster testbeds. 
CoUective communication operations, such as barrier, 
scatter, gather, broadcast, e tc , are the major com-
ponents of message-passing based parallel programs. 
These operations allow a group of processes running 
on different computers to synchronize and exchange 
data by invoking the same function with matching ar­
gument s. 

We also conducted experiments by running dis-
tributed applications on the two experimental plat-
forms. For computational intensive applications, per­
formance can be improved through a good compiler 
with efRcient code optimization capability. For com­
munication intensive applications, in addition to the 
network speeds, matching the coUective communica­
tion structure with the cluster interconnection network 
topology can greatly reduce communication overheads 
and hence improve performance. 

The remainder of the paper is organized as fol-
lows. In Section 2, we describe the configuration of 
the testbed system. Section 3 presents the end-to-end 
and coUective communication characteristics. In Sec­
tion 4 we extensively evaluate the performance of the 
clusters. A brief conclusion is presented in Section 5. 

2 System Environment 

A two-level tree-structure network topology is used 
to construct the cluster testbed. The tree clus­
ter consists of a gigabit full-duplex buffered repeater 
PacketEngines® FDR12^^, a server with 9GB disk, 
eight intermediate workstations (400MHz 128MB Intel 

P6, named pageOl - pageOS), and thirty-two dual-CPU 
end-nodes (400MHz 512MB Intel P6, named gruntOl 
- grunt32). The FDR12^'^ connects the server and 
the intermediate workstations via PacketEngines® 
G - NIC'^'^ interface cards at lOOOMbps rate. Each 
of these eight intermediate workstations branches out 
to connect four leaf workstations with a four-port 
Adaptec® ANA^'^ - 6944A Fast Ethernet adapter. 
Figure 1 depicts the network topology of the P6 clus­
ter. The advantage of the tree-structure setting is that 
it provides us two cluster-computing testbeds: one is 
the gigabit cluster of the page machines and the other 
is the 100 megabit cluster of the grunt workstations. 

The FDR12^^ is a buffered repeater which merges 
switched and shared design concepts[10]. Therefore, 
it can achieve switch-like performance while maintain-
ing the lower cost of a shared hub. The FDRU'^'^ 
provides 12 ports and each of which is full-duplex and 
collision-free. When a frame arrives at a port, it will be 
buffered (like a switch) and forwarded to every other 
port without address filtering (like a hub). If several 
frames are received/buffered at the same tirne on dif­
ferent ports, the round-robin arbitration mechanism 
is used to ensure fair allocation of bandwidth among 
ports. Since it is full-duplex, the ideal aggregate band-
width can be up to 2 gigabits per second. 

Both of the eight intermediate workstations (named 
pageOl - pageOS) and thirty-two leaf workstations 
(named gruntOl - grunt32) are running the LINUX op-
erating system. There are two possible ways to set up 
the intermediate workstations to forward packets be-
tween leaf nodes. One is configured as bridges and the 
other is set up as routers. It was decided to try bridg-
ing first because bridging functions are implemented 
in the data link layer which is more efRcient and more 
versatile than the network layer where routers are lo-
cated. Our experience of setting up the intermediate 
workstations as bridges was unsuccessful. This is be­
cause the maximum size of a packet in Gigabit Ethenet 
is larger than the maximum size in Fast Ethernet and 
hence packet fragmentation is necessaj:y if a very large 
packet sent from Gigabit Ethenet to the Fast Ethernet. 
Unfortunately, a recent version LINUX bridge by itself 
couldn't handle packet fragmentation. Currently, we 
successfully set up the intermediate workstations to 
support IP forwarding capability, though the router 
and servers would ali have to keep big routing tables. 
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grant05-08 

grunt09-12 

gmnt25-28 

grunt21-24 

gruntl3-16 gruntl7-20 

Figure 1: Network Topology of the P6 Cluster 

3 Communication 
Characteristics 

3.1 Latency 

To measure end-to-end message passing performance, 
we used the ping command which is based on the 
ICMP protocol. This command sends an ICMP 
ECHOJR.EQUEST message of a fixed size from one 
node to another and then waits for the response back. 
The message size was varied from 1 byte to 40K bytes, 
For each message size, we repeated the experimentse 
30 times and then calculated the average of the round-
trip latency. 

We chose three different pairs of nodes which repre-
sented possible message passing paths in the tree clus­
ter. The first pair was from pageOl to page02 via the 
FDR. The second pair was from gruntOl to grunt02 
via the intermediate node pageOl. The third pair was 
from gruntOl to gruntOS by way of pageOl, FDR, and 
page02. Figure 2 illustrates the round-trip message 
passing times for these three different pairs. The third 
pair required the longest time because it took 4 hops 
to reach the other end. The first pair was the fastest 
one because it is a direct link via Gigabit Ethernet. It 
can be observed that the summation of the latenceies 
of the first and the second pairs are roughly equal to 
the latency of the third one. 

3.2 Throughput 

We used two hosts, one sender and one receiver, to 
estimate the maximum throughput over the hnk. The 
sender transmits a TCP/IP message across the hnk 
to the receiver, as fast as it can. The receiver ušes 

grunl01-pageOl-FDR-page02-gmnt05 •*— 
grunt01-page01-grunt02 -*— 

page01-page02 - n -

O 5000 10000 15000 20000 25000 30000 35000 40000 45000 
Message Size [Kbytes) 

Figure 2: Round-trip Latency 

the function gettimeofday() to measure the time to 
receive the message. The two hosts exchaiiged initial 
synchronization messages using the three-way hand-
shake protocol to ensure the connection was estab-
lished before timing operations began. This tech-
nique has been widely used in network throughput 
measurement[2, 5, 8, 13]. We used TCP because it 
can provide reliable transmission. 

We first chose two end workstations (e.g. gruntOl 
and grunt02, or gr^mtOl and grunt05) and found that 
the maximum TCP throughput could be up to 94 
Mbps. This is because the bottleneck in the com­
munication path grunt01-page01-grunt02 (or gruntOl-
page01-FDR-page02-grunt05) is between the page and 
grunt machines (i.e. lOOMbps) . 

We then selected two intermediate workstations to 
be the sender and the receiver (e.g. pageOl and 
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Figure 3: TCP Throughput over Ethernet family Figure 4: Performance of MPI_Scatter 

page02). We found that the maximum throughput 
is only 192Mbps which is only 19.2% of the total 
iGbps bandwidth. This means that even the high-
end 400MHz P6 workstation is not fast enough to sat-
urate the network traffic due to some protocol stack 
overheads such as copying the data between user and 
kernel address spaces, transferring data from memory 
to interface, etc. 

Similar empirical results can also be found in [5], [8] 
and [12] which showed that the slower-speed worksta-
tions such as SPARC4 and SPARC5 can not produce 
trafHc to saturate the 155 Mbps ATM network. Our 
early results presented in [12] showed that faster-speed 
Ultral stations can saturate fast Ethernet and gener-
ate up to 125 Mbps in an ATM network. Like a pen-
dulum swinging, at any given the computing speed 
may outpace that of the Communications infrastruc-
ture, or vice versa. For example, an early paper which 
measured the Ethernet performance showed that using 
VAX780 or Sun 11 the maximum throughput was only 
around 750K bits/sec , much less than 10 Mbits/sec 
[2]. 

We also used four pairs of stations to send/receive 
packets simultaneously and then calculated the to­
tal throughput by summing up the result from each 
pair. We found that the aggregate throughput was 
770Mbps. If each station ran both sender and receiver 
programs, the throughput could be up to 954Mbps 
which was very close to the lOOOMbps maximum band-
width. 

3.3 M P I Collective Communication 

MPI (Message Passing Interface) is a standard spec-
ification for writing portable message-passing paral-
lel programs. It features a range of functionality, in-
cluding point-to-point, with synchronous and asyn-
chronous communication modes, and collective com­
munication such as barrier, scatter, gather, broadcast, 

— ... — ...... 
^ . • - -

¥. — y t r " ^ 

. . O - " " 

.^'' 
...-S'' 

grunt - 4 processors -•— '. 
grunt - 8 procossors -*--
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4y 
_,•'' 

6 8 10 12 
ljog(Message Size in byte5) 

Figure 5: Performance of MPLGather 

etc. A collective operation is executed by having aH 
processes in the group invoke the common communi­
cation function, with matching arguments. There are 
multiple implementations of MPI. We used MPICH [6] 
which is developed by Argonne National Laboratory 
and Mississipe State University because of its wide 
availability. MPICH was built using the P4 device 
layer, so ali communication was performed on top of 
TCP sockets. Parallel programs can be started by the 
rapann front-end shell script which takes the name of 
the program and the numbers/names of the processing 
nodes (via the options -np and -machinef i l e ) to use 
and then remotely spawns the processes on the cluster. 

Collective communication operations are commonly 
used in parallel programs. Their performance is of 
great interest. For example, earler study in [9] made 
a comparison of the collective communication perfor­
mance betvveen two programming environments. We 
chose the following test cases as the benchmarks: 

— MPI-Sca t t e r distributes the ith block of an n-
block array, ( n is the number of processors in 
the processor group) to the ith processor in the 
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Figure 6: MPLBarrier Synchronization Time 

group. 

- MPI_Gather reverses the function of 
MPLScatter by collecting ali of the n blocks from 
the other processors in the group. 

- MPI_Barrier blocks the caller until ali processes 
in the group have called. 

Figure 4 and Figure 5 shows the tirne of MPLScatter 
and MPLGather, respectively, on four and eight work-
stations as a a function of the message size. For the 
comparison purpose, the experiments were performed 
on both of the grunt and the page clusters. Since the 
MPICH collective communication operations are im-
plemented on top of the point-to-point layer, it can be 
observed that the communication times grow signifi-
cantly for large message sizes (i.e. i IK bytes) when 
they are doubled the size. 

We also measured the performance of the 
MPI_Barrier synchronization time by varying the num­
ber of processors in the processor group. The result is 
depicted in Figure 6. It can be seen that the synchro-
nization times are in the same level when the number 
of processors varied from 5 to 8. It is also true when 
using 3 processors and 4 processors. That is, the syn-
chronization time t and the number of processors n 
have the following relationship: 

t = C* \log{n)] 

where c is a constant. 
This is because the MPICH implements the bar-

rier function using the "power-of-two"-based algo-
rithm which can provide good scalability. 

4 Performance Measurements 
of Distributed Applications 

We used a parallel simulation application and the 
NAS Parallel Benchmarks to evaluate the scalabil-

ity/performance of the clusters. We also studied the 
factors which may affect the performance of cluster 
computing. 

4.1 Mobile-Thread based Parallel 
Simulation 

A parallel discrete event simulation consists of collec-
tion of cooperating LPs, each representing one or a 
set of physical processes(PPs)[4],. Each LP has its 
own local simulation clock, an event calendar, and in-
put and output communication channels for interac-
tion with other LPs. In our model, an LP is also a 
host to a set of lightweight processes (i.e. threads), 
and shared objects (e.g. facilities), as shown in Fig­
ure 7. Processes are used to model active components 
of a system. In contrast, facilities are objects used to 
model passive system components with mutually ex-
clusive access. That is, processes are dynamic entities 
which can request access to static facility entities, use 
these facilities for a time period, and eventually release 
them to proceed with different activities. 

To represent our model formally, assume that an LP 
hosts processes pi, pi, • • •, and p„. Let ipj denote the 
reactivation time of the process pi and T' represent 
the time of the next process to be executed in this 
LP. That is, T' = m.mi{tp.]. To guarantee a correct 
execution of the simulation, each LP must satisfy the 
causality constraint: events executed by an LP are in 
nonincreasing temporal order. Note that if a conser-
vative algorithm[3] is used, the next process can be 
reactivated if the time T' is no greater than the time 
raink{tc^} where ic,, are the clock values of the incom-
ing channels. In other words, each LP may execute a 
next event e from its list of candidate events only after 
it is guaranteed that it will not receive an event with 
timestamp smaller than the timestamp of event e from 
any other LP. This can be accomplished through the 
use of a lookahead mechanism. 

To parallelize process-oriented simulations, our ap-
proach was to distribute passive objects across proces­
sors, guaranteeing ali processes (i.e. threads) easy ac­
cess to these objects. Naturally, a problem arises when 
a process executing on some processor requires access 
to an object that is not located on the same processor. 
For example, a process hosted by processor A may re-
quire access to a resource or facility object situated on 
processor B. Our solution is to move the requesting 
process, along with its simulation timestamp, to the 
site on which the passive object is located. Consider 
the situation where a process on some host attempts to 
make consecutive access requests to an object on some 
remote host. Such a situation can be seen in Figure 7, 
where we assume that customer Co makes a series of 
access requests to facilities F„, • • •, F2n-i located on 
a remote host after it leaves facility F„_i. Migrating 
the process to the remote host will reduce the cost of 
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No. of procs 

8x64 
(Speedup) 
16x256 

(Speedup) 

1 

425 
1 

3372 
1 

2 

283 
1.5 
1984 
1.7 

4 

167 
2.6 
994 
3.4 

8 

88 
4.9 
505 
6.7 

16 

46 
9.3 
258 
13.1 

32 

25 
17.1 
133 
25.4 

Table 2: Times (in seconds) for simulating closed 
queueing network on the grunt cluster 

communication since the series of access requests will 
now be made locally instead of remotely. 

We ported our mobile-thread based parallel simula-
tion system [14] on the cluster testbed. This system 
was built on top of a thread library which has thread 
migration capability. We conducted experiments by 
running this simulation system to simulate a closed 
queueing netvvork on the grunt cluster. An M x N 
closed queueing netvvork consists of M tandem queues, 
each containing N FIFO servers. A job which arrives 
at a queue is served by the N servers sequentially. Af-
ter completing service at the last server in a queue, the 
job is routed back to the front of any queue based on 
a given probability. 

In the simulation exercise, we executed a 8 x 64 
closed queueing network model and a 16 x 256 closed 
queueing network model, each initialized with a to-
tal of 2048 jobs. For simplicity, the probabilities on 
the arcs routing customers back to the start of each 
A^ -̂server tandem queue are made equal. Table 4.1 
shows the performance figures obtained on the grunt 
cluster, giving both the time in seconds as well as 
speedup. Particularly good speedup was obtained for 
the 16 X 256 network model because of its larger com-
putation granularity. 

4.2 The NAS Parallel Benchmarks 

The NAS Parallel Benchmarks (NPB) [1] were devised 
by the Numerical Aerodynamics Simulation (NAS) 
program at NASA Ames Research Center to study the 
performance of parallel supercomputers. The NPB 2.3 
are a set of eight problems which consists of five kernels 
which highlight specific areas of machine performance, 
and three pseudo-applications which simulate compu-
tational fluid dynamics(CFD). We briefly describe the 
benchmarks which we used in our experiments below. 

- Kernel CG ušes the conjugate gradient method 
to approximate the smallest eigenvalue of a large, 
sparse, symmetric positive definite matrix. The 
communication patterns in this benchmark are 
unstructured and long distance. 

- Kernel EP generates pairs of Gaussian random 
deviates and tabulates the number of pairs in suc-
cessive square annuli. This application is "embar-
rassingly parallel" because the only communica­

tion is summing up a 10-integer list at the end of 
the program. 

- Kernel IS performs ranking an unsorted se-
quence of integer keys that are uniformly dis-
tributed among processors. This benchmark re-
quires frequent communication and the pattern 
of communication is a fully connected graph. 

- Kernel MG executes four iterations of the V-
cycle multigrid algorithm to obtain an approx-
imate solution to the discrete Poisson problem 
V^u = II on a 3-dimensional grid with periodic 
boundary conditions. The communication pat­
terns are highly structured and both short and 
long distance data communication are required. 

- Application LU solves a finite difference dis-
cretization of the 3-D compressible Navier-Stokes 
equations by using a symmetric successive over-
relaxation (SSOR) numerical scheme. 

- Application BT and SP are both based on 
Beam-Warming approximate factorization which 
decouples the x ,y, and z dimensions, resulting in 
three sets of narrow-banded, regularly structured 
systems of linear equations. These systems are 
scalar pentadiagonal in SP, and block tridiagonal 
inBP. 

The NPB 2.3 codes are implemented on top of the 
MPI hbrary. Table 3 shows the execution time of run­
ning seven of the NAS Parallel Benchmarks (class A) 
using different numbers of workstations. For the pur-
pose of comparison, we also ran the same benchmarks 
on a 200MHZ Pentium Pro machine (ALR). As can be 
seen in Table 3, the benchmark performance using one 
400 MHZ Pentium II can be two times faster than a 
200MHZ Pentium Pro. 

There is no doubt that faster microprocessor can im-
prove the performance. Same reason can be applied to 
a more efRcient system software. With the availability 
of the Portland Group, Inc. Fortran and C compilers, 
we recompiled the codes and ran the benchmarks. For 
the purpose of fair comparison, we used the same code 
optimization level -03 which is provided by both of the 
GNU compilers and the Portland Group software. It 
can be seen in Table 3 that for certain computational 
intensive application (Hke LU), the performance of the 
codes compiled by the Portland Group compilers can 
be improved more than 20% than using widely-used 
GNU compilers. 

We also compared the performance of NPB (class 
B with larger problem size) between different clusters 
(see Table 4). For communication intensive applica-
tions (e.g. IS), the page cluster can run faster than 
the grunt cluster because it ušes faster Gigabit Ether­
net. However, the page cluster runs slower for the CG 
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custO /* a lightweight process */ 

^ • T 
J /* loop i */ I 

use(f[i|,servtinie); & 

custO /* a lightvveight process */ 
{ . 

-*'»/* loop i */ 
usc(f|il,servtime); 

migrated to continue 
execution 

} • 

LPl on processor A 

} 

LP2 on processor B 

Communication Networks 

Figure 7: Migrating a thread to the remote machine 

Benchmark 

Block Tridiagonal* 
Conjugate Gradient 
Embarrassingly Parallel 
Integer Sort 
MultiGrid 
Scalar Pentadiagonal* 
LU solver 

ALR 
9081 

79 
691 

26 
196 

4166 
7734 

1 proč 
gnu 

4630 
69 

441 
24 

135 
3233 
3659 

Pg 
4190 

68 
437 

21 
123 

3032 
2823 

2 p 
gnu 

36 
221 

26 
71.0 

1884 

roc 
pg 

36 
219 
25 
63 

1456 

4 p 
gnu 

1273 
26 

103 
23 
40 

913 
922 

roc 
pg 

1163 
26 

102 
22 
37 

867 
766 

8/9* 
gnu 
778 
24 
52 
18 
20 

508 
418 

proč 
pg 

729 
24 
52 
17 
17 

488 
382 

16 proč 
gnu pg 
421 

22 
26 
16 
11 

293 
240 

402 
22 
26 
16 
10 

281 
225 

Table 3: Performance of NAS Parallel Benchmarks (class A) on Grunt Cluster (Unit: seconds, *: requires 
square number of processors) 
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Figure 8: Profile of the IS Benchmark 



26 Informatica 23 (1999) 19-27 J. Sang et. al. 

Benchmark 
Grunt (512MB, lOOMbps)) 
Page (128MB, lOOOMbps) 

CG 
512 
527 

EP 
196 
195 

IS 
76 
55 

MG 
86 
90 

Table 4: Performance of NAS Benchmarks (class B) 
using 8 processors on different clusters (Unit: second) 

and MG applications. This may be due to the smaller 
size of memory on each page machine. 

For understanding parallel program behavior, the 
MPICH library supports profiling functions which are 
very useful in debugging and in performance anaJy-
sis. For example, in order to know more about the 
program behavior of the IS benchmark, we used the 
option -mpilog to compile the code and then invoked 
the Tcl/Tk script upshot to graphically display the 
timeline of each process. Figure 8 depicts a screen 
dump for the IS benchmark profile. 

It is worth to mention that the users cannot be to-
tally unaware of the cluster structure, especially for 
running communication intensive applications. Use 
the IS benchmark as an example. If we selected follow-
ing eight grunt machines "gruntOl, gruntOS, grunt09, 
gruntlS, • • •, grunt29 " (i.e. one from each page do-
main), the performance was very poor because the 
communication latency was large. More interesting 
is that, even if we chose the eight machines closely 
together and specified the following order "gruntOl, 
grunt02, gruntOS, grunt04, • • •, gruntOS " in the file 
machines. LINUX, the program execution time was stili 
around 87 seconds. Finally, after we rearranged the 
order to be "gruntOl, grunt05, grunt02, grunt06, • • •, 
gruntOS ", the performance was improved as shown in 
Table 4. The reason is due to the better matching 
between the cluster's tree structure and the "power-
of-two" communication pattern in MPICH. Using the 
profiling function, we found that the communication 
time was greatly reduced. 

5 Conclusion 
In this paper, we have extensively measured the perfor­
mance of cluster computing over Gigabit/Fast Ether­
net LANs. Our measurements demonstrate that the 
high-end 400MHZ Pentium II can easily saturate a 
lOOMbps Fast Ethernet LAN, but can only generate 
20% of the traffic of a Gigabit Ethernet. Since a Giga-
bit Ethernet can provide enough backbone bandwidth, 
mixing Gigabit Ethernet and Fast Ethernet for high-
performance cluster computing is truly promising. 

The flexible tree-structure setting gives us two ex-
perimental platforms: a gigabit cluster and a lOOMbps 
cluster. We have conducted several experiments by 
running distributed applications on the two platforms. 
Our measurements show that application performance 

can be improved by using faster processors, more mem-
ory, greater bandwidth networks, or even through bet­
ter compiler with efRcient code optimization capabil-
ity. Our experiences also suggest that, for communi­
cation intensive applications, matching the collective 
communication patterns with the cluster interconnec-
tion network topology can reduce communication over-
heads and hence improve performance. 
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Modern networks of workstations connected hy Gigabit networks have the abihty to run high-
performance computing apphcations at a reasonabie performance, but at a significantly lower cost. 
The performance of these apphcations is usuaUy dominated by their efEciency of the underlying 
communication mechanisms. However, efhcient communication reguires that not only messages 
themselves are sent fast, but also notiBcation about message arrivaJ should be fast as weU. For 
example, a message that has arrived at its destination is worthless until the recipient is aJerted to 
the message arrival. 
In this paper we describe a new operation, the remote-enqueue atomic operation, which can be used 
in multiprocessors, and workstation clusters. This operation atomically inserts a data element in a 
queue that physically resides in a remote processor's memory. This operation can be used for fast 
notification of message arrival, and for fast passing ofsmall messages. Compared to other software 
and hardware queueing alternatives, remote-enqueue provides high speed at a low implementation 
cost without compromising protection in a general-purpose computing environment. 

1 Introduction 

Popular contemporary computing environments are 
comprised of powerful workstations connected via a 
network which, in many cases, may have a high 
throughput, giving rise to systems called vjorksta-
tion clusters or Networks of Workstations (NOWs) [1]. 
The availability of such computing and communica­
tion power gives rise to new applications like multime-
dia, high performance scientific computing, real-time 
applications, engineering design and simulation, and 
so on. Up to recently, only high performance paral-
lel processors and supercomputers were able to sat-
isfy the computing requirements of these applications. 
Fortunately, modern workstations connected by Giga­
bit networks have the ability to run most applications 
that run on supercomputers, at a reasonable perfor­
mance, but at a significantly lower cost. This is be-
cause most modern Gigabit interconnection networks 
provide both low latency and high throughput. How-
ever, efficient communication requires that not only 
messages themselves are sent fast, but also notifica­
tion about message arrival should be fast as well. For 
example, a message that has arrived at its destination 
is worthless until the recipient is alerted to the message 
arrival. 

^Evangelos P. Markatos and Manolis G.H. Katevenis are also 
with the University of Grete. 

In this paper we present the Remote Enqueue atomic 
operation, which allows user-level processes to enqueue 
(short) data in remote queues that reside in various 
workstations in a cluster, with no need for prior syn-
chronization. This operation was developed within the 
Telegraphos project [18], in order to provide a fast 
message arrival notification mechanism. The Tele­
graphos network interface provides user applications 
with the ability to read/write remote memory loca-
tions, using regular l oad / s t o r e instructions to remote 
memory addresses. Sending (short) messages in Tele­
graphos can be done by issuing one or more remote 
write operation, which eliminates traditional operat-
ing system overheads that used to dominate message 
passing. Thus, sending (short) messages can be done 
from user-level by issuing a few s to re assembly in­
structions. Although sending a message can be done 
fast, notifying the recipient of the message arrival may 
take significant overhead. For example, one might use 
a shared flag in which the sender writes the memory 
location (in the recipienfs memory) where (and when) 
the message was written. When the recipient checks 
for messages, it reads this shared flag and finds out 
if there is an arrived message and where it is. How-
ever, if two or more senders attempt to send a message 
at about the same tirne, only one of them will man-
age to update the flag, and the other's update will be 
lost. A solution would be to have a separate flag for 
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each possible sender. However, if there are several po-
tential senders, this solution may result in significant 
overhead for the receiver, who would be required to 
poli too many flags. Arranging the flags in hierarchi-
cal (scalable) data structures might reduce the polling 
overhead, but it would increase the message notifica-
tion arrival overhead. 

Our solution to the message arrival notification 
problem is to create a remote queue of message ar­
rival notifications. A remote queue is a data structure 
that resides in the remote node's main memory. Af-
ter writing their message to the receiver's main mem-
ory, senders enqueue their message arrival notifications 
in the remote queue. Receivers poli their notification 
queues to learn about arrived messages. Although en-
queueing notifications in remote queues can be done 
completely in software, we propose a hardware remote 
engueue operation that atomically enqueues a message 
notification in a remote queue. The benefits of our ap-
proach are: 

— Atomicity at low cost: to prevent race conditions, 
ali software-implemented enqueue operations are 
based on locking (or on f etch.and.i^ atomic) op­
erations that appropriately serialize concurrent 
accesses to the queue. These operations incur the 
overhead of at least one network round-trip delay. 
Our hardware-implemented remote enqueue op­
eration serializes concurrent enqueue operations 
at the receiver's network interface, alleviating the 
need for round-trip messages. 

— Low-latency flow control: Most software enqueue 
operations may delay (block) the enqueing pro-
cess if the queue is full. For this reason, most 
software-implemented enqueue operations need to 
read some metadata associated with the remote 
queue in order to make sure that the remote queue 
is not full. Unfortunately, reading remote data 
may take at least one round-trip network delay. 
In our approach, the enqueueing operation al-
ways succeeds; if the queue fills up after an en-
queue operation, a software handler is invoked 
(at the remote node) to allocate more space for 
the queue. Since our remote enqueue operation is 
non-blocking, and does not need to read remote 
data, it can return control to its caJling processes, 
as soon as the data to be enqueued have been 
entered in the sender's netvvork interface, that is 
the remote enqueue operation may return control 
within a few (network interface) clock cycles - usu-
ally a fraction of a microsecond. 

The rest of the paper is organized as follows: Section 
2 surveys previous work. Section 3 presents a sum-
mary of the Telegraphos workstation cluster. Section 
4 presents the remote enqueue operation, and section 
5 summarizes this paper. 

2 Related Work 

Although networks of workstations may have an (ag-
gregate) computing power comparable to that of su-
percomputers (while costing significantly less), they 
have rarely been used to support high-performance 
computing, because communication on them has tra-
ditionally been very expensive. There have been sev­
eral projects to provide efficient communication prim-
itives in networks of workstations via a combina-
tion of hardware and software: Dolphin's SCI inter­
face [19], PRAM [24], Memory Channel [13], Myrinet 
[6], ServerNet [26], Active Messages [12], Fast Mes­
sages [17], Galactica Net [16], Hamlyn [9], U-Net [27], 
PCI-DDC [28], NOW [1], Parastation [29], StarT Jt 
[15], Avalanche [10], Panda [2], SHRIMP [4] and oth-
ers provide efficient message passing on networks of 
workstations usually based on memory-mapped inter-
faces. We view our work as complimentary to these 
projects. Most of them have developed novel efficient 
mechanisms to send data between two diflFerent work-
stations in a cluster. We complement the mentioned 
previous work by proposing a fast message notifica­
tion mechanism that can improve the performance of 
aH these message passing systems. 

Brewer et. al proposed Remote Queues, a com­
munication model that is based on enqueueing and 
dequeuing Information in queues in remote processors 
[8]. Their model is mostly software based, but it can 
also it can be tuned to exploit any existing hardware 
mechanisms (e.g. hardware queues) that may exist in 
a parallel machine. Although their work is related to 
ours we see two major differences: 

- Remote gueues combine message transfer with 
message notification: the message itself is en-
queued in the remote queue. The receiver reads 
the message from the queue and (if appropriate) 
copies the message to its final destination in its 
local memory. In our approach we assume that 
the message has been posted directly to its final 
destination in the receiver's memory, and only the 
notification of the message arrival need to be put 
in the queue - our approach results in less mes­
sage copy operations. Suppose for example that 
the sender and the receiver share a common data 
structure (e.g. a graph). Using out approach, the 
sender deposits its Information directly in the re­
mote graph, where the receiver will read it firom. 
On the contrary, in the remote queues approach, 
the messages are first placed in a queue, and the 
receiver will have to copy the messages from the 
queue and put their Information on the common 
graph, resulting in one extra copy operation. Re-
cent commercial netvvork interfaces like the PCI-
DDC [28], the Memory Channel [13] and the PCI-
SCI [19] efficiently support our approach of the 
direct deposit of data in the receiver's memory. 
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— Remote Queues have been designed and imple-
mented in commercial and experimental mas-
sively parallel processors that run parallel appH-
cations in a controlled environment, supporting 
Uttle or no multiprogramming. Our approach 
has been designed for low-cost Networks of Work-
stations that support both sequential and paral­
lel applications that need to be separated (pro-
tected) from each other. Designing for a general-
purpose multiprogrammed environment is consid-
erably more difficult and complicates several de-
tails of the design. 

In single-address-space multiprocessors, our remote 
enqueue operation can be completely implemented in 
software using any standard queue library. Brewer et. 
al propose such an implementation on top of the Cray 
T3D shared-memory multiprocessor [8]. Any such im­
plementation (including the one in [8]) suffers from 
software overhead that includes at least one atomic op­
eration (to atomically get an empty slot in the queue), 
plus several remote memory accesses (to plače the data 
in the remote queue and update the remote pointers). 
This overhead is bound to be significant in a Network 
of Workstations. 

In many multiprocessors, nodes have a network co-
processor. In these cases, the remote enqueue oper­
ation can be implemented with the help of this co-
processor. The co-processor implements sophisticated 
forms of communication with the processes running on 
the host processor. For example, a process that wants 
to enqueue a message in a remote queue, sends the 
message to the co-processor, which forwards it to the 
co-processor in the remote node, which in turn places 
the message in the remote queue. Although the exis-
tence co-processors improves the communication abil-
ities of a node, it may result (i) in software overhead 
(after aH they are regular microprocessors executing a 
software protocol), (ii) in more data copy operations, 
and (iii) in increased end-system cost. 

3 The Telegraphos NOW 
The Remote enqueue operation described in this paper 
is developed within the Telegraphos project [22]. Tele­
graphos is a distributed system that consists of network 
interfaces and switches for efficient support of parallel 
and distributed applications on a workstation cluster 
(shown in Figure 1). We call this project Telegraphos 
or Trj\e^pa(j)o<; from the greek words Tr]\e meaning 
remote, and 'ypQ.4)UJ meaning write, because the cen­
tral operation on Telegraphos is the remote write op­
eration. A remote write operation is triggered by a 
simple s t o r e assembly instruction, whose argument is 
a (virtual) memory address mapped on the physical 
memory of another workstation. Figure 2 shows il-
lustrates how process Pj- sends a message to processor 

/ ALPHA workstation 
(TurboChannel 

f/ /Host Interface Board(HIB) 
,—11 i-i^-^ Switch Boards • 

Figure 1: The Telegraphos Workstation Cluster. 
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Figure 2: Message Passing by Remote Writes. 
Processor Pj issues a s to re instruction, which is 
snooped by the network interface. The address A and 
the data D of the instruction are packed in a message 
and sent to processor Pj in a network packet. When 
the packet reaches its destination, processor Pj will 
store the data D into its address A. 

Pj by issuing an assembly s to re instruction. The re­
mote write operation makes possible the (user-to-user, 
fully protected) sending of short messages with a sin-
gle instruction. For comparison, traditional worksta-
tion clusters connected via FDDI and ATM take sev­
eral thousands of instructions to send even the shortest 
message across the network. 

Telegraphos provides a variety of hardware primi-
tives which, when combined with appropriate software 
will result in efRcient support for shared-memory ap­
plications. These primitives include: 

— Single remote memory access: On a remote mem-
ory access, traditional systems require the help of 
the operating system, which either replicates lo-
cally the remote page and makes a local memory 
access, or makes the single remote access on be-
half of the requesting process. To avoid this oper­
ating system overhead, Telegraphos provides the 
processor with the ability to make a read or write 
operation to a remote memory location vvithout 
replicating the page locally and without any soft-
ware intervention; j ust like shared-memory multi-
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processors do [3]. 

— Access counters: If a page is accessed by a pro­
cessor frequently, it may be worthwhile to repli-
cate the page and make ali accesses to it locally. 
To allow informed decisions, Telegraphos pro-
vides access counters for each remotely-mapped 
page. Each time the processor accesses a remote 
page, the counter is decremented, and when it 
reaches zero an interrupt is sent to the processor 
which should probably replicate the page locally 
[7, 20, 21]. 

— Harduiare multicasting: Telegraphos provides a 
write multicast mechanism in hardware which can 
be used to implement one-to-many message pass-
ing operations, as well as an update-based mem-
ory coherence protocol. This multicast mecha­
nism ušes a novel memory coherency protocol that 
makes sure that even when severaJ processors try 
to update the same data and multicast their up-
dates at the same time, they will ali see a consis-
tent view of the updated data; details about the 
protocol can be found at [22]. 

— User-level DMA: To facilitate efficient message 
passing, Telegraphos allows user-level initiation 
of ali shared-memory operations including DMA. 
Thus, Telegraphos does not need the involvement 
of the Operating System to transfer Information 
from one workstation to another [23]. 

The Telegraphos network interface has been proto-
typed using FPGA's; it plugs into the TurboChannel 
I/O bus of DEC Alpha 3000 model 300 (PeHcan) work-
stations. 

4 Remote Enqueue 

4.1 Message Passing via Remote 
Writes 

In a shared-address space multiprocessor that supports 
efficient remote-write operations (like Telegraphos) 
message passing is performed by issuing remote-vvrite 
operations from user space. In this way, the sender di-
rectly deposits the message to its final destination in 
remote memory, which is accessed using regular load 
and store assembly instruction (just like local mem-
ory). Although message passing via remote-writes is 
very efficient, notifying the sender that a message has 
arrived becomes complicated. Figure 3 shows several 
potential senders Pi to Pjv and one receiver P. Each 
sender has mapped a buffer in P's local memory and 
sends messages to P by writing the message directly 
to this buffer. However, it becomes increasingly dif-
ficult for P to know when and from which source a 
message has arrived. One could propose that P gets 

Figure 3: Multi-source message arrival notifica­
tion. 

interrupted each time a message arrives. However, in-
terrupts would add significant overhead to message-
passing, since they are usually handled by the oper­
ating system kernel, which would undermine the ef-
ficiency of user-level message passing. To avoid the 
operating system involvement, we could use one "ar­
rival bit" for each buffer. When a message is sent, 
the corresponding arrival bit is set as well. Hovvever, 
when the number of potential senders becomes high, 
polling a large number of arrival bits would jeopardize 
the scalability of this solution. To achieve a scalable 
notification mechanism we could use a tree of arrival 
bits, but such a mechanism would complicate program-
ming and increase the latency of message arrival no­
tification. What we propose to do is to have a queue 
of message arrival notifications. For each new mes­
sage, the sender enqueues a notification in the queue. 
When the local processor wants to check for messages, 
it reads the head of the notification queue. Although 
the queue can be managed completely in softvvare, we 
propose that enqueueing should be done in hardware 
using the "remote enqueue" operation, while dequeu-
ing can be done in (user-level) software. We avoid a 
completely-software solution since this would require 
synchronization using atomic operation which would 
add significantly to the overhead of enqueueing. 

4.2 The Remote Enqueue Operation 

We propose a new atomic operation, the remote en-
queue (REQ) atomic operation. The REQ atomic op­
eration is invoked with two arguments:, 

— REQ(vaddress,data), where vaddress is the virtual 
address that uniquely identifies a remote queue 
(a remote queue always resides on the physical 
memory of a difFerent processor from the one in-
voking the REQ operation), and data is a single 
word of Information to be inserted in the queue. 
This Information is most usually a virtual address 
(pointer) that identifies the message body that the 
processor invoking the REQ operation has just 
sent to the processor that hosts the queue in its 
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addr —«• 
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• 
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size 
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ptr to nxt Q buffer 
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• 
• 

Figure 4: Layout of a da ta bufFer. A remote queue 
is just a Hnked list of such buffers. The first three 
words of the bufFer are reserved to store the size, the 
tail, the head, and the pointer to the next Q bufFer. 

oF an extra adder, and the performance cost of a word-
length addition. In our system instead, where the addr 
is a multiple of a power of two, and both head and tail 
are always less than this power of two, we calculate 
the pointer to the head (or the tail) of the queue by 
performing an inexpensive OR operation instead of an 
expensive addition. 

4.3 The Enqueue Operation 

When processor A wants to enqueue some data in 
the remote queue that starts in the virtual address 
vaddress and that that physically resides on processor 
B's memory, it invokes the REQ(vaddress,data) atomic 
operation. A portion of this operation in implemented 
on the sender node's network interface, and the rest is 
implemented on the receiver node's network interface. 

memory. 

We define a remote queue to be a portion of a re­
mote processor's memory that is managed as a FIFO 
queue. This FIFO queue is a linked list of buffers 
which are physically allocated in the remote proces-
sor's memory. Data are placed in this FIFO queue by 

' the remote engueue (REQ) operation, implemented in 
'hardware. Data are removed from this FIFO queue 
with a dequeue operation which is implemented in user-
level software. 

The following limitations are imposed to the buffers 
of a remote queue, for the hardware remote enqueue 
operation to be efficient: 

- The starting address of each bufFer should be an 
integer multiple oF the buffer size, which is a power 
of two. 

- The maximum buffer size is 64KB (for a 32-bit 
word processor). 

- IF the bufFer size is larger than the page size, each 
bufFer should be allocated in contiguous physical 
pages. 

The layout of the bufFer is shown in figure 4; The 
head and tail are indices in the data buffer. A queue 
is a linked list of such data buffers. For a 32-bit-word 
processor, both tail, and head are 16 bit quantities, 
and not full memory addresses. The reason is that, 
in traditional systems (where tail and head are full 
addresses), we calculate the pointer to the head (or 
the tail) of the queue by adding addr with head (or 
tail), meaning that we need to pay the hardware cost 

^The Telegraphos network always delivers remote data in-
order from a given source to a given destination node. Thus, 
data can never arrive before the corresponding REQ operation 
is posted. 

The Sender Node : When the software issues a 
REQ(vaddress,data) atomic operation, the local net-
work interface takes the following actions: 

— It prepares a remote-enqueue-request packet to 
be sent to the remote node that contains paddress 
(the physical address that corresponds to virtual 
address vaddress), and data, and 

— It releases the issuing processor, which is able to 
continue with the rest of its program, without 
having to wait for the remote enqueue operation 
to complete. 

The Receiver Node : When the destination node 
receives a remote-enqueue-request packet it extracts 
the paddress and data arguments from the packet and 
performs the remote-enqueue operation as the follow-
ing atomic sequence of steps: 

- Writes the data to the buffer entry pointed by the 
tail index (the address of the entry is calculated 
as (paddress OR tail). 

- Increments the tail by 1 modulo bufFer size (if the 
tail equals the size of the bufFer, then tail gets the 
value oF the first available bufFer location: 3 (see 
figure 4)). 

- IF the buffer overflows {tail = head), the net-
work interface stops accepting incoming network 
requests, and sends an interrupt to the (destina­
tion) processor. 

The hardware finite state machine (FSM) of the 
destination HIB for the remote enqueue operation 
"req(addr, data)" is shown in table 1. 



34 Informatica 23 (1999) 29-39 M.G.H. Katevenis et al. 

FSMO 
1. read (address) -> (size, tail) // read tail and size of Q 

2. write (address DR tail)<- (data) // insert new element in Q 

// Note: (address OR tail) points to the first free element in the Q 
// thus: no adder is needed 

3. tmp <- (tail + 1) // increment tail modulo size 
// if (tmp == size) then tail = 3 

4. if (tmp & size) then 
tail <- 3 

else 
tail <- tmp 

// Note: if (tmp == size) then (tmp & size) == 1 
// else (tmp & size) == O, 

// thus the comparison can be implemented with AND 
// gates instead of a general purpose comparator 

5. read (address+1) -> (size.head) // read head of Q 

6. if (head == tail) then 

stop_accepting_network_reqiiests() 
interrupt host (overflov) 

else 
write (address) <- (size,tail) 

Table 1: Finite State Machine for the Remote Enqueue Operation. 

Hardware Diagram: The Telegraphos datapath 
for the remote enqueue operation (at the receiver side) 
is shown in figure 5. The whole operation is controlled 
by five control signals: LDO, RDO, WRO, RDI, and 
WR1, that are generated by a simple Finite State Ma­
chine in the above order. 

— LDO loads the ADDRESS and DATA registers 
with the address and data that are the arguments 
of the remote enqueue operation. 

— RDO starts the reading of the {size, tail) pair from 
address. 

— WRO starts the writing of the data into the remote 
queue at address address OR tail 

— RDI starts the reading of the {size, head) pair 
from {address + 1). 

— Finally, WR1 writes the new {size, tail) pair into 
address 

4.4 Handling Buffer Overflow 

When the current buffer fills up, an interrupt is sent 
to the processor which starts executing the operating 
system. The actions that the operating system should 
take are: 

- Copy the contents of the full buffer into an empty 
one. Mark the previously overflowed buffer as 
empty. 

- Link the new buffer into a queue of buffers associ-
ated with this queue. The next field in the queue 
is used for this purpose. 

— Enable the Netvvork Interface to handle aH re-
quests. 

4,5 Dequeuing and Queue Handling in 
the Receiver Software 

In this section we outline how the dequeue operation 
can be efficiently implemented in software at user-
level. A straightforward implementation of the de-
queue operation would be: 

deq(queue) 
{ 

buffer = f ind_las t_buffer ( ) ; 
if (is_empty(buffer) { 

if ( i s _ f i r s t ( b u f f e r , queue)) 
r e tu rn EMPTY_qUEUE ; 

e l s e { 
dea l loca te (buf fe r ) ; 
buffer = f ind_las t_buffer ( ) ; 

} 
} 
r e s u l t = buffer[head] ; head ++ ; 
if (head == s ize) 

head = 3 ; 
r e tu rn r e s u l t 

} 

Unfortunately, the above solution does not always 
work, because it is executed in user-space, and as such. 
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it may be interrupted at any time. For example, con-
sider the following scenario: 

— A dequeue operation starts executing, taking an 
element from the head buffer (say A) of the queue. 

— Before the operation completes, it is interrupted. 

— In the meanwhile, the head biifFer overflows, the 
operating system takes control, copies the buffer 
A into an empty one (say B), resetting the previ-
ously fuU buffer A. 

— Some more remote enqueue operations are exe-
cuted, completely overwriting the previous data 
on A (which have been safely copied iiito the re-
cently allocated buffer B). 

— The dequeue operation eventually resumes exe-
cution trying to dequeue elements from buffer A, 
which does not have the elements the dequeue op­
eration expects to find, which are now in buffer B\ 

Fortunatelj', on the DEC Alpha processor there is 
a special mode the PAL mode which enables (super) 
users to write their own code (of limited size) and run 
it uninterrupted [25]. Thus, if the above code is turned 
into PAL code, it \vill run uninterrupted. PAL code is 
invoked via the special caLpal routine, that the DEC 
Alpha processor provides. Although any user is al-
lowed to call a PAL function, only the super user is 
a.llowed to install new PAL functions, thereby protect-
ing the integrity of the system.. Thus, the above men-
tioned race conditions disappear because the dequeue 
operation runs uninterrupted in PAL mode. 

Although PAL calls are an elegant way of execut-
ing short sequences of instructions uninterrupted, they 
are specific to the Alpha processor. Moreover, in-
terrupt disabling (and of course PAL calls) is an ef-
fective way of synchronization only in uniprocessors. 
Disabhng interrupts in symmetric multiprocessing sys-
tems that share a common network interface does not 
necessarily guarantee the absence of race conditions. 
For this reason, we have developed a more general so-
lution that allows dequeue operations to proceed at 
user-level without the need to invoke PAL calls. Our 
solution is based on the collaboration between the op­
erating system and the library that implements the 
dequeue operation. We assume the existence of a "do-
not-preempt-me" bit (per queue) that is shared by the 
user application and the kernel. ^ When the applica-
tion is about to execute a dequeue operation, it sets 
the "do-not-preempt-me" bit. When the dequeue op­
eration completes, it resets the "do-not-preempt-me" 
bit. If the queue becomes full while an application is 
dequeuing something from the queue, the operating 

^Similar mechanisms has been used to avoid preempting a 
user-level thread while executing in a critical section [11]. 

system driver that handles the buffer overflow inter-
rupt, does not allocate a new buffer but sets a "fuU-
queue" fiag. When the interrupt handler returns, the 
application will resume execution, and it will complete 
the dequeue operation. When the dequeue operation 
completes, it checks the "full-queue" flag. If the flag is 
set, the application will invoke the network interface 
driver (e.g. through an i o c t l call) to allocate more 
space for the queue and to enable the network inter­
face to handle further enqueue operations. Thiš so­
lution works even in multiprocessor workstations that 
share a single network interface, with only one addi-
tional requirement: threads that execute concurrent 
dequeue operations (from the same queue) have to syn-
chronize through a lock variable (associated with the 
queue). The first instruction of a dequeue operation 
is to acquire the lock, and the last instruction is to 
release the lock. Thus, while a thread is dequeuing 
data from a queue, no other thread is allovî ed to do 
the same, and thus no other thread can access shared 
information like the "do-not-preempt-me" bit and the 
"full-queue" flag. In čase of buffer overflow, user-level 
threads should keep the lock up till the time the op­
erating system allocates more space for the queue. If 
the queue fills up while at the same time a thread is 
executing a dequeue operation, the operating system 
allows the dequeue operation to complete; after the 
operation completes it invokes the operating system 
to allocate more space for the queue and to enable 
further network transactions. 

4.6 Issuing an Enqueue Operat ion 

An enqueue operation is invoked as: 
enq(vaddress, data) 
(where vaddress is the virtual address of the base of 
the first queue buffer and data are the data to be 
enqueued). In order to create a valid remote en-
queue reguest packet, the netvvork interface needs to 
know the phijsical address paddress that corresponds 
to virtual address vaddress, as well as the data ar­
gument. However, users are not allowed to communi-
cate physical addresses to the network interface, be­
cause (i) they no dot know the mapping between vir­
tual and physical pages, and (ii) malicious or igno­
rant users may request enqueue operations to physi-
cal addresses on which they do not have read/write 
access. To alleviate this problem we use the mech-
anism of shadow-addressing [5, 14, 23]. The method 
of shadow addressing is used to securely translate vir­
tual to physical addresses and pass them to the net­
vvork interface from user-level processes. For each vir­
tual address vaddress that is mapped in the physi-
cal address paddress, there is also a shadow address 
shadow(vaddress), which is mapped in the shadow 

file:///vill
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Tmp = Tail+l 

If(Tmp& size) 

Tmp = 3 

t 
If (head ==NewTail) 
Interrupt host 

Figure 5: The enqueue hardware. 
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physical address shadow(paddress).^ The shadow 
function is simple and known to the network interface. 
One simple shadow function is to concatenate each ad­
dress with an extra shadow bit. When the shadow bit 
is set, then the address is a shadow one. For exam-
ple, OxOFFFFFFFF is a regular 33-bit address, while 
OxlFFFFFFFF is its shadow address. 

An access to a shadow address is always interpreted 
by the network interface as a special argument passing 
operation. For example, suppose that virtual address 
vaddress is mapped to physical address paddress, 
and that the virtual address shadow(vaddress) is 
mapped into shadow(paddress). Normally, a load 
(store) operation to virtual address vaddress by a user 
application is translated by the TLB (page-table) into 
a load (store) operation to physical address paddress 
and is performed by the appropriate memory con-
troUer. Similarly, a load (store) operation to vir­
tual address shadow(vaddress) is translated by the 
TLB into a load (store) operation to physical address 
shadow(paddress). When, however, this operation 
reaches the network interface it will be treated as an 
argument passing operation, and neither a load nor a 
store operation will be performed to physical address 
sliadow(paddress). Thus, when the user application 
wants to pass to the network interface the physical 
address paddress, it makes a store operation to vir­
tual address shadow(vaddress). After TLB transla-
tion the physical address shadow(paddress) reaches 
the network interface, which recognizes the shadow 
address and takes the physical address paddress 
by applying function shadow~^ to physical address 
shadow (paddress) . •* 

Thus, a remote enqueue atomic operation is issued 
using a single assembly instruction as follows: 

REQ (vaddress, data) 
/ * pass physical address shadoiv(paddress) 
** to the netmork interface */ 
S T O R E data T O shadow(vaddress) 

atomically inserts a data element in a queue that phys-
ically resides in a remote processor's memory. This 
operation can be used for fast notification of message 
arrival, and for fast passing of small messages. Both 
enqueue and dequeue operations can be issued from 
user-level processes without any need to call the op-
erating system. Both operations enforce standard vir­
tual memory protection when accessing remote queues, 
and thus they provide full protection in a general-
purposed multiprogrammed environment. Compared 
to other software and hardware queueing alternatives, 
remote-enqueue provides high speed at a low imple-
mentation cost without compromising protection in a 
general-purpose computing environment. 
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The processor latency of a remote write operation 
on Telegraphos has been measured to be only 0.7 mi-
croseconds. Thus, the message-notification overhead 
observed by the sending processor is very small - com-
parable to the latency of a local memory access. 

5 Summary 
In this paper we describe a new operation, the remote-
enqueue atomic operation, which can be used in mul-
tiprocessors, and workstation clusters. This operation 

^The Operating System is responsible for creating both map-
pings at memory allocation (initialization) tirne. 

^All sliadow addresses should be witliin the physical address 
range of the networlc interface, and distinct from the normal 
physical addresses used by that networl< interface. 
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Massive network systems spanning grand geographical distances, like Internet, aim at providing 
scalable resource access. Requests for resource access in such complex systems randomly arrive at 
nodes. Cooperation and negotiation are required in order to better support resource sharing, i.e. 
to decide whether to initiate processing of a resource request locally or locate a remote resource 
and negotiate for its remote access. The problems encountered in such complex systems are brieHy 
described in this paper. A measurement study in PVM is used to illustrate our approach. PVM 
ušes round-robin as its default policy for process allocation to processors. The main drawbacks 
of this policy are the fact that PVM ignores load variations among nodes and also the inability 
of PVM to distinguish between machines of different speeds. To repair this dehciency a Resource 
Manager (RM) is implemented which replaces round-robin with a scalable and adaptive algorithm 
for resource sharing providing a High Performance Computing Cluster (HPCC). We propose an 
implementation of a Resource Manager in PVM. The RM can be transparently plugged into PVM 
to offer improved performance for its users. The design of a resource manager to extend PVM is 
outlined. A prototype implementation in PVM is then measured to illustrate the utility of our 
approach. Performance results favorably comparing our extended RM to the original PVM are 
presented. In conclusion, our RM is extended to further expedite performance with enhanced 
locality 

1 Introduction seek Services and those available, which provide ser-
vices. Resource sharing in complex network systems 

Both computing and networking areas are rapidly aims at achieving maximal system performance by uti-
changing. High speed networks and improved micro- lizing the available system resources efRciently. The 
processor performance are making the netvvork insep- goal is to match workstations short of a service to 
arable from the computers it links together. High ca- those experiencing a surplus of the same service. The 
pacity clusters of workstations are becoming an ap- relationship between such a pair is termed mutual in-
peahng vehicle for parallel computing. In this environ- terest. This paradigm is used to propose a scalable 
ment most machines are autonomous personal work- and adaptive resource sharing service. 
stations where each is dedicated primarily to serving Requests for resource access randomly arrive at 
its owner. By interconnecting multiple local clusters nodes. It is possible for some of the nodes equipped 
through a high-speed communication, very large par- with the resource to have it utilized to its fullest ca-
allel systems can be built, at low additional cost, cre- pacity executing resource access requests. Other nodes 
ating a large parallel-computing machine. might not be equipped with the resource at ali or pos-

These complex systems provide access to a variety sibly have its request queue lightly loaded or even idle. 
of resources. There are standard resources as well as This calls for some type of cooperation and negotia-
nomadic ones. Local access suffices for some whereas tion in order to better support resource sharing, i.e. 
others are far off requiring distant access. Further- whether to initiate processing of a resource request lo-
more, there are multiple instances greatly differing in cally or locate a remote node from a large set of avail-
characteristics which are accessible for each resource able ones and negotiate for its remote access. Much 
type. A complex network system may be viewed as a of the computing power is frequently idle. There is 
collection of services. There are workstations, which a necessity to coordinate concurrent access to system 

mailto:dsg@macs.biu.ac.il
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resources. Without any mechanism for cooperation 
among nodes, it is likely that resources on one node 
will become congested while other nodes are idle, re-
sulting in poor overall systein performance. Resource 
sharing in complex network systems aims at achiev-
ing maximal system performance by efficiently utiliz-
ing the system resources available. 

A distinguishing feature of such complex network 
systems is the inabiHty to maintain consistent global 
State information at distributed points of control. A 
complex network system can thus be viewed as a col-
lection of distributed decision makers taking decisions 
to achieve common goals under uncertain local and 
partial views of the system state. Network latencies 
further comphcate these systems. 

Complex network systems present serious diiEculties 
in security, heterogeneity and operability, and in per­
formance. In this paper special concern is devoted to 
the last two. Our aim is to first ensure that the algo-
rithm for adaptive resource sharing is feasible. It then, 
must continue to be effective and stable as the system 
grows. Scalable solutions are required in order to effec-
tively utilize the aggregate processing power available 
and hide latencies. Such solutions strive to conceal 
physical characteristics such as system size, network 
topology, faults, and different sorts of latencies and 
resource capacity constraints. 

PVM (Parallel Virtual Machine) is a parallel and 
distributed computing environment used worldwide. 
It enables a collection of heterogeneous computers con-
nected by dissimilar networks to be used as a coherent 
and flexible concurrent computational resource. In [12] 
we describe a resource management system which pro-
vides a replacement for the round-robin policy with a 
scalable and adaptive algorithm for resource sharing 
[13]. This resource manager is extended in this paper 
to further improve performance. 

The remainder of this paper is organized as follows. 
Resource sharing in a complex network environment is 
described in Section 2. Section 3 details an algorithm 
for preservation of mutual interests together with en-
hancements required to improve locality in a complex 
network environment. PVM and its process control 
are briefly described in Section 4 followed by an im-
plementation of a RM which replaces the default PVM 
round-robin assignment. Initial prototype implemen-
tation measurements results are given in Section 5. 
Finally, conclusions derived from this study and di-
rections recommended for future research are given in 
Section 6. 

2 Adaptive Resource Sharing 
2.1 Introduct ion 

The problem of resource sharing was extensively stud-
ied by Distributed Systems (DS) (i.e.,[16]) and Dis­

tributed Artificial Intelligence (DAI) (i.e.,[17]) re-
searchers, particularly in relation to the load sharing 
problem in such systems. Distributed systems require 
some mechanism for cooperation among the proces-
sors, attempting to assure that no processor is idle 
while there are tasks waiting for service. Similarly, a 
solution to the resource access problem attempts to 
ensure that there are no such resources idling while 
requests are queued at other nodes. A mutual re­
lation between two nodes in a distributed system is 
identified, where one node is a service provider and 
the other is a service user. One of the strengths of 
large-scale distributed systems is that when a node 
cannot fulfill a service request locally, it may issue a 
request to another node, where the service is avail­
able. The challenge is to find a service provider and 
to keep the system stable and scalable while doing so. 
Load sharing algorithms provide an example of the 
cooperation mechanism required when using the mu­
tual interest relation. A location policy determines the 
approach used for locating a remote resource. Infor­
mation propagation, request acceptance and process 
transfer policies are other components of such algo­
rithms. When incorrect information can be detected 
and recovered, decisions can be based on weakly con­
sistent information which may be inaccurate at times 
([7][13][18]). Weak-consistency allows inaccuracy as 
well as partiality. State information can be used as a 
hint for decision making enabling local decisions. Such 
state information is less expensive to maintain. The 
use of partial system view reduces message trafRc, as 
less nodes are involved in any negotiation. For the 
benefit of maximal performance a hint should nearly 
always be correct. 

Adaptive algorithms adjust their behavior to the dy-
namic state of the system. Thus, they are able to 
better approach the full computational power of the 
system. But, they also carry a lot of overhead. Their 
behavior might become unpredictable when faced with 
inaccurate information. Therefore, the complexity 
of the algorithms should be kept as low as possible 
while stili allowing for a significant performance im-
provement. Few such algorithms are subsequently de­
scribed. 

2.2 Early Study 

In a study by [7] the performance of location poli­
cies with different complexity levels is compared. The 
research was performed on load sharing algorithms. 
Three location policies were studied: random policy 
(which is not adaptive), threshold policy, and short-
est policy. Random selection, which is the simplest, 
yields significant performance improvements in com-
parison with the no cooperation čase. Stili, a lot of 
excessive overhead is required for the remote execu-
tion attempts, many of which may prove to be fruit-
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less. Threshold probes a limited number of nodes. It 
terminates the probing as soon as it finds a node with 
a queue length shorter than the threshold. Threshold 
results in a substantial further performance improve-
ment. Shortest probes several nodes and then selects 
the one having the shortest queue, from among those 
having queue lengths shorter than the threshold. By 
probing nodes before actually sending a task for re-
mote execution, the amount of data, carried by the 
communication network, is decreased. However, there 
is no added value to looking for the best solution. A 
node should not look for the best solution but rather 
an adequate one. It may thus be concluded that ad-
vanced algorithms do not necessarily entail a dramatic 
improvement in performance. Many approaches sug-
gested later are based on [7] which illustrates a great 
advantage because of its simplicity. Its drawback lies 
in having to initiate negotiation with remote nodes 
upon request. This may result in lengthy delays. To 
avoid such remote message exchange state Information 
regarding other nodes in the system should be main-
tained locally. In [19] such state Information is held 
locally and periodically updated. A node often deletes 
Information regarding resource holders which are stili 
of interest. In order to better support similar and re-
peated resource access requests, cache entries of mu-
tual interest should be retained as long as they are of 
interest. Such an algorithm is described next. 

2.3 Flexible Load Sharing 

In the Flexible Load Sharing algorithm (FLS) [13] a lo-
cation policy similar to Threshold is used. In contrast 
to Threshold, FLS bases its decisions on local Informa­
tion which is possibly replicated [1] at multiple nodes. 
For scalability, FLS divides a system into small sub-
sets which may overlap. Each of these subsets forms 
a cache (Fig.l) held at a node. Cache members are 
nodes of mutual interest which are first discovered by 
(pure) random selection. Biased random selection is 
used from then on in order to retain entries of mutual 
interest and select others to replace discarded entries. 
The cache actually defines a subset of system nodes, 
within which the node seeks a partner. That way the 
search scope is constrained, no matter how large the 
system is as a whole. The algorithm supports mutual 
inclusion and exclusion, and is further rendered fail-
safe by treating cached data as hints. It can be com-
pared to unbiased random selection where new nodes 
to be included in the cache of a node are selected pe-
riodically and randomly, even if nodes sharing mutual 
interests existed in the current cache. In order to min-
imize state transfer activity, the choice is biased and 
nodes sharing mutucJ interests are retained. In this 
manner premature deletion is avoided. In addition, 
it is important to note that FLS does not attempt to 
produce the best possible solution, but like Threshold, 

it offers instead an adequate one, at a fraction of the 
cost. By doing so, the extra (communication and pro-
cessing) overhead is saved. However, FLS presents an 
added value to the algorithms discussed in [7] research: 
the necessary Information for matching partners, shar­
ing a mutual interest, is maintained and updated lo-
cally on a regular basis, rather than waiting for the 
need to perform the matching to actually arise in order 
to start gathering the relevant Information. Cache en­
tries of mutual interest are retained as long as they are 
of interest. Premature deletion is thus avoided. This 
policy shortens the time period that passes between is-
suing the request for matching and actually finding a 
partner having a mutual interest. The FLS algorithm 
can be extended to any other matching problem in a 
distributed system, as will be shortly demonstrated. 

2.4 Locality Study 
Another interesting approach for locating resources is 
described in [14]. A local data structure which is ef-
ficiently maintained is described where state Informa­
tion is held of ali other nodes and not only those cur-
rently of mutual interest. Again this study was in the 
area of load sharing. The motivation is to improve the 
probability that remote requests would be directed to-
wards nodes that share a mutual interest, thus low-
ering the cost of the search for a mutual partner. A 
disadvantage of this scheme is its dependency on sys-
tem size which violates scalability. In the next section 
we describe in detail a scalable and adaptive algorithm 
preserving mutual interests [13]. We then propose how 
to enhance locality in line with [14] within this frame-
work. 

3 Preserving Mutual Interests 
for Resource Sharing in 
Coniplex Network Systenis 

In this section we describe in more detail the flexi-
ble load sharing algorithm (FLS) [13] which supports 
scalable and adaptive initial allocation of processes to 
processors. To enable analysis of this complex environ-
ment an idealized environment (basic čase) is initially 
assumed characterized by the following: 

— no message loss 

— non-negligible (>0) but constrained latencies for 
accessing any node from any other node 

— availability of unlimited resource capacity, i.e., the 
number of nodes in a cache is not limited 

— the selection of new resource providers to be in­
cluded in the cache is not a costly operation and 
need not be constrained. 
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A local cache is maintained at each node. The main 
cache parameter is : 

— n, the number of nodes to try to include in the 
cache 

A cache contains the Identification of other nodes 
with mutual interest currently known to the node to-
gether with their current state. This is discussed next. 

3.1 State Metric 

The algorithm for preserving mutual interests defines 
three states for the nodes of the system positive, neg­
ative, and neutral. with the foIlowing semantics. A 
negative node experiences resource shortage; a posi­
tive node has surplus resource capacity, i.e. it is ca-
pable of serving external resource access requests; a 
neutral node does not participate in resource sharing. 
A node is of interest to another node if and only if these 
two are of 'opposite' states. This relation is symmet-
ric and each is interested in having the other in its 
cache. Therefore, a node need retain only such nodes 
in its cache. The state may be determined by applying 
thresholds to a resource state. Assume the existence 
of positive and negative thresholds and and let r repre-
sent the load imposed on a resource at node i. The load 
may be expressed as the length of the resource request 
queue at the node, resource utilization, a combination 
of the two or any other relevant measure applicable. A 
node resource state r is thus mapped into one of three 
possible states: 

s t a te r 

where R is the load measured. Scale is recognized 
as a primary factor influencing the design, implemen-
tation and performance of complex netvvork systems 
[15]. Another scalability factor of major importance 
is latency (or delay). Network delays may be lengthy 
and also subject to high variability [11]. 

Note that even under the optimistic assumptions 
made, it is desired to constrain the scope of operation 
and resultant overhead. To achieve this goal, the algo­
rithm takes advantage of weak-consistency which per-
mits both partiality and temporary inaccuracy. Par-
tiality is dealt with first. By constraining the view a 
node has of the system to a small subset of it held 
locally in a cache, a node considerably bounds inter-
action with other nodes. A node exchanges state in-
formation with ali nodes in its cache and selects from 
these for possible remote resource access. Cache size 
is much smaller than system-size. Cache members in­
clude a few other nodes equipped with the resource in 

positive if 
negative if 
neutral if 

R>T+ 
R<T_ 

T-<R<T+ 

Positive - C_} 

Negative - ^m 

Neutral- A 

Figure 1: Resource states. A node's cache (view of the 
system). 

question ^. Cache access time is much faster than any 
remote resource access. Having such Information avail-
able locally means that lengthy negotiation with the 
name server or other nodes before a resource location 
is found can be avoided. Also similar and repeated 
requests are made more efficient. 

An algorithm for preserving mutual interests is pre-
sented with the main aim of hiding scale. We first 
present a simplified form of the algorithm for preserv­
ing mutual interests. We then extend the basic algo­
rithm to enhance locality. 

3.2 Basic Algorithm for Preserving 
Mutual Interests 

For preserving mutual interests the following location 
and acceptance policies are used. If the cache of a 
node is not empty, then a remote resource is selected 
from it. A request to access the resource is sent with 
the command piggybacked so as to allow for imme-
diate access if the request is accepted. Otherwise a 
negative acknowledgment is returned. The remote re­
source holder employs the foIlowing acceptance policy. 
If the resource is available and capable of granting ex-
ternal requests, a positive acknowledgment is sent to 
the request originator; otherwise a negative acknowl-
edgment is sent. Note that as a cache usually holds 
Information regarding several remote locations and as 
the hit-ratio is high only few requests are expected to 
be rejected. These locations are treated as a hint [18] 
for decision making and incorrect decisions will be ter-
minated rapidly. The Information policy is performed 
upon a change in a node's local load state. This is 
in preference to periodic update which can be hard 
to tune. Ali cache members are then notified. A re­
mote resource access decision is thus applied within a 
node, independently of its application in other nodes. 
Caches may overlap. Cache membership is symmetric. 
This symmetry is a key property for ensuring that a 
node is kept informed of the states of the nodes in its 

' If such information is not available locally, a name service 
could be consulted to obtain other node identifiers. The latter 
relate to the local sub-network and also neighboring ones. 
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cache. A node retains useful nodes in its cache and 
discards nodes which are no longer of interest. Cache 
membership is thus dynamic and adaptive, aimed at 
retaining those nodes of interest and discarding others. 

Two events may cause a change to the cache con-
tents: cache refresh and message receipt described 
next. In the following discussion: 

— d denotes the current cache for resource r at 
node i 

— I Ci I is the size of the cache at i 

— statej denotes the current state of node i 

— mutuali,s is true if nodes i and s are of 'opposite' 
States, false otherwise. i.e.: 

mutuali^s = {statci = positive and statCg = negative) 

or {statei = negative and states = positive) 

= not (statei — neutral or statcg = neutral or 

statei = states) 

Obviously, this predicate on nodes i and s is symmet-

ric and hence : 
mutuali^s = mutualg^i 

Parts of the algorithm are given as rules of the form 
"guard > action" which form alternatives in a guarded 
command if...[]...p... fi. Two events may cause a 
change to the cache contents: cache refresh and mes­
sage receipt (described next). 

Message Receipt - When a statCs message arrives 
at i from node s, the following message receipt proce­
dure is invoked : 

if ( s^Ci and mutual;,s) => 
insert s entry < s, state, > into C;; 
send a responding message state; to node s; 

[] (sSCi and mutual,-,j) => 
update s entry < s, state, > in C;; 

[] ( sgCi and not mutual;,,) => 
discard s entry from C,-; 

n (s ^C; and not mutual;,») => 
skip (ignore); 

Thus, nodes with mutual interest are included and 
updated while others are discarded. Hence, Cj con-
tains only nodes of mutual interest. The response in 
the first čase, where s is a newly selected node of mu­
tual interest for i, acts to confirm to s that i is of in­
terest for s. The second čase ensures that s is retained 
if it is stili of interest, but terminates the state ex-
change between i and s by giving no further response. 
The other two cases ensure that nodes with no mutual 
interest are discarded and ignored, respectively. 

Cache Refresh - The current cache is refreshed 
upon initialization (the cache is initially empty), and 
following a resource state change^. Node i ušes the 
following procedure: 

{for aH nodes k € C;}: 
(disseminate statei to node k; 

;discard k) 
if (state;=positive or state; =negative) => 

randomIy select n nodes {ji--.jn} from the set 
{l,2,...,systemjize}; 

{for ali nodes kS{ji...j„} : 
disseminate state; to node k}; 
[] (state;=neutral)=> skip; 

fl 

Extensions to achieve enhanced locality are de­
scribed next. 

3.3 Extensions to achieve enhanced 
locality 

Following a state change at a node, the local informa-
tion about other nodes that previously had a common 
interest with the node is lost. This may not always be 
plausible. Consider a node that experiences a service 
surplus. It may start providing the available service to 
some other remote nodes. As the remote requests con-
tinue to arrive at it, it may experience a service short-
age, thus changing its state. But then, as it notifies the 
other nodes it is no longer available for their requests 
and the remote requests stop. It would return to its 
previous, surplus, state within a short while. This sce-
nario demonstrates how state swings may occur. 

Upon returning to the surplus state, the node needs 
to discover nodes with a shortage for that service. In 
the original algorithm this search is done from scratch: 
nodes are probed randomly, in the hope that some of 
them share a common interest with the local node. A 
better strategy may be to save aside a cache that be-
came invalid once the local node changed states. Then, 
when the node returns to the previous state, and es-
pecially in čase the return to the state occurred -vvithin 
a short while, it would be plausible to first probe the 
nodes that composed the old cache, which was saved 
aside. Those nodes which shared a common interest 
with the node before it changed its state, and there-
fore it is likely they would share this common interest 
with it again, once it returns to that state. Directing 
the probing towards those nodes may improve per-
formance, compared to an entirely random probing. 

^Note that, since a cache only contains nodes of mutual in­
terest, it will be empty immediateljf following a state change 
and consequent cache refresh. However, if the state of the node 
is not N, the responding messages will quickly re-establish cache 
membership. If the state is N, its cache will remain empty. 



46 Informatica 23 (1999) 41-48 O. Kremien et al. 

which is a total 'shooting in the dark'. 
Hence, our improved FLS acts as follows: Two 

caches are used to save aside data that is no longer 
of interest to the local node: an old-positive-state-
cache and an old-negative-state-cache. When a node 
changes its state from negative to some other state 
(neutral or positive), we clean the content of the old-
negative-state, and insert to it the nodes of the current 
cache, before refreshing it. Likewise, when a node is 
in a positive state, and its state changes, the content 
of the current cache is copied to the old-positive-state-
cache, to be saved until that Information is needed 
once again. When a node state becomes positive (or 
negative), and a refresh cache is in order, the nodes in 
the old-positive-state-cache (or the old-negative-state-
cache) are probed first. Once the old cache nodes are 
exhausted, probing is done at random, for a total of 
n probed nodes, similar to the way it is done in the 
original FLS algorithm. 

Notice that there is no saving of cache when the 
node changes state from a neutral state, and there is 
no modification to the way cache refresh is done once 
a node becomes neutral. This is due to the fact that a 
neutral node share no common interest with any other 
node (this is, in fact, the way a neutral state is de-
fined). Thus, the cache of a node in a neutral node is 
always empty, and there is no sense in probing other 
nodes as long as the local node is neutral. Our exper-
iments are conducted in PVM is summarized next. 

4 Parallel Virtual Machine 
PVM is composed of two parts - the library of PVM 
interface routines, called "pvmlib", and the support 
software system. The latter is called "daemon" - pvmd 
and executed on ali the computers making up the vir-
tual machine. These pvmds are interconnected with 
each other by a network. Each daemon is responsible 
for aH the application component processes executing 
on its host. There is a master daemon which con­
trols the physical configuration and acts as a name 
server. Otherwise, the control of the virtual machine 
is completely distributed. Process control is addressed 
in the following paragraphs. PVM [4][8][9][10] pro­
cess control includes the policies and means by which 
PVM manages the assignment of tasks (processes in 
the PVM system) to processors and controls their exe-
cution (spawning) . The computational resources may 
be accessed by tasks using the following policies: de-
fault (transparent) policy, architecture dependent pol-
icy, machine specific or a policy defined by the user 
to substitute the default (round-robin) PVM process 
control. In the čase of default/transparent, the next 
node is selected from this pool in a round-robin man-
ner. The main drawbacks of such policy are the fact 
that PVM ignores the load variations among the differ-
ent nodes and also PVM is incapable of distinguishing 

between machines of different speeds. We extended 
PVM to provide an alternative spawn (execution) ser-
vice which is scalable and adaptive [12]. This was fur-
ther extended to enhance locality. Initial Performance 
Measurement results in PVM are described next. 

5 Initial Performance 
Measurement Results 

We experimented on a system composed of eight Pen-
tiumll based vvorkstations that are connected by a 
Fast-Ethernet LAN. Each workstation is an indepen-
dent source of load (each workstation generates se-
quence of 100 processes). PVM is the distribution 
environment used. The average load imposed on the 
system was 70 %. To measure performance in a cluster 
environment we measured the following three cases : 

— PVM (default round-robin process allocation). 

— Extended PVM. This system includes Resource 
Manager (RM) [12] which ušes resource sharing 
service (FLS) to improve process allocation. 

— Extended PVM with enhanced locality. 

A hit is defined as a lookup request, which could be 
answered with the current contents of the cache. We 
define a miss to be a lookup request which could not 
be answered with the current contents of the cache, 
such as an overloaded node not finding an entry for an 
underloaded node in the cache. Cache hit should be 
maximized. Cases of cache miss should naturally be 
minimized, although to a much lesser extent. Zhou [19] 
has found that even when 50-70 % of the components 
are not eligible for remote execution, load sharing can 
stili be beneficial. 

The percentage of probing based on previous caches 
is defined to be the percentage of probed nodes which 
were chosen based on their appearance on previous 
caches, out of aH probed nodes. Notice that as this per­
centage increases, the percentage of successful probing, 
that is probes that result in finding a node which in-
deed shares a common interest with the local node, 
is also increased. Hence, our first goal, to better di-
rect the probing towards nodes that are more likely to 
share a common interest with the local node, assuming 
that this will increase the number of successful probes, 
was indeed realized. 

As the probing process becomes more efficient, the 
cache is updated within a shorter while, when a node 
changes it state. A faster update of the cache means it 
is empty for shorter periods of time. As a consequence 
the miss percentage decreases. Our results verify this 
phenomena: The percentage of missed when the ex-
tended FLS is used, is lovver than that percentage for 
the original FLS. 
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Figure 2: Response time benchmark. Eight Pentiumll 
nodes. Each node generates 100 tasks. 

It should be noted that the most noticeable decrease 
in the miss percentage, in our experiment, is at nodes 
where the percentage of probing based on previous 
nodes is relatively low. This seems to be a paradox 
at a first glance, but it is not: The nodes having the 
higher percentage of probing based on previous caches, 
in our experiment, are the two underloaded nodes. 
Those nodes change their state extensively due to re-
ceiving jobs from the overloaded nodes. When each 
of them returns to the underloaded state, it ušes the 
cache that was previously valid for this state, to first 
probe the nodes that were previously found to be over­
loaded (and hence share a common interest with the 
underloaded node). Those probed nodes are, with high 
probability, the two overloaded (on average) nodes, 
and will most likely indeed be overloaded. Hence, the 
underloaded nodes update the overloaded nodes about 
their return to the underloaded state within a short 
while. The caches of the overloaded nodes is updated 
more quickly, and so it is less likely that the caches 
will be found to be empty when a remote execution is 
in order. Thus, the percentage of misses is decreased 
for the overloaded nodes. 

To conclude: Our experiment showed that probing 
based on previous cache members yielded a more suc-
cessful and efRcient probing process. As a result caches 
are updated faster, and are empty less frequently. The 
miss ratio is thus decreased, and the number of remote 
execution possible to be carried out is increased. In 
our example (Fig.2) the extended FLS gives an im-
provement of 31 % in comparison to PVM. We expect 
substantial improvement in complex environments like 
internet. 

6 Conclusions and Future 
Study 

This paper presented a PVM-based implementation 
of an enhanced scalable and adaptive resource sharing 
facility. Our system is based on commodity hardware 
(PCs and networking) and software (PVM) offering 
a low cost solution as an alternative to mainframes 
and MPP's. Such a system adapts to state changes 
which are unpredictable in a complex network environ-
ment. Simulation [11] and prototype implementation 
[12] results demonstrate the utility of an algorithm pre­
serving mutual interests to such environments. This 
was subsequently enhanced to optimize locality as de-
scribed in this paper. We are encouraged by the rela-
tive ease of FLS algorithm implementation as resource 
sharing service and its extension and the results it pro-
vides. An extensive performance measurement study 
of locality is planned. 

Our current implementation supports scalable and 
adaptive initial placement. It will be complemented 
by migration after start-up [2] to support a general 
purpose PVM-based high performance computation 
ser ver. We are working on adaptation of this cluster 
computation server to the Internet environment and 
its technologies (like JAVA, ČORBA). Initial results 
demonstrate generality of the algorithm preserving 
mutual interests and usefulness to support load shar­
ing and also the dynamic parking assignment prob­
lem'. We are currently working on its customization 
to e-commerce. 
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The efficient usage of worksta,tions dusters depends Grst ofall on the distribution ofthe workload. 
The foUowing paper introduces a method to obtain efficient load balancing for data parallel appli-
cations through dynamic data assignment and a simple pnority mechanism, on a heterogeneous 
cluster of workstations, assuming no prior knowledge about the workload. This model improves 
the performance of load balancing methods in which one or more control processes remain idle 
for an extended period of tirne. In order to investigate the performance of this method we take 
into consideration a problem of 3D image reconstruction that arises from events detected by a 
data acquisition system. Studies of our load balancing model are performed under slight and 
heavy ioad condition. Experimental results demonstrate that this model yields a substantial load 
baJance, even more if workstations are heavily loaded, from exploiting the idle time ofone control 
process. In addition, this strategy reduces the overhead due to communication so that it could be 
successfully employed in other dynamic balancing approaches. 

1 Introduction 

In academic and industrial institutions inexpensive 
clusters of workstations or PCs are replacing single, 
more expensive, parallel machines and small symmet-
ric multiprocessor (SMP) systems can be found within 
many of the powerful modem systems. Research cen-
ters like CERN ^ are developing experiments based on 
clusters of thousands of LAN workstations connected 
to a WAN[1]. 

Usually, in a LAN there are connected workstations 
with varied performance levels, as well as very different 
loads and variable communication times. In addition 
to the heterogeneous hardware, the heterogeneity of 
such MIMD systems is due to their multiuser environ-
ment that makes the workload change continuously. 
To maximize the performance of these loosely coupled 
parallel systems, it is essential to minimize the idle 
time for each process and ensure the balancing of pro­
cesses workload. The techniques involved in load bal­
ancing and task scheduling play the key roles in achiev-
ing an equal share of total workload for each process 
and help to minimize the total execution time[2, 3, 4]. 

There are many studies dealing with problems of 
load balancing for distributed memory systems. Some 
works[5, 6] assume that the processors employed are 
continuously lightly loaded, but commonly the load 
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on a workstation varies in an unpredictable manner. 
Other studies based on data migration introduce a 
large amount of communication overhead[7]. 

This paper presents a load balancing method for 
data parallel applications, based on dynamic data as­
signment. It is suitable for a cluster of workstations 
even if the load changes dynamically. This method 
is based on a modified manager-workers model and 
achieves workload balancing by maicimizing the useful 
CPU time for ali the processes involved, even for the 
manager, without introducing axiy significant overhead 
due to the method itself. In addition, it can reduce the 
communication time needed for distributing data and 
for collecting results. This model is accomphshed by 
means of a fixed ivorking process, the manager, which 
holds ali the available work and satisfies, by means of 
a priority queue, idle processes, the workers, asking it 
for more work. 

This paper consists of 7 parts. In Section 2 we 
present an overview of the load balancing problem. In 
Section 3 we outline the image reconstruction problem 
used to test our load balancing model and the sequen-
tial algorithm that had been previously accomplished. 
Section 4 describes the load balancing strategy, the 
parallelized version of the previous algorithm and the 
priority mechanism. Section 5 contains the results of 
the experiments and an analysis of performance. Con-
cluding remarks follow in Section 6. Finally, in Section 
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7 we suggest future studies and appUcation fields. 

2 Review 

To achieve the best performance from a parallel appli-
cation in a heterogeneous computing environment, it 
is important to minimize the idle time of processes and 
to ensure that the workload stays evenly distributed 
so that each process ends its task at almost the same 
moment. 

In a cluster of workstations the continuously chang-
ing workload makes the estimation of execution time 
unpredictable. Works in [5, 6] show how to achieve 
a good load balancing by assuming that ali proces­
sors of the workstations employed are idle or lightly 
loaded during the whole computational period, but 
this is not realistic in a network of workstations. In [7] 
load balancing is accomplished by dynamically chang-
ing the number of virtual processors that each physi-
cal processor hcis to emulate, but this high granularity 
approach produces a large communication overhead. 
The load balancing method considered in [8] is de-
signed for non uniform iterative algorithm and redis-
tributes data after each iteration to balance the work-
load among aH processors. However, no re-balance is 
considered during each iteration, that might take a 
long time. Moreover, in the presence of a high number 
of short time iterations the communication overhead 
becomes large. The work presented in [9] is based on a 
manager-workers model and exploits data redistribu-
tion for achieving load balancing. The manager directs 
the workers to shift data among themselves to obtain 
a more balanced condition, even within an iteration, 
but the goodness of this method is strongly dependent 
from theirs image processing applications. Moreover, 
even if that load balancing scheme tries to minimize 
communication costs, under certain conditions it may 
introduce a large overhead due to communication and 
it does not minimize the idle time of processes anyhow. 

Our load balancing scheme gives a method to mini­
mize the idle time of each processor involved and to re-
duce the communication overhead, by increasing data 
locality. In addition, it could be applied to already 
existing load balancing methods. 

that has been previously injected. The image arises 
from the measurement of the radiopharmaceutical dis-
tribution inside the body. PET imaging consists of two 
steps. First, the data acquisition system detects the 
number of pairs of opposite photons {events, deri ved 
from positrons annihilation); then, through a recon-
struction method, we can obtain the original distribu-
tion, hence the related image. 

In this test, the detector system is an experimen-
tal apparatus[ll] made of two pairs of detectors po-
sitioned on a rotating gantry at 90 degrees from each 
other. After filling a phantom[12] with a radiophar-
maceutic, the emission was measured. The tomograph 
rotated on a radius of 76mm by 90 degrees in 20 dis-
crete steps around the phantom and detected a total 
amount of lO'̂  events. The program that manages this 
acquisition system periodically stores on a file a block 
of 10000 events, 18 bytes an event, and it adds con-
trol data such as the time employed for the acquisition 
and the angle of rotation. This file will be the input 
file for the application. The processed events range 
from 70 to 90 percent of the total number of events, 
for statistical, physical and electronic reasons. This 
non-homogeneous data processing represents another 
cause of load unbalancing. 

To solve the problem of image reconstruction 
we accomplished a 3D "weighted" backprojection 
method[ll]. 

The phantom to be reconstructed lays into a volume 
of 40x40x40mm^ represented by a 3D matrix M of di-
mension N^, where N depends on the resolution of the 
final reconstructed image (here N=128). Let the voxel 
be a matrix element, and the event line be the ideal 
line joining the detectors, along which a pair of pho­
tons travels in opposite directions. Of course, the other 
details involved in this method are not described here 
because they would deviate attention from the purpose 
of this study. Fundamentally, this method consists of 
filling with weighted values w, for any accepted event, 
aH voxels crossed by the event line. It is important to 
note that the amount of intersected voxels changes as 
considering varied event lines; thus producing a differ-
ent computational load for each event. 

Here briefly outlined the kernel of the sequential 
algorithm, in a pseudo-code: 

3 Image reconstruction 
problem and sequential 
algorithm 

We give here a short description of this image recon­
struction problem and of the acquisition system we 
used to test the performance of our load balancing 
model. 

Positron Emission Tomography (PET) is a tomo-
graphic method[10] that allows imaging of any body 

1. while (there are blocks in the file) do 
2. READ one data block 
3. for (each accepted event) do 
4. for (each crossed voxel) do 
5. for (x from 1 to r) do 
6. M(ia;, j j , ka;) = M(i^, j;t , kj;) -f w 
7. WRITE M 

where r depends on the resolution of the reconstructed 
object. 

Even if a 2 bytes integer matrix expresses the fi-
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nal volume, M is a 4 bytes float type matrix during 
the reconstruction steps. It requires 8MB that are the 
main memory requirements of this algorithm. As seen, 
there are no data dependencies among blocks and if 
we duplicate M on each process memory, then the re­
construction procedure between code lines 3-6 can be 
executed independently. 

4 Load balancing model 

4.1 Load balancing strategy 

Dynamic load baJancing methods can be divided into 
two main categories[3]. In peer-based methods, the 
work is initially distributed among different processes 
and among them data migration is required to achieve 
load balancing. In pool-based methods, one process has 
the whole work and idle processes ask it in order to get 
more work[13]. 

To investigate a method for extracting maximum 
performance from the system and also from each 
process, attention is focused on pool-based methods, 
which introduce a smaller overhead due to interpro-
cessor comraunication. Hence, in this load balanc­
ing scheme a fixed process, called manager process, 
has ali the available work and idle processes, called 
vjorkers, ask this fixed process for more work. In 
the canonical manager-workers scheme the workers are 
self-scheduled and the manager remains idle and ready 
to satisfy requests as they arrive; however, it performs 
only control issues, as in [9]. In the present paper, we 
name our model the "working-manager modef: the 
manager ušes its idle time to process data itself and 
pushes the incoming requests into a circular queue by 
using a FIFO strategy. During the execution the man­
ager checks this queue with a dynamically variable fre-
quency. 

The heuristic method is simple: when the manager 
does not perform any control task it must work, but 
it should never choose working over managing. As it 
will be seen, this strategy reduces the overhead due to 
communication such that it could be successfully em-
ployed in a few dynamic balancing approaches affected 
by high communication costs. Further, we introduce 
a priority mechanism, which in some cases yields a 
significant improvement. 

4.2 Parallel algorithm 

As shown above for the sequential algorithm, the 
reconstruction procedure can be executed indepen-
dently, making it possible to parallelize at line 1 in 
the code. 

After the initial data have been divided among pro­
cesses in a block cycle manner, each process starts 
working on its local data. When a worker runs out 

of work, it gets a block from the manager, but while 
each process has work to do, also the manager vjorks. 

To accomplish the working-manager model we fol-
low the master-slave paradigm, in vi'hich a separate 
master program is responsible for processes (slaves) 
spawning, data assignment and collection of results. 
Then, we implement the SPMD model, in which one 
code runs on each processor, to avoid keeping apart the 
master tasks from the slaves ones and to consider a fu-
ture porting on monotasking MPP systems (e.g.' the 
CRAY T3E machine). The code is written in C lan-
guage by using PVM libraries for message passing[14]. 

Here is a brief description of the kernel of the 
parallel algorithm. Again, by using a pseudo-code: 

8. while (there are blocks) do 
9. if (master) then CALL scheduler 

10. else RECV data 
11. for (each accepted event) do 
12. if (master AND {event mod Q) = 0) then 

CALL scheduler 
13. CALL compute 
14. SEND End-Of-Block signal 
15. if (master) then WRITE M 

where event is the sequential order number of the 
accepted event, Q is an integer number, RECV 
(blocking) and SEND (asynchronous) are PVM 
routines, compute is a fragment of the reconstruction 
method. scheduler has the follovving pseudo-code: 

16. while (N_RECV End-Of-Block signal) do PUSH 
[procnum, prioritg) 

17. while (queue not empty OR procnum is master) 
do 

18. READ data 
19. if (queue not empty) then 
20. POP {head) 
21. SEND data 

PUSH and POP are the typical operations over 
queues, procnum is the sender process identifier, head 
is the first process in queue, N_RECV is a PVM non-
blocking routine. The following sub-section deals with 
the priority mechanism. 

In the sequential algorithm line 11 is located inside 
the reconstruction procedure, as it should logically be 
- the cycle for also belongs to the reconstruction step. 
We can observe how it is possible to break off a com­
puting procedure for inserting a call to scheduler. the 
manager temporarily leaves its worker j ob to deal with 
its manager task. 

This procedure is incorrectly called scheduler, mean-
ing that the manager acts there as if it was a sched­
uler. In the algorithm, the time slice that the man­
ager ušes between two subsequent scheduling inside 
the computing procedure is dynamically determined 
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by "event mod Q", but it could be utihzed any other 
cydic mechanism. A disadvantage in using this dy-
namic timing technique could occur if a too high value 
for Q were considered - the manager would become 
too busy in worker tasks. In this čase, it could be said 
that the manager works instead of accomplishing its 
prior issues. However, this is a hypothetical condition 
because usually the computing time needed to process 
an event and the scheduling time slice should differ 
from a few order of magnitudes. 

4.3 Priori ty queue 

Scheduling policies work in conjunction with priority 
levels: the higher the priority of a process, the more 
the process is executed. Each process begins its exe-
cution with a base priority that can change as the ap-
plication runs, depending on the application require-
ments. 

The topic of process load measurement is associated 
to problems deahng with load balancing, even more 
if the environment is a multitasking system. Many 
studies show how the amount of processed data can 
be used as workload estimation[9, 15, 16]. We use 
the ratio between the accepted events and the block 
execution time as a performance index (the speed of 
the process) [17]. The priority mechanism assigns the 
highest priority to the fastest process, so that it may 
execute more blocks. 

Let i be the order number of a block computed by a 
process and Ei the number of accepted events for that 
block. Then the priority P of a process to compute 
the next block i+1 is its current speed: 

Pi+l — 
Ei 

(Te + Te) (1) 

It is important to recognize that in a heterogeneous 
system it does not mean that there is prior knowledge 
about each block execution time; it only gives us Infor­
mation on a block arising from the previous one. Here 
Te is the execution time and Te is the communication 
time needed to transfer the data block from the end-
ing of the SEND, performed by the manager (line code 
21), to the beginning of the RECV (Hne code 10), per­
formed by the worker. Both timing measures refer to 
the elapsed time. Even if we make the worker pay for 
the manager also, it has been verified that under var-
ious load situations, for each block Te>Tc, therefore 
the linear order index of the priority queue is computed 
by considering Tg only. 

Many load balancing methods suffer due to the last 
task processing[18]. In fact, execution ends as the last 
task ends. In our scheduling approach the worst čase 
consists of a condition in which ali processes are end-
ing except for the slowest one, which is queued and it 
is going to receive the last block. To avoid this, we 

must know when the running processes will end, their 
performance and a rough estimation of the last block 
execution time for each process. 

By using certain peculiarities of the test problem 
and keeping statistics of aH the events already pro­
cessed, we can give a rough gualitative estimation of 
Ej for each one of the last n blocks, where n is the 
total number of processes involved, while they are pro­
cessed. Thus, by means of Ej and the current speed 
Pj+i we can deduct an estimation of the block execu-
tion time Tg. Consequently, for each processing block 
we can approximately estimate ivhen it will finish. Let 
RTj be the remaining execution time of the process j 
(one of the last n running processes) and TLj be its 
expected execution time on the last block; then, the 
most likely process to receive the last block is the one 
for which (RTj-I-TLj) is minimum. 

5 Performance analysis and 
experiniental results 

The cluster used consists of 4 workstations, connected 
to a LAN by a 100Mbit Ethernet, except for W3, that 
mounts a 10Mbit adapter: 

Wl) SMP system: 2 Pi l 400Mhz, 512MB; 
W2) SMP system: 2 PPro 200Mhz, 128MB; 
W3) AMD K6-3D, SOOMhz, 64MB; 
W4) DEC AXP 4/200, 200Mhz, 256MB. 

Workstations are listed according to their performance 
on the sequential algorithm with lightly loaded ma-
chines (i.e. Wl is the fastest one). 

The operating system is Linux 2.0 for aH the work-
stations except for AXP, that comes with its native 
OSF/1; PVM is the communication library and gcc 
the C compiler. As we can see this is a low-cost clus­
ter, with no cost software, but OSF/1. 

Most of the difRculty in studying job performance 
of a heterogeneous cluster arises from its multi-tasking 
environment, in which different tasks running on each 
node may change in an unpredictable way the work-
load of the workstations belonging to the cluster. 
When studying the performance of a parallel appli­
cation, one must take into consideration those tasks 
that produce the so-called external load and limit the 
resources for our jobs. 

The aim of our measurement is to evaluate the im-
provement introduced by forcing the manager to work, 
with lightly and heavily loaded workstations. In the 
latter čase, to get more reliable results, an artificial 
external load is added by running on each processor 
the same Monte Carlo simulation, a very CPU inten-
sive job which keeps the external load unchanged dur-
ing the execution of our tasks (same results have been 
obtained by utilizing I/O intensive jobs). Since we 
are not interested in absolute measurements[18] of the 
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performance of this test application the external load 
is not exactly quantified, unlike other studies[17], but 
we keep it constant. Further, we do not quantify the 
communication tirne because this method does not in-
troduce any extra overhead due to communication. 

This test is accomphshed by using 6 processes, one a 
processor. To get rehable performance data, 10 execu-
tions occurred for each measurement and the reported 
values are the averaged ones. 

The focus is on the following time measures, using 
the Unix/Linux OS times routine: 

— idle time: the mean CPU idle time, since a worker 
sends the End-Of-BIock signal (code line 14) until 
it receives next data (code line 10); 

— CPU computing time: the CPU time it takes to a 
process to produce its local result; 

— global ezecution time: the elapsed time due to ob-
tain the final result; 

— unbalancing time: difFerence in absolute value be-
tween the global execution time and the elapsed 
time of the first ending process, after it has sent 
its result. 

We give the percentage of idle time compared with 
the total CPU computing time and the percentage of 
the unbalancing time compared with the global execu-
tion time. 

The overhead introduced by this method is due to 
the execution of the scheduler procedure. We kept 
statistics about the duration of the scheduler with an 
empty queue and it takes a CPU time ranging from 
5-10-^s for Wl slightly loaded to O.SlO-^^s for W4 
heavily loaded and an averaged value of 80-10~^s. 

In these tests we selected Q=50 (line 12). It has 
been empirically seen that values less than 50 do not 
yield any significant improvement, but when Q in-
creases over 100 it makes the idle time increase rapidly. 
When considering a mean value of about 7500 accepted 
events, there are almost 150 calls a block. Thus, the 
overhead Tib introduced by our load balancing scheme 
is: 

T;6 = (150 • 10^) • (80 • 1 0 - ^ ) = 12s (2) 

This is less than 0.5% on the average of ali the CPU 
execution times. 

In ali the figures comparing the working-manager 
method ("M") with the canonical one, in which the 
manager does not work: both situations were accom-
plished with heavily ("H") and shghtly ("S") loaded 
•vvorkstations. 

In Fig.l ali 16 execution times are expressed in 
seconds with workstation W« acting as master and 
in Fig.2 the improvements introduced by making the 

manager work. The first result consists of an improve­
ment on each workstation independently from the ex-
ternal load; further, W4, the slowest workstation of the 
cluster, has greater improvement in a heavily loaded 
system. 

As expected, the improvement is proportional to the 
manager capability, and it decreases with a slow host 
as master. Wl is a powerful dual processor system: 
thus, having a manager that works a lot means adding 
a poiverful resource; oppositely for a slow workstation. 

Fig.3 shows the trend of the ratio between the mean 
CPU idle time and the total CPU execution time. Here 
it is essential to recognize that when the manager does 
not work we do not take into consideration its idle time 
(always more than 99%) to compute the mean value 
(i.e. this is the workers only idle time). This might be 
more correct, being it also involved in the execution, 
and results would be much better for our method, here 
we would rather show that we exploit ali the idle time 
of the manager by not increasing the mean idle time 
of the workers: our heuristic method is accomphshed. 

Global execution time 
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Fig . 1: global execution time with the master hosted in the 

workstatioii Wi, under heavy (H) and slight (S) load condition, 

with (M) and without the manager working. 
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F ig . 2; performance improvement obtained by making the 

manager work, under both cases of heavy (HM) and slight (SM) 

load conditions, with the master hosted in the workstation Wi. 
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Fig . 3: percentage of the mean CPU idle time on the total 

CPU time with the master hosted in the workstation Wi, under 
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heavy (H) and slight (S) load condition, with (M) and vvithout 
the manager working. 

Unbalancing time rate 
1.5% 

1.0% 

0.5% 

0.0% 
Wl W2 W3 W4 

Fig. 4: percentage of unbalancing time expressed as the ratio 
betvveen |TMAX - TMIN| and the elapsed time of the appli-
cation, vvhere TMIN and TMAX are the elapsed time it takes 
respectively to the flrst and to the last process to get results. 

Speedup 

Wl W2 W3 W4 

Fig. 5: speedup values Sj expressed as the ratio between Ta 
and Tp, respectively the time of the sequential and the parallel 
algorithm on Wj. 

Efficiency 
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Fig. 6: "weighted" efflciency defined as the ratio between Sj 
and the weight (P^/Pi) of the workstation Wi 

In fact, in aH cases under both heavy and slight load 
conditions, values are better when the manager works, 
except in the čase of W4 (HM). This is more than we 
expected. 

In this model, the manager keeps some blocks for it-
self: this increases data locality and reduces the com­
munication time, thus the mean idle time that pro-
cesses spend waiting for data. 

In Fig.3 the anomalous behavior of W3 in slight load 
condition is due to the communication overhead. We 
must keep in mind that it has a bandwidth of one tenth 
compared with the bandwidth of the other worksta-
tions connected to the LAN. Lines H and HM show 
how the increasing of the communication latency time 
in ali the heavily loaded workstations reduces the gap 
between bandwidths. 

In Fig.4 it can be seen that in aH the considered op-

tions the percentage of unbalancing stays under 1.2% 
of the total execution time. The reduction of the 
idle time rate obtained by making the manager work 
(Fig.3), under slight load condition yields a rise in the 
unbalancing time rate (Fig.4) (except for W4), even if 
in terms of "seconds" these are small differences. On 
the contrary, under heavy load condition latency and 
overhead due to the communication time increase and 
the working-manager model always improves the load 
balancing. The percentage of unbalancing rate ranges 
from 0.5 to 0.8 percent: it is more significant for W2 
and W4, which have a lower unbalancing rate under 
heavy load condition. 

The working-manager model increases data locality 
and cuts communication overhead: this reduces the 
unbalancing rate. It becomes evident in heavily loaded 
workstations and it comes out even from analyzing the 
behavior of W2 and W4 in Fig.4 (H and HM). W2 is 
a SMP workstation, as Wl is, and the external load 
consists of two Monte Carlo simulations. Thus, even if 
the load is evenly distributed between the two CPUs, 
the latency time affects W2 more than Wl , also due to 
Wl lOOMhz technology. Regarding W4, the manager 
works slowly, distributes more blocks and spends more 
time for Communications. In addition, it is made with 
old technology and in heavy load condition its latency 
time increases. 

Each one of the lines in graph Fig.4 shows that un­
der any condition the difference between the maximum 
and minimum value stays less than 0.4% ; generally, 
due to the priority mechanism. 

Fig.5 shows the speedup values Si defined as: 

Si = T, iWi) 
Tp {Wi) (3) 

Ta (Wi) is the execution time it takes to the sequential 
algorithm on the workstation Wi, under slight load 
condition, and Tp{Wi) is the execution time of the 
parallel algorithm with the master hosted on the work-
station Wi. The upper line is the "ideal" speedup Ij, 
calculated as follows: 

T = ^ 
' Pi 

(4) 

Pi=Ts(Wl)/Ts(Wi) is the power weight[19] of Wi 
compared with that of the fastest workstation (Wl) 
and PT is the power weight of the cluster, obtained 
by summing over aH Pj and keeping in mind to add 
twice the power weight of the SMPs. Thus we find 
PQr=3.78, i.e. 3.78 times of one Wl processor, for this 
cluster and this algorithm. 

Finally, Fig.6 shows the "weighted" efRciency 
Effj=S,/Ii. Under light load condition the efficiency 
ranges from 92 (W3 SM) to 98 (Wl SM) percent: 
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this means that the scheduhng poHcies and working-
manager model work fine. 

This recognizes the magnitude of how much a cluster 
of low cost workstations can improve work production, 
if good algorithms run on it; as well as, by develop-
ing good balancing algorithms the hardware resources 
reach maximum potential, as in the 2 processors of an 
SMP system. 

The priority mechanism, with few dozens blocks sig-
nificantly contributes to decreasing the global execu-
tion time until 25-30 percent, even if it is no possi-
ble to appreciate this improvement due to the short-
ness of these executions. On the other hand, for long 
time executions the natural distribution of the running 
tasks limits the effectiveness of this priority mecha­
nism. Nevertheless, it stays effective for the process-
ing of the last block. Even more when workstations 
are heavily loaded, when a last long job may result in 
a substantial loss of balance. 

6 Conclusions 
It is widely recognized that a network of workstations 
has a lot of unused computing resources. To maxi-
mize its potential, it is necessary to write parallel al­
gorithms that evenly distribute the workload among 
the workstations to maximize the load balancing and 
to minimize the idle time of each workstation involved 
in the computation. 

This study proposes a dynamic load balancing 
model for data parallel applications based on a modi-
fied manager-workers paradigm: we called it tuorking-
manager model . This model, which exploits the idle 
time of the manager process to make it work, is suit-
able as is for not a large cluster of workstations. Our 
model has a twofold advantage, both in terms of global 
performance and load balancing. If the manager is 
hosted in the most powerful workstation of the cluster, 
this model achieves remarkable improvement in terms 
of global performance, in both cases of heavily and 
slightly loaded machines. Otherwise, if hosted in the 
"slowest" workstation, this scheme leads to a desired 
load balance by decreasing Communications from the 
manager to the workers since the manager itself pro­
cesses some blocks, fetching them locally. Thus this 
method is also suitable for clusters with high network 
traffic. In addition, in the čase of heavily loaded ma­
chines, the working-manager method always performs 
a better load balancing compared with the canonical 
one, in which the manager does not work. In both 
load conditions, except when the master is hosted in 
the slowest workstation in the heavy load system, this 
model always decreases the ratio between the mean 
CPU idle time and the total CPU time. 

Finally, experimental results show efEciency values 
for this method of over 90%, confirming that this 

scheduling approach exploits the whole power of each 
processor. 

The current implementation assumes that the clus­
ter of workstations be one pool of processes. Since our 
method exploits the idle time of a manager process, 
if the number of processes is heavily increased, the 
manager would be more continuously engaged in its 
control issues. Thus, reducing its idle time, and this 
method would loose its effectiveness. However, it had 
always better to split a lot of processes into different 
pools. In fact, trying to exploit the manager idle time 
by increasing its control issues (i.e., by increasing the 
number of workers) may lead to having more requests 
than the manager can satisfy. And also, this increases 
the time it spends for communication. 

7 Future work 
The cluster used could be considered as one pool 
of processors in a pool-based system. This achieves 
an efficient system-wide scheduling policy, but if the 
number of processes becomes large then the working-
manager method looses its effectiveness. 

We intend to investigate the possibility to extend 
the working-manager model to a much wider cluster, 
by dividing it into small size pools and assigning a 
manager to each one. In such a hierarchical structure, 
a working super-manager should treat the other man-
agers like they treat their workers; therefore we would 
have a structure of many pools, each one well balanced. 
Within such a model, the analysis for reclustering or 
data migration reduces exclusively to monitoring the 
working pool managers and Communications will only 
take plače among them. 

Moreover, our scheme can be applied to ali the pool-
based methods, and to other already existing load bal­
ancing policies, to split large clusters into smaller ones 
and to break down costs due to Communications, if 
any, without loosing in terms of balancing. 

Another important application can be found in the 
field of the real-time event processing, arising from 
the data sampled by an acquisition system, in which 
data have been arranged into blocks, as in the čase 
we analyzed. We are already engaged in studying 
such a problem, by using another image reconstruc-
tion method, but keeping the same parallel structure 
we presented. 
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Communication }atency is an important factor in deciding performance ofaparallel or distributed 
algorithm, especially in alow speed network environment. In a bus-based network of workstations, 
a perfect}y load balance arrangement does not always lead to the best performance due to potential 
communication resource conflicts. Such a situation arises when workstations tend to compete for 
the shared bus after they ali Rnish their assigned workload at about the same time under such 
a load arrangement. In this paper, we provide a thorough ana}ysis on how such communication 
conflicts can be minimized in a bus-based system by using a load-skewing assignment method. A 
probablistic model is used to analyze the needed skewing factor for cases in which computation 
requirement is either a deterministic or nondeterministic quantity. Our analytical results are 
closely conBrmed by various simulation and experiment outcome. 

1 Introduction 

Network of workstations {NOW) is regarded as a po­
tential parallel computing environment for its low cost 
and flexibility. Task partition and allocation among 
the workstations is a very important factor that dearly 
affects the system performance. Workload is usually 
partitioned equally, whenever feasible, among worksta-
tions to achieve the best balance from computational 
aspect. In a bus-based NOW, such a load balance ar­
rangement does not always lead to the best possible 
performance due to potential conflicts on communi­
cation resources. A more in-depth analysis is needed 
to determine the best workload arrangement among 
workstations to avoid such conflicts. 

There have been a great deal of research works on 
load balance on both homogeneous and heterogeneous 
systems [4, 6, 9, 14, 16, 18, 21]. Either static or dy-
namic task allocation strategy is discussed in these pa-
pers to reach at the best load balance among proces-
sors. The most commonly used static task allocation 
strategy in a distributed computing environment is the 
weighted task allocation method [9], which partitions 
task according to an estimated relative machine speed. 
A common dynamic scheduling scheme for distributed 
systems is the work stealing technique ([3],etc.) where 
work is dynamically migrated from heavily loaded pro-
cessors to lightly loaded ones. None of these strategies 

takes the communication latency or potential commu­
nication resource conflicts into consideration. 

Communication latency is an important factor in 
deciding performance of a parallel or distributed algo­
rithm, especially in a low speed network environment 
or in a communication-intensive task situation. Sev-
eral methods [2, 17, 20] have been devised in an at-
tempt to compensate for the latency from the aspects 
of both hardware and softwaxe. But most of these pro-
posed methods fit the well-structured unit-delay ma-
chines, such as hypercube and mesh. Although there 
have been various high-speed switches and communi­
cation protocols deigned to speed up communication 
in a NOW, a bus-based configuration stili represents 
the most economic and widely available parallel com­
puting platform. None of the known techniques dis-
cusses the effects of communication latency on task 
partition and allocation in such a bus-based environ­
ment. In this paper, we will study the relationship 
between parallel computing time and task allocation 
in a bus-based NOW by taking these communication 
issues into account. 

Divide-and-conquer approach has been shown to be 
a relatively simple however widely applicable paral-
lelization strategy in solving problems in various sci-
entific and engineering areas. In a wide range of prob­
lems, especially in Artificial Intelligence, Computer Vi­
sion, Graph Theory, Computational Field Simulation, 
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Discrete Event Simulation, e tc , usually when solved 
using a number of processors, presumably "equal" 
amount of subtasks are allocated to each processor. 
Typically at the end of the computation of each sub-
task, communication between the subtasks is required 
to reach the final result. Each such subtask can cor-
respond to a branch of a research tree, a fixed-size 
block of matrix/vector elements in a sparse matrix, a 
fixed-size partition of input numbers in various sort-
ing techniques, an event or a group of events in dis­
crete event simulation, etc. A nondeterministic com­
putation requirement is usually associated with each 
such subtask. Under the effect of such nondetermin­
istic factors, if each subtask exhibits identical prob-
abilistic behavior, which is true in most of parallel 
computations from divide-and-conquer approaches by 
"equally" partitioning the task into subtasks, the ex-
ecution time of each processor can be modeled by the 
same probabilistic density function [15, 10]. SPMD 
(Single-Program-Multiple-Data) is a widely used par­
allel programming/execution paradigm used to solve 
this kind of divide-and-conquer problems. In [10], 
Lin and Yang have analyzed the performance of such 
divide-and-conquer problems disregarding communi­
cation factors. 

A perfect load balance for such divide-and-conquer 
problems in a bus-based NOW will pose a high possi-
bility of bus contention among workstations when they 
ali reach the same communication stage. This would 
lead to either a simple bus conflict or even a more 
problematic bus collision scenario. If such a problem 
is not carefully addressed, an unpredictably significant 
amount of communication delay would take plače and 
seriously downgrade the overall parallel performance 
and even offset any possible gain from such a parallel 
execution. Due to the nature of the shared commu­
nication medium, load assigned to workstations may 
have to be skewed with an amount so as to fully uti-
lize the bus for communication. In this paper, we use 
a probabilistic model that assumes the computation 
times of subtasks assigned to the workstations obey 
a natural distribution. Such a model is capable of 
coping with the aforementioned nondeterministic na­
ture of computation requirement. A thorough analy-
sis is then used to determine the amount of load-skew 
needed in load distribution to reach the best overall 
performance. 

The rest of this paper is organized as folIows. In 
Section 2, problem model and our analysis approach 
are described. Simulation and experiment results are 
presented in Section 3, followed by two complete par­
allel programming examples in Section 4. Concluding 
remarks are made in the last section. 

2 Model and Analysis 
2.1 Problem Model 
There are many scientific and engineering problems 
that can be approached with a divide-and-conquer par­
allel strategy. For example, search problems in many 
fields represent a perfect candidate for this due to their 
natural problem-solving formation as a tree search pro-
cess in which the search tree can be allocated pre-
sumably "equally", in a probabilistic sense, into pro­
cessors (or vvorkstations in this study) used. Sorting 
problems, image processing problems, as well as many 
others ali can be approached with such a divide-and-
conquer solution technique. This problem model can 
be described as: "A number of processors are used 
to process, in an SPMD fashion, a given number of 
tasks, aH identical in terms of probabilistic behavior in 
their execution times." Namely, the probability den-
sity function {pdf) of execution time spent in a task 
is identical to that of the others. Note that a task 
here is referred to a large nondeterministic number of 
computation steps. Any divide-and-conquer parallel 
algorithm solving such problems with a run-time data-
dependent nondeterministic behavior by dividing the 
tasks presumably "equally" among a number of pro­
cessors would simply lead to a result that the pdf s of 
aH processors' execution times are identical. Normal 
distribution as well as some others has been found to 
be a very reliable modeling function for such execu-
tion times [12, 13, 19, 22]. In this paper, we focus on 
using a normal distribution function as our modeling 
function due to its widely found applications. 

In addition to the computation model j ust de­
scribed, this study assumes that necessary communi­
cation stages are interspersed with the computation 
stages. In a typical SPMD solution algorithm, these 
communication requirements come from, to name a 
few, data exchange for domain coverage, updating lo-
cal Solutions, combining local results into a final solu­
tion, etc. Such a communication stage usually involves 
aJl processors in the system and a similar amount of 
Information is originated from each processor with its 
destination being either a controller (master proces­
sor) or some other processor(s) in the system. For 
example, a simple one-stage divide-and-conquer algo­
rithm usually requires partial solutions to be gathered 
in a processor at the end with a communication stage 
after each processor finishes its assigned computation 
workload. As another prevalent programming exam-
ple, a typical n-dimensional hypercube normal algo­
rithm requires n computation stages with a commu­
nication stage in between two adjacent computation 
stages to exchange data between processors across a 
given dimension. 

For the convenience of analysis, it is assumed that 
the computing environment {NOW) consists of a clus-
ter of workstations with identical computing capabil-
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ity connected via a communication bus, such as Eth­
ernet. With this assumption, we can simply focus on 
behavior of the solution algorithms and problems with-
out worrying about any nondeterministic factors on 
the computation times caused by the hardware. Note 
that such an assumption on processor homogeneity 
can be further relaxed by adopting a relative com-
puting power factor in our analysis. We also assume 
here the communication protocol used between proces-
sors is message-passing, with a commonly used "non-
blocking-send" and "blocking-receive" scheme. In such 
a scheme, a sending processor needs only send its mes-
sage to the receiving bufFer disregarding whether the 
receiving processor has reached the corresponding re­
ceiving statement in its execution; that is, the sending 
processor is allowed to proceed its execution as soon 
as it finishes such a 'send' operation (statement). On 
the other hand, a receiving processor when expecting 
a message with a 'receive' operation (statement) can-
not proceed until the message is actually received in 
its buffer. 

Since a communication bus is shared among aH pro-
cessors (workstations), if ali processors reach the same 
communication stage at about the same time, bus 
conflicts and collisions would occur and result in un-
desired waiting time in processors, i.e., wasted CPU 
time. This problem is more likely to occur if the pre-
ceding computation stage has the workload divided 
"equally" among processors. Let such an assignment 
scheme be denoted as "Perfectly Balanced Load As­
signment" (PBLA). Instead, if the workload assign­
ment is skewed away from the PBLA by an amount 
such that degree of the aforementioned conflicts and 
collisions is reduced, then a gain in overall system per-
formance can be expected. 
• Deterministic Čase: 

Such a "Skewed Load Assignment" (SLA) approach 
can be illustrated by a simplified example as discussed 
in the following. A one-stage divide-and-conquer al-
gorithm with a deterministic amount of computation 
requirement is to be processed on a P-processor bus-
connected system. Let Tcomp denote the deterministic 
overall computation time requirement, and Tcomm de­
note the necessary communication time for each pro­
cessor after its corresponding one-stage computation 
stage. With the PBLA approach, each processor is as-
signed an identical workload of - £ ^ ^ and reaches the 
communication stage at the same time with aH other 
processors. Disregarding the more problematic čase of 
bus 'coHision', aH processors wiH take turn occupying 
the bus for a time oiTcomim assuming no packet inter-
leaving to simplify our discussion. Thus, the overall 
paraHel time (denoted as TPBLA for the PBLA ap­
proach) becomes 

TpBLA -I- P X Tc< 

Instead, with an SLA approach, computation load can 
be assigned to processors such that a processor reaches 

its communication stage exactly at the instant when 
another processor finishes its corresponding communi­
cation stage. Let Tcompi denote the computation load 
(time) assigned to processor i, where O < i < P - L 
Such an optimal condition can be satisfied with the 
following assignment pattern 

Combined with 

/ ^ J-comp^ — -^c( 

it leads to 

s^ + (* ; - ) X Tc< 

and the total parallel execution time (denoted as 
TSLA) then becomes 

TsLA ^compp ^^+Tc, 

P-lrp 
-i ni Comparing TSLA versus TPBLA , a saving of = ^ 

time is achieved. Note that in a message-passing com­
munication on a bus-based system, communication la-
tency is usually dominated by software setup times, 
e.g. packing/unpacking time, rather than the actual 
hardware communication delay, and is insignificantly 
affected by the length of message. Thus, it remains a 
good approximation by assuming an identical Tcomm 
for aH processors and it does not deviate much from 
the original Tcomm- An example is illustrated in Fig­
ure 1 where P = 4, Tcomp — 32, and Tcomm = 1. A 

Pl P2 P.l P4 Pl P2 P.l P4 

D :Idle 

LiJ : Communication 

^ ; Computation 

SLA 
PBLA 

Figure 1: An Illustrating Example on Deterministic 
Čase 

PBLA approach on the left leads to a total time of 
12, whereas an SLA on the right with a load assign­
ment 01 Icompu — 0.5, Icompi — '-5, J-comp^ ~ "•") 
Tcomps = 9.5, completes the execution in a time of 
10.5, representing a saving of 1.5 time units. 
• Nondeterministic Čase: 

As described in our problem solution model, many 
solution algorithms, such as maiiy sorting and search-
ing techniques, an nondeterministic computation re-
quirement is associated with each task. Such an non­
deterministic factor can come from data-dependent 
decision-making statements in the algorithms. A dif-
ferent amount of load-skew than a simple Tcomm may 
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be needed due to this nondeterministic nature in or-
der to reach the best overall performance. Discussions 
in this paper are restricted to one-stage divide-and-
conquer solution algorithms; however, our model can 
be extended to address the cases in which such an 
restriction is relaxed. Let us assume the task is par-
titioned into P subtasks, ti, O < i < P — 1, one for 
each processor, in an SLA approach, and the compu-
tation time for task ij, denoted as Tj, obeys the afore-
mentioned normal distribution, i.e., T, ~ N{fii,af). 
Tcomm denotes the communication requirement for 
each processor as in the previous discussion. To facil-
itate a simple analysis for the SLA approach, we fur-
ther assume that the "expected" workloads are skewed 
among processors in a regular equi-difference fashion, 
i.e., 

S^ = fii+i — Mil 0 < J < P — 2 

and 6^ is called the skeiving mass. Due to the exis-
tence of 0'i's (ci 7̂  O for a nondeterministic čase), an 
optimal 6fi value that leads to the least communication 
conflict is no longer a simple Tcomm as in the deter-
ministic čase. Intuitively, it is not difRcult to see that 
when the variances are smaller than a certain value, 
overall performance will stili benefit from an SLA ap­
proach, whereas a PBAL approach will be sufficient 
when such a threshold is exceeded. 

To simplify our analysis in determining the optimal 
skewing mass, we further assume identical a for ali 
subtasks' computing times. That is, 

(To = C l : ap-\ 

which is not an unrealistic assumption if the skewing 
amount is not large. This is due to the fact that a 
changes in a square-root pace of that of /i. Due to 
the nondeterministic nature in Tjs' computation re-
quirement, the imposed skewing mass -vvill no longer 
be the actual ("effective") skewing amount between 
processors that finish their work in the actual sequen-
tial order. To determine the difference between these 
two, we let r<j> and /i<i> respectively denote the 
random variable for the z-th finished subtask's compu­
tation time and its corresponding mean. Thus, 

T<o> = min(To,ri,T2,.. . . ,rp_i) (1) 
T<p_i> = max(ro,Ti,T2,.... ,Tp-i) (2) 

Let the effective skewing mass be denoted as 6^ and 
following a similar "equi-difFerence" assumption on 
M<t> s 

^t — y-<i+^> ~ f^<i 0 < i < P - 2 

Such an assumption is made for the sake of simplifying 
our analysis, and it is found to be a rather accurate 
one when (5̂  is small relative to ^^'s. If we can ensure 
that 

^ ^ = Tcomm , O < i < P - 2 

then optimal overall parallel performance is achieved. 
Figure 2 shows a qualitative comparison between these 

Jo Ti T2 T3 

Figure 2: An Illustrative Comparison of pdfs 

pdfs. The figure on the top shows the pdfs of desired 
allocation pattern with an amount of skewing mass 
set to (5p (which is yet to be determined), whereas 
the bottom figure displays a 'statistical' result after 
the actual sequential order among processors in finish-
ing their allocated tasks is found. Note that, with a 
nonzero cr, /x<o> is pushed to the left compared to no 
and /i<p-i> is to the right of np-i. Thus, 5^ is ex-
pected to be smaller than S^ (and Tcomm) when cr ̂  O 
since 

/ip-l — fj,0 /lt<p_l> 
"u = ;:; ; < 7^— 

• A'<o> 
1 

2,2 Analysis 
To derive an optimal 5^ requires a very complicated 
multiple integration process. We here choose to find a 
bound based on a much simpler analysis. 

First of ali, from the above discussion, we have 

M<P-i> - M<o> = (P - l)Tc, (3) 

With the assumption that Tj's are independent nor-
mally distributed random variables (Tj ~ N{(j,i,af)), 
M<P_i> and /i<o> can be expressed as ([15]) 

M<P_i> = £{max(To,ri,...,rp_i)} 
= r^[5(x)-nr=VPT.(x)]dx 

li<o>= E{mia{To,Ti,...,Tp-i)} 
= irjs{x) - (1 - nfjo ĉi - FT, ixmda 

(4) 

(5) 

where Pj^ (a;) denotes the cumulative function of ran­
dom variable Tj, and 

^w={; m 
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Since arithmetic mean of a set of non-negative num-
bers is no less than the corresponding geometric mean, 
it follows that 

ZiJoFrM.P f> n^^^w 
Equation (4) then becomes 

/

oo 

[S{X) - ( 
-oo 

^^="o>^-V]d. (6) 

By further applying the following generalized Cauchy-
Schwartz inequality 

Z^ p -^ p 
i = 0 

it becomes 

^ < P - l > > j-ac>[S{x)-2_,i=o —p—\dx (-7) 

Let Ti, Tj{i}, Ti[2}, • • • , r,{p_i} be a set of P identi-
cal independent distributed (i.i.d.) random variables, 
where O < i < F — 1. We have 

/

oo 
[Six)-F.^.{x)]dx = E{m!ix{Ti,Tn,y,... ,Tnp_,y)} 

-CX) 

With a result in [10] 

[S{x) - F^. {x)]dx = /ii + ag{P) (8) 
'—oo 

where 

/

oo fu pu 

[ frMdv-i fT,{v)dvf]du 
•oo ./—oo »̂  —oo 

and /TJ is the pdf of random variable Tj. Note that 
g{P) can be deri ved with various numerical methods 
or by approximation [10]. Prom inequality relation (7) 
and Equation (8), 

P<p- i>> TEfJoit^i + ^^giP)) 
= TY:f=of^i+'^9{P) (9) 

= H0 + ag{P) + ^5^ 

On the other hand, it is obvious that 

fi<P-i>= E{max{To,Ti,...,Tp-i)} 
< E{max(rp_i,rp_i{i>,... ,rp_i{p_i}} = jrjS{x)-F^^_^{x)]dx 
= fip-i + (jg{P) 

= fio + <7g{P) + {P - l)S^ 

With a similar procedure applied for /i<o>, we have 

M<o> = .B{min(To,ri,...,Tp_i)} 
= /r^[5(x) - (1 - nfjo'(1 - FT, (x)))]dx 
= ir'js{x) -1+nfjo' (1 - PT, {x))]dx 

= T Ef=V IZo[Six) -{1-FT, {x)r]dx 

Again with 

/

oo 
[S(x) - (1 - FT,{x))'']dx = E{min{Ti,Tniy,...,Ti^p_iy)} 

- O O 

and an extended result from [10], it follows that 

[5(3;) - (1 - FT, {x)f]dx = iii- ag{P) 

Thus, 

p<o>< Ti:f=oit^i-<^9{p)) 

= no- (Tg{P) + ^ 5 ; , 

Combined with the follovving inequaUty 

H<o> = £{min(To,Ti,...,Tp-i)} 
> £;{min(ro{o},ro{i},... ,To{p_i}) 
= no- crg{P) 

a bound of ^<o> is then derived as 

Ho - crgiP) < M<o> < Mo - crgiP) + 

P-l 
S^ (12) 

Further combining the two inequality relations (11) 
and (12), we then have 

2ag{P) < n<P-i> - f^<o> < 2cTg{P) + {P - 1)5^ 
(13) 

Substituting M<p-i>—M<o> with the relation in Equa-
tion (3) in Equation (13), we obtain 

2(Tg{P) < (P - l)Tco,;,„ < 2ag{P) + (P - 1)5^ 

or simply 

O 
2f7 

< Tcomm - p _ . g ( - P ) < S^c (14) 

The inequaUty relation on the right gives a lower 
bound for 6^ when selecting such a skewing mass in 
an SLA approach. This bound is tight if the skewing 
amount is not large. That is, if the skewing amount 
needed is expected to be relatively smaller than /ij's, 
5^ can be selected to be very close to 

2(T 

P - l 9{P) 

(10) 

where Tp_i ,Tp_i{ i} , . . . ,Tp_np_iy are again i.i.d. 
random variables as defined. Combining the two in-
equality relations (9) and (10), we have 

On the other hand, the left inequality relation indi-
cates that in order for any SLA approach to behefit the 
overall performance, a cannot exceed a certain thresh-
old, which is represented by 

a < 
P^l 

2 

(P - l)Tco 

MP) 
(15) 

no + c7g{P) + ^ 7 - ( 5 ^ < M<P-i> < ^0 + og{P) + {P • 

(11) 

•'inat is, a simple PBLA would be sufRcient if a exceeds 
this threshold. 
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3 Simulation and Experiment 
3.1 Simulation 
In our simulation process to confirm the proposed an-
alytical results, the following parameters are given as 
inputs: 1) mean of total computation load (/irco„p), 2) 
number of workstations (P), 3) required communica-
tion time for each workstation {Tcomm), and 4) stan­
dard deviation of each subtask's load performed in a 
workstation {a). Data for random variables To, Ti, 
. . . , T P _ I are randomly generated according to their 
corresponding normal pdfs, N{fio,cr), N{fii,a), . . . , 
N{(j,p-i,(7), respectively. By varying (5̂  (and thus ali 
/Xi's), overall performance is plotted in Figure 3 (for 
P = 2) and in Figure 4 (for P = 4) under different a 
values. From the left figures, when a = O, the over-
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O 2 4 6 8 10 12 14 16 18 20 

Figure 3: Simulation Results (P = 2) 

the right figures, we can teli that picking the optimal 
skewing mass always leads to the best effective skevving 
mass Tcomm when a does not exceed a threshold. The 
optimal skewing mass observed in our simulation is 
then plotted against the corresponding a values and is 
compared with the analytičal bound in Equation (14). 
This is shown in Figure 5. From these, we can conclude 

Figure 5: Comparison between Analytičal and Simu­
lation Results 

that the analytical bound is close to the optimal skew-
ing mass we need to minimize communication conflict. 
Another critical observation is that when a exceeds a 
threshold (about 10 for P = 2 and 15 for P = 4), no 
more skewing is needed. This also closely matches our 
analytical result in Equation (15) which predicts, for 
P = 2, 

a < 
10 

2 X 0.564190 

and, for P = 4, 

a < 
3 x 1 0 

2 X 1.029376 

8.86 

14.57 
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Figure 4: Simulation Results (P = 4) 

ali time is minimized by having 5^ = Tcomm{= 10) 
just like a deterministic čase. As a increases, the op­
timal skewing mass (Ĵ j decreases as expected. From 

3.2 Simulated Experiment 
We further carry out a simulated experiment with a 
PVM (Parallel Virtual Machine) environment on a real 
bus-based NOW. A master/slave parallel program-
ming configuration is used in which a master proces-
sor collects messages from slave processors at the end 
of each slave's computation process. In this experi-
ment, computing time required in each slave processor 
is generated by a random number generator obeying 
the aforementioned normal distribution with various 
(J values. A simulated communication stage is pro-
vided by having each slave processor send a package 
of 5,000 double precision floating point numbers to the 
master processor. Such a communication step is mea-
sured to take an average time of Tcomm = 0.11 sec-
onds. Figure 6 and Figure 7 give the results from this 
experiment for P = 2 and P = 4 respectively. Op­
timal skevving masses observed are further compared 
with the derived analytical bound. Figure 8 displays 
the comparison result. Again the results match very 
nicely. 
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Figure 6: Simulated Experimental Results (P = 2) 
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Figure 7: Simulated Experimental Results (P = 4) 
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Figure 8: Comparison betvveen Analytičal and Exper-
imental Results 

4 Real Examples 
To further verify our analysis, we use two widely used 
programming examples, a parallel matrix-vector mul-
tiplication algorithm and a one-stage parallel sort-
ing algorithm. Disregarding nondeterministic factors 
caused by the machines, the matrix-vector multiplica-
tion example is used to verify the deterministic čase, 
while the sorting algorithm which is associated with 
a nondeterministic nature in its computation require-
ment will be used for the nondeterministic čase. 

4.1 Matrix-Vector Multiplication 
In this matrix-vector multiplication example, a multi­
plication of an n x n matrix A and an n-component vec­
tor Y is performed with a PVM environment on a bus-
based P-workstation network. The matrix A is parti-
tioned into P disjoint submatrices >ii, O < i < P — 1, 
each containing m continuous rows in matrix A. Thus, 
^^_^ m = n. Each processor will calculate the cor-
responding n^ components of the result vector before 
sending its results to a master processor. A simple loop 
construct is used to calculate each component in the 
result vector, which requires a deterministic amount of 
computation tirne, the time for n multiplication steps 
and n — 1 addition steps to be precise. 

In this example, since the computation time re-
quired in a processor is linearly proportional to the 
number of rows in A (TIJ) assigned to it, the skewing 
mass Sfi can be adjusted accordingly by varying the 
number of rows assigned to different processors. Ex-
periments are performed on the cases of n = 512 and 
n = 1024. Figure 9 shows the performance results ver-
sus the varying parameter J^. The computing time 

P-4.m«lrix.i7*-51 P-4. in«lrix«ire»ID24 

10 15 20 25 30 

5^ ( 10 •' Sec) 

Tconini = 0,0087l7Sec 

o 5 10 15 20 25 30 .15 40 45 50 55 60 65 

Sp ( I d ' ' SCC) 

Tconim = 0.0fl87l7Scc 

Figure 9: Performance Results of Matrix-Vector Mul­
tiplication 

difference in a processor caused by assigning one ex-
tra row of A to it is measured at about 0.418msec. 
The required communication time for each slave pro­
cessor is measured at Tcomm = 8.1717msec. When the 
skewing mass 6^ is set at 8.36msec, i.e. by having 
m+i - Ui = 20 (20 X 0.418 = 8.36), close to opti-
mal performance is observed. This skewing mass is 
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very close to Tcomm (since cr = 0), the theoretical op­
timal value. Similar prediction accuracy is observed 
in the n = 1024 čase, where load skewing is set by 
Hi+i — Tli •= 10. This leads to a speedup improve­
ment of 10.2% and 19.6% on the two test cases re-
spectively using the proposed SLA approach over the 
simple PBLA one. 

4.2 Parallel Sorting 
In this example, 10,000 double-precision floating point 
numbers are to be sorted with a network of P worksta-
tions. The master processor first partitions the num­
bers into P disjoint sets and then allocates each to 
a distinct slave processor. Each slave processor then 
performs a sequential quick sort process on its assigned 
data set before sending the sorted sequence back to 
the master processor. A merge process is conducted 
on the master processor to reach the final sorted se-
quence. Note that the goal of this example is not to 
evaluate efficiency of a parallel algorithm, but to verify 
our analysis finding. With such a solution algorithm, 
the exact computation time on each slave processor 
(Tj) is a nondeterministic amount due to its run-time 
data dependency. 

In this experiment, a random number generator is 
used to generate the target number sequences. By us­
ing a different modulus (which is also the range of the 
generated numbers), we are able to create sequences 
which would lead to different a values. This is needed 
in order to measure the effects of a on the optimal 
skewing mass. Four different moduli are used, 1, 10, 
100 and 1000 respectively, to generate four number 
sequences to be tested. Two network configurations 
are used, one with P = 4 and the other with P — 8. 
Communication time needed for each slave processor 
to send its results back to the master, Tcomm, is mea-
sured at 0.064926sec for P = 4 and 0.050338sec for 
P = 8 respectively. Experimental results are shown 
in Figure 10. Note that the skewing mass (5̂  changes 

" ' • • C - ' , " - . " 

• ' - - - ^ i ^ 

""V^ 

0-0,011494 - * -
O-0.02S515 -
0-0.015904 0 
O'0.(MJ267 " ,. 

"-''" ' 
k^X^'-^ I ^-w 

• . . . i i 

o 0.01 0.02 0.0^ 0.04 0.05 0.06 0.07 O.Oi O 0.01 0.02 O.OJ 0.04 0.03 O.M 0.07 0.0! 

Su(Scc| 

Figure 10: Performance Results of Parallel Sorting 

monotonically to the change in the sizes of data set as­
signed to the processors, although such a change is in a 
non-linear fashion. With optimal 5^ selected, speedup 

improvement in using the SLA approach versus the 
simple PBLA ranges from 10% to 14% on the two net-
work configurations. 

Experimental results on optimal skewing mass com-
pared with the derived analytica] bound are displayed 
in Figure 11. In the P = 4 čase, Tcomm is measured at 

0.02 0.02J 0.03 0.0) J 0.02 0.02J 0.03 0,033 0.04 0.045 0.05 

Figure 11: Comparison betvî een Analytical and Real 
Experiment Results 

0.064926sec. Thus, the maximal a that would stili call 
for an SLA approach to reduce communication conflict 
is 

ar < 
3 X 0.064926 

2 X 5(4) 
= 0.09461 

which is not within the scope of our experiment, as 
shown in the comparison figure. In the P = 8 čase, 
Tcomm is measured at 0.050338sec. Similarly, the max-
imal a that would stili require an SLA approach is 

a < 
7 X 0.050338 
2 X 1.423602 = 0.123759 

which also falls outside of our experiment scope. How-
ever, the trend of the two does indicate an excellent 
match. On optimal skewing masses, the discrepan-
cies between the analytical bound and the experimen-
tal values could be a result of several factors. The 
fact that a non-dedicated NOW system, rather than 
a dedicated one as required in our analysis, is used 
for the testbed could be a leading contributing factor. 
Ignoring extra delay caused by possible collisions on 
the bus in our analysis can explain why an effective 
skevving mass smaller than the analytical lower bound 
is sufficient in leading to optimal overall performance. 

5 Conclusion 
In this paper, we have provided a thorough analysis 
on how communication conflict can be minimized in a 
bus-based network of workstations by using a load-
skewing assignment method. The analytical model 
is validated by extensive simulation and experimen-
tal results. Significant speedup improvement was also 
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shown by using such a new method. Moreover, we be-
lieve that this model can be furthered extended to an-
alyze more complicated solution algorithm constructs. 
A multiple-stage construct has been under investiga-
tion with very promising preliminary results. 
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Recent studies have demonstrated that significant I/O is performed by a number of parallel appli­
cations. In addition to running these applications on multiple processors, the parallelization ofI/0 
operations and the use of multiple disk drives are reguired for achieving high system performance. 
This research is concerned with the effective management of parallel I/O by using appropriate 
I/O scheduling strategies. Based on a simulation model the performance of a number of schedul­
ing policies are investigated. Using I/O chaiacteristics ofjobs such as the total outstanding I/O 
demand is observed to be useful in devising effective scheduling strategies. 

1 Introduction 

The continuous growth in CPU and memory speeds, as 
well as the deployment of parallel processing technol-
ogy, have significantly reduced the computation times 
for applications. Because of their electro-mechanical 
construction, however, the access time for disks has 
improved only minimally over the past twenty years 
[20]. As a result, in many situations, the performance 
bottleneck has shifted from the processor subsystem 
to the I/O subsystem. Significant I/O is performed 
in different classes of parallel applications that include 
the grand challenge programs and scientific applica­
tions [20] as well as graphics software [5]. To reduce 
the intrinsic problems of the slow electro-mechanical 
technology used to build I/O devices, disk caches and 
arrays of disks have been introduced (see [19] for ex-
ample). Another approach to improve system perfor­
mance is to use parallel I/O. Although multiple I/O 
devices can potentially improve system performance, 
parallelization of I/O in an application as well as ap­
propriate management of the I/O devices are required 
to harness the power of the parallel I/O subsystem. 
This paper is motivated by such requirements on the 
effective management of parallel I/O in general and 
scheduling of parallel I/O in particular. 

A number of commercial shared memory as well 
as distributed memory multiple processor systems are 
currently in use. Examples include symmetric shared 
memory multiprocessor (SMP) systems produced by 
Sequent and Encore; processes or threads in an ap­
plication exchange Information through shared vari-
ables stored in the global memory provided on such a 
system. Distributed memory systems on which pro­

cesses communicate through message passing include 
the IntePs Hypercube and the NCube systems. Non-
uniform-memory-access (NUMA) systems such as the 
Teracomputer, and the KSR-1 are hybrid between the 
shared and distributed memory classes. The availabil-
ity of processors as well as high speed inter-connection 
networks at a reasonable cost has created a new trend 
called cluster-based computing the popularity of which 
is rising rapidly. A cluster is a group of inter-connected 
computers working as a unified computing resource 
[24]. A network of multiprocessor workstations is an 
example of a cluster system. In addition to its attrac-
tive price-performance ratio, a cluster also provides 
both absolute as well as incremental scalability and 
high availability. 

The availability of workstation clusters and other 
parallel hardware, along with tools such as restructur-
ing compilers for developing parallel application soft-
ware, are increasing the popularity of parallel systems. 
A number of existing systems are dedicated to run­
ning a single computation and I/O intensive applica­
tion. However as the usage of multiprocessor and clus­
ter systems are becoming more and more widespread, 
general purpose šystems that run a number of differ­
ent parallel applications are becoming popular? En-
vironments running such a variety of different appli­
cations need multiprogramming to provide user sat-
isfaction and enhance resource utilization. Multiple 
parallel applications are active simultaneously on such 
an environment. 

Although multiprogramming provides user satisfac-
tion and improves resource utilization, a scheduler that 
mediates among the demands of competing jobs is re-
quired for each resource. Existing research on resource 
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management in multiprogrammed parallel systems has 
focused on how to schedule processors among applica-
tions in the multiprogramming mix to achieve a small 
mean job response time (see for example [15, 16, 23]). 
Job scheduling on a network of workstations has re-
cently started receiving attention [1] A significant 
amount of research exists on processor scheduling in 
both shared and distributed memory systems but is 
not discussed here in detail due to limitations of space. 

Existing work on parallel I/O has focused primar-
ily on environments that run a single application in 
isolation. A number of I/O subsystem architectures 
is discussed in the context of parallel systems in [7], 
whereas a comparison of different disk configurations 
that include disk striping and disk synchronization for 
a transaction system workload as well as for a scien-
tific apphcation workload, is presented in [21]. The 
performance of two RAID architectures and a number 
of scheduling policies is considered in [2] whereas per­
formance modelling of disk drives and data caching are 
considered in [22]. Characterization of file access pat-
terns exhibited by parallel scientific workload is dis­
cussed in [10]. Scheduling I/O requests for reducing 
the total completion time for the schedule is discussed 
in [8] whereas techniques for a co-ordinated manage­
ment of processing and I/O resources in a multipro­
grammed parallel system are presented in [23]. Re­
search on parallel file sjstems is also underway. The 
Galley file system that is composed of a standard fixed 
core and a set of platform dependent libraries is de-
scribed in [11]. The Hurricane file system that pro-
vides a coUection of building block objects that can be 
plugged together diflferently for different system needs 
is discussed in [14]. User defined file partitioning and 
dynamic decomposition of files in a parallel file system 
is considered in [4]. 

None of the existing studies described in the previ-
ous paragraph has addressed a number of basic issues 
underlying the performance of parallel I/O on a mul­
tiprogrammed parallel system. The style in which an 
application performs I/O, the strategies for scheduling 
parallel I/O, and data distribution on multiple disks 
can have significant impacts on the performance of a 
multiprogrammed system. Some work on characteri­
zation of I /O and techniques for distribution of data 
on multiple disks has been reported in [18] and [12] 
respectively. The viability of parallel I/O on a net-
work of workstations and "the resulting performance 
improvement are described in [3] and [6]. This paper 
presents some new results that focus on the scheduling 
of I/O requests in a multiprogrammed parallel system. 
A number of scheduling pohcies are proposed and their 
performances under different data distribution strate­
gies and I/O styles used by applications are discussed. 

Based on an abstract simulation model of systems, 
applications, data distribution, and scheduling poli­
cies, a number of high level questions that are impor-

tant for the operating system on a cluster running a 
multiprogrammed parallel workload, as well as on mul­
tiprogrammed shared memory environments are dis­
cussed. The issues addressed by this research include 
the following. 

— Using characteristics of applications have been 
found to be beneficial in CPU scheduhng on both 
single as well as multiprocessor systems. Are 
job characteristics important in the context of 
scheduling I/O? How do the different attributes 
of parallel applications affect the relative perfor­
mances of the I/O scheduling policies? 

- Sharing the CPU equally among a number of com-
peting applications is found to be effective on con-
ventional multiprogrammed systems. How useful 
is this principle of equal sharing in the context of 
scheduling parallel I/O? 

- Different ways in which an application performs 
I/O, as well as strategies for replicating and dis-
tributing data over multiple disks, are found to 
have a significant effect on system performance 
[12]. How do these interact with the different 
scheduling policies to determine the overall sys-
tem performance? 

— Management of I/O may be performed in a num­
ber of different ways. A centralized management 
of I/O requests may be appropriate for small 
to medium scale parallel systems, whereas a de-
centralized approach is necessary for larger sys-
tems. How do the distributed and centralized ap-
proaches to I/O management affect the relative 
performance of the scheduling policies? 

These high level questions are investigated in the 
context of multiprogrammed systems that consist of a 
number of independent processing and disk resources. 
Such a loosely coupled shared every thing environment 
[7] is provided for example by "shared disk" clusters 
described in [24]. Each set of processing resources con-
stitutes a compute server or node. These compute 
servers share a common set of I/O servers or nodes. 
This paper focuses on systems that run applications 
characterized by large compute and I/O transfer times. 
The device seek times are assumed to be much smaller 
in comparison. 

Computer simulations are run to investigate the 
questions outlined above. The simulation results are 
calculated to a 95% confidence level with an interval 
which is less than ± 5% in most cases. The paper is or-
ganized as follows. The simulation model is introduced 
in the following section. Descriptions of the data dis­
tribution strategies and of the scheduling pohcies are 
presented in Section 3 and Section 4 respectively. The 
simulation results are described in the following sec­
tion. Section 6 presents our conclusions. 
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2 The System Model 

The simulation model for an open system in which 
jobs arrive from the external environment consists of 
two components: the model of the multiprogrammed 
system and that of the application workload. The mul­
tiprogrammed system model is presented first and the 
workload model is described in the following subsec-
tion. 

2.1 Multiprogrammed Systein Model 

The multiprogrammed system consists of the compute 
and the I/O subsystems. Statistically identical jobs 
run on the system. During its execution, a job does 
computation, requests I/O service from the I/O sub-
system, and exits the system when ali its operations 
are complete. The compute and I/O subsystems are 
characterized by the number of processors, P, and the 
number of independent I/O nodes, I, respectively. One 
or more of these I/O nodes can be accessed in paral-
lel by the threads of the same application running on 
different processors. The parallelism in I/O access is 
discussed further in the follovving subsection. 

Jobs arrive as a Poisson process characterized by 
an arrival rate A into the compute subsystem. The P 
identical CPUs in the compute subsystem are grouped 
into M processor sets (job nodes). Each set has Np 
CPUs, but if P is not a multiple of Np, then one of 
the sets will have only P-Np*(M-l) CPUs. On a clus-
ter of workstations for example, each set corresponds 
to a compute node consisting of Np processors. On 
a shared memory multiprocessor this corresponds to 
a static space sharing system consisting of P proces­
sors in which the degree of multiprogramming is upper 
bounded by M. Each job that enters the system is sent 
to the first free job node. If no job node is idle, then 
the newly arrived job waits in a FIFO queue for the 
first idle job node. Static scheduling of processors is 
used, and once a job acquires a job node aH the pro­
cessors are held by the job until job completion. Such 
a CPU scheduling strategy has, been investigated by a 
number of researchers (see [24, 16] for example) and 
is found to be effective in a number of different en-
vironments. Processors allocated to the same job are 
sharable by the threads in the job that share the same 
address space. 

Following an I/O request, a thread in a job is 
blocked waiting for the I/O request to finish. During 
this period, the CPU on which the thread was run­
ning becomes available for use by other threads in the 
same job. Processors may be shared by threads in an 
application in different ways. In this research a First-
Come-First-Served policy is used and a ready thread 
is assumed to run on the first available processor. An 
I/O request from a job is sent to one of the I/O nodes 
in the I/O subsystem. Each I/O node operates inde-

pendently, has the same speed, and is characterized by 
a mean seek time ds, as well as a coefficient of varia-
tion of seek time, CV«. Note that although each I/O 
node may consist of an array of disks it is modelled as 
a single I/O node with a given set of seek time param-
eters. The data transfer time from the disk (also called 
the I/O demand in this paper) for an I/O request is 
discussed further in the foUovving subsections. 

This research is concerned with the performance of 
scheduling strategies characterized by large computa-
tional workloads and I/O transfer times. In ali the sim­
ulation experiments described in this paper the mean 
seek time is assumed to be small in comparison to data 
transfer time and is held at 1% of the mean thread 
execution time. CVg is fixed at 1.0. For simphcity, 
overheads associated with CPU and I/O scheduling as 
well as context switching are ignored. This is appro-
priate for the qualitative nature of the questions inves­
tigated. We have also ignored the contention for the 
interconnection network that connects the I/O nodes 
with the job nodes. This is appropriate when the speed 
of the netvvork is high such that the network delay is 
small compared to the disk transfer times. Moreover 
this paper is concerned with gaining insights into I/O 
scheduling under a number of different data replica-
tion strategies and application classes. Isolating the 
network delay from the performance analysis is also 
necessary for obtaining a clear understanding of I/O 
scheduling which is the focus of this paper. The per­
formance measure of interest is the mean job response 
time, R. The response time of a job is the difference be-
tween the time at which the last thread in the job com-
pletes and the arrival time for the job. The mean re­
sponse time R is normalized with respect to the mean 
thread computation time. 

2.2 Workload models with Parallel 
I/O 

Jobs with a fork and join architecture, used in existing 
work on processor management on parallel systems 
(see [15] for example), are adapted by this research 
to represent I/O performed by jobs. Research on 
processor scheduling in parallel systems has ignored 
the I/O performed by jobs. This fork-and-join model 
is augmented to incorporate different styles in which 
applications may perform I/O. Each of this I/O style 
gives rise to a different job model. The workload 
applied to the system in the simulation experiments is 
either the 01 (Overlap # 1) or the NOP (No Overlap-
Parallel) job models (see Figure 1) introduced in 
[17] and [13]. The NOP job is characterized by no 
CPU-I/O overlap and the 0 1 job is characterized by 
CPU-I/0 overlap. Both jobs characterized by CPU 
and I/O overlap as well as no CPU and I/O overlap 
have been observed in scientific programs and graphics 
software [5]. Similar observations for parallel scientific 
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Figure 1: The Job Models. (a) 01 Model (b) NOP Model 

workload have been reported by other researchers as 
well. These two models are described briefly. 
The 01 Model: This represents jobs which overlap 
I/O with computations. A job starts by forking n^ 
children threads each of which reads data from an I/O 
node then executes on the CPU. After completing its 
computation, each thread vvrites data onto an I/O 
node. When ali the children threads have completed 
their writes, the job terminates (see Figure l(a)). 

The NOP Model: A NOP job begins by first 
reading in data. The read, however, is done using 
Tli parallel I/O operations from more than one I/O 
node. When ali the read operations have completed, 
the job forks n^ children threads, each of which 
only performs computations. When ali these threads 
complete their computations, the job performs nj 
parallel write operations to more than one I/O node. 
After ali the writes are completed, the job terminates 
(see Figure l(b)). 

Two other I/O models were also investigated (see 
[13]) and are not reported here for the conservation of 
space. 

The job models can be characterized by using a com-
mon set of parameters as well as parameters specific 
to a particular I/O model. An important characteris-
tic of parallel applications, called the I/O factor, was 
introduced in [17]. The I/O factor is the ratio between 
the mean total I/O demand (lOD) and the mean total 
CPU demand of the job: Fi — IOD/{nd * d) where 
d is the mean CPU demand for a thread. The I/O 
factor reflects the relative^weight of the computation 
and I/O workload components of the apphcations. Ali 
computation and I/O demand related parameters are 
normalized with respect to the mean thread execution 
time d. 

The random variable for the CPU burst duration of 
a thread is generated by using d as the mean and CVa 
as the coefEcient of variation. For a given Fi and d, 
the random variable for an I/O burst duration is gen­
erated by using the I/O request demand {I0D/2nd 
for 0 1 and I0D/2ni for NOP) as the mean and CVi 
as the coefRcient of variation. Generation of these ran­
dom variables is based on a bi-phase hyper-exponential 

distribution ([9]). 

3 Data Distribution Policies 

Previous studies have shown that the way data read 
or written by applications are distributed on the avail-
able disks can have a significant impact on perfor-
mance. I/O scheduling under two classes of data repli­
cation strategies are investigated: Write Anywhere 
Read Anywhere ("Replicated"), and Fixed Read and 
Write ("Fixed Read Write"). The Replicated policies 
are further subdivided into Centralized (Replicated-C) 
and Distributed (Replicated-D). In the centralized ap-
proach, a centralized dispatcher monitors the status of 
ali I/O nodes (busy or idle) and requests are always 
sent to an idle node. In the distributed approach, an 
automatic routing of an I/O request to a node is made 
without regard or knowledge of the current node status 
(busy or idle). The centralized approach is appropriate 
for smaller parallel systems. In larger systems, there 
may be a high cost associated with maintaining such 
a centralized database and a distributed approach for 
I/O management may be preferable. 

The Replicated policies use replication of data read 
by applications whereas only a single copy of input 
data is maintained by the Fixed Read Write policy. 
A program's input data is assumed to be available on 
aH the I/O devices for the replicated policies, whereas 
the input data is available on only one disk for the 
Fixed Read Write policy. For ali the policies only a 
single copy of data is written, however, by the appli­
cations. Thus data written by a thread can be sent to 
any one I/O node irrespective of where the data writ-
ten by other threads in the application are sent. Note 
that the write operations performed by the applica­
tions are assumed to correspond to the writing of the 
output results only and the written data is not read 
by any thread in the application. This is appropri­
ate for a variety of different types of applications such 
as scientific programs that this research is concerned 
with. Replication of written data may be required in 
other types of environments, such as transaction pro-
cessing systems. With the replicated data distribution 
strategies any I/O node can be used to service any I/O 
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request. For FixedRW, no data repUcation is used. A 
read or write operation is directed to a specific I/O 
node. 

In RepUcated-C, aH I/O requests are inserted into 
a central queue ordered in accordance with the I/O 
scheduling policy in use. A central router which knows 
the busy/idle status of every I/O node initiates a 
transfer between the requesting thread and the first 
idle I/O node the router finds. If no node is idle, then 
ali requests remain in the queue until a node becomes 
free. In the Replicated-D policy, each request is sent 
to one of the I nodes chosen at random with probabil-
ity l / I . At the node, requests are then placed into a 
queue maintained and accessed only by the local I/O 
node. The organization of the queue depends on the 
scheduling policy that is described in the following sec-
tion. If the node is idle, then the request is processed 
immediately. 

Most existing parallel systems use the FixedRW pol-
icy that does not use any data replication. Data can 
be written by an application only to specific nodes and 
data can be read only from specific nodes. For Fixe-
dRW, the data read by the threads in an application 
is distributed in a Round Robin fashion. With thfe 
Round Robin allocation, parallelism in I/O is maxi-
mized and min{I,ni) nodes are used by an NOP ap­
plication, whereas min{I,nd) nodes are used by an 01 
application. Data for the first thread is assumed to be 
placed in a node k chosen at random by the simula­
tor. The data for the next thread is assumed to be 
placed on A; + 1 and so on. The data for ali the threads 
are placed on the nodes in such a round robin fash­
ion. When ali the nodes are used once, node k and 
other nodes may be used again. The performances of 
these data distribution strategies were investigated in 
isolation of scheduling in [12]. Replicated-C was ob-
served to produce the best performance. However, if 
the cost of maintaining a centralized database of node 
status is too high on a system, a Replicated-D or Fixe-
dRW strategy needs to be adopted. The relative per­
formance of Replicated-D and FixedRW was observed 
to depend on a number of different workload and sys-
tem parameters. In most situations FixedRW demon-
strated a better performance if Round Robin data 
distribution was used whereas Replicated-D seems to 
be preferable when a Round Robin data organiza­
tion is too expensive on the multiprogrammed system 
and a simpler variant is used with FixedRW. A de-
tailed discussion of the different versions of FixedRW 
is presented in [13]. Two other variants of the repli-
cated policies were also investigated by the authors 
and their performances were observed to lie in between 
Replicated-C and Replicated-D [13]. In order to keep 
the number of experiments to a reasonable number, we 
have decided to investigate the scheduling strategies 
presented in the following section under three different 
data distribution strategies: Replicated-C, Replicated-

D, and FixedRW (Round Robin). The first is a rep-
resentation of the best performance that can be ex-
pected in systems with centralized control. The second 
is appropriate if a centralized control is not possible, 
whereas the third may have to be used if the cost of 
data replication is too high for the user. In ali fur-
ther discussion FixedRW will imply FixedRW (Round 
Robin). 

4 I /O Scheduling Policies 

Existing disk scheduling algorithms such as SSTF, 
SCAN, LOOK etc [24] are used on conventional sys-
tems to select one I/O request from a list of several 
outstanding requests at a single I/O node. Because 
these algorithms attempt to minimize the overhead 
(seek times) associated with a disk access by reduc-
ing disk head movements, they are effective where disk 
seek times are significant relative to the data transfer 
times. 

The I/O scheduling policies proposed in this pa-
per are intended for scheduling requests on systems in 
which the data transfer time is much greater than the 
access overhead. These policies use job characteristics 
such as the age of the jobs ("JBOJF") or the total 
outstanding I/O demand of the jobs ("JBSOIO" and 
"JBLOIO") for determining the priority of an I/O re-
quest. For investigating the importance of equal shar-
ing a round robin scheduling pohcy ("JBRR") is in-
troduced. The performances of these four policies are 
compared with the performance of a scheduling pol-
icy that does not use any knowledge of job attributes 
while serving a request from the job (" JBNOT"). For 
the JBNOT pohcy, I/O requests are processed on a 
First-Come-First-Served (FCFS) basis. 

I/O scheduling can be done either by a central 
scheduler, or by a scheduler local to each I/O node. 
Note that depending on the data distribution strategy 
in use, any of these scheduling policies may be used to 
manage a global request queue or an individual local 
queue at each I/O node. A central scheduler is ap­
propriate if a centralized data replication policy such 
as Replicated-C which performs centralized routing of 
I/O requests is used. A local scheduler is appropriate 
if the Replicated-D or FixedRW policy is used. With 
a local scheduler-based approach each local scheduler 
determines job priorities independent of other sched-
ulers at other nodes using only Information available 
at its corresponding I/O node. At any instant, the 
highest priority job at one I/O node may be different 
from that at another node. A brief description of the 
scheduling policies is presented next. 

The JBNOT ("Not Job Based") pohcy does not as-
sign priorities to jobs. Instead it services I/O requests 
on a FCFS basis. This policy is used as a perfor­
mance yardstick against which the other policies are 
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compared to see if job based I/O scheduling produces 
any performance benefits. 

The JBOJF ("Job Based-OIdest Job First") policy 
gives the highest priority to the job which has been 
running in the system for the longest period of time. 

The JBLOIO ("Job Based-Largest Outstanding 
I/O") policy gives highest priority to the job with 
the largest total outstanding I/O demand. With a 
local scheduling approach the total outstanding I/O 
demand for a job at a given I/O node is the sum of the 
demand of each I/O request issued by the job for that 
node that has not yet received service. Because the to­
tal outstanding I/O demand varies between I/O nodes 
and over time, job priorities also vary between I/O 
nodes and over time. Consequently, the relative prior­
ities of each job must be re-evaluated by an I/O node 
whenever it becomes idle. For a centralized schedul­
ing approach the total outstanding I/O demand of a 
job is the sum of the demands for ali the requests stili 
enqueued at the global router. 

The JBSOIO ("Job Based-Smallest Outstanding 
I/O") policy is identical to JBLOIO except that high­
est priority is given to the job with the smallest total 
outstanding I/O demand. As with JBLOIO, the prior-
ity of each job must be re-evaluated whenever an I/O 
node becomes idle. 

The JBRR ("Job Based-Round Robin") policy con-
siders each job in a round robin fashion. If a job has an 
outstanding request, then the I/O request is serviced 
by the idle I/O node, otherwise the scheduler looks 
at the next job. When ali the jobs with outstanding 
I/O demands have been served once the first job will 
receive consideration once again. 

5 The Performance of the I /O 
ScheduHng Policies 

The performance of the I/O scheduling policies are 
presented in this section. A factor-at-a-time approach 
is used to characterize the performance of these poli­
cies: one parameter in the simulation model is varied 
while the others are held at fixed values. A large num-
ber of simulation experiments are run, but to conserve 
space, only a subset of the experimental results is pre­
sented and described. More data is available in [13]. 
Experiments are run for both the NOP and 01 job 
models. The fixed valued parameters are included in 
the legend of each graph that captures the result of an 
experiment. The rationale for the choice of some of the 
fixed factors is provided. The number of processors is 
fixed at 20 because it corresponds to many medium 
scale shared memory systems that are currently oper-
ational. Investigation of an appropriate degree of mul-
tiprogramming is beyond the scope of this paper. We 
have fixed M = 4 which provides an intermediate value 
that is reasonable for P = 20. On a cluster of work-

stations for example, this corresponds to four worksta-
tions each consisting of a 5-processor shared memory 
multiprocessor. A number of such commercial-off-the-
shelf small scale SMP workstations are available at a 
reasonable cost from vendors such as Hewlett Packard 
and Sun Microsystems. The number of I/O nodes is 
fixed at 4. Experiments with single applications with 
workload characteristics used in the simulation exper-
iments showed that little incremental improvement in 
response time accrues from using more than 4 I/O de-
vices. We have run experiments with other values of I 
and different workload parameters (see [13]). 

The results obtained under a centraUzed data repli-
cation strategy (Replicated-C) are first presented, fol-
lowed by the results from using the distributed data 
replication strategy (Replicated-D) and from using the 
FixedRW strategy. Results for the 0 1 model with 
Replicated-C presented in Figure 2, show that a small 
performance improvement is obtained by using I/O 
scheduling policies based on job characteristics over 
JBNOT that does not use any knowledge of job char­
acteristics, even as the system approaches saturation 
(high A). The results for the NOP workload show that 
the relative performance of the I/O scheduling poli­
cies diff'er only at high A, with JBSOIO performing 
the best followed by JBNOT. 

These results indicate that with a centralized data 
replication policy such as Replicated-C and particu-
larly with the 01 I/O model, the centralized routing 
of I/O requests to idle I/O nodes has a bigger impact 
on system performance than using knowledge of job 
attributes in I/O scheduling. For the NOP workload 
some performance improvement may be achieved by 
using a policy based on job characteristics such as 
JBSOIO but the difference in performance among 
the different policies diminish with an increase in the 
variability in I/O demand [13]. 

Scheduling with the Replicated-D Data 
Distribution Strategy 
Figure 3 shows quite different results when the data 
replication policy is changed from Replicated-C to 
Rephcated-D. For both 0 1 and NOP, the JBLOIO 
policy proves to be the worst while JBSOIO policy 
proves to be the best policy. Giving a high priority 
to jobs with high I/O demand can introduce large 
queueing delays for smaller jobs. The success of 
JBSOIO suggests that running jobs with smaller 
I/O demand first can significaiitly improve the mean 
job response time. JBOJF policy seems to perform 
comparably with JBSOIO for an 0 1 workload, but 
the second position is taken by JBNOT when the 
•vvorkload is changed to NOP. The JBRR policy 
performs better than JBLOIO but its performance 
is inferior to JBSOIO for both the 0 1 and NOP 
workloads. 

An intuitive justification for the data in Figure 3 is 
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presented. 
It follows from Little's Law that the smaller the 

number of unfinished jobs in an open system, the 
better is the performance of the scheduhng poHcy. 
One of the reasons behind the success of JBSOIO 
is its abiUty to complete jobs quickly by associating 
a higher priority with jobs that exhibit small I/O 
demand. The relative performance of JBOJF and 
JBNOT depends on the I/O model used. For the 0 1 
model ali the threads in an application do their initial 
read operations at the beginning. An I/O request 
from an older 0 1 job is likely coming from a thread 
that has completed its computation and is vvaiting to 
write its output. Giving priority to such a job tends 
to speedup the completion of these nearly completed 
jobs, which minimizes the number of resident jobs 
and response time. The situation is different for the 
NOP model. Irrespective of reads or writes ali the 
I/O requests generated by the jobs in a given phase 
are generated at the same time. However when a 
NOP job performs I/O the processors allocated to 
the job are idle and more than one I/O requests 
from the same job may be enqueued at a given I/O 
node. Switching an I/O node to a different job on 
the basis of its age is detrimental because it keeps 
the previous job incomplete and aH the processors 
used by the job unused. JBNOT seems to be giving a 
better performance in this situation. JBRR prevents 
monopolization of I/O nodes by large jobs and 
performs better than JBLOIO. But because of the 
large number of job switching that tends to increase 
the average number of incomplete jobs on the system 
its performance is inferior to JBSOIO. 

Scheduling with the FixedRW Data Dis-
tribution Policy 
The performances of the scheduling policies for the 
FixedRW strategy are presented in Figure 4. The 
behavior of the policies are similar to the čase in 
which Replicated-D was used as the data distribution 
strategy. One of the reasons for this similarity is that 
unlike Replicated-C none of these strategies ušes a 
centralized database for routing the I/O request and 
multiple requests from the same job may be waiting 
at the same node while other nodes may be idle. The 
results for the FixedRW data distribution strategy 
confirm the utility of using job characteristics in 
scheduling. It is interesting to note that the perfor­
mance of JBOJF is comparable to that of JBSOIO 
for the 0 1 workload. 

6 Conclusions 
Based on a simulation model this paper is concerned 
primarily with effective I/O scheduling strategies for 
multiprogrammed parallel systems that employ paral-
lel I /O. A number of experiments were run under vari-

ous types of workload and data distribution strategies. 
Knowledge gained in terms of insights into system per­
formance and scheduling are summarized. 

The Impact of Data Replication: Replication of read 
data and the fiexibility of writing to any free disk seems 
to improve system performance in a major way when a 
centralized control is available. The effect of schedul­
ing is only secondary especially for the 0 1 model. 

The Impact of Scheduling-. When a distributed rout­
ing is used with data replication or when data is 
not replicated, choosing an appropriate I/O schedul­
ing policy is crucial for achieving high system perfor­
mance. Using characteristics of jobs such as the total 
outstanding I/O demand and age seems to be quite ef­
fective in I/O scheduling on multiprogrammed parallel 
systems. A large benefit in performance can be ob-
tained for example by using a policy such as JBSOIO 
under a variety of workload conditions. JBOJF and 
JBNOT are also observed to perform well for 0 1 and 
NOP respectively. The Effect of Egual Sharing: Equal 
sharing of I/O nodes among applications in the cur-
rent multiprogramming mix as captured by the Round 
Robin scheduling policy did not perform well in most 
situations. Although it prevents I/O starvation ex-
perienced by jobs, switching the I/O nodes among a 
number of jobs seems to increase the number of incom­
plete jobs and deteriorate mean response time. 

Implementation Issues: Although CPU scheduling 
policies such as Shortest Job First that are based on 
explicit knovvledge of job characteristics demonstrate 
excellent performance, their exact implementation has 
been difficult on general purpose systems in which it 
is hard to acquire such a priori knowledge. In compar-
ison to CPU scheduling, policies based on job charac­
teristics are easier to implement in the context of I/O 
scheduling. It is possible for the operating system to 
keep track of the age of a job as well as to estimate the 
I/O demand associated with a request. Consequently 
it is possible to implement policies such as JBOJF or 
JBSOIO on a real system. 

Due to limitation of space we could not discuss the 
experiments conducted for the investigation of the im­
pact of job characteristics on performance. Results of 
the experiments described in [13] indicate that both 
the variability in I/O demand and I/O factor affect 
the relative performance of the scheduling policies in 
a similar way. For example, an increase in CVi is 
observed to produce a larger difference in the per­
formance of the scheduling policies for any given I/O 
model for both Replicated-D and FixedRW data distri­
bution strategies. A larger benefit accrues from using 
policies based on job characteristics such as JBSOIO 
when the I/O factor is increased. 

The overhead associated with the scheduling poli­
cies as well as with the dispatching of I/O requests 
have been assumed to be negUgibly small in this 
paper. Measuring these overheads on a real system 
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and understanding their performance impacts is 
currently being undertaken by the authors. In this 
paper we have considered systems in which data 
transfer times dominate the overall disk service 
time. Systems on which disk seek times can form a 
significant component of the overall I/O service time 
warrant investigation. Using the results presented in 
this paper for implementing scheduling policies on 
real systems forms an important direction for future 
research. Work is underway in implementations of 
these strategies and measuring their performance on 
a network of workstations. 
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In this paper, we present a fault tolerance approach for managing application faults in parallel 
adaptive environments. Parallel adaptive systems allow the application to grow as the resources 
become available and to shrink when these resources are reclaimed or overloaded. Our fault toler­
ance policy ušes an optimized coordinated checkpointing algorithtn which allows roUing back the 
checkpointed applications on heterogeneous architectures and redistributing the load at recovery 
tirne. Furthermore, the approach permits to recover from failures by involving a minimum part 
of the application in the recovery operation after a failure. 

1 Introduction 
The increasing performance/cost ratio of workstations 
and fast communication networks have pushed net-
works of workstations (NOWs) to become popular 
platforms for parallel and distributed computing. The 
fault risks increase with the size of the distributed sys-
tem degrading its performance. Therefore, fault toler­
ance aspect must be taken into account. 

Fault tolerance property of a system is its ability 
to ensure the continuity of service despite hardware 
and software faults. This can vary from guarantying a 
complete service to shutting down properly the system 
through operating in degrading mode. 

Fault tolerance techniques have been largely studied 
in the literature [1, 2]. They are based on hardware 
or software solutions and they are implemented differ-
ently in the čase of uniprocessor, massively parallel or 
distributed systems. Several softwaxe models used to 
construct reliable distributed computing systems have 
been proposed [3], among them group-oriented mod­
els, transaction models and models based on commu-
nicating processes with point-to-point communication. 
These paradigms include object/action model, pri-
mary/backup model, state machine approach and con-
versations [4]. These techniques are generally based 
on low-level services that provide functionality sim-
ilar to standard hardware or operating system ser­
vices with improved semantics. These services include 
stable storage, atomic actions, resilient processes and 
some kinds of RPC [4]. Furthermore, other type of 
low-level services provide consistent Information to ali 
processors in a distributed system. They include com-

mon global tirne, group-oriented multicast and mem-
bership services. 

The well-known software solutions for the point-
to-point communication models are those based on 
checkpointing/roll-back techniques which consist on 
periodically defining a consistent global state of the 
application and saving it on a stable storage. When 
a failure occurs on a node, the application is rolled 
back from its last checkpoint [5]. The low-level ser­
vices used by these mechanisms include particularly 
stable storage and resilient processes services. 

Most of the parallel and distributed programming 
environments (PVM, MPI, ...) don't handle the fault-
tolerance aspect. Moreover, most of the classical 
checkpointing algorithms developed don't take into 
account the specific properties of some applications 
which can be the basis of important optimizations. 
Furtheremore, They are constrained by the hetero-
geneity problem; a process checkpointed on a specific 
architecture must be restarted on the same architec-
ture. 

Our purpose is to address fault tolerance in paral­
lel adaptive resource management systems through a 
system called MARS. Parallel adaptive systems have 
the particularity of adapting the application load to 
the resource availability provided by the underlying 
environments [6, 7, 8]. 

The remainder of the paper is organized as follows: 
the following section presents some similar systems. 
Section 3 introduces the MARS system and paral­
lel adaptive programming. In section 4, we describe 
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briefly an algorithm for checkpointing parallel adap-
tive applications. Section 5 presents a complete fault 
tolerance approach used to manage failures in the sys-
tem. Thus, a new programming interface is developed 
in order to handle work automatically and to give a 
framework for recovering only the failed application 
components. 

2 Related work 
In the group-oriented models, the consistency is guar-
anteed by some mechanisms like identical process 
group views and delivery order of messages. Thus we 
can distinguish global order in which a lockstep mode 
is used and a virtually sjjnchronous model introduced 
by Isis [3] in which only a causal order required to keep 
the consistency of operations is used. 

Horus [9] and Relacs [10] ušes the same model but 
deals with multiple partitions of the same group cre-
ated after network partition. Multiple views of the 
same group may therefore exist concurrently. Thus, 
new operations axe added including partition merge 
and State transfer. Moreover, [10] ušes the notion of 
unreachability to keep track of possibly created parti­
tions. 

In Horus, a flush protocol is used when a failure is 
detected or a merge operation is initiated. The pro­
tocol consists of re-sending unstable messages ^ to aH 
members in the group before installing a new view of 
the group. The installed view will include aH parti­
tions after a partition merge or exclude a crashed pro­
cess in the čase of failure. This protocol guarantees 
that aH members in the new view deliver the same set 
of messages (virtualy synchronous model). The sta-
bility property is known by keeping at each member a 
matrix where each entry {i, j) contains the number of 
messages sent by process i and viewed by j . Based on 
this matrix, a report including the sequence numbers 
of the last delivered messages is periodicalIy broadcast 
to aH group members which may incure considerable 
overhead. 

We consider an application model consisting of a 
set of distributed processes communicating through 
a local area network, by sending point-to-point mes­
sages. The fault tolerance approach ušes a checkpoint­
ing mechanism and a backward error recovery scheme 
to recover from failures. The checkpointing/roll-back 
techniques are well used in commercial applications 
in which the availability and the performance prop-
erties are the well-required properties. In contrast, 
group and multicast-based models use generally costly 
mechanisms like replication, multicasting and consen-
sus protocols to ensure consistency of group member-
ship and message delivery. 

'A message is called stable when it is seen by aH members 

Checkpointing algorithms have been largely studied 
(see [1, 5]) and can be classified in three categories [11]: 

- Explicit techniques in which the programmer is 
responsible for the implementation and manage-
ment of the checkpointing/roll-back mechanism 
[12]. Some application properties are used to 
achieve efficient implementation with increased 
programming complexity. 

- Semi-automatic techniques which reduce this 
complexity by providing checkpointing and roll-
back libraries, but they leave the management of 
checkpointing to the programmer [13]. 

- In the user-transparent techniques, checkpointing 
implementation and management are ensured by 
the library. We can distinguish three sub-classes: 
independent techniques in which checkpoints are 
taken independently by each application process 
[14]. Consistent checkpointing approches in which 
the whole application is frozen at checkpoint time 
and aH processes cooperate to define a consistent 
recovery line [15, 5]. The third sub-class called 
hybrid techniques tries to combine the advantages 
of the two previous categories in order to achieve 
better performance [16]. 

The consistent checkpointing algorithms result gen-
erally in efRcient checkpointing implementation and 
management. They avoid orphan and duplicated mes­
sages and don't require determinism. In contrast, the 
synchronization phase involved increases the check­
pointing cost and latency. 

Some systems based on consistent checkpointing 
have been developed around the PVM environment 
[17]. A checkpointing algorithm for the MIST system 
is presented in [18]. Its complexity in terms of con-
trol messages exchanged at checkpoint time is 0{n^). 
It handles considerable amounts of data since it con-
siders the address space of aH application processes. 
Fail-safe PVM [19] and CoCheck [20] use an algorithm 
similar in complexity. Fail-safe includes the PVM dae-
mons in checkpointing. Moreover, they are concerned 
by the heterogeneity problem since they include the 
address space of aH application processes in the check­
point file. 

3 Adaptive programming 
Adaptive applications are those applications in which 
the parallelism degree can be managed dynamically 
during execution time. The application can adapt its 
size to the computing load provided by the underlying 
environment. The ownership aspect of vvorkstations 
is respected without overloading other nodes in the 
system and the idle cycles are efRciently used. Piranha 
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[6], MARS [7] and CARMI [8] are examples of such 
systems. 

In MARS, the computation is divided into some 
work units managed by a master process and allocated 
dynamically to some workers. At the master level, the 
programmer specifies a work server module (thread) 
responsible for allocating work and receiving results 
from workers. The worker body is generally a loop con-
sisting of three sequential steps: getting a work unit 
from the master, processing it and putting back results 
(figure 1). If a workstation is reclaimed by its owner 
or becomes overloaded, the system folds up the appli­
cation by withdrawing the worker on this workstation. 
The evacuated worker puts back its pending work to 
the master before dying. In contrast, if a workstation 
becomes idle, the system unfolds the application by 
creating a new worker on the idle node. 

Figure 1: Structure of a MARS application 
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AMM = Application Master Module (master) 
WM = Wori(er Module (worker) 
wst '=Work Server Thread (master) 
wt = Worker Thread (worker) 

MARS is built on a multithreaded parallel environ-
ment called PM2 [21] which ušes PVM [17] as commu-
nication support. 

4 Checkpointing parallel 
adaptive applications 

The checkpointing algorithm is based on "consistent 
checkpointing" in the sens that it involves ali adap­
tive application components in the checkpointing op-
eration. However, it differs from the algorithms of 
this category in three points: (i) It doesn't include 
the whole workers address spaces in the checkpoint 
file but only the work units they are processing (par-
tial work). (ii) Since the workers don't communicate 
directly but only with the master, the algorithm ušes 
only 0{n) messages to synchronize the workers instead 
of 0(11^) required generally by consistent checkpoint­

ing algorithms. (iii) The workers resume their execu-
tion immediately after putting back the pending work. 

4.1 Checkpointing 
The checkpointing algorithm is described below (figure 
2): 

1. When a checkpointing operation is started, the 
master broadcasts a request to aH its current 
workers in order to put back their partial results. 

2. On receiving this request, each worker suspends 
its execution and starts a specific control thread 
which puts back the partial results to the master. 
The control thread is synchronized with the com­
putation threads in order to define a consistent 
local State of the worker. 

3. After receiving partial results from aH its work-
ers, the master takes its local checkpoint. The 
single Unix process checkpointing tool of Condor 
is used [22]. Before it takes its local checkpoint, 
the master forks a new process which takes the lo­
cal checkpoint in parallel with the execution of the 
application and dies. Indeed, this is similar to the 
main-memory optimization except the overhead 
induced by the process creation which is higher 
than the thread creation in main-memory tech-
niques. 

Figure 2: Checkpointing algorithm at work 
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A detailed presentation and performance evaluation 
of the checkpointing/roll-back algorithm can be found 
in [11]. 

4.2 Roll-back 
Rolling back the application consists in the čase of 
the master failure of getting back the application state 
from the checkpoint file. Note that the determinism is 
not required since the checkpoint defines a consistent 
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recovery line and there are no logged messages. The 
roUed back master reenrolls in the MARS run-time sys-
tem as a new application without workers. The work 
units partially processed is redistributed dynamically 
to the new workers created after requesting the system 
for available resources at reenrollment time. 

The number of new workers will be function of the 
current load which can be different from their number 
at failure time. 

4.3 Experimental results 

In order to give an idea on the performance of the 
checkpointing algorithm, we have experienced the 
mechanism using two applications: tabu, a parallel ver-
sion of tabu search program used to solve a QAP^ 
problem and prime a parallel program which finds 
prime numbers belonging to a given range. Table 1 
recapitulates the running time and the checkpointing 
overhead induced by the mechanism with 5 mn check­
pointing period using a network of 13 workstations. 
The results show that the checkpointing overhead of 
the master in negligible (under 1%). The second part 
of the table 1 presents average values of workers mea-
surements which do the effective work. The results 
show that the checkpointing overhead is under 0.5% 
for both applications. 

In contrast, the size of the single checkpoint file in-
creases with the number of workers (partial work). 
Thus, the mean checkpoint file size reaches 1.7 Mbytes 
with a standard deviation of 76 Kbytes for tabu search 
and 3.4 Mbytes with a standard deviation of 1300 
Kbytes for the prime program. Fortunately, the main-
memory technique used minimizes the impact of the 
file size on the checkpointing performance by alIowing 
the application to resume its execution while the file 
is being written on the stable storage. 

4.4 Qualitative analysis 

Our approach presents a number of advantages: 

- Load balancing: At recovery time, the application 
is rolled-back by restarting the new master from 
the checkpoint file without workers. The load can 
be balanced by selecting the under-loaded nodes 
to start the new workers. 

— Heterogeneity: In classical algorithms, rolling 
back a process checkpointed on a specific archi-
tecture must be done on the same architecture. 
A restored application can't benefit at the highest 
degree from the availability of the system. Since 
we don't deal with workers address space, the ap­
plication except the master can be restarted on 
any available nodes whatever the architecture. 

^Quadratic Assignment Problem 

— Independence of the system load at recovery time: 
Once an application is restarted, it doesn't re-
quire that the resources number be the same as 
at checkpoint time. Indeed, it can restart with 
less or more workers. 

— Transparency: The checkpoint algorithm doesn't 
require additional user interventions since it ušes 
the fold service used by the MARS run-time sys-
tem itself. An API is provided to the user for 
explicitly managing the checkpoint mechanism. 

— Portability: The checkpointing algorithm is im-
plemented at user level, using facilities available 
through standard Unix system calls and libraries. 
The advantage of such an implementation is that 
there is no need for kernel modification, making it 
portable to various Unix flavors (SunOS, Solaris, 
OSF and Linux). 

Unfortunately, the approach suffers from some 
drawbacks especially the overloading of the master at 
checkpoint time, since it receives pending work units 
from ali workers at the same time before taking its 
local checkpoint. 

Our approach has been used in coarse grained appli­
cations in scientific computing (Gauss elimination, ma-
trix multiplication, etc) and combinatorial optimiza-
tion (branch and bound, heuristics, etc) fields. 

5 Failure detection and 
recovery 

We assume a distributed asynchronous system in 
which the relative processors speed and the commu-
nication delay are not known a priori. The underlying 
communication system ensures the sequencing and the 
delivery of messages resulting in FIFO channels. 

Processes fail by crashing (by prematurely halting) 
alIowing then other components to detect the failure. 
Failure detection is achieved by superimposing to each 
process a failure detector [23] in which a "timely" fail­
ure detection approach is used. 

In Isis [3], the communication transport layer is in-
tegrated with the failure detection layer to make pro­
cesses appear to fail by halting (fail-stop model). The 
system ušes an agreement protocol to maintain a list 
of non faulty processes. However, a process suspected 
to be failed is forced to leave the system. 

As we will see it in the failure recovery section, the 
processes can belong to one of two classes: system and 
application processes. The system processes consist 
of a set of communication and resource management 
daemons. The application processes consist of user 
application processes. When a communication or a 
resource management process crashes or is suspected 
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Table 1: Running tirne and checkpointing overhead 

Application 

tabou 
prime 

VVithout 
Ckpt (s) 
18821 
12434 

Checkp 
Overh (s) 
127 
77 

% 

0.67 
0.62 

Ciieclcp 
number 
63 
42 

Mean Number 
Worl(ers/Cltpt 
10.96 
11.76 

Mean Ckeclsp 
Overhead (s) 
1.05 
1.26 

% 

0.32 
0.40 

to be crashed, the node that it controls is considered 
entirely failed even this is caused by the interruption 
of the communication channel. In contrast, the failure 
of an application process may affect only that process 
^. Following this classification, the failure detection 
approach used in our model is achieved in two ways: 
first, by requesting the communication layer ^ to in-
form some system component when a specified process 
stops its execution. This is especially useful for appli­
cation processes when the crash is not due to a real fail­
ure of a node. Second, by using a timeout-based mech-
anism in which the processes are periodically "pinged" 
so that a failure of a process is detected quickly. Later 
if a process which was running on the failed node inter-
acts with the system, it is forced to leave the system. 
This choice is motivated by the fact that these failures 
can take excessive time, preventing thus the applica­
tion components depending on the computation being 
done by some unreachable processes from progress. 
Our adaptive system provides tools for adding new 
available nodes to the system. However, the compu­
tation being done on the unreachable node can be ig-
nored and restarted from a previously saved state on 
another idle node. Therefore, progress is usually guar-
anteed. One might think that this approach raises 
a problem with transient failures caused by tempo-
rary unavailability of the process-overloading of the 
node for example-. In practice, the timeout period 
is set sufficiently high to avoid such transient prob-
lems. The first detection approach is guaranteed by a 
communication daemon running on the specified node 
which knows immediately for the failure of the local 
processes. If such a failure is registered, the request-
ing process is informed. However, the failure detection 
in this čase is fast and more efficient. The approach 
can be combined with a probabilistic failure interval 
ditribution to adapt the checking period so that the 
communication cost can be minimized. 

Subsequently, we distinguish three types of failures: 
the system failure, in this čase aH applications must 
be terminated, the system restarted and the applica­
tions rolled back manually. The master failure which 
involves roUing back an entire application. The third 
type of failures is the failure of a specific worker which 
is recovered by roUing back the failed worker only. To 

^The failure can be caused by a conceptual or runtime error 
like memory access violation or external intrusions like explicit 
interruption of the process by the user 

^PVM communication library 

allow partial recovery, the system must keep track of 
aJl tasks assigned to each worker. However, a trans­
parent management of work is required. 

5.1 Managing work transparently: A 
franiework for partial recovery 

In order to allow a transparent management of the 
computation, a programming interface beised on de-
pendency graphs model is developed. The user can 
therefore build easily his parallel application. The ap­
plication construction consists of specifying the appli­
cation tasks and describing the precedence constraints 
between them. 

A task is a data fragment on which some sequen-
tial actions must be applied. At the master level, the 
user specifies his tasks, packs them into data struc-
tures and gives them to the library using a specific 
function. Then, the library builds a work space (bag 
of tasks) and a dependency graph which ensures the 
execution order of tasks when allocating them. 

The allocation of tasks to workers is achieved auto-
matically by a library module (the work server mod­
ule) vvithout user intervention except that the user 
must specify how his data is packed and unpacked with 
PVM functions. The user can interpose also when re-
ceiving pending work and results for a possible op-
timization of storage space or execution time or for 
generating new tasks on-line. 

The body of the worker consists generally in a loop 
which begins with a library call interpreted by a trans­
parent message sent to the master. The work server 
searches in the master work space for a ready task. 
When it find a task, it returns it to the worker includ-
ing some other Information: the name of the thread 
designed to process the task and a flag specifying if 
the task has been partially processed (pending work) 
or it is simply a new task (new work). 

Getting the task and the thread name, the specified 
worker thread can be started. When it finishes, it 
calls a specific function which resturns the results to 
the master. 

When the system decides to fold up the worker or 
a checkpointing operation is started, a specific user 
function is called which puts back the pending work 
and the partial results to the master. 
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5.2 How recovery is achieved 

The MARS system consists of a "group server" (GS) 
which manages a pool of heterogeneous workstations. 
On each node, resides a "node manager" (NM) which 
informs systematically the GS of the node state tran-
sitions (figure 3). 

Figure 3: Architecture of MARS 

group 
server 

( NM j ( NM J ( NM J 

ovcrload 

r NM j 

owner on 
consolc 

node 1 node 2 

When the application enroUs into the system, it 
starts a specific process called the mediator on the 
node where the GS is running. Its roU is managing ali 
application "group server" communication and rolling-
back the application on failure ^. 

The fault tolerance algorithms must ensure efficient 
fault detection and management as well as the con-
sistency of the fault tolerance policy by avoiding the 
recovery of some application failures caused by con-
ceptual or human errors. 

5.2.1 Recovery a t sys tem le vel 

The failure detection at this level is achieved follow-
ing the first model described above. Thus, the GS 
keeps a failure detector which looks for node managers 
failures by "pinging" them periodically. When a node 
manager failure is detected, the node is declared failed 
and aH processes that it hosts are considered crashed. 
Therefore, the GS takes the following actions: 

Node failure: When a node is declared failed, the 
GS is notified. Thus, it tries to recover ali the applica-
tions where the master was running on the failed node 
as follows: 

^Our goal is to keep a process (the mediator) with the same 
rights as the application and which can survive when the vvhole 
application crashes. This is motivated by the fact that the sys-
tem hasn't root privileges and the application must not execute 
in root mode even the system is root 

— It tries to roll back the application entirely. This 
is done by calling the mediator which, giving it 
a node identifier of the same architecture as the 
failed one ^ within the available nodes, it rolls 
back the application that it controls. 

— If the roU-back is not achieved, some other 
restoration attempts ^ are made. If after ali at-
tempts, the application is not roUed back, an error 
is suspected, the recovery is aborted and the me­
diator is terminated. 

— If the application is roUed back after one or some 
attempts, some Information about the failed ap­
plication (its identity and the incarnation number 
of the master) are kept in the table entry of the 
failed node. This Information is used by the GS 
to distinguish an application termination due to 
a node failure from an abnormal behaviour of the 
application (see the section on the master failure 
at the application level below). 

Concurrently with the applications roU-back, the GS 
tries to recover the failed node within a finite time. 
Otherwise, it reconfigures the system by deleting the 
failed node from the configuration. 

The application recovery is made immediately with-
out waiting the failed node to be available. We pro-
ceed so to avoid the eventual waiting time taken by 
repairing the failed node. 

Master termination The master failure can be 
seen by the mediator via the communication layer as 
described above or after the expiration of a timeout 
period when communicating vî ith the master. There­
fore, a failure message is sent to the GS which executes 
the recovery protocol: 

— If the termination is not due to the failure of a 
recovery attempt, the node hosting the master 
is checked. If it is really failed, the master is 
searched and freed from the failed masters list of 
the down node using the Information kept previ-
ously. 

— In contrast, if the node is alive or the master is not 
found in the down node list, the system suspects a 
conceptual or human error and the application is 
simply terminated. This procedure is executed to 
ensure a consistent state of the system. The appli­
cation recovery is invoked when the node failure 
is revealed as indicated above. 

Note that, the normal termination of the applica­
tion is distinguished from the master failure by a ter­
mination message sent by the master to the mediator 

^This is constrajned by the master roll-back which must be 
done on the same architecture as the checkpointing one 

^three attempts in the current implementation 
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and forwarded to the GS. The appHcation entry in the 
apphcations hst is simply freed and the recovery pro­
cedure is not runned. 

5.2.2 Recovery at application level 

In a MARS application, the work server module allo-
cates tasks to workers and keeps their state. Figure 
4 shows the transitions of a task state following the 
different events. 

Figure 4: Transition graph of a task and workers re-
covery 

A task assigned to a worker can be in three states: 
ALLOCATED, when it is allocated for the first time, 
REALLOCATED for a task making the object of 
more than one allocation. The CHECKPOINTING 
state is the state of a task allocated to a worker being 
checkpointed. When an application worker is folded, 
it puts back the pending work before dying. Thus, the 
work treated partially of each task kept by the failed 
work is stored in the task pending-ivork structure and 
its state moves to PENDING.WORK. However, the 
work made previously by the evacuated worker can be 
exploited. 

Again the failure detection of workers is achieved at 
the master level by either the information provided by 
the communication layer, by timeouts when commu-
nicating with workers or explicitely by the GS when 
it detects a node failure. The workers recovery is 
achieved by altering the tasks state. Indeed, the fail-
ures can be viewed and managed at this level as fol-
lows: 

Worker failure: When a worker terminates, the 
master is informed. However, to distingish a normal 
termination from a failure, the master keeps for each 

worker a flag which reflects at any time the worker 
state vievved by the master. If the worker terminates 
while it is not in a normal terrnination state, a node 
failure or a human error is suspected. Then, the worker 
is recovered. 

The recovery of a worker is achieved by brows-
ing the master work space serching for aH tasks as­
signed to the failed worker and altering their state 
as shown on figure 4. Thus, if the task was in the 
CHECKPOINTING or in the REALLOCATED 
states, its pending.work structure is full. Therefore, it 
moves to PENDINGJVORK state. In contrast, if 
it was in ALLOCATED state, aH the work made pre-
viously is lost (the pending-ivork structure is empty) 
and it becomes in the NEW-WORK state. 

Master failure: If the master task fails, the follow-
ing actions are taken: 

— Ali application workers are informed by the com­
munication layer or when they "timeout" when 
communicating with the master. The informed 
workers terminate immediately. Thus, we ensure 
that there are no useless or duplicated processes 
after the application recovery. 

- The mediator failure detector knows about and 
informs the GS. As it has been presented, the GS 
determines whether the termination is due to a 
node failure in which čase the recovery procedure 
is invoked. Otherwise, the application is termi-
nated. If the GS decides to recover, the mediator 
starts the new master which reenroUs into the sys-
tem as described in section 4.2. 

Mediator failure: The mediator failure is detected 
by the master and interpreted as the failure of the GS 
which means that the system is going down. There­
fore, the application must terminate. The master pro-
ceeds to terminate its workers before ending. 

5.3 Advantages of the approach 
Although this new programming model is required for 
managing failures transparently, the approach presents 
some other advantages: i) a decreased programming 
complexity by hiding some distributed aspects to the 
user (communication, synchronisation and work allo­
cation), ii) traiisparency of failure detection and man-
agement and iii) efficiency of the recovery scheme by 
involving only the failed workers in the roll-back pro­
cedure. 

6 Conclusion and future work 
The grow of parallel applications requirements and the 
technology evolution have pushed NOWs to become 
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popular platfoms for parallel and distributed comput-
ing. Such environments are shared betvveen many 
users and the failures frequency is important. 

Most of the parallel and distributed programming 
environments (PVM, MPI, ...) don't handle the fault-
tolerance aspect. Moreover, most of the classical 
checkpointing algorithms developed are constrained by 
the heterogeneity problem. 

Our algorithm exploits the adaptive application 
characteristics to reduce the complexity of the check­
pointing algorithm both in terms of control messages 
exchanged at checkpoint time which is 0{n) instead of 
0{n'^) involved by classical algorithms and in terms of 
storage space required by the checkpoint file. More­
over, it solves the heterogeneity problem and allows 
the load redistribution at recovery time. 

The major part of existing checkpointing algorithms 
are not used in distributed systems. Therefore, the 
failure detection and management aspects are not dis-
cussed. Our fault tolerance approach ušes simple, effi­
cient and practical tools for dealing with failures while 
keeping the consistency. Although the model used 
seems sometimes simple, it avoids excessive overhead 
incured by some fault-tolerant mechanisms like multi-
casting, replication and total order of message delivery. 
In addition, the approach presents some advantages: 

- A maximum of transparency in detecting and 
managing failures. 

- An efficient recovery policy by rolling back only 
the failed application components. 

- A programming interface which provides a sim­
ple parallel programming methodology and gives 
a support for scheduling applications in adaptive 
environments through keeping track of applica­
tion tasks and their precedence constraints. 
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This paper illustraites how fault-tolerant distributed applications are implemented within LiPS 
[SF96, SL97, T.99], a system for distributed computing using idle-cycles in networks of worksta-
tion. The LiPS system employs the tuple space programmingparadigm, as origina}ly used in the 
LiNDA^ programming language. Additionally, applications are enabled to terminate successfuUy 
in spite of failing nodes. The used mechanisms are transparent to the application programmer 
and assume deterministic application behavior. 
The implementation is based on periodically writing checkpoints, freezing the state of a compu-
tational process, and keeping track ofmessages exchanged between checkpoints in a message log. 
The message log is kept within the tuple space machine implementing the tuple space and replayed 
if an application process recovers. This allows for independent generation of - and recovery from 
a checkpoint. The approach alleviates the need for application-wide synchronization in order to 
generate sets of consistent checkpoints and avoids cascading roUback due to the domino-effect. As 
a result of our approach, applications are able to adapt smoothly to changes in the availability of 
used workstations. 

1 Overview cessor architectures and UNIX^ operating system fla-
vors. The system ensures that only workstations which 

Workstation computers are becoming increasingly are considered idle by their users are used within the 
popular due to their high performance/cost ratio. distributed computations. The system also guarantees 
With increasing numbers of workstations and the ad- successful completion of distributed computations in 
vent of high-speed networks, supercomputer-like ag- spite of failing machines or network links. Within the 
gregate computational power is available and can be last years, LiPS has been used to distribute computa-
used to perform useful computations. tions on about 250 workstations connected to the cam-

Application programmers working in this environ- pus network at the University of Saarbriicken (Ger-
ment must be provided with a programming system fa- many) and will be enhanced to distribute applications 
cilitating the development of distributed applications. on more than 1000 machines within the next years. 
This is accomplished by mechanisms shielding the pro- xhis paper presents the basic decisions taken 
grammerfromthecomplexityofsystem-levelprogram- ^hen designing LiPS version 2.4. This version 
ming, thus enabling him to concentrate on solving supports a software-fault-tolerant generative com-
application-level problems. For example, a heteroge- munication paradigm based on the tuple space, 
neous environment of different operating systems, net- as introduced by the coordination language LiNDA 
work protocols or processor architectures should be [000085]. 
hidden from the programmer. Implementing a dis- ^he next chapter contains an introduction to gener-
tnbuted application is also made more difficult by fre- ^ ^ j ^ ^ communication, a programming paradigm suited 
quent changes in the availability of nodes and net- ^^ implement distributed computations in networks of 
^^'^ workstations. Then, an introduction to the termi-

TVansparency, meaning hiding the physical imple- nology used for coping with fault-tolerance is given 
mentation of a distributed application, is the utmost ^long with the model of softvvare failure patterns used 
goal of every distributed programming system. throughout this paper. Next, the concept of software 

The LiPS system enables users to implement dis­
tributed apphcations in heterogeneous networks of 3uNixislicensedexclusively throughX/OpenCompanyLim-
workstations, connecting machines with different pro- ited 

mailto:emailthsetz@acm.org
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fault-tolerance is introduced. It permits grouping soft-
ware components and strategies into layers thus sup-
plying general distributed applications with a vari-
ety of software fault-tolerance mechanisms. This sec-
tion also illustrates different methods to restart sin-
gle crashed processes within the application framework 
and discusses the benefits of our approach. The gen­
eral concept of software fault-tolerance is then applied 
to distributed applications implemented along the gen­
erative communication paradigm. Using layer-3 soft-
ware fault-tolerance enables the user to transpaj:ently 
implement fault-tolerant applications. By relaying ali 
communication activities via the tuple space, a com-
plete log of aH messages exchanged between appli­
cation processes is available in the tuple space ma-
chine, even while individual application processes are 
prone to failure. Having access to a complete history 
of messages exchanged per process permits recover-
ing application processes in a highly efRcient manner, 
but this requires a well-suited design for the tuple-
space-machine. The last section presents the design of 
our Fault-Tolerant Tuple Space Machine [Set96, Set97] 
along with its integration into the LiPS system. 

2 Related work 

There are different approaches to integrate different 
levels of fault-tolerance into tuple space based appli­
cations. Following [BDE94], these approaches can be 
divided into extensions to the tuple space runtime 
system [Xu 88, LX89, CKM92, PTHR93] making tu­
ple space fault-tolerant, resilient data and processes 
[KS90, KS91] making tuple space and processes work-
ing on it recoverable, and transaction based or trans-
action style like language extensions enabling the pro-
grammer to define a sequence of tuple space operations 
as an atomic operation which will be evaluated com-
pletely or not at ali [BDE94, BS93]. 

In LiPS version 2.4 we foilow the approach to re­
silient data and processes and integrate the needed 
mechanisms into the tuple-space-machine. Two 
runtime-systems, based on the same mechanisms are 
used to integrate fault-tolerance on the system- as on 
the application level. 

3 Generative Communication 

In order to implement distributed applications, a pro-
grammer must be supplied with primitives enabling 
him to create additional processes or tasks, and to 
exchange messages among them. A conventional pro-
gramming language, when augmented by inter-process 
communication and process manipulation primitives, 
is sufRcient for implementing distributed algorithms. 
Interprocess communication (IPC) may be established 
accessing the network protocols, using systems like 

PVM. Another approach, which is used throughout 
this work, is to use higher level paradigms as the Tuple 
space based generative communication [Gel85]. These 
approaches differ with respect to usability, efficiency, 
and availability on different platforms. While IPC us­
ing direct access to network protocols permits highly 
efficient communication, applications implemented us­
ing this approach are rather cumbersome to maintain. 
The generative communication approach to IPC trades 
efficiency against ease of use, due to the overhead in­
troduced by Tuple space management. This overhead 
may be kept down to a reasonable amount by analyz-
ing communication patterns at compile-time. 

This section describes the Tuple space based gener­
ative communication paradigm. Using this paradigm 
yields elegant solutions for communication patterns 
typically found in distributed applications. 

3.1 The Tuple Space 

The Tuple space is an associative, shared memory ac-
cessible to aH application processes. It is called as­
sociative as it contains data tuples which may be re-
trieved addressable by their contents rather than by 
physical addresses, using a pattern-matching mecha-
nism. The implementation of Tuple space memory is 
hidden from the user and therefore may be realized 
on a shared-memory machine, a tightly-coupled paral-
lel computer, or on a network of workstations. Data 
tuples consist of a list of simple data types. We distin-
guish active tuples generated with the eva l ( ) operator 
from passive tuples generated with ou t ( ) . Active tu­
ples are used to create new threads of control within a 
distributed application while passive tuples are merely 
used to store data items. A set of operations ( i n O , 
r d ( ) , i npO, rdpO) is used to retrieve passive tuples. 
Both blocking and non-blocking versions of tuple re-
trieval functions are available. Hence, these operations 
may be used for synchronization and communication 
tasks. The tuple extracting operations in ( ) and inpO 
read a data tuple and remove it from the Tuple space 
. If no tuple is available, the non-blocking operation 
inpO immediately returns an error as opposed to the 
blocking operation in ( ) which suspends the calling 
thread until such a tuple is found. The tuple read-
ing operations rd ( ) and rdpO return a data tuple, 
again in a blocking and non-blocking manner, but do 
not extract the tuple from the Tuple space . A more 
elaborate description of the Tuple space can be found 
in [Set96]. 

3.2 Benefits of the Generative 
Communication 

As the Tuple space is conceptually separated from 
an application process, its content is not lost across 
thread exits. Data tuples remain available until they 
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are consumed by some other process, which must not 
necessarily be around at the time the tuple is cre-
ated. As a result, inter-process communication is de-
coupled in time. As data tuples are identified solely 
by their contents, and not by any other means such 
as senders' or recipients' process-ID, communication is 
made "anonymous", in that communicating processes 
do not need knowledge of their peers' identity. IPC 
using the Tuple space thus decouples communicating 
processes logically and physically. This eases appUca-
tion development when compared to using a message-
passing based paradigm. 

As processes in a distributed application have no 
notion of a peer's location, migrating processes in the 
čase that a machine becomes unavailable due to load 
increase or crash is made easier. A process may stili 
retrieve messages even when it has to change to a dif-
ferent machine. This mechanism is transparent to the 
application programmer as no host addresses are in-
volved. The Tuple space communication paradigm 
is not tied to a particular programming language, 
hardware or software environment. It may thus be 
used for distributed applications running on a het-
erogeneous set of workstations. The paradigm also 
allows for adapting the number of usable machines, 
implementing what is called "adaptive parallelism" in 
[CFGK94, GK92]. Applications may use aH available 
machines, shrink down to the usage of only one, and 
switch between these bounds of possibilities very eas-
ily. Finally, integrating the Tuple space based gen-
erative communication approach into a conventional 
programming language requires only six additional op-
erations. 

Therefore, Tuple space based applications turn out 
to be an adequate choice for implementing distributed 
applications running on networks of workstations. 

4 Failure Models 
Workstation computers are prone to failures. As a 
consequence, this may lead to failures in applications 
implemented using the LiPS system. Severa! failure 
patterns can be distinguished: 

- Crash-failures or as called in [SS83] "fail-stop-
processors", are observed when a machine halts 
on an error condition, forcibly terminating ali ap­
plication processes local to the processor affected. 

- Soft-fail-stop-failures are observed when a ma­
chine stops on an error, terminating ali local 
application processes. But there exists storage, 
possibly residing on another unaffected machine 
which remains intact and is accessible. 

- Omission-failures are observed when machines 
sometimes fail to send or receive messages. 

— Byzantine failures, where machine start sending 
wrong and even contradictory Information as a 
result of an error. 

The LiPS system is able to čope with soft-fail-stop 
failures. Data that should remain accessible in spite 
of machine failures is kept in a storage called reposi-
tory. The system further deals with omission-failures 
as messages are exchanged using the UDP protocol of 
the TCP/IP protocol suite'*. Handling Byzantine fail­
ure is rather expensive, and these failures are rarely 
observed in practice. Therefore, we will not consider 
Byzantine failures in this work. 

5 Software Fault-Tolerance 
Distributed applications are usually based on fault-
tolerance mechanisms provided by a node operating 
system. The term "software fault-tolerance", as in-
troduced in [YC83], is used to subsume methods and 
software components responsible for detecting and cor-
recting errors causing a distribute application to crash 
or hang, that are not already handled in the underly-
ing operating system. Software fault-tolerance may be 
organized in layers - Figure 1 gives an overview. Lay-
ers are discriminated along the levels of availability 
and data consistency. 

Normally, distributed applications are based on the 
Services delivered by the node operating system, the 
so-called level O of software fault-tolerance. If a node 
crashes, manual intervention is required to restart the 
processes which were residing on that node. Shared 
data may be lost or left in an inconsistent state. 

Layer-1 software fault-tolerance is reached by pro-
viding for automatic restart of application processes 
in the event of a crash. This layer provides for en-
hanced application availability, as no manual interven­
tion is required for the entire application to complete. 
Restarted processes stili need to re-do their entire com-
putation, resulting in a complete loss of effort spent on 
the previous run. Abort of a single process may force 
the entire application to halt if shared global data is 
left in an inconsistent state, thus wasting the entire 
time spent computing so far. 

Layer-2 software fault-tolerance requires application 
processes to create checkpoints capturing a process's 
state. If an application process crashes, it can be 
restarted from its latest checkpoint, thereby reducing 
run time spent as effort to reach the state at crash 
time. Furthermore, messages sent and received in the 
interval between checkpoint generation are kept in a 
message log. If an application process restarts from a 
checkpoint, it will receive the same set of messages it 
got on its initial run and therefore will compute the 

••This protocol implements a "best-effort" delivery. Data-
gram messages may be lost or duplicated by the underlying net-
work layers. 
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same results again. This requires computations to be 
fully determined by received input messages. Restart-
ing processes from an earlier checkpoint constitutes a 
backward error recovery strategy. An application pro­
cess is said to be in "recovery" state if it has not yet 
reached the state at crash time. It is said to be "active" 
resp. "operational" if its computation proceeds be-
yond the crash state. Layer-2 software fault-tolerance 
strategies lead to increased application process avail-
ability, as well as increased message-space consistency. 

A distributed application is said to be layer-3 soft-
ware fault-tolerant if data kept in a file system are 
recoverable after a failure. If a process is restored 
from a checkpoint image, aH files that were open at 
crash time should be accessible even if the process was 
restarted on another machine. Changes made to the 
files must be un-done prior to restarting from a check­
point. Level-3 software fault-tolerance increases data 
consistency of applications and increases process avail-
ability as processes are able to migrate to another ma­
chine. 

Layer-4 softvvare fault-tolerance mechanisms are 
used if an appUcation needs a very high availability. 
This is accomplished by replicating several copies of 
each application process on different nodes. When a 
process instance fails, identical output is available from 
another instance of this application process. Thus, 
the application continues to perform its computation 
apElrt from the time it takes to notice node failure, and 
to use results produced by another process instance. 
Ali it takes to implement layer-4 fault-tolerance is to 
synchronize replica behavior. Layer-4 software fault-
tolerance increases process availability. 

6 Recovery Design Alternatives 
on the Application Level 

If a process of a distributed application has to be 
started from its last checkpoint, the question arises 
how to treat messages sent or received by the process 
since its last checkpoint. If e.g. process X in Fig­
ure 2 crashes, it may be restarted from checkpoint 0:3 
without affecting other processes belonging to the ap­
plication. However, if process Y crashes at time t = 14 
after sending message m, it will generate and re-send 
message m to process X when restarted from check­
point 2/2. 

There are two basic alternatives for dealing with this 
problem. The first one, later referenced as Backvvard 
Backward Error Recovery (BBER), involves undoing 
ali effects caused by a process in the time interval be-
tween its last checkpoint and the time of the crash. 
To undo the effects caused by a failed process on an­
other active process, the failed process will be rolled 
back into an earlier state, and the other process will 
be restarted from a checkpoint too. Consider process 
Y failed after sending message m in the example. The 
BBER strategy would then require restarting process 
X from checkpoint X2 to undo the effects of re-sending 
message m after Y is restarted from checkpoint 2/2 • 
The second alternative, later referenced as Backward 
Forward Error Recovery (BFER), ensures that a pro­
cess restarted from a checkpoint executes the same in-
structions as on its initial run. However, effects af­
fecting other processes are suppressed. Applied to the 
example, process Y would be restarted from check­
point 2/2- When restarted, Y will again generate and 
send m. Duplicate reception of m by X must then be 
suppressed by some external means. 

The BBER may lead to a "domino effect", requir-
ing the restart of other processes indirectly affected 
by a process abort. If process Z crashes after send­
ing n, X, Y, and Z would need to be restarted from 
their respective checkpoints Xi, yi, and zi, as they 
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received some messages sent by Z after writing its lat-
est checkpoint image. Within this context, messages 
n and m are called "orphan messages". Orphan mes­
sages may lead to a domino effect which possibly af-
fects ali application processes^. Applying the BBER 
strategy requires careful scheduling of checkpoints in 
order to avoid orphaned messages. In the best čase 
there is no Information flow at the time ali applica­
tion processes create a checkpoint image. This could 
be accomplished by scheduling process Y to write its 
checkpoint image y\,\ at time i = 10. At this point in 
time, no unreceived messages are present in the sys-
tem. If process Z would crash after sending n, restart-
ing processes X and Y from checkpoints X2 and yi,i 
would be sufficient to undo ali changes made by pro­
cess Z, which would then be restarted from checkpoint 
Z2. Checkpoints X2, yi.i and 22 are said to constitute 
a "recovery line", or "strongly consistent checkpoint". 
The drawback is that ali processes must be considered 
when writing checkpoint images for every single appli­
cation process. This requires synchronization among 
ali processes in order to determine whether it is safe 
to write a checkpoint image. 

Applying a BFER strategy alleviates the need for 
synchronization prior to taking checkpoints. Individ-
ual processes may write checkpoint images at any time. 
This requires keeping the message log in some entity 
surviving the process crash which is responsible for 
suppressing orphaned messages and replay of already 
received messages. 

7 Combining Generative 
Communications and 
Software Fault-Tolerance 

This section shows how software fault-tolerance mech-
anisms are added to programs based on the generative 
communication paradigm. Applying layer-3 methods 
yields an acceptable level of fault-tolerant execution 
for such applications. Application of layer-3 strate-
gies to these distributed programs is then examined 
in greater detail. As aH inter-process communication 
is done via the tuple space, there is already a sys-
tem entity in plače to keep the message log for each 
application process, unaffected by application process 
crashes. This lends itself to using the BFER strategy 
for process recovery. 

On each machine where application processes are to 
be executed, a system service program is installed. Its 
task is to control and to restart application processes 
in the event of a machine crash. Thus layer-l soft-
ware fault-tolerance is reached. Layer-1 software fault-
tolerance by itself is not sufficient for fault-tolerant 
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^There are more problems with BBER. An in-depth treat-
ment is given in [MN94] 
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Figure 3: IPC using the Tuple Space 

execution of applications using the generative commu­
nication approach for inter-process communication as 
shared data may be left in an inconsistent state. 

Layer-2 software fault-tolerance adds checkpoints 
and message logging to the layer-l software fault-
tolerance mechanisms. Applications implemented us­
ing the generative communication approach for IPC 
are already exchanging messages by adding and re-
moving data tuples from a global tuple space, as de-
picted in Figure 3. Tuple space operations are kept 
in a per-process log. For each process, its checkpoint 
image freezes the state of the particular computation 
performed by the process. Messages sent or received 
as the checkpoint generation are commonly referred 
to as "events" and are also kept in the message log. 
Figure 4 shows the message log after exchanging mes­
sages in Figure 3. The call to out ( ) in Process A is 
uniquely identified with event number 2. We use the 
BFER in order to re-integrate a crashed process into 
an application. It is sufficient to restart an applica­
tion process from its latest checkpoint image and to 
supply messages from its message log. In particular, 
duplicate output messages may now be identified and 
are suppressed. When a process succeeded in taking a 
checkpoint image, events prior to the checkpoint event 
may be discarded from the message log. In Figure4, 
event 4 for process A would no longer be present in 
process B's message log as it is already incorporated 
into its checkpoint taken at event 7; process B would 
not receive this message again when restarted from this 
checkpoint. However, when process A is restarted from 
scratch after failing after event 5, the output message 
generated at event 2 must be prevented from reaching 
the tuple space, as this would create a duplicate tuple. 
Processes are said to be in recovery state when their 
communication is screened by a message log. 

Distributed applications may need to access large 
amounts of data kept in files. If a machine fails and 
becomes unavailable, data kept on this machine is lost 
and may cause the entire application to fail. Layer-
3 software fault-tolerance addresses this problem. It 
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ensures that the file system environment^ inay be re-
stored when encountering an error. Layer-3 software 
fault-tolerance may be implemented by replicating files 
accessed by application processes. If a process is to be 
restarted, aJl files required by the process have to be 
copied to its working directory prior to the process 
restart. 

Normally, there is no need for application processes 
to be highly available. Applying layer-4 software 
fault-tolerance strategies is not necessary as applica­
tions are able to run to completion if layer-3 software 
fault-tolerance mechanisms are applied. Replicating 
individual application processes in order to gain in-
creased availability would consume additional comput-
ing power which could be used by other application 
processes too. 

8 The LiPS System 
The main problem that arises in implementing a soft-
ware fault-tolerant system for applications based on 
the generative communication paradigm deals with the 
question of how to make the Tuple space resilient to 
faults like machine crashes. Obviously, the solution to 
this problem is replication of the Tuple space among 
different machines. This approach is implemented very 
efficiently in the so-called Fault-Tolerant Tuple Space 
Machine [Set96, Set97] explained later in this section. 

We distinguish two Fault-Tolerant Tuple Space Ma­
chines in the LiPS system. The first Fault-Tolerant 
Tuple Space Machine implements the System Tuple 
Space maintaining data about the system state e.g. 
which machine is idle. The second Fault-Tolerant Tu­
ple Space Machine maintains the Application Tuple 
Space. Figure 5 on page 92 gives an overview. 

There may exist several applications concurrently 

*The file systera environment of an application consists of 
aH files being accessed by an application process. Processes are 
expected to access files present in their working directories; in 
particular, no file may be open concurrently by several processes 
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Figure 5: The different levels of the LiPS runtime 
systems 

each using a private Fault-Tolerant Tuple Space Ma­
chine. The System Tuple Space is shared by ali appli­
cations. 

In this section, we first introduce the different com-
ponents of the runtime systems of LiPS and their co-
operation. A more detailed explanation is given in 
[SL97]. The design and implementation of the Fault-
Tolerant Tuple Space Machine is explained next. A 
detailed description is given in [Set96]. 

8.1 The L I P S Runtime Systems 
We distinguish two different runtime systems within 
LiPS . The system runtime system and the application 
runtime system. Both are based on a Fault-Tolerant 
Tuple Space Machine. The server processes of the 
Fault-Tolerant Tuple Space Machine for the system 
runtime system are called FixServer; those of the ap­
plication runtime system's Fault-Tolerant Tuple Space 
Machine MessageServer. The relationship between the 
different runtime systems described above is depicted 
in Figure 5. 

A designated server process called l i p s d O resides 
on each machine participating in the LiPS system. 
The l i p s d O processes update and retrieve Informa­
tion from the System Tuple Space. For example, node-
state Information, like load of a (the) machine can be 
read (updated) easily through Tuple space operations. 
l i p s d O processes update their own node-state Infor­
mation in the System Tuple Space in fixed intervals. 
A machine crash can be detected if this Information is 
not received in time. In this čase possible errors due 
to lost data are repaired, and watchdog mechanisms 
will re-integrate the crashed machine "autoraagically" 
immediately after its recovery. A more detailed de­
scription of these mechanisms is given in [SF96]. 

Fault-tolerance on application level is implemented 
with a checkpointing and recovery mechanism in-
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Figure 6: Processes of the Tuple Space Machine 

tegrated into the Fault-Tolerant Tuple Space Ma­
chine. A checkpoint is correlated to the evaluation 
of an eval O operation; recovery is based on the re-
execution of a failed eval () together with the replay 
of the message logging of the first execution of eval ( ) . 
Message logging is provided via the Fault-Tolerant Tu­
ple Space Machine. 

8.2 The Fault-Tolerant Tuple Space 
Machine 

The Fault-Tolerant Tuple Space Machine [Set96, 
Set97] replicates the content of the Tuple space among 
sever al machines. If a machine that a MessageServer 
(FixServer) resides on crashes, the data are stili avail-
able on the replicas. An additionally started server 
process joining the Fault-Tolerant Tuple Space Ma­
chine will be initialized with the data of an old replica. 
This feature makes the Fault-Tolerant Tuple Space 
Machine N fault-tolerant. In the Fault-Tolerant Tu­
ple Space Machine every tuple is tagged with a unique 
ID (Sequence Number) as a result of the protocol used 
to replicate data across the different machines. This 
unique ID is used to speed up replication of events 
among the different servers. The protocols used in 
the Fault-Tolerant Tuple Space Machine are based on 
those given in [ADM+93]. An in-depth description of 
the protocols used and their implementation is given 
in [Set96]. 

As depicted in Figure 6, the Tuple space is man-
aged by several Message Server s residing on different 
machines. Message Server s must reside in the same 
broadcast domain. The broadcast facility is utilized 
to replicate messages very efficiently among the dif­
ferent servers. An additional token circulating among 
the servers schedules the permission to use the broad­
cast facility - avoiding Ethernet saturation due to col-
lisions. The circulating token ships additional data en-
abling, among other things, flow control between the 
replicas. Additionally, each broadcast message (tuple) 
is tagged in sequence with a unique ID. This proce­
dure establishes a linear order among the tuples of 
the Fault-Tolerant Tuple Space Machine and speeds 

up replication.'^ 
As shown in Figure 6, an application process sends 

requests to the Message Server which is assigned to 
it. A request can either contain a tuple or a tem-
plate. In the following, we first explain how Message 
Server s process a tuple, and second how templates are 
processed. As the Message Server s share the same 
broadcast domain, a Message Server is able to broad­
cast the tuple and hence replicate it on multiple Mes­
sage Server s with only one physical operation. At any 
time only one Message Server may broadcast a tuple, 
namely the Message Server holding the token mes­
sage. After a Message Server has finished broadcasting 
messages (tuples), it sends the token to the next Mes­
sage Server . With respect to this token transfer, the 
Message Server s form a logical ring. Messages being 
broadcast are tagged with a unique sequence number. 
The sequence number of the last broadcast message of 
a Message Server is sent within the token. The next 
Message Server intending to broadcast knows the se-
quence number of the last broadcast message and con-
tinues the sequence, thereby establishing a total order 
on the messages broadcast. Within one token rota-
tion several tuples may be broadcast by each Message 
Server . 

If a Message Server receives a template, it first tries 
for a match on its local Tuple space . If no tuple 
matching the template is found, the Message Server 
notifies the requesting application process (NACK). 
Otherwise, if the Message Server finds a match, it must 
first synchronize with the other Message Server s. In 
order to notify the other Message Server s of the tu­
ple access, it is sufficient to send the sequence number 
(4 bytes), the application process accessing the tuple 
and the event number in its message logging (4 bytes) 
as well as the type of access (1 byte) to identify the 
operation to the replicas. These items of access Infor­
mation now are added to the circulating token. The 
size of the token then determines the number of read-
ing and extracting Tuple space operation s which may 
be replicated within one token rotation. 

9 Suinmary 
This paper addressed the basic design decisions made 
when building version 2.4 of the LiPS system for im-
plementing fault-tolerant applications in networks of 
workstations. 

As the application ušes the tuple space for inter-
process communication, applications are able to adapt 
smoothly to the workstation environment. Applica­
tion processes may be recovered very efRciently using 

^If a broadcast message was not received on a replica, this 
circumstance is easily obtained as there is a gap in the sequence 
of received messages. In this čase, a retransmission could be 
requested immediately. 
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a recovery strategy based on resilient processes and re-
silient data. The advantage of this strategy is that ap-
phcation processes are independent both in the choice 
of when to take a checkpoint and when to recover from 
a checkpoint. This enables exhaustive usage of idle-
time present in a workstation network as processes 
may be migrated to other idle machines in the event 
the processor they are running on becomes busy. The 
migration of a process can be based on the mecha-
nisms used to guarantee fault-tolerance. This enables 
the system to rapidly and easily adapt to changes in 
machine usability such as those occurring during the 
daytime. 

The above design buys efRciency from the imple-
mentation of a Fault-Tolerant Tuple Space Machine, 
replicating the content of the tuple space among differ-
ent machines. The LiPS system distinguishes between 
two runtime systems both based on the Fault-Tolerant 
Tuple Space Machine. The first runtime system, the 
so-called system runtime system, provides the applica-
tions with software fault-tolerance of level 1 based on a 
watchdog mechanism. The second runtime system, the 
so-called application runtime system, provides the ap-
plication with software fault-tolerance of level 3 based 
on checkpointing, message logging and the integration 
of files into the tuple space. 
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Wepresent the JAVAPORTS system, an environment and a set oftools that aUows non-expert users 
to easily develop parallel and distributed Java applications targeting clusters of workstations. The 
JAVAPORTS system can automatically generate Java code templates for the tasks (software com-
ponents) of an application, starting from a graph in which the user specifies how the tasks will 
be distributed to cluster nodes. Tasks have weU defined port interfaces and may communicate by 
simply writing messages to their ports, without having to know the name and location of the des-
tination task. This allows for task reusabiUty whi}e keeping the code for inter-task communication 
and coordination hidden. We demonstrate that coarse grain parallel programs developed using 
the JAVAPORTS system achieve good performance, even when using a lOMbs shared Ethernet 
network of workstations. 

1 Introduction 
The clusters of workstations provide a tremendous 

resource of spare CPU power at costs effectively much 
lower than that of conventional parallel machines. 
Clusters, with high-speed network connections, may 
exhibit performance comparable to that of supercom-
puters, primarily for coarse grain parallel applications. 
However, a drawback of such architectures has been 
their multi-platform characteristics. The introduc­
tion of the Java programming language brought to 
the table, among other valuable properties, the revolu-
tionary concept of cross-platform programming. The 
JAVAPORTS system intends to utilize this capability 
and provide a user-friendly programming environment 
for the development of distributed concurrent appli­
cations on networks of heterogeneous workstations. It 
allows programmers who may not be very familiar with 
object-orientation and concurrency exploitation tech-
niques, to easily develop, map and reconfigure parallel 
processing applications on heterogeneous clusters. 

The JAVAPORTS environment, generates and up-
dates plug-in software components which allow the dis­
tributed application to conform to the possibly chang-
ing nature of the cluster, while keeping the coordina­
tion of components hidden. Using a simple applica­
tion configuration language, the programmer specifies 
a Task Graph and assigns tasks to machines. Tasks 
communicate via ports. A port is a software abstrac-
tion, which appears as a black-box to the developer 
who may use methods from a Java interface to write 

to, or read from, it every time s/he wants to transfer 
messages between two connected tasks. 

The JAVAPORTS system will parse a specified Task 
Graph and generate Java code templates, one for each 
defined task, which may be used to complete the im-
plementation of a specific application. The templates 
are well-structured, in that the definition and regis-
tration of ports is taken čare of and only the local 
computational part of a task may need to be added by 
the programmer. When the developer modifies the as-
signment of tasks to machines, or adds/removes ports 
to/from a task, system tools will be called to update 
the affected templates while keeping the user-defined 
part of the code unaltered. This scheme allows for the 
reusability and incremental development of modular 
software components for parallel applications. 

The JAVAPORTS tasks follow the Ideal Worker Ideal 
Manager (IWIM) model of anonymous Communica­
tions [1, 2] i.e. a task may exchange messages with 
other tasks without knovving their identity, in contrast 
to the Targeted-Send/Receive (TSR) model. Each 
task is assumed to be an ideal worker who performs 
some job vvithout knowing or caring about how the in-
puts it is using arrived at its ports, or where its outputs 
should be delivered. 

There are several on-going research projects around 
the globe aiming at exploiting or extending the services 
of Java in order to provide frameworks for parallel ap­
plications development in diiferent contexts. Due to 
lack of space, we can only mention a few here. Java 

http://neu.edu
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Parallel (Java//) [3] is a Java library that ušes reifi-
cation and reflection to support transparent remote 
objects and seamless distributed computing in both 
shared and distributed memory multiprocessors. The 
JavaParty package [4] also supports transparent object 
communication by employing a run-time manager re-
sponsible for contacting local managers and distribut-
ing objects declared as remote. (The JavaParty min-
iinally modified the Java language in this respect). 
The JavaPP project [5] introduced the Communicat-
ing Java Threads that implement in Java the chan-
nels of Communicating Sequential Processes (CSP) 
model [6]. The JavaPP is a class library that sup­
ports synchronized message passing among concur-
rent processes in a real-time setting, where deadlines 
have to be respected. The JavaPP is targeting paral­
lel applications for embedded systems, where the non-
deterministic behavior of Java can be a serious draw-
back. Finally, the Javelin [7] project tries to expand 
the limits of clusters beyond local subnets, thus tar­
geting large scaJe heterogeneous parallel computing. It 
is motivated from the popular idea of utilizing avail-
able CPU resources around the Internet for solving 
compute-intensive tasks. Javelin is composed of three 
major parts: the broker, the client and the host. Pro­
cesses on any node may assume the role of a client or a 
host. A client may request available resources; a host 
is the process which may have and is willing to offer 
such resources to a client. Both host and client register 
their intentions with a broker; the broker takes čare of 
any negotiations and performs the appropriate assign-
ment of tasks. The user in the Javelin system interacts 
with a high-level API. A special purpose stack residing 
on the client side allows the user to push and pop tasks 
destined to be executed on remote nodes. Therefore 
the low-level details are hidden from the user. Message 
passing is a major bottleneck in Javelin, because the 
messages destined for remote nodes traverse the slow 
TCP or UDP stacks utilized by the Internet. How-
ever, for compute-intensive applications, such as par­
allel raytracing, Javelin has demonstrated good perfor-
mance. 

Our work conceptually differs from the above men-
tioned projects in that JAVAPORTS is an environment 
that forces the programmer, from early on in the 
application development stage, to configure his/her 
application as a coUection of interconnected concur-
rent tasks vî ith clearly marked boundaries vvhich may 
exchange Information using a simple communication 
mechanism. This software engineering approach is 
similar to the hierarchical methodologies used for de-
signing complex digital systems with hardware de-
scription languages, such as VHDL [8]. The JAVA­
PORTS environment provides tools for capturing how 
the work partitions of an application should be dis­
tributed to the processors in a cluster. That means, 
the control over "what-goes-where" is given to the pro­

grammer. Once the task configuration has been de-
cided, the system will automatically generate reusable 
software components, Java code templates, which may 
communicate asynchronously and exchange any type 
of objects using method calls to instances of the JAVA­
PORTS por t class. This frees the programmer from 
having to worry about whether a communication is to 
a task running locally or to a remote machine, and 
from having to change her/his code every time s/he 
decides to modify the allocation of tasks to machines. 
The JAVAPORTS system attempts to provide, not only 
a simple and user friendly environment for the rapid 
prototyping of parallel applications on clusters, but 
also high quality parallel code in which hiding the co-
ordination and communication details from the user 
does not come at the expense of adding a prohibitively 
large overhead. 

In the sequel, we introduce the various elements of 
the JAVAPORTS system. We first explain how a Task 
Graph can be captured, then discuss the structure of 
the generated Java code templates and how tasks can 
communicate using read/write methods of the po r t s 
interface. In section 3 we present some promising ex-
perimental results, and finally we summarize our find-
ing and point to work in progress in section 4. 

2 The elements of JAVAPORTS 

2.1 The Task Graph 
The developer utilizes the task graph in order to 

map the work partitions of the application onto the 
nodes of the cluster. An example of a task graph and 
its corresponding configuration file is shown in Figure 
1, where the solid boxes denote tasks and the dot-
ted boxes, cluster nodes. There are three user-defined 
tasks in this example, one (called the Manager) al-
located on Nodel and another two (called Workerl 
and Worker2) allocated on Node2. The Manager ušes 
a pair of ports to communicate with the two remote 
workers. 

When the user compiles the configuration file, 
the JAVAPORTS system will extract the Information 
needed to create, or update, the task code templates 
and scripts that are necessary to launch the distributed 
application. If at a later tirne the programmer modifies 
the configuration file, s/he may recompile it in order 
to update these templates and scripts. This recompi-
lation will not affect at aH the user-specified part of 
the code template of each task. The JAVAPORTS sys-
tem will perform ali the necessary changes to be able 
to execute the same application correctly on the new 
cluster setup, even in the čase that the user decides 
to assign ali the tasks to the same single node. The 
syntax of the configuration language and the JAVA-
POKTSApplication Configuration Tool (JACT) em-
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Node2 

begin configuration 
begin definitions 

define 
define 
define 
define 
define 

end definitions 
begin allocations 

allocate Taskl 
allocate Task2 
allocate Task3 

end allocations 
begin connections 

connect Taskl.port[0] 
connect Taskl.port[ l ] 

end connections 
end configuration 

machine Node l= "corea.cdsp.neu.edu" 
machine Node2= "walker.cdsp.neu.edu" 
task Task l= "Manager" 
task Task2= "VVorkerl" 
task Task3= "Worker2" 

Nodel 
l\lode2 
Node2 

Task3.port[0] 
Task2.port[0] 

Figure 1: A Task Graph and the corresponding JAVAPORTS configuration file. 

ployed for the development of modular, reusable soft-
ware components, are discussed in detail in [9]. 

2.2 Task Code Templates 
The templates generated for Taskl (Manager) and 

Task3 (Worker2) of Figure 1 are outlined in Figure 
2. The shaded parts are created by the JAVAPORTS 
system and what comes in between them corresponds 
to user-added code. 

The conf i g u r a t i o n O method of the I n i t class in­
stance is responsible for instantiating the port objects 
for each task. The I n i t class is a JAVAPORTS sys-
tem class and is not visible to the programmer. The 
Init object will perform the RMI [10] port object reg-
istrations as well as the lookups of the corresponding 
peer ports. These time-consuming operations are per-
formed transparently to the user and only once during 
the initialization phase of each task. 

The task templates are prototype classes which im-
plement runnable objects. Each template contains a 
mainO method which is responsible for spawning a 
thread to run the task object. (The main() meth-
ods are depicted at the bottom shaded areas in Figure 
2). The user code implementing the domain-specific 
operations of a task may be entered inside the runO 
method of the task template. 

A Java interface, containing methods that can be 
applied to port objects, is also provided. The user will 
embed such method calls in his/her code every time 
a task needs to exchange Information with another 
task. The read and write port operations are asyn-
chronous and they are implemented by JAVAPORTS 
system classes. The user program will issue reads and 
writes to the local ports of the task. In succession, 
the JAVAPORTS system will make calls to the RMI 

runtime environment which will transparently trans-
fer the messages to the remote objects. The user does 
not need to be concerned with where the destination 
object is located or how the messages will reach it. 

In single compute node concurrent applications, the 
communication implementation remains unaltered. 
Peer ports will be registered and looked up in a manner 
similar to that of the distributed čase. Nevertheless, 
since these operations are performed during the ini­
tialization phase of a task, no considerable overhead 
is added to the computational part of the application. 
We are currently investigating methods that may de-
tect and exploit the locality of tasks to reduce the over­
head incurred during message exchanges among local 
ports. 

2.3 The Ports Java Interface 
An interface in the Java programming language is an 

abstract class consisting only of public abstract meth­
ods and static fields. A class is used to implement 
ali the methods included in its interface. The concept 
of an interface was introduced in Java to compensate 
for the lack of multiple class inheritance capabilities. 
In the context of JAVAPORTS, an interface will supply 
to the user ali the permitted port-to-port communi­
cation operations while keeping their implementation 
hidden. This port interface currently includes the fol-
lowing methods: 

-AsyncWrite(Msg, MsgKey) : It will write the Msg 
message object and its personalization key MsgKey (an 
integer) to a port. The message key can be used by 
the receiving task in order to identify the specific mes­
sage among a list of messages received at its port. So 
although the receiving task does not need to know the 

http://corea.cdsp.neu.edu
http://walker.cdsp.neu.edu
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// f/ser algorithm implementation goes here 
Message msgl = new Message(UserData) 
port [0]. Async Write(msg 1 ,key 1) 
port[ 1 ]. Async Write(msg 1 ,key2) 
// Codefor localprocessing goes here 
ResultPointerl = port[0].AsyncRead(key3) 
ResultPointer2 = port[l].AsyncRead(key4) 
// Code to retrieve residts goes here 
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[^Managenlhi edd ̂  
'.iii^pl^ffltmdnager!^ ncw 1.hiead(Managci 1 hrcad) 

new Mdnagerft) 
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ListPointer = port[0].AsyncRead(keyl) 
DataPointer = ListPointer.PortDataReady() 
// User algorithm implementation goes here 
Message msgl = new Message(ResultData) 
Port[0].AsyncWrite(insgl ,key3) 

} 
piiblic static void niain(^ 
{ . ' - , ,a. 

Runnable \\'orkoi 2 J Krcdd --'ncvv \Voiilcm!(>] 
1 hread worker2 =;ncvv''rhread(\Vorkel^h^d)^ 
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Figure 2: Ltjt: Template for the Manager task; Right: Template forthe Worker2 task. 

name of the sending task, it should know the key num-
ber for each message it expects at a port. This method 
will execute concurrently with the task that calls it 
(non-blocking write). 

-AsyncRead(MsgKey): This method is issued when 
a task wants to access a message object arriving at a 
port. It will return a handle to an object element of 
a linked list. This list is used by the port in order 
to deposit the arriving messages. The task may use 
this handle at any point to access the data part of a 
message with key value MsgKey that has arrived at the 
port. 

-PortDataReady(): This accessor method will re­
turn a handle to the object in which the data part of 
the incoming message was stored. The task will use 
this reference in order to retrieve the data. The details 
of this operation are described in the next section. 

The messages exchanged between tasks are objects 
of the class Message. This is a user-defined class and it 
extends the Object class. Therefore, it adds the capa-
bility of encapsulating any possible type of Information 
in a message. Furthermore, the user-defined variable 
MsgKey is used in order to guarantee correct delivery of 
messages between tasks. It is the responsibility of the 
programmer to ensure that unique matching keys are 
used on the messages exchanged among two communi-
cating tasks. In čase that the programmer writes two 
messages with the same key to a port, the message 
that arrives second at the destination port overrides 
the one that arrived earlier. Therefore, it is impera­
tive that the programmer treats the MsgKey variable 

with caution. 
In the example of Figure 2, the Manager task writes 

a message to two ports connecting it to two almost 
identical worker tasks. Each worker reads its port and 
after performing some computation using the received 
message, it writes back the results that will be read 
by the Manager. The two worker templates may dif-
fer only in the local computation part and in the keys 
used in the read and write method calls. This shows 
how easily templates can be reused when the commu-
nication pattern remains the same. 

The user program templates are defined as part of 
the JAVAPORTS system class package. Therefore, af­
ter the application implementation is completed, the 
templates may be compiled and executed along with 
the system classes. For cluster of workstations where 
the Network File System (NFS) is available, the pro­
grammer may execute any task from any cluster node 
without the need of distributing the template executa-
bles from node to node. In clusters where NFS is not 
available, specialized scripts are automatically created 
by the JAVAPORTS system in order to aid the user in 
distributing the executables to their correct destina­
tion nodes [9]. 

2.4 The Communication Protocol 
In this section we outline the operation of the JAVA­

PORTS system during a message communication oper­
ation between two distributed tasks. A pictorial de-
scription is provided in Figure 3, where square boxes 
depict objects and the label inside a box refers to the 
class from which the object was instantiated. Labels of 
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Figure 3: Port-to-port communication protocol using 
JAVAPORTS. 

arrows denote caJls to methods of the ob ject receiving 
the call. 

After each task thread has started, it makes a call 
to the conf igure method of the I n i t object in order 
to create and initialize ali its ports and connect each 
one of them to its peer remote port. The conf igure 
method will perform ali the appropriate calls to the 
RMI environment in order to register local, and lookup 
remote, ports. Subsequently, the method will return to 
the calling thread a (zero-based) array of port handles. 
Each port maintains a dynamically allocated linked list 
of objects (denoted by dashed boxes in Figure 3) that 
will be used to store incoming messages arriving at the 
port. 

The direction of Information flow does not affect the 
way communication is realized, therefore we assume, 
without loss of generality, that the manager task wants 
to send a message to a worker task directly connected 
to it. To do so, the manager task thread will initially 
invoke the AsyncWrite method on its local port. The 
parameters passed to this method are the message ob­
ject and its associated personalization key (an integer). 
The remote worker task will use this key when it needs 
to retrieve the data encapsulated in the message. The 
AsyncWrite will spawn a Port Thread, an active object 
which will be responsible for implementing the actual 
message transfer to the remote port, while the main 
manager task continues with the execution of its local 
computation (non-blocking send). The main function 
of the PortThread object is to make a remote call 
to the rece ive method of the worker task port. This 
method ušes the RMI serialization mechanism in order 
to perform the actual transfer of the message object 
to the remote port. 

At the receiver's end, after initialization, the worker 
thread makes a call to the AsyncRead method of 
its corresponding local port, using the key for the 

expected incoming message as a parameter. The 
AsyncRead method simply returns a handle to an ob­
ject of the port list where the incoming message, with 
a matching key value, will be deposited upon arrival. 
At the appropriate point in time, i.e. when the worker 
task really needs the data in this message, it may use 
the handle to perform a call to the PortDataReady 
accessor method of this list object. This method call 
will block the worker task until a message with this 
key value has arrived at the port (wait-by-necessity). 
When the PortThread object of the manager makes 
the call to the rece ive method of the port object of 
the worker, the message will be delivered. Further-
more, this port will use the key value to pass the mes­
sage to the appropriate object in its port Hst. This list 
object will be responsible to notify the (possibly wait-
ing) worker task thread that a message has arrived. 
Upon notification, the worker task will exit the wait 
State and check if the message that arrived is the ex-
pected one. If so, it will retrieve the data, othervvise, 
it will re-enter the wait state. 

The same sequence of operations may be used in the 
reverse order, if it is desired to send a message from 
the worker to the manager task using the same pair 
of peer ports. So communication is non-blocking and 
bidirectional. 

3 Experimental Results 

In this section we outline some experiments con-
ducted using the JAVAPORTS system and discuss the 
performance results obtained. The (square) matrix-
vector multiplication problem was solved in a variety 
of node configurations, exactly as it was done previ-
ously in [3] and [11]. 

We experimented with 1-, 2- and 3-node multiplica­
tion scenarios. In multi-node configurations, as many 
tasks as nodes (machines) were used. That means, 
a manager task was allocated to a node (called the 
master) and in addition one worker task was allocated 
per node to one (two) more node(s). The set of rows 
of the multiplicand matrix needed by each node were 
made available to it before the commencement of the 
experiment. The manager task (running at the mas­
ter node) starts first by sending the multiplier vector 
to aH remote workers; then it performs its part of the 
matrix-vector multiplication and waits (as needed) for 
the remote workers to send back their results, so that 
it can finally construct the overall result vector. The 
time it takes for the manager to distribute the mul­
tiplier vector to aH the workers as well as the time 
the remote workers need to compute and send their 
results back to the manager was measured and taken 
into consideration in the timing analysis. 

In our experiments, a size 1000 x 1000 matrix was 
multiplied by a 1000 x 1 column vector. The method 
CurrentTimeMillis of the System class, which re-
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Figure 4: Timings for the Manager task. Left: 2-node scenario; Right: 3-node scenario. 

turns the current time in miUiseconds, vvas used to 
gather measurements. We acquired the time at the 
beginning and at the end of each targeted period and 
the elapsed time vvas determined by calculating the dif-
ference of the two measurements. For ali the scenarios 
investigated the total elapsed times were decomposed 
into their sequential components that are also plotted 
in Figure 4. 

The JAVAPORTS system was configured on a set 
of Sun Microsystems Workstations running Solaris v. 
2.5.1, connected to the same subnet (lOMbps standard 
Ethernet). The type of machines used vvas either Sun 
Sparc-4 or UltraSparc-1. In the 2-node scenario, both 
nodes, the one running the manager task and the other 
running the worker task, were Sparc-4s. In the 3-node 
scenario, the node running the manager task was an 
UltraSparc-1 and the other two nodes, each one run­
ning a worker task, were Sparc-4s. (Therefore, the 
machines that run worker tasks were always chosen to 
possess identical hardware characteristics). 

In the 2-node scenario, the number of rows of the 
multiplicand matrix that resided on each node was var-
ied from O to 1000. In the left panel of Figure 4 we 
show the total time measured for the manager task as a 
function of the number of rows allocated to the remote 
worker task. (For example, 300 "remote rows" in this 
figure means that the remote worker task computed 
the last 300 elements of the product vector and the 
manager task computed the first 700 elements). The 
dashed-dotted curves depict (i) the local computation 
time of the manager and (ii) the time the manager 
had to wait, after its local computation is completed, 
for the worker results to become available. We notice 

that the minimum total time is observed when the rows 
of the matrix are almost evenly split among the two 
nodes. Furthermore, as the number of rows processed 
by the remote worker increases, (i) the manager's lo­
cal computation time decreases, and (ii) the time the 
manager has to subsequently keep waiting for worker 
results to arrive increases, as expected. 

In the 3-node scenario, the multiplicand matrix was 
split into three not necessarily equal parts. The man­
ager task (in the master node) is first assigned a num­
ber of rows ranging from O to 1000. The remaining 
rows are now split among the two worker nodes. Tho 
right panel of Figure 4 summarizes the timings ob-
tained for the manager task. For each number of re­
mote rows processed collectively by the two remote 
workers, we report the minimum total time observed 
over several attempted work decompositions among 
the two worker nodes. Similarly to the 2-node sce­
nario, the minimum total time is obtained when tho 
work performed locally by the manager matches the 
work performed collectively by the two remote work-
ers. The time that the manager has to wait (upon 
completion of its local computation) for each worker 
to return results is different, because the wait period 
for Worker2 results starts after the wait period for 
"VVorkerl results is completed. 

The timing results for aH experiments are presented 
together for visual comparison purposes in the left 
panel of Figure 5. The horizontal line corresponds 
to the time one workstation (Sparc-4) using a sin-
gle thread pure Java program needs to perform a 
1000 X 1000 matrix-vector multiplication and is in-
cluded for reference. An 1-node (Sparc-4) concurrent 
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Figure 5: Le/t; Comparison of the 1-, 2- and 3-node scenarios. Right: Comparison of JAVAPORTS, Java// and 
JavaParty, for the 2-node scenario. 

JAVAPORTS implementation, using one manager and 
one worker task, was also included to demonstrate the 
advantage obtained by task distribution when a second 
compute node is introduced to run the worker task. 
The difference of these two curves quantifies the over-
head of having two JAVAPORTS concurrent tasks try-
ing to solve the problem in a single compute node. The 
2- and 3-node scenarios outperform the single-thread 
pure Java solution for a wide range of rows processed 
remotely. Moreover, the 3-node solution is consistently 
faster than the 2-node one, and their performance dif­
ference becomes more profound as the number of rows 
allocated to the remote workers increases. 

The JAVAPORTS system performance was also com-
pared to that of two other packages, namely the 
JavaParty [4] and the Java// [3], using the same 
1000 X 1000 matrix-vector multiplication problem run­
ning on 2-nodes. To obtain the JavaParty timings we 
wrote our own simple Java program. Following the 
guidelines of the JavaParty group the worker task was 
declared as a remote class, thus allowing the system to 
migrate the worker task object to the remote node. On 
the contrary, the Java// results were not produced by 
us, but taken from [3] where the authors used two Ul-
traSparc Sun workstations to perform the exact same 
matrix-vector experiment. As it can be seen from 
the plot in Figure 5, the JAVAPORTS system exhib-
ited the best performance. Note that the JAVAPORTS 

and JavaParty experiments were run on two Sparc-4s 
that are less powerful than the UltraSparcs used for 
the Java// experiments. 

We have also performed a detailed benchmark anal-

ysis of the standard Ethernet network which intercon-
nects our cluster of workstations. To do so we per­
formed the commonly used "ping-pong" experiment 
between two workstations. The manager task, run­
ning on the first node, initiates the Communications 
by sending a message to the worker task running on a 
different node. Once the message is sent, the man­
ager task performs an AsyncRead on its local port 
and waits. The worker task receives the message on 
its corresponding local port and it immediately writes 
it back to the port. Once the manager task receives 
the message, it records the roundtrip delay and it re-
peats the same action. For each message size used, 
the experiment was repeated 500 times and the av-
erage roundtrip delay was calculated. As a message 
we always used an array of words (64-bit double num-
bers). In each experiment we varried the array size. 
We first tried small sizes (1, 10, 100, 1000 words). 
Then, for larger arrays of one thousand (1000) ele-
ments and higher, we incremented the size by one 
thousand (1000), until the array was ten thousand 
(10000) words long. 

The average roundtrip delay for each experiment as 
a function of the message size is shown in the left panel 
of Figure 6. The straight line corresponds to the least 
squares polynomial fit over the measured data points 
(for array sizes larger than 1000 words). The coeffi-
cients of this first degree polynomial can provide es-
timates for the message setup time and the per-word 
transfer time experienced when two JAVAPORTS tasks 
residing on separate address spaces communicate. The 
setup time is estimated to be in the order of 14.43msec 
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Figure 6: Left: Round trip delay vs. message size in Ethernet; Right: Ethernet Signature Graph. 

(per message) and the transfer time 44.8/isec per word. 
The netvjork signature graph [12] is also provided 

in the right panel of Figure 6. Such a graph shows 
the transfer speed versus the elapsed time for each 
message size. As it can be observed, the Ethernet 
network in our experiments reaches saturation at mes-
sages sizes of 4000 words, giving maximum through-
put in the order of 1.3 Mbps. Considering that the 
maximum throughput for transfering large messages 
over Ethernet is in the range of 7Mbits [12], what 
was achieved is respectful performance. The underuti-
Uzation of the network can be contributed to several 
factors. First, the JAVAPORTS system makes use of 
RMI, whose message serialization and de-serialization 
process is known to slow down message passing. Sec-
ondly, the experiments were conducted on a local area 
network (LAN) at a time that its bandwidth could be 
possibly shared by other users. Finally, a Network File 
System (NFS) service was running on the LAN during 
the experiments, which may cause some delays since 
the workstations need to constantly contact their peers 
for file reconciliations and updates. 

4 Conclusions 

We have presented an overview of the JAVAPORTS 

system, an environment for flexible and modular con-
current programming, on a cluster of workstations. 
The design encourages reusability by enabling the de-
veloper to build parallel application using Java in easy 
modular steps. The compOnents which comprise such 
designs may be manipulated through the system and 
without modifying any existing user code they may 
be used to reconfigure and run a parallel application 
in a completely new cluster setup. The user-defined 
message object may be altered to customize the needs 

of transferring any type of Information across the net-
work. By giving the developer such capabilities, the 
JAVAPORTS environment may be customized for spe-
cific client-server applications where a large variety of 
services may be available. 

Each task in the JAVAPORTS system has its own sep-
arate address space. The system was not intended to 
support distributed shared memory (DSM) that would 
permit sharing of objects among tasks at run-time. 
However, a specific task may spawn as many threads as 
the programmer desires and these threads may share 
data residing in the task's address space, as in any 
concurrent Java program. Message communication in 
JAVAPORTS is anonymous, therefore one can "discon-
nect" a task from a port and "connect" another one to 
it and stili the programmer of the task at the other end 
of the connection does not need to be informed about 
it, or change the communication code of this task in 
any way. This plug-in capability, allows to share task 
code templates among similar applications and accel-
erate application development. Users of the system 
do not have to be experts in parallel computing, but 
rather in the specific task they want to implement. 
With the JAVAPORTS system, one can take software 
components generated by different field experts and 
build easily a distributed application using them. 

The performance observed in small scale bench-
mark applications (also tried by other groups) is very 
promising and shows that the JAVAPORTS system 
strikes a good balance between added functionality 
and performance. The inter-task communication pro-
tocol is quite simple and has built into it latency hid-
ding capabilities. We are not so much concerned about 
performance issues, since we expect it to improve dras-
tically with the rapid advancements in JVM and RMI 
implementations. We are currently designing larger 
scale distributed applications using a variety of task 
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graph configurations (star, pipeline, mesh etc) . We 
are also planning to add to the system dynamic port 
creation and task migration capabilities in the future. 
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Structured Performability Analysis (SPA) is a unified performance and dependabi}ity evaluation 
methodology for practical, large scale parallel applications. This evaluation can be used to guide 
the developer before and during design and implementation. SPA involves a systematic set ofsteps 
to decompose a large application for top-down as well as bottom-up analysis. SPA is scalable, sup-
ports variable-precision modeling, and is trackable. A brief overview of SPA is presented. This is 
followed by preliminary results correlating observed performance from experiments with expected 
performance from the SPA model, as well as dependability and performanbility projections. 

1 Introduction 

The primary purpose of parallel computing is to in-
crease realized computation speed. Significant, but of-
ten not considered as important, is dependability [7]. 
Dependability is a serious issue for parallel and dis­
tributed applications because increasing the number of 
processors to increase performance can decrease over-
all dependability, especially for large-grained, loosely-
coupled parallel systems. Fault tolerant techniques ex-
ist for increasing dependability at the cost of perfor­
mance [11]. An analytičal measure of the relationship 
between dependability and performance does not yet 
exist for parallel applications [10]. 

A parallel application typically contains multiple 
parallel processing topologies. These topologies were 
classified by Flynn in [6]. Each topology has its own 
characteristic relationship between performance and 
dependability. Any technique to gauge the perfor­
mance and/or the dependability of the entire system 
must be able to gauge the contribution of every com-
ponent relative to its cost. 

An open question is, "How can the tradeoff between 
performance and dependability be determined to iden-
tify optimal delivered performance for parallel appli­
cations?" The purpose of this manuscript is to present 
a systematic analytical approach for investigation of 
this question, and to provide a unified metric of perfor­
mance and dependability for parallel and distributed 
applications. 

2 Background 
Parallel processing is driven by the increasing need for 
computing speeds mandated by "Grand Challenge"-
type applications, and by the realization that we are 
fast approaching the performance limits of present 
semi-conductor materials [13, 17]. 

Performance evaluation techniques for parallel ap­
plications have concentrated on quantifying realized 
processing rates and execution times, while disregard-
ing dependabiUty consequences. 

While there are no universally accepted methods for 
performance calibration of parallel applications, there 
are accepted models for dependability. Typically, de-
pendability models capture the possible states a sys-
tem can reach, and then partition states into two cat-
egories: available or unavailable. Recently, depend-
ability models have been retrofitted to include perfor­
mance issues as rewards [1, 16]. 

As parallel applications grow in demand, they will 
also grow in size and complexity. Metrics to measure 
performance and dependability will need to scale so 
that they are useful for current as well as future appli­
cations. It is becoming increasingly difRcult to study 
large parallel systems and applications using standard, 
unstructured analysis [8]. The problem addressed is 
how to gauge dehvered performance (i.e., performance 
considering failure) for parallel applications using a 
structured analytical method. 

Performability, or delivered performance, refers to 
the solving of state-space type availability models that 
have been augmented to include speed characteris-
tics in the form of rewards. The two most accepted 
performability approaches are Markov reward models 
(MRMs) [16] and stochastic reward nets (SRNs) [1]. 
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Performability analysis is difRcult for sequential appli-
cations; analysis of parallel applications is more com-
plicated due to multiple cooperating processes, mul-
tiple processors, interprocessor communication (IPC), 
and storage issues of the parallel environment. 

A number of issues are relevant to this research: i.) 
there is no universally accepted model of parallel pro-
cessing [15]; ii.) models for performance analysis do 
not consider the runtime mapping of application to 
environment; iii.) the performance function F(t) for 
performability analysis often represents the probabil-
ity that a task will complete by time t [12]; and iv.) 
analysis of parallel applications needs to be conducted 
in steady-state. 

Performance and dependability evaluation methods 
need to be scalable. Programming paradigms are 
emerging which increcise application size and complex-
ity. While these improvements are beneficial, it be-
comes more problematic to develop general-purpose 
techniques for parallel performance and dependability 
analysis. 

The primary goal of this research project is to de­
velop a unified performance and dependability model 
for parallel applications. This model is directly related 
to practical program execution by including process-
ing rate and execution time for performance analysis. 
Dependability is quantified as availability, and is ex-
pressed as a probability function. 

3 Methodology 

Structured Performability Analysis (SPA) ušes a three 
phase methodology to reach the goals of variable-
precision and scalability. This methodology is de-
picted in Figure 1. The first phase involves a top-
down Coarse-To-Fine (CTF) Application Decomposi-
tion. This results in a Structured CTF (SCTF) graph. 
The SCTF graph is then translated into its equivalent 
Canonical Decomposition Tree (CDT). The CDT sets 
the stage for later performability synthesis. 

The second phase of SPA is Microanalysis that pro-
duces estimated performance and dependability func-
tions for each of the application components. These 
functions form a performability profile for a given com-
ponent. 

The last phase involves a bottom-up synthesis 
termed Macroanalysis. Macroanalysis utilizes compo-
nent performability profiles, performance and depend-
ability template rules [i.e., sequential, pipeline, SIMD, 
MIMD), and the application-dependent CDT to gen-
erate a performability profile of the entire applica­
tion. The result is a combined measure of performance 
and dependability that considers both application-
dependent and processing environment-dependent is­
sues. 

Sequential 
Application 

Analjrsis 

SCTF Graph 
of 

Application 

Microanalysis 

Eqiiivalent 
CDT 

Component 
Performabilitjr 

Profile(s) 

Macroanalysis 

Postorder Traversal 
of the CDT 
Application 

Perfbrmabilitjr 
Ana]ysis 

foreathSCTF 
graph component 

Figure 1: Overview of SPA. 

Figure 2: SCTF Graph for SAG. 

4 A Brief Example 

Consider a standard Scatter-And-Gather (SAG) paral­
lel application. The sequence of operations in this ap­
plication includes scattering the work, computing the 
work assigned, and gathering the results. Typically, a 
sequential application is used for speed comparisons. 

Figure 2 is an example of an SCTF graph for an 
SAG application. The SCTF graph shows the typical 
scatter and gather operations and system configura-
tion. 

This SCTF graph is next transformed into a corre-
sponding CDT as presented in Figure 3. Note that the 
vertices of the original SCTF graph in Figure 2 appear 
as leaves in the CDT of Figure 3. The internal nodes 
capture the structure of the original application. In 
this example, the SAG application is decomposed into 
a parallel (SIMD) structure nested inside a sequential 
(SEQ) structure. Application components are mapped 
onto the processor cluster as depicted in Figure 4. 

Microanalysis involves developing a performability 
profile for each distinct leaf in the CDT of Figure 3. A 
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Figure 4: Resource AUocation for SAG. 

performability profile consists of functions for execu-
tion tirne, processing rate, availability, and performa-
bility of a specific component. For the SAG example, 
there are three distinct types of leaves; namely, scat­
ter, gather, and worker(«). The expected execution 
time of a worker process is typically the tirne needed 
by the sequential application divided by the number 
of replicated workers. Other functions are developed 
for each CDT leaf using template rules [5]. 

Macroanalysis involves traversing the CDT in pos-
torder using template rules to derive functions for the 
internal CDT nodes. The resulting profile at the root 
of the CDT is the SPA profile for the entire applica­
tion. Macroanalysis is detailed in [5] 

The primaxy contribution of this manuscript is a 
scalable analytical method for assessing the combined 
performance and dependability of parallel and dis-
tributed applications. While it is generally known that 
certain properties of a parallel application are respon-
sible for its performance and dependability character-
istics, the exact details of these properties (and their 
interdependencies toward the aggregate contribution 
to overall system performance and dependability) are 

generally not known. 

5 Results 
As a čase study, sequential and parallel matrix multi-
plication applications were implemented for a cluster 
of DEC Alpha workstations interconnected via Eth­
ernet. The parallel application employed SAG, and 
execution times were collected after tuning to mini-
mize synchronization overhead [4]. Process coordina-
tion was implemented using Synergy [14]. Calibration 
runs were used to determine such parameters as aver-
age processor rate, IPC rate for the SPA model. Ex-
ecution time functions, both observed using Synergy 
and expected using SPA, are depicted in Figure 5. 

The correlation near unity between observations and 
expectations support the use of SPA as a tool to eval-
uate application changes {e.g., impact of increasing 
problem size), environment enhancements (e.g., im­
pact of a faster interconnection network), and/or op-
timization scenarios (e.^., processor count where time 
is minimized). 

SPA also produces performability projections, which 
are given in Figure 6. Peak performance does not 
consider the impact of partial failure. Weak delivered 
performance results when no fault tolerance is imple­
mented, implying that partial failure results in total 
application failure. Strong delivered performance oc-
curs when the replicated workers are designed to sup­
port failover [9]. 

SPA can be utilized to augment the previous ajialy-
sis to consider dependability issues as part of applica­
tion performance. Benefits of fault tolerance schemes 
can then be weighed against expected costs to perfor­
mance. 

6 Conclusions 
The goals of the research consist of i.) a unified, struc-
tured model of speed and availability; ii.) a scalable 
approach; iii.) variable-precision; and iv.) a track-
able approach. SPA achieves unified performance and 
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Figure 6: Peak and Delivered Rates. 

dependabiHty through the delivered performance func-
tions derived as part of the performabihty profile for 
an application. SCTF graphs are used as performance 
graphs to derive peak and delivered processing rate, as 
well as availability. Derived performability provides a 
method for measuring speed considering partial fail-
ure. 

SPA provides a scalable methodology for studying 
the speed of parallel applications. Microanalysis pa-
rameters capture the essential speed-critical factors of 
both the application and the architecture. These pa-
rameters can scale independently. SPA can be used 
for a variety of applications and architectures avail-
able now and in the future. 

The SPA model supports variable precision to bal-
ance simplicity with detail, and provide a means for in-
creasing or reducing detail as warranted. This balance 
is the responsibility of the application programmer. 

SPA supports a trackable methodology because the 
developer can perform top-down or bottom-up analy-
sis. The CDT captures the functional dependencies 
among the application components. Macroanalysis 
provides a top-down profile of application speed and 
availability. Changes made at the component level can 
be traced to their impact on overall application speed 
and availability. This bottom-up analysis permits in-
cremental changes in the application to be studied 
early in the design process, facilitating rapid proto-
typing. 

Future research includes enhancements to Timing 
Models to quantify communication rate simply and 
accurately [3], as well as non-probabilistic measures 
for dependability such as fuzzy metrics. Various ap­
plications and various platforms are currently being 
investigated to ensure that SPA is not bound only to 
NOWs and clusters. 

SPA provides a way to investigate the internal struc-
tures of a large parallel application for both perfor­
mance and dependability contributions. The model 
identifies the thresholds of key performability parame-
ters. This makes optimization possible prior to imple-
mentation and extensive experimentation. 
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We introduce an efEcient algorithm for sorting on clusters ofsymmetric multiprocessors (SMPs). 
This algorithm relies on a novel scheme for stably sorting on a single SMP coupled with balanced 
regular communication on the cluster. The algorithm was implemented in C using POSIX threads 
and the SIMPLE library of communication primitives and run on a cluster of DEC AlphaServer 
2100A systems. Our experimental results verify the scalability and efficiency of our proposed 
solution and illustrate the importance of considering both memory hieraxchy and the overhead of 
shifting to multiple nodes. 

1 Introduction 

Clusters of symmetric multiprocessors (SMPs) have 
emerged as the primary candidates for large scale mul-
tiprocessor systems. In spite of this trend, relatively 
little work has been done to develop techniques for 
designing algorithms which make effective use of the 
resources available on such platforms. This task is 
made difHcult by the contrasting requirements of the 
platform. On the one hand, each SMP must be viewed 
on its own as a hierarchical shared memory machine. 
Good performance requires both good load distribu-
tion and the minimization of main memory access. On 
the other hand, from the perspective of the cluster, 
each node is in effect a superproccessor, and therefore 
the cluster of SMPs is a collection of powerful proces-
sors connected by a communication network. Maxi-
mizing the performance of such a distributed memory 
machine requires both efficient load balancing and reg­
ular balanced communication. 

In this paper, we exainine the problem of sorting 
on SMP clusters. Sorting is arguably the most stud-
ied problem in computer science, due in large part 
to its pervasiveness. But it is also intrinsically in-
teresting because of its demanding requirements for 
irregular memory access and interprocessor communi­
cation. Prom the perspective of the cluster, aiiy algo­
rithm which performs well for distributed memory ma-
chines would be a reasonable candidate. In particular, 
we have identified two such algorithms in our previous 
work [8, 11]. The first is a variation on sample sort 
and the other is a variation on the approach of sort­
ing by regular sampling. On the other hand, from the 
perspective of the individual SMP, we might consider 

any algorithm which is designed for hierarchical shared 
memory machines. Unfortunately, none of these algo­
rithms by itself is sufRcient to achieve efficient per­
formance on an SMP cluster. The reason for this is 
that algorithms for shared memory machines typically 
capitalize on the fact that accessing data associated 
with another processor is no more expensive than ac­
cessing its own data in the shared memory. Assuming 
the entire cluster is a shared memory platform will un-
derestimate the cost of sharing data between nodes in 
the cluster. On the other hand, eificient algorithms 
for distributed memory machines tend to confine in­
terprocessor communication to a minimum number of 
regular balanced exchanges. As such, assuming the 
entire cluster is a distributed memory platform will 
exaggerate the cost of sharing data on an SMP. 

We introduce a sorting algorithm for clusters of 
SMPs which is a hybrid of our modified algorithms 
for parallel sorting by random sampling and parallel 
sorting by deterministic sampling. To our knowledge, 
this is the first sorting algorithm specifically designed 
for this platform. Our algorithm was coded in C using 
POSIX Threads and the SIMPLE library of communi­
cation primitives [3]. We examined its performance on 
a cluster of DEC AlphaServer 2100A systems linked 
by an ATM network, using a variety of benchmarks 
that we have identified to assess the dependence of 
our algorithm on the input distribution. Our exper-
imental results verify the scalability and efiiciency of 
our proposed solution and illustrate the importance of 
considering both memory hierarchy and the overhead 
of shifting to multiple nodes. 

The organization of this paper is as follows. Sec-
tion 2 presents our computational model for analyzing 
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algorithms for SMP clusters. Section 3 describes our 
sorting algorithm for this platform. Finally, Section 4 
describes the experiinental performance of our sorting 
algorithm on an SMP cluster. 

2 Computational Model 

We measure the overall complexity of an algorithm 
by the triplet {CA,Cv,Ti\f), where CA is the maxi-
mum number of communication primitives called by 
any node, Cv is the maximum amount of data sent or 
received by any node, and T/v is the maximum time 
required by a node for local computation. Addition-
ally, we insist that ali internode communication must 
be balanced. The basis for this requirement is the 
experimental observation by both ourselves [4] and 
other workers (e.g. [6]) that large variations result 
in an inefRcient use of the communication bandwidth. 
Further, utilizing regular communication has become 
more important with the advent of message passing 
standards, such as MPI, which seek to guarantee the 
availability of very efRcient (often machine specific) 
implementations of certain basic coUective communi­
cation routines. Note also that we report CA and Cv 
as approximations of the actual values. By approxima-
tions, we mean that if CA or Cv is described by the 
expression (cjta;*̂  + C(^k-i)X^''~^^ + ••• + cox^), then we 
report it using the approximation {ckx'' + o {x''))- We 
report the communication cost in this fashion because 
of the dominant expense of internode communication 
in a distributed memory architecture. On the other 
hand, despite the importance of these memory costs, 
we report only the highest order term, since otherwise 
the expression can easily become unwieldy. 

We measure TN, the time required for local com­
putation at a node, as follows. We view each node 
as a symmetric multiprocessor (SMP) consisting of a 
single level of cache and a shared main memory. In 
our model, we acknowledge the dominant expense of 
memory access. Indeed, it has been widely observed 
that the rapid progress in microprocessor speed has 
left main memory access cis the primary limitation to 
SMP performance. The problem can be minimized 
by insisting where possible on a pattern of contigu-
ous data access. This exploits the contents of each 
cache line and takes fuU advantage of the pre-fetching 
of subsequent cache lines. However, since it does not 
always seem possible to direct the pattern of memory 
access, our complexity model needs to include an ex-
plicit measure of the number of non-contiguous main 
memory accesses required by an algorithm. 

More precisely, we measure the overall complexity at 
a node TN by the triplet {MA, ME, TC), where M A is 
the maximum number of accesses made by any proces-
sor to main memory, ME is the maximum amount of 
data exchanged by any processor with main memory, 

and Tc is an upper bound on the local computational 
complexity of any of the processors. Note that MA 
is simply a measure of the number of non-contiguous 
main memory accesses, where each such access may 
involve an arbitrary sized contiguous block of data. 
While we report Tc using the customary asymptotic 
notation, we report MA and ME as approximations 
(see above) of the actual values. We report the mem-
ory access in this fashion because of the dominant ex-
pense of memory access on this architecture. With 
so few processors available, this coefRcient is usually 
crucial in determining whether or not a parallel algo­
rithm can be a viable replacement to the sequential 
alternative. 

Hence, the overall complexity of an algorithm on a 
cluster of high performance nodes is given by the five 
values {CA;CV;MA;ME;TC) (though, in practice, it 
is often possible to focus on a subset of these values). 
Note that our approach to designing algorithms for 
clusters of SMPs is distinct from models and methods 
that are currently being promoted. Both the bulk-
synchronous parallel model [16] and the more recent 
Queue-Read Queue-Write (QRQW) PRAM model [7] 
have been promoted by the their authors as possible 
"bridging models" which can span the entire array 
of available architectures. The BSP model suggests 
that ali platforms can be generalized as a message-
passing distributed memory architecture. This idea 
has found expression in programming methodologies 
(e.g. [13]) which enforce a shared-nothing paradigm 
between tasks, and aH communication and coordi-
nation between tasks are performed through the ex-
change of explicit messages, even tasks on a node with 
physically shared memory. On the other hand, the 
QRQW model suggests that ali platforms can be gen­
eralized as a shared memory architecture. This idea 
has found expression in programming methodologies 
(e.g. [2]) which use a software layer to simulate coher-
ent shared memory between nodes by transparently 
using messages to move around specific data or ref-
erenced memory pages. Both of these methodologies 
accept inefficiencies in order to simplify programma-
bility and portability. The reason for this is that on 
an SMP accessing the data associated with another 
processor is no more expensive than accessing one's 
own data in main memory. On the other hand, ac­
cessing the data at another SMP is far more expensive 
then accessing one own data since it requires the use 
of explicit message passing. Thus, assuming that the 
entire platform is a distributed memory machine ex-
aggerates the cost of sharing data between processors 
on an SMP, whereas assuming that the entire plat­
form is a purely shared memory machine underesti-
mates the cost in sharing data betvveen nodes in the 
cluster. Hence, these current approaches lead to signif-
icant inefficiencies that will make them unacceptable 
for a wide range of problems. 
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3 Our Sorting Algorithms 
Consider the problem of sorting n elements equally 
distributed amongst N nodes, where each node has p 
processors. Any algorithm which performs well on a 
distributed memory platform might seem a reasonable 
candidate for a cluster of SMPs. Prominent among 
them are sample sort [6] and parallel sorting by regu-
lar sampling [15], each of which requires only a single 
round of all-to-all communication. Hovvever, the priče 
paid for a single step of communication is an irreg-
ular communication scheme and difficulty with load 
balancing. No matter how the routing is scheduled, 
there exist inputs that give rise to large variations in 
the number of elements destined for different nodes. 
In response, we have introduced two novel algorithms 
which address the limitations of these two algorithms. 
Our first algorithm [8] is a novel variation on (ran-
domized) sample sort, and our second algorithm [11] 
is a novel variation on the approach of sorting by reg-
ular sampling. Both algorithms replace the single step 
of irregular communication with only two rounds of 
regular, balanced communication. Not only does this 
afford us efficient and predictable communication, but 
we leverage this modification to allow us to obtain two 
other important results. First, we are able to sustain a 
very high sampling ratio at virtually no cost, allowing 
us to minimize the problem of poor load balancing. 
And, second, we efRciently accommodate the presence 
of dupUcate values without the overhead of tagging 
each element. The resulting algorithms appear to out-
perform ali similar sorting algorithms on distributed 
memory platforms, 

However, to be useful on a cluster of symmetric mul-
tiprocessors, we need to show that each step of our 
distributed memory algorithms can be replaced where 
appropriate by a multithreaded SMP implementation. 
In particular, we need to replace the sequential sort 
with an efficient shared memory algorithm. With this 
in mind, we will first describe a novel algorithm for 
sorted on a single SMP, and then we discuss how it is 
incorporated into an distributed memory algorithm to 
produce an efficient algorithm for sorting on clusters 
of SMPs. 

3.1 Sorting on a Single SMP 
Any of the algorithms that have been proposed in the 
literature for sorting on hierarchical memory models 
can be considered for possible implementation on an 
SMP. These include balance sort [14], sharesort [1], 
and simple randomized merge sort [5]. However, with-
out modifications, most are unnecessarily complex or 
inefficient for a relatively simple platform such as ours. 
A notable exception is the algorithm of Varman et 
al. [17]. Vet another approach is an adaptation of 
our sorting by regular sampling algorithm [11], which 

we originally developed for distributed memory ma-
chines. The idea behind sorting by regular sampling is 
to first partition the n input elements into p memory-
contiguous blocks and then sort each of these blocks 
using an appropriate sequential algorithm. Then, a set 
of p — 1 splitters is found to partition each of these p 
sorted sequences into p subsequences indexed from O 
up to (p—1), such that every element in the i"* group is 
less than or equal to each of the elements in the (i+1)*'^ 
group, for (O < i < p - 2). Then, the task of merg-
ing the p subsequences with a particular index can be 
turned over to the correspondingly indexed processor, 
after which the n elements will be arranged in sorted 
order. One way to choose the splitters is by regularly 
sampling the input elements - hence the name Sorting 
by Regular Sampling. As modified for an SMP, this 
algorithm is similar to the parallel sorting by regular 
sampling (PSRS) algorithm of Shi and Schaeffer [15]. 
However, unlike their algorithm, our algorithm accom-
modates the presence of duplicate values without the 
overhead of tagging each element. 

While our algorithm will efficiently partition the 
work amongst the available processors, it will not be 
sufficient to minimize main memory accesses unless we 
also carefully specify how the sequential tasks are to be 
performed. Specifically, straightforward binary merge 
sort or quick sort will require log ^ memory accesses 
for each element to be sorted. Thus, a more efficient se-
quential sorting algorithm running on a single proces­
sor can be expected to outperform a parallel algorithm 
running on the relatively few processors available with 
an SMP, unless the sequential steps of the parallel al­
gorithm are properly optimized. Knuth [12] describes 
a better approach for the analogous situation of exter-
nal sorting. First, each processor partitions its ^ ele­
ments to be sorted into blocks of size § , where C is the 
size of the cache, and then sorts each of these blocks 
using merge sort. This alone eliminates log ( j ) mem-
ory accesses for each element. Next, the sorted blocks 
are merged z at a time using a tournament of losers, 
which further reduces the memory accesses by a factor 
of loga;. To be efficient, the parameter z must be set 
less than £ , where L is the cache line size, so that the 
cache can hold the entire tournament tree plus a cache 
line from each of the z blocks being merged. Other-
wise, as our experimental evidence demonstrates, the 
memory performance will rapidly deteriorate. 

The pseudocode for our algorithm is as follows: 

- (1) Each processor Pi (O < i < p — 1) sorts the 
subsequence of the n input elements with indices 
(f) through (ii±pJl - l\ as follows: 

- (A) Sort each block of m input elements 
using an appropriate sequential algorithm, 
where m < y . For integers we use the radix 
sort algorithm, whereas for floating point 
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numbers we use the merge sort algorithm. 

- (B) For i = O up to ( J ^ ^ g { ^ - l ) , merge 

the sorted blocks of size [mz^) using z-way 

merge, where 2 < £• 

- (2) Each processor Pj selects each 

( T + O + 1 ) ^ ) element as a sample, for (O < 

j < s — 1) and a given value of s f p < s < p- j . 

- (3) Processor P{p-i) merges the p sorted subse-
quences of samples and then selects each ((A; + 
1)«)"» sample as Splitter[A;], for {O <k <p- 2). 
By default, the p"* splitter is the largest value al-
lowed by the data type used. Additionally, binary 
search is used to compute for the set of samples 
with indices O through ({k + l)s - 1) the number 
of samples Est[fc] which share the same value as 
Splitter [fc]. 

- Step (4): Each processor Pk ušes binary search 
to define an index 6(ĵ fc) for each of the p sorted 
input sequences created in Step (1). If we define 
T^i,k) as a subsequence containing the first b^i^k) 
elements in the i*'' sorted input sequence, then the 
set ofp subsequences {T(^o,k),T(i,k),•••,T(^ip-i),k)} 
will contain ali those values in the input set 
which are strictly less than Splitter[A;] and at most 

(Est[A;] X ^ ) elements with the same value as 

Splitter[A;]. The term at most is used because 
there may not actually be this number of elements 
with the same value as Splitter [fc]. 

- Step (5): Each processor Pk merges those sub-
sequences of the sorted input sequences which lie 
between indices 6(i,(fc_i)) and b(^i^i.) using p-way 
merge. It is shown in [11] that no processor will 

merge more than ( f + 7 ~ p) elements. 

It is straightforward to see how this algorithm can be 
implemented as a stable integer sort, and [10] contains 
an informal proof. The analysis of our algorithm is as 
follows. In Step (lA), each processor moves through 
a contiguous portion of the input array to sort it in 
blocks of size m using an appropriate sequential sort 
algorithm. If we assume that (m < j ) , this will re-
quire only a single non-contiguous memory accesses to 
exchange ^ elements with main memory and either 

O (-) computation time to sort integers using radix 

sort or O (^ log m j computation time to sort float-

ing point values using merge sort. Step (IB) involves 

lodzT rounds of z-wa.y merge. Since round j will 

begin with -^^ blocks of size mz^, this will require at 

most p^ilLi) non-contiguous memory accesses to ex-

change '̂ " °io ^z?'" elements with main memory mem-

ory and O f ̂ log ( ^ ) ) computation time. The se-
lection of s noncontiguous samples by each proces­
sor in Step (2) requires s non-contiguous memory ac­
cesses to exchange 2s elements with main memory and 
0{s) computation time. Step (3) involves a p-way 
merge of blocks of size s followed by p binary searches 
on segments of size s. Hence, it requires approxi-
mately p log(s) non-contiguous memory accesses to ex-
change approximately 2sp elements with main mem-
ory and 0{splogp) computation time. Step (4) in­
volves p binary searches by each processor on segments 

of size ^ and hence requires approximately p log ( - j 

non-contiguous memory accesses to exchange approx-

imately p log ( ?̂  j elements with main memory and 

O f p l o g f ^ n computation time. Step (5) involves 

a p-way merge of p sorted sequences whose combined 

length is at most ( f + 7 ~ p) • This requires approxi-

mately p non-contiguous memory accesses to exchaiige 

approximately 2 ( ^ -I- j j elements with main memory 

and O (^ log J) j computation time. Hence, the overall 

complexity of our shared memory sorting algorithm is 
given by 

T{n,p) = {MA\ME;TC) 

nz , / n 
-f- s-l-plog -

\P 
pm{z — 1) 

Jogjn/pm) ^ ^\ !! + 2 " 
log(^) P 

Oi^-logn 

for [p < s < ^], n > ps, m < ^ , and z < £• Since 
the analysis suggests that the parameters m and z 
should be as large as possible subject to the stated 
constraints while selecting s so that ( p < < s < < ^ j , 
we would expect that in practice the complexity of our 
algorithm could be characterized as 

Tin, p) = {ME;TC) 

3.2 Sorting On a Cluster of SMPs 

Both our randomized sample sort algorithm [8] and 
our sorting by regular sampling algorithm [11] would 
be an appropriate choice for a cluster of SMPs, but we 
chose the randomized sample sort because it proved 
to be slightly faster in its implementation. We repeat 
the pseudocode here for convenience, where we replace 
each sequential step where appropriate by a multi-
threaded SMP implementation (note that the commu-
nication primitives mentioned are described in detail 
in [9]): 
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Step (1): Using p threads, each node Ni (O < 
i < {N — 1)) randomly assigns each of its jj ele­
ments to one of N buckets. With high probabiHty, 
no bucket will receive more than ci ^ elements, 
where c\ is a constant to be defined later. 

Step (2): Each node Ni routes the contents of 
bucket j to node Nj, for (O < j < (A'' - 1)). 
Since with high probability no bucket will receive 
more than ci-^ elements, this is equivalent to 
performing a t ranspose operation with block size 
Cl W2 

Step (3): Using p threads, each node Ni sorts the 
at most {aijj < ci^) values received in Step (2) 
with the appropriate version of our SMP sorting 
algorithm, depending on the data type. 

Step (4): Prom its sorted list of (7;^ < ci^) 

elements, node Âo selects each ((j + 1)7]^) el­
ement as Splitter[7], for (O < j < 7V - 2). By 
default, Splitter[A'' — 1] is the largest value al-
lowed by the data type used. Additionally, for 
each Splitter[_y], binary search is used to deter-
mine the values PracL[j] and Pracj^[j], which 
are respectively the fractions of the total num-
ber of elements at node No with the same value 
as Splitter[j - 1] and Splitter[j] which also lie be-
tween index [{j - 1) 7 j ^ -I-1) and index [jl^), 
inclusively. 

Step (5): Node Âo broadcasts the Splitter, 
PracL, and Pracp^ arrays to the other (7V - 1) 
nodes. 

Step (6): Each node Ni ušes binary search on 
its sorted local array to define for each of the A'' 
splitters a subsequence Sj. The subsequence as-
sociated with Splitter[j] contains aH those values 
which are greater than Splitter [j — 1] and less than 
Splitter [j], as well as PracL[j] and Pracj^[j] of the 
total number of elements in the local array with 
the same value as Splitter[j — 1] and Splitter[j], 
respectively. 

Step (7): Each node Ni routes the subsequence 
associated with Splitter[j] to node Nj, for (O < 
j < {N — 1)). Since with high probability no 
sequence will contain more than C2^ elements, 
where C2 is a constant to be defined later, this is 
equivalent to performing a t ranspose operation 
with block size C2-^. 

Step (8); Using p threads, each node Ni merges 
the A'' sorted subsequences received in Step (7) to 
produce the i"* column of the sorted array. Note 
that, with high probability, no node has received 
more than 02;^ elements, where 03 is a constant 
to be defined later. 

Noting that we have estabhshed in [8] that with high 
probability Ci > 2, a2 > 2.62, and C2 > 5.42, the anal-
ysis of our sample sort algorithm is as follows. Step (1) 
is easily done with multiple threads by having each of 
the p processors at a node move through a contiguous 
block of the input array and randomly write each ele­
ment to one of A'̂  blocks. This will require (A''-M) non-
contiguous memory accesses to exchange j ^ elements 

with main memory and O l-^) computation time. In 

Step (2), with high probability no two nodes will ex-
change more than 2-^ elements, and so it will be suffi-
cient to use a t ranspose primitive which can transfer 

at most ( "̂ jyi~ ' j elements. However, it is important 

to note that a ^-b iased binomial process encounters 
on average -^ successes in -^ trials and so in prac-
tice it will be sufficient to use a t ranspose primitive 

which can transfer approximately ( "'^^Ž" ' ) elements 

(which is what we observe experimentally in the next 
section). The cost of sorting at most 2^ elements 
in Step (3) using multiple threads depends on the 
data type. Sorting integers using radix sort requires 
exchanging U^-^^^^^^^ + '*) 7^ elements with main 

memory and O ( - ^ log p) computation time, whereas 

sorting doubles using merge sort requires exchang-

ing (^'"^iogS"'^ + 4) ] ^ elements with main mem-

ory and O ( ; ^ log n j computation time. (assuming 

^ > ps and ( p « s « 7 ^ ) . Again, it is impor-N 

tant to note that on on average each node only needs to 
sort approximately ^ elements, which in turn requires 

exchanging only about (2'°«<^/gp> +'^)w^ elements 
with main memory. Steps (4) and (6) each involve a 
single thread performing 2N binary searches on se-
quences of size O [jf). This requires approximately 
2A'log(;^) non-contiguous memory accesses to ex-
change approximately 2A''log [^) elements with main 
memory and O (A''log (;^)) computation time. Step 
(5) involves broadcasting 3N elements from node Â o 
to the other (A^-1) processors. As discussed in [9], this 
can be efficiently implemented by first performing a 
s c a t t e r operation on these 3A'' elements followed by a 
gather operation at each of the nodes, which together 
requires transferring at total of at most {6N) elements 
using balanced communication exchanges. In Step (7), 
with high probability no two nodes will exchange more 
than 5.42-^ elements, and so it will be sufficient to 
use a t ranspose primitive which can transfer at most 

[-—^^i ) elements. However, it is important to 
note that on average no two nodes will exchange more 
than -^ elements and so in practice it will be suffi­
cient to use a t ranspose primitive which can transfer 
approximately ( "'^J^^ j elements (which is what we 
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observe experimentally in the next section). Finally, 
Step (8) involves merging p sorted sequences whose 
combined length is at most 2.62;^. This can be eas-
ily done using multiple threads by partitioning each 
sorted sequence into p blocks using the same scheme 
used in our algorithm for sorting on a shared memory 
platform. This requires requires exchanging ^jf^ ele-

ments with main memory and O ( ] ^ log p j computa-

tion time (assuming [ p « s « •^] and ^ >ps). 
Again, it is important to note that on on average each 
node only needs to merge approximately ^ elements, 
which in turn requires exchanging only about 2-^ el­
ements with main memory. Hence, with high proba-
bility, the overall complexity of our sorting algorithm 
is given (for floating point numbers) by 

Tin,N,p) = {CA\CV\MA\ME;TC) 

4 ; 7 . 2 4 ^ ; 2 i V ^ - ( ^ ) = 

\og{z) J Np 

O 
Np 

for iV2 < (p << s <« 

logn 

-̂ 1 and > ps. 31nn ' ^ ^ / ' ^ ^ • ' ^ ^ ^ Tfp^J' '^""^ N 
Noting that the MA non-contiguous memory accesses 
comprise a insignificant proportion of the ME total 
elements exchanged with memory, and recalling that 
on average each processor traverses only about ^ el­
ements in Step (4), we would expect that in practice, 
the complexity of our sample sort algorithm will be 
approximately: 

T{n,N,p) = {CA;CV;ME;TC) 

4; 2 n 4 + 2 
Np' 

log {n/Npm) \ n 
log{z) JN^' 

4 Performance Evaluation 
Our algorithms were implemented using POSIX 
threads and run on a DEC Alpha Cluster. Our DEC 
Alpha cluster consists of 10 AlphaServer 2100A sys-
tems, each of which holds 4 Alpha 21064A processors 
running each at 275 MHz. Each Alpha 21064A pro­
cessor has a 16KB primary data cache and a 4MB sec-
ondary data cache. The AlphaServers are connected 
using the Digital Gigaswitch/ATM and 0C-3c adapter 
cards, which have a peak bandwidth rating of 155.52 
Mbps. Internode communication is effected by calls to 
the SIMPLE coUective communication primi ti ves [3]. 

We tested our code on a variety of benchmarks, each 
of which had both a 32-bit integer version and a 64-
bit double precision floating point number (double) 

version. See [9] for a detailed description and justifi-
cation of these benchmarks. 

4.1 Experimental Results for a Single 
SMP 

For each experiment, the input is a single array of 
elements, and the output is these elements arranged 
in a single array in non-descending order. Table 4.1 
verifies that as expected performance does not signif-
icantly depend on the input distribution. Because of 
this independence, the remainder of this section will 
only discuss performance on the single benchmark [U], 
in which the input data forms a uniform random dis­
tribution. 

Table 2 displays the times required to sort 4M dou-
bles (i.e. double precision floating point values) using 
a single thread as a function of m and z. Notice first 
that performance suffers dramatically when the block 
size reaches 4MB (512K eight byte double precision 
numbers), which is the limit of the cache on the Al­
phaServer. But consider the data for a given block 
size - say 2K. The execution time drops as we move 
from z = 2 to z = 64. This is reasonable since we 
require 11 rounds of 2-way merge, 6 rounds of 4-way 
merge, 4 rounds of 8-way merge, 3 rounds of 16-way 
and 32-way merge, and only 2 rounds of 64-way merge, 
and each round of -2:-way merge is obviously another 
round where ali the input elements must be brought in 
from main memory. We would then expect that mov-
ing from ^ = 64 to z = 1024 would have little effect 
on the execution time since it does nothing to reduce 
the memory requirements, but this turns out not to be 
the čase. The explanation lies in recalling that the Al­
phaServer has both a primary and a secondary cache. 
An efficient implementation of the 2-way merge in Step 
(IB) would fill this 16 KB primary cache with the en-
tire tree of losers {z 12 byte records) plus a cache line 
(32 bytes) from each of the z sequences being merged. 
For z = 256, this primary cache is essentially filled, 
and cache misses to secondary cache become an issue. 
Finally, note the difference between the optimal sort­
ing time of 10.28 seconds for m = 16K and z = 256 
with the time of 18.96 seconds required to sort using 
only binary merge sort. Here, reducing memory access 
by a combination of block sorting and 2:-way merg­
ing improved the performance by 45%. Such results 
strongly support the attention that we plače in this 
algorithm on the volume of main memory accesses. 

Figure 1 examines the scalability of our sorting al­
gorithm as a function of the number of threads, for 
different problem sizes. Bearing in mind that these 
graphs are log-log plots, they show that for a fixed in­
put size n the execution time nearly halves when the 
number of threads p is doubled. 
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Input 
Size 
512K 

IM 
2M 
4M 

[U] 
0.397 
0.868 
1.64 
3.50 

[G] 
0.394 
0.856 
1.72 
3.47 

Benchmark 
[Z] 

0.320 
0.741 
1.39 
3.00 

[WR] 
0.421 
0.844 
1.73 
3.52 

[DD] 
0.337 
0.724 
1.40 
3.01 

[RD] 
0.348 
0.710 
1.51 
2.98 

Table 1: Sorting doubles (in seconds) using 4 threads. 

Block 
Size 
2K 
4K 
8K 
16K 
32K 
64K 
128K 
256K 
512K 

IM 
2M 
4M 

Denomination of z-Way Merge 
2 

18.45 
17.29 
16.47 
15.61 
15.04 
14.54 
14.91 
15.38 
18.36 
19.17 
18.87 

8 
12.09 
12.11 
11.33 
11.37 
11.71 
10.99 
12.19 
13.63 
16.52 

32 
11.53 
10.67 
10.66 
10.79 
11.11 
11.49 
11.33 

64 
11.21 
11.21 
11.31 
11.44 
11.52 
10.59 

256 
12.18 
12.31 
12.19 
10.28 

1024 
13.09 
11.24 

2048 
11.51 

18.96 - (No z-vfay merge is necessary for this block size) 

Table 2: Time (in seconds) required to sort 4M doubles using a single thread as a function of M and z. 

Scalability in Thread and Problem Size 
lUJ Double Benchmark, DEC AlphaSsrver 

612K 1M 
Problem Size 

on the single benchmark [U] (uniform distribution). 

Figure 1: Scalability of sorting doubles with respect 
to the number of threads, for differing problem sizes. 

4.2 Experiinental Results for a 
Cluster of SMPs 

For each experiment, the input is evenly distributed 
amongst the nodes. The output consists of the ele-
ments in non-descending order arranged amongst the 
nodes so that the elements at each node are in sorted 
order and no element at node Ni is greater than any 
element at processor Â ,̂ for ali i < j . Note that in ali 
cases the results shown for a single node were obtained 
using the sorting algorithm for a single SMP. 

Table 3 displays the performance of our sorting al­
gorithm as a function of input distribution for a variety 
of input sizes. In each čase, the performance is essen-
tially independent of the input distribution. Because 
of this independence, the remainder of this section will 
only discuss the performance of our sorting algorithm 
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Figure 2: ScalabiUty of sorting integers and doubles 
with respect to the number of nodes, for differing num-
bers of threads. 

The results in Figure 2 examines the scalability of 
our sorting algorithm as a function of the number of 
nodes, for a variety of threads. To understand these 
results, consider the step by step breakdown of the exe-
cution times shown in Table 4 for sorting 8M integers 
with both 1 and 4 threads. Moving from one node 
to two introduces the overhead of Steps 1-2 and 4-
8, which together account for approximately 35% and 
50% of the total execution time on one node with 1 
and 4 threads, respectively. This consumes the major-
ity of the time we could hope to save by sharing the 
work of sorting amongst two nodes. The effect is more 
pronounced for multiple threads because as our model 
predicts internode communication is independent of 
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Input 
Size 
4M 
8M 
16M 
32M 

[U] 
2.76 
4.89 
9.36 
18.71 

[G] 
2.79 
4.86 
9.54 
19.31 

Benchmark 
[2-G] 
2.72 
4.80 
9.30 
18.68 

[B] 
2.74 
4.76 
9.19 
18.27 

[S] 
2.73 
4.85 
9.28 
18.54 

[DD] 
2.64 
4.61 
9.01 
18.23 

[RD] 
2.60 
4.54 
8.90 
18.31 

Table 3: Total execution time (in seconds) required to sort a variety of double benchmarks on an 8 node cluster 
using 4 threads. 

the number of threads. The effect of this overhead 
would be even more pronounced were it not for the 
fact that the time required for Step 3 for both 1 and 
4 nodes is considerably higher than we would expect 
from sorting 4M integers on a single node. But moving 
between 1 and 4 nodes and 1 and 8 nodes, the time 
required for Step (3) scales inversely with the num­
ber of nodes, which is the expectation of our model. 
The failure of communication in Steps 2 and 7 to scale 
inversely with the number of nodes might at first ap-
pear surprising. However, this performance is actually 
quite reasonable if we recaJl that for 2, 4, ajid 8 nodes, 
each node has to send approximately 2M, 1.5M, and 
0.875M integers across the network, respectively. The 
clear implication of these results is that an algorithm 
must be both efficient and scalable to justify the use 
of multiple nodes. 

Step(s) 

1 
2 
3 

4-6 
7 
8 

Total 

One Thread 
1 

0.00 
0.00 
11.19 
0.00 
0.00 
0.00 
11.19 

2 
0.87 
1.28 
7.17 
0.00 
1.24 
0.49 
11.05 

4 
0.41 
0.92 
2.39 
0.00 
0.84 
0.27 
4.83 

8 
0.22 
0.56 
1.17 
0.00 
0.49 
0.32 
2.76 

Step (s) 

1 
2 
3 

4-6 
7 
8 

Total 

Four Threads 
1 

0.00 
0.00 
3.99 
0.00 
0.00 
0.00 
3.99 

2 
0.56 
1.11 
3.11 
0.00 
1.08 
0.23 
5.09 

4 
0.26 
0.88 
0.87 
0.00 
1.39 
0.13 
3.53 

8 
0.11 
0.58 
0.73 
0.00 
0.62 
0.25 
2.29 

Table 4: Time required for each step of sorting 8M 
integers with respect to the number of nodes using 1 
and 4 threads. 

The graph in Figure 3 examine the scalability of 
our sorting algorithm as a function of problem size, 
for differing numbers of nodes and for 1 and 4 threads. 
For one thread, they show that for a fixed number of 
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Figure 3: Scalability of sorting integers and doubles 
with respect to the problem size, for differing numbers 
of nodes and threads. 

nodes there is an almost linear dependence between 
the execution time and the total number of elements 
n. The results for 4 threads are seemingly more prob-
lematic. However, a step by step breakdown of the 
execution times for sorting integers in [10] shows that 
the communication costs dominate the execution time 
and that as the problem size increases from IM to 
2M integers the communication costs actually decrease, 
presumably because of a change in the communication 
protocol. Once the protocol is switched, the relative 
costs of communication decline and the execution time 
scales with problem size as our model anticipates. 

5 Conclusion 

In this chapter, we introduce a efficient algorithm for 
generalized sorting on clusters of symmetric muitipro-
cessors. To our knowledge, this algorithm is the first 
sorting algorithm specifically designed for this plat­
form. Our algorithm was implemented and experimen-
tally shown to be scalable in both the problem size and 
the number of nodes. As suggested by our computa-
tional model, our results illustrate the importance of 
considering both memory hierarchy and the overhead 
of shifting to multiple nodes when designing efficient 
algorithms for this platform. 
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Problem deGnition, data cleaning, and evaluation constitute much ofthe process ofbuilding useful, 
real-world classiSers with inductive algorithms. This paper is a čase study of this process based 
on a long-term project addressing the automatic dispatch of technicians to fix faults in the local 
loop of a telephone network. The bottom line of the project is that simple learning technigues 
can be effective. However, constructing a convincing argument to that effect is far from simple. 
In particular, we had to consult multiple sources to obtain class labels, use domain knowledge to 
clean up data, compare with existing methods, and evaluate with data from multiple locations. 
Finally, it was necessary to use decision-analytic techniques to evaluate the cost-effectiveness of 
the learned classiHers, because evaluation based on classification accuracy is misleading without 
an anaJjsis of cost-effectiveness. Our view is that application studies should be helpful in guiding 
future research. Therefore, we conclude by outlining useful directions suggested by our experience 
on this long-term project. 

1 IntroduCtlOn the effectiveness of local-loop trouble diagnosis. 

This paper presents a čase study into the process of ^ e discuss several interrelated issues involved in de-
real-world classifier learning. The čase study has been termmmg the efficacy of mductive karnmg programs 
taken from the long-term MAX project, which ad- ^̂  ^^'^ 'i°'"^^^- ^« *^^ ^^^f ^^""^J Z ' ^ 
J ,, , i- J. i u ^ i i , - - 4 .C termmation is more comphcated than merely running 
dresses the automatic dispatch oi technicians to nx , .̂  , ,., . , , 
r , , . , , , , , r . i i 4. I T : ' a handiul of learning programs on a data set and com-
faults in the local loop of a telephone network. For , . P , , , r- r̂ -, 
this paper, we use the term machine learning to de- P^"'^^ *^ . ^ccuracies of the resulting classifiers. To 
note the automatic generation of local-loop dispatch be convincing, we had to use multiple sources for class 
classifiers from historical data. ^^^^1^' "̂̂ ^ """^ '^^'^^''' knowledge to clean the data. 

In the MAK domain we wish to learn classifiers for ^or the first set of experiments presented, we use error 
J. , , . x u - - i . i u i i , i i . i v , 1- rate as our primary metric. However, absolute error 
dispatching technicians to troubleshoot telephone line r , r • , 
problems reported by phone company customers. In '^^^' ^'^ ""^^ "̂ f̂̂ \ ^°' comparisons between the ex-
this domain, a small increase in accuracy can have a Penments because the problem formulation varies. To 
large impact on the company's bottom line. For exam- f̂^̂^̂ *̂̂*̂  mter-study comparison, we also report the 
ple, if we are willing to ignore details for the moment, P^rcentage decrease in error rate (PDER) a^ compared 
New York State alone has over three milUon residen- "̂̂  classifying ali mstances as the most frequently oc-
tial trouble reports per year. If an erroneous dispatch ^̂ '"•̂ "̂S ^̂ ^̂ ^ ^^^^ '̂ '̂ /'̂ "'̂  ^^«^*)-
costs the company (on average) $100, then even a one- Next we discuss comparisons with existing methods, 
percentage-point decrease in dispatch error rate can including both a set of experts and an existing ex-
save the company over $3 million annually. Therefore, pert system, as well as comparisons with data drawn 
it is worthwhile to investigate methods for increasing from geographically disparate locations. The breadth 

mailto:provost@acm.org
mailto:andrea@cs.williams.edu
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of this comparison study increased our confidence in 
our evaluation. Finally, we discuss that an error-rate 
comparison, albeit a fine starting point, is not sufii-
cient for classifier evaluation in this real-world domain. 
What is important is the cost-eifectiveness of the sys-
tem, rather than its accuracy. Moreover, we show that 
a naive evaluation of cost-effectiveness also is not satis-
factory, so we utilize techniques from decision analysis. 
From this čase study a cost-sensitive learning method 
emerges as the most effective technique. 

Our view is that application studies help to guide 
future research. Therefore we conclude by presenting 
a summary of general lessons learned and by outlining 
useful research directions suggested by our experience 
on this long-term project. 

2 MAX and Machine Learning 
MAX (Rabinowitz et al. 1991) is an expert system 
developed by NYNEX^ Science and Technology for 
the purpose of troubleshooting customer-reported tele­
phone problems. MAX deals specifically with prob-
lems in the local loop, the part of the telephone net-
work between the central office and the customer's 
premises. 

When a customer has difficulty with his telephone 
line he calls the phone company to report the problem 
(the trouble). A phone company representative creates 
a trouble report and also initiates electrical tests on 
the customer's line, called the Mechanized Loop Test 
(MLT).^ The MLT measures the electrical signature of 
the customer's line and gives such information as volt-
ages and resistances. Ali this information is then sent 
to a Maintenance Administrator (MA) who determines 
a high-level diagnosis for the trouble, and dispatches a 
technician to fix it. MAX (Maintenance Administrator 
eXpert) plays the role of an MA. It gives a high-level 
diagnosis of a trouble based upon MLT results, and 
other information about the customer. MAX can take 
one of five possible actions. 

1. dispatch a cable technician (PDF); 

2. dispatch an outside repair technician to the dis-
tribution wiring or customer premises (PDO); 

3. dispatch a technician to the central office (PDI); 

4. queue the trouble for further testing (PDT); 

5. send the trouble to a human M A for diagnosis 
(PSH). 

The problem of local-loop diagnosis was a particu-
larly promising machine learning application for the 
following reasons. 

^Now Bell Atlantic. At the tirne MAX was developed, 
NYNEX was the parent company of New England Telephone 
and New York Telephone. 

2 MLT is a product of AT&T. 

1. Diagnosis in this domain is a static problem, i.e., 
ali data are gathered and the dispatch decision is 
based on the values given. Difficult problems such 
as incorporating time are not an issue. 

2. Data are abundant. 

3. A knowledge base already exists, providing a 
wealth of information about the domain. 

4. Small decreases in error rate can have a large im-
pact. 

Machine learning is also appealing because of its 
potential for generating dispatch knowledge that cap-
tures local differences and because of its potential for 
tracking changes in dispatch knowledge as the network 
equipment degrades or is replaced. 

Several approaches to the problem of automatically 
generating dispatch knowledge from data have been 
investigated: (1) The application of inductive learn­
ing to generate completely new knowledge bases for 
specific locations (Danyluk & Provost 1993a,b). (2) 
The application of analytic and inductive learning to 
modify the existing knowledge base for specific loca­
tions (Pazzani & Brunk 1993). (3) The application of 
techniques to perform parameter tuning (Merz, et al., 
1996). This paper discusses the first of these only. 

Unless stated otherwise, ali results reported in this 
paper were generated using the C4.5 decision tree 
learner (Quinlan 1993) with default settings.^ Results 
given are after pruning. Numbers of test examples are 
given with each set of runs. Ali results reported have 
been averaged over 10 runs with independent training 
and test sets chosen randomly. Unless indicated other-
wise, ali data used in the runs in this paper are taken 
from a single site during a period of approximately 
eight months, and are described by 22 features used 
by MAX. 

3 Multiple Data Sources 
Determining whether learning programs can produce 
effective classifiers in this domain is complicated by 
a general belief that it is very difficult to ascertain 
the "correct" dispatches for historical trouble records, 
which has led to a general distrust of the class labels of 
the examples. To produce a robust evaluation we con-
sidered three different sources for the class labels, each 
of which created a slightly different learning problem. 

First, we used MAX to generate class labels. If one 
assumes that MAX is performing the task satisfac-
torily, the ability to learn to duplicate MAX's per-
formance is solid evidence that machine learning ap-

^Earlier results were obtained with other learning techniques, 
including rule learners and neural netvvork learners, but C4.5 
consistently hcis yielded results that are at least as good as the 
other systems. 
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proaches can be effective in generating dispatch clas-
sifiers from clean data. Second, we had experts gener-
ate class labels. If one assumes that the experts have 
knowledge not yet captured in MAK, then it would 
be useful to be able to model the classification perfor-
mance of experts. 

Finally, we generated class labels by cross-
referencing a database of the resolutions reported by 
technicians in the field. The class labels generated 
from these resolutions are considerably noisy, due to 
errors in reporting and ambiguities in translation.* 
Hovvever, the ability to learn high-quality classifiers 
from these data would be very useful, because the po-
tential exists to learn classifiers that capture knowl-
edge unknown to the experts, and because the volume 
of data is potentially very large. 

For the experiments reported in this section and the 
next, we evaluate learning results in two ways: (i) we 
measure error rate on independent test sets; and (ii) we 
measure the percentage decrease in error rate (PDER) 
of the learned concept description over the error rate 
of the default class. The PDER indicates the extent 
to which the learned decision tree decreases the error 
rate that would result from classifying ali cases iden-
tically using the class that occurs most frequently in 
the training data (for vifhich we use "the default class" 
as a shorthand). 

The PDER is important because different data sets 
have different numbers of classes. MAK, for instance, 
has the option of diagnosing cases as being the type 
that need to be looked at by a human expert. These 
tend to be cases where the data required to analyze the 
trouble are missing. Field technicians, on the other 
hand, are not allowed such latitude. Therefore, a data 
set obtained from MAK will have more diagnostic class 
options than a data set of troubles analyzed by field 
technicians. Moreover, the machine learning studies 
also have diflFerent sets of dispatch options, which are 
described in detail below. Because different data sets 
have different numbers of classes, comparisons of ab-
solute error rate are affected and the PDER becomes 
an important measure of the relative quality of the 
learned diagnostic knowledge. 

3.1 Class labels obtained from MAX 

As reported previously (Danyluk & Provost 1993a,b), 
we used the existing MAK expert system to create a 
"clean" data set from which to learn. We ran a series of 
experiments with the goal of showing that given good 
data we could learn knowledge to recreate MAK's be-
havior. We found that given a large enough quantity of 
data, using machine learning we can duplicate MAK's 
performance very well. As shown in Table 1, training 
on 1000 troubles yields an error rate of 0.09; training 

on 5000 troubles yields an error rate of 0.04. Although 
these results show promise for machine learning as a 
method of creating the knowledge base for a dispatch 
system, they do not offer a solution to the problem 
of generating knowledge that will increase the perfor­
mance of MAK. 

Table 1: MAK data; five class problem. Size of test 
set — 871. Average error rate (ER) with the default 
class (PDT) = 0.54. 

Training 

100 
500 
1000 
2000 
5000 

ER 

.34 

.14 

.09 

.06 

.04 

StDev 

.04 

.02 

.01 

.01 

.01 

Avg PDER 

36.51 
73.44 
82.41 
89.31 
93.62 

StDev 

7.92 
3.90 
2.58 
2.61 
1.53 

*Some of the codes used to describe resolutions do not map 
uniquely to dispatch classes. 

3.2 Class labels obtained from experts 

In order to evaluate the potential of machine learn­
ing as a tool to build a better MAK, we enlisted the 
help of several experts in local-loop troubleshooting. 
The experts were phone company veterans with many 
years of experience in the areas of maintenance and 
repair of the local loop. We ran a set of experiments 
testing the ability to learn dispatch knowledge from 
expert-classified data. The rationale behind this set 
of experiments is that if machine learning can create 
knowledge that models the behavior of human experts 
well, then it may be possible, albeit resource consum-
ing, to have local experts analyze large numbers of 
troubles and then to learn classifiers from these data. 

Table 2 shows results for one expert who analyzed 
500 troubles from one site. The results show that C4.5 
can model the expert's behavior fairly well as com-
pared to the default. Similar analyses of other ex-
perts' ansvvers yielded comparable results. The large 
PDER suggests the potential for learning programs to 
model the behavior of human experts. Unfortunately, 
the size of the data set in these experiments was lim-
ited due to the limited availability of experts. The 
previous results of modeling MAK suggest that 400 
examples may be too few for effective learning. An 
analysis of the classifiers learned from the MAK data 
explains why many examples are needed: very small 
disjuncts comprise a large portion of the concept de­
scription (Danyluk & Provost 1993a). Large data sets 
are necessary to learn small disjuncts with confidence 
(Provost & Aronis 1996). 

Our intention had been to increase the volume of 
data by using multiple experts to generate a larger 
expert-classified data set. However, this exercise re-
vealed that there is not a high degree of agreement 
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Table 2: Expert data; five class problem. Size of test 
set = 100. Average error rate (ER) with the default 
class (PDT) = 0.58. 

Training 

100 
400 

ER 

.39 

.35 

StDev 

.04 

.04 

Avg PDER 

32.88 
38.75 

StDev 

8.59 
6.60 

stumps, i.e., decision trees that split on a single fea­
ture only (Holte 1993). Vercode, generated by MLT, 
is a summary of the electrical readings into 50-150 
categories; the decision stumps therefore have 50-150 
leaves. As the results in Table 3 show, the decision 
stumps learned by C4.5 on the field data have higher 
accuracy than the decision trees learned with larger 
feature sets. 

among experts as to the • correct classification for a 
trouble. In fact, the error rate of the classifiers learned 
from the expert data was approximately equal to the 
error rate obtained when one expert was used to gen-
erate class labels for the evaluation of another expert. 
This suggests that the problem is much more difiicult 
than previously thought. It also offers an explanation 
for the general distrust of class labels. 

3.3 Class labels obtained from field 
technicians 

The third data source from which we obtained class 
labels for troubles is the reporting of field technicians 
who fix ("resolve") the troubles. In order to gener-
ate class labels, we translated their resolution codes 
into the corresponding dispatches using a standard 
mapping. As the results in Table 3 show, the per-
formance of the learned decision trees is less than in-
spiring. However, the learned trees do perform slightly 
better than the default. 

Table 3: Technicians' data; four class problem. Size 
of test set = 863. Average error rate (ER) with the 
default class (PDF) = 0.62. 

AH Features 
Training 

100 
500 
1000 
5000 

ER 

.61 

.60 

.59 

.58 

StDev 

.03 

.02 

.01 

.01 

Avg PDER 

0.96 
3.73 
4.51 
6.56 

StDev 
5.72 
3.90 
2.53 
2.68 

Vercode Only 
Training 

100 
500 
1000 
5000 

ER 

.62 

.54 

.53 

.52 

StDev 

.04 

.01 

.02 

.01 

Avg PDER 

-1.31 
11.63 
13.24 
15.98 

StDev 

7.03 
2.80 
2.80 
2.10 

Quite surprisingly, we were able to increase signifi-
cantly our ability to dispatch accurately by reducing 
the feature set to a single feature: vercode. Reducing 
the feature set to a single feature produces decision 

4 Cleaning up the Data 

The experiments with class labels generated by MAX 
suggest considerable promise for machine learning in 
this domain. The experiments with class labels gen­
erated by the experts suggest that it is possible to 
model expert behavior to some degree, but that small 
expert-classified data sets are not sufficient to model 
expert behavior with high accuracy. Moreover, the dis-
agreement among experts suggests that even if a given 
expert's behavior can be modeled with high accuracy, 
there will stili be questions about the expert's perfor-
mance. The most promising source of class labels is 
the field technician database. This database is very 
large and (arguably) based on fact rather than con-
jecture. Unfortunately, the learning programs had the 
most difRculty modeling these data. This almost cer-
tainly is because, with the given set of features, MAX 
generates class labels deterministically (and probably 
so do the experts), while the technicians' class labels 
are inherently probabilistic. 

Analyzing the different trouble resolutions reported 
by the field technicians suggests some concrete rea-
sons why machine learning programs would have a 
difiicult time modeling the data. For some border-
fine resolutions at the interface between the cable and 
the distribution wiring, it is not clear what the correct 
dispatch should have been because the diagnosis can-
not be mapped to a dispatch unambiguously. Purther-
more, there are many cases for which the resolution is 
a "Test OK." This resolution indicates that the tech­
nician retested the line in the process of attempting to 
locate the trouble, and found that there was no longer 
a problem. Unfortunately, it is impossible to teli the 
difference between cases where there was no longer a 
problem to fix (e.g., the customer's second phone had 
been off the hook and was subsequently placed back 
on) and cases where the manifestation of the problem 
was transient (e.g., the trouble had been a short circuit 
due to the presence in a cable of water that had dried 
by the time the technician retested the line). Thus de-
termining what the correct dispatch should have been 
is difiicult. 

We wanted to evaluate whether increasing the quaJ-
ity of the field data would improve the ability of a 
learning program to produce accurate classifiers. To 
this end, we used prior knowledge of trouble resolu­
tions and dispatches to clean up the field data. Specif-
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ically, we eliminated from the data ali. troubles for 
which the resolution was "Test OK." Additionally, we 
removed cases where it was impossible to determine 
from the resolution codes the correct dispatch, espe-
cially borderline cases. The effect of the data cleaning 
was to provide us with a set of cases for which we 
have only three class labels (PDF, PDO, PDI), but 
for which we have (relatively) high confidence in the 
correctness of those labels. We now describe a set of 
experiments that investigate the effect on learning of 
cleaning up the data. 

Table 4: Cleaned data; three class problem. Size of 
test set = 686. Average error rate (ER) with the de-
fault class (PDF) = 0.47. 

Ali Features 
Training 

100 
500 
1000 
2000 

ER 

.41 

.38 

.37 

.36 

StDev 

.04 

.03 

.02 

.02 

Avg PDER 
12.04 
19.31 
20.72 
23.23 

StDev 

7.52 
6.94 
3.94 
3.25 

Vercode Only 
Training 

100 
500 
1000 
2000 

ER 

.38 

.35 

.35 

.34 

StDev 

.04 

.02 

.01 

.02 

Avg PDER 

18.97 
26.48 
26.73 
27.44 

StDev 

10.07 
3.90 
2.87 
4.15 

As the learning results in Table 4 show, the perfor-
mance on the cleaned-up data is considerably better 
than the performance on the original field data. It 
is important to note that the cleaned-up data have 
only three classes instead of four, and using the de-
fault yields a lower error rate than on the previous 
data. However, as the results in Table 4 show, the per-
centage decrease in error rate (PDER) for the learned 
concept descriptions is larger than with the original 
data. 

These results provide support for the conclusion 
that from clean field data it is possible to learn more 
accurate classifiers. It must be noted, however, that 
by separating out the cases for which the final reso­
lution is unambiguous, we may also be separating out 
the cases that are "easy" to diagnose. The effect of us­
ing this learned knowledge on the entire spectrum of 
troubles is stili an open question, made very difficult 
by our inability to know the "correct" answer. 

It should be noted that an alternative problem re-
definition may also be effective. Specifically, much of 
the aforementioned ambiguity can be eUminated by 
combining two of the three dispatch classes. PDF 
(dispatch to a cable technician) and PDO (dispatch 
to an outside repair technician) both address prob-

lems in the "outside plant." There are a priori rea-
sons why it might be desirable to combine these classes 
into a single "dispatch out" class. For example, train­
ing technicians to handle a larger class of problems 
may eliminate the need to separate problems in the 
outside plant. In order to test the hypothesis that 
we could differentiate accurately between dispatching 
"in" to the central ofRce and dispatching "out" to the 
outside plant, we combined the two outside plant dis-
patches in the cleaned-up dataset. In doing so, we 
were able to reinsert those troubles eliminated because 
of PDF/PDO ambiguity. The results for the two-class 
problem are given in Table 5. As the table shows, the 
performance of the learned decision models is consid-
erably better than the default when trained on large 
(2000 examples) data sets. In the table we report par-
ticularly high standard deviations for PDER in two 
cases. Inspection of the 10 runs shows that in two 
cases, the learned model performed similarly to the 
default, but in the remaining eight, it outperformed 
the default significantly. 

Table 5: In vs out; two class problem. Size of test set 
= 738. Average error rate (ER) with the default class 
(PDO) = 0.09. 

Ali Features 
Training 

100 
500 
1000 
2000 

ER 

.09 

.09 

.08 

.07 

StDev 

.01 

.01 

.02 

.01 

Avg PDER 

0.35 
-0.50 
10.12 
24.89 

StDev 

1.04 
2.11 

13.29 
2.93 

Vercode Only 
Training 

100 
500 
1000 
2000 

ER 

.09 

.09 

.09 

.07 

StDev 

.01 

.01 

.01 

.01 

Avg PDER 

0.15 
0.15 
0.15 

21.41 

StDev 

0.19 
0.19 
0.19 

11.70 

5 Comparison with Existing 
Methods 

In the previous sections we compared the ability of 
learning programs to produce accurate classifiers from 
several different perspectives. The use of the field data 
as the source of class labels allows us to compare the 
performance of the learned classifier with the perfor­
mance of MAX (and with the performance of the ex-
perts). Such a comparison has been a major compo-
nent of Bell Atlantic's evaluation of the potential for 
learned knowledge to help with local-loop dispatch. 

Table 6 compares the performance of the vercode 
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decision stumps with the MAX expert system on the 
three different versions of the field data (discussed 
above).^ The comparison is compHcated because 
MAX does not give solid dispatches on aJl the cases; 
it routes some difRcult cases to a human analyst, and 
for others it requests additionaJ tests. The decision 
stumps, on the other hand, produce a dispatch for ev-
ery čase. 

It is important that we be as fair as possible in our 
comparison of the learned decision stumps and MAX. 
It is inappropriate to assume that MAX is in error 
each time it routes a trouble to an analyst. On the 
other hand, it is unfair to penalize the learned decision 
stump for being forced to make a decision on ali cases. 
In order to make the comparison equitable. Table 6 
reports 

- error rates for MAX and for the learned decision 
stump (LDS) on ali the test data 

- error rate for MAX on the subset of cases for 
which it chose to make a dispatch (MAX-D) 

- error rate for the learned decision stump on the 
subset of cases for which MAX made a dispatch 
(LDS-D) 

- error rate for the learned decision stump on the 
subset of cases for which it was confident (LDS-
C).« 

Table 7 gives the sizes of the subsets, as a percentage 
of the entire dataset. 

As Table 6 shows, with little exception, the learned 
decision stump outperforms MAX. The increase in 
performance using the learned vercode mapping over 
the MAX system is one piece of evidence supporting 
the conclusion that by looking at the data we can ex-
tract dispatch knowledge that can improve MAX's per­
formance. 

A potential criticism of the above argument is that 
the learning is fitting systematic error in the data 
(and that MAX actually may be as good or better 
at dispatching). Support for the contention that the 
learned knowledge is not just modeling errors in the 
data comes from a comparison of the effectiveness of 
the learned knowledge for dispatch in other geographic 
areas. In order for the effect of modeling systematic 
error to generalize across locations, the error must 
be systematic throughout the company. Furthermore, 
since we are using a vercode decision stump, the error 
must be systematic with respect to the vercode alone. 
We believe that this combination is highly unlikely. 

^A comparison with the experts is not included in the sum-
mary, because the small number of troubles analyzed by the 
experts makes the performance of the experts incomparable. 

®In ali cases, a decision was deemed "confident" only if the 
estimated probability of membership in the predicted class was 
at least 0.6. 

To test the hypothesis that positive results are not 
just from modeling local systematic error, we trained 
decision stumps on the data from one location (X) and 
used them for dispatch in four other areas (A,B,C,D). 
As shown in Table 8, in three of the four comparisons, 
the knowledge learned in one area transfers well to the 
other areas. Note that this is especially true for the 
Cleaned data. The number of training examples were 
5000, 2000, and 3000 for Field, Cleaned, and In vs 
Out, respectively. The number of test examples varies 
for each site. AH numbers reported are the averages 
of testing ten decision trees on ali of the data from 
each of the sites A, B, C, and D. Note that we report 
PDER as well as error rates, due to the differing class 
distributions among the sites. 

6 Cost-effective Dispatch 
If the field technicians' resolutions are taken to be rea-
sonably reliable, the previous analysis seems to imply 
that MAX's performance is poor. We are faced with 
the issue of analyzing this seemingly poor performance 
in light of evidence to the contrary. The system has 
been in use for many years and has not had a negative 
effect on the operations of the company. One explana-
tion could be that the technicians just do not code the 
trouble resolutions correctly. However, as the results 
below show, much of this seeming discrepancy can be 
explained by the fact that accuracy (or error rate) is 
not the best metric with which to evaluate dispatch 
effectiveness. 

In the domain of local-loop repair and maintenance, 
the costs associated with the diagnoses vary substan-
tially. Typically, the cost associated with dispatch­
ing a trouble outside of the central office is greater 
than dispatching to the central office, with the highest 
cost being associated with dispatching cable techni­
cians. By analyzing the cases for which the decision, 
stump and MAX differ in their dispatches, we find 
that MAX is making conservative decisions with re­
spect to cost. Thus a convincing comparison of meth-
ods for local-loop dispatch must be made with respect 
to cost-effectiveness in addition to accuracy (Pazzani 
et al. 1994, Provost 1994). Our focus for this section 
will be on the three-class version of the MAX problem 
(cleaned-up data). 

6.1 Evaluating Results: 
Cost-EfFectiveness and Accuracy 

We now consider the cost that would be incurred by 
any incorrect decisions made. This task is compUcated 
by the fact that, as discussed in the decision analysis 
literature (Weinstein & Fineberg 1980), it is often difR­
cult to estimate costs. For instance, certain tests in the 
central office might require much more time than oth­
ers, resulting in higher labor costs to determine that 
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Table 6: Comparison of error rates of Learned Decision Stumps (LDS) and MAX. Standard deviations are given 
in parentheses, except (*), which indicates that the evaluation was performed on the entire data set, rather 
than on a small test set reserved after learning. 

MAK 
LDS 
MAX-D 
LDS-D 
LDS-C 
Default 

Field Data (4 class) 
.67 (*) 

.52 (.01) 

.67 (.01) 

.52 (.01) 

.34 (.10) 

.62 (.01) 

Cleaned (3 class) 
.79 (*) 

.34 (.01) 

.42 (.03) 

.31 (.02) 

.27 (.02) 

.47 (.01) 

In vs. Out (2 class) 
.58 (*) 

.07 (.01) 

.04 (.01) 

.04 (.01) 

.06 (.01) 

.09 (.01) 

Table 7: Coverages of test data. Standard deviations are given in parentheses. 

MAX 
LDS 
MAX-D 
LDS-D 
LDS-C 
Default 

Field Data (4 class) 
100 (0.00) 
100 (0.00) 

99.43 (0.18) 
99.43 (0.18) 
9.30 (3.15) 
100 (0.00) 

Cleaned (3 class) 
100 (0.00) 
100 (0.00) 

56.59 (1.90) 
. 56.59(1.90) 

72.19 (5.60) 
100 (0.00) 

In vs. Out (2 class) 
100 (0.00) 
100 (0.00) 

55.66 (1.78) 
55.66 (1.78) 
99.27 (0.52) 

100 (0.00) 

the trouble is elsewhere. We interviewed experts to 
determine, as well as we could, the error costs asso-
ciated with each of the three dispatchs (PDF, PDO, 
PDI). Our best approximation is a cost ratio of 3:2:1 
(PDF:PDO:PDI), with the cost of a central ofRce dis-
patch (PDI), the base cost, about $50. 

A naive approach to cost-sensitive classification is 
to use error costs such as these in combination with 
estimates of the probabilities of the classes to deter­
mine which dispatch will yield the lowest expected cost 
(EC). The corresponding naive approach to evaluat-
ing cost-effectiveness is to classify a test set with the 
learned classifier and sum up the costs of each incor-
rect dispatch, using the costs defined above. This is 
the approach that has been taken in most prior work 
on cost-sensitivity in the machine learning literature 
(Turney 1996). 

This naive approach is problematic for multi-class 
problems, because it assumes that after the dispatch 
is identified as being incorrect, the subsequent dis­
patch will be correct. The problem can be seen clearly 
in the following example. Given the 3:2:1 cost ratio 
defined above, assume that the estimated probability 
distribution of classes (PDF:PDO:PDI) is 0.5:0.4:0.1. 
In this čase the dispatch with the (naive) minimum 
expected cost is PDI: EC{PDI) = .9 * 50 = 45, 
EC(PDO) = .6*100 = 60, EC{PDF) = .5*150 = 75. 
However, a choice of PDI would be incorrect 90% of 
the time, ajid in most cases would not make the choice 

between PDO and PDF any easier.^ Indeed, such a 
naive strategy yields undesirable results in practice. 

The alternative is to take a more complex, decision-
analytic approach, in which the expected-cost calcula-
tion takes subsequent decisions into account. Ideally, 
for determining the best dispatch for a given trou­
ble, we would like to use the frequencies of classes 
at the leaves of the decision stump to estimate the 
class probability distributions for ali possible combina-
tions of decisions, in order to calculate the minimum 
expected-cost dispatch. However, one goal of this anal-
ysis is a comparison with the dispatch decisions of the 
MAX expert system. For MAX, we know only the 
first dispatch; we do not know what subsequent deci­
sions MAX would make. Thus, using the probability 
distributions at the leaves of the decision stump for 
more than just the first decision may give the decision 
stump an unfair advantage in the comparison, because 
if MAX were programmed differently, it would be able 
to issue recommendations for subsequent dispatches as 
well. 

In sum, we are faced with a dilemma; it is obviously 
important to take subsequent dispatches into account, 
but we do not know what subsequent dispatches MAX 
would make. To resolve the dilemma, we used the 
prior probability distribution of the classes to deter­
mine likely subsequent decisions. This Information is 
built into a cost matrix, so that it can be used both 

În fact, we assume independence of solutions. 
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Table 8: Comparison of error rates of knowledge learned from location X when applied to other locations. 

Location 
X 
A 
B 
C 
D 

Field 
.52 (.01) 
.54 (.01) 
.57 (.01) 
.56 (.01) 
.64 (.01) 

PDER 
16 
19 
4 
7 

-2 

Cleaned 
.34 (.02) 
.25 (.01) 
.38 (.01) 
.21 (.01) 
.51 (.04) 

PDER 
27 
51 
25 
58 
42 

In vs Out 
.07 (.01) 
.05 (.01) 
.07 (.01) 
.03 (.01) 
.18 (.01) 

PDER 
29 
74 

-12 
2.3 

-2.2 

to evaluate the decisions of classifiers (such as MAX) 
that give only a single answer, and to choose cost-
sensitive dispatches in cost-sensitive classifiers. For-
tunately, we found that there is very little difference 
in cost-effectiveness between using the prior probabil-
ity distribution and the leaf probability distribution 
for determining the second dispatch when the first is 
wrong. We will now describe in detail the process of 
building cost matrices that take subsequent (expected) 
errors into account. 

First let us define the function cost{x), which, based 
on the cost vector, gives the cost of mistakenly choos-
ing dispatch x. 

For the naive approach, the cost matrix is built by 
assigning 

NCost(p)(a) {o 
cost{p) if p ^ a 

otherwise 

where p = predicted and a = actual. For 
the decision-analytic approach, we assume that the 
subsequent dispatch will be the minimum expected-
cost dispatch of the remaining choices, based on the 
prior probability distribution. Suppose there are three 
classes, X, Y, and Z, and let p = X. 

nAn i( \( \ — I cost{X) + SecCost \ia^X 
\P)\ ' ~ ]^ o otherwise 

Without loss of generality, let a = F , then 

SecCost = 

cost{Z) if Z is the min exp-cost class 
between Y and Z 

O othervvise 

In this čase, the expected cost of a secondary dispatch, 
e.g., Y, is the probability of Y being wrong times the 
cost of being wrong,^ or (1 - (p{Y)/{p{Y) +p{Z)))) * 
cost(Y), where p(Y) and p{Z) are the prior probabil-
ities. The fractional probability term is due to the 
removal of X as a possible correct secondary dispatch. 

An example of a decision-analytic cost matrix cal­
culated from example costs and data priors is given in 
Table 9. Note that ali costs here are error costs. The 
cost is zero for correct dispatches. 

6.2 Building a Cost-sensitive Decision 
Stump 

We built cost-sensitive decision stumps by record-
ing at each leaf a frequency-based probability esti­
mate for each class. The estimate was calculated as 
(TP/(TP-I-FP)), where TP is the true-positive cover­
age of the leaf and FP is the false-positive coverage 
of the leaf. When the cost-sensitive stump is used, it 
ušes the conditional probabilities at the leaves to dis­
patch to the minimum expected-cost class, using the 
decision-analytic cost matrix (built using prior proba­
bilities from the training data to determine expected 
subsequent dispatches, as described above). Note that 
Pazzani et al. (1994) found that estimating class prob­
abilities at the leaves of a decision tree and using 
these for a minimum expected-cost calculation is not 
effective at reducing cost; they account for this phe-
nomenon by noting that the probability estimates at 
the leaves of a decision tree are based on small sam-
ples, and thus are inaccurate. Since we use a decision 
stump, we hope that the larger numbers of examples 
at the leaves will lead to better probability estimates.® 

Results comparing MAX with the vercode decision 
stump and cost-sensitive decision stump are summa-
rized in Table 10. The cost matrix used to generate 
these results is that in Table 9. A simplistic compar­
ison of the performance of MAX, the vercode stump, 
and the cost-sensitive stump (first, second, and fifth 
rows of the table) shows that although the dispatches 
made by the vercode decision stump are more accurate 
than those of MAX, the decisions made by MAX are 
more cost-effective. The cost-sensitive decision stump 
reduces the cost without losing accuracy. 

However, this comparison masks an important sub-
tlety. Specifically, as with the earlier error-rate com-
parisons, MAX only gives a dispatch recommenda-
tion on (approximately) 57% of the cases; the rest 
are routed for further testing or for human analysis. 
On other hand, the stumps give dispatch recommen-

*When Y is correct, the error cost is zero. 

^Recent work suggests that cost-sensitive classification with 
decision trees can be quite effective, if the probabilities are 
generated using the Laplace estimate rather than a simple 
frequency-based estimate (Bradford et al. 1998). The Laplace 
estimate protects against unwarranted optimism due to small 
samples. 
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Table 9: Cost matrix for dispatch classes in the MAX domain. Rows are predicted classes. Columns are actual 
classes. Classes;(PDF:PDO:PDI) Costs:(150:100:50) Priors:(0.51:0.35:0.14) 

PDF 
PDO 
PDI 

PDF 
0 

100 
50 

PDO 
150 

0 
200 

PDI 
250 
250 

0 

dations on 100% of the cases. 
In Table 10, we therefore also report the error rate 

(ER) and Error Cost per Dispatch for the stumps on 
those cases for whičh MAX gave a dispatch recom-
mendation (MAX-D), and on those cases for which the 
stumps were confident of their recommendation (i.e., 
the probability of class membership was > 0.6). 

As expected, the decision stumps perform consid-
erably better on both subsets of cases, in terms of 
both error rate and cost. Perhaps surprisingly, the dif-
ference in performance between the cost-sensitive and 
non-cost-sensitive stumps is no longer apparent when 
they are evaluated on the subsets. This is because as 
the required confidence level is raised, the behaviors 
of the two types of stump are more and more similar, 
eventually becoming identical. Apparently, a thresh-
old of 0.6 is sufficient (effectively) for the cost matrix 
being used. 

6.3 Sensitivity Analysis 
While the results above suggest that it is possible to 
learn cost-sensitive decision stumps that are both more 
accurate and more cost-effective than MAX, we must 
have confidence that this is not due to a fortuitous 
choice of costs (especially since the specification of 
costs is far from perfect). To this end, we perform 
an analysis of the evaluation's sensitivity to changes 
in the cost ratio. 

For this paper, we consider varying only the ratio 
PDF:PDO, holding the ratio PDO:PDI at 2:1. Con­
sider the cost ratio to be X:l:0.5 (PDF:PDO:PDI). 
Figure 1 shows the effect of varying X from 1 to 3 in 
increments of 0.1 on the error costs associated vî ith the 
dispatches made by MAX, the decision-stump, and the 
cost-sensitive decision stump, using decision-analytic 
cost matrices constructed as described above. Fig­
ure 2 and Figure 3 show the effects of varying X for 
the stumps when evaluated on MAX-dispatched and 
confident cases, respectively. 

As would be expected, the cost per dispatch of the 
decision stump increases smoothly (and linearly) with 
the increasing cost of making PDF errors. The deci­
sion stump always makes approximately the same per-
centage of PDF errors, so as the cost of a PDF error 
increases linearly, so will the cost-per-dispatch of the 

decision stump. 
The performance of MAX as the cost of a PDF er­

ror increases is more interesting. Inspection reveals 
that the curve representing MAX's error cost per dis­
patch is (approximately) piecevvise linear with increas­
ing PDF error cost, and the slope of each segment is 
less than the slope of the decision stump curve. The 
relatively low slope of each segment is due to the fact 
that MAX errs on the conservative side; specifically, 
it makes fewer PDF errors than the decision stump. 
Thus, the growth of the overall cost per dispatch as 
the PDF error cost grows will be smaller. 

The discontinuity when the PDF:PDO error cost 
ratio reaches 2:1 can be explained by examining the 
changes in the cost matrices as the ratio increases. 
In particular, consider the two cost matrix entries 
DACost{PDF){PDO) and DACostiPDO)iPDF)}'^ 
Across the range of ratios represented in the graph, 
DACost{PDF){PDO) = cost{PDF), because in 
this range PDO is always the minimum expected-
cost secondary dispatch. Similarly, when the ra­
tio of the error cost of PDF to PDO is in the 
range [1,2), DACost{PDO){PDF) = cost{PDO). 
This explains technically why the slope of the MAX 
curve is less: cost{PDO) is constant; cost{PDF) in­
creases linearly. However, when the ratio is in the 
range [2,3], DACost{PDO){PDF) = cost{PDO) + 
cost{PDI), because due to the prior distribution of 
classes, PDI becomes the secondary dispatch of choice. 
Thus DACostiPDO)iPDF) is stili constant, but it is 
greater than it was over the prior range. Hence the 
curve's piecewise linearity. This reasoning applies to 
the vercode stump as well, though the difference in 
slopes of the two line segments is very slight, and thus 
difficult to recognize from the graph. 

The result of these two factors is that MAX's per­
formance, in terms of error cost per dispatch, is better 
than the decision stump when the ratio of the cost of 
a PDF error to a PDO error is in the range (1.4,2). 
As mentioned above, our problem analysis determined 
(independently) that the actual cost ratio is approxi-
mately 1.5. Thus, the design of MAX and the years of 
tuning its performance in the field seem to have been 
effective. 

'"Recall that the cost matrix entries are of the form 
D ACost{predicted) (actual). 
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Table 10: Comparison of Vercode Decision Stumps and MAX. Training sets of 2000 examples used to build the 
Vercode stump and Cost-sensitive stump (ER = error rate). Independent test sets of 686 examples used to test. 
Ali avgs are over 10 runs. Standard deviations are given in parentheses. 

MAX (MAX-D) 
Vercode stump 
Vercode stump (MAX-D) 
Vercode stump (Conf) 
Cost-sensitive stump 
Cost-sensitive (MAX-D) 
Cost-sensitive (Conf) 
Always dispatch PDF 
Always dispatch PDO 
Always dispatch PDI 

Total Preds Made 
56.69% (1.9) 

100% (0.0) 
56.69% (1.9) 
72.19% (5.6) 

100% (0.0) 
56.59% (1.9) 
70.90% (5.1) 

100% (0.0) 
100% (0.0) 
100% (0.0) 

ER 
0.42 (.03) 
0.34 (.01) 
0.31 (.02) 
0.27 (.02) 
0.35 (.02) 
0.33 (.01) 
0.27 (.02) 
0.47 (.01) 
0.66 (.01) 
0.87 (.01) 

Error Cost per Dispatch 
50.61 (3.87) 
51.44 (2.35) 
43.77 (2.66) 
39.41 (3.00) 
47.50 (2.47) 
43.78 (2.58) 
39.08 (2.75) 
83.92 (2.41) 
85.93 (2.15) 
94.88 (2.67) 

The graph also shows that the cost-se:nsitive stump 
adjusts for the different cost ratios automatically. 
Across the entire range, the cost-sensitive stump out-
performs the other two methods, although the differ-
ence is small in the range of MAX's maximal effec-
tiveness. Statistical tests on individual points do not 
indicate that the difference is statistically significant, 
and statistical tests on the entire curves are difficult 
because of interdependencies in the generation of the 
different points. However, it is not clear that statisti­
cal significance is particularly important. Even if the 
performance were indistinguishable, the cost-sensitive 
decision stumps are preferable for their simplicity, for 
their flexibility in adapting to different cost scenarios, 
and for their ease of updating. From the perspective of 
business significance, a potential cost savings of two or 
three dollars per dispatch is very significant. Also, it 
should be noted that (as above) these comparisons are 
somewhat imfair to the decision stumps, because they 
are making recommendations on ali cases, vvhereas 
MAX is on!y making recommendations on about half 
of the cases. 

Figure 2 shows that both the vercode decision 
stump and the cost-sensitive decision stump outper-
form MAX across the entire range, when classifying 
only those cases on which MAX makes a recommen-
dation. Again, as would be expected, the cost per 
dispatch of the decision stump increases smoothly and 
linearly with the increasing cost of making PDF er-
rors. It simply makes fewer of these errors when asked 
to make a call on fewer cases. 

Also, as expected, the vercode decision stump and 
the cost-sensitive stump perform similarly in the range 
[1,2), where the cost ratio PDFrPDO is relatively low. 
When the PDF cost becomes increasingly large, the 
cost-sensitive stump adjusts for that cost, diverting 
classifications to less expensive dispatches. 

An even greater disparity in error costs is seen when 
the vercode stump and cost-sensitive stump dispatch 
only on confident cases. 

7 Summary and Discussion 
For this čase study vve have selected a series of ex-
periments that highlight the variety of perspectives 
that must be taken in order to determine the potential 
for inductive learning programs to be applied success-
fully. The čase study highlights issues of problem def-
inition, data cleaning, and evaluation that are usually 
glossed over (or simply ignored) in most published re-
ports on classifier learning. Taken in total, the results 
provide solid evidence that simple inductive learning 
programs can learn effective classifiers for local-loop 
troubleshooting. 

At first glance, the primary result is that decision 
stumps can be learned that are more accurate and 
more cost-effective than the troubleshooting system 
currently in plače. What is more interesting, however, 
is that the stumps achieve at least equivalent perfor­
mance with much less effort in design, implementa-
tion, and tuning. This suggests that dealing with new 
equipment or with different local environments (e.g., 
Manhattan versus Maine) will be much easier. In the 
long run, being able to do a better j ob of keeping sys-
tems vvell-tuned may magnify the differences in per­
formance observed here. 

From the standpoint of the machine learning and the 
knowledge discovery communities, the study is most 
interesting as a counterbalance to the prevailing nar-
row view of classifier learning. In the first plače, in 
most inductive learning research the correctness of the 
class labels is a basic assumption that goes unques-
tioned. Perhaps more strikingly, although it is difficult 
to imagine a real-world problem for which ali errors 
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Figure 1: Effect of Varying Error Cost Ratios on Cost of Errors Made 

have equal costs, equal error cost is another unques-
tioned assumption of the vast majority of research on 
inductive learning.^^ This čase study shows how each 
of these assumptions can lead to a misleading evalua-
tion. 

7.1 Lessons Learned 
Prem this čase study we can draw several general 
lessons that we believe are applicable to many real-
world machine learning and data mining applications. 
We have found some to echo lessons learned in other 
applications work (Kohavi & Provost 1998). 

Lesson 1: A single source of data gives a narrovj 
vietv of the problem. In order to get the complete, 
well-rounded picture necessary to present a compelling 
argument for the real-world use of this technology, we 
found it necessary to use multiple data sources and to 
perform data cleaning based on domain knowledge. 

Lesson 2: Superficial use of accuracy figures gives a 
shallovi vietv of the problem. Be careful not to fall into 
the trap of ignoring the accuracy of simple methods. 
Ali too often the inexperienced data miner is elated 
by the seemingly good performance of his (or her) fa­
vorite learning program, only to discover that a simple 
method (e.g., a linear discriminant function or simple 
Bayes) works just as well, or more embarrassingly, that 
the class distribution is highly skewed. Hopefully, such 
a discovery is made before the results are presented to 

^^For a detailed analysis of this assumption, see the recent 
paper by Provost, Fawcett and Kohavi (Provost, Fawcett, &; 
Kohavi 1998). 

someone for whom retraction would be an embarrass-
ment. This paper shows a čase where a simple method 
(decision stump) actually outperforms a more complex 
decision-tree learner (as well as other complex learning 
programs). 

Also, one should be careful not to compare incompa-
rable accuracy figures. The most obvious reason why 
inter-study accuracy comparisons would not be valid is 
that the different data sets have different class distri-
butions. We saw evidence of this in the section on data 
cleaning; the different class distributions were due to 
the fact that cleaning the data both eliminated classes 
from the data and removed troubles non-uniformly 
across the remaining classes. For our inter-study com­
parisons, we used the percentage decrease in error rate 
for each metric over the error rate of the default class. 

Lesson S: Broad comparison studies increase the 
confidence in the evaluation. When arguing for the 
use of inductive learning technology, the last thing you 
want is to be blindsided by questions hke "How does 
it compare with the (currently used) FooBar system," 
or "Well ... Brooklyn is a special čase, have you tried 
data from Upstate?" We were lucky to have consid-
erable management and peer support and enthusiasm, 
which is certainly not universal in real-worId applica­
tions of emerging technologies. In addition to the use 
of multiple data bases, and multiple learning methods 
described in Lessons 1 and 2, we also found it necessary 
to produce multiple "existing" methods with which to 
compare, including the existing expert system, as well 
as the experts themselves. Furthermore, we found it 
necessary to collect data from geographically disparate 
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Figure 2: Effect of Varying Error Cost Ratios on Cost of Errors Made. Data are restricted to MAX-dispatched 
cases. 

locations to demonstrate the robustness of the learn­
ing. 

Lesson 4-' Don't lose sight of the real performance 
task. In real-world domains, accuracy is seldom the 
bottom line. More often, cost-effectiveness is. In 
niany domains, difFerent errors have different associ-
ated costs, so it is important that the learned knowl-
edge produce the right trade-offs. In this domain, 
not only did we find that an analysis of the cost-
effectiveness of the learned classifiers is essential, we 
also discovered that merely paying lip service to cost-
effectiveness with a naive cost analysis is not sufRcient. 
We had to bring in techniques from decision analy-
sis (that are seldom even mentioned in machine learn­
ing/data mining research—more below). 

7.2 Implications for Inductive 
Learning Research 

We believe that studies such as this of the actual use 
of inductive learning, in a practical application where 
there is high-level support for the use of Al technolo-
gies (and therefore complexity does not come from a 
distrust of the techniques), should be a guiding in-
fluence to the research community. Therefore, let us 
discuss briefly the type of research results that would 
have been helpful to this effort. 

Dealing with potentially erroneous data was a ma­
jor issue. Most of the machine learning/data mining 
literature on learning in the presence of noise discusses 
random errors. However, the types of errors most of­
ten discussed in this domain (and many real-world do­

mains) usually have some degree of systematicity— 
systematicity that may also appear in the evaluation 
data. Furthermore, we have not performed a detailed 
analysis of the effect of data cleaning. For example, we 
eliminated from the data borderline cases and cases for 
which we could not determine the correct resolution. 
How will this affect our evaluation? We believe that 
learning in the presence of possible systematic errors 
is a very interesting open problem (Weiss 1995, Beers 
1957, Lee 1995). 

The machine learning community has spent the 
last decade comparing learning programs on suites of 
benchmark problems ad nauseam. However, almost ali 
evaluations have been based on classification accuracy, 
the result being a host of available systems that can 
maximize accuracy within their inductive biases. We 
believe that unless the accuracy is 100%, very few real-
world domains use classification accuracy as the prime 
evaluation criterion. In fact, evaluations based on clas­
sification accuracy can be quite misleading (Saitta & 
Neri 1998, Provost et al. 1998). 

When we were faced with the prospect of learning 
with sensitivity to the cost of errors, we found our-
selves with only a handful of small-scale, compara-
tively inconclusive studies in the machine learning lit­
erature. We believe it is time for machine learning and 
data mining research to take off the blinders of clas­
sification accuracy and develop robust methods that 
can provide the cost-effective classification needed in 
the real world. Interested researchers can begin by 
referencing work in statistics (Duda &c Hart 1973), 
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decision analysis (Henrion et al. 1991, Keeney 1982, 
Weinstein & Fineberg 1980), and pattern recognition 
(Dattatreya & Kanal 1985). Also, Turney (1996) pro-
vides an on-line bibliography of work on cost-sensitive 
machine learning. 
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Although a lot of research on telework has been done, most of it has been carried out in USA 
and EC countries. Until today there have been no studies on telework in Slovenia. This paper 
presents the results ofa study oftelework in Slovenia carried out in 1997. The paper also compares 
telework betv/een Slovenia and other European countries. 

i Introduction 
Information and communication technology provides 
organisations with a new flexibility as regards where, 
when and how work is performed, which gives rise to 
a number of new organisational forms and new ways 
of performing work [16,19]. Through the implementa-
tion of electronic Information systems, the structure, 
procedures and content of office work are changing. 
Increased attention is now being paid to a new form of 
work known as telework. Telework allows spatially and 
organisationally decentralised office work, with work 
results being sent back electronically via communica­
tion netvvorks. This has only become possible in the 
last few years through the developments in the areas 
of distributed Information systems, office aut omation 
and telecommunications [13]. 

In the 70's some authors had high expectations when 
they believed that "ali Americans could be homework-
ers by 1990" [11]. A decade later others stated that 
"by the year 2000 approximately 40% of the employees 
in the US will be teleworkers". The latest estimate is 
that in many development countries 10%-15% of the 
workforce will be teleworking to some degree by the 
end of the century [15]. 

In 1990 there were 2 million teleworkers in US, in 
the year 1994 7.8 million and the estimations in the 
year 1994 were that in 2001 there will be 30 million 
teleworkers [2]. 

Different surveys [1,6] have shown that telework is 
slowly penetrating into Euro pe as well. According to 
the results of surveys in 1994 the number of telework-
ers in the five largest European Community countries 
was approximately 1.1 milUon by the time. Extrapo-
lating this figure to the whole Europe gives a total of 
1.25 million tel eworkers. In terms of absolute num-
bers of teleworkers, the United Kingdom had the most 
with 560 000, followed by France with around 215 000 
teleworkers, Germany with 149 000, Spain with 102 

000 and Italy with 97 000 teleworkers. 

Telework is being introduced slowly step by step. 
In most cases, first the combination of working in the 
company and working at home is beirig.practised. At 
first teleworkers are vvorking at home for an average 
of 4.2 days per month, after a year or two for about 8 
days per month [3,17,20]. 

Because of the benefits the interesi in telework is 
growing among employers and employees. Benefits to 
employees are: saving on time, money and effort in 
commuting to work, better concentration at work, fiex-
ible working hours, better balance between work and 
family life. Telework enables taking čare of young chil-
dren, elderly or disabled relatives and allows into em-
ployment people unable to work in the traditional way, 
such as disabled or handicapped people. The main 
advantages to employers are: increased productivity, 
better office space utilisation, reduced overhead ex-
penses, reduced travel costs, reduced electricity, food 
and other costs [9,10,18]. 

Of course telework has its drawbacks as well. Em-
ployers are concerned about data security and loss of 
control. Some are concerned about the legal rights and 
normal protection in law that employees are afforded 
[7]. Telework may increase the cost of living for the 
teleworker (home office heating and power, food, . . . ) 
[8]. Teleworkers may not be keen on carrying out their 
own typing, filling, and other routine office functions. 
Some teleworkers may miss the social interaction of the 
workplace. The feeling of belonging to a team that is 
working for a common goal may be lost [4]. 

In the paper we discuss the methodology used in our 
research, the instrument, data collecting and results. 
In the end we show some results of the Empirica sur-
vey [12] carried out in 1990 in 14 European companies 
parallel with results of our survey carried out in 1997 
in 15 Slovenian organisations and give an conclusion. 
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Need for 
fiexible working hours 

High Medium Low No need 

Worry for 
promotion and career 

Ves No Don't know 

Importance of 
personnel contacts 

High Medium Low 
People, who are in-
terested in telework 

25% 43% 19% 13% 14% 42% 44% 57% 40% 3% 

People, who are not 
interested in tele-
work 

13% 29% 33% 25% 21% 17% 62% 83% 13% 4% 

People, who are in­
terested in telework 
People who are not 
interested in tele-
work 

Saving on effort in commuting 
Very high 

6% 

0% 

High 
16% 

8% 

Medium 
46% 

29% 

Low 
32% 

65% 

Loss of review of what's going on in company 
Completely 

10% 

42% 

Partly 
72% 

45% 

No 
15% 

0% 

Don't know 
3% 

13% 

Table 2: Telework affected by psychological and sociological factors 

When the results are analysed according to company 
size, next trend comes to light: the greater the size of a 
company, the more interest is in telework. That holds 
for France, Germaiiy and United Kingdom but not for 
Italy [12]. 

We wanted to find out how company size affects tele-
work in Slovenia. We predicted that company size does 
not affect interest in teleworking and test showed that 
on the risk level 0.05 we can accept our prediction. 

In the end we show some results of the Empirica sur-
vey [12] carried out in 1990 in 14 European companies 
parallel with results of our survey carried out in 1997 
in 15 Slovenian organisations. 

3 Results of teleworking 
surveys in different European 
countries 

One of the questions we were interested in was "why 
were companies interested in introducing tele\vork". 
This is of course a question with two sides, that of the 
employer and the employee, since telework can only 
take plače when there is sufEcient convergence of in­
terest for both parties to agree to it. 

We turned to the employer's side. There is in fact a 
wide range of reasons companies might have for consid-
ering the introduction of remote work. We identified 
six common motivations: increased productivity, re-
duced commuting costs, reduced central office's costs, 
flexibility in working hours, employment of the dis-
abled and retention of scarce skills. In Table 3 we are 
showing the importance of these reasons to managers 
in Slovenia in 1997 and to managers in other European 
countries in 1990. 

As it can be seen from the table these reasons are 
very important to managers from Slovenian compa­
nies. It is hard to say why but it may be due to the fact 
that Slovenia is a small country with a population of 2 
million which became independent in the year 1991. In 
the transition to a market economy and private own-
ership, most larger companies have disintegrated and 
managers of these smaller companies want to make a 
good use of the telework possibilities in order to gain 
bigger competitive advantage. Increased productivity 
and flexibility of working hours are for our managers 
the most important reasons for introducing telework. 

Communication is a particularly important compo-
nent of distance working, so the employees were asked 
about the use of communication media. Table 4 sum-
marises the results. 

We can see that employees in Slovenia spend a lot 
of time on telephoning and meetings. What I think 
might be worth considering. 

Table 5 shows the proportion of work done at home 
or outside normal working hours by gender. We can 
see that the majority do perform some of their work in 
the evenings or at weekends. That goes for Slovenian 
and other European companies. In Slovenia there are 
more men then women who do a part of their work 
at home or outside their normal working hours. In 
other European countries in the 1990 there were more 
women then men. 

In table 6 we are showing interest in telework of men 
and women in different European countries. 

As we can see employees in Slovenian companies 
show very high interest in televvork. Slovenia has not 
been independent for a long time and maybe employ-
ees are now looking for new chances to succeed. 
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Increased productivity 
Reduced commuting costs 
Reduced central office's costs 
Flexibility in working hours 
Employment of disabled 
Retention of scarce skills 

Slovenian companies (1997) 
Important 

(%) 

Table 3 

Telephone 

Teletex 

Videotex 

E-mail 

Postal service 

Courier 

Meetings 

Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 
Slovenia 1997 
Europe 1990 

87 
71 
75 
83 
71 
52 

Unimportant and 
no answer (%) 

13 
29 
25 
17 
29 
48 

Rank 
order 

1 
4 
3 
2 
4 
5 

Other European companies (1990) 
Important 

(%) 
36 
29 
29 
29 
14 
43 

Unimportant and 
no answer (%) 

: Companies' reason for introducing telework 

No use 
(%) 

7 
46 
93 
98 
98 
99 
60 
84 
37 
29 
62 
69 
18 
25 

Once a week 
(%) 

1 
3 
3 
2 
2 
1 
7 
3 

27 
7 

17 
21 
2 

45 

Several times 
per week (%) 

5 
19 
3 
0 
0 
0 

14 
6 

17 
47 
11 
7 

15 
27 

Once a day 
(%) 

2 
8 
0 
0 
0 
0 
4 
5 
8 

11 
6 
2 
5 
3 

64 
71 
71 
71 
86 
57 

Several times 
a day (%) 

85 
24 

1 
0 
0 
0 

15 
2 

11 
6 
4 
1 

60 
0 

Rank 
order 

2 
3 
3 
3 
4 
1 

Table 4: Employees' use of Communications medla 

4 Conclusion 

There are only few companies already practising tele-
work, but a lot of them are thinking about introducing 
it. Although the US is currently the leader in this pro-
cess, interest in the rest of the world, particularly Eu­
rope, is accelerating. Interest in telework is seen also in 
Slovenia. In the empirical research among Slovene or-
ganisations carried out in summer 1997, we found out 
that managers and employees are interested in tele-
work. We found out that technology needed for tele-
work is not the basic problem in introducing telework 
and that almost aH of potential teleworkers have their 
own for teleworking needed equipment. The survey 
also showed that technological factors and the content 
and way of work performed within a specific working 
plače determine its suitability for telework and that 
telework is strongly affected by psychological and so-
ciological factors. We also found out that managers are 
sometimes troubled by the idea facing the prospect of 
managing a team of remote workers and they know 
that their tasks will partly change and that also the 
way of control and way of policy making will change. 

Managers are also concerned about employment con-
tracts, most of them think that it would be necessary 
to legally define the working conditions of teleworkers 
and clearly state the unique responsibilities of both 
parts. 
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Female 
Male 

Slovenia 1997 

Europe 1990 

Slovenia 1997 

Europe 1990 

n 
% 
n 
% 
n 
% 
n 
% 
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24 
44 
18 
21J 
34 
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11 
35 

Up to 1/3 
31 
56 
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63 

7 
23 

Half 
0 
0 

12 
14 
8 
6 

10 
32 

At least 4/3 
0 
0 
2 
2 
8 
6 
3 

10 

Table 5: Proportion of work done at home or outside normal working hours by gender 
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ican policies. The main objective is the exchange of 
ideas and developing visions for the future of Infor­
mation society. IS'99 is a standard scientific confer-
ence covering major recent achievements. Besides, it 
will provide maximum exchange of ideas in discussions, 
and concrete proposals in final reports of each confer-
ence. 

The multi-conference will he held in Slovenia, a 
small European country bordering Italy and Austria. 
It is a land of thousand natural beauties from the Adri-
atic sea to high mountains. In addition, its Central 
European position enables visits to most European 
countries in a radius of just a few hours drive by car. 
The social programme will include trips by desire and 
organised trips to Skocjan or Postojna caves. Coffee 
breaks, the conference cocktail and dinner will con-
tribute to a niče working atmosphere. 

Call for Papers 

Deadline for paper submission: 15 June, 1999 
Registration fee is 100 US $ for regular participants 

(10.000 SIT for participants from Slovenia) and 50 US 
$ for students (3.500 SIT for Slovenian students). The 
fee covers conference materials and refreshments dur-
ing coffee-breaks. 

Invitation 
You are kindly invited to participate in the "New In­
formation Society - (IS'99)" multi-conference to be 
held in Ljubljana, Slovenia, Europe, from 12-14 Octo­
ber, 1999. The multi-conference will consist of seven 
carefully selected conferences. 

Basic information 
The concepts of information society, information era, 
infosphere and infostress have by now been widely ac-
cepted. But, what does it really mean for societies, sci-
ences, technology, education, governments, our lives? 
What are current and future trends? How should we 
adopt and change to succeed in the new world? 

IS'99 will serve as a forum for the world-wide and 
national community to explore further directions, busi-
ness opportunities, governmental European and Amer-

More information 

For more information visit 
h t t p : / / a i . i j s . s i / i s / i i i d e x a . h t m l or contact 
m i l i c a . r e m e t i c S i j s . s i . 

The multi-conference consists of the following con­
ferences: 

Information Society 

12-14 October, 1999 
Chairs: dr. Cene Bavec, prof. dr. Matjaž Gams 
Contact person: prof. dr. Matjaž Gams 
Phone: (-t-386 61) 1773 644 
E-mail: matjaz.gEuns®ijs.si 
Jožef Štefan Institute, Jamova 39, 1000 Ljubljana, 
Slovenia, Europe 

http://ai.ijs.si/is/iiidexa.html
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Data Mining and Warehouses 
Chair: dr. Dunja Mladenič, Marko Grobelnik 
Contact person: Marko Grobelnik 
Phone: (+386 61) 1773 272 
E-mail: marko.grobelnik@ijs .s i 
Address: Jožef Štefan Institute, Jamova 39, 1000 
Ljubljana, Slovenia, Europe 

Manufacturing Systenis and 
Technologies 
Chair: prof. dr. Jadran Lenarčič 
Contact person: prof. dr. Jadran Lenarčič 
Phone: (+386 61) 1773 378 
E-mail: j a d r a n . l e n a r c i c S i j s . s i 
Address: Jožef Štefan Institute, Jamova 39, 1000 
Ljubljana, Slovenia, Europe 

Education in Information Society 
Chair: prof. dr. Vladislav Rajkovič 
Contact person: Mojca Florjančič 
Phone: (+386 064) 22 10 61 
E-mail: mojca.f lor jancicSfov.uni-mb.s i 
Address: Faculty of Organizational Sciences, 
Kidričeva 55a, 4000 Kranj, Slovenia, Europe 

Development and Reingeneering 
of Informaton Systenis 
Chair: prof. dr. Ivan Rozman 
Contact person: dr. Ivan Rozman 
Phone: (386 62) 2207 410 
E-mail: i . rozmanSuni-mb. s i 
Address: PERI, Smetanova 17, 2000 Maribor, Slove­
nia, Europe 

Biology and Cognitive Sciences 
Chair: prof. dr. Igor Jerman, mag. Alexis Zrimec 
Contact person: mag. Alexis Zrimec 
Phone: (061) 1769 200 
E-mail: a l ex i s . z r imecOgues t . a rnes . s i 
Address: Inštitut Bion, Celovška 264, 1000 Ljubljana, 
Slovenia, Europe 

mailto:marko.grobelnik@ijs.si
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ERK'99 
Electrotechnical and Computer Science Conference 

Elektrotehniška in računalniška konferenca 
September 23-25, 1999 

Conference Chairman 
Baldomir Zaje 
University of Ljubljana 
Faculty of Electrical Engineering 
Tržaška 25, 1001 Ljubljana, Slovenia 
Tel: (061) 1768 349, Fax: (061) 1264 630 
E-mail: Baldomir.Zajc@fe.uni-lj.si 

Conference Vice-chairman 
Jurij Tasič 
University of Ljubljana 
Faculty of Electrical Engineering 
Tržaška 25, 1001 Ljubljana, Slovenia 
Tel: (061) 1768 440, Fax: (061) 1264 630 
E-mail: Jure.Tasic@fe.uni-lj.si 

Program Committee Chairman 
Sfiša Divjak 
University of Ljubljana 
Faculty of Comput. and Inform. Science 
Tržaška 25, 1001 Ljubljana, Slovenia 
Tel: (061) 1768 260, Fax: (061) 1264 647 
E-mail: Sasa.Divjak@fri.uni-lj.si 

Programe Committee 
Tadej Bajd 
Genevieve Baudoin 
Gerry Cain 
Saša Divjak 
Janko Drnovšek 
Matjaž Gams 
Ferdo Gubina 
Marko Jagodic 
Drago Matko 
Miro Milanovič 
Andrej Novak 
Nikola Pavešic 
Franjo Pernuš 
Kurt Richter 
Borut Zupančič 

Publications Chairman 
Frsmc Solina 
University of Ljubljana 
Faculty of Comput. and Inform. Science 
Tržaška 25, 1001 Ljubljana, Slovenia 
Tel: (061) 1768 389, Fax: (061) 1264 647 
E-mail: Franc!Solina@fri.uni-lj.si 

Advisory Board 
Rudi Bric 
Damjan Dittrich 
Karel Jezernik 

Call for Papers 
for the eighth Electrotechnical and Computer Science Conference 
ERK'99, which will be held on 23-25 September 1999 in Portorož, Slove-

The following areas will be represented at the conference: 

- electronics, 
- telecommunications, 
- automatic control, 
- simulation and modeling, 
- robotics, 
- Computer and information science, 
- artificial intelligence, 
- pattem recognition, 
- biomedical engineering, 
- power engineering, 
- measurements, 
- didactics. 

The conference is organized by the IEEE Slovenia Section together with 
the Slovenian Electrotechnical Society and other Slovenian professional so-
cieties: 

- Slovenian Society for Automatic Control, 
- Slovenian Meeisurement Society, 
- SLOKO-CIGRE, 
- Slovenian Society for Medical and Biological Engineering, 
- Slovenian Society for Robotics, 
- Slovenian Artificial Intelligence Society, 
- Slovenian Pattern Recognition Society, 
- Slovenian Society for Simulation and Modeling. 

Authors •vvho wish to present a paper at the conference should send two 
copies of their final camera-ready paper to mag. Andrej Trost to Faculty 
of Electrical Engineering, Tržaška 25, 1001 Ljubljana. The pa;per should be 
max. four pages long. More information on http:/ /www.ieee.s i /erk99/ 

Time schedule: Camera-ready paper due: July 20, 1999 
Notification of acceptance: End of August, 1999 

mailto:Baldomir.Zajc@fe.uni-lj.si
mailto:Jure.Tasic@fe.uni-lj.si
mailto:Sasa.Divjak@fri.uni-lj.si
mailto:Solina@fri.uni-lj.si
http://www.ieee.si/erk99/
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Call For Papers 
8th International Conference on Computer Analysis of Images and 
Pat terns 
CAIP'99 
Ljubljana, Slovenia, 1-3 September 1999 

Conference Cochairs 
Franc Solina, Aleš Leonardis 
University of Ljubljana 
Faculty of Comput. and Inform. Science 
Tržaška 25, 
1001 Ljubljana, Slovenia 
Tel:386 61 1768 389, 
Fax:386 61 1264 647, 
E-mail: 
frane.solina,ales.leonardisOfri.uni-1j . si 

Program Committee 
S. Ablameyko, Belarus 
J. Arnspang, Denmark 
R. Bajcsy, USA 
I. Bajla, Slovakia 
A. M. Bruckstein, Israel 
V. Chernov, Russia 
D. Chetverikov, Hungary 
A. Del Bimbo, Italy 
J. O. Eklundh, Sweden 
V. Hlavač, Czech Republic 
J. Kittler, United Kingdom 
R. Klette, New Zealand 
W. Kropatsch, Austria 
A. Leonardis, Slovenia 
R. Mohr, France 
M. Schlesinger, Ukraine 
W. Skarbek, Poland 
F. Solina, Slovenia 
G. Sommer, Germany 
L. Van Gool, Belgium 
M. A. Viergever, Netherlands 
S. W. Zucker, USA 

Call for Papers 
The CAIP conference is a traditional Central Euro-
pean Conference devoted to ali aspects of computer 
vision, image analysis, pattern recognition and related 
fields. 

The conference is sponsored by lAPR, Slovenian 
Pattern Recognition Society, IEEE Slovenia Section, 
Faculty of Computer and Information Science at the 
University of Ljubljana and Hermes SoftLab. 

The scientific program of the conference will con-
sist of plenary lectures by invited speakers, contributed 
papers presented in two parallel sessions and posters. 
The CAIP proceedings are published by Springer Ver-
lag in the series Lecture Notes on Computer Science 
and will be distributed to the participants at the con­
ference. 

Scope of the Conference 
— Image Analysis 

— Computer Vision 

— Pattern Recognition 

— Medical Imaging 

— Network Centric Vision 

— Augmented Reality 

— Image and Video Indexing 

— Industrial Applications 

Instructions to authors 
Authors who wish to present a paper at the conference 
should send five copies of their paper to one of the two 
conference chairs marked CAIP'99. To enable double 
blind review there should be two title pages. The first 
with title, author's name, afEliation and address, tele-
phone, fax and e-mail, abstract of 200 words and up 
to three keywords. The second title page should con-
sist only of title, abstract and keywords. The papers 
excluding the title pages should not be longer than 
10 pages. On a separate page the authors should an-
swer the following three questions about their paper: 
(a) what is the original contribution?, (b) what is the 
most similar work?, (c) why is their vvork relevant to 
others? 

A W£<^ template for the camera-ready version will 
be available on the conference home page. During the 
CAIP'99 review period the authors should not submitt 
any related paper with essentially the same content to 
any other conference. 

Deadline for submission of papers: 15 January 1999 
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Registration 

Information on registration will be available on the 
conference home page. 

Venue 
The conference will be held at the Faculty of Com­
puter and Information Science at the University of 
Ljubljana. Ljubljana is the capital of Slovenia. The 
city which is a lively mixture of Mediterranean and 
northern influences offers ali amenities within short 
distance. Alpine resorts, the Adriatic coast and sev-
eral natural spas are close to Ljubljana. 
The conference homepage is: 
h t t p : / / r a z o r . f r i . u n i - l j . s i / C A I P 9 9 

Machine Learning List 
The Machine Learning List is moderated. Con-
tributions should be relevant to the scientific 
study of machine learning. Mail contributions 
to mlSics .uci .edu. Mail requests to be added 
or deleted to inl-request@ics.uci.edu. Back 
issues may be FTP'd from i c s . u c i . e d u in 
pub /ml - l i s t /V<X>/<N> or N.Z where X and 
N are the volume and number of the issue; ID: 
anonymous PASSWORD: <your mail address> URL-
http://www.ics.uci.edu/AI/ML/Machine-Le-
arning.html 

CC Al 

The Journal for the integrated study 
of Artificial Intelligence, Cognitive Science 

and Applied Epistemology. 

CC-AI publishes articles and book reviews relating 
to the evolving principles and techniques of Artificial 
Intelligence as enriched by research in such fields as 
mathematics, linquistics, logic, epistemology, the cog­
nitive Sciences and biology. 
CC-AI is also concerned with development in the areas 
of hard- and software and their applications within AL 

Editorial Board and Subseriptions 

CC-AI, Blandijnberg 2, B-9000 Ghent, Belgium. 
Tel.: (32) (9) 264.39.52, 
Telex RUGENT 12.754 

Telefax: (32) (9) 264.41.97 
e-mail: Carine. Vanbelleghem@RUG. AC. BE 

http://razor.fri.uni-lj.si/CAIP99
mailto:inl-request@ics.uci.edu
http://ics.uci.edu
http://www.ics.uci.edu/AI/ML/Machine-Le-
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Call for Papers 

Special Issue on 
Group Support Systems 
Informatica - An International Journal of Computing and Informatics 

A special issue of the Informatica Journal will focus 
on the different aspects of Group Support Systems. 
Original, unpublished contributions and invited arti-
cles will be considered for the issue. 

As organizations are being directed to do more with 
less, personnel productivity issues are becoming more 
important. No single person has the knowledge, time, 
or experience to solve today's business problems, so 
organizations have adopted a team approach. One of 
the challenges to this team approach is to ensure the 
proper make-up of the teams. Getting the maximum 
mix of personnel usually means picking team members 
from across the organization. Thiš can pose problems 
when the organization is national, or global in geo-
graphical span. Technology to support these teams 
has been in use for some time now, and research is be-
ginning to emerge showing how successful this merging 
of technology and project teams has been 

To be successful, research in this area should address 
issues relating to the technology. It should also focus 
on the effectiveness to the group, and the degree of 
success in solving problems. Topics of interest to this 
special issue will include, but not be limited to, the 
following: 

- Critical success factors for implementing group 
support systems 

- Factors affecting the diffusion of group support 
systems 

- Reliable measures for predicting successful imple-
mentation 

- Cross-cultural factors affecting use 

- Management issues with applying group support 
systems 

- Successful implementations 

- Ušes for group support systems in industry 

- Perceived usefulness among project teams 

- Ease of use issues 

- Ease of implementation issues 

- Required levels of technology support 

- Barriers to implementation and adoption 

- Any other interesting topic that is relevant to 
group support systems 

Prospective authors should follow the regular guide-
Unes of the Journal and submit their work electroni-
cally. You should e-mail your rtf or PDF file to one of 
the Guest Editors by the following due dates: 
FuU Manuscript Due May 15, 1999 
Notification of Acceptance September 15, 1999 
Final revisions of accepted papers December 1, 1999 
Gary Klein or Morgan Shepherd, Guest Editors 
College of Business and Administration 
The University of Colorado at Colorado Springs 
1420 Austin Bluffs Parkway 
P.O. Box 7150 
Colorado Springs, CO 80933-7150 
Gklein@mail. uccs . edu or mshepher@mail. uccs . edu 
Marcin Paprzycki 
Department of Computer Science and Statistics 
University of Southern Mississippi 
Hattiesburg, MS 39406-5106, USA 
phone: 601-266-6639 or: 601-266-4949 
FAX: 601-266-6452 
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Call for Papers 

Special Issue on 
Design Issues of Gigabit Networking 
Informatica - An International Journal of Computing and Informatics 

A special issue of the Informatica Journal will fo-
cus on the different aspects of the design of Gigabit 
networking. Original, unpublished contributions and 
invited articles will be considered for the issue. With 
the advent of the World Wide Web, the Internet has 
seen enormous growth from its roots as a network of 
modest proportions, mostly used by the research and 
academic community, to a large public data network. 
Several thousands of corporate users and several mil-
lions of dial-in residential users have gone online in 
the last few years, making the Internet a true public 
data network. This accelerated growth in subscription 
has led to a surge of data in the Internet backbone. In 
order to keep up with this demand in service and band-
width, ali Internet service providers have scaled their 
networks many times, in both size and bandwidth. 
The forecast for this continuing growth is even more 
astounding for the coming years. With fast emerg-
ing technologies, such as transfer of multimedia and 
electronic commerce, the need to scale the network 
beyond present capabilities is paramount. For this the 
Internet has to scale in several dimensions, including 
but not limited to bandwidth, routing, quality of ser­
vice (QoS), and customer service provisioning. To be 
able to succeed, research has to investigate issues of 
the backbone network (SONET/SDH). It should also 
focus on the reliability of the network and the trans-
parency of any self-healing to the user. Topics of in-
terest to this special issue will include, but not limited 
to, the following: 

- Design infrastructure of Gigabit networking 
(physical, data link and network issues) 

- SONET/SDH architectures 

- Protocol design for multimedia 

- Fault-tolerant of backbone networks 

- Routing and congestion protocols in Gigabit net-
working 

- Switching issues in Gigabit networking 

- QoS issues in using ATM in Gigabit networking 

- Modeling and simulation 

- Performance evaluation in Gigabit networking 

- Management issues in Gigabit networking 

— Any other interesting topic that is relevant to the 
backbone infrastructure design 

Prospective authors should follow the regular guide-
lines of the Journal and submit their work electron-
ically. You should e-mail your PDF or postscript 
file (preferably produced by dvips and viewable by 
ghostview) to one of the Guest Editors listed below: 
Full Manuscript Due January 31, 1999 
Notification of Acceptance July 31, 1999 
Mohsen Guizani, Guest Editor 
Electrical and Computer Engineering Architect 
University of Missouri-Columbia/Kansas City 
5605 Troost Avenue 
Kansas City, MO 64110-2823. 
E-mail: guizanim@vunkc.edu 
Kenneth Henriksen, Guest Editor 
Chief Technology Integration Architect-Sprint 
M/S: KSOPKB0803 
9300 Metcalf Avenue 
Oveland Park, KS 66212, USA. 
E-mail: henriksen@sprintcorp.com 
h t tp : / / o r ca . s t . u sm.edu / in fo rma t i ca 

mailto:guizanim@vunkc.edu
mailto:henriksen@sprintcorp.com
http://orca.st.usm.edu/informatica
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Call for Papers 

Special Issue on 
Advances in Simulation and Control 
Informatica - An International Journal of Computing and Informatics 

A special issue of Informatica on the topic of "Ad­
vances in Simulation and Control" is planned for pub-
Hcation as one of four issues in 2000 year. As comput­
ing power has been increased, most of the real world 
systems can be efficiently simulated and controlled in 
real time with the incorporation of advanced simula­
tion and control techniques. The issue will be intended 
to serve as a medium for exchanging the latest research 
trends in the areas of " Simulation and Control." 

Papers describing the state-of-the-art research on 
various simulation and control topics including, but 
not limited to, the following areas are solicited: 

- Advances in Simulation and Control Methodol-
ogy, 

- Fuzzy and Neural Network Techniques in Simula­
tion and Control, 

- Real-time and Distributed Simulation and Con­
trol, 

- Advanced Man-Machine Interfaces for Efficient 
Simulation and Control, 

- Simulation and Control AppUcations in Complex 
Physical Systems such as Electricity Generating 
Power Plants and Power Systems. 

Prospective authors should follow the regular guide-
lines of the Journal and submit their work electroni-
cally (by e-mail) to one of guest editors by the follow-
ing due dates: 

Important Schedules: FuU papers are due May 7, 
1999 in any format of PDF, PS, MS Word or Word-
Perfect, with author notification set for November 20, 
1999. Final revisions of accepted papers are due Febru-
ary 26, 2000, only in "LaTex" format. Authors inter-
ested in submitting a paper for the issue should contact 
one of the guest editors listed below for submission de-
tails. 

Robert M. Edwards, Guest Editor 
Nuclear Engineering Department 
231 Sackett Building 
Pennsylvania State University 
University Park, PA, 16802, USA. 
Phone: +1 (814) 865-0037 
FAX: +1 (814) 865-8499 
Email: rmenuc@engr.psu.edu 
Kwang Y. Lee, Guest Editor 
Department of Electrical Engineering 
The Pennsylvania State University 

University Park, PA 16802, USA. 
Phone: -|-1 (814) 865-2621 
Fax: -hI (814) 865-7065 
E-mail: kylece@engr.psu.edu 
Se Woo Cheon, Guest Editor 
Korea Atomic Energy Research Institute 
Dukjin 150, Vuseong, Taejon 305-353, KOREA 
Phone: -1-82-42-868-2261 
Fax: -h82-42-868-8357 
E-mail: swcheon@nanum.kaeri.re.kr 

mailto:rmenuc@engr.psu.edu
mailto:kylece@engr.psu.edu
mailto:swcheon@nanum.kaer
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THE MINISTRV OF SCIENCE AND TECHNOLOGV 
OF THE REPUBLIC OF SLOVENIA 

Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61 
1311 107, Fax: +386 61 1324 140. 
WWW:http://www.mzt.si 
Minister: Lojze Marinček, Ph.D. 

The Ministry also includes: 
The Standards and Metrology Institute of the 
Republic of Slovenia 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 314 882. 

Slovenian Intellectual Property Office 
Address: Kotnikova 6, 61000 Ljubljana, Tel: +386 61 
1312 322, Fax: +386 61 318 983. 

Office of the Slovenian National Commission 
for UNESCO 
Address: Slovenska 50, 1000 Ljubljana, Tel.: +386 61 
1311 107, Fax: +386 61 302 951. 

Scientific, Research and Development 
Potential: 

The Ministry of Science and Technology is responsible 
for the R&D policy in Slovenia, and for controlling 
the government R&D budget in compliance with the 
National Research Program and Law on Research 
Activities in Slovenia. The A'Iinistry finances or 
co-finance research projects through public bidding, 
while it directly finance some fixed cost of the national 
research institutes. 

According to the statistics, based on OECD (Pras-
cati) standards, national expenditures on R&D raised 
from 1,6 % of GDP in 1994 to 1,71 % in 1995. Table 2 
shows an income of R&D organisation in million USD. 

Objectives of R&:D policy in Slovenia: 

- maintaining the high level and quality of scientific 
technological research activities; 

— stimulation and support to collaboration between 
research organisations and business, public, and 
other sectors; 

Total investments in R&D (% of GDP) 1,71 
Number of R&D Organisations 297 
Total number of employees in R&D 12.416 
Number of researchers 6.094 
Number of Ph.D. 2.155 
Number of M.Sc. 1.527 

Table 1; Some R&D indicators for 1995 

Bus. Ent . 
Gov. Inst. 
Pr iv . np Org. 
High. Edu. 
TOTAL 

Ph .D. 
1993 1994 

51 93 
482 574 

10 14 
1022 1307 
1565 1988 

1995 1993 
102 196 
568 395 

24 12 
1461 426 
2155 1029 

M.Sc. 
1994 

327 
471 

25 
772 

1595 

1995 
330 
463 

23 
711 

1527 

Table 2: Number of employees with Ph.D. and M.Sc. 

- stimulating and supporting of scientific and re­
search disciplines that are relevant to Slovenian 
national authenticity; 

— co-financing and tax exemption to enterprises en-
gaged in technical development and other applied 
research projects; 

- support to human resources development with 
emphasis on young researchers; involvement in In­
ternational research and development projects; 

— transfer of knowledge, technologj' and research 
achievements into ali spheres of Slovenian society. 

Table source: Slovene Statistical Office. 

Business Enterprises 
Government Institutes 
Private non-profit Organisations 
Higher Education 
TOTAL 

Basic Research 
1994 

6,6 
22,4 
0,3 

17,4 
46,9 

1995 
9,7 

18,6 
0,7 

24,4 
53,4 

Applied Research 
1994 
48,8 
13,7 
0,9 

13,7 
77,1 

1995 
62,4 
14,3 
0,8 

17,4 
94,9 

Exp. 
1994 
45,8 

9.9 
0,2 
8,0 

63.9 

Devel. 
1995 
49,6 

6,7 
0,2 
5,7 

62,2 

Total 
1994 1995 

101,3 121,7 
46,1 39,6 

1,4 1,7 
39,1 47,5 

187,9 210,5 
Table 3: Incomes of R&D organisations by sectors in 1995 (in million USD) 

http://www.mzt.si
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INVITATION, COOPERATION 

Submissions and Refereeing 
Please submit three copies of the manuscript with good 
copies of the figures and photographs to one of the editors 
from the Editorial Board or to the Contact Person. At least 
two referees outside the author's country will examine it, 
and they are invited to make as many remarks as possible 
directly on the manuscript, from typing errors to global 
philosophical disagreements. The chosen editor will send 
the author copies with remarks. If the paper is accepted, 
the editor will also send copies to the Contact Person. The 
Executive Board will inform the author that the paper has 
been accepted, in which čase it will be published \vithin one 
year of receipt of e-mails with the text in Informatica LM ĵX 
format and figures in .eps format. The original figures 
can also be sent on sep£irate sheets. Style and examples of 
papers can be obtained by e-mail from the Contact Person 
or from FTP or WWW (see the last page of Informatica). 

Opinions, news, calls for conferences, calls for papers, etc. 
should be sent directly to the Contact Person. 

g U E S T I O N N A I R E 

I I Send Informatica free of charge 

I I Ves, we subscribe 

Please, complete the order form and send it to Dr. Rudi 
Murn, Informatica, Institut Jožef Štefan, Jamova 39, 61111 
Ljubljana, Slovenia. 

Since 1977, Informatica has been a major Slovenian sci-
entific Journal of computing and informatics, including 
telecommunications, automation and other related areas. 
In its 16th year (more than seven years ago) it became 
truly international, although it stili remains connected to 
Central Europe. The basic aim of Informatica is to impose 
intellectual values (science, engineering) in a distributed 
organisation. 

Informatica is a journal primarily covering the European 
computer science and informatics community - scientific 
and educational as well as technical, commercial and indus-
trial. Its basic aim is to enhance Communications between 
different European structures on the basis of equal rights 
and international refereeing. It publishes scientific papers 
accepted by at least two referees outside the author's coun-
try. In addition, it conteiins information about conferences, 
opinions, critical examinations of existing publications and 
news. Finally, major practical achievements and innova-
tions in the computer and information industry are pre-
sented through commercial publications as well as tlirough 
independent evaluations. 

Editing and refereeing are distributed. Each editor can 
conduct the refereeing process by appointing two new ref­
erees or referees from the Board of Referees or Editorial 
Board. Referees should not be from the author's country. 
If new referees are appointed, their names will appear in 
the Refereeing Board. 

Informatica is free of charge for major scientific, educa­
tional and governmental institutions. Others should sub­
scribe (see the last page of Informatica). 

ORDER FORM - INFORMATICA 

Name: Office Address and Telephone (optional): 

Title and Profession (optional): 

E-mail Address (optional): 

Home Address and Telephone (optional): 

Signature and Date: 

file:///vithin


JOŽEF ŠTEFAN INSTITUTE 

Jožef Štefan (1835-1893) was one ofthe mostpromi-
nent physicists of the 19th centurg. Bom to Slovene 
parents, he obtained his Ph.D. at Vienna University, 
tvhere he was later Direčtor of the Physics Institute, 
Vice-President of the Vienna Academy of Sciences and 
a member of several scientific institutions in Europe. 
Štefan ezplored many areas in hydrodynamics, optics, 
acoustics, electricity, magnetism and the kinetic the-
ory of gases. Among other things, he originated the 
law that the total radiation from a black body is pro-
portional to the 4th pouier of its absolute temperature, 
knoivn as the Stefan-Boltzmann law. 

The Jožef Štefan Institute (JSI) is the leading inde-
pendent scientific research institution in Slovenia, cov-
ering a broad spectrum of fundamental and applied 
research in the fields of physics, chemistry and bio-
chemistry, electronics and information science, nuclear 
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