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PROFILES 
Profiles is a peculiar gallery of personalities in the 
field(s) covered by Informatica. To remember the 
readers, in this column we have had the profiles 
of the following researchers: Terry VVinograd—Al 
and cognitive science philosopher and researcher 
(1/93); Jirf Šlechta — physicist and cyberneticist 
(2/93); Hubert L. Dreyfus—American philosopher 
of Being and critic of the traditional Al approach 
(3/94); Gheorghe Tecuci—machine learning and 
knowledge acquisition researcher (4/93); Robert 
Trappl—Al scientist and medical cyberneticist 
(1/94); Branko Souček — computer engineer and 
author of the six generation computing (2/94); 
and Hiroaki Kitano—inventor of computer simul-
taneous translation and Al researcher (3/94). 

Professor Haneef Fatmi is a well-distinguished 
researcher, teacher, and organizer especially in 
the field where the most attractive development of 
scientific thought and technological development 
is expected, that is, in the field of cybernetic sy-
stems and machines. It is to stress tha t he is the 
chairman of a symposium held within the large 
cybernetics conference in the coming August, in 
Namur, Belgium. 

Haneef Fatmi 

Haneef Fatmi is currently Honorary President of 
the Cybernetics Society of the United Kingdom. 
He is also a member of the Governing Body of 
the International Association for Cybernetics, Na­
mur, Belgium and the Governing Body of the 
journal "Cybernetica". In addition he is a Se-
nior Member of the American Institute of Elec­
tronic and Electrical Engineers. For his outstan-
ding services for the advancement of Cyberne-
tics and information theory he was presented a 
Deed of Appreciation by the Cybernetics Society 
in 1992, founding in perpetuity a "Fatmi Lecture 
in Cybernetics". 

Dr. Fatmi was educated at the Inns of Court 
School, Lincoln's Inn, London, where he obtained 
his Barrister's Degree, and Imperial College Lon­
don where he was awarded a PhD degree for his 
work on plasma electrodynamics and information 
theory in 1961. From 1961 he worked on various 
problems of plasma electrodynamics and informa­
tion theory in coUaboration with Professor Dennis 

Gabor, FRS, Nobel laureate at Imperial College 
London, and the Atomic Energy Research Esta-
blishment Harwell, U.K. In 1968 he was appoin-
ted Director of the Cybernetics Research Group 
at the University of London and served in tha t 
capacity until recently. He has successfully di-
rected over 30 PhD and 100 Master 's projects in 
cybernetics. 

In 1970 Haneef Fatmi published a world famous 
Definition of Intelligence in Nature, London which 
was a subject of comments by the leading resear­
chers ali over the world. It was republished by 
the Institute of Physics as one of the 2000 leading 
quotations of ali times. The subject mat te r of the 
Definition was used by Professor H.B. Barlow to 
investigate a new approach to the measurement 
of intelligence and to relate guesswork, language 
and inteUigence under the same common ground. 

During the last 25 years Haneef Fatmi and his 
coUaborators published over 150 technical papers 
on various aspects of cybernetics, informatics, ar-
tificial intelligence, robotics, knowledge-based sy-
stems, Communications, control and information 
theory, ali over the world. 

His main research interests include the deve­
lopment of a novel approach to human psycho-
logy based on the understanding of psycho-
physiological mechanism of perception and awa-
reness; development of a novel theory of cyberne-
tics and intelligence machines; definition of intel-

. ligence in humans and the machines; intelligent 
neural networks and systems; distributed compu­
ting, control and Communications networks; com-
pression of data by pattern recognition and ruled-
based algorithms; forecasting of financial data. 
Some of his papers has been published in Infor­
matica. 

Publications 

Limited space does not allow to give a complete 
list of Dr. Fatmi's publications; Below is a short 
list of selected papers. 

Gabor, D. and Fatmi, H.A., "A thermionic gene­
rator," Nature, London, 1961, 868. 

Gabor, D. and Fatmi, H.A., "The theory of gas 
discharges with extraneous ion supply," Advanced 
Energy Conversion, IEE, London, 1964, 307. 

Fatmi, H.A. and Young, R.W., "A definition of 
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intelJigence," Nature, London, 1970, 97. 

Fatmi, H.A., "The concept of a creative society," 
Electronics and power, IEE London, 1974. 

Fatmi, H.A. and Resconi, G., "A new computing 
principle," Nuovo Cimento, Bologna, Italy, 1988, 
239-242. 

Fatmi, H.A. et al, "Theory of cybernetics and 
intelligent machine," in Proč. General Systems, 
USA, 1990, 123-164. 

Lee C.C. and Fatmi, H.A., "Run-time support for 
parallel functional programming," J. of Systems 
and Software, Sept. 1991. 

Fatmi, H.A. et al, "The nature of the stochastic 
method in cybernetics," in Proč. Int. Congress 
on Cybernetics, Belgium, 1972, 328-333. 

Fatmi, H.A. et al, "Principles of discrimination in 
pat tern recognition," Biokybernetik, Germany, 5, 
1974,281-287. 

Fatmi, H.A. et al, "The concept of associative me-
mories," in Proč. Int. Congress on Cybernetics, 
1980,303-310. 

Fatmi, H.A. et al, "Parallel processors for cyber-
netic systems," Cybernetics and Systems, USA, 
11, 1982,179-192. 

Fatmi, H.A. and Todd, S.J., "A cybernetic appro-
ach to intelligence based space system," in Proč. 
IEEE-SMC, New York, 1176-1181. 

Ciupa, M. and Fatmi, H.A., "An expert system 
for da ta networks and services offering strategic 
planning support," in Proč. Network 90, UK, 
241-250. 

Oliver, A. and Fatmi, H.A., "Nonlinear adaptive 
filtering by the Gabor-Kolmogorov method," IEE 
Control, UK, 1991, 105-110. 

Russel, LE. and Fatmi, H.A., "A novel approach 
to interface design for a neural network expert 
system," IEEE IJCNN, USA, 1991, 384-388. 

Sherif, H.T. and Fatmi, H.A., "3-dimentional mo-
ving object recognition by the neuro-optic field," 
IEEE IJCNN, China, 1992, 637-640. 

Gilani, S. and Fatmi, H.A., "Organizational pro-
fessional rontextual issues," in Proč. Int. Con­

gress on Cybernetics, 1992, 199. 

Khan, H.U., Ahmad, J., Mahmood, A. and Fatmi, 
H.A., "Text compression as rule based pat tern 
reorganization," IEE Electronics Letters, 29(20), 
1993,1752-1753. 

Khan H.U. and Fatmi, H.A., "Text compression 
using rule base encoder," IEE Electronics Letters, 
30(3), 1994, 199-200. 

Mahmood, A., Khan, H.U. and Fatmi, H.A., 
"Adaptive hle allocation in distributed informa-
tion systems," Informatica, 18(1), 1994, 37-46. 

Mahmood, A., Khan, H.U. and Fatmi, H.A., 
"Data reorganization in distributed information 
systems," Informatica, 18(3), 1994, 325-336. 

Mahmood, A., Khan, H.U. and Fatmi, H.A., 
"Adaptive file allocation in distributed computer 
systems," IEE Distributed systems and enginee-
ring journal, December 1994. 

Khan, H.U., Mahmood, A. and Fatmi, H.A., "A 
novel approach to text compression," Informatica, 
18(4), 1994, 485-490. 

Ahmad, J. and Fatmi, H.A., "Recognition of 
objects data in computer integrated manufactu-
ring," in Proč. IEE Control'94, 1994, 805-808. 

Ahmad, J. and Fatmi, H.A., "Signal recovery by 
feed forward neural networks," in Proč. ITA'94, 
UK, 1994, 79-83. 

Ahmad, J. and Fatmi, H.A., "A novel method 
of speech recognition using feed forward neural 
network," in Proč. IEEE-SMC, USA, 1994, 2 1 -
25. 

Russel, I. and Fatmi, H.A., "A novel defmition 
of expert knowledge in expert systems," in Proč. 
IEEE-SMC, USA, 1994, 2208-2211. 

Khan, H.U. and Fatmi, H.A., "Application of pat­
tern recognition in text compression," in Proč. 
IEEE-SMC, USA, 1994, 1657-1659. 

Ahmad, J. and Fatmi, H.A., "Quadric neural ne-
twork for the prediction of financial tirne series 
data," IEE world congress on computational in­
telligence, USA, 1994, 3667-3670. 

Edited by A.P. Zeleznikar 
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PARALLEL AND DISTRIBUTED REAL-TIME SYSTEMS: 
INTRODUCTION TO THE SPECIAL ISSUE 

Marcin Paprzycki 
Science and Mathematics 
University of Texas-Permian Basin 
Odessa, TX 79762-0001, USA 
paprzycki_m@gusher . p b . u t e x a s .edu 
and 
Janusz Zalewski 
Dept. of Computer Science 
Embry-Riddle Aeronautical University 
Daytona Beach, FL 32114-3900, USA 
zalewski@db.erau.edu 

The purpose of this Introduction is to present 
the rationale behind selecting the structure of 
this Special Issue. It follows the general scheme 
of real-time systems' development: from require-
ments specihcation, to design, to implementation. 
A bibliography of books on parallel and distribu-
ted real-time systems for the last ten years is also 
included. 

Real-Time Systems have two major characteri-
stics: they always interact with the environment 
other than the human operator, and usually deal 
with timing constraints, mostly in a form of de-
adlines on the reaction to external stimuli. Be-
cause responsiveness and timeliness are so impor-
tant in their behavior, real-time systems are al-
most exclusively concurrent, that is, consist of 
multiple program units, usually called tasks or 
processes, running simultaneously to perform re-
quired functions. Concurrent execution of tasks 
on a single processor may be in many respects 
inadequate for achieving the required level of per-
formance or required level of reliability - the two 
primary system requirements. Therefore the ta­
sks are often moved to different interconnected 
processors, making a real-time system parallel or 
distributed. Although it is sometimes hard to dis-
tinguish between parallel and distributed systems, 
especially in real-time computing, the principal 
distinction between the two is that of the com-
munication speed versus processing speed. If the 
communication time between processing units is 
negligible with respect to the processing speed, 
then the system is called parallel; otherwise it is 
distributed. 

Our approach to real-time systems, in general, 
is based on the system development view: from 
application requirements, to specification and de­
sign, to implementation issues considered on three 
different levels, that is, programming languages, 
operating systems, and hardware architectures. 
From the system development point of view, it 
does not make any difference whether a system 
is to be implemented on a single processor or on 
a parallel or distributed architecture; the deve­
lopment process must proceed in the same way. 
Therefore the sequence of articles in this special 
issue resembles the system development process 
and is structured in that way. 

The first article, by McKay and Atkinson, di-
scusses one of the most demanding applications 
for a real-time system: a part of the NASA's Mis-
sion project. Our interest in this paper is not 
that much in the solutions, which are described 
on a relatively general level, but in system re-
quirements, which include reliability, safety and 
security. The major characteristic of an applica­
tion described in this article is that as systems get 
more and more complicated. a unified approach 
to account for critical system properties, such as 
those listed above, combined with real-time pro­
perties is needed. Such systems are usually called 
high-assurance systems or high-integrity systems. 

Because of extremely critical nature of high-
assurance systems, whose failure may involve loss 
of lives, loss of precious property or significant 
environmental damage, unconventional develop­
ment methods are needed to ensure their correc-
tness. One very promising, although not fully te-

mailto:zalewski@db.erau.edu
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sted yet, approach to ensure correctness on the 
high level of development is the use of formal me-
thods. These are the methods that employ proof 
techniques to ensure tha t the system is correct. 
In the article by van Katwijk and Toetenel, one 
such formal method, named MOSCA, is presen­
ted. MOSCA, based on an extension of VDM 
(Vienna Development Method), is a specification 
language providing facilities to specify real-time 
requirements for parallel and distributed applica-
tions. 

Moving from the specification to the design le­
vel, system developers need to be equipped with 
modern methodologv, usually consisting of the 
rigorous notation, techniques for development, 
and support tools. One such approach, object-
oriented technology received significant attention 
in the last decade, but not necessarily for real-
time systems development. In the article by Lin, 
Kung and Hsia, an object-oriented approach is 
presented to designing real-time systems whose 
critical system properties constitute a dominant 
part of the requirements and play a significant 
role in the development. 

To convert the system/software design into a 
running application, the implementor usually fa-
ces a problem of dealing with programming langu­
age constructs to support design concepts. Of the 
many constructs tha t explicitly support real-time, 
parallel, and distributed programming, one stili 
needs further development: exception handling. 
Colnarič, Verber and Halang deal with eception 
handling in their paper. Again, this problem is 
especially important because of the necessity to 
meet critical requirements in exceptional situati-
ons and the major contribution of this article is 
in providing exceptions on the language level. 

If the implementation is to run according to the 
specification, the language constructs ought to be 
adequately mapped onto and supported by the 
operating system kernel. A real-time kernel, and 
especially a parallel or ditributed real-time ker­
nel, needs to provide specific functionality which 
is very different from traditional understanding 
of an operating system. Corresponding problems 
are so critical tha t this special issue includes four 
articles related to this subject. 

The first paper in this group, by Yu and Welch, 
presents an off-line scheduling approach based on 
the analysis of tasks ' behavior for concurrency en-

hancement. The second paper, by Davari and 
Dhall, discusses two heuristic on-line algorithms 
to solve the allocation problem, that is, the assi-
gnment of tasks to processors so they can success-
fully meet deadlines. The next paper, by Er-
ciye§, Ozkasap and Aktas, describes a dynamic 
load balancing mechanism for massively parallel 
processing systems, and finally, a paper by W6jcik 
and VVojcik presents a universal method of achi-
eving fault tolerance in a distributed system via 
checkpointing. 

As the implementors well know, finding the 
perfect solutions to the most difficult software 
problems may be not enough, if the underlying 
hardware architecture is not functioning properly. 
From the multitude of problems which can be li-
sted on the architecture level of a parallel or distri­
buted real-time system, only one is tackled here, 
that of hardware guarantees on communication 
deadlines. Tchouaffe and Zalewski, in their ar­
ticle, deal with the problem of predictability of 
Ethernet - one of the most widely used local area 
networks. 

Although we attempted to provide readers with 
a comprehensive coverage of problems and their 
solutions in parallel and distributed real-time sy-
stems, certainly no such coverage can be exhau-
stive. Those readers who are especially interested 
in this topic and want to pursue further studies 
may want to look into three other collections of 
papers [12, 18, 27] or access some of the books 
on this subject which have been published throu-
ghout the last ten years and are listed below. 
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Jn coming years embedded systems which are distributed, non-stop and "mission and 
safety critical" (MASC) are likely to assume increasing importance. The construction, 
operation and maintenance of this class of system presents a unique blend of problems 
which many traditional tools and techniques, targeted to just one problem area, can-
not currently address. This paper provides an overview of a promising, model-based 
framework for supporting such systems that has been developed as part of NASA's 
MISSION project. Based on well-established research advances in computing, the MIS­
SION approach provides a domain-specihc, life-cycle support framework encompassing 
three separate environments: host, integration and target. Although the individual ele-
ments ofthe framev/ork are not ali new, their synergistic packaging within the MISSION 
project is believed to be unique. This paper focuses upon the systems-level support for 
applications executing in the target environment. 

Charles W. McKay and Colin Atkinson 
University of Houston - Clear Lake 
2700 Bay Area Boulevard, Houston, TX. 77058. 
Phone: +713 283 3830, Fax: +713 283 3869 
E-mail: mckay@cl.uh.edu 

1 Introduction 

An embedded system is a computer system which 
is constructed to monitor and/or control a set of 
devices and processes constituting some larger en-
gineering system. The term "embedded" is used 
to reflect the fact that such computing systems 
are physically encapsulated by the engineering sy-
stem they monitor/control. An important charac-
teristic of embedded systems is that they are typi-
cally real-time - not only must they produce the 
correct result, but they must do so within a spe-
cihed period of tirne. Because of their monitoring 
and controlling role, the reliable execution of an 
embedded system is often critical to the success of 
the overall mission and to the safety of life, health, 
property or the environment. In such circumstan-
ces the embedded system is termed a mission and 
safety critical (MASC) system. 

As the reliability and efflciency of networking 
technology has increased, and the cost of micro-
processors has plummeted, there has been an in­

creasing trend towards the implementation of em­
bedded svstems as distributed systems made up of 
autonomous, cooperative processors interconnec-
ted by communication channels. Not only does 
such an implementation enable processing power 
to be located physically close to the individual 
devices in the system, but it also opens up the 
possibility of extending, or modifying, parts of 
a system while other parts are stili running. In 
other words, it opens up the possibility of buil-
ding non-stop systems which can be dynamically 
upgraded and reconfigured. 

In coming years there is likely to be an increa­
sing need for embedded systems which exhibit ali 
the properties identified above, namely the pro-
perties of being mission and safety critical, real-
time, distributed and non-stop. Such systems are 
essential in extremely hostile and/or inaccessible 
environments, such as space or the depths of the 
ocean, and are therefore crucial to pending NASA 
projects (e.g., space station, lunar outpost, hu­
man missions to Mars). Such systems are also 

mailto:mckay@cl.uh.edu
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likely to be used in large process control appli-
cations such as factory automation, power plant 
control, etc. 

In recent years numerous projects have addres-
sed one or more of the issues mentioned above. 
To meet the real-time requirements of embedded 
systems, for example, advanced scheduling tech-
niques have been developed (e.g., rate monotonic 
scheduling [37] and best effort decision making 
[20]). The requirements of distribution, on the 
other hand, are addressed by new and more po-
werful networking hardware and Communications 
protocols such as the Open Systems Interconnec-
tion Model [33]. Reliability and safety are addres­
sed by advanced software features such as distri-
buted nested transactions [24], while the needs of 
non-stop operation and dynamic upgradeability 
[44, 42] are addressed by modular approaches to 
operating system organization. 

Because of the complex way in which the above 
characteristics are interrelated in embedded sy-
stems, however, it is not always possible to use 
these tools and techniques together in a system 
which exhibits several, if not ali, of these pro-
perties. Often a technique which is very success-
ful at solving one particular problem cannot be 
used with another technique developed to solve 
another problem because of the way they over-
lap and interact. The different techniques, and in 
particular the combination of technologies, have 
the potential to introduce new problems or exa-
cerbate others. This difRculty is compounded by 
the fact tha t systems of this kind are inherently 
complex and typically very large. In fact, some of 
the largest software systems to date fit into this 
category. 

For this reason, rather than tackling individual 
aspects of the problem of supporting the evolu-
tion of non-stop, distributed, real-time, MASC sy-
stems, the MISSION1 project has focused on de-
fining the overall development strategy and infra-
structure into which such solutions will fit. Speci-
fically, this work has two main thrusts . The first 
part is to lay the foundation for a new generation 
of integrated systems softwarefor the target envi-
ronment in which MASC computing applications 
are deployed and operated. The second part is 
to define an accompanying infrastructure which 
is capable of supporting the construction, verih-

MlSsion and Safety crltical SuppOrt ENvironment 

cation, reuse and maintenance of the kind of soft-
ware artifacts required in the target environment. 
The MISSION approach is believed to be unique 
in the integration of these advancements across 
the three environments. 

This paper provides an overview of the MIS­
SION approach for supporting distributed, non-
stop MASC systems with a particular focus upon 
the systems software support for applications exe-
cuting in the target environment. Before descri­
bing the approach itself, however, we first describe 
the main issues that arise in the construction and 
maintenance of this type of system. In addition 
to providing a definition and description of each 
issue, we identify some of the applicable termino-
logy and technologies. The following section then 
describes the MISSION strategy for dealing with 
these issues, first introducing the general context 
in which MASC software is developed, operated 
and maintained, and then describing the target 
architecture. We conclude by describing each of 
the subsystems making up this architecture. 

2 Principal Issues 

Important issues and requirements for MASC 
computing systems operating in hostile enviro­
nments have been discussed in publications such 
as [1, 14, 36, 38]. This section discusses. only five 
of the principal issues: Me cycle approaches; di­
stribution; safety; reliability, security and inte-
grity; and fault tolerance. 

Clearly, the requirements for the project as a 
whole are driven by the target environment. The 
Me cycle requirements for the integration enviro­
nment, which serves as the site from which the 
target is monitored, controlled and updated, are 
principally driven by the need to provide safe 
and affordable support for the target environment 
over its complete Metime. The requirements for 
both the target and integration environments are, 
in turn, the principal drivers of the life cycle re-
quirements of the host environment, which is the 
plače where the initial application development 
and testing takes plače. Since the entire set of Me 
cycle requirements for this class of MASC compu­
ting applications and systems will probably never 
be known in advance, an iterative approach to Me 
cycle support is essential. 
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2.1 Life Cycle Approaches 

As might be expected, one of the major deficien-
cies in the current state of the practice for this 
domain is the lack of predictablv-dependable, in-
tegrated approaches [11, 23, 29]. Such approaches 
should be traceable, controllable, and applied ite-
ratively from the system's initial inception thro-
ugh to its retirement. MISSION's goal of defming 
and verifying such approaches is mirrored in other 
projects such as Spring [11] and the PDCS project 
[29]. 

An important goal of MISSION is to demon-
strate that an object-oriented discipline can be 
used to control the complexity of this MASC tar-
get environment. Related issues include the appli-
cation of the object-oriented discipline to the de­
sign of the generic architecture for the target en­
vironment systems software. Of particular im-
portance is the evolution of a MASC kernel for 
this svstems software [26, 39, 29]. The kernel is 
intended to provide a small but powerful set of 
mechanisms designed especially to support trac-
table, rigorous reasoning about MASC functions 
and systems. Support for such reasoning is cri-
tical for the infrastructure in the integration and 
host environments. In addition, safe and affor-
dable approaches should consider the integrated 
issues of the software, (both applications level 
and systems level), the hardware,,communication 
links and human-machine subsystems as well as 
interactions with the environment in which the 
system is deployed and operated. Techniques cur-
rently addressing these system level issues are not 
well integrated. The Alpha project [26] shares the 
goal of using the object paradigm to develop sy-
stems software tha t supports tractable, rigorous 
reasoning about MASC properties. 

2.2 Distr ibut ion 

Providing support for distributed operations is 
both a problem and an opportunity. Distribution 
should facilitate new and more powerful forms of 
fault tolerance along with opportunities to im-
prove performance for real- time command and 
control systems [30, 41]. Related issues include 
when and how to assign software components to 
phvsical processing sites [5] and what support can 
and should be provided for migrating components 
among processing sites [45]. This support must be 

integrated with the ability to dynamically evolve 
and reconfigure both the applications and the sv­
stems software in the non-stop, distributed target 
environment (DTE). Unfortunatelv, no known sy-
stem currently integrates a full set of acceptable 
solutions to these requirements with the needed 
attention to safetv. 

The need to capture a broad spectrum of in-
formation for system objects is even more crucial 
when real-time decisions are to be made [40]. In 
a distributed system the universal system state 
changes faster than can be communicated thro-
ughout the system [15]. Furthermore it may ne-
ver be possible to "snap-shot" a view of the en-
tire system state at any point in time. Decisions 
therefore must often be made in environments of 
incomplete and sometimes inaccurate da ta [20]. 
The goal of safely supporting dvnamic evolution 
and reconfiguration of non-stop, distributed sy-
stems is shared by the Real Time Mach project 
[43]. 

2.3 Safety 

The following working. defmition of safety is used 
in this project "safety is the probability tha t a 
system, including ali hardware, software, com-
munication links, human-machine subsystems, 
and interactions with the environment, will pro­
vide appropriate protection against the effects of 
faults, errors, and failures which could endanger 
life, health, property, or the environment." Safety 
depends upon related issues such as integritv, re-
hability, security and others to be discussed in 
the following sub.-.ections. Safety cannot be gu-
aranteed, especially not for the class of MASC 
computing applications under discussion in this 
paper. Many important risks, nevertheless, can 
be managed to improve the probability of susta-
ining safety across the life cycle [28, 7]. MISSION 
supports the traditional goal for aerospace appli­
cations that no single point of failure can endan­
ger a mission and no two points of failure can 
endanger safetv. 

Safety is the most important aspect of any di­
stributed MASC computing system. The system 
must guard itself against any event or action, in-
tentional or accidental, tha t compromises its sa-
fety [6]. Safety requirements should be considered 
at each point of the system's life cycle [19, 34]. 

The ultimate aim of the work reported in this 
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paper is to define a small but powerful set of 
constructs that can be used to compose MASC 
computing applications and systems. These con­
structs are being deftned to support safety proper-
ties. Systems composed of such constructs should 
facilitate tractable, rigorous reasoning about sa-
fety. The MISSION project is fairly unique in its 
emphasis on evolving and verifying approaches to 
composing safe, non-stop, real tirne, distributed 
systems. 

2.4 Reliability, Security and Integrity 

The safe and affordable support of lives, health, 
property, environment, and mission in the target 
environment depend upon system level reliability, 
security and integrity. System reliability refers to 
the ability of the system to function under stated 
conditions for a stated period of tirne [25], and 
should be maximized for MASC applications and 
systems. This requires more than certihcation of 
correct software components and highly reliable 
hardware components. It also requires systems 
level design for fault tolerance and survivability 
[16, 31]. 

System security refers to the protection of the 
system from accidental or malicious access, use, 
modification, destruction, or disclosure [9]. Dis­
tributed systems which support a diverse group 
of users are particularly vulnerable to problems 
which result from improper access to information 
and other resources. At the minimum, protection 
is necessary for inadvertent access due to program 
or operation error. At the other extreme, delibe-
rate disruption must be prevented. The MISSION 
project seeks to provide security to at least the 
multilevel security class B3 of the DoD stand-ard 
for security [9]. Such security should be suppor-
ted within the target environment and in ali its 
interactions with the integration environment. 

System integrity refers to the ability of the sy-
stem to perform its intended function irrespec-
tive of changes in its operational environment 
[32, 8, 31]. The MISSION approach for ensu-
ring integrity in the target environment builds 
upon research in executable assertions[35]; moni-
tors [18]; checkpointing and recovery schemes [21]; 
and distributed, nested transactions [24]. The 
approach also introduces the concept of the inte­
gration environment. These aspects of the appro­
ach are discussed in more detail in the following 

section. 

2.5 Fault Tolerance and Recovery 

In a perfect world, functionally correct softv/are, 
hardware, communication links, and human ma-
chine subsystems would operate safely and re-
liably in their intended environment. TJnfortu-
nately, in the domain addressed by MISSION, 
faults, errors, and failures will occur which co-
uld be disastrous if not detected and handled pro-
perly. MASC systems are needed which can tole-
rate such problems or, when the problems cannot 
be tolerated, enact survivability policies. 

A failure means that a functional unit can no 
longer satisfy its requirements at run-time, and 
may be caused by a defect in the softv/are design 
or implementation. A fault occurs at run-time 
and may leave errors in some part of the system, 
and may sometimes lead to failures. Detection 
may refer to the detection of either a fault, an 
error or failure [27]. Recovery refers to the process 
of restoring normal operation after the occurrence 
of a fault or failure [21]. 

Classes of faults, errors, failures, and their 
combinations should be identified and prioritized 
according to their probability of occurrence du-
ring execution, and the consequences of not pro-
perly dealing with them [7, 12]. A safe system is 
not only able to monitor its s tatus and detect an 
occurrence of such classes as soon as possible, but 
can also analyze and control the propagation of 
the effects and recover safely. 

The fundamental issue behind MASC softv/are 
support is handling the consequences of faults. 
Two approaches are commonly identified: fault 
tolerance and fault avoidance. Fault avoidance 
depends on ultra-reliable hardv/are, early detec­
tion of low-level faults with redundant processing, 
and the ability to use this redundancy to mask 
faults in the system from its environment. Spe-
cincally, the faults are masked from the system 
state vectors. Avoidance techniques are valuable 
but not sufficient [13, 41]. 

Large, complex systems with intricate dynamic 
interactions severeb/ limit the ability of fault avo­
idance to assure safe and correct performance. 
Even if systems v/ith millions of lines of defect-free 
code could be built (and they currently can not) , 
they would not execute v/ithout faults, errors and 
failures throughout a long, non-stop, operational 
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lifetime. Some combination of hardware failure, 
communication links failure, operator errors, la-
tent software defects or acts of providence will 
cause problems at runtime. Many of these can be 
tolerated if the software is built to do so. Others 
cannot be tolerated but survivability can be maxi-
mized if the software is so designed [26]. 

Fault tolerance is a complementary approach 
to fault avoidance. Fault tolerance is based upon 
the assumption tha t any computation might be-
come defective and result in an erroneous system 
state vector. Either forward or backward reco-
very schemes may be used to restore the system 
to a safe and correct state. Since the possibi-
lity for the introduction of such problems exists 
at ali levels of the software hierarchy, it should 
be considered and addressed at aH levels. In so 
doing, the ability to manage or at least mitigate 
the effects of faults, errors and failures throughout 
large and complex systems may be made possible 
[4, 12, 13, 16, 17, 41]. The MISSION goal to le-
verage combinations of fault avoidance and fault 
tolerance in support of MASC requirements is si-
milar to a goal of the MARS project [17]. 

3 The MISSION Approach 

The previous section has described some of the 
principal issues involved in the construction and 
maintenance of distributed, non-stop MASC sy-
stems. In this section we provide an overview 
of the MISSION approach for tackling the issues, 
and integrating the various separate technologies 
tha t have been developed to date. In particular, 
we describe how the MISSION approach addres-
ses the need for precise (semantic) modeling, three 
computing environments, and a generic architec-
ture for the systems software that executes MASC 
applications. 

3.1 Semantic Model ing 

As depicted in Figure 1, the key requirements ori-
ginate within the distributed target environment 
(DTE) , flow traceably and cumulatively across 
the integration environment to the host enviro­
nment and back. System level modeling is funda-
mental to improved understanding and progress 
toward safe solutions. The need for such mode­
ling extends beyond the final executing system, 

and encompasses also the interrelated processes 
that produce the improved solutions. Such mo­
deling of products and processes has implications 
for aH three environments in the MISSION appro­
ach. 

A key requirement for an integrated solution 
is the capability to model system level com-
ponents and interrelationships among software, 
hardware, communication links, human-machine 
subsystems, and their operational environment. 
The representation of such svstem level compo-
nents and their interrelationships should facilitate 
automated support for tractable, rigorous reaso-
ning about their MASC properties. 

To respond to these needs, the MISSION team 
has adapted an object-oriented modeling appro­
ach developed by Embley, Kurtz and Woodfield 
[10] and augmented the approach with additi-
onal semantics in entity- attribute/relationship-
attribute (EA/RA) form. The approach by Em-
bley et. al. is based upon a formal deflnition 
and depicts object-oriented models in three views. 
Object-relationship models provide the structu-
ral view of the part of the system being mo-
deled. The behavior of each object class that 
appears in the object-relationship models is de­
picted in an object-behavior model. Interacti-
ons among object classes are depicted in object-
interaction models. Although the combination of 
the three modeling views does support a large de-
gree of tractable, rigorous reasoning about the sy-
stems being modeled, the semantics defined in the 
approach do not provide sufficient granularity to 
capture ali details of interest in the MISSION pro­
ject. Examples include redundant objects, bin-
dings between software and hardware, workload 
profiles, reconfiguration of systems resources, 
etc. An entity- at tr ibute/relationship-attr ibute 
(EA/RA) form of representation which has been 
systematically extended to include object classes, 
relationship sets, states, transitions, interactions 
and attributes is a feasible choice for represen-
ting these system level components, interrelati­
onships, and their MASC properties. The IRDS 
standard [3] for this form of semantic representa­
tion has been legally extended by the MISSION 
team to meet these needs. However, a discipline 
is required to systematically address the inherent 
complexity within the problem space. The same 
discipline should also control the associated com-
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plexity of the processes of evolving and sustaining 
safe and affordable solutions. 

As a scenario to illustrate the modeling disci­
pline and processes advocated by MISSION, con-
sider a proposal to replace and to add types and 
instances of vehicles in NASA's Space Transpor­
tation System. The MISSION process would be-
gin with domain analysis to determine the num-
ber of product lines needed (types of vehicles in 
this example) and the variations needed among 
instances of each type. Along with attributes such 
as costs, benefits, risks, opportunities, e t c , this 
"business model" would be captured in object-
oriented form and conveved to the client. Ba-
sed upon priorities, constraints, and other busi­
ness and pohtical factors shaping decisions and 
commitments, the business model would be ma-
pped to a scoping model to identify which pro­
duct lines and their variations will be evolved, 
when, and in what order. The object-oriented 
scoping model would then be mapped to a "con-
cept of operations" model for each product line 
and its variations. System requirements mode­
ling for the domain would then proceed by re-
vising the concept models to represent common 
requirements and constraints as-well-as differen-
ces among the product lines and their variations. 
Later, this "domain model" would be mapped to 
a partitioning and allocation of requirements and 
constraints among models of: software, hardware 
and Communications, and human interfaces. This 
stage would be followed by the creation, evalua-
tion and selection of generic architectures appro-
priate for the domain. The domain engineering 
process would continue and would eventually be 
followed by application engineering to create spe-
cific instances of the product lines. 

Some important points to be noted about this 
scenario are as follows. First, ali products of the 
process are represented in an extended object- ori-
ented form (i.e., extended via E A / R A notations) 
whether the products are business models, models 
of svstem requirements and constraints, or models 
of software, hardware and Communications, hu­
man interfaces, and interactions with the enviro­
nment. Second, a complete set of semantic infor-
mation typically requires three views of the object 
models. Third, tools exist to facilitate such mode­
ling and reasoning about the models. Fourth, the 
domain engineering processes and the application 
engineering processes that evolve these products 
are also represented as object models. 

Precise semantic modeling using an object-
oriented discipline provides the foundation for 
constructing system level fault tolerance and avo-
idance. Systems built from such models can also 
be designed and verihed to enforce policies for 
survivability when faults and failures occur that 
cannot be tolerated or avoided. For example, 
to support fault tolerance, classes of faults, er-
rors, and failures can be identified and modeled 
for the software, hardware, communication links, 
human-machine subsystems and operational envi­
ronment that comprise the intended MASC com-
puting system. Assertions can be formulated to 
provide context sensitive detection and responses 
for certain classes of faults, errors, or failures -
namely, those classes that are not only likely to 
occur but which will also produce unacceptable 
behavior and effects if they not properly handled. 
One or more monitors to enforce these assertion 
checks and responses can then be generated to 
accompany the functional software to the target 
environment. 

Of the research projects that focus on domains 
overlapping with that of MISSION, MISSION is 
somewhat unique in its emphasis on process and 
methodologies tha t leverage object modeling as 
a unifying paradigm at the systems level. Alpha 
shares the commitment to software objects and 
Spring shares the commitment to tools and me-
thods for the host and the target environment. 

3.2 Three Environments 

Developers of software for embedded systems have 
traditionally been concerned with two enviro­
nments: the host environment (the computers on 
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which ali software requirements analysis, design, 
implementation, and testing is performed) and 
the target environment (the embedded compu-
ters on which the software is intended to execute). 
However, these two types of environments are in-
sufficient for MASC systems which are developed 
by several different organizations, and which are 
required to execute non-stop. Typically there will 
be many "host" environments, each used to de-
velop a part of the final system. For example, 
different host environments could be responsible 
for different (sub)applications to be added to the 
existing system. To enable the products from the 
various "hosts" to be combined, and to provide an 
interface to the software executing on the target 
environment, MISSION envisions a third enviro­
nment - the monitoring, integration and control 
environment (MICE). The provision of a coherent 
framework for modeling the structure and beha-
vior of MASC systems impacts ali three enviro­
nments throughout the full life-cycle of the sy-
stem. 

The Monitoring, Integration and Control Envi­
ronment (MICE), is intended to mitigate the risk 
in evolving and sustaining remoteb/ distributed, 
non- stop, MASC computing applications and sy-
stems. The MICE serves as an interface between 
the various hosts and the target environment and 
is the environment where software from the hosts 
is integrated. The MICE additionally serves to 
safely upgrade software components in the target 
environment, monitor the performance of the tar­
get environment, and possibly assist the target 
environment in performing major reconfigurati-
ons in response to faults. To properly perform 
these tasks the MICE must have up-to-date mo-
dels of the structure, functionalitv, behavior and 
constraints of the elements of the executing tar­
get environment. The MICE must also present 
an appropriate command interface, and provide 
powerful diagnostic support. 

The MISSION project is believed to be unique 
in its attention to the integration environment wi-
thin a research context, although environments of 
this type have historically been an important part 
of NASA applications (e.g., the Mission Control 
Center for shuttle operations). 

3.3 Generic Architecture 

A generic solution architecture is proposed for the 
domain of MASC computing applications and sy-
stems addressed by the MISSION research. As 
shown in Figure 2, the target environment is a 
distributed system composed of interacting, mul-
tiprocessor clusters. Local area networks (LANs) 
may be configured from these clusters, and wide 
area networks (WANs) may be configured from 
these local area networks. The applications soft-
ware on each cluster is supported by systems soft-
ware providing intra- and inter-cluster communi-
cation and reliable execution in the presence of 
component failures. To limit the damage caused 
by faults, and to increase the feasibility of deve-
loping and sustaining such a system, the software 
on the processor clusters is separated into the fol-
lowing "firewalled" partitions2 -

1. MASC Kernel 

2. Distributed Application Svstem (DAS) 

3. Distributed Monitoring svstem (DMS) 

4. Distributed Policy Svstems (DPS) 

5. Distributed Information System (DIS) 

6. Distributed Communication System (DCS) 

If, for example, a new space vehicle were requi-
red, the number and type of applications and the 
profile of the intended workload can be used to 
determine hov/ many clusters (and with what re-
sources), and what LAN and WAN resources will 
be needed. 

» 
Much of the research and development of dis­

tributed systems has evolved from an assumption 
of single processor nodes interconnected by LANs 
and WANs. Even multiple processor nodes have 
frequently been configured as "N redundant" pro-
cessors to avoid certain types of faults. In effect, 
such processors process a single instruction and 
data stream with a "voting mechanism" to assure 
majority rule (e.g., the primary flight control sy-
stem of NASA's space shuttles). 

As a partial result of the "single processor 
node" mind set, a t tempts to evolve distributed 

2By firewalled, we mean that certain steps have been 
taken to ensure tliat a fault, failure or error in one partition 
does not adverselv affect other partitions. 
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Figure 2: Generic Architecture 

systems with tightly constrained, real-time con-
trol functions have not been widely successful. 
Such systems typically experience severe perfor-
mance problems in meeting their functional requi-
rements. At tempts to integrate a software based 
approach to supporting systems level fault tole­
rance tend to exacerbate the overhead problem 
responsible for the poor performance. 

Much of the performance overhead in a single 
processor node is associated with the tirne requi-
red for context switches. Unfortunately, the eli-
mination of context switches can result in the loss 
of opportunities to help prevent faults that occur 
in the execution of one instruction stream from 
corrupting the subsequent execution of other in­
struction streams. A key concept of the MISSION 
approach is to "flatten" the traditional software 
architecture to take advantage of multiprocessing 
clusters as illustrated by the cluster architecture 
in Figure 2. If, for example, such a cluster was 
located at a geographical site with requirements 
for four local, hard constrained, real- tirne con-
trol functions, then as many as four or more pro-
cessors could be assigned to the parallel proces-
sing of these control functions. Even if interaction 
existed among the four functions, parallel proces-

sing may offer benefits over a single processor. In 
the MISSION architecture, the units of functional 
code are intended to execute in parallel with co-
routines on other processors that check for faults, 
errors, or failures. As long as no flaws are de-
tected, only a minimal performance overhead is 
added to the execution of the functional code of 
the applications. Stili another performance bene-
fit may be derived by also allowing parallel exe-
cution of services and resources tha t are shared 
among the applications. For example, persistent 
information and Communications may be organi-
zed in such as way as to maximize parallel proces-
sing among these subsystems and the applications 
as indicated in Figure 2. 

The MISSION goal to exploit parallel proces-
sing capabilities among LANs and WANs of mul­
tiprocessing clusters is also a goal of other pro-
jects such as Alpha, Spring and Real-Time Mach. 
The approach to "fiattening" the architecture to 
achieve the intended throughput improvements is 
particularly evident in Alpha and MISSION. 

3.3.1 T h e Clusters 

MISSION clusters have the following properties. 
Clusters: 

— do not share physical memory, 

— have access to a hierarchy of memory subsy-
stems including stable storage controlled by 
transaction mechanisms, 

— may be connected to any number of LANs 
and WANs, 

— may have predetermined types of hardware 
resources, including processors, added to a 
cluster without changing systems software, 

— may fail completely or partially, 

— may be repaired and returned to full service, 
typically without stopping processing, 

— may be added/removed at any tirne, 

— may have changes to applications and sy-
stems software made without stopping pro­
cessing, and 

— may control access to both physical and vir-
tual svstems resources. 
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3.3.2 T h e Communica t ions Links 

MISSION Communications links must be able to 
tolerate faults, errors and failures which include 
messages which have lost parts , garbled parts, 
out-of- order parts , duplicated parts, or parts 
which are arbitrarily delayed. 

3.3.3 M I S S I O N C o m p u t i n g S y s t e m s 

MISSION computing systems are expected to to­
lerate, to a specified level, combinations of faults, 
errors and failures to include: Communications 
failures, abortion of application and system pro­
gram components, crashes of one or more clusters 
participating in an application, and lock cycles. 

3 . 4 T h e K e r n e l 

The MASC kernel is a critical part of the MIS­
SION approach to improving runtime support for 
the execution and evolution of MASC functions 
and components in the distributed target enviro-
nment (DTE) . It is similar to the"microkernels" 
of other projects such as Alpha, Mars and Spring, 
and provides the foundation on which the firewal-
led subsystems are built. These mechanisms di-
rectly affect the ability of the infrastructure in the 
integration and host environments to support the 
DTE. This is because the integrated approaches 
to semantic modeling are based upon the generic 
architecture of the D T E systems software. 

The kernel is responsible for encapsulating 
hardware and providing mechanisms to support 
the policies, operations, and interactions of the 
other five firewalled partitions. Any communica-
tion entering or leaving a partition is a result of 
invoking the kernel for a message passing service. 
No direct communication among partitions is al-
lowed apart from with the kernel. The five fire-
walled partitions, shown in Figure 2, (DAS, DIS, 
DCS, DPS and DMS) are also referred to as the 
five nrewalled subsystems. Thus, for example a 
DAS component that wishes to request a resource 
from the local DIŠ or from a remote DAS compo­
nent must invoke a message passing service from 
the kernel. This modularity allows rigorous reaso-
ning about the kernel independent of the sources 
or destinations of messages. Since the properties 
of the structure, functionalitv, behavior and con-
straints of the kernel can be assured, the same 

approach to rigorous reasoning can be indepen-
dently extended to each of the five firewalled sub-
systems. 

As in [2], MISSION treats the kernel's message-
passing relationships with the other subsystems 
as explicit, first class semantic entities. Protocols 
are used to describe allowable interactions, their 
constraints, and their responses to constraint vio-
lations, much as in the Mars project. In contrast 
with the Mars approach, however, MISSION does 
not assume a clock that is universally available to 
ali clusters in real tirne. 

3.4.1 Twelve Features of t h e Generic 
Archi tec ture 

The MISSION system architecture embodies 
twelve features which are either not found at ali in 
today's systems software or are not found as an in­
tegrated set. There are at least two important re-
asons why this set of features is used. First, they 
facilitate the provision of runtime support needed 
for the domain of MASC computing applications 
and systems addressed by the project. Second, 
they facilitate precise modeling and the associated 
discipline of rigorous reasoning about the system. 
These twelve features are identified below: 

F l . Model-based reasoning 

F2. Firewalled partitions of applications and 
subsystems 

F3. Tailorable interfaces based on classes, 
objects and messages 

F4. Life cycle unique identification of classes, 
objects and messages at runtime 

F5. Extensible and modifiable sets of classes, 
objects and messages at runtime 

F6. Separation of policies and mechanisms 

F7. Multiple and adjustable levels of security 
and integrity 

F8. Synchronous and asynchronous Communica­
tions mechanisms 

F9. Adaptable policies for scheduling, redun-
dancy management and the management of 
other runtime services and resources 
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F10. Stable storage for checkpointing and reco-
very 

F l l . Distributed, nested transactions 

F12. "System" level fault tolerance and surviva-
bility through systems software. 

We elaborate upon these features below. 

F l . Mode l -Based Reasoning 

MISSION engineering processes and products em-
phasize semantically rich, object-oriented models 
to support tractable, rigorous reasoning about 
MASC properties. These models can be partially 
leveraged in the target environment since the ker-
nel contains a finite set of mechanisms designed 
especially to support the interpretation, mainte-
nance and modification of runtime models. For 
example, runtime policies are maintained in the 
DPS as models. In addition, current configura-
tion details are also maintained as on-line models. 
When an overload condition arises at a cluster, in­
terpretation of the overload policy in terms of the 
current configuration will determine the response 
(e.g., load sharing with another cluster or local 
load shedding). 

Although model based reasoning is certainly 
not new, MISSION is believed to be one of the 
flrst projects to investigate its application to non-
stop, distributed, MASC systems. Initial studies 
have focused upon its use in configuration ma-
nagement For example, a resource might initiate 
one particular recovery response under one set of 
conditions, and a different recover response un­
der different conditions. Since most elements of 
the workload and system configuration are well-
defined in the D T E models, context sensitive con-
tingency determinations can often be made in pa-
rallel with workload processing and be available 
for rapid response in the presence of one or more 
anomalies of a predetermined type. 

F2. Firewalled Partit ions 

Firewalled partitions are used in MISSION to 
maximize the opportunities for identification, is-
olation, and selection of recovery capabilities. In 
the host environment, objects are created and as-
signed to one-and-only-one of the five firewalled 

subsystems or to the kernel. As the semantic mo­
dels of the DTE applications and system are evol-
ved, these objects are further allocated to specific 
clusters. This partitioning and allocation infor-
mation is exported to the DTE for use by the ker­
nel and the five subsystems. This means that if, 
for example, an application object executing in a 
cluster's DAS requests information from an object 
in the local DIS, the message is passed from the 
first subsystem to the second by invoking the ker­
nel. Similarly, if an object in the cluster's DAS re-
quests information from a DAS object in a remote 
cluster, the kernel recognizes that a local object is 
requesting information from a remote object and 
invokes the appropriate operation. The message 
is passed to the local DCS where a communication 
object will prepare to effect the remote communi­
cation. 

The result of this organization is to isolate each 
partition of objects by explicit message passing 
through the kernel services. For example, suppose 
a DAS object passes a message to a DIS object 
which accepts the message and then fails. The 
opportunities for tolerating the failure are enhan-
ced since the DAS object was preserved in a heal-
thy state when the message was sent. In much the 
same way, different applications vvithin the DAS, 
different information systems within the DIS, etc. 
are also protected from corruption within their 
own subsystems. 

F3. Tailorable and Extensible 
Interfaces 

Dynamic extensibility and other forms of dyna-
mic reconfiguration are facilitated by this feature. 
Each segment of the generic architecture for the 
DTE systems software interacts with other se-
gments of the local cluster and with peers in re­
mote clusters through carefully defmed interfaces. 
These interfaces are specified in CIFOs (Cata-
logues of Interface Features and Options). The 
interfaces are tailorable in that the given set of 
applications and system requirements for a given 
cluster determine which features and options will 
be selected as CIFO subsets for each cluster. The 
interfaces are extensible in that precisely modeled 
rules exist for extending these CIFOs as needed 
over tirne. As an example of such rules, no device 
driver can be replaced until certain preconditions 
are satisfied such as: "Complete ali input /output 
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operations in progress when the replacement com-
mand arrives until a 'recoverable' state is reached. 
Then effect the replacement." 

F4. Life Cycle Unique Identification 

This feature also supports tractable and rigo-
rous reasoning about the MISSION models. In 
the DTE, classes templates, executable images 
of objects and messages are uniquely identifia-
ble. For example, suppose an object is a part 
of an application that requires about five minu-
tes to complete and that is intended to run every 
hour on the hour. The executable image reta-
ins its unique identification but, in addition, each 
hourly activation receives a different thread-of-
control identifier. Each thread assignment is pro-
vided a unique identification so that the effects of 
each activation are traceable. Similarly, an itera-
tive object structure may complete and send the 
same message structure many times during the 
life span of each object. In the MISSION appro-
ach, the effects of each message are intended to 
be traceable through the unique identifiers of each 
message, source, and destination(s). The element 
of the MISSION approach has been strongly in-
fluenced by the work of Moss [24]. 

F5. Extens ib le and Modifiable 
R u n T i m e Sets 

This feature complements ali the preceding featu-
res, but is particularly germane to: "F3. Tailora-
ble and Extensible Interfaces". The ability to tai-
lor and extend CIFOs in the host and integration 
environment is important, but a corresponding 
capability is needed for objects inside any cluster 
partition of an operational, non-stop DTE. More 
specifically, the interfaces to each segment of a 
cluster architecture should allow existing class de-
finitions internal to the segment to be modified or 
new ones to be added. Once the modified or new 
class definitions are installed, the interfaces sho­
uld encapsulate the ability to create new objects 
and messages of the new and modified classes. In 
addition, the interfaces should support the retire-
ment and replacement of old classes, objects, and 
messages as needed. This mechanism is analogous 
to the polymorphism/dynamic binding mechani-
sms of object-oriented languages 

F6. Separation of Policies and 
Mechanisms 

This feature not only facilitates tractable, rigo-
rous reasoning, but it also facilitates the domain 
and application engineering processes through se­
paration of concerns. The MISSION approach 
partitions and allocates policies to various mem-
bers of the firewalled subsystems. The shared me­
chanisms used to effect these policies are in the 
kernel. For example, the DPS is intended to con-
tain polices for the management of shared services 
and resources within and among clusters. These 
policies are encapsulated within DPS modeling 
objects. The effects are somewhat analogous to 
earlier techniques of operating systems enforcing 
"table driven" policies. The interpretation and 
enforcement of the policies encapsulated by the 
firewalled subsystems is dependent upon the uti-
lization of the kernel mechanisms. This feature is 
also supported in Alpha. 

F7. Multi level Security and Integrity 

Ali threads-of-control are created, assigned, su-
stained and retired via the MASC kernel. A re-
quirement for each active object (i.e., one with 
its own thread-of-control) is to maintain a regi-
stration of its unique identity and its current ca-
pabilities. This is particularly important when 
the active object is about to request a service of 
another object. A unique identity is required for 
the destination object and its services and reso­
urces. In addition, two other points should be 
noted. First, the match of a sender's capabilities 
to a receiver's list of required access rights should 
be enforced for each access. Second, these rights 
may sometimes have to be temporarily sacrificed 
in the cause of higher level policy issues related 
to a system's fault tolerance and survivabilitv. 

F8. Synchronous and Asynchronous 
Communicat ions Mechanisms 

The domain of interest to MISSION researchers 
includes applications requiring telemetry data to 
be broadcast as it becomes available and without 
regard for the status of intended receivers at the 
tirne of the broadcast. The domain also inclu­
des applications such as multidimensional colli-
sion avoidance and proximity operations tha t re-
quire hard constrained, real tirne synchronization 



18 Informatica 19 (1995) 7-24 C.W. McKay et al. 

and control. The literature on communication 
mechanisms to support distributed and concur-
rent processing requirements reveals two distinct 
solutions with certain advantages claimed for each 
[22]. 

The first type of mechanism supports the use 
of asynchronous transmissions and receptions wi-
thout blocking the sending process or the recei-
ving process(es). Instead, transmission is a čase 
of "send when ready and then proceed". Recep-
tion is a čase of "receive when ready, if message 
is available, and then proceed". Variations of this 
type of mechanism have also been studied. 

The second type of mechanism is used for 
two distinct cases of synchronous communication. 
The first čase involves an active object which 
calls for a service from a passive object (a pas-
sive object borrows its thread-of-control). This 
čase is analogous to a local thread-of-control in 
a "main" procedure calling a remote subroutine. 
Tha t is, the thread and its request are passed to 
the environment of the called subroutine. After 
"borrowing" the thread-of- control to execute, the 
passive object returns both the results and the 
thread- of-control to the calling environment. 

The second čase of synchronous Communica­
tions involves a need for synchronization and 
exchange of information among two-or-more co-
operating, active objects. This čase addresses, 
among other things, the issues of the Ada rende-
zvous among two cooperating threads-of-control. 
This support for multiple forms of Communicati­
ons is very different than the approaches taken in 
many other related projects such as Mars which 
only use datagrams. 

F9. Adaptable R u n t i m e Services and 
Resources 

The provision of shared system services and reso-
urces to an evolving collection of applications is 
intended to be based upon well-defined policies, 
configurations and circumstances. Some resour-
ces and services will be replicated to maximize 
availability and fault tolerance. Such redundancy 
will need to be managed at a variety of levels. At 
one extreme, the redundant copies could be ma­
naged as "hot standbys" which are ready to be 
substituted for the primary copy at any tirne. At 
another extreme, the redundant copy can be sub­
stituted for the primary copy only after processing 

is performed to prepare the "cold standby" to take 
over. Depending upon criticality, workload, and 
the status of system resources, the type and amo-
unt of redundancy is intended to vary according 
to adaptable policies. 

Another important aspect of adaptable poli­
cies is scheduling. Some real-time applications 
map naturally to a collection of periodic proces-
ses. Others are interrupt driven and are aperi-
odic. Stili others have sporadic service require-
ments that may be of varying frequency and dura-
tion. An important aspect of the approach, there-
fore, is the use of adaptable scheduling policies to 
maximize support for MAS C functions and com-
ponents under conditions that vary from normal 
to various types of emergencies. A similar feature 
is also found in Real Time Mach. 

F10. Stable Storage 

Fault tolerance among clusters of distributed 
MASC systems benefits from the next feature, 
distributed nested transactions. However, im-
plementation approaches to such transactions re-
quire stable storage. Stable storage has two cha-
racteristics that facilitate check pointing and re-
covery. First, it survives temporary losses of po-
wer. Second, it is always updated in an atomic 
operation. 

F l l . Distr ibuted, N e s t e d Transactions 

Fault tolerance among interactive, distributed 
processing clusters is facilitated by support for 
distributed, nested transactions [24, 26]. This is 
particularly true when a fault, failure or error can 
not be detected in a single state vector, but de-
pends instead upon detection of incorrect sequen-
ces of processing. Transactions bracket a named 
collection of operations between "Begin transac-
tion X" and "End transaction X". The effects 
of the transaction are to make the set of enclo-
sed operations appear to be a single atomic ac-
tion. That is, either ali of the operations complete 
successfully or the system can detect and reco-
ver from the effects of partial completion. Distri­
buted transactions support hierarchies of parallel 
and distributed operations. Nesting allows higher 
level transactions to be composed of sets of enclo-
sed transactions. Transactions of this kind can be 
used to provide fault tolerance and survivability 
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in the DTE, and also facilitate reasoning in the 
host and integration environments. Other related 
projects employing this mechanism include Alpha 
and Mars. 

F12. S y s t e m Level Fault Tolerance and 
Survivability 

The MISSION approach leverages systems soft-
ware to support true systems level fault tolerance 
and survivabilitv. Since object classes and relati-
onship sets are used to model software. hardware 
and Communications, human interfaces, and inte-
ractions with the environment, systems software 
monitors can be used to monitor and control sy-
stems level resources as appropriate. 

An important component of the MISSION 
approach is the concept of coroutines which asso-
ciate monitors in the DPS with functional objects 
elsewhere in the system. The job of the moni­
tors is to detect faults, errors, and failures as soon 
as possible and to then provide support for effec-
ting isolation, analysis, and recovery. Such detec-
tion is based upon assertions that are associated 
with MASC properties. These assertions may be 
about values of state or about sequences of state 
transformations. The Mars project also employs 
kernel-level mechanisms to support system-level 
fault tolerance. 

3.5 Firewalled partit ions 

As mentioned above, and illustrated in Figure 
2, the generic architecture employs five firewal-
led partitions that interact by means of the mes-
sage passing services provided by the kernel. In 
this subsection we outline further the role of each 
subsytem. 

Distr ibuted Applicat ions Sys tem 

The DAS is the firewalled subsystem containing 
MASC applications that are to be executed on 
the MASC computing system. The focus of the 
research in the D T E is on the generic architecture 
of the systems software rather than the DAS. The 
DAS developers are intended to leverage the fea-
tures and options of this generic architecture to 
improve runtime support of MASC functions and 
component s. 

Only two aspects of the DAS are within the 
scope of this research project. The first is the set 
of interfaces to the local cluster and to DAS pe-
ers in remote clusters. The second is the set of 
abstractions made available to applications pro-
gramming teams to improve safety and afforda-
bilitv. However, another important point should 
also be understood about a DAS partition of a 
cluster. Any component within a DAS applica-
tion is nrewalled from the other partitions and 
from other applications within the DAS. That is, 
different applications and partitions have no di-
rect means of communication, but must invoke 
a message service of the kernel. This additional 
firewalling of applications is also supported wi-
thin the other partitions and is used to facilitate 
tractable, rigorous reasoning about the individual 
parts of a partition. 

Distributed Information S y s t e m 

The DIS is responsible for managing shared 
and persistent information services and resour­
ces. Whenever information is shared by more 
than one application, access to the information 
is provided via a virtual interface set by reque-
sting services from the DIS. For example, a DAS 
component could request auni t of shared informa­
tion from the DIS by invoking a message service 
from the kernel. Also, some applications do not 
execute continuously and have requirements for 
persistent information. For example, a program 
that takes five minutes to complete may be sche-
duled to execute once every eight hours. At each 
execution, the program updates some information 
in the DIS that must persist between executions. 
In addition, the DIS manages shared and persi­
stent information on behalf of the systems soft-
ware. Examples include: performance and wor-
kload by cluster, LAN, WAN, and system; health 
and status of ..., etc. As with the other firewalled 
partitions, portions of multiple DISs may reside 
on the same cluster. Each DIS represented on the 
cluster is firewalled from the other DISs also on 
the cluster. 

The class of MASC computing applications and 
systems addressed by MISSION will typically be 
long lived. Many type definitions that will be ne-
eded in the future cannot be known when the sy-
stem is initially developed and deployed. Since 
non-stop operation requirements prohibit brin-
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ging the system down to recompile existing code 
in the context of the new type definitions, an al­
ternative is needed to upgrade the system. The 
approach under study is based upon controlled 
inheritance. A set of commands in the Distribu-
ted Command Interpreter is intended to allow the 
MICE to first extend/add the definitions and then 
create instances of the types. The reader should 
note tha t the problem of dynamic type extensibi-
lity is not limited to just the DIS. 

Distr ibuted Communicat ions Sys tem 

The DCS corresponds to the upper three layers 
and a portion of the fourth layer of the seven la-
yer ISO model for Open Systems Interconnection 
[33]. (The lower layers are encapsnlated as device 
drivers within the kernel.) The DCS is responsible 
for managing Communications services and reso­
urces among clusters, LANs and WANs. Within 
a cluster, whenever an applications component or 
a systems software component needs to commu-
nicate with a peer at another cluster, the DCS is 
responsible for effecting this communication. A 
virtual interface set shared with its DCS peers at 
other clusters is used to resolve issues of routing, 
congestion control, relocation, and other services. 
Such resolution is transparent to the applications 
components or to any systems software compo-
nents located outside the DCS partition. 

Distr ibuted Pol icy Sys t em 

The DPS is responsible for the evolution and en-
forcement of policies regarding the sharable servi­
ces and resources of the integrated systems soft-
ware. The DPS contains a library of policies 
which are used in conjunction with the mechani-
sms of the kernel to manage such issues as: con-
tention between local cluster priorities and uni-
versal system priorities, multiparameter schedu-
ling, emergency load shedding, dynamic recon-
figuration and others. An important premise is 
tha t support can be predictably and dependably 
provided for different policies needed by different 
applications if a known set of sufficient resources 
are available and if a known set of universal and 
local policies permit. This is somewhat similar to 
the approaches taken in Alpha and Spring. 

Distr ibuted Monitoring S y s t e m 

One of the most important and unique features 
of the MISSION "smokestack" model is the di­
stributed monitoring system. This contains the 
objects responsible for monitoring the correct exe-
cution of the application objects. In fact, monitor 
objects are also introduced to monitor the correct 
execution of system level objects. 

For any MAS C component or any set of com-
municating MAS C components in any of the other 
firewalled partitions, the engineers in the host en­
vironment are responsible for identifying those 
classes of faults tha t must be tolerated or tha t 
must invoke survival policies. Context sensitive 
assertion checks can then be generated to detect 
such faults at run tirne, and handlers can be pre-
pared to respond to such detections. These as-
sertions and handlers can then be combined into 
monitors. Together with policies in the DPS, they 
are responsible for system level fault tolerance and 
survivability. 

When a work module (i.e. an application or 
system module) is installed in the DAS, or other 
appropriate partition, the corresponding monitors 
are installed in the DMS. The work module and 
associated monitors are scheduled to run concur-
rently on separate processors, although the work 
module is modified to write key information about 
state values and state changes to designated bul-
letin boards as it executes. The monitor is pro-
grammed to read this information for its assertion 
checks, and as long as no violations are detected, 
the work module is allowed to continue. Howe-
ver, if a violation is detected, the corresponding 
policy is consulted and the appropriate handler is 
invoked. If the fault is entirely local to a single 
work object, then the associated monitor may be 
able to insure proper tolerance by itself. Howe-
ver, faults that will cause temporal, spatial, or 
value errors in other objects or faults among co-
operating objects are addressed by monitors tha t 
coordinate the activities of the monitors of the 
affected objects (i.e., monitors that monitor and 
coordinate other monitors). 

Another primary function of the DMS is to be 
the "window" to the target environment for the 
MICE. Under normal operation, the DMS will 
monitor the health and status of the clusters, 
LANs and WANs and report this information (via 
the DCS) to the MICE. Other normal facilities 
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that it will control or monitor include: the intro-
duction or removal of a new object to a cluster; 
the movement of an object from one cluster to 
another; linking, loading and starting new pro-
grams downloaded from the MICE; suspending or 
aborting threads of control; etc. Although other 
projects such as Mars have explored the use of mo-
nitors for fault detection at the cluster level, MIS-
SION is somewhat unique in its use of monitors 
to detect faults and coordinate recovery among 
multiple applications spanning multiple clusters. 

4 The Testbed 

The MISSION testbed ušes Sun workstations for 
the host and integration environments. A version 
of a Verdix Ada (1983) compiler that supports 
post- partitioning and distribution of code has 
been used to generate code for the target envi-
ronment. Although other processor types have 
been successfully used in this target environment 
(e.g., object-oriented processors by Ericsson), the 
major clusters consist of multiprocessing clusters 
of Motorola 68030s. „ 

5 Conclusion 

Distributed, non-stop MASC systems are some of 
the largest and most complex computer systems 
to have been tackled to date. As described in sec-
tion 2, they require many independent technolo-
gies, developed separately for smaller systems, to 
be brought together and integrated into a single 
unified whole. This integration, and the defini-
tion of the environment to support it, presents 
a major technological challenge. This paper has 
outlined some of the major issues which arise in 
the construction and maintenance of this category 
of embedded system, and has provided an outline 
of the MISSION approach to achieving this goal. 
This strategy has two principal components: the 
definition of a generic architecture for the target 
systems software, and the design of a supporting 
infrastructure and processes. 

A key component of the proposed infrastruc­
ture is the monitoring, control and integration 
environment (MICE) which bridges the gap be-
tween the traditional host and target environment 
used today for embedded systems. The MICE 

serves as the location at which new software com­
ponents and (sub)applications from the various 
contractors can be tested, assembled and eventu-
allv downloaded to become part of the executing 
MASC embedded system. To perform this func-
tion the MICE employs a set of precise semantic 
models which describe the current structure, func-
tionality and behavior of the executing system. 
Such semantic modeling pervades ali three enviro­
nments, over the full life-of the system, and forms 
the cornerstone of the MISSION software process 
used to develop and sustain distributed, nonstop, 
MASC systems. Each process is domain-specific 
and leverages the object paradigms for modeling 
ali aspects of the svstems across the life cycle. 

The paper also outlined the nature of the gene­
ric architecture for the multi- processor clusters, 
interconnected by LANs and WANs, which make 
up the distributed target environment. This ar­
chitecture is based on the principal of segregating 
functionally cohesive components into separate, 
firewalled, partitions which can only interact in-
directly via the special MASC kernel. Prelimi-
nary prototypes of these subsystems have demon-
strated the feasibility of the architecture and the 
overall approach, but further work is needed to 
elaborate upon the detailed make up of the sepa­
rate subsystems, and to evaluate the concepts in 
a pilot project. 
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MOSCA is an experimental la.ngua.ge that equips the Vienna Development Method speci­
fication language VDM-SL to be applicable in the area of developing distributed, parallel 
and real-time systems. As is generally known, plain VDM is not adequate for these ap-
plication areas since it lacks facilities to specify multiple threads of control and does 
not allow the use of tirne within specifications. MOSCA is designed to overcome these 
restrictions. This paper presents an overview of some of the process specification ca-
pabilities of the notation. It highlights the semantic basis and treats in particular the 
interpretation of loosevaluespecification and looseprocessspecification. 

1 Introduction and overview 

In the last two decades many techniques and 
methodologies were developed with as common 
aim the systematic and orderly development of 
computer software. With the emerging techniques 
came the recognition tha t the development of soft-
ware was not a simple huge homogeneous activity, 
but should be split up in different phases. Analy-
sis results in a description of a solution (a model) 
which after thorough design leads to the desired 
software product. 

Research over the last 20 years has developed 
formal techniques for the modeling and design 
of sequential systems. These techniques are ac­
cepted within the research community and are 
adopted in many industrial applications. Sequen-
tial systems can be characterized as computation 
oriented systems having strictly limited and well-
guarded interaction with their environment, as 
opposed to computer systems with an ongoing in­
teraction with their environment. 

Unfortunately systems of the latter class cannot 
be sensibly viewed within the sequential frame-
work. Most of these systems are highly concur-
rent, distributed and often have real-time proper-
ties. The development of these systems is far more 
complex than the development of data driven sys-

tems. Many authors like e.g. B R O O K S [6], P A R -

NAS [18], and L E V E S O N [13] have stressed that 
standard techniques currently used in the devel­
opment of data driven systems do not match the 
demands put on development techniques for real-
time and distributed systems. Even worse, at-
tempts to build such systems using the same ap-
proaches developed and used for da ta processing 
and information processing systems must lead to 
grave failures. 

LEVESON argues in [13] that modeling and anal-
ysis form the main challenges in building real-time 
(control) svstems. STANKOVIC [22] states tha t the 
main challenge in the development of advanced 
computing systems lies in modelling and verifi-
cation of timing constraints. Inclusion of a tirne 
metric increases the semantic power of concur-
rency models to a great extend, and thus com-
plicate the verification. One of the more difficult 
problems is verification of these systems, which 
requires the satisfaction of timing constraints. 

Figure 1 schematically depicts the relationships 
between notations and tools that partake in the 
notational framework for system modelling and 
analysis! The primary part is the system speci­
fication language which enables the creation of a 
model of the svstem, based on the overall require-
ments. Often a simple conceptual model is used to 

http://la.ngua.ge
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Figure 1: The notational framework 

give a semantics (S) to both the svstem specifi­
cation language and the reguirement specification 
language (RSL). A RSL offers means to specify 
requirements or properties (RS) of the svstem 
model. To decide whether the svstem model mod-
els the requirements and has the desired proper­
ties a verification technigue must be applied (V), 
such as model-checking or axiomatic reasoning. 

In this paper the svstem specification language 
MOSCA is introduced as a vehicle for modelling 
reactive and real-time svstems. One of its distin-
guished features is the possibilitv for loose spec­
ification. Loose specification is the possibilitv of 
writing constructs that may have several differ-
ent meanings. The specification of a system is 
necessarily loose specified if the final system may 
wait until execution tirne to determine the oUt-
comeofthe constructs. Loose specified constructs 
may also arise in specifications even when the sys-
tem finally developed is deterministic. The phe-
nomenon of looseness arises in this context be-
cause a specification (of a model) is often stated 
at a greater level of abstraction than that of the 
final source code of the deterministic system. 

The article is further organized as follows. In 
section 2 an overview is presented of the syntax 
of the specification language MOSCA. Section 3 
presents the conceptual model on which the se­
mantics of MOSCA is defined. It highlights in 
particular the semantics of tirne dependent con-
structions and the incorporation of looseness into 
the semantics. Section 4 presents a larger example 
of the use of MOSCA. Finally section 5 summa-
rizes the results so far and compares the MOSCA 
notation to related work. 

2 The MOSCA notation 

MOSCA1 [23], [24], [25] is an experimental nota­
tion based on the Vienna Development Method 
specification language VDM-SL 2 [7], [11]. The 
aim of its development was to increase the appli-
cability of VDM in the area of distributed, parallel 
and real-time systems. MOSCA incorporates no­
tational aspects of CCS, the Calculus of Commu­
nicating Systems [15]. The model-oriented speci­
fication language of VDM acts as the process al­
gebrah value manipulation language. The com-
bination is further extended with capabilities to 
describe tirne dependent behaviour. MOSCA of­
fers a timing facility based on the Timed CCS 
notation of WANG [27]. 

MOSCA is an experimental specification lan­
guage. Although both VDM and CCS have a very 
firm position as accepted notations, a combina-
tion of the two is rather experimental. Recently 
some results are established by HENNESSY [10] 
on combining a process algebra like CCS with a 
value passing mechanism capable of manipulat-
ing natural numbers. Semantically the problems 
of combining VDM-SL with TCCS are substan-
tial. Without claiming to give a solution to ali 
problems a fairly simple semantic model for the 
combination was constructed. 3 

A MOSCA specification describes four aspects 
of complete systems of communicating pro-
cesses: their data-containment, their functional 

1 MOSCA is an acronym for Model- Oriented 
Specification of Communicating j4gents. 

2The specification language for VDM for which 
an ISO standard is currently being developed (ISO 
SC22/WGl9/N-20). 

3For a full rationale on the design of the MOSCA lan­
guage the reader is referred to [23]. 
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Figure 2: Syntax of behaviour expressions 

behaviour, their process-structure and their tirne 
characteristics. Associated with these aspects are 
different constructions : data type definitions, 
functions and operations on the data types, agent 
definitions, and timed actions. The basic element 
in the MOSCA model of a system is a process, 
called agent. The constructions to specify the be­
haviour of agents are shown in Figure 2. In the 
following sections these constructions are intro-
duced by example to describe the various aspects 
of agent behaviour. 

The first option in the syntax diagram is ded-
icated to agent invocation. The syntax class 
Vezpr denotes ali value expressions as defined 
by the VDM-SL part of MOSCA. It offers ba­
sic types like natural numbers (N), integers (Z) , 
reals (M), booleans (B), product and union types, 
record types optional types, function and opera-
tion types. Further it offers complex data struc-
turing facilities based on set types, sequence types 
and map types. It features subtyping through 
type invariants. 

The agenti/ expression enables conditional be­

haviour specification. The agentlet enables local 
agent definitions and local value bindings, either 
fixed or loose. E.g. in 

let x = 3 in x 

the value 3 is bound to the identifier x in a deter-
ministic way. In 

let x G {1,2, 3} in x 

it is not deterministically decided what the value 
of the expression will be. It may be either 1, or 2 
or 3, depending on the context of the expression 
whether the choice is made in specification tirne or 
in execution tirne. The last form of the agentlet 
offers a means to constrain the set of bindings. 
The expression 

let x:N be s.t. x < 10 in z 

defines a value expression for which the value 
ranges from 0 to 9. 

The next option is dedicated to the various 
forms of prefix expressions. The first form is reg-
ular CCS extended with an explicit synchroniza-
tion prefix. The second form describes the idle 
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Figure 3: Syntax of agent defmitions 

prefix, which involves time manipulation. The 
third form handles the infusion of value state ma­
nipulation. It specifies a VDM-SL statement that 
is allowed to manipulate the state of the agent in 
which the construction appears. 

The next four options describe standard CCS 
operators. The choice construction enables non-
deterministic selection of specific behaviour. com-
position, and restriction involve agent communi-
cation. Through relabelling port labels can be re-
named. They originate in CCS and have a mean-
ing equivalent to their CCS counterparts. 

The syntax of agent defmitions is defined by the 
Agent syntax rule, presented in Figure 3. Agent 
defmitions can be given in various stvles, ranging 
from simple agents without any means to handle 
values — through agents with value parts — to 
agents with local s tate and associated operations 

that act on the state of the agent. 

Speciflcation 2.1 

agent Clock 

ports in reset : T 

out time : T 

shares RClock (T ) 

Clock t 
reset(inittime) 0 RClock (inittime) 

RClock {t} t 
\d\t(tick) 0 RClock (tick + t) 

(B reset [inittime) 0 RClock (inittime) 
© time(t),-kd 0 

\d\s(tick - d) O RClock (tick + t) 

file://-/where}-
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vvhere 

values 

tick : T = 0.001 
en d 

In specification 2.1 the first line states the 
agentheading. The value part is absent. The next 
two lines define two communication ports, the in-
put port reset and the output port time (an out­
put por tname is marked by an over bar, e.g. like 
tirne. Both ports handle data elements from the 
time domain T. The Clock has two different be-
haviour definitions, Clock and RClock. The sec-
ond behaviour definition ušes a value part to hold 
the current reading of the clock. The shares clause 
defines additional behaviour definitions that share 
the interface of the surrounding agent definition 
in the following sense: additional ports and state 
extend the interface of the surrounding agent, an 
additional value part replaces the value part of 
the surrounding agent definition. The Clock be­
haviour definition 

Clock £ 
reset(inittime) 0 RClock (inittime) 

is defined through the agentbehaviour syntax con-
struction. The behaviour expression 

reset(inittime) © RClock (inittime) 

is a prefix construction. The left operand is an 
input action where reset is the name of the port 
through which the input action will operate and 
inittime is the pattern on which the input value 
will be matched to form a new pattern bind. The 
right operand is an example of an agentservice 
construction. It resembles the function call of the 
VDM-SL part of MOSCA. An agent service con­
struction consists of the agent name it invokes and 
optionallv an actual value to match the valuepart. 
The behaviour expression 

Rclock (inittime) 

is an agentservice expression tha t sets the value 
part of the RClock behaviour definition to the 
value bound to inittime and behaves just like 
the behaviour expression associated with the be­
haviour definition RClock. 

An slightlv different specification of the Clock 
agent is presented in specification 2.2. It illus-
trates the state facilities of MOSCA. 

Specif ica t ion 2.2 

agent SClock 
ports in reset : T 

out time : T 

state reading : T 

i nit reading & reading = 0 

SClock £ 
\d\e(tick) 0 

a (reading: = reading + tick) 
0 SClock 

© reset (inittime) Q 

a (reading: = reading + tick) 
0 SClock 

© time(t),*d 0 \d\e(tick — d) 

0 a (reading: = reading + tick) 
0 SClock 

vvhere 

values 

' tick : T = 0.001 
end 

The reading of the clock is nov/ stored in a state 
component. State components act as global vari-
ables. In contrast with Clock wiH SClock always 
start with a zero reading. SClock can also be ini-
tialized with a start reading. The form 

a (reading: = reading + tick) 0 . . . 

is a special form of an prefix construction. It is 
not associated with an external action, but with 
a completely internal action, i.e. a manipulation 
of one or more state variables. In state manipu-
lations old values are 'hooked', i.e. they appear 

with an hooked overbar, like reading. 

The model of time in MOSCA is centered around 
the following elements. 

- There is neither a central clock, nor any other 
ticking device that registers the current time. 

— Passing of time is measured related to ac-
tions: from the moment an action becomes 
enabled, i.e. offered to the environment, to 
the moment the action is actually taken. The 
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passed tirne is recorded in a variable associ-
ated with the involved action. E.g. in 

time(t),*d 0 idle (tick - d) 0 ... 

the passing of tirne between the moment the 
Ume action becomes enabled and the actual 
taking of the action is bound to the variable 
d. 

— Time progression is modelled by taking idle 
actions. Time flows continuouslv. There are 
no tirne stops. 

Time identifiers of timed preflx constructions may 
occur as free variable within the behaviour ex-
pression following the O operator. After taking 
the action of the prefix construction the actual 
value of the variable t is substituted in each free 
occurrence of the identifier within the behaviour 
expression following the © operator. Thus in 

act,-ktQ P 

each free occurrence of t in P is bound by -kt. 
Upon taking the action act the actual value of 
the tirne variable t is substituted in ali free occur-
rences of t in Bexpr. 

Time progression is due to the taking of idle 
actions. E.g. 

idle tick 0 RClock (inittime) 

specifies a prefix expression, in which taking the 
action causes the tirne to progress with the value 
tick. Time progression is strongly connected to 
the semantics of the prefix construction, choice 
and composition operator. 

The domain T for the values of the idle actions 
is chosen to be MQ~, the set of real values greater 
or equal to zero. The set of reals creates a model 
that fits more closely to reality than e.g. N, the 
natural numbers. For a fully synchronous sys-
tem one may take a discrete tirne domain (like 
with SCCS in [14]), since ali subagents refer to 
the same global intuition of tirne (e.g. a global 
clock), and events happen at certain moments in 
tirne. In the asynchronous čase, any two agents 
may perform actions at times that are not equal, 
but arbitrary close to each other. Hence a dense 
tirne domain is preferred. 

The parallel composition is synchronous with 
respect to tirne actions. E.g. in 

idle 6 0 P | idle 8 0 Q 

after 2 tirne units have passed a situation de-
scribed by 

idle 4 © P | idle 6 0 Q 

is reached. However, time progression is asyn-
chronous for the normal actions (except for Com­
munications between its different components). 
In 

P\ Q 
P and Q can perform actions asynchronously un-
til synchronization between two subcomponents 
is due. 

In the example above the reading of the clock, 
modelled by the action time may take some time, 
due to idling elsewhere. Thus in 

time(t),-kd 0 \d\e(tick — d) Q RClock {tick + t) 

the passing of time between the enabling of the 
time action and the taking of the action is bound 
to d. The structure of the specification of RClock 
ensures that d will never be greater than tick so 
after idling tick — d t ime units exactly one whole 
tick is passed and the reading of the clock is up-
dated accordingly. 

3 The semantics of MOSCA 

MOSCA's structured operational semantics is 
based on the common notion of labeled transi-
tion systems ([19]) and exhibits three particular 
properties, i.e. 

— the state domain of the labeled transition 
system holds a notion called environment, 
capturing bindings from identifiers to both 
semantic value denotations and syntactic 
agent definitions; 

— the label domain holds values from (i) the 
set of visual ports (as usual), (ii) values of 
the semantic value domain of VDM-SL and 
(iii) values of the semantic domain TIME, 
corresponding with the syntactic domain T. 

— the state transition relation reflects loose-
ness. To this end the transition rules are de-
fined over states constructed of sets of items. 
Each item corresponds to a possible different 
transition. 
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The values in the semantic value domain of VDM-
SL are defined through a denotational semantic 
approach. E.g. the svntactic domain of natural 
numbers, N is represented by a semantic domain 
of natural number denotations, NATURALS, 
which is constructed as a chain complete partial 
ordering. The semantics of VDM-SL are defined 
through recursive functions over the semantic do-
mains. Currently the semantics is as part of the 
draft VDM-SL ISO standard, under review. It is 
rather elaborate. It contains over 200 semantic 
functions together taking 400 pages of formatted 
output [11]. 

The state space is infinite. Although the infin-
ity aspect has difRcult theoretical properties the 
labeled transition system offers a base for the op-
erational description of the behaviour of agents. 

3 . 1 T h e s t a t e s p a c e 

The labeled transition system for MOSCA is a 
triple 

((Bexpr X p)-set, Act, —>). 

The first part defines the state space, the second 
part the label space and the third part the tran­
sition relation. Bexpr ranges over behaviour ex-
pressions, p ranges over environments, Act ranges 
over the set of defined port labels and —> is a re­
lation 

(Bexpr X /o)-set X Act X (Bezpr X /a)-set. 

The state space is built from states, consisting of 
sets of tuples (be, env), where be € Bexpr and 
env is an environment. A single element (P,p) of 
a state is further referenced by the notion state 
item. 

The environment captures the set of defmitions 
in which behaviour expressions operate. These 
defmitions include ali da ta defmitions like types, 
values and functions, agent defmitions, the set of 
local bindings resulting from value let construc-
tions, pat tern matching etc. The environment 
records 

— ali possible value bindings, i.e. bindings be-
tween identifiers and semantic denotations of 
value constructions such as types, functions, 
values, operations and states, and 

- ali possible agent bindings, i.e. bindings 
between identifiers and syntactic representa-
tions of agent defmitions. 

3.2 T h e l a b e l s e t Act 

The label set Act for MOSCA is defined by the 
union of the external action names, the timed ac-
tion labels and the internal action. The external 
action names correspond to the port identifiers. 
The timed action labels r are the semantic coun-
terparts of the idle actions. Each idle action spec-
ifies a delay d tha t is attached to the timed ac­
tion label T like r(d). The class of tirne actions 
TimeActs contains the idle action specifiers r(d). 
Each value of d specifies a denotation of a tirne 
value. E.g. the transition 

{(P,P)}T-^{(Q,P')} 

denotes that agent P will become Q after d € 
TIME units of tirne. The behaviour expression 
idle 0.5 0 P, operating in an environment p could 
make the transition 

{(idle 0.5 O P, p)} T^] {{P, p')}. 

The last action label is t, labeling an internal ac­
tion. Notice the difference with CCS where there 
is an action r that models an internal action on 
the syntactic level. In MOSCA an internal action 
with very similar semantics can be constructed by 
taking e.g. a state manipulation with a dummy 
statement, or an idle action with delay 0. 

3 .3 T h e t r a n s i t i o n r e l a t i o n 

The —> relation is defined implicitb/ as the least 
relation defined by a set of inference rules. The 
general form of the inference rules are more com-
plex than in the structural operational semantics 
of CCS. This is caused by the state extension with 
environments and the interplay of the loose value 
semantics with the agent behaviour expressions. 

A transition step is denoted with the notation 
S —> S' with a ^ t or S =3- S' where = > is 
an abbreviation for — K S is called the basis of 
the transition step, a the action label and S' the 
result of the transition. When S is a singleton set 
the notation {s} is used. 

The semantic rules fall into different classes: 
the internal action rules, external action rules and 
timed action rules. In general these rules appear 
as 

.L i 
rp u rpf 
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where L is an identifying tag. The intuition un-
delying the inference rule is something like " if S 
can proceed to S' by taking an a action, T can 
proceed to T' by taking a b action ". The part 
above the line is the hypothesis for the inference, 
the part under the line is the conclusion. The hy-
pothesis may be absent, in which čase the action 
step in the conclusion can be taken always. 

The internal action rules cover ali cases where 
evaluation or manipulation of values is involved. 
Examples are the rules for agentservice, agentlet, 
agenti/ and prefix expressions. Their basic form 
is like 

S E 
M S 

These rules describe the effect of taking an inter­
nal action in the context of singleton states and 
result in general in state expansion (SE) . The ef­
fect of taking internal actions in the context of 
states built from multiple state items is described 
by the next rule. 

E P W s 
S' U {s} => S' U S 

It signifies state expansion propagation ( E P ) . 
Next there are rules that describe the effect of 
taking internal actions in the context of the stan­
dard CCS operations. E.g. the rule for state ex-
pansion in the context of a choice expression is as 
follows. 

C E 
{(Aj,p)}=>S 

{(A1®A2ip)}=> 
= 1,2 

It states tha t whenever an operand of a choice 
expression leads through state expansion to some 
expanded state S, the whole choice expression 
leads to this state S. That is, taking an internal 
action will force the choice to be evaluated. The 
choice is thus not only directed by external action 
steps but is also directed by internal actions. 

Opposed to state expansion there are state re­
duction rules. There are two different causes for 
s tate reduction: (i) external actions and (ii) idling 
actions. Action state reduction is defined as 

A S R M - ^ {''} 

The rule states that whenever a single state item 
can take an external action, the whole state is 

reduced to the result of the action step. 
state reduction is defined as 

Idling 

I S R is} ^ {s'} 
Su{s}T-n{s'} 

which states that whenever a single state item 
takes an idling action, the whole state is reduced 
to the effect of the idling step. The foUowing ex-
amples may elucidate the effect of s tate expansion 
and reduction in different contexts. 

E x a m p l e 3.1 The evaluation of value construc-
tions is captured in an internal action step. E.g. 
the rule for the agent value let expression is 

AVL 
{(avl,p)}=$- EvalAVL(avl,p) 

where avl represents an agent value let expres-
sion and EvalAVL is a semantic evaluation func-
tion that results in a set of s ta te items tha t share 
the body of the let expression as continuation be­
haviour but hold different values in the environ-
ment part tha t resulted from loose value evalua-
tions. E.g. suppose the expression 

leta; G {1,2, 3} in P (z) 

operates in an environment p in which P is de­
fined. The rule AVL states tha t the state 

11 = {(let« 6 {1,2 ,3} in P (x) ,p)} 

is transformed through an internal action i into 
the result of EvalAVL(ll), which in this particular 
čase would be the following state 

{{P(x),pU{x^l}), 
(P(x),pU{x»2}), 
(P(x),pU{x»3})}. 

The cardinality of this state is equal to the cardi-
nality of the set in the patternbind of the let con-
struction. Each state item is the starting point 
of the same behaviour expression operating in a 
different environment. D 

Example 3.2 demonstrates the effect of the action 
state reduction rule A S R . 

E x a m p l e 3.2 The evaluation of agent service 
construction is also captured in an internal action 
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{(\ttx e {1,2 ,3} in P (x) ,p)} 

''AVL 

{(P,Pl),(P,p2),(P,p3)} 

LSA L A S 

LAS 

{(P,Pl),(P,P2),(P,P3)} {(P,Pl),(p,P2),(P,P3)} {(P,Pl),(P,P2),(p,P3)} 

{(P,Pl),(P,P2),(P,P3)} 

L AS .A'V 
{(P;Pl),(P,p2),(P,p3) 

{ ( Q , p U { n ^ l } ) } {{Q,pU{n^2})} {{Q,p U {n » 3})} 

Figure 4: Transition tree for loose let construction 

step. The rule, completely analogue to the AVL 
rule, is 

A S 
{(as,p)}=$- EvalAS(as,p) 

where as represents an agent service expression 
and EvalAS a semantic function, that takes the 
syntactical form of a specihc agent service and 
an environment as arguments and computes the 
set of s tate items resulting from the agent service 
application. 

Suppose the agent P in example 3.1 is defined 
through the single agent behaviour definition 

P (n) ^ p~ri(n)QQ. 

The rule for agent service can nov/ be applied on 
each of the s ta te items of s tate 11. The effect of the 
rule applied on state item { (P (x) ,pU{x >-+ 1})} 
is as follows. 

{{P{z),P\j{x»l})} 
{(put(n)OQ,p\j{n^l})} 

According to rule E P the state // now will have a 
transition resulting in 

{(put(n)QQ,pU{n^l})> 

(P(x),pU{x^2}), 
(P(x),pU{x»3})}, 

but also an internal transition leading to 

{{P_(x),pU{x^l}), 
(put(n)Q Q,pL){n^ 2}), 
(P(x),pU{x^3})}, 

and equally an internal transition leading to 

{(P{x),pU{x»l}), 
(P_(x),pU{x»2}), 
(put(n)Q Q,pU{n^ 3})}. 

In Figure 4 these state transitions are depicted 
as a derivation tree. The internal actions t are 
indexed with the action rule label. The state 
item (P,pi) is a shorthand for ( P (a;) ,p U {x i-»-
i}). State item (p,p\) svmbolizes the state item 
(put(n) 0 Q,pU {n i-> i}). 
A rule for external output actions is 

E O A 
{(a(expr)OX,p)}-^{(X,p)} 
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This rule can be applied to state items (p, p,) 
which have ali external actions put(i). This ac-
tion step will reduce the states according to rule 
A S R . a 

3 .4 S e m a n t i c s of T i m e 

The basic properties of the semantics of tirne are 
summarized below. They originate from the work 
on TCCS in e.g. [16] and [27] and are extended 
to fit into the semantic setting of MOSCA. 

— M a x i m a l Progress Whenever an agent can 
proceed by taking an internal action it will 
not wait. 

{,} = > {s'} * 

$d e TIME • {s} T-^l {s"} 

Whenever an agent can proceed by taking an 
external action it will not wait. 

3a G ExtAct • {s} - ^ {s'} => 

$d 6 TIME • {s} '-^l {s"} 

— T i m e D e t e r m i n a c y To ensure the progress 
of tirne each agent, even the null agent and 
divergent agent can take idle actions. When 
tirne goes, if an agent idles, it can never reach 
different states: 

{ S } I « M A { S } I W { S « } ^ 
{S} EE {S"} 

where = means state equality. Time deter-
minacy results from the properties of idling 
in combination with and choice and composi-
tion. The divergent agent _L must be able to 
take idle actions as well. As tirne progression 
in compositions is synchronous, P | J_ would 
not allow the tirne to proceed if J. would only 
take internal actions and no idle actions as 
well. 

— T i m e Cont inui ty During idling no tirne 
moment may be passed without notice. 

{sy^{s»}^ 
{s) m {s'} MS'} TM {s"} 

T i m e pers i s tency By idling an agent will 
not loose the ability to perform an action that 
it is able to perform originally. 

{*'} -^ {*"} 
{s"}) => 

These basic properties of time in MOSCA reflect 
the incorporation of idling in the semantic rules of 
prefix, choice, composition, the null agent and di­
vergent agents. The null agent is inactive but can 
be engaged in idling, to enable time progression 
in compositions that involve a null agent. The di­
vergent agent is either idling or busy with internal 
actions. 

4 Čase study: a railroad 
controller 

In order to be able to evaluate notations for use in 
the development of real-time software systems, we 
are performing a comparative review of some se-
lected system specification notations. The study 
emphasizes the use of the notations in the do-
main of real-time (control) applications. Our re-
view will be based on a simple railroad controller 
model. This čase contains data modeling aspects, 
functional aspects as well as temporal aspects. A 
(toy) railroad with computer interface, is avail-
able in our laboratory, used for lab assignments. 
An Ada encoded controller, loosely based on the 
specification is running on a P C for demonstra-
tions. Typical elements to consider are usability 
with regard to the specification in relation to the 
requirements, and secondb/, usability with respect 
to further program development. In this section 
we briefly address some issues of the MOSCA 
specification of the controller. For a complete 
MOSCA specification the reader is referred to [3]. 

This section is further organized as follows. 
Section 4.1 shortly covers the problem descrip-
tion. Section 4.2 presents an analysis of the prob­
lem. Section 4.3 present fragments of a MOSCA 
specification. 

4.1 I n f o r m a l p r o b l e m d e s c r i p t i o n 

A (toy) railroad system is built up from connected 
rail elements (straight elements, bowed elements, 
crossings and switches). Connected rail elements 
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are grouped into physical blocks. These blocks are 
connected to hardwired function decoders. The 
average length of rail elements is 23 cm, the speed 
of a train can be varied between 0 and 30 cm per 
second. 

Through a computer (serial) interface, com-
mands can be given: 

— status enquiry commands (i.e. blocks being 
occupied or not) . 

— switch setting/resetting commands. 

— train commands, setting a particular speed, 
setting lights, a horn and a direction. 

The problem is to specify (and subsequently de­
sign and implement) a software controller through 
which the behaviour of the system can be con-
trolled. The behaviour of the train should con-
form to reguirements, expressed as missions, one 
for each train. Missions specify routes which are 
expressed in terms of tracks and the train be­
haviour along the route. A track is a path over 
a sequence of connected rail elements. The se-
quence of rail elements itself, is called a block. 

Obviously, the system should obey elementary 
safety precautions: 

— trains should not collide, modeled by pre-
venting two trains to ride on the same block; 

— when a train is on a block, no switch in this 
block should be changed. Setting a switch 
while a train passes, might cause considerable 
physical damage. 

The complete reference specification of the rail-
road controller is contained in [2]. 

4 .2 A n a l y s i s of t h e p r o b l e m 

For each train, the controller has been given a 
mission that specifies actions to be taken by that 
train. 

A mission is built up from a sequence of com­
mands. A command consists of an action specifi­
cation, a position specification and a specification 
of temporal constraints. 

Command = I N I T | S T A R T | S T O P | PASS 

Mission = Command* 

I N I T causes a train to be initialized. The initial 
position is assumed to be in the middle of 
the specified track, the latter specified by the 
block identification (a number) and identifi-
cations of entry and exit points on this block 
(numbers as well). 

S T A R T causes a train to start from the (as­
sumed) position at the middle of the spec­
ified track (at Start tirne), and to reach the 
end of the track no later than Exit tirne. 

S T O P causes the train to stop, at Stop Time, 
near the middle of track Track. 

P A S S causes the train to run over a given track 
Track, with a speed sufficient to reach the 
end of this track no later than Exit Time. 

A typical sequence of commands for a particular 
train that is to drive from the middle of a starting 
track (1, 1, 2) to the middle of track (4, 1, 2) and 
vice versa, may look like: 

INIT 
START 
PASS 
PASS 
STDP 
START 
PASS 
PASS 
STOP 

(1, 
(1, 
(2, 
(3, 
(4, 
(4, 
(3, 
(2, 
(1, 

1, 
2, 
1, 

1, 
1, 
2, 
2, 
2, 
2, 

2) 

D, 
2), 
2), 
2), 
1), 
D, 
D, 
D, 

1000, 
1020 
1030 
1035 
1035, 
1050 
1060 
1070 

1010 

1040 

According to the above mentioned informal re-
quirements, the system consists of (i) a railroad 
with a number of trains, (ii) some logic private 
to the railroad, and (iii) a controlling computer 
system. In line with observations in e.g. [21], we 
prefer a closed description, i.e. one that provides 
an integral description of both the behaviour of 
the controller and of the controlled system. Only 
then, the model can be used for (safety) analysis. 

A first step in the development is to identify 
the different elements in the requirements model. 
Different brands of trains provide different fea-
tures, abstraction from physical details is there-
fore necessary. The resulting structure of the re-
quirements specification is schematically depicted 
in figure 5. In this model, we identify: 

— The controller (further indicated with S CM), 
observes the positions of the trains and issues 
(speed setting and switch setting) commands 
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INIT 

Figure 5: Structure of the controller 

to correct observed deviations of the required 
position. The SCM is responsible for main-
taining safety on the rail road. 

— The controlled part (further indicated with 
ARM) provides information over train posi-
tions to the controller. It reacts upon the 
SCM by setting switches and by handhng 
speed setting and direction commands for the 
trains. 

— An interface. The interface between the 
ARM and SCM is chosen to be data oriented. 
It contains: 

- for each train the specification of the re-
quired speed, maintained by the SCM, to 
be interpreted by the ARM. 

- for each train an indication of the ob­
served position, as determined by the 
ARM. 

- a specification of the reguired settings of 
switches. 

Within the requirements model, trains, blocks 
and switches are typical entities with state. The 
state of a block indicates whether or not it is oc-
cupied, the state of a switch indicates its setting. 
A train is in one of eight states, the states and 
transitions are given in figure 6. Relevant for the 
discussion in section 4.3 are the following states. 

— A train in state PA S S remains running un-
til it enters the next track on its route. If 
the command to be performed on this next 
track is a PASS command, an attempt will 
be made to allocate the next track on the 
route. If allocation fails, the train will slow 

STOPPED 

STOPPING 

START 

PASS 

HALT 

SLOW 

ERROR 

Figure 6: Train state diagram 

down (and enter state SLOW), if allocation 
succeeds state PASS will be reentered. If the 
command on this track is STOP command, 
state STOPPING will be entered. 

- In state STOPPING, the train will move 
forward until reaching the middle of the 
track. There it will take state STOPPED 
and halt. In this state, the only valid com­
mand is a START command. 

- In state SLOW, the train will continue to 
attempt to allocate the required resource. 
If the train reaches the middle of the track 
before allocation succeeds, it enters state 
HALT and the train halts. If the train does 
obtain the required resource, state PASS will 
be (re)entered, and the train will move with 
the speed required to meet its temporal con-
straint. 

The SCM 'observes' the position of each of the 
trains and sets (i) the switches for tracks that are 
entered next, and (ii) the speed of the trains. In 
this process, the SCM reacts upon the occurrence 
of events. The events are chosen such that the 
change in state for each individual train becomes 
clear. 

The temporal constraints on the system only 
follow indirect. They are determined by the speed 
of the trains and the speed with which the system 
needs to react upon changes. 

Typical elements from which specific temporal 
constraints are to be be derived, are: 
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— Switches should be set before a train en-
ters the block containing these switches. if 
the settings for switches for a next track are 
given, before the train reaches the middle of 
the current track, more than 0.5 seconds is 
available for the ARM to set the switches. 

— accuracv of position reading depends on the 
frequency with which this reading is updated. 

The speed of the train dictates the setting of dead-
lines. Since the maximum speed of the train is 
app. 30 cm/second, and most of the rail elements 
are app. 23 cm, most of the deadlines can be set 
to app 100 msec, leaving room for a deviation of 
app. 3 cm. 

CONTROLLER 
state RegSpeed 

ReqSwitches 
Position 
Conf 

SpeedTable 
SvaitchTable 
PositionTable 
RailRoad 

shares TIME 
ports syn DurationEvent 

syn InitEvent 
out Time 

ARM 
ports syn DurationEvent 

in SpeedEvent 

in SmitchEvent 
out TrackEvent 

out PositionEvent 

state CurrSpeed 
CurrSwitch.es 

SCM 
ports in Time 

syn InitEvent 
in TrackEvent 
in PositionEvent 
out SpeedEvent 

out SivitchEvent 
state AllocatedTracks 

TheTra ins 

N 

SpeedTable 
SwitchTable 

Train 
Train 

SpeedTable 
StvitchTable 

N 

Train 
Train 

TrackTable 
TrainTable 

CONTROLLER * TIME I ARM I SCM 

4.3 A model for the s y s t e m 

The MOSCA model is systematically derived 
from the reference specification, which is based 
on an event/action paradigm [12]. In [26] we de-
scribe a simple method to transform a specifica­
tion based on the event/action paradigm into a 
process oriented specification. 

The complete MOSCA model of the railroad 
controller consists of (i) an elaborate model of the 
physical railroad, (ii) a description of the mission 
data structure, (iii) a distributed model of the 
state of the system, (iv) specifications for the tim-
ing device, the ARM and the SCM. The overall 
structure of the model is presented in figure 7. 

DurationEvent 

SpeedEvent 
SwitchEvent 

PositionEvent 
TrackEvent 

Figure 7: Structure of MOSCA model 

The MOSCA specification is given in specifi­
cation 4.1. From the globally addressable vari-
ables (the state) of the CONTROLLER agent 
are ReqSpeed and ReqSwitches read by the ARM 
agent, set by SCM. The component Position is 
set by ARM and read by SCM. The model of the 
railroad Conf is (for convenience) assumed to be 
properly initialized. The local variables of ARM 
model the actual devices, i.e. the trains and the 
switches. The local variables of SCM model the 
controller's view of the trains and the actual allo-
cation of tracks per train. The TIME agent offers 
the tirne service to the SCM agent and two inter­
val timers, the duration interval timer and the init 
event timer. 

The timing device consists of two parallel com-
ponents vvhich are the clock and the interval 
timer. The clock ticks measure 1 msec. The du-

http://CurrSwitch.es


38 Informatica 19 (1995) 25-42 J. van Katwijk et al. 

ration interval measures 100 msec. The specifica-
tion of the timing device (4.2) starts by defining 
its interface to the other two processes. It consists 
of three ports offering a time service Time and sig-
nals that mark the ending of the timed interval. 
The behaviour of the TIME agent is defined as 
two processes running in parallel, the Clock and 
the IntervalTimer. The clock merely ticks and 
offers the time service. The interval timer times 
an interval of 100 msec. The event that marks 
the end of the interval is signaled by two parallel 
running signal servers that stop after passing the Specification 4.3 
signal on to the ARM and the SCM processes. 

is unbiased with respect to its realization which 
can be either in hardware, software or a mixed 
implementation partly in hardware and partly in 
software. A clock with an expected skew can eas-
ily be modeled by adding a skew factor to the idle 
action following the Tick action, 

Tick,-ktQ 
idle (tick-delay — t + skew()) © . . . 

such that the function skew delivers a skew value. 

Specif ication 4.2 

agent TIME 
ports syn DurationEvent 

syn InitEvent 
out Time : N 

shares Clock (N) 
ports syn Tick 
IntervalTimer (N) 
ports syn Tick 

TIME ^ 
(idle tick-delay © Clock (1) | 
IntervalTimer (0) ) \{Tick} 

Clock (r) ^ 
Tick,*tQ 
idle (tick.delay — t) © 
Clock (r + 1) 

© Time(r),*tlQ 
Tick,*t2Q 
idle (tick.delay - (ti + t2) © 
Clock (r + 1) 

IntervalTimer (count) = 
if count = duration 
then (DurationEvent 0 null | 

InitEvent 0 null | 
Tick O IntervalTimer (1) ) 

else Tick © IntervalTimer (count + 1) 

where 

alues 

tick-delay 
duration 

T = 0.001 
N = 100 

end 

The TIME agent models an ideal clock, an infal-
lible device without any skew. The specification 

agent ARM 
ports syn DurationEvent 

in SpeedEvent : SpeedTable 
in SuiitchEvent : SvritchTable 

state CurrSpeed : SpeedTable 
CurrSwitches : SwitchTable 
extCon/ : RailRoad 
&KtPosition : PositionTable 

shares NevoPosHandler 

ports out PositionEvent 
out TrackEvent 

SpeedSettingHandler (SpeedTable) 
SvjitchSettingHandler (SivitchTable) 

ARM t 
DurationEvent © 
NeivPosHandler \ ARM 

© SpeedEvent(trainspeed) © 
SpeedSettingHandler (train.speed) 

© SwitchEvent(switch) © 
SvjitchSettingHandler (switch) 

Specification 4.3 presents the ARM. It is mod­
eled as an event handler offering for each event 
a specialized handler. The DurationEvent signals 
the computation of new positions of the trains. 

Specification 4 .4 

agent NeivPosHandler 
ports out PositionEvent 

out TrackEvent 
state ct : B 

Train 

Train 

shares NewPosHandling (Tram-set) 
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NeivPosHandler = 

let ts = dom CurrSpeed in 
NewPosHandling (ts) 

NeivPosHandling (ts) = 
if ts = { } 
then null 
else let t £ ts in 

a(ct: = ComputeNeivPos(t)) 0 

if c« 

then TrackEvent(t) 0 
NeivPosHandling (ts\{t}) 

else PositionEvent(t) 0 
NeivPosHandling (ts\{t}) 

Specification 4.4 presents the event handler 
tha t is activated on the duration event from the 
interval timer. Each event is given a associated 
handler. For each train in the svstem (registered 
in the domain of the CurrSpeed state element) it 
computes a new position through the VDM-SL 
operation ComputeNewPos. 

NeivPosHandling features a loose let construc-
tion. By selection of arbitrarv trains from the 
set of trains in its value part it computes for 
each member of the set a new position. The 
changed position is subsequently signaled to the 
SCM by either a PositionEvent when the train 
has just moved within its current track, or by a 
TrackEvent when the train has moved on to a new 
track. The boolean state value ct holds the value 
true if a track change occurred during the change 
of position. The position handler, being part of 
SCM is given as a final example of a MOSCA 
agent. It handles the mode changes from S L O W 
to H A L T and from S T O P P I N G to S T O P P E D 
which were indicated in figure 6. In mode PASS 
First the current reading of the clock is bound 
to the name noiv. The computation proceeds by 
checking whether the train can reach its target 
within its t ime limit. If so, the train proceeds 
running, else the train enters mode E R R O R . If 
the position of the train is near the middle of the 
track it either slows down to halt, or it stops com-
pletely. 

5 Summary 

The work on MOSCA is inspired by many other 
approaches on combining value manipulation, be-

haviour and time. In this context at least the fol-
lowing pioneering research should be mentioned: 
BJ0RNER. and J O N E S for their work on VDM [4], 
H E N N E S S Y for his work on denotational semantics 
for process algebras [9]), MiLNER, for his work on 
CCS and scientists working on time extensions of 
process algebraic notations [1]), [27]. The LOTOS 
[5] and RAISE [8] specification languages come 
most closely to MOSCA in its current form. The 
main differences are the nature of the semantic 
treatment of the embedded value manipulation 
language. Whereas LOTOS and RAISE offer a 
value manipulation mechanism based on the alge­
braic approach, MOSCA offers a model oriented 
approach, taken from VDM-SL, which is based on 
combinations of simple mathematical models like 
sets, sequences, maps, trees, etc. and which is 
given a denotational semantics. 

The specification language LOTOS (Language 
Of Temporal Ordering Specification) was designed 
to enable formal description of OSI architectural 
concepts such as services, protocols service access 
points, etcetera. Contrary to the name suggest, 
LOTOS is not related to temporal logic. LOTOS 
is based on CCS, with influences of CSP. CCS 
is used as semantical basis for the process part 
of the language. The requirements for abstract-
ness favored the choice of an abstract datatype 
definition technique as value description device. 
Here ACT-ONE was chosen as a starting point. 
LOTOS is an executable notation. Recentb/ ex-
periments have been carried out to incorporate a 
notion of time in LOTOS [20]. 

RAISE (Rigorous Approach to Industrial Soft-
ware Engineering) is a collection consisting of a 
specification language called RAISE Specification 
Language (RSL), a development method, and a 
set of supporting tools. The RAISE Method is, 
just like VDM, based on the notion of stepwise 
refinement. Its specification language RSL con-
tains notions to express data-abstraction through 
model-oriented and propertv-oriented facilities. 
Control abstraction for parallel activities is based 
on the process concept of CSP extended with 
the facility to specify processes implicitly through 
trace and failure assertions. RSL does not handle 
the notion of time. 

MOSCA shares with RAISE the notion of data-
refinement. MOSCA lacks the facility to spec-
ify processes implicitly. MOSCA offers a prim-
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Specif ication 4.5 

agent PositionHandler (Train) 
ports out StoppedEvent : Train 

out OnErrorEvent : Train 
state ext TheTrains : TrainTable 

ext Position : PositionTable 
NeioSpeed : SpeedTable 

PositionHandler (t) ~ 
if TheTrains(t).Mode = PASS 
then Time(now) 0 let CD = TheTrains(t).CurrentTarget.Distance in 

let CO = Position(t).CurrentOffset in 
let DistanceToPass = CD - C0 in 
if now > TheTrains(t).CurrentTarget.Time 

A DistanceToPass > MAXDIFFERENCE 
then a(TheTrains(t).Mode: = ERROR) 0 

OnErrorEvent(t) 0 
null 

else null 
else if NearMiddleOfTrack(Position(t)) 

then if TheTrains(t).Mode = SL0W 
then Time(now) 0 

a(FromSlowToHalt(t, now)) 0 
(SpeedEvent(NewSpeed) 0 
null | CDTimer (MAXDELAY) ) 

else if TheTrains(t).Mode = STOPPING 
then a(FromStoppingToStopped(t)) 0 

SpeedEvent(NewSpeed) 0 
StoppedEvent(t) 0 null 

else null 
else null 

itive structuring mechanism based on packaging 
concepts found in Ada and Modula-2 to control 
the complexity of large specifications. RSL of-
fers, similar to LOTOS, the notion of abstract 
datatype specification as main structuring mecha­
nism. MOSCA enables state-based development, 
like RAISE, and unlike LOTOS. This work difFers 
from the other approaches mainly in the definition 
of the semantics, by combining a denotational se­
mantics with an operational semantics. The com-
bination was chosen on practical reasons. The 
VDM-SL language has been given a full denota­
tional semantics, whereas the TCCS notations has 
been given a SOS semantics. It is an open ques-
tion whether a single denotational or SOS seman­

tics can be given that covers both the VDM-SL 
and TCCS notations. 

The MOSCA project is in its beginning phase. 
A system specification language together with a 
conceptual model have been defined. The defi­
nition of the syntax and semantics forms a firm 
basis to address the other topics of interest con-
cerning the notation such as a requirement speci­
fication language (a logic) and a verification tech-
nique (proof system). A further interesting topic 
is refinement of value-manipulation expressions 
and equivalences between behaviour expressions 
and their interrelationship. 

This article has put the emphasis on the pre-
sentation of some aspects of handling looseness 
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and timing facilities of MOSCA. Currently the 
main focus in the project is on two related top-
ics: tool development and analysis techniques. A 
rapid prototyper has been developed that gener-
ates ADA code from MOSCA specifications [17]. 
Next to the prototyper a state space analysis 
tool is being developed. State space analysis is 
a technique that can be successfully applied to 
safety and liveness problems. A serious problem 
remains the efficient generation of finite derived 
state spaces out of infinite full state spaces which 
is a current topic of research. 
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This paper presents an object-oriented approach that deals with modeling and analysis 
of concurrent real-time systems whose behavior must satisfy certain safety considerati-
ons. The approach describes the structural aspect and the tirne dependent behavioral 
aspect of objects in one model, and allows formal analysis of the model properties. The 
description ofobject behavior also contains a representation of control How that speciHes 
desirable execution sequences of object activities. For designing for fault tolerance and 
safety, it also supports modeling offailures to object behavior and their resultant faults. 
In particular, including the types of faults is useful for modeling and analysis offailures 
in more general situations. 

1 Introduction 

Conceptual modeling is an important step in de-
veloping a computer based application which col-
lects adequate user requirements about the appli­
cation domain (i.e., the structural and behavio­
ral aspects of the application). It has been re-
cognized tha t failure to identify the real appli­
cation domain knowledge may result in late de-
liverv, poor quality, and high maintenance co-
sts. Traditionally, conceptual modeling is done 
by using function-oriented approaches (Cameron 
1986, Jackson 1983) or data-oriented (Hull & 
King 1987, Peckham & Maryanski 1988). 

In function-oriented approaches, software deve-
lopment begins from the analysis of system func-
tionality to obtain a data flow diagram of the sy-
stem. Entity-relationship diagrams are also used 
to identify the relationship betv/een the data en-
tities. The contents and logical structures of the 
data flows and data entities are often specified 
in a da ta dictionary. This paradigm has seve-
ral drawbacks: (1) Consistency between the data 
flow and the data dictionary is hard to maintain; 

(2) Since the functions/data are not mappings to 
the objects in the real world, a change in the 
application could result in the modifications to 
many functions/data; (3) The separate treatment 
of data and functions makes software reuse difR-
cult. 

In contrast, data-oriented approaches start 
from the modeling of data structures. The spe-
cification of system functionality is then done 
according to the data structures. Usually, these 
two aspects are specified in two separate models: 
a structural model and a process model. The 
drawbacks of this paradigm are: (1) Consistency 
between the structural model and the process mo­
del is difncult to maintain; (2) Interaction be-
tween functions is not explicitly modeled. So, its 
effect is difncult to comprehend; and (3) Since 
data and functions are treated separateh/, soft-
ware reuse is stili difncult. 

The development of object-oriented modeling 
approaches is motivated by the problems in 
function-oriented and data-oriented approaches. 
It starts with the modeling of objects which re-
present as close as possible real-world entities. 

http://uta.edu
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The data and operations are encapsulated in an 
object. This allows software to be easily adapted 
to changes in the application. Other significant 
features and benefits of object-oriented models 
are: (1) Inheritance greatly simplifies the design 
and development of applications; (2) Encapsula­
tion supports information hiding, increases soft-
ware reuse, and reduces maintenance costs. 

As modern real-time svstems become larger and 
more complex, the features and benefits of object-
oriented techniques have also stimulated using 
them to produce real-time software that is easy 
to understand, maintain, and reuse. This paper 
presents an object-oriented approach for mode-
ling and analysis of concurrent real-time systems 
whose behavior must satisfy certain safety consi-
derations. For the complex features of these sy-
stems such as concurrency, nondeterminism, sa-
fety, and fault tolerance, the approach should 
have the following features: (1) The modeling 
constructs are intuitive and easy to comprehend 
(e.g., the use of graphical representations); (2) 
The structural and behavioral aspects of objects 
are described in one cognitive model (Balzer & 
Goldman 1979). This enhances maintaining con-
sistency between these two aspects when changes 
are made to one of them; (3) Timing characteri-
stics are encapsulated in an object. This facili-
tates object reuse for various real-time applicati­
ons. For example, different objects have the same 
functionality with the same interface but with di­
fferent timing characteristics; (4) The model is 
able to represent concurrency and synchroniza-
tion to manage concurrent access to objects; (5) 
The behavioral modeling contains a representa­
tion of desirable execution sequences of object ac-
tivities; (6) Failures to object behavior and their 
resultant faults must also be able to be modeled 
for the requirements of designing for fault tole­
rance and safety; and (7) The model supports su-
fficient formality so that formal analysis can be 
conducted to verify its properties. 

The proposed model is an extension and re-
finement of an object-based executable concep-
tual model (Kung 1989). The extensions include 
object structure, encapsulation, timing characte­
ristics, modeling of control fiow, and specification 
of failures and faults. It describes the structural 
aspect and the time dependent behavioral aspect 
of objects in one model, and allows formal analysis 

of the model properties. Structural modeling de­
scribes object types, at tr ibutes, and relationships 
between object types, while behavioral modeling 
describes the operations of objects and their ef-
fects on other objects. The description of object 
behavior also contains a representation of control 
flow that specifi.es desirable execution sequences 
of object activities. In particular, it also supports 
modeling of failures to object behavior and their 
resultant faults for the requirements of designing 
for fault tolerance and safety. Including the types 
of faults is useful for modeling and analysis of fa­
ilures in more general situations. An advantage 
of the presented approach is tha t it encapsulates 
object states for ease to comprehend and to use. 
System behavior from individual objects can be 
readily obtained and analyzed. The modeling of 
system behavior is based on a timed transition 
net. This net is chosen here for the following rea-
sons: (1) It is able to deal with concurrencv, syn-
chronization, and nondeterminism in a reasonable 
manner; (2) It is very conveniertt for analyzing 
and verifying desirable properties. 

This paper is organized as follows. Section 2 
presents the modeling constructs of our approach. 
For illustration, a simple example of the alterna-
ting bit protocol is presented and modeled. The 
modeling of control flow, failures, and faults, is 
described in Section 3. Section 4 discusses how sy-
stem behavior is obtained and analyzed. Finally, 
Section 5 has the related work and conclusions. 

2 Object Type 

In our approach, objects are divided into 
persistent ones, control ones, and fault ones. 
A persistent object models an entity or thing in 
the application domain with behavior satisfying 
application imposed constraints (i.e., static con-
straints and t ime/ temporal constTaints). Con­
trol objects are used to give control flow between 
the operations of persistent objects, while fault 
objects" are used to model failures of the beha­
vior of persistent objects and faults which result 
from the failures. We shall present in the next 
section hov/ control and fault objects are used for 
the requirements of designing for fault tolerance 
and safetv. In this section, we introduce persistent 
object types that model the persistent objects. 

A persistent object type T is a 7-tuple given 

http://specifi.es
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by: T = (NT, AT, ST, GT, © T , $ T , 1 » 
(except for NT, the other components are optio-
nal), where 

1. NT is its name to be denoted by a string of 
characters. 

2. AT is a set of attributes. Each attr ibute has 
an associated type, which can be a set, a tu-
ple, a list, or a persistent object type. 

3. ST is sets of subtypes, disjoint subtypes (ds), 
generalization subtypes (gs), and/or parti-
tion subtypes (ps). Objects of two subtypes 
may be overlapping; objects of disjoint sub-
types are disjoint; the union of the objects 
of ali the generalization subtypes must equal 
to the objects of the supertype at aH times; 
partition subtypes are both disjoint and ge­
neralization subtypes. For a formal defini-
tion of these subtypes, the reader is referred 
to (Kung 1990). Attributes, constraints, and 
operations of a supertype are inherited by ali 
of its subtypes. 

4. GT is a set of component object types with 
associated ranges. The ranges indicate the 
number of objects of the component types 
tha t an object of the type may have. 

5. &T is a set of static constraints. These con­
straints are specified as closed tuple calcu-
lus like expressions and must be satisfied by 
every object of the type at any tirne. 

6. $ T is a set of t ime/temporal constraints. 
They are specified in a real-time logic and 
must be satisfied by every permissible evolu-
tion of every object of the type. 

7. TT is a set of operations. Each operation 
7 G TT is a 5-tuple 7 = (iV7, P7 , i"7 , 0 7 , IL,) 

(except for iV7, the other components are op-
tional), where N^ is its name, P 7 is a list of 
parameters with associated types, / 7 is a set 
of input object types, 0 7 is a set of output 
object types, and iž7 is a list of execution 
rules. 

The parameters in P 7 specify additional in-
puts tha t must be supplied externally when 
7 is executed. Objects of the types in J 7 are 
either consumed or referenced by 7, while 

objects of the types in 0 7 are produced by 
7. An object type can be both in / 7 and in 
0 7 , meaning tha t its objects are updated by 
7. Each execution rule Ri G R~, is a 4-tuple 
Ri = (L, [l, h],pre,post) 

where L is a label 'Ri ' denoting (it is) the 
ith rule, [/, h] is a tirne interval, pre is a pre-
condition, and post is a postcondition. The 
tirne interval [l, h] is closed in its two ends 
l and h, and l must be less than or equal 
to h. The precondition pre is specified in a 
QUEL-like langulage that refers to (referen-
ces/consumes) trie objects of the types in / 7 . 
The postcondition post tha t produces new 
objects of the types in 0 7 is a conjunction 
of assignments of the form x.A = expr me­
aning that the at tr ibute A of object x is set 
to the value of the expression expr. 

7 is executable if and only if a tuple of in­
put objects (i.e., one object per input type 
in / 7 ) makes the precondition pre of some 
execution rule Ri true (for some i, j.Ki.pre 
is true). Note that the specification of the 
execution rules must be that only one rule's 
precondition can be satisfied by such a tu­
ple of input objects. That is, if for some i, 
"/.Ri.pre is true, then for ali j , j 7̂  i, 7-Rj.pre 
must be false. Once 7 becomes executable 
on rule Ri, the time interval [l, h] of Ri spe­
cifies a period during which an execution on 
Ri must be performed. The execution produ­
ces a tuple of output objects tha t satisfy the 
postcondition post of Ri. (If *y.Ri.pre is t rue, 
then f.Ri.post must become t rue during / to 
h units of time.) 

In illustration, we show in Figure 1 the speci­
fication of a simple alternating bit protocol be-
tween two entities (Bartlett et al. 1969). An 
entity object type is specified to model the t.wq 
entities. The clause "Component Object Type •• 
sender[l], receiver[l]n specifies an aggregation 
relationship between entity and sender/receiver: 
an entity object is composed of a sender object 
and a,receiver object. The static referential con-
straint 

(3s G sender)(3r G receiver)(e# = s.e#Ae# = r.ejf) 

for the e # attr ibute of the entity object type is 
specified to illustrate this. In the sender object 
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Persistent Object Type entity; 
Attr ibute e # : Int (3s G sender)(3r G receiver)(e# = s . e# A e # = r . e # ) ; 
Component Object Type senderfl] , receiver [1]; 

End Persistent Object Type; 
Persistent Object Type sender; 

Attr ibute e # : Int, outmsg: String[80l, dest: Int, seg>#: Int, waitack: boolean; 
Operation send_msg(Message: String[80], Dest: Int); 

Persistent Object Updated s G sender, Produced m G message.packet; 
Execution Rule: 
R l : [0, oo] pre s . e# ^ Dest As.uiaitack — false; 

post m{from = s.e#,dest = Dest, se<?# = s.seq#,msg = Message)A 
„ , p . ,. _ s{outrnsg — Message, dest = Dest, tvaitack = t rue) ; 

Operation receive_ack(); 
Persistent Object Updated s G sender, Consumed a G ackjpacket; 
Executi'on Rule: 
R l : [0,1] pre s . e # = a.dest A s.seq# — a.seq# A s.vuaitack = t rue ; 

post s(seq# = (s.seq# + 1) mod 2,waitack =false); 
End Operation; 

End Persistent Object Type; 

Persistent Object Type receiver; 
Attr ibute e # : Int, inmsg: String[80], from: Int, s eg# : Int, acksent: boolean; 
Operation receive_msg(); 

Persistent Object Updated r G receiver, Consumed m G message.packet; 
Execution Rule: 
R l : [0,1] pre r . e # = m.dest A r.seq# ^ m.seq#; 

post r(inrnsg — m.msg, from = m.from, s e g # = m.seq#, acksent =false); 
R2: [0,1] pre r . e # = m.dest A r.seq# — m.seq#; 

post r(acksent =false); 
End Operation; 
Operation send_ack(); 

Persistent Object Updated r G receiver, Produced a G ackjpacket; 
Execution Rule: 
R l : [0,1] pre r.acksent = false; 

post a{from = r . e # , dest = r.from, seq# = r.seq#) A r{acksent = t rue) ; 
End Operation; 

End Persistent Object Type; 

Figure 1: Object type specification 
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Figure 2: Graphical representation of object type 
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type, the clause "Persistent Object Updated s G 
sender, Produced m G message-packet" speci-
fies the input /output of its send_msg() operation. 
The operation has an execution rule R l that as-
sures if a message is going to be sent out and 
the sender currently is not waiting for some ack 
from the other entity, then a packet carrying the 
message is produced and transmitted to the other 
entity (although its tirne interval [0, oo] indica-
tes that no time constraint is given for sending 
the packet). After sending the packet, the sen­
der waits for a corresponding ack (set waitack = 
t rue) . Rule R l of the receive_ack() operation as-
sures that the sender can transmit another packet 
(numbered a modulo-2 sequence number by set-
ting s.seq# = (s.seq# + l) mod 2) after it receives 
the ack. 

The (modulo-2) sequencing function is introdu-
ced to let the receiver, upon reception of a packet, 
be able to decide whether this packet carries a new 
message or a duplicate of the immediately prece-
ding one. The modulo-2 is chosen because it is 
sufficient to distinguish messages which are tran­
smitted one at a time. The receive_msg() opera­
tion of the receiver object type is to receive (num­
bered) messages from the other entity. Rule R l 
assures tha t it receives a new message, while rule 
R2 makes sure that the message received is a du­
plicate, and hence, simply discards it. However, 
an ack will be sent out after receiving a message 
no mat ter whether this message is new or dupli­
cate. This is modeled by rule R l of the send_ack() 
operation. 

Here, it should be noted that since a packet 
from the sender of an entity must be received by 
the receiver of the other entity (by recognizing 
s .e# 7̂  Dest), two senders are able to send out 
their message to each other at the same time (if 
there exists a transmission medium between each 
pair of sender and receiver). However, since our 
specification considers only the transmission be-
tween two entities, it cannot correctly model the 
čase of three or more entities. For example, the 
receiver of an entity is unable to distinguish which 
packet comes from which sender of other entities. 

Figure 2 is the graphical specification of part of 
the sender object type that is textually specified 
in Figure 1. The upper part depicts its structu-
ral aspect and the relationship with other object 
types, while the lower part specifies its send_msg() 

operation together with the interaction with other 
objects. The objects updated and produced by 
the operation are referred to by the small circles 
which are the interface between these objects and 
the operation. 

This graphical representation is an important 
feature of our approach because it gives a high le-
vel abstraction of the modeled system which ma­
kes it easier to communicate with users and un-
derstand the conceptual model. The operations 
of an object type are specified one at a t ime, dis-
played together with the structural aspect of the 
object type and its interaction with other objects. 
Hence, the effects of the modifications on objects 
and attributes by an operation become explicit 
and visible. We feel this is a good way to mo­
del encapsulation because an analyst can concen-
trate on one operation at a time while specifying 
the interaction between objects. The complexity 
of a conceptual model is thus largely reduced so 
as to alleviate the difficulty of modeling a non-
trivial application. When the graphical specifi-
cations of the operations are put together, they 
show the complete behavior of the objects of the 
object type as in the textual specification. Fi­
gure 3 shows the most commonly used graphical 
symbols of our approach. 

3 Designing for Safety and 
Fault Tolerance 

The modeling of control flow, failures, and faults, 
is essential in conceptual modeling for safety-
critical real time systems. In our approach, it 
is achieved by introducing control objects to mo­
del control flows between the activities of persi­
stent objects, failure operations to denote the 
failure events, and fault objects to specify the 
faulty conditions caused by the failures. (Note 
that the modeling of failures and faults was first 
proposed in (Leveson & Stolzy 1987) upon which 
our approach is based.) 

A control object type C contains a name Ne 
and a set AQ of attributes (see their counter-
part in Section 2). Control objects are in gene­
ral introduced between two persistent object ope­
rations, to be consumed/produced by these two 
operations, to model the desirable control fiows 
between them (i.e., the chronological ordering of 

•their executions). Figure 4 shows how some com-
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Instances of a persistent 
object type referred to 
by a variable x 

O 

Instances of a control Instances of a fault 
object type referred to ' 1 ' object type referred 
by a variable c I to by a variable / 

-C J An attribute, which may have a constraint 

J^. Object type hierarchy, which may be overlapping subtypes, 
^ls,gs,ps disjoint subtypes (ds), generalization subtypes (gs) or 

partition subtypes (ps) 

Jz 
O 

o-

Aggregation relationship with 
associated ranges 

An operation of a persistent 
object type 

Persistent or control object consumed 

-*\_J Persistent or control object produced 

\__) •- Persistent or control object referenced 

C_)"* *~ Persistent or control object updated 

Object encapsulation 

An operation of a fault object type 

Fault object consumed 

Fault object produced 

Fault object referenced 

Fault object updated 

Figure 3: Graphical symbols for object-oriented models 
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Execution Rule 
Rl: [0,5] 
pre (3c) A ...; 
post 6(...); 

Execution Rule: 
Rl: [6,6] 
pre (3c); 
post / ( . . . ) ; 

Figure 5: maximum tirne constraint between operations A() and B() 

mon chronological orderings between two persi­
stent object operations can be modeled by using 
control objects. We use two example operations 
A() and B() in the figure; each one consumes an 
input persistent object and produces an output 
persistent object. A control object c is consu-
med/produced by them to model their possible 
relationships. 

For safety requirements, failures of the behavior 
of persistent objects must be detected during ana-
lysis of the model. The modeling of failures and 
faults is done by specifying fault object types. A 
fault object type F contains a name Np, a set 
Ap of at tr ibutes, and a set Tp of operations (see 
their counterpart in Section 2). These operations 
consume (or produce spurious) persistent/control 
objects to denote the occurrences of failures. If 
it is needed to determine the states after these 
failures have occurred (i.e., to analyze their con-
sequences on the system to differentiate their co-
sts), fault objects of the type will be produced 
to specify the resultant faulty conditions by these 
failures. 

With the fault object types, one can model and 
analyze failures in more general situations. In this 
paper, we illustrate only their usefulness on con­
trol failures such as failing to ensure minimum (or 
maximum) tirne constraints between two operati­

ons and the occurrence of an undesirable event. 
Figure 5 shows, for example, a maximum time 
constraint between two persistent object operati­
ons: executing operaUon A() implies that some-
time within 5 Ume units operaUon B() must be 
ezecuted. The time interval [6.6] of rule R l of 
the failure operation is specified such tha t it can 
be executed only if operation B() is not executed 
within 5 time units (a failure by exceeding the 
maximum time constraint). A fault object is pro­
duced to specify the faulty condition. This object 
(faulty condition) will remain in the system until 
a terminating activity for it (i.e., the execution of 
a persistent object operation tha t consumes it) . 

In our illustrative example of the alternating 
bit protocol, a possible failure is the loss of a mes-
sage or ack packet being transmitted. As shown 
in Figure 6, this is modeled by specifying the 
lose_msg() and lose_ack() operations of the fault 
object type F\ that consume the message packet 
and the ack packet respectively.' Objects of the 
control object type C are used to model the or-
der of executing the send_msg() and receive_ack() 
operations: after sending a message, the sender 
waits for a responsive acknoivledgment. Beca-
use of the possible loss of messages or acknowled-
gments, it is necessary to have a maximum time 
constraint between them: the sender waits for the 



50 Informatica 19 (1995) 43-58 J. Lin et al. 

.Fi.lose_msg0 

Fl 

Execution Rule: 
Rl: [0,11 
pre (3m); 
post / ( . . . ) ; 

sender. receive_ack() 

ider 

. L 

o~ 

Execution Rule: 
Rl: [6,6] 
pre (3c); 
post / ( . . . ) ; 

message 
packet 

i*\.lose-ack() 

Fi 

Execution Rule: 
Rl: [0,1] 
pre (3a); 
post / ( . . . ) ; 

- @ 

ack 
packet 

r eceiver. receive_ms sg() 

receiver 

O 

receiver. send_ack(.) 

Figure 6: Specification of recoverable alternating bit protocol 



Persistent Object Type entity; 
Attr ibute e # : Int (3s 6 sender)(3r G receiver)(e# = s . e# A e # = r . e # ) , s iate: String[8]; 
Component Object Type sender[l], receiver[l]; 
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End Persistent Object Type; 

Persistent Object Type sender; 
Attr ibute e # : Int, outmsg: String[80], dest: Int, s eg# : Int, maitack: boolean; 

Operation send_msg(Message: String[80], Dest: Int); 
Persistent Object Updated s G sender, Produced m G message.packet, 
Control Object Produced c £ C; 

Execution Rule: 
R l : [0,oo] pre s . e# ^ Dest hs.voaitack = false; 

post m(frorn = s.e#,dest = Dest, s e g # = s.seq#,msg = Message) A 
sfoutmsg = Message, desi = Dest, ivaitack = true) A 
c(from = s .e# , dest = Dest, seq# = s.seq#); 

End Operation; 
Operation resend_msg(); 

Persistent Object Referenced s G sender, Produced m G messagejpacket, 

Control Object Produced c G C, Fault Object Consumed / G F2, 
Execution Rule: 
R l : [0,1] pre s . e# = f.from A s.dest = f.dest A s.seq# = /.se</# A s.ivaitack = true; 

post rn(from = s . e# , dest = s.dest, seq# = s.seq#, msg = s.outmsg) A 
c(from = s . e# , dest = s.dest, s e g # = s - s e 9#)> 

End Operation; 
Operation receive_ack(); 

Persistent Object Updated s G sender, Consumed a G ackjpacket, 

Control Object Consumed c G C; 
Execution Rule: 
R l : [0,1] pre s . e# = a.dest A s.seq# = a.seq# A s.iuaitack — true A 

c.from — a.from A c.dest = a.dest A c.seq# = a.seq#; 
post s(seq# = (s.seq# + 1) mod 2,waitack = false); 

End Operation; 
End Persistent Object Type; 

Persistent Object Type receiver; 
Attr ibute e # : Int, inmsg: String[80], from: Int, s e ? # : Int, acksent: boolean; 
Operation receive_msg(); 

Persistent Object Updated r G receiver, Consumed m G message.packet; 

Execution Rule: 
R l : [0,1] pre r . e # = m.dest A r.seq# ^ m.seq# A r.acksent = true; 

post r(inmsg = m.msg, from — m.from, s e ? # = rn.seq#, acksent = false); 
R2: [0,1] pre r . e # = m.dest A r.seq# = m.seq# A r.acksent = true; 

post r(acksent = false); 
End Operation; 
Operation send_ack(); 

Persistent Object Updated r G receiver, Produced a G ackjpacket; 
Execution Rule: 
R l : [0,1] pre r.acksent — false; 

post a(from = r.e#, dest = r.from, s eg# = r - s e ? # ) A r(acksent = true); 
End Operation; 

End Persistent Object Type; 

Figure 7: Textual specification of recoverable alternating bit protocol (to be continued) 
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Fault Object Type Fx; 
Attribute / # : Int, from: Int, dest: Int, se<7#: Int; 
Operation lose_msg(); 

Persistent Object Consumed m G message jpacket, Fault Object Produced / G F\\ 
Execution Rule: 
Rl: [0,1] pre (3m); 

post f(from = m.from, dest = m.dest, seq# = m.seq#); 
End Operation; 
Operation lose_ack(); 

Persistent Object Consumed a G ack.packet, Fault Object Produced f £ Fi, 
Execution Rule: 
Rl : [0,1] pre (3a); 

post /(from = a.from, dest = a.dest, seg# = a.seq#); 
End Operation; 

End Fault Object Type; 
Fault Object Type F2; 

Attribute / # : Int, from: Int, dest: Int, seq#: Int; 
Operation fail(); 

Control Object Consumed c G C, Fault Object Produced / G F2, 
Execution Rule: 
Rl: [6,6] pre (3c); 

post f(jrom = c.from,dest = c.dest,seq-#- = c.seqjf); 
End Operation; 

End Fault Object Type; 

Figure 7: Textual specification of recoverable alternating bit protocol (continued.) 

acknoivledgment at most 5 tirne units. Failure to 
meet this constraint will result in resending the 
message. The fail() operation of the fault object 
type F2 denotes the failure. It consumes the con­
trol object if the sender cannot receive the ac-
knowledgment timely (also, cannot consume the 
control object timely). An object of type F2 is 
produced to specify the faulty condition, which 
is then used to invoke the resend_msg() opera­
tion to retransmit the message. This fault object 
is consumed by the resend_msg() operation to 
terminate the faulty condition. Figure 7 shows 
textual specification of the recoverable alternating 
bit protocol. 

4 System Behavior Analysis 

Analyzing the system behavior of our model is 
achieved by first modeling overall behavior among 
persistent objects in a t imed transition net. Then, 
the reachability graph for the net is constructed 
to analyze its properties. 

4 . 1 T i m e d T r a n s i t i o n N e t 

Based upon the approach in (Chao & Kung 1991, 
Kung 1989), the net consists of a set of transiti­
ons and places. Transitions model the events tha t 
occur instantaneously in a system, and places are 
the input /output of transitions. Each transition 
is associated with a tirne interval [l, h], where Z 
and h represent the minimum and maximum tirne 
delay that must elapse before the transition is exe-
cuted. Times / and h are relative to the moment 
at which the transition becomes executable. 

In addition, functional capabilities are incor-
porated in the net. That is, typed tokens are 
assigned to places, and each token in a plače re-
presents an object of some (object) type. A tran­
sition is executable if and only if each of its in-
put places contains a token and its precondition 
is true. Tokens in input places are either consu­
med or referenced by the transition, while tokens 
in output places are produced by the transition. 
For modeling failures and faults in the net, tran­
sitions are divided into normal ones and failure 
ones (Leveson & Stolzy 1987). The faulty condi-
tions caused by failure transitions are denoted by 
the fault output places of these failure transiti-
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Figure 8: Graphical symbols of timed transition nets 
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ons. Figure 8 shows the graphical svmbols of the 
net. 

4.2 Model ing of Sys t em Behavior 

The following steps are used to model overall be­
havior of our model. 

Step 1: For each operation 0 ; of an object type, 
create a transition tij for each execution rule Rj 
which has the same time interval and pre/post 
conditions as in the rule. For example, as shown 
in Figure 9, the send_msg() operation in Figure 
7 corresponds to the tsencimsgRi transition. The 
receive_ack() operation corresponds to transition 
treceiveackm- AH these transitions have the same 
time interval and pre/post conditions as their cor-
responding execution rules have. 

Step 2: For each transition tij derived in the 
last step, create its input /output places, depen-
ding upon input /output object types of Of. 

— For each consumed (resp. referenced) object 
type whose object is referred to in the precon-
dition of tij, create a consumed (resp. refe­
renced) input place whose containing objects 
are of the type. 

— For each produced object type whose object 
is produced by some assignment statements 
of the postcondition of tij, create a produced 
output place whose containing objects are of 
the type. 

— For each updated object type whose object is 
referred to in the precondition of tij, create a 
consumed input place and a produced output 
place where their containing objects are of 
the type. 

Figure 10 shows the input /output places crea-
ted for each transition. 

Step 3: Merge redundant input places. Two 
places pi and p2 are redundant if (1) their con­
taining objects are of the same type and (2) each 
one is an input place of a transition where the 
two transitions were derived in Step 1 from two 
execution rules of one operation. For our exam-
ple in Figure 10, the two consumed input places 
P72 and p 8 1 are redundant and hence should be 
merged. Figure 11 results from Figure 10 after 
merging redundant places. 

Step 4: Connect related transitions by merging 
common places. Two places p\ and p2 are com-
mon if (1) their containing objects are of the same 
type, (2) p\ is an output place of a transition 
t\, and p2 is an input place of a transition ti, 
and (3) the objects in p\ produced by t\ are use-
ful for satisfying the precondition of t2, meaning 
that they can used through p2 for the firings of t2. 
For example, in Figure 11 the message packets in 
place p\2 produced by transition tstn&msgm are 
useful for satisfying the precondition of transition 

treceivemsgRl Or treceivemsgR2 (thrOUgh place pg\), 

hence pi2 and p 8 1 are common and then merged. 
Figure 12 results from Figure 11 after merging 
common places. 

Applying these steps, the system behavior of 
our model can be described in a timed transition 
net (as shown in Figure 12). 

4.3 Construction of Reachabil i ty 
Graph 

With the timed transition net, its reachability 
graph then can be constructed for analyzing desi-
rable properties such as liveness, fairness, and ti-
ming properties. Since our timed transition nets 
use the same timing constructs as in time Petri 
nets (TPN's) (Merlin 1974, Merlin & Faber 1976), 
the technique in (Berthomieu & Diaz 1991) for 
building the reachability graph of a time Petri 
net can be applied directly for our nets. That is, 
each node (or stote class defined in (Berthomieu 
& Diaz 1991) of the resulting reachability graph 
is a pair n = (M, D) where M is the marking that 
contains the current status of objects and D is a 
set of inequalities that specify the bounds of fi-
ring times of the transitions made executable by 
M (assume ali parameters, such as Message and 
Dest in Figure 1, tha t must be supplied exter-
nally for executing these transitions are provided 
adequately). 

Given any node n = (M(n),D(n)), a succe-
eding node n' = (M(n'),D(n')) can be defined 
when a transition l < t < h m D(n) is exe-
cuted. The edge between them is denoted as 
(n,t[l,h],n'). In node n', M(n') is the marking 
that contains the new object status resulting from 
the effects of t on M{n). Transitions in D(n') 
can be divided into two sets: (1) The transitions 
that are newly made executable by M(n'); and 
(2) The transitions that were already executable 
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Figure 13: Reachability graph for the timed transition net 

in n (already in D(n)) are stili executable in n'. 
In the first set, the firing bounds of each transi­
tion are equal to the bounds of the tirne interval 
associated with the transition. But, in the second 
set, the firing bounds of each transition i*, are gi-
ven by: max(0,/fc—h) < tk < max(0,/ifc—1), where 
lk and hk are the firing bounds of tk in D(n). For 
more details about s tate classes and reachability, 
the reader is referred to (Berthomieu & Menasche 
1982, 1983, Berthomieu & Diaz 1991). 

Figure 13 shows the resulting reachability 
graph from the net in Figure 12. In the graph, 
nodes are labeled with the present state class and 
arcs represent transitions between state classes 
with associated bounds of firing times. Since the 
fault objects in places p^ and p$ are produced 
only to denote losses of messages and acknowled-
gments, which are not used for retransmitting 
messages, we do not include them in the mar-
kings of state classes for simplifying the graph. 
The nodes of the graph are as follows. 

Node n i : M : pi,pio, D : 0 < tsendmsgR\ < 00 
Node n2: M : P2,P3,Pn,Pio 

JJ '. (J <-. tiosemsgJix \ i, U \ treceivemsgRl S -M 
0 < treceivemsgR2 < 1| 6 < tfaURl < 6 

N o d e n 3 : M : p2,P3,P9 
D : 0 < tsendackRl < 1, 5 < tfaHRi < 6 

Node n4: M : P2,P3,P7,Pio 
D : 0 < tioseac/cRl < 1, 0 < treceiveackRi < 1, 

4 < tfailRl < 6 
Node n5: M : P2,P3,Pw, D : 5 < tfaiiRi < 6 
Node n6: M : P2,P6,Pio, D : 0 < tresendmsgRi < 1 
Node n7: M : P2,P3,Pio, D :3 < tfaiiRi < 6 

The graph then can be used as a usual state 
transition system for verifying properties that 
characterize the correct behaviors of our model. 
For instance, we can veriiy real-time logic as-
sertions (desired t ime/ temporal constraints) by 
traversing its nodes (state classes). In addition, 
we can also decide the safety of our model by 
checking whether in the control plače P3 its mar-
king (number of control objects) has only a value 
0 or 1 during the execution of the system. Conta-
ining more than one object in ps is considered as a 
design error (only one message packet can be tran-
smitted at a tirne), and hence, must be uncovered 
during the behavior analysis. Likewise, we mi-
ght consider the maximum permissible number of 
fault objects in the plače p4 or p8 as the maximum 
allowable number of times of losing messages or 
acknowledgments. Excessive number of message 
or acknowledgment losses could mean the extre-
mely unreliable transmission medium, and then, 
result in the invocation of some necessary actions 
(Le., replace the medium with a new one). 

5 Related work and 
Conclusions 

Object-oriented conceptual modeling starts with 
the description of objects which represent as close 
as possible real-world entities. An object-oriented 
method must support the encapsulation of the 
structural and behavioral aspects in an object. In 
particular, it must provide constructs for mode­
ling of object tijpeSf relationships, object behavior, 
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and interactions behueen objects. 

Shlaer and Mellor (Shlaer & Mellor 1988) pro-
posed a model that describes an application in an 
information model, a state model, and a DFD pro-
cess model. Since these three models are not in-
tegrated and the state model and DFD notations 
are less formal, their work is prone to inconsisten-
cies and ambiguities. In addition, because there 
is no formal object interaction mechanism, overall 
system behavior can not be deduced from the be­
havior of individual objects. Thus, it is impossible 
to check that the state model is consistent with 
the process model. These drawbacks also present 
in other similar approaches such as Booch's (Bo-
och 1991) and Rumbaugh et al's (Rumbaugh et 
al. 1991). 

de Champeaux (de Champeaux 1991, de Cham-
peaux & Olthoff 1989) presented a similar model 
which augments the state model by attaching to 
transitions: (1) a trigger that indicates whether a 
triggering event is required; and (2) a casual list 
tha t describes the events that are generated as a 
consequence of the transition and act as triggers 
for subsequent transitions. The process model 
ušes these triggers and messages to describe the 
casual interactions between objects. As a result, 
consistency between the state model and the pro­
cess model can be checked. However, his appro-
ach has drawbacks: (1) The structural aspect and 
the behavioral aspect are not integrated; and (2) 
The object interaction mechanism is less formal 
(based on broadcast communication), and hence, 
formal analysis of system behavior is difficult. 

Kim and Moon (Kim & Moon 1992) propose 
a diagrammatical representation, called Object-
Relationship Diagrams, which provides a uni­
form model of the structure and the behavior of 
objects. Object-Relationship diagrams consist of 
structure diagrams and behavior diagrams. Struc­
ture diagrams describe the structure of objects 
and their relationships. Behavior diagrams de­
scribe the behavior of objects by identifying sta-
tes, events, and interactions between objects. 
Since object interaction is described by the same 
informal \vay as that in de Champeaux's appro-
ach, formal analysis is stili difficult. 

Hayes and Coleman (Hayes & Coleman 1991) 
propose a coherent analysis model to capture both 
the structure and the behavior of objects. Three 
models are used in this approach. The object 

structure model describes the static aspect of 
objects that provides the information to be used 
in behavioral (dynamic and function) models. In 
the dynamic model, objectchart (Coleman 1992), 
which is extended statechart (Harel 1988), is used 
to describe object behavior. A formal object inte­
raction mechanism is used to describe interactions 
one at a tirne, so system behavior can be dedu­
ced and analyzed from individual object behavi-
ors. In the function model, pre/post conditions 
are used to describe system level behavior. The 
consistency between the dynamic model and the 
function model can be checked. 

Our approach presents a different way of mo-
debng both the structural aspect and the beha­
vioral aspect of objects in a uniform representa­
tion. Unlike the methods surveved above that 
describe object behavior by identifying and spe-
cifying ali the possible states an object can be in 
its life cycle, our model supports encapsulation 
of object states by allowing an analyst to focus 
on modeling of one operation for one object at a 
time. The complete behavior (states) of an object 
can be obtained by putt ing together and mapping 
ali its operations into a timed transition net. This 
largely reduces the complexity of our model, and 
hence, alleviates the difficulty of modeling a non-
trivial application. In addition, our modeling con-
structs can have a graphical representation and a 
textual representation. The graphical representa­
tion makes it easier to communicate with users 
and makes the conceptual model easier to un-
derstand, while the textual representation can be 
used for other purposes (i.e., compile for syntax 
and consistency checking). For the requirements 
of designing for safety and fault tolerance, it also 
supports modeling of failures to object behavior 
and their resultant faults. Since system behavior 
can be easily deduced and modeled in a timed 
transition net, many existing techniques (Bertho-
mieu & Diaz 1991, Leveson & Stolzy 1987) can be 
exploited for analyzing desirable properties. 
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The main objective of this paper is to present a method for handling non-preventable 
and non-avoidable catastrophic exceptions in embedded hard real-time environments in 
a well-structured and predictable way, and as painlessly as possible. 
First, apt hardware and software platforms which are pre-requisite for predictable sy-
stem behaviour are briefly presented. Then, some existing techniques are shown and 
their suitability for implementation in embedded hard real-time environments is discus-
sed. Further, a classification of exceptions and our own approach for handling them is 
presented and elaborated. Finally, a method for the estimation ofthe resulting temporal 
behaviour is descrihed. 

1 Introduction 

In this paper, embedded hard real-time systems 
are dealt with. In general, they are emploved to 
control different processes; the integrity of these 
applications relies on their temporally and functi-
onally correct operation. Depending on the appli-
cation, these systems can be extremely safety cri-
tical; their malfunction may cause major damage, 
material loss, or even endangerment of human li-
ves. Thus, for such systems high integrity and 
safety is required, and mechanisms must be devi-
sed to čope with partial or complete failures. 

While in the systems, which are usually used in 
process control, testing of conformance with func-
tional specifications is well established, temporal 
circumstances are seldom consistently verified. It 
is almost never proven at design tirne that such 
a system will meet its temporal requirements in 
every situation that it may encounter. 

In his reference paper [20], Stankovic is unma-
sking several misconceptions in the domain of 
hard real-time systems. Seemingly the most cha-
racteristic one is that real-time computing is often 
considered fast computing. It is obvious tha t Com­
puter speed itself cannot guarantee that specified 
timing requirements will be met. 

Instead, a different ultimate objective was set: 
predictability of temporal behaviour. Being able 
to assure that a process will be serviced within 
a predefined tirne frame is of utmost importance. 
In multiprogramming environments this condition 
can be expressed as schedulability: the ability to 
find a schedule such that each task will meet its 
deadline [22]. 

For schedulability analysis, execution times of 
tasks must be known in advance. These, howe-
ver, can only be determined if a system func-
tions predictably. To assure overall predictabi-
lity, ali system layers must behave predictably 
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in the temporal sense, from the processor to the 
system architecture, language, operating system, 
and exception handling (layer-by-layer predicta-
bility, [21]). 

In recent years, the domain of real-time sy-
stems substantially gained research interest. Cer-
tain sub-domains have been examined very thoro-
ughly, such as scheduling and analysis of program 
execution times. It is typical that most of the re­
search done was dedicated to higher level topics 
and presumes that the underlying features behave 
fully predictablv. 

Exception handling is one of the most severe 
problems to be solved when a system is to be­
have predictably. By an exception any unexpec-
ted intrusion into the normal program flow which 
cannot be considered during schedulability ana-
lysis phase is meant. It is usually related to resi-
dual specification and implementation errors and 
to failures. Anticipated timing events and events 
from the environment, which trigger associated 
processes, do not belong to this category. They 
should be implemented in a way, which does not 
cause any non-deterministic delays in the execu-
tion of the running tasks. That can be achieved 
by migrating event recognition and operating sy-
stem services out of main task processors [11], and 
was also implemented in the Spring project [19]. 
Results of our previous studies were presented in 
[4] and are used in the design of an experimental 
platform as described in the next section. 

When an exception occurs in a program, the 
latter is inevitably delayed causing a serious pro­
blem with respect to the a priori determined exe-
cution tirne. Therefore, exceptions should be pre-
vented by ali means, whenever and wherever it is 
possible [1]. If it is not possible to prevent them 
to happen, thev should be handled in a consistent 
and safe way in conformity with the hard real-
time systems design guidelines, i.e. timeliness, si-
multaneity, predictability, and dependability [13]. 
The need for consistent solutions to the exception 
problem is exacerbated by the fact that excepti-
ons are often the results of some critical systems 
states, which is when computer control is needed 
most. 

In this paper we show constructively how be-
havioural predictability can be achieved by pre-
senting an experimental system and considering 
different aspects of its design. Although the main 

emphasis of the paper is on consistent exception 
handling, it is necessary to present some princi-
ples used to provide the necessary pre-conditions 
for deterministic system behaviour; only then it 
is reasonable to consider the upper layers of a sy-
stem design. In Section 2 we start offwith descri-
bing the basic layers of an asymmetrical paraUel 
hardware architecture and the operating system 
concepts which prevent process control tasks to 
be disturbed (and thus delayed) by events occur-
ring in the environment. Further, in Section 3, 
a real-time programming tool supporting the ar­
chitecture is described by which process control 
programs with deterministic temporal behaviour 
can be designed and their run-times determined. 

Exception handling was integrated into a high-
level programming language, \vhich is the subject 
of Section 4. First, we classify exceptions and 
show that a number of them can be either pre-
vented or avoided. Further, we summarise some 
known solutions to handle the remaining excepti-
ons, which were ali combined in the implemented 
approach. Finally, an analysis of the impact the 
approach has on overall process timing predicta-
bility is given. 

2 Concept of an Experimental 
Hardware Platform 

In multi-tasking systems, dynamic scheduling al-
gorithms to generate appropriate schedules must 
be implemented. The ones which fulfUl the re-
quirement that ali tasks must meet their deadli-
nes are referred to as feasible. In the literature, 
several such algorithms have been reported (an 
overview is given in [13]). For our purpose, the 
earliest-deadline-first scheduling algorithm is cho-
sen. It has been shown that it is feasible for sche­
duling tasks on single processor systems; with the 
throw-forward extension it is also feasible on ho-
mogeneous multiprocessor systems. However, this 
extension leads to more pre-emptions and is more 
complex and, thus, less practical. 

For process control applications, where pro­
cess interfaces are usually physically hard-wired 
to sensors and actuators establishing the contact 
to the environment, it is natural to implement ei­
ther single processor systems or dedicated multi-
processors acting and being programmed as sepa-
rate units. Thus, the earliest-deadline-first sche-

file:///vhich


SUPPORTING HIGH INTEGPJTY AND... Informatica 19 (1995) 59-69 61 

External Process Environment 

Figure 1: Scheme of an experimental hardware 
platform 

duling policy can be employed without causing 
any restrictions, resulting in a number of advan-
tages discussed by Halang and Stoyenko [13]. 

In the classical computer architecture the ope­
rating system is running on the same processor(s) 
as the application software. In response to any 
occurring event, the context is switched, system 
services are performed, and scheduling is done. 
Although it is very likely that the same process 
will be resumed, a lot of performance is wasted 
by superfluous overhead. This suggests to em-
ploy a second, parallel processor, to carry out the 
operating system services. Such an asymmetrical 
architecture turns out to be advantageous, since, 
by dedicating a special-purpose, multi-layer pro­
cessor to the real-time operating system kernel, 
the user task processor(s) are relieved from any 
administrative overhead. 

This concept was in detail elaborated in [11] 
and further refined in [3, 4]. Our experimental 
hardware platform is to a high extent complying 
with these principles, and is currently under con-
struction. In Figure 1 it is shown that it consists 
of task processors (TPs) with intehgent process 
interfaces (IPI) and a kernel processor (KP) with 
an external event recognition interface (EERI), 
which are fully separated from each other. 

The external process is controlled by tasks run­
ning in task processors without being interrup-
ted by the operating system functions. Any event 
from the environment is fed to the kernel pro­
cessor and scheduling is performed based on the 

modified earliest-deadline-first policy: the inten-
tion is to find a schedule such that ali waiting 
tasks including the newly arrived one meet their 
deadline while the running task remains in exe-
cution. Thus, a running task is only pre-empted 
if it is necessary to assign the highest priority to 
an incoming task in order to allow that aH tasks 
meet their deadlines. 

The task processors are implemented with 
INMOS T805 transputers. In the task processors' 
external memory the code of each task assigned 
to be run is loaded. Also, a part of the control 
blocks of these tasks is residing there, holding the 
context of eventually pre-empted tasks. The fast 
on-chip RAM of the transputers is holding task 
internal variables except for the large data struc-
tures which are held in the external memory. 

The IPI process interface is based on a Moto­
rola MC68000 microprocessor which adds the ne-
cessary intelligence to peripheral devices. It is 
accessible by a bi-directional link via an INMOS 
converter and is acting as a slave to the task pro­
cessors) . Services of the intelligent process inter­
face are available by calling pre-defined peripheral 
device drivers and providing parameters and data. 

Synchronisation of tasks running in different 
task processors is carried out with the help of 
semaphores residing in the kernel processor and 
being accessible through systems calls. 

The kernel processor is responsible for ali ope­
rating system services. It consists of an INMOS 
T425 transputer performing the operating system 
kernel services, and a Motorola MC68000 based 
external event recognition interface. The latter 's 
task is administering the real-time clock in the 
form of Julian time, receiving signals from the 
process environment, providing them with time 
stamps, and periodically triggering events by sen-
ding messages to the transputer containing Infor­
mation about ali events that happened recently, 
and serving as a synchronisation means. 

The time between two synchronisation messa­
ges from the EERI is further sub-divided in slots 
in the kernel processor. In these slots the informa-
tion from the external event recognition module 
is processed, time events are administered, and 
OS service calls from the task processors are ser-
viced, each triggering scheduling of an associated 
application task. 

It is to be mentioned that our nomenclature 
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is not strictb/ conforming with [11], although the 
functions implemented in our architecture com-
ply with the layers proposed there. The exter-
nal event administration part of the hardware la-
yer functions is implemented in the EERI, the 
others — primary and secondary reaction level 
— in the kernel processor. The hierarchy is re-
tained by executiong these functions in strictly 
defined slots. We are considering migrating the 
scheduling-related secondary reaction level servi-
ces into a separate transputer to enhance perfor-
mance. 

Through this concept, preventing non-
deterministic interruptions from the environment, 
careful avoidance of the sources of unpredictable 
processor and system behaviour, loose coupling of 
task processors, and svnchronous operation of the 
kernel processor, the predictability of the tempo-
ral system behaviour will provide the necessary 
basis for the higher system design levels. 

3 Concept of a Real-Time 
Programming Tool 

To program applications on the above hardware 
platform a tool is being constructed, in which the 
proposed exception handling mechanism is built 
in. Its ultimate objective is to produce temporally 
predictable and optimal program code for embed-
ded hard real-time applications, and estimations 
of their execution times. 

In the tool two parts are closely integrated: a 
compiler for an adapted standard real-time pro­
gramming language, and a program execution 
tirne analyser. The latter is providing the ne-
cessary information for a schedulability analyser 
which is currently beyond the scope of our rese-
arch. 

In the design of the tool, the following guideli-
nes were followed: 

1. Target system independence. The compiler 
should produce executable application code for a 
variety of target systems. This is achievable by 
implementing target system specinc macros which 
transpose each element of intermediate code into 
a corresponding piece of executable code. In the 
specification file for each target system its own set 
of macros is defined. 

2. Generation of efficient code. Although being 
system independent, the compiler is expected to 

generate fast and compact code. This can be achi-
eved by the simplicity of the programming langu­
age, and the possibility of global syntax tree opti-
misation (register scheme, local and global varia-
bles' locations and other implementation specific 
information are given in the system specification 
file). Also, in translation macros full information 
about the operands (constant, register, local or 
global variables) is contained. 

3. Realistic estimation of task ezecution times. 
A drawback of many methods for task execution 
tirne estimation is that they yield such pessimistic 
results that their relevance is seriously diminished 
[18]. To čope with that , the tool supports two di-
fferent methods to determine the execution time 
of a task: compile-time program analysis and di-
rect measurement of worst-case (partial) task exe-
cution time. 

3.1 M i n i P E A R L 

To program an application, the programming lan­
guage miniPEARL is introduced. It is a simpli-
fied version of PEARL [9], a standard language 
for programming real-time applications, which, 
however, may produce temporally unpredictable 
code for several reasons. To eliminate these pro-
blems, PEARL's syntax is modified. Further, to 
support efficient mapping onto typical target ar-
chitectures certain features are reduced. Finally, 
it is enhanced by some constructs specific to real-
time systems, proposed by Halang and Stoyenko 
[13, 12]. MiniPEARL is described in more detail 
in [23]. 

The main differences between PEARL and mi­
niPEARL are: 

l.There are no GOTOs. The use of GOTO 
statements can result in unstructured and hardly 
manageable code. Instead of these, EXIT and 
LOOP statements are introduced for preliminary 
exit from an innermost structure, and for imme-
diate initiation of the next iteration of a loop, 
respectivelv. 

2.Each loop block is stricthj bounded. In the 
REPEAT statement, lower and upper counts of 
a loop are obligatory and defined with compile-
time constant expressions to limit the number of 
iterations. 

3.Pointers and recursion are not allouied. 
Dvnamic data structures and recursion can result 
in severe memory management problems. They 
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may cause temporally non-deterministic actions 
tha t cannot be considered in timing analysis. 

A.Signals are not directly supported. In our ar-
chitecture model interrupts and signals are mana-
ged by the kernel processor. Events can be indu-
ced by the synchronisation mechanism. 

5. Each statement ezecution is temporally boun-
ded. Commands whose execution tirne is non-
deterministic must be either forbidden, or ta-
ken special čare of in a real-time systems. Each 
of such commands which are unavoidable must 
be temporally guarded, and time-out alternatives 
must be defined explicitly. Commands that must 
be guarded are the ones that are dealing with pro-
cess inputs and outputs (if handshaking is imple-
mented), and synchronisation mechanisms. 

6.Explicitly asserted execution time. Frequen-
tly, because of the nature of a program, estimation 
may yield very pessimistic execution times. To re-
solve this problem, additional information about 
program execution must be given by the program-
mer. This can be done by adding new constructs 
(pragmas) into program code as proposed in [18]. 
But such constructs require complex analysis and 
are not feasible for ali situations. To overcome 
this problem, the execution tirne of code segments 
known through competent measurement, detailed 
analysis of the program behaviour, experience, re-
use, etc. may be exphcitly asserted by the system 
developer who also takes the responsibility. In 
such čase, execution time analysis is overriden. 
However, to guarantee that the actual execution 
time will not be longer than declared, blocks must 
be guarded by time-out controls, and time-out ac-
tion must be present. 

8.DATIONs are not used. Mass storage and 
asynchronous input /output devices as used in PE-
ARL are not suitable for hard real-time systems. 
For this reason and because of the relative comple-
xity of these structures, DATIONs are excluded 
from the structure of the language. Input /output 
devices (registers) are accessed at the lower pro-
gramming level. 

9.Improved task activation scheme. In miniPE-
ARL task activation, deactivation, etc. can be 
done through signals from the environment, time-
related conditions, or specific states of synchroni-
sers, as proposed in [13]. A time-related and one 
non-time-related condition may be combined. 

10. Scheduler support. The scheduling algori-

thm performed in the kernel processor relies on 
the residual execution time of a task. This time 
is computed as maximum execution time of the 
task minus cumulative running time. However, 
the actual execution time is expected to be shor-
ter than the estimated one. To achieve better 
performance, the actual residual task execution 
time can be explicitly asserted at ceratin points 
to update the estimated one. 

3.2 Est imat ion of Task Execut ion 
Times 

To allow for schedulability analysis, precise exe-
cution times of application tasks must be known 
in advance. In our tool, two methods for the esti­
mation of program run-times are supported: 

1. Analysis of executable code. In this method, 
an automatic analyser is used to estimate execu-
tion times (compare also [18, 17]). Source code is 
transformed into an intermediate form (modified 
syntax tree) prior to executable code generation. 
Each element of this form is associated with a ma-
cro block that is used for two purposes. The first 
is to generate the code and the second is to obtain 
its execution time. Because the execution time of 
the same block can be data-dependent, as much 
information as possible about operands should be 
passed to it. The operand can be a register, a con-
stant, a local variable or a global variable. When 
the macro is expanded, the sum of times needed 
for accessing these operands is added to the basic 
execution time of the macro. 

2. Direct measurement of ezecutable code. This 
method can be used when more precise execution 
time than estimated is desired. To achieve tha t , 
object code is executed on the target system and 
the execution time is recorded. Direct implemen-
tation of this method has some disadvantages: 

- The complete target system must be imple-
mented. That is inappropriate in earlv phases of 
development when the target-system is not com-
pletely implemented, yet. 

- Through recording, only average execution ti­
mes can be obtained. For usable analysis, howe-
ver, worst-case execution times are needed. A test 
scenario to obtain that situation is usually diffi-
cult to determine. 

- The input /output devices must be active and 
interact with the environment. Thus, the embed-
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ding environment or a simulation of it is needed. 

By our approach, these disadvantages are eli-
minated. Only a task processor or its equivalent 
must be implemented. The longest path through 
a task is determined by the compiler and a pi­
lot code is generated running only through that 
path. From a set of alternative constructs (IF and 
ČASE statements, for example), the longest one 
is statically routed. Ali time-guarded commands 
and input /output variable accesses are replaced 
by appropriate delays. This pilot code is then 
executed on the hardware platform or, because of 
the substitution of every system-specific function, 
a delay is inserted. 

4 Handling of Exceptions in 
Hard Real-Time Systems 

Our previous work in the domain of dealing with 
exceptions was published in [5]. With the goal to 
avoid non-deterministic delays in the execution of 
application tasks it was shown that a great num-
ber of exceptions can be either prevented from 
happening, or they can be handled within the con-
text of task requirements: 

- Preventable ezceptions: Some exceptions can 
be prevented by restricting the use of potentially 
dangerous features. Compliance with these re-
strictions must be checked by the compiler. For 
example, no dynamic features like recursion, refe-
rences, virtual addressing, or dynamic file names 
and other parameters etc. are allowed. 

Other features are, e.g., strong type checking 
(see [8]), or extensions of the input and output 
data types by two "irregular" values representing 
"signed infinity" to accommodate overflows and 
underflows and "undefined", as proposed in the 
IEEE 32-bit floating point standard [2] implemen­
ted also in the INMOS transputers ' Floating Po­
int Unit (FPU) (compare also [16]). Thus, com-
puted irregular values do not raise exceptions, but 
are propagated to the subsequent or higher-level 
blocks, which must be able to handle them. 

- Non-preventable, anticipated ezceptions: If 
the potential danger of irregularity can be reco-
gnised during design time, it has to be taken čare 
of in the specifications. For example, periphe-
ral devices shall be intelligent, fault-tolerant and 
self-checking in order to be able to recognise their 

own malfunctions, and to react in a predefmed 
way if a value which is sent to them is irregu­
lar. Further, a number of exceptions resulting 
from irregular data can be avoided by prophylac-
tic run-time checks before entering critical opera-
tions. Many tasking errors are also avoidable by 
previously using monadic operations to check the 
system state. 

Falling into this category, an obvious and fre-
quently used way of avoiding critical failures in 
hard real-time systems design is redundancy (an 
example for consistent implementation of redun-
dancy is the MARS system [15]). Redundant sy-
stem components must be implemented according 
to thorough analysis of fa,ult hvpotheses. 

If there is no way to predict an error, an excep-
tional situation caused must be handled in order 
to survive it. These are situations when "the im-
possible happens" [1], in which programs do not 
follow their specifications due to hardware fai­
lures, residual software errors, or wrong specifi­
cations. For example, failure of a part of me-
mory can result in the change of constant values; 
an error in file management or on a disk is usu-
ally unexpected. In safety-critical control systems 
non-anticipated exceptions may have catastrophic 
consequences. There it is especially important to 
implement a mechanism for their safe and consi­
stent handling. 

In his early paper, Goodenough [10] presen-
ted the idea of assigning default or programmed 
exception handlers to every potentially dangerous 
operation. According to the severity of an excep-
tion raised the running process was either termi-
nated, or suspended and resumed later. A similar 
mechanism although considerabb/ more elaborate 
and adapted for use in hard real-time systems was 
implemented in Real-Time Euclid [14]. There, 
exception handlers were (optionally) located wi-
thin block constructs and were executed in the 
čase of an exception. If there were no exceptions 
the handlers had no effect except for their impact 
on a block's execution time estimated by a sche-
dulability analyser, thus making it more difficult 
to be scheduled. Exceptions may be raised by 
kili, terminate or except statements, to terminate 
a process entirely or only its frame, or to execute 
the handler without termination of the process, 
respectivelv. 

A reference study in the domain of non-
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preventable exceptions was done by Cristian [6. 
7]. Certain principles from this work were further 
detailed in [1] and were also adopted in our excep-
tion handling mechanism. 

According to Cristian, exceptional situations 
can be handled (a) by programmed exception 
handling and (b) by default exception handling 
based on automatic backward recovery using re-
covery blocks. Since in embedded hard real-time 
systems programmed exception handling should 
be included in the system requirements and can, 
thus, be treated as normal actions, in the follo-
wing the alternative technique will be dealt with 
briefly. 

The principle of backivard recoverij is to return 
to the previous consistent system state after an 
inconsistency is detected by consistency tests cal-
led post-conditions. It can be done in two ways, 
(a) by the operating system recording the current 
context before the program is "run" and restoring 
it after its unsuccessful termination, or (b) by re-
covery blocks inside the context of a task whose 
syntax is as follows: 

RB = ensure post b y Po e lse b y P i else b y . . . 
else failure 

where Po, P i , etc. are alternatives which are 
tried consecutively until either consistency is en-
sured by meeting the pos£-condition, or the failure 
is executed. Each alternative should be indepen-
dently capable to ensure consistent results. 

In the forward error recovery technique it is 
tried to obtain a consistent state from partly in-
consistent data. Which data are usable can be 
determined by consistency tests, error presump-
tions, or with the help of independent external 
sources. 

To handle catastrophes we propose a combina-
tion of pre-conditions, post-conditions and modi-
fied recovery blocks implementing both backward 
and forward recovery. Its syntax is shown in Fi­
gure 2. 

A block (plain block structure, task, procedure, 
loop, or other block structure) consists of alter­
native sequences of statements. Each alterna­
tive can have its own pre- and/or post-conditions, 
represented by Boolean expressions. When the 
program flow enters a surrounding block, the 
state" variables, tha t are modifiable by alterna­
tives which might fail, are stacked (see below). 

block : := block_begin block_ta i l 

block-begin : := BEGIN 
| PROCEDURE parameters & a t t r i b u t e s ; 
| TASK parameters & a t t r i b u t e s ; 
| parameters REPEAT 

block_ta i l : : = [declarationj3equence] 
[al ternat ive_sequence] END; 

declaration-sequence : := block-specific declarations 
[PRESERVE global .varJLis t ] 

a l ternat ive .sequence : : = 
{[ALTERNATIVE [PRE bool—exp;] [POST 

bool—exp;]] 
[statement.sequence] } 

Figure 2: Syntax of an exception handhng mecha­
nism 

Then, the first alternative statement sequence, 
whose pre-condition (if it exists) is fulfilled, is exe-
cuted. At the end, its post-condition is checked, 
and if this is also Mfilled, execution of the block 
is successfully terminated. If the post-condition 
is not fulfilled, the next alternative is checked for 
its pre-condition and eventually executed. If ne-
cessary, values of the state variables recorded at 
the beginning of the block are first restored. 

If an alternative fails, any effect on the system 
state should be discarded; thus, it is necessary 
that the original value of any variable is restored, 
which was modified and lies outside of the scope 
of the failed alternative. For tha t purpose, the 
state of any such variable must be stacked at the 
tirne of entering the block. Whether and which 
variables must be stacked can be determined by 
the compiler. It is only necessary to restore non-
local variables that appear on the left hand side 
of an assignment in alternatives which have post-
conditions, since only they may fail after modi-
fying the s ta te . . It is a task of the compiler to 
scan the block for such variables and take čare 
of their stacking. Further, after a non-successful 
evaluation of a post-condition, only the variables 
that were modified in this alternative are automa-
tically restored. 

Stacking ali global variables tha t can be modi­
fied within a block may require a relatively large 
amount of tirne. There are situations where the 
value of a global variable is not needed any more 
after an unsuccessful termination of an alterna-
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tive. In such situations the application program-
mer may wish to declare which modifiable global 
variables should be restored after the unsuccess-
ful alternative. This can be requested by the 
optional PRESERVE declaration in the declara-
tion_sequence. If this declaration is present, the 
automatic search for modifiable global variables 
is prevented; hence, the explicitly given list must 
contain the complete set. The compiler then scans 
for global variables that are both in the list and 
appear on a left hand side in the alternative pro­
gram, and restores their original values after an 
unsuccessful try. 

A good technique which prevents the above 
problem is to work with private copies of glo­
bal s tate variables inside the alternatives that 
may cause backward recoverv, and to export their 
values after a successful post-condition check. 
However, this is more time-consuming, especi-
ally when there are more such alternatives in a 
block, which require (counter-productive) trans-
fer of global into local variables and back. 

Since embedded hard real-time systems, which 
are the main subject of this paper, are, as a rule, 
used in process control a severe problem arises if 
there are any actions triggered like commencing 
a peripheral process which causes an irreversible 
change of initial state inside an alternative that 
failed. In this čase, backward recovery is gene-
rally not possible. As a consequence, it is our su-
ggestion tha t no physical control outputs should 
be generated inside the alternatives which may 
cause backward recovery in čase of failure, i.e., 
inside those which have post-conditions. In this 
čase only forward recovery is possible, bringing 
the system to a certain predefined, safe, and sta-
ble state. 

Both forward and backward recovery methods 
can be implemented using the proposed syntax. 
In the following these approaches will be shown: 

— Backward recoverv: bearing in mind the 
dangers of backward recovery in process con­
trol systems, it may be (carefully) implemen­
ted. Backward recovery can be recognised by 
the post-conditions an alternative must meet. 
Its functioning is obvious: if an alternative 
fails to meet its post-condition, the next al­
ternative fulfilling its pre-condition is used to 
do the task of the block. Thus, it is necessary 
to restore the system state variables possibly 

modified in previous unsuccessful alternati­
ves. 

— Forward recoverv: this technique may be 
somewhat less obvious. Consider the čase 
where an alternative is checking the success 
of its operation, according to its design spe-
cifications. According to the results of the 
check, different actions may be taken to re-
solve different situations. To control the pro­
gram flow, this alternative then, according 
to the outcome of these checks, sets some 
states with which the pre-conditions of al­
ternatives in the subsequent block are set. 
There may be an alternative with empty sta-
tement_sequence whose pre-condition is met 
if a previous alternative was successful; by 
this example, classical exception handling 
can be implemented. 

The alternatives should contain independently 
designed and coded programs to comply with spe-
cifications and to eliminate possible implementa-
tion problems or residual software errors. They 
can contain alternative design solutions or re-
dundant resources, when problems are expected. 
A further possibility is to assert less restrictive 
pre- and/or post-conditions and to degrade per-
formance gracefully. By the means presented in 
[23] it is also possible to bound the execution ti-
mes of alternatives. If one of them fails to com­
plete inside a predefined period, a less demanding 
alternative is taken. 

If there is no alternative, \vhose pre- and post-
conditions are fulfilled, the block execution was 
unsuccessful. If the block was nested inside an al­
ternative on the next higher level, this alternative 
fails as well and the control is given to the next 
one, thus providing a chance to resolve the pro­
blem in a different way. On the highest level, the 
last alternative must not have any pre- or post-
conditions. It must solve the problem by applving 
some conventional actions like employing fault-
tolerance measures or performing smooth power-
down. Since the system is then in an extreme 
and unrecoverable catastrophic condition, diffe­
rent control and timing policies are put in ac-
tion, requesting safe termination of the process 
and possibly post-mortem diagnostics. 

Using this exception handling mechanisrn the 
worst-case program execution times required for 

file:///vhose
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schedulabilitv analvsis can be estimated at com-
pile time. In the following paragraphs three diffe-
rent cases will be considered. 

(a) Ezclusive backivard recovery (aH alternati­
ves have post-conditions): in the worst-case exe-
cution time estimation ali times must be conside­
red, i.e., time for stacking ali global variables' con-
tents, for evaluating ali pre- and post-conditions, 
alternative program execution times, and times to 
restore used variables. 

*"u>c = Ist T / j ''prej T l-bodyi T tposti T tresti 

where 

i 

tst 
tprei 
'•bodyi 
tposti 

number of alternatives in the block 
worst-case block execution time 
time to store global variables 

— afterwards, one proceeds as in čase (b). 

Actuallv, the last method (c) is generallv valid 
and also applicable in both previous cases. 

Especially the backward recovery method ine-
vitably yields pessimistic execution time estima-
tions. However, this is not due to this specific 
solution. In safety-critical hard real-time systems 
it is necessary to consider worst-case execution 
times, which must also include exceptional condi­
tions. Depending on the performance reserve of 
a system, more or less alternatives may be pro-
vided, performing more or less degraded functi-
ons. In extremely time-critical systems just a sin-
gle alternative in the highest level block may be 
implemented only performing a safe and smooth 
power-down. 

To čope with the problem of the pessimism of 
run-time estimation of execution of alternatives 

i-th alternative pre-condition evaluation time some further solutions are possible. Each sub-
i-th alternative program execution time sequent alternative of a set of backward recovery 
i-th alternative post-condition evaluation timealternatives may be bounded to h alf of the exe-

t resti t ime to restore global variables in i-th 
alternative 

(b) No backivard recovery (no alternatives have 
post- conditions): in this čase it must be scan-
ned for the maximum time composed of an al­
ternative body execution time plus the sum of 
non-successful pre-condition evaluation times of 
ali preceeding alternatives; there is no stacking or 
restoring of variables. 

k 

'"wc == 'mQ'%k=l,n\J'body)s T / y ^prej j 
i=l 

(c) Mixed alternatives with and voithout post-
conditions: in this čase, estimation of the worst-
case execution time is slightly more complicated. 
During operation, alternatives are tried one after 
another according to their sequence in the block. 
Thus, execution times are evaluated as follows: 

— the execution time of the sequence of alter­
natives with post-conditions is calculated as 
in čase (a) and is added to the execution 
time of the body of the subsequent alter­
native v/ithout post-condition if it exists, or 
forms a virtual alternative without pre- or 
post-condition if it is at the end of the block. 

cution time of the previous one; thus, the block 
will terminate in at most twice the execution time 
of the primary alternative. Also, from a failure 
of an alternative it is possible to deduce which 
subsequent alternatives in subsequent blocks are 
reasonable and which are not, and to set their pre-
conditions accordingly. However, this requires a 
sophisticated run-time analyser. 

5 Conclusion 

In order to assure a predictable behaviour of real-
time systems, it is necessary to determine a pri-
ori bounds for the task execution times. In this 
paper a consistent design of a computing system 
for embedded applications operating in the do-
main of hard real-time is described. While the 
experimental hardware platform and program de-
velopment tool are only outlined, the exception 
handling mechanism, which represents the most 
severe obstacle to overall predictability, is dealt 
with in more detail. Catastrophic exceptions are 
coped with in a well-structured environment by 
providing sequences of gradually more and more 
evasive software reactions. 

Embedded hard real-time systems for process 
control often operate in safety critical enviro-
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nments. Uncontrolled malfunctions can have dra-
stic consequences with regard to repair costs, pro-
duction loss, or even endangerment of human he-
alth or lives. By our approach, overall system 
safety is greatly enhanced. Possible system failu-
res are already being considered during the design 
phase, and alternative solutions are devised and 
prepared. Having to use them, performance may 
be reduced, but safety is retained, since they will 
either solve the problem, or bring the system into 
some controlled and safe state. These alterna­
tive measures either employ software approaches 
or redundant hardware means, or are gradually 
less complex and, thus, less sensitive to distur-
bances and failures. Therefore, they rely on very 
simple fault-tolerance measures, employing mini­
mum resources. They may even employ electrical 
or mechanical means, such as safe passive state of 
inactive relays or automatic activation of mecha­
nical brakes when the system loses control, etc. 

Applications designed this way fulflll the requi-
rements of hard real-time systems, viz., timeli-
ness, simultaneity, predictability, and dependabi-
lity. Although the worst-case analysis necessa-
rily introduces pessimism in run-time estimation, 
the proposed methodology is practically usable 
for the development of safety critical embedded 
hard real-time applications if the alternative so­
lutions to the critical parts of control tasks are 
designed reasonablv. 
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This paper presents a new off-line scheduling approach for object-based real-time systems 
using a periodic model of execution. The approach differs from previous off-line schedu­
ling workin that it constructs a feasible schedule by exploiting concurrency. Concurrency 
is achieved by replication of abstract data type (ADT) module instances to reduce con-
tention caused by multiple accesses to shared ADTs. Concurrency is also achieved by 
asynchronous remote procedure calls (ARPCs), which allow caller and callee to execute 
concurrently. By enhancing concurrency, the execution times of processes are reduced, 
and the chance for finding a feasible schedule is significantly increased. 

1 Introduction 

In hard real-time systems, the most important 
goal is to guarantee that ali timing constraints are 
satisfied. Since scheduling problems are NP-hard 
in multiprocessor systems [28], no algorithm exi-
sts to solve the problems efficiently. On-line sche­
duling approaches are not typically sufficient to 
guarantee timeliness, due to the limited amount 
of time for scheduling and the overhead of opti-
mal scheduling. However, on-line scheduling tech-
niques [16, 19, 22, 42, 23] are necessary in applica-
tions tha t have unpredictable environments. For 
fully predictable, or almost fully predictable, envi­
ronments, off-line scheduling techniques are used 
to guarantee timeliness. Contention for shared 
resources (processors, devices, and Communicati­
ons) is avoided by constructing schedules before 
runtime for each shared resource. If there exist 
a few unpredictable factors, several schedules are 
constructed according to the factors. At run-time, 
one of the schedules is chosen. Off-line schedu­
ling is being used successfully in many application 
areas including factory automation, telecommuni-
cation, aerospace, and robotics [29, 7, 32]. 

Traditional off-line scheduling approaches t ry 

ali possible permutations of the scheduling objects 
(processes, tasks, segments of processes, etc.) 
to seek a feasible solution. The timing beha-
vior of scheduling objects is unchanged during 
scheduling, thus ali effort is devoted to optimi-
zing the search path for finding feasible schedules 
[21, 37, 30, 14, 17. 24, 2]. This paper presents a 
new approach for constructing off-line schedules 
for applications composed of abstract data type 
(ADT) modules using a periodic model of execu-
tion. The execution time of scheduling objects 
is reduced by enhancing concurrency. Given an 
initial schedule and a list of processes missing de-
adlines, the scheduler identifies a list of candidate 
opportunities to enhance concurrency within pro­
cesses missing deadlines. Candidates are evalu-
ated by analyzing effects on the entire schedule, 
the utilization and availability of demanded re­
sources, and the amount of concurrency produ-
ced. The best. candidate (possibly a combination 
of several candidates) is chosen to improve the as-
signment and schedule. The chance of finding a 
feasible schedule is significantly increased by con-
currency enhancement. 

mailto:gray@earth.njit
mailto:welch@vienna.nj
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1.1 A D T Modules 

This paper considers concurrent real-time systems 
built from reusable components which are con-
structed from ADT modules. ADTs, which are 
supported by languages such as Ada, Clu and 
Modula-2, provide a way to limit the complexity 
of the interface between data structures and asso-
ciated methods, and programs tha t use the da ta 
structures and methods. ADTs also provide a 
mechanism for information hiding and encapsu-
lation, which are desired properties for reusable 
software components [34, 13, 25, 33, 39]. In dis-
tributed systems terminology, ADT instances are 
servers tha t provide services, and the programs 
built on top of ADTs are clients that request the 
services. 

Applications constructed with ADTs tend to 
have many method calls, which may cause ineffi-
ciencies at execution tirne. Asynchronous remote 
procedure call (ARPC) [15, 36] is used to allow 
the caller to continue execution until it requires a 
busy parameter. With the ARPC model [36, 31], 
there are three factors that may prevent two me­
thod calls from running concurrently. They are 
(1) control dependence, which describes the requi-
red sequence of execution; (2) data dependence, 
which describes the exclusive use of a data object; 
and (3) code (ADT instance) dependence, which 
dictates exclusive access to the code of a module 
instance. Control dependence can be resolved 
by techniques such as concurrent speculative exe-
cution of multiple branches of if-statements and 
case-statements, or concurrent execution of loop 
iterations. Data dependence can often be resol­
ved by data replication techniques and variable 
renaming. Instance dependence can be resolved 
by instance replication (cloning) techniques. This 
paper focuses on how cloning is used for construc-
ting feasible schedules. 

While cloning increases concurrency, it may in-
crease CPU and network contention, and may 
also increase synchronization costs. These over-
heads vary for different kinds of ADTs. For clo­
ning stateless ADTs, there is no need to main-
tain consistency of data. For cloning ADTs with 
state, additional effort on maintaining data consi-
stency is needed. Therefore, the balance between 
the increased concurrency and the synchroniza-
tion overhead is an important issue. In this paper, 
only stateless ADTs are considered for cloning. In 

applications constructed by abstract da ta types, 
typically, an ADT instance is used to manage 
more than one data object. It is the clienfs 
responsibility for maintaining the consistency of 
data. Therefore, most ADT module instances are 
stateless. That is one of the design principles for 
developing ADT modules [13]. We make the ADT 
module as general as possible (generic ADT mo­
dules). Applications built with ADT module in­
stances typically have many stateless ADT instan­
ces [13, 34]. Note tha t cloning of ADT instances 
allows granularity of concurrency at the method 
level, not at the statement level. Therefore, com-
munication costs are typically much smaller than 
the execution times of methods, especially since 
only pointers to data structures need to be pas-
sed in most remote procedure calls [36]. Since 
instance cloning introduces overheads to the sy-
stems, we do not want to plače a clone on every 
processor. Several clients may share an ADT in­
stance without any contention if they call the in­
stance at different times. To determine the mini­
mum number of clones of an ADT instance needed 
to resolve ali possible contention in a given appli-
cation, dependence relations among statements, 
method calls, and ADT instances must be ana-
lyzed [41]. 

1.2 Previous Work 

The cloning considered here is the replication of 
aggregate code components (not da ta or hard-
ware components, which are considered in data 
management systems [12] and hardware design). 
Previous work on cloning has mainly concentra-
ted on compiler optimization and fault tolerance. 
Keith Cooper [5] ušes cloning techniques for com­
piler optimization. Clones of procedures are used 
to inherit an environment that aliows for better 
code optimization. Procedure or task cloning for 
fault tolerance is discussed in [21, 3, 4], where 
clones of procedures or ta.sks are used to obtain 
high availabilitv. Cloning of ADTs for concur-
rency was first addressed in [35]. The contention 
for an ADT is revealed by partitioning the state­
ments of an ADT module into units, where an unit 
is a sequence of statements that must be executed 
in order, due to data dependence. The approxi-
mate upper bound on the number of clones of a 
module instance that can be used concurrently is 
determined by a polynomial-time algorithm. This 
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work is different from [35] in the following aspects: 

1. the program dependence graph (PDG) [8, 6, 
1, 11] is extended to represent instance de­
pendence; 

2. the new PDG is used to perform dependence 
and cloning analysis at three levels (intra-
method, inter-method, and inter-instance); 

3. a more accurate upper bound than [35] on 
the number of clones of each ADT module 
instance that can be used concurrently is de-
termined; 

4. the new PDG is used to trace the incremental 
changes of contention of ADT module instan-
ces dur ing cloning; 

5. cloning of ADT module instances is used for 
schedule construction. 

Previous work on assignment and scheduling 
using cloning of ADT module instances for en-
hancing concurrency has not been observed. 

Much of the previous off-line scheduling algo-
rithms deal with only one or two processor sche­
duling problems [9, 18, 38]. Multiprocessor sche­
duling problems are addressed in work [17, 24, 2], 
but the scheduling problem is simplified by vari-
ous assumptions, such as same release times, same 
deadlines, no precedence relations among proces­
ses, identical computation times, and others. Ge­
neral models are used in [30, 21, 37], where ar-
bitrary release times, arbitrary deadlines, arbi-
t rary computation times, and precedence relati­
ons among processes are considered in multipro­
cessor systems. This work ušes a more general 
model [31, 30], which ušes processes as assignment 
and scheduling units. Concurrency exists only 
at the process level. In this work, ADT module 
instances are used as assignment and scheduling 
units. Concurrency is exploited at the method 
level and is enhanced in processes missing deadli­
nes. The framework of our scheduling approach 
was first introduced in [40], the work is elaborated 
and details of the approach are presented in this 
paper. 

In the following sections, the programming and 
execution paradigms are introduced. This is fol-
lowed by discussion of our scheduling approach 
and concurrency enhancement. Finally, we dis-
cuss the contributions of this work, and identify 
future work. 

2 Programming Paradigm 

The programming paradigm used in this work 
supports object-based programming. The con-
structs of the programming paradigm include mo­
dule classes (such as Ada packages [20] and C + + 
classes), activitij classes (such as Ada tasks and 
DEDOS activities [10]), and applications. In this 
section, a brief introduction to this language mo­
del is given. An example of an application pro­
gram which is a portion of a factory simulation 
application is used to illustrate the programming 
model. Complete details of the model can be fo-
und in [31]. 

2.1 Module Classes 

An abstract data type (ADT) is defined as a mo­
dule class template, the basic reusable software 
component. A typical ADT exports a type that 
can be used to declare variables, and a set of ope-
rations used to manipulate the variables. In other 
words, variables declared to have the type expor-
ted by an ADT instance can be accessed only 
through the operations exported by the instance. 
ADTs can be defined as generic templates (i.e., 
they can be parameterized by types and operati­
ons) to increase their reusability. Templates must 
be instantiated with actual parameters before be-
ing used. To make the programs analysible, no 
aliased variables or goto statements are allowed, 
unbounded loops and unbounded recursion are 
forbidden (to enable timing analysis), the types 
of variables are determined staticallv, and instan-
tiation of classes must be done statically. Those 
restrictions are acceptable for real-time systems 
since nondeterministic behavior cannot guaran-
tee timeliness of real-time applications [26]. Fi­
gure 1 (a) shows a module class Queue which is 
declared as a generic ADT module. The Queue 
takes a parameter T which is a type used to define 
the elements of the queue. When different types 
are provided, different queues can be instantia­
ted from this ADT module. The ADT module 
Queue provides a type QueueType which can be 
used to declare queue variables such as InQueue 
and OutQueue in ADT module Machine (shown 
in Figure 1 (b)). Two methods insert and remove 
are provided by the Queue which is used to ma­
nipulate variables of QueueType. 
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module class Queue(type T); 
p rov ided t y p e QueueType; 
ins tance • • • 
m e t h o d insert(var Q:QueueType;var x:T); 

begin 
• • - access Q and x for S tirne units 

end m e t h o d insert; 
m e t h o d remove(var Q:QueueType; var x:T); 

begin 
• • • access Q and x for S tirne units 

end m e t h o d remove; 
end modu le class Queue; 

w 
module class Machine; 

p rov ided t y p e MachineType; 
i n s t ance part is Part(- • •); 
i n s t ance product is Product(* • •); 
i n s t ance Q is Queue(part.PartType); 
var inQueue, outQueue : Q.QueneType; 
var part : part.PartType; 
var prod : product.ProductType; 
m e t h o d perform_next(var M:MachineType); 

beg in 
• • • instructions for 2 tirne units 
Q.remove(inQueue,part); 
• • • access M, part, and prod for 3 tirne units 
Q. insert (ou t Queue, prod); 
• - • instructions for 2 tirne units 

e n d m e t h o d peiform_next; 
end m o d u l e class Machine; 

ac t iv i ty class Task; 
i n s t ance M is Machine; 
var Ml, M2 : M.MachineType; 
begin 

M.perform.next(Ml); 

end ac t iv i ty class Task; 
(•o 

appl ica t ion factory; 
process Taskl is Task 

vvith per iod=30, deadl ine=12,re lease- t ime=0; 
process Task2 is Task 

vvith per iod=60, deadl ine=21,re lease- t ime=0; 
end appl ica t ion factory; 

(d) 

Figure 1: Factory Simulation 

2.2 Act iv i ty Classes 

An activity class can be used to define a process 
template, the basic thread of execution. Each ac-
tivity class is a sequence of statements and pro­
cedure calls to methods provided by instances of 
module classes. An activity class is used for in-
stantiating processes. A process can be created 
as a normal process or an periodic process. The 
timing constraints of a periodic process (such as 
frame, deadline, and release tirne) are parame-
ters given when processes are instantiated. Thus, 
using the same activity class with different pa-
rameters, different processes can be instantiated. 
To increase reusability, an activity class can also 
have types and/or operations as parameters. An 
instance created in one activity class can be used 
by operations in another activity class by using 
export and import mechanisms. In Figure 1 (c), 
activity class Task is defined. An ADT instance 
M is created from module class Machine, and is 
used to declare two machines Ml and Ml. Fi-

Queue 
QUEUETYPE 

C T i n s e r C ^ 

( ^ " r e m o v e j ^ } 

lnQueue OutOueue 

Figure 2: Instance relations created in factory 
application 

gure 1 (c) shows only one statement of the Task 
which is a call to method per f ormjaext{) provi­
ded by the ADT instance M. 

2.3 Applicat ions 

An application is defined by instantiating global 
ADT instances (i.e., module class instances) and 
processes (i.e., activity class instances), and by 
describing timing relations among processes. In 
an application definition, activity classes are in­
stantiated as processes with timing constraints 
and other actual parameters. Timing constraints 
of processes can be expressed by either absolute 
timing constraints (ATCs) or relative timing con­
straints (RTCs). An ATC is a tirne or tirne pe­
riod which is imposed on a process to relate the 
timing behavior of the process with the system 
time. Frames (periods), deadlines, and release-
times of processes are described with ATCs. An 
RTC is a time or time period which is imposed on 
a process to relate the timing behavior of the pro­
cess with another process. Precedence relations 
and exclusive access relations between processes 
can be described with RTCs. Figure 1 (d) shows 
a portion of a factory simulation which is defined 
by instantiating two processes, Taskl and Task2. 
Figure 2 shows a few call relations (edges) among 
three instances in the application. 
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3 Execution Paradigm 

The execution platform used in this paper is a 
distributed memory MIMD system which is de-
seribed in [36, 31]. Each processing element (PE) 
consists of a CPU, a communication co-processor 
and local memory. PEs are connected by either 
buses and /or high-speed, bidireetional point-to-
point links. We assume that there is a physical 
route of buses and links between any pair of PEs. 

Communication is handled by the communica­
tion co-processor in either a synchronous or in an 
asynchronous manner. Device resources are ei­
ther phvsical devices or logical devices. Physical 
devices are hardware devices managed by software 
packages sueh as disks, sensors, and monitors. Lo­
gical devices are ADT module instances. 

As shown in Figure 3, ezecution graphs are used 
to deseribe the executions of processes. In an exe-
cution graph, solid lines show executions of pro­
cess segments, and dashed direeted lines indicate 
calls and returns. The solid boxes indicate PEs, 
and the dashed ovals enclose operations of instan­
ces. EST stands for earliest start tirne, FT for 
finish time, and D for deadline of a process. 

An inter-instance call is an internal proce­
dure call (IPC) if the calling operation is pro-
vided by an instance created within the aeti-
vity class (as in Figure 3). For example, call 

Figure 5: Assignment of Taskl and ADT instan­
ces in the factory application 

M.perforni..next(Ml) in activity class Task is 
an IPC since method per formjnext() is provi-
ded by M which is instantiated within the aeti-
vity class. An inter-instance call is an ezternal 
procedure call (EPC) if the calling operation is 
provided by an instance created outside the aeti-
vity class (as shown in Figure 4). Based on the 
physical location, IPCs and EPCs are implemen-
ted with local procedure calls (LPCs) and remote 
procedure calls (RPCs). An LPC oecurs when the 
caller and the callee are on the same PE. An RPC 
oecurs when the caller and callee are on two di-
fferent PEs (as shown in Figure 4 (b)). An IPC 
is implemented by using an LPC which is simply 
a local context switch. An EPC is implemented 
by an LPC if the called operation is on the same 
P E (as shown in Figure 4 (a)) , or by an RPC if 
the called operation is on a different P E (as in 
Figure 4 (b)). Processes are distributed among 
the PEs. A process and ali of its ADT module 
instances are initially assigned to the same PE 
(as shown in Figure 5 for Taskl in the factory 
simulation). Concurrency can be gained among 
processes if they are running on different PEs. 
RPCs can be svnchronous remote procedure calls 
(SRPCs) or asvnchronous remote procedure calls 
(ARPCs). With SRPCs, the caller is blocked to 
wait for the call to return. With ARPCs, concur-
rency is obtained by allowing the caller to conti-
nue execution until it requires a busy parameter. 
When the required parameter is returned, the cal­
ler resumes execution. Therefore, not only calls 
in different processes, but also calls in the same 
process, run concurrently. 

To control the complexity of scheduling, a 
hybrid scheduling model is used. Full preemption 
indicates that the execution of a process can be 
interrupted by other processes (with higher pri-
orities) at any time. Nonpreemption describes a 
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scheduling approach wherein a process must run 
to completion once it starts . Full preemption gi-
ves the scheduler more flexibility to find a feasible 
schedule, but it increases the steps of scheduling 
because more cases are considered, and also may 
cause too much overhead (context switch) at run 
time. On the other hand, nonpreemption simpli-
fies the scheduling job, but reduces the flexibility 
(chances to find a feasible schedule). To balance 
the flexibility and the complexity, we use a semi-
preemption model [31] tha t restricts preemption 
to points called preemption points. When state­
ments are used as scheduling units, there is maxi-
mal flexibility for scheduler and maximal over­
head. Statements are grouped into segments cal­
led beads [31]. A bead is a group of statements 
tha t have to be executed together without pre­
emption, i.e., a bead is a nonpreemptable schedu­
ling and execution unit. There are the following 
types of preemption points: 

1. an EP C or an EP C return; 

2. the beginning and ending of a blocking device 
access; and 

3. the beginning and ending of the sending 
phase of an inter-process communication. 

Semi-preemption is a balance between the flexi-
bility and the complexity of traditional schedu­
ling approaches. More details about this execu-
tion model can be found in [31]. 
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Figure 6: The scheduling approach 

2. Dependence anahjsis identifies the depen­
dence relations among statements, beads, 
blocks, and module instances. A control 
flow graph (CFG), a control dependence 
graph (CDG), a control and data flow graph 
(CDDG), and a program dependence graph 
(PDG) are constructed for each module in­
stance in the application. 

3. Activity segmentation groups statements into 
beads based on the dependence relations. It 
may also include the clustering of beads into 
blocks, to reduce scheduling complexity and 
the number of context switches. 

4 T h e Off-line Scheduling 
Approach 

The job of scheduling is to decide the start times 
of scheduling objeets so tha t their timing constra-
ints are satisfied. As mentioned previously, the 
general scheduling problem on multiprocessors is 
NP-hard. Optimal solutions [38, 2, 24, 17] are not 
praetical for large applications. Therefore, a he-
uristic approach is used in this work to construct 
a schedule before run-time [40, 32]. 

The framework of our off-line scheduling appro­
ach (shown in Figure 6) consists of the following 
elements: 

1. Application designer designs applications 
using reusable ADT module components and 
process templates. 

4. Initial assignment and scheduling generates 
an assignment and schedule for each PE . In 
this work, the technique deseribed in [30] is 
used to perform the initial assignment and 
scheduling. If the timing constraints of an 
application are quite loose, even the initial 
scheduling can generate a feasible schedule. 
If the initial schedule is not feasible, concur-
rency is enhanced and applied to the proces-
ses (or beads) missing deadlines. 

5. Cloning analysis produces the PDGs. In­
stance dependence graphs (IDGs) are gene-
rated to expose the instance dependence re­
lations in each method of a module instance. 
An upper bound on the number of clones of 
each ADT module instance that can run con-
currently is determined. 
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6. Schedule assessment evaluates the infeasible 
schedule. If ali resources have 100% utiliza-
tion and no extra resources are available, the 
only thing we can do is to ask the application 
designer to relax the timing constraints. The 
evaluation process includes identification of 
(1) the beads of the processes missing deadli-
nes and (2) a list of candidate opportunities 
to enhance concurrency. The opportunities 
tha t we may consider to be a candidate in-
clude: 

— cloning module instances to resolve con­
tention; 

— using ARPCs to allow caller and callee 
to run concurrently; 

— reordering statements to enable 
ARPCs; 

— load distribution; 

— classical parallelizing compiler tech-
niques. 

7. During candidate evaluation and schedule 
adjustment, the candidate opportunities 
identified are evaluated to balance the amo-
unt of concurrency they would produce aga-
inst the overhead they would cause. Since 
the evaluation process is NP-hard, we use de-
pendence relations to narrow the search for 
effects of applying opportunities. Among the 
candidate opportunities, one of them is cho-
sen to be applied to the infeasible schedule to 
shorten the response time of a process mis­
sing its deadline. 

5 Concurrencv Enhancement 

The goal of scheduling is to resolve contention for 
shared resources. Generally, there are two kinds 
of shared resources: hardware resources (CPUs, 
I /O devices, and communication media) and soft-
ware resources (ADT module instances). One way 
to resolve contention for shared resources is by re-
plication of resources, as a multiprocessor system 
is used to resolve contention for the single CPU 
in an uniprocessor system. On the extreme, if the 
number of resources allows every client to get a 
resource at any time, there is no contention and 
there is minimal need for scheduling. However, 
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the quantity of hardware resources is typically fi-
xed in computing systems. Therefore, scheduling 
of hardware resources is necessary. Similarly, re-
plication of software resources is also a way to 
resolve contention. In programs built by layering 
ADT module instances, an instance is often used 
to manage several da ta objects, and there will 
be contention for getting access to the instance 
if multiple data objects need to be accessed con-
currently by multiple clients. Cloning an ADT in­
stance allows each clone to manage only one data 
object, or a subset of the data objects. 

In the following sections, several ways to en­
hance concurrency are presented. The example 
in Figure 1 is used to show ho\v each kind of con­
currencv enhancement works in conjunction with 
the scheduling approach. 

5.1 Enhancing Concurrency via 
A R P C s 

One way to introduce concurrency is to use 
ARPCs instead of SRPCs. With SRPCs, the cal­
ler is blocked after making a remote procedure 
call. Most of the scheduling approaches switch 
the calling processor to another process, but the 
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calling process is blocked until the call returns. 
To reduce the execution tirne of the calling pro­
cess, ARPCs can be used to let the caller continue 
execution if no memory conflict is caused. For the 
example in Figure 7 (a), we can see that the exe-
cution of 62 and 64 are blocked until the return of 
the two synchronized calls to 61 and 63, respec-
tively. If we change the calls from SRPCs into 
ARPCs and assume the parameters used by 61 
and 63 are not used until 64, the two calls can run 
concurrently as shown in Figure 7 (b). In Figure 8 
(a), ali calls are SRPCs and no concurrency exists. 
If instance / is allocated on another PE, and pa­
rameters used by bead 62 are not used until bead 
65, and the parameters used by bead 64 are not 
used until bead 66, with the use of ARPCs, beads 
63 and 65 can run concurrently with beads 62 and 
64, respectively, and concurrency is achieved (as 
shown in Figure 8 (b)). 

ARPCs make the caller and called method run 
concurrently if they do not access the same me-
mory location at the same tirne. By looking at 
the dependence relations among method calls, the 
opportunities for applying ARPCs can be identi-
fied [41]. In our scheduling approach, ARPCs are 
also used to reduce the execution times of proces-
ses missing deadlines. 

5.2 Enhancing Concurrency via 
Instance Cloning 

Cloning of resources can reduce contention for re-
sources. If the number of clones of software re­
sources in every processor is sufflcient, then no 
contention exists. The question is, "How many 
clones of a resource is enough?" Another impor-
tant question is "How many clones are needed 
to enhance concurrency to enable a schedule to 
meet deadlines?". To determine the lower bound 
on the number of clones needed, program depen­
dence relations are analyzed. In [41], techniques 
are presented for determining the lower bound on 
the number of clones of each ADT module in­
stance needed to resolve ali possible contention of 
the ADT module instances. The technique em-
ploys dependence analysis techniques at the sta-
tement, method, and instance levels of granula-
rities. The program dependence graph (PDG), 
which was previously used to describe data and 
control dependence relations among statements, 
is extended to include instance dependence rela­

tions in object-based systems. Several theorems 
are proved with respect to the instance depen­
dence properties of the new PDG graph in [41]. 
In Figure 8 (c), ADT instance / is cloned and is 
placed on a different PE. Now two clones of in­
stance / can serve two calls at the same tirne. 

5.3 Enhancing Concurrency via a 
Combination of Cloning and 
ARPCs 

If two calls do not access the same memory loca­
tion at any tirne, but they call the same method 
or different methods provided by the same ADT 
module instance, the two cannot run concurrently 
since they have contention to access same ADT 
module instance. Cloning can be used to resolve 
the contention, and the SRPC can be converted 
into an ARPC. In the example in Figure 8 (d), 
ARPCs are combined with instance cloning so 
that maximum concurrency is achieved. 

For the application in Figure 1, there exists 
no feasible schedule (no matter how process and 
module instances are assigned and scheduled) if 
concurrency enhancement is not applied. Assume 
an initial schedule is constructed as shown in Fi­
gure 5. Since ali instances are in the same PE, 
ali calls are LPCs. Therefore, only one thread of 
execution exists, i.e., the schedule of PE{ con-
tains only one bead. Given such a schedule, 
our approach is to try to improve the schedule 
by enhancing concurrency. By examining the 
execution graph of the process Taskl, we see 
that Queue is shared by two calls. Only one 
call is granted access to the Queue at any time; 
the other call is put into waiting. We also see 
that the two calls Q.remove(inQueue,part) and 
Q .insert(outQueue,prod) do not have common 
parameters, and do not call the same method, but 
they call the methods provided by the same ADT 
module instance Q. The two calls cannot run con-
currently due to the contention for the instance 
Q. Cloning of Q can resolve the contention and 
turn the SRPC to an ARPC. In Figure 9, ADT 
instance Queue is cloned and placed on a diffe­
rent PE, and the two calls (Queue.insert{) and 
Queue.remove()) made by instance M can run 
concurrently. The one thread of execution in Fi­
gure 5 is broken into 4 beads. Beads 62 and 63 
run concurrently. The execution time of Taskl 
is reduced from 17 to 13. Therefore, concurrency 
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Figure 10: Enhancing Concurrency by Load Dis­
tribution 

is enhanced and an almost feasible schedule is fo-
und by using cloning and ARPCs, as shown in 
Figure 9. 

5 .4 L o a d D i s t r i b u t i o n t o A l l o w 
C l o n i n g a n d A R P C s 

A good schedule has high utilization of resources. 
If one process is unable to continue execution, the 
resource is given to another process. As we menti-
oned before, if the utilization of a P E reaches 100 
percent, no ARPCs and cloning can be applied. 
To enable ARPCs and cloning, load distribution 
is necessary. In the example shown in Figure 1, 
note tha t the deadline of process Taskl is 12 time 
units, but its fmishing time is 13 time units. The 
schedule in Figure 9 needs to be further impro-
ved. Although an ARPC opportunity exists (the 
first part of 64 will not access variables OutQueue 
and prod which are the parameters used by the 
call insert() ), PEi is scheduled to execute me-

sl f.opl(x); 

s2 g.opl(x); 

s3 f.opl(y); 

(b) 

Figure 11: A program segment (a) and its PDG 
(b) where solid arrows represent da ta dependent 
relations, and dashed ares denote instance depen­
dent relations 
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thod call insert(OutQueue,prod). If the ADT 
instance Q on PEi is placed on PEk as shown in 
Figure 10, bead 64 can be an ARPC and can run 
concurrently with bead 65. Thus, the fmishing 
time of the task is reduced to 12 time units, and 
process Taskl can meet its deadline due to the 
load distribution. 

5.5 S t a t e m e n t R e o r d e r i n g t o E x p o s e 
C o n c u r r e n c y 

Although the upper bound of clones of an instance 
tells the maximum number of clones tha t can run 
concurrently, the statement order might prevent 
part of the concurrency. Let us see a simple exam-
ple in Figure 11 (a). From its extended PDG [41] 
in Figure 11 (b), we can see tha t the maximum 
number of clones of instance / is 2, and the maxi-
mum number of clones of instance g is 1. However, 
the statement order s j , S2, S3 prevents statements 
5i and S3 from being executed in parallel, since 
statement s2 would be blocked due to the busy 
parameter x until statement si completes. The 
schedule is shown in Figure 12. 

If we reorder the statements as (s\, S3, 52) or 
(S3, s\, S2), statements si and 53 can be execu-
ted concurrently (allow two clones of instance f 
to be used in parallel). For the schedule shown 
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in Figure 12, if we swap the two statements 52 
and s3 and plače a clone of instance / on PE2, 
the execution tirne of this program segment can 
be reduced from 14 tirne units to 12 tirne units, 
as shown in Figure 13. 

6 Conclusion and Future Work 

ADT modules increase reusability, but potential 
inefficiencies may occur at execution tirne. Con-
current execution with ARPCs and instance clo-
ning can greatly improve the performance of pro-
grams constructed with ADTs. This is especi-
ally useful for real-time systems, where the ti-
ming constraints are a concern. The scheduling 
approach presented in this paper differs from pre-
vious off-line scheduling techniques by employing 
concurrency enhancement to reduce the execution 
tirne of processes missing deadlines. 

A platform [27] (including ADA+BJESOLVE 
compiler, linker, parallel virtual machine, real-
time kernel, timing analysis tools, global sche-
duler (allocation algorithms) and graphical inter-
face) has been developed for executing programs 
constructed with ADTs on SUN workstations and 
Ncube. Dependence.analysis and cloning analysis 
techniques are being developed currently. Ongo-
ing research includes implementing and experi-
mentally evaluating the scheduling algorithm, de-
veloping concurrency metrics to measure amount 

of concurrency, and applying concurrency enhan­
cement techniques to reengineer existing systems. 
Future work includes method cloning to reduce 
the number of clones of instances needed to re-
solve contention of shared ADT module instances. 
When the number of clones of an ADT module 
instance does not reach the upper bound, assi-
gnment of variables to clones so tha t maximum 
concurrency can be achieved is a research issue. 
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The problem of allocating a set of Periodic-Time-Critical (PTC) tasks to processors 
in a multiprocessor system is considered. A PTC ta.sk is a real-time task for which 
requests are made periodically, at some hxed interval of tirne, by means of some external 
signals. Associated with each request there is a computation tirne and a deadline for 
the completion ofthe computation. The Rate-Monotonic algorithm, which is an optimal 
static priority driven algorithm for scheduling PTC tasks on single processor systems 
(Liu k Layland 1973, Serlin 1972, Sha k Goodenough 1990, Locke 1992), does not 
perform as well for multiprocessor systems (Dhall 1977, Dhall k Liu 1978, Davari 1985, 
Davari k Dhall 1986a, 1986b, 1986c, Oh k Son 1994). The allocation problem is to 
distribute a set of PTC tasks among various processors so that the tasks assigned to 
each processor can be feasibly scheduled on that processor using the Rate-Monotonic 
algorithm. Moreover, the aim is to use as few processors as possible. This problem is 
NP-hard (Davari 1985, Leung k Whitehead 1982). In this paper we present two heuristic 
on-line algorithms and analyze their complexity and worst čase performance. 

1 Introduction 
Process control computers are now being used to 
control and monitor a wide varietv oftime-critical 
processes. In many of these applications, the com-
puter is required to execute a certain number of 
time-critical tasks in response to periodic external 
signals, and to guarantee that each task is com-
pletelv executed within a specified interval oftime 
following the occurrence of the signal that caused 

Section 2 is based on On-line Algorithms for Real-Time 
Tasks Allocation by Davari &: Dhall, Twentieth Conference 
on Information Sciences and Svstems, 1986, p.178-182, and 
Section 3 is based on An On-Line Algorithm for Real-Time 
Tasks Allocation by Davari and Dhall which appeared in 
the Proceedings of the Real-Time Svstems Symposium, 
Dec 1986, New Orleans, LA, p. 194-200, ©1986 IEEE. 

the initiation of the task. Each such task is refer-
red to in this paper as a Periodic-Time-Critical 
(PTC) task. 

1.1 Problem Formulation 

In this paper we study the problem of distribu-
ting a set of P T C tasks among various processors 
so that when the allocated tasks are scheduled on 
the processor according to a given scheduling al­
gorithm, every request of each one of the tasks is 
executed before the corresponding deadline. Mo­
reover, the aim is to use as few processors as pos­
sible. 

We assume tha t the tasks to be allocated satisfy 
the following characteristics: 

http://ta.sk
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1 The requests of each task are periodic, with 
constant intervals between requests. 

2 Deadlines consist of runability constraints 
only, i.e. each request must be completed be-
fore the next request of the same task occurs. 

3 The tasks are independent in that the reque-
sts of a task do not depend on the initiation 
or the completion of the requests of the other 
tasks. 

4 Computation tirne for the requests of a task 
is constant for the task. Computation tirne 
refers to the tirne a processor takes to execute 
the request without interruption. 

It follows tha t a task is completely defined by 
two numbers, the computation time of each re-
quest and the request period. We will denote a 
task T by the ordered pair (c,t), where c is the 
computation tirne and t is the request period. The 
ratio j is called the request rate, and the ratio | , 
denoted by u is called the utilization factor of the 
task. Note that the utilization factor of a task 
is the proportion of the processor time taken by 
the task. Therefore, the utilization factor of the 
processor over a set of tasks is the sum of the 
utilization factors of ali the tasks in the set. 

A scheduling algorithm provides a set of rules 
that determines the task to be executed at a par-
ticular point in time. We say that a set of tasks 
can be feasiblv scheduled by an algorithm, if the 
schedule produced by the algorithm meets the de­
adlines of ali the requests of each task in the set. 
In this paper we consider only preemptive prioritv 
driven scheduling algorithms. In these algorithms, 
a currently running task of lower priority will be 
taken off the processor whenever there is a re-
quest for a higher priority task, even though the 
lower priority task has not yet completed. The 
interrupted task is resumed later from the point 
of interruption. We will assume the cost of in­
terruption to be negligible. The priority-driven 
scheduling algorithms can be classified into two 
categories: static prioritv algorithms, and dyna-
mic prioritv algorithms. In static prioritv algori­
thms, the priorities of tasks are fixed in advance 
once and for ali; whereas in the dvnamic prio­
ritv algorithms, the priorities of tasks may change 
from time to time, depending upon certain condi-
tions. The implementation of a dynamic priority 

algorithm requires a lot more overhead than the 
implementation of a static priority algorithm. In 
this paper, we will only consider static priority 
algorithms. 

We call a scheduling algorithm on-line if it sche-
dules tasks as they arrive. In other words, the ta­
sks are available one at a t ime, and the algorithm 
schedules each task as and when it becomes avai­
lable vvithout taking into consideration the tasks 
to follow. In contrast, we call a scheduling algori­
thm off-line, if it has to have complete information 
about ali the tasks before the scheduling process 
can begin. 

1.2 Single Processor Sys t ems 

The problem of scheduling a set of P T C tasks 
on a single processor system has been considered 
by a number of researchers (Liu k Layland 1973, 
Serlin 1972. Sha k Goodenough 1990, LabetouUe 
1974, Dhall 1977). The Rate-Monotonic Schedu­
ling (RMS) algorithm, introduced independently 
by Liu and Layland (Liu k Layland 1973) and 
Serlin (Serlin 1972], is the best static priority al­
gorithm available for this problem (Locke 1992). 
This algorithm schedules tasks in decreasing or-
der of their request rate. For ease of reference, 
we present the main result about this algorithm 
in the form of the following theorem: 

T h e o r e m 1.1 (Liu k Lavland 1973) A set of m 
P T C tasks can be feasibly scheduled on a single 
processor by the rate-monotonic scheduling algo­
rithm, if the utilization factor of the set is less 
than or equal to m(2™ — 1), and this bound is 
tight in the sense that for each m, there exists a 
set of m tasks with utilization factor m(2™ — 1) 
which fully utilizes the processor. 

The value m(2™ — 1) approaches In 2 ( » 0.69) as 
m approaches infmity. That is, in the worst čase, 
the processor may be only 69 per cent utilized. 
Note that Theorem 1.1 provides only a sufficient 
condition. It implies that sets of m tasks with 
utilization factor greater than m(2™ - 1) may or 
may not be feasibly scheduled on one processor 
by the rate-monotonic algorithm. 

Recently, the original RMS algorithm, which 
dealt with P T C type tasks only, has been exten-
ded to include aperiodic tasks with time constra­
ints (Sha & Goodenough 1990, Sprunt et. al. 
1989) and task synchronization (Sha k Goode­
nough 1990, Sha et. al. 1990, Davari k Sha 
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1992). Recently, RMS has also been considered 
for distributed systems (Agrawal et. al. 1994). 
NASA has adapted RMS as a baseline technology 
for the Space Station Freedom [Davari & Zhao 
1991, Davari et. al. 1993). The European Space 
Agency has also specified RMS as the baseline 
theory for its Hard Real-Time Operating System 
project (ESA 1990). 

1.3 Mult ip le Processor Systems 

It has been shown that (Dhall 1977, Davari 1985) 
a simple extension of the scheduling algorithms 
which perform well for scheduling PTC tasks on 
single processor systems does not provide satisfac-
tory results for multiprocessor systems. Recently, 
Leung (Leung 1989) proposed an algorithm, cal-
led the Slack-Time Algorithm for scheduling real-
time tasks on a single and multiprocessor system. 
However, the problem of deciding if a task sy-
stem is schedulable by Slack-Time algorithm, the 
Deadline algorithm, the Rate-Monotonic algori­
thm, or any other fixed priority scheduling algo­
rithm was shown to be NP-hard for each fixed m, 
the number of processors in the system (Leung 
k Whitehead 1982, Leung 1989). An alternative 
approach to designing algorithms for multiproces­
sor systems would be to first partition the set of 
tasks into different groups, and then schedule the 
tasks in each group on one processor using the al­
gorithm for a single processor. This reduces the 
problem to finding a good partitioning scheme 
in order to use a minimum number of proces­
sors. The scheduling algorithm to be used on each 
group of tasks will certainb/ influence the parti­
tioning process. Bannister and Trivedi (Banni-
ster & Trivedi 1983) also considered the problem 
of distributing P T C tasks on different processors. 
Their goal was to provide fault-tolerance by repli-
cating each task on r ( > 1) processors. Further, 
the distribution was required to achieve load ba-
lance for the processors. 

A partitioning algorithm is said to be optimal if 
it produces a partition with a minimum number 
of subsets for any given set of tasks to which it 
is applicable. Note that since the tasks in each 
subset of the partition can be feasibb/ schedu-
led on a single processor, an optimal partitioning 
scheme will require a minimum number of pro­
cessors for the execution of the entire set of tasks. 
The problem of partitioning a set of PTC tasks 

with respect to the rate-monotonic-scheduling al­
gorithm has been shown to be NP-hard (Davari 
1985, Leung & Whitehead 1982). This partitio­
ning problem is similar to the bin packing pro­
blem (Johnson 1974, Johnson et. al. 1974, Lee & 
Lee 1985, Yao 1980) where it is required to pack 
a given list of pieces into a minimum number of 
bins of a fixed size. The similarity stems from the 
fact that the utilization factor of a task can be 
treated as the size of a piece, and the processor 
capacity as the bin size. However, major diffe-
rence is that when tasks are partitioned using the 
rate-monotonic scheduling algorithm, it cannot be 
guaranteed that a task set with a total utilization 
factor less than one, can be feasibly scheduled on 
the processor. 

1.4 Subopt imal Solution 

In vievv of the inherent difficulty of finding effici-
ent optimal algorithms for our problem, we look 
for sub-optimal heuristic partitioning algorithms 
which produce satisfactory results with compara-
tively less effort, and analyze their performance. 

Let N* and N(A) denote, respectivelv, the 
number of subsets in the partition produced by 
an optimal partitioning algorithm and by a heu­
ristic algorithm A when applied to a given set of 
tasks. Then, the Worst-Case Performance Ratio 
of algorithm A, denoted by r(A) is defined as: 

As with many heuristic combinatorial algori­
thms, we have chosen to measure the worst-case, 
rather than the average-case, performance of our 
algorithms. The quantity r(A) gives the asymp-
totic least upper bound on the ratio -jpr-- For 
large problems, therefore, the algorithm A may 
be r(A) times as costly as an exhaustive search, 
but no worse. 

Dhall and Liu considered two heuristic algori­
thms for this problem in (Dhall 1977). They were 
called the Rate-Monotonic Next-Fit (RMNF) and 
the Rate-Monotonic First-Fit (RMFF) algorithm. 
Davari and Dhall (Davari & Dhall 1986a) conside­
red another one called the First-Fit-Decreasing-
Utilization-Factor (FFDUF) algorithm. These 
are ali off-line algorithms because they require 
that information about ali the tasks be available 
before the scheduling decisions can be made. The 
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Table 1: Comparison of the Worst Čase Perfor­
mance Ratio of Some Off-line Partitioning Algo-
rithms for a set of n tasks 

Algorithm Time 
Worst-Case 

Space Performance 
Ratio 

RMNF 0(nlogn) 0(n) 2.4 < r(RMNF) < 2.67 

RMFF 0(n2) 0{n) 2 < r(RMFF) < 2.24 

FFDUF Q(n 2 ) Q(n) r(FFDUF)-2. 

results about these algorithms are given in Table 
1. 

Dhall k Liu (Dhall k Liu 1977) conjectured 
that the upper bound of RMFF can be reduced 
to 2. Their conjecture was based on the following 
Lemma, which they could not prove at the tirne: 

Lemma: If n tasks cannot be feasibly schedu-
led on n — 1 processors according to RMFF, then 
the total utilization of the n tasks is greater than 

In this paper, we present only on-line algori­
thms and analyze their performance. Recently, 
Oh & Son (Oh & Son 1994) have also presented 
some on-line algorithms. Two on-line algorithms 
RM-FF and RM-BF have an upper bound of 2.33 
and lower bound of 2.28. Further refinements of 
these two algorithms called RRM-FF and RRM-
BF are shown to have a worst-case bound of 2. 
The tirne and space complexity of these algori­
thms is O(nlogn) and 0(n). As will be shown 
later, the algorithms presented in this paper have 
a tirne complexity of 0(n), and a space comple-
xity of 0(1). The worst-case performance of the 
Next-Fit-M algorithm is better than the worst-
case performance of the RM-FF and RM-BF al­
gorithms. 

Before we go to the next section we state and 
prove one more result (Davari 1985) which will be 
used in the proof of some of the following theo-
rems. 

Theorem 1.2: Let m > 0. Then, the function 
/ (m) = m(2™ — 1) is monotonically decreasing 
with m, and the function g{m) = (m - 1)(2 ™ - 1) 
is monotonically increasing with m. As m appro-
aches infinity both these functions approach In 2. 

Proof: To show that / (m) is monotonically 

decreasing with m, we show that f'(m) < 0 

/ ' (m) = 2 - ( l _ — ) - l 

Since for x > 0, e~x > 1 — x, we have 

In 2, _J_ _ ln_2 . 

2 m = e "> > (1 
m 

O-

Therefore, 1 > 2™(1 - ^ ) . Hence / ' (m) < 0. 
To show that g(m) is monotonically increasing 

with m, we show that g'(m) > 0 : 

g (m) = (m- l)(2m - 1) = m(2^ — 1) — 2 ^ + 1. 

and 
// N „1- / , m 2 In 2, g'(m) = 2^(1 + — ) - l m mz 

Since for x > 0, e x < 1 — x + ^-, we get 

< 

< 

e 

1-

1-

In 2 
m 

In 2 
m 

In 2 

+ 

+ 

(ln2)2 

2m2 

In 2 

m m" 
Therefore, 

, n±„ In 2 ln2. 
K 2 m ( l +—o") m m ' 

Hence, g'(rn) > 0. 
Also, it is well known that limm^00m{2m — 

1) = In 2, and it is straightforward to see that 
/imm_>00g'(m) = In 2. 

The rest of the paper is organized as follows. 
Section 2 contains description and analvsis of the 
algorithm Next-Fit-2, and Section 3 introduces 
and analyzes the algorithm Next-Fit-M. Finally, 
some concluding remarks are made in Section 4. 

2 The Algorithm Next-Fit-2 
The basic approach of this paper for partitioning 
a given set of tasks is to use some threshold va-
lue(s). A task whose utilization factor lies within 
a certain range is placed in the corresponding par-
tition. First, we use only a single threshold value 
and divide the tasks into two classes. Then, in 
the next section we extend this idea to have M 
threshold values to improve the performance of 
the algorithm. Naturally, with the increase in the 
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number of threshold values, a little bit of extra 
work will be needed to classify a task into pro-
per partition. The two algorithms thus show a 
cost-performance tradeoff. 

In this section, we describe an algorithm which 
partitions tasks into two classes. The division into 
classes is based on some fence value x. An opti-
mum value for x is also derived. 

Let T\, T2, • • •, Tn be a set of tasks with utili­
zation factors ui,u2, • • • ,un , respectively. Di-
vide this set of tasks into two different classes 
as follows. Let any task Tf belong to class-1 if 
U{ > (2* — 1), where a; is a positive integer gre-
ater than 1; otherwise let it belong to class-2, as 
shown below: 

Class of Task Range of 
Utilization Factor 

1 ( 2 i - i . i l 

2 (0,2« - 1 ] 

The choice of the irrational number 2^ — 1 is 
motivated by the result of Theorem 1.1. Hidden 
in the statement of Theorem 1.1 is the fact that 
for any integer n, there exists a set of n tasks each 
with utilization factor 2« — 1 which fully utilize 
the processor. We say that a task system fully 
utilizes a processor, if the tasks can be schedu-
led on a single processor using the Rate Monoto-
nic Scheduling Algorithm honoring the deadline 
of each and every request, and any slight increase 
in the computation tirne of any one of these tasks 
renders the task system infeasible according to 
the Rate-Monotonic-Scheduling Algorithm, that 
is there will be some requests whose deadlines can-
not be honored. 

Similarly, divide the set of ali processors into 
two different classes. A processor designated to 
process class-fc tasks exclusively is referred to as a 
class-fc processor, 1 < k < 2. For convenience, let 
a processor of class-&, 1 < k < 2, be called filled 
if it has been used and it is not intended to assign 
any more tasks to it. Let a class-fc processor ( 
1 < k < 2 ) be called active if it is the processor 
which will be considered for the assignment of the 
next class-A; task. The algorithm that determines 
the assignment of tasks to various processors is 
given in Figure 1. 

/ * Pkj = the j t h processor of class-fc * / 
/ * Uk = the total utilization factor of ali t he tasks assigned 
to the active processor of class-fc * / 

/ * Mk = the number of tasks assigned to t he active pro­
cessor of class-fc * / 
/ * The final value of Nk will be t he number of class-fc 
processors used by the algorithm */ 

1. for k = 1 to 2 do 

set Nk = l\ 
set Uk= Mk= 0; 

end-for; 
2. set »'.= 1 ; 
3. while i < n do 

if M,- > (2* — 1) 
then set k = 1 / * Ti is a class-1 task */ 
else set k — 2 / * Ti is a class-2 t ask */ 

end-if; 

if Uk > {Mk + l )(21 / (M '=+1) - 1) - Ui 

then set Nk = Nk + 1 ; 
set Uk = Mk = 0; 

end-if; 

assign T,- to Pk,Nk; 

set Uk = Uk + Ui; 
set Mk = Mk + l; 
set i = i -f 1 

end while; 
4. if Mk = 0,1 < k < 2, 

then set Nk = Nk - 1; 

The final values of Nk, 1 < k < 2 would be the number of 
class-fc processors used by the algorithm. 

Figure 1: Algorithm Next-Fit-2. 

2.1 Worst-Case Analysis of Next -F i t -2 

The upper bound for the worst-case performance 
ratio of Next-Fit-2 denoted by r(NF2), is ob-
tained in two parts . In part I we calculate the 
upper bound for r(NF2) when x = 2, and in part 
II we calculate the bound for x > 2. We will 
assume the following definitions throughout this 
section. 

Let Ni and N2 denote, respectively, the number 
of class-1 processors and the number of class-2 
processors needed by Next-Fit-2 to schedule the 
given set of tasks. 

Let S, Si, and £2 denote, respectivelv, the sum 
of the utilization factors of ali tasks, the sum of 
the utilization factors of ali class-1 tasks, and the 
sum of the utilization factors of ali class-2 tasks 
in the given set. 

Part I: x = 2. 
L e m m a 2.1: For x = 2, we have Ar

1 < -^—(-1 
2 5 - 1 

http://2i-i.il
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Proof: Because the utilization factor of any 
class-1 task in this čase is greater than (2ž — 1) 
and any filled class-1 processor must have at least 
one task assigned to it. 

L e m m a 2.2: For x = 2, we have N2 < f^f+ 2. 
Proof: By Theorem 1.1, the total utilization 

factors of the tasks assigned to any two adjacent 
class-2 processors must be greater than In 2. 

Corollary 2.1: By Theorem 1.1, Lemma 2.1, 
and Lemma 2.2, for x = 2, we have 

29 
N(NF2) = N1 + N2<— + 3. 

m 2 

T h e o r e m 2.1: For x = 2, we have: 

/ , n x ,. N(NF2) 2 r(NF2) = lim — ^ - < 
N* N* In 2 

Proof: Since N* > S, the proof follows by 
Corollary 2.1. 

Part II: x > 2. 
L e m m a 2.3: For x > 2, we have 

Ni< 
25i + 4. 

(x- 1)(2^T - 1) 

Proof: Divide ali the filled class-1 processors 
into two groups as follows. Let ali filled class-
1 processors which have less than (x — 1) tasks 
assigned to them along with their next immediate 
neighbors belong to group-1 and the rest of the 
filled class-1 processors belong to group-2. Before 
we continue further, let us make some additional 
definitions. 

— Let S\:i, 1 < i < 2, denote the sum of the 
utilization factors of class-1 tasks assigned to 
aH group-i processors. 

— Let Ni:i, 1 < i < 2, be the number of class-1 
processors in group-i. For group-2 proces­
sors, we obviously have 

#1.2 < 
Si, + 1. 

( a : - l ) ( 2 ? - l ) 

We next consider group-1 processors. Relabel 
group-1 processors in increasing order of their in-
dex as P\. P%,..., P/Vj t . Let Ui be the total utili­
zation factors of the tasks assigned to processor 
-Pijl < i < # i , i - For now, let us assume that 
Ni i is an even number. If we consider these pro­
cessors as a group of JVi- adjacent pairs, then, 

by delinition, the first processor in each pair has 
less than (x — 1) tasks assigned to it. Let Pi 
and Pi+i be one such pair, where Pi has m < 
(x — 1) tasks assigned to it. Then, we must have 
Ui + Ui+1 > (m + l ) ( 2 1 / ( ' n + 1 ) - l ) . For otherwise, 
the assignment of tasks to P,+i is made illegally. 
Since by Theorem 1.2, (m + l ) (2 1 / ( m + 1 ) - 1) de-
creases as m increases, by substituting the maxi-
mum possible value of m in terms of a;, we get 
Ui + Ui+i > (x - l ) (2^ r i ' - 1). Since this is true 
for any such pair of group-1 processors, we have 

Ni A < 
25i 

( x - l ) ( 2 = r _ i ) 

If Niti is odd, then we have 

+ 2. 

Nt A < 
2Si 

+ 3. 
(a: - 1)(2^=5" - 1) 

We proceed to fmish the proof of Lemma 2.3. 

Nt 

< 
25!,! 

(x 

+ • 

1)(2=T - 1 ) 
25i,2 

2{x - i ) ( 2 j - 1) 4. 

We next show that (x - l ) (2*-i - 1) < 2(x -
1)(2S - 1). 

By Theorem 1.2, for x > 1, (x - 1)(2^T - 1) 
is a decreasing function of x, tha t is it has its 
maximum value when x has its minimum possi-
ble value. Similarly, (a; — 1)(2^ — 1) has its mi­
nimum value when x has its minimum possible 
value. Then, by substituting the minimum value 
of x, which is 3, in both sides of the above ine-
quality the proof of our claim becomes obvious. 

Thus, we have 

Ni = 
26*1 

(x - l ) (2 1 / (^- i ) - i ) 

L e m m a 2.4: For x > 2, we ha,ve 

>?2 

+ 4. 

No< 
In 2 - ( 2 « - 1) 

+ 1. 

Proof: By Theorems 1.1 and 1.2, as long as 
the utilization factor of a set of tasks is less than 
or equal to In 2 the set of tasks can be scheduled 
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on one processor by Next-Fit-2. Since any class-2 
task has a utilization factor of at most (2* — 1), 
the total utilization factors of the tasks assigned 
to each class-2 processor must be greater than 
In 2 — (2* — 1). The proof of the Lemma then 
follows from this fact. 

Corollary 2.2: For x > 2, we have 

25* 
N{NF2) < T + 5. 

(a; - 1 ) ( 2 ^ - 1) 

Proof: 

N(NF2) = Ni + N2 

25 a 
< 

( a ; - l ) ( 2 ^ 

2S2 

2 ( l n 2 - ( 2 * • 

-1) 

+ 5. 
1)) 

- 1 ) < 2 ( l n 2 -We next show that (x — l)(2*-'i 

The right hand side of this inequality has its 
minimum value when x has its minimum possible 
value, and by Theorem 1.2, for x > 1, the left 
hand side has its maximum value also when x has 
its minimum possible value. By substituting the 
minimum possible value of x, which is 3, in both 
sides we prove our claim. 

As a result, we get 

29 
N(NF2) < 5 + 5. 

(x- l ) ( 2 ^ r _ j ) 

T h e o r e m 2.2: For x > 2, we have 

2 
r{NF2) < 

- (3 _ i ) ( 2 ^ r - 1) 

Proof: Since N* > S, by Corollary 2.2, we 
have 

r(NF2) = Um SZ2< \ . 
«._=o JV« - ( x _ 1 ) ( 2 i±T _ i ) 

The numerical values of bounds in Theorems 
2.1 and 2.2 for different values of x are shown in 
Table 2. By looking at the values in this table, 
we see that the best choice for rc is 3. 

To establish a lower bound for r(NF2), let us 
consider the following two examples. 

E x a m p l e 2 .1: In this example the set of tasks 
to be scheduled consists of a combination of three 
different types of tasks: 

Table 2: The upper bounds for worst-case perfor-
mance ratio of Next-Fit-2. 

x Upper Bound 
2 
3 
4 
5 
6 

0 0 

2.8853... 
2.4142... 
2.5648... 
2.6426... 
2.6900... 

2.8853... 

- Type-1: Tasks with utilization factors (22 — 

!)• 

— Type-2: Tasks with utilization factors In 2 — 

( 2 * - l ) . 

- Type-3: Tasks with utilization factors 1/n2, 
where n is a sufficiently large integer. 

The appearance of tasks in the list is as follows: 

— n repetitions of (one type-l task, n type-3 
tasks, one type-2 task. n type-3 tasks). 

An optimal algorithm can schedule this set of 
tasks on ^p processors as follows: 

— ^ processors each with (one type-l task, two 
type-2 tasks, 2n type-3 tasks) 

— ^ processors each with (two type- l tasks, An 
type-3 tasks) 

When x = 2, the Next-Fit-2 algorithm would 
use 2n processors as follows: 

- n processors each with (one type-l task,- n 
• type-3 tasks) 

- n processors each with (one type-2 task. n 
type-3 tasks) 

Therefore, for x — 2, we have ^,—'- = | = 
2.6666.... 

E x a m p l e 2 .2: In this example the set of tasks 
to be scheduled consists of a combination of two 
different types of tasks: 

- Type-1: Tasks with utilization factor \. 



90 Informatica 19 (1995) 83-96 Davari et al. 

- Type-2: Tasks with utilization factor | . 3 The Algorithm Next-Fit-M 

The appearance of tasks in the list is as follows: 

- n repetition of (one type-l task, one type-2 
task) 

An optimal algorithm can schedule this set of 
tasks on —• processors as follows: 

- j processors each with two type-l tasks 

- ^ processors each with three type-2 tasks 

When x > 2, the Next-Fit-2 algorithm would 
use 2n processors as follows: 

- n processors each with one type-l task 

- n processors each with one type-2 task 

Therefore, for x > 2 we have ^N^ ' = 2.4 
Example 2.1 establishes a lower bound for 

r(NF2) when x = 2, and the Example 2.2 esta­
blishes a lower bound for r(NF2) when x > 2. 

The best choice of x will depend on the type of 
tasks to be scheduled. But in general, when the 
tasks to be scheduled are not always a specific 
type, then the choice of x = 3 is the best. The 
lower bound and upper bound for r(NF2) for x — 
3 are: 2.4 < r(NF2) < 2.4143. 

2.2 The Complex i ty of Next -F i t -2 

For each task T,-, 1 < i < n, this algorithm first 
determines its class by a single test, and then by 
an additional test it determines whether or not 
it is feasible on the active processor of its class. 
If the task is feasible on the active processor of 
its class, the algorithm assigns it to the proces­
sor. Otherwise, it picks a new processor to be 
the active one. Therefore, by a constant amount 
of computation this algorithm assigns a task to a 
processor. Hence, the tirne complexity of Next-
Fit-2 is O(n). 

If we consider a filled processor as the output 
of the algorithm, then the storage requirement of 
Next-Fit-2 will depend on the number of active 
processors, which is two, and not the input size. 
Therefore, the space complexity of Next-Fit-2 is 
0(1). 

Let Ti, T2, • • •, Tn be a set of tasks with utiliza­
tion factors u-i,U2,- • • ,un , respectivelv. Let M 
be a positive integer greater than 2. Divide the 
set of tasks into M different classes as follows. Let 
a task Ti belong to class-A; if (2^+iT - 1) < n; < 
(2* - 1), for 1 < k < M, and let it belong to 
class-M if 0 < Ui < (2« - 1), as shown below. 

Class of Range of 
task Utilization Factors 

1 ^ - 1 , 1 ] 

2 (2? - 1 , 2 5 - 1 ] 

3 ( 2 1 / 4 - 1 , 2 3 - 1 ] 

M (0,2Jr - 1 ] 

Similarly, divide the set of ali processors into M 
different classes. A processor designated to pro-
cess class-A; tasks exclusively is referred to as a 
class-A; processor. Note that since the utilization 
factor of a task in class-A; is less than or equal to 
(2* - 1), by Theorem 1.1, at least k class-A; tasks 
can be scheduled by the rate-monotonic algorithm 
on one class-A; processor. The algorithm in Figure 
2 assigns exactly A; class-A; tasks to each proces­
sor (except possibb/ the last processor) used from 
class-A;, for 1 < k < M. The algorithm assigns 
class-M tasks to class-M processors so that the 
total utilization factors of ali the tasks assigned to 
each class-M processor does not exceed In 2. Since 
Next-Fit-M assigns k class-A; tasks to each class-
k processor and since the utilization factor of any 
class-A; task is greater than (2*+i" — 1), 1 < A; < M, 
therefore, the total utilization factors of ali the ta­
sks assigned to any fUled class-A;, 1 < A; < M, pro­
cessor is greater than A;(2*+i" — 1). Also, since any 
class-M task has a utilization factor of at most 
(2M — 1), the total utilization factor of ali the ta­
sks assigned to each filled class-M processor must 
be greater than In2 — (2M - 1). Another impor-
tant property of Next-Fit-M is that the number 
of class-A; processors, 1 < k < M, used by the 
algorithm is independent of the order of arrival 
of the tasks. In other words, except for class-M 
processors, any permutation of the tasks in the 
original list will result in the same number of pro­
cessors used by Next-Fit-M. These properties are 
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/* Let Pk,i refer to the ith processor of class-A; */ 
1. for k = 1 to M do set Nk = 1; 
2. set i = 1; 
3. while i < n do 

if T; is a task from class-fc, 1 < k < M, 
then assign Ti to Pk,Nk', 

if Pk,Nk h as currently 
fc tasks assigned to it, 
then set Nk = JVfc + 1 

end-if; 
else /* Ti is a task from class-M */ 

if the total utilization factor of 
ali the tasks assigned to PM,NM 
is greater than In 2 — m, 
then set NM = NM + 1 

end-if; 
assign T to PM,NM 

end-if; 
set t = «' + 1 

end-while; 
4. if Pk,Nk, 1 < k < M, has no task assigned to it 

then set Nk - Nk - 1; 

The final values of iVfc, 1 < k < M, will be the number of 
class-fc processors used by the algorithm. 

Figure 2: Algorithm Next-Fit-M' 

usefully exploited in the analysis of the worst čase 
performance of Next-Fit-M. For convenience, let 
a processor of class-fc, 1 < k < M , be called filled 
if it has been used and it is not intended to assign 
any more tasks to it. Let a class-A; processor ( 
1 < k < M ) be called active if it is the processor 
which will be considered for the assignment of the 
next class-A; task. 

scheduled. Since the total utilization factors of 
the tasks assigned to each filled class-M processor 
is greater than In 2 — (2M — 1), we have, 

UM NM < 
I n 2 - ( 2 M - 1) 

Thus, 

N(NFM) < n i + ^ + y + --- + 
nM-i + 

UM 

M -1 ln2- (2if - 1) 
+ ( M - 1 ) . 

The algorithm Next-Fit-M assigns one class-
1 task to each class-1 processor it ušes, and it 
assigns k class-A; tasks to each class-& processor 
(except possibly the last one) it ušes, for 2 < k < 
M, therefore, asymptotically, each class-A; task co-
sts Next-Fit-M \ processor, for 1 < k < M , and 
each class-M task T,- with utilization factor Ui co-
sts Next-Fit-M, at most Ui/(ln2-(2'M - 1)), pro­
cessors. We, therefore, define a cost function / 
as: 

/0; ) = < 

£ if Ti is a class-A; task 
and 1 < k < M 

, l n 2 - ( 2 M - l ) . 

Thus, in terms of the cost function / we can re 
write (1) as 

N(NFM) < J2 f(ui) + (M - 1). (2) 

3 .1 W o r s t - C a s e A n a l y s i s of 
N e x t - F i t - M 

For a given set of tasks, the total number 
of processors used by Next-Fit-M, denoted by 
N(NFM), is YjkL\ Nk, where Nk is the number 
of class-A; processors used. Let nk,\ < k < M, 
denote the number of class-A; tasks in the set of 
tasks to be scheduled. Then, 

M 
N{NFM) = Y,Nk 

k=i 

- + rf i + rf i + 
r^i+tf«-

• + 

M - l • ( 1 ' 

Let UM denote the sum of the utilization factors 
of ali the class-M tasks in the set of tasks to be 

The term M — 1 in (2) accounts foi the last 
processors used from class-A;, 2 < k < M , for 
which we may not have enough class-A; tasks to 
assign to them. Furthermore, if Ti is a class-A; 
task, for 1 < k < M, theh we have ( 2 w - 1) < 
Ui < (2* — 1) and f(ui) = ^. Therefore, 

f{uj) 1 c 1 
Ui kui ^(2fcTT _ i ) ' 

By Theorem 1.2, A;(2Hrr — 1) is monotonically in-
creasing with A;. Therefore, we have the following 
inequality: 

f(Ui) < 
fc(2fc+T _ 1) 

if 2*TT < Ui < 2* 

a n d 1 < k < M. (3) 
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Now consider a set of n tasks. Assume an op-
timal scheduling algorithm ušes N* processors to 
schedule this set of tasks. Further assume that 
the tasks assigned to the i processor. 1 < i < 
N*, are Tn,Ti2, • • -,Titi with utilization factors 
Uii,ui2, ...,uiti, respectively. 

Since for any processor, the sum of the utiliza­
tion factors of ali the tasks assigned to it by any 
algorithm cannot exceed 1, we have 

U 
£ > ; < 1,1 <i<iV*. 
3 = 1 

In terms of the cost function / , let FitM denote the 
cost of the ith processor. Then, if Th,T,2, ...,Tjt; 
are the tasks assigned to the ith processor by Next-
Fit-M. with utilization factors un,v,i2, ...,ua^ re-
spectively, we get 

Table 3: Values of Ki in Worst-Case Analysis of 
Next-Fit-M. 

Ki 
1 
2 
3 
4 
5 
6 

1 
1 
4 
30 
2635 
7145847 

will result in the same number of class-fc, 1 < k < 
M, processors used by the algorithm. Therefore, 
without loss of generality, we may assume that 
u'i > u2 — u3 — ' ' ' ^ u't- Define a sequence of 
integers Ki. as follows: 

3=i 

Now, let T' = {T[, T'2, • • •, T(} be a set of tasks 
with utilization factors u\,u2,- • • ,u't respecti-
vely, with the following properties: 

(i) u'm > 0 ,1 < m < t 

00 E m = i < < l -

(iii) FM = Y!m=i / « ) > FitM, for 1 < i < N*. 

Then, we can rewrite (2) as: 

n 

N(NFM) < £ / ( « , - ) + ( M - 1 ) 
i=\ 
N* U 

= EE/fe) + (tf-1) 
< N*FM + (M-1). 

This implies tha t FM is the worst-case perfor-
mance ratio of Next-Fit-M because, 

r(NFM) = lim N(NFM)N* < FM. 
N*—>oo 

Thus, it is sufficient to find the upper bound on 
the number Fm, where 

t t 

Yl f(U'm)> Subject tO J2 U'm < 1-
m = l m = l 

R\ = K 2 = 1. 

For i > 2, Ki is the smallest integer S such that 
the follo\ving inequality is satisfied: 

' ' - 1 - J — 
(2š+T _ i ) < i _ Y&Ki+x - 1). (4) 

Some of the values of Ki are shown in Table 3. It 
is not hard to see tha t , for i > 2, 

( 2 ^ - l ) > l - ^ ( 2 ^ + 1 - 1 ) . (5) 
3 = 1 

T h e o r e m 3 .1: For M > 2 and Ki < M < 
Ki+i, where Ki's are given by (4), we have 

FM = £ / « ) 
m = l 

< y 1 i t-ZUi21^1-1) 
i^Kj I n 2 - ( 2 W - 1 ) 

Proof: Let 

i I - E ; = I ( 2 ^ + I - i ) j_ . _ . . . J ^ , - + I 

S M = / J -7T + 
friFj I n 2 - ( 2 M - 1 ) 

According to the property of the Next-Fit-M 
Algorithm, any permutation of a given set of tasks 

The numerical values of S M for different values 
of M are listed in Table 4. 
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Table 4: Values of SM i n Worst-Case Analysis of 
Next-Fit-M 

M SM 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
30 
31 
0 0 

2.3960... 
2.3404... 
2.2920... 
2.2900... 
2.2888... 
2.2879... 
2.2873... 
2.2868... 
2.2864... 
2.2860... 
2.2858... 
2.2841... 
2.2837... 
2.2837... 

We at tempt to show that FM is upper boun-
ded by SM- To prove our claim, we consider the 
following three cases: 

Čase 1: T[ is not a class-1 task. Then u'm < 
(25 - 1), 1 < m < t. By (3) we have 

/K) < 2(23 - i 
- ,1 < m < t. 

Therefore, 

^ f [ m ) 2 ( 2 ^ - 1 ) 

i T < 1.93 < SM-

m = l 

< 
2(2š - 1) 

Čase 2: T{ is a class-1 task but T'2 is not a 
class-1 task. Then, 

t 
£ u'm < 1 - (2§ - 1), 

m = 2 

and 
u'm < (25 - 1 ) , 2 < m< t. 

By (3) we have 

/ « ) < 2(2š - 1) 
, 2 < m < t. 

Therefore, 

£ / « ) < /«) + 

< i + 

ro=l 

2_/m=l Um 
2(23 - 1) 

l - ( 2 i - - l ) 

2(23 - 1) 
< 2.1269 < SM-

Čase 3 : Both T[ and T'2 are class-1 tasks. First 
we consider the subcase where T[ G class-A'i, T'2 G 
class-A'2, • • • , T/ G class-JiT.;. Then, 

E ^ < ( i - B 2 ^ + 1 - 1 ) ) - (e) 

Since M < Ki+i, from equation (6), we see that 
T'm G class-M for ali i + 1 < m < t. Therefore, 

FM = £ / « J 
771 = 1 

< f l . 1 - E } = i ( 2 ^ + 1 - 1 ) 

I n 2 - ( 2 F - 1) 

We next show that FM will have its maximum 
value when Tj G class-ifj, for ali 1 < j < -i. 

Suppose Tj £ class-A'j for j = i > 2. Then, 
1 

we have ' ^ < (2A">+1 - 1), for aH i < m < t. 
This wiU reduce the above value of FM by -^ and 
increase it by a maximum value of 

(2^7+T _ j ) 

(Jf,- + 1)(2*.-+2 - 1 ) 

Thus, total change in the above value of FM will 
at most be 

(2K'i+1 - 1) 

(A;- + l ) ( 2 ^ + 2 - 1 ) 

We claim that 

(2A',+1 _ J) 

(Jd + 1)(2*.+2 - 1) 

From Theorem 1.2, we know that 

1 
~Ki 

1 

(7) 

(8) 

IU{2*'.+J - 1) < (A'i + l)(2*<+a - 1). 
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Dividing both sides of this inequality by Ki(IQ + 

l)(21?i+T - 1), we get 

( 2 ^ + i - 1) J ^ 

(Ki + 1 ) ( 2 ^ " - 1) ^ 

Thus, in this čase, the value of FM decreases 
further. 

Now, suppose that Tj £ class-ifj for j — i — 1. 
Then, repeating the argument, further change in 
the value of FM will be given by expression (7) 
with i replaced by i - 1. In view of inequality (8), 
this change also may only result in further decre-
Rsing the value of FM- Repeating these argument 
for j = i — 2, i — 3, • • •, 3, it follows tha t FM has 
its maximum value when we have Tj G cla,ss-Kj, 
for ali 1 < j < i, and that this maximum value is 
bounded above by SM-

This completes the proof. 
Comparing the values of F^ and F^,\ (Table 4), 

we see tha t little improvement on performance is 
achieved beyond M = 31. Therefore, for practi­
cal purposes, one may choose any M within the 
region 3 < M < 31. 

To examine the tightness of the bound given by 
Theorem 3.1, we consider the following example. 

E x a m p l e 3 .1: Let M = Ki+i, for some i > 2. 
Let N be an integer divisible by M , and e be a 
sufficiently small quantity. 

Consider a set of tasks consisting of: 

N subsets of i tasks with utilization factor 
Uj of the tasks in each subset given by Uj = 

i 
(2Jci+1 - 1 + e), for 1 < j < i, and 

N tasks, with utilization factor of each task 
denoted by Ui+i as follows: 

i 

ui+i = (i-j2uJ-i€)-
3=1 

Since M = iT;+i, by (4) and (5), we have 

( 2 i / (M+i) _1^< u.+i < ( 2 ^ _ i ) . 

Therefore, Next-Fit-M assigns exactly M tasks, 
each with utilization factor «j+i, to each class-M 
processor it ušes, and it assigns K j tasks each with 
utilization factor Uj to each class-ifj processor it 

ušes, for 1 < j < i. Thus, the total number of 
processors needed by Next-Fit-M would be 

J^ N N 

3=1 J 

Since J2)t?i uj ~ ^-i ^ n e number of processors, N*, 
needed by an optimal algorithm is > N. 

Therefore, 

NjNFM) _ y- J_ J_ _ y i J_ 
3=1 J 3 = 1 J 

Let QM = I 3 j i i ~k~- The numerical values of QM 
for various values of M, along with those of S M 
in Theorem 3.1 are shown below. 

M QM SM 

4 2.2500 2.3404 
30 2.2833 2.2841 

2635 2.2837 2.2837 

oo 2.2837 2.2837 

Therefore, for small values of M, the bound 
given by Theorem 3.1 is close to tight, and for 
large values of M , it is very tight. 

When the set of tasks to be scheduled does not 
contain any task with utilization factor in the 
range (2š — 1 , | ] , then it is not too difficult to 
show that r(NFM) < 1.911 (Davari 1985, Da­
vari & Dhall 1986c). 

3.2 The Complex i ty of N e x t - F i t - M 

For each task T,-,l < i < n, this algorithm first 
determines its class, and then assigns the task to 
the active processor of its class. Since the class of 
a task can be determined in 0(logM) tirne and 
there is only one active processor in each class at 
any time, the tirne-complexity of this algorithm 
is 0(nlogM). From Table 4, we see that approxi-
mate values of 63, 5i2, S31, and 6*00 are, respecti-
vely, 2.3960, 2.2860, 2.2837, and 2.2837. Thus, as 
M increases bevond a certain value, say, 31, the 
gain in the performance of the algorithm is ne-
gligible. For ali practical purposes, therefore, one 
can flx the value of M in the range 3 < M < 31. 
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As a result, M can be considered as a constant. 
Hence, the tirne-complexity of Next-Fit-M, with 
M < 31, is 0(n). 

If we consider a filled processor as the output 
of the algorithm, then the storage requirement 
of Next-Fit-M will depend on M, the number of 
active processors, and not on n, the input size. 
Therefore, the space complexity of Next-Fit-M is 
0 ( 1 ) . 

4 Conclusions 

In this paper we studied the problem of partitio-
ning a set of periodic-time-critical tasks into di-
fferent groups, subject to the conditions that : (i) 
each group of tasks can be feasibb/ scheduled on 
a single processor using the rate-monotonic algo­
rithm (which is the best static priority driven al­
gorithm available for scheduling this type of tasks 
on a single processor system); and (ii) the number 
of processors required is minimum. 

There exists three off-line algorithms for this 
problem. Since the nature of the arriving tasks in 
an on-line processing is unpredictable, an on-line 
scheduling algorithm is expected to be more di-
fficult than an off-line one. In general the perfor-
mance of an on-line scheduling algorithm is sub-
stantially affected by the permutation of tasks in 
a given set. 

In this paper we presented two 0(n)- t ime and 
0 ( l ) - space on-line algorithms, called Next-Fit-2 
(NF2) and Next-Fit-M (NFM). These algori­
thms are less complex than the existing off-line 
algorithms. The Worst-case Performance Ra-
tio (WPR) of NF2 was shown to be less than 
2.4143, and W P R of NFM was shown to be 
less than 2.2838. These ratios are comparable to 
those of the existing off-line algorithms. These 
ratios are also comparable to the on-line algori­
thms RM - FF and RM - BF (Oh k Son 1994). 
However, the performance is not as good as that 
of RRM-FF and RRM-BF (Oh & Son 1994). 
But the redeeming feature of the algorithms pre­
sented here is that their time complexity is linear 
and they require a constant amount of space, as 
opposed to the time complexity of O(n logn ) and 
space requirement of 0(n). It may also be poin-
ted out tha t when NFM is applied to the special 
čase in which the set of tasks to be scheduled does 
not contain any task with utilization factor in the 

range (2ž - 1 , | ] , then the W P R of this algorithm 
is less than 1.911. 

Ali of the algorithms considered for this pro­
blem, so far, are preemptive algorithms. Preemp-
tive scheduling does cost overhead. The overhead 
is assumed to be negligible in the analysis of ali 
algorithms reported in literature. It would be in-
teresting to analyze the performance of these algo­
rithms by including overhead penalty for preemp-
tions. Also, in the area of non-preemptive sche­
duling for periodic time critical tasks, not much 
work has been done. It would be interesting to 
investigate the behavior of non-preemptive algo­
rithms for this problem. 
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We propose static and dynamic load balancing policies for parallel real-time systems. A 
parallel real-time system in this context is considered as a computational environment 
consisting of a number of processors where stringent timing requirements of processes 
should be met. This would encompass massively parallel systems at one end of the 
spectrum and a group of computers connected by a local network at the other end. The 
static and dynamic load balancing policies developed are suitable for both types of sy-
stems with parameters such as communication costs to be tuned for each environment. 
For massively parallel processing systems, we introduce the concept of a domain which 
is a pool of processors and is governed locally for various services such as dynamic load 
balancing. The dynamic load balancing is implemented by central load balancers per 
domain which make use of the group communication facility for distributed communica­
tion with the other load balancers. This semi-distributed approach eliminates the need 
for maintaining a central node or replicated data by providing local data and control 
confined to that domain. The distributed data and control transfer is performed among 
the servers of the domains. The static scheduler however works off line for tasks with 
known characteristics such as execution tirne, communication constraints and deadlines 
prior to their execution which would be the usual čase for hard real-time tasks. 

1 Introduction 

Recent developments in hardware technologies 
have made it possible to build systems consi­
sting of clusters of processors usually referred to 
as Massively Parallel Processing (MPP) systems. 
M P P systems are increasingly finding many appli-
cations in hard real-time systems such as particle 
phvsics. A heterogeneous parallel real-time sy-
stem is envisioned as a MPP system and host 
computers connected by a real-time network as 
shown in Fig. 1. 

. Our study focuses on load balancing in %the 
M P P system of such an environment. We pro­
pose a deterministic scheduler, a dynamic load 
balancing mechanism and operating system mo-
dules to support dynamic load balancing. The 
central theme is to consider the MPP system as a 
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£9 
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Figure 1: A Parallel Real-Time System 
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collection of domains of processors which are ma-
naged centrally for various services in a domain 
and as distributed for interdomain services. 

The system comprises minimum functionality 
required from a distributed memory parallel sy-
stem to achieve coarse to medium grain paralle-
lism for single or multiple applications. The de-
terministic scheduler accepts task graphs and the 
deadlines of tasks in the čase of real-time tasks, 
as its input. It first puts the tasks with heavy 
communication into sets to be allocated to doma­
ins and then calculates various heuristic values for 
each task in the set and assigns these tasks to the 
processors in the domain according to these heu­
ristic values. Different than the previous work in 
this area, namely, static scheduling of real-time 
tasks (Liu & Layland 1973), (Stankovic & Ra-
mamri tham 1988), we have considered communi­
cation costs among tasks and defined a heuristic 
which is a function of communication costs and 
is a component in the total heuristic value for a 
task. 

The dynamic load balancing mechanism ušes a 
semi-distributed approach. The periodically in-
voked central load balancer in a domain of pro­
cessors tries to establish balance among them by 
first balancing the load within individual doma­
ins, then among different domains of the system in 
the second step. The operating system supports 
the dynamic load balancing mechanism by pro-
viding necessary group communication primitives 
for multicast communication. 

2 Static Scheduling 

Task Scheduling is one of the most challenging 
problems in parallel and distributed computing. 
Informally, the scheduling problem arises because 
the concurrent parts of a parallel program must 
be arranged in tirne and space so that the overall 
execution tirne of the parallel program is mini-
mized. It is known to be NP-complete in its ge­
neral form as well as sever al restricted cases. In 
an a t tempt to solve the problem in the general 
čase, a number of heuristics have been introdu-
ced. The effectiveness of these heuristics depends 
on a number of factors such as grain size, inter-
connection topology, communication bandwidth 
and program structure (El-Rewini 1989). 

The maximization of the speedup of a parallel 

program on a target parallel computer requires 
the allocation of the tasks among the processors 
in such a way that the total computational load is 
distributed as evenly as possible. To minimize the 
amount of processor idle time, the tirne required 
to perform necessary interprocess communication 
is minimized (Sadayappan & Ercal 1987). 

Efe (Efe 1982) developed a heuristic allocation 
algorithm to balance processor load and to mini­
mize communication cost. His algorithm consists 
of two phases. First, tasks are clustered with each 
other to optimize the communication cost and 
each cluster of tasks is assigned to a processor. 
Then, tasks are shifted from overloaded to under-
loaded processors in order to meet load-balance 
constraints. The algorithm is repeated until a 
satisfactory degree of load-balancing is achieved 
whereas we first group closely related tasks for 
domains and then allocate them individually to 
the processors of domains. 

2.1 Problem Statement 

This section describes the components of the sta­
tic scheduling model we have developed. In gene­
ral, there are four components in any scheduling 
system: 

1. the target machine 

2. the parallel tasks 

3. the generated schedule 

4. the performance criterion 

In our model, the parallel application that con-
tains real-time tasks is characterized by an acyclic 
directed graph G(V,E) as shown in Fig. 2. Vertex 
weights V = {ti : i = 1,2, ...,N} represent com­
putational load, or worst-case execution time of 
the tasks, and edge weights E = {cij : for Vi,-,tj 
where p^ = 1} represent interprocess communi­
cation costs. Precedence relation between tasks is 
defined as follows : 

Pij — 1 if there exists a precedence relation 
> between ti, tj task pairs 

p^ = 0 otherwise 

Since, real-time systems are static and it is as-
sumed that ali task characteristics are known a 
priori (Stankovic & Ramamri tham 1988), "iti of 
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Figure 2: A General Task Graph. 

Figure 3: A Target PPA (Parallel Processing Ar-
chitecture) and its delay matrix. 

the parallel application has known timing charac-
teristics such as execution time (e; for Vi;) and 
deadline (d,- for Vi») 

The topologies of the target Parallel Processing 
Architecture (PPA) are in the form as shown in 
Fig. 3. P = {Pi : i = 1,2,..., M } is a se t ofhomo-
genous processors with local memory, which com-
municate via message passing paradigm or chan-
nel structures. A delay matrix, D is introduced 
to represent physical overheads among processors 
in the parallel processing system. 

D = {Dij : number of hops between pro­
cessors Pi and Pj for VPi,Pj 
where i ^ j} 

The intraprocessor overhead Da for Vi is as-
sumed to be zero. Also, speeds of processors in 
the system are assumed as equal, that is, they are 
homogeneous processors. 

We considered tha t N > M where N is the num­
ber of tasks in task graph and M is the number 
of processors in the system. 

Definit ion: A domain is a group of fixed-size 
processors, which includes closely related, there-

fore heavily communicating tasks of an applica­
tion. Processors forming a domain are selected as 
physically closed ones in' the parallel processing 
architecture. 

Definition: If tasks ti and i,-'are mapped to 
processors Pi and Pj respectively, and p^ = 1 
(that is, there exists a precedence relation be-
tween i,- and tj), then the cost function is defined 
as F(C) = min{Y^CijDij for 'iti,t j) 

2.2 S c h e d u l i n g M o d e l 

The deterministic scheduler of the load balancing 
model proposed works off-line for scheduling tasks 
of a parallel application. Inputs of the scheduler 
are a task graph that shows precedence constra-
ints, communication costs among tasks, execution 
times and deadlines of tasks, and interprocessor 
communication delays for the PPA. The off-line 
scheduler works in two phases: 
Domain AUocation : Tasks with heavy commu­
nication are put into groups to be allocated to 
domains. 

Task-to-Processor Mapping : Heuristic values for 
each task in a domain are calculated and the tasks 
are assigned to the individual processors in their 
domain. 
D o m a i n AUocation Algor i thm: The Domain 
AUocation (DA) Algorithm that is shown in Fig. 4 
considers timing constraints of tasks such as exe-
cution time, precedence constraints among tasks 
and interprocess communication. The procedure 
is to group tasks into domains of the parallel pro­
cessing system. The objectives considered during 
this procedure are putting tasks with heavy com­
munication into the same domain in order to mi-
nimize communication costs and balancing them 
by trying to ensure that total execution time of 
tasks allocated to each domain are approximately 
the same. The result obtained is an allocation 
scheme that permits parallel execution of tasks in 
the target PPA. 

Task-to-Processor M a p p i n g A l g o r i t h m The 
Task-to-Processor Mapping (TPM) Algorithm is 
shown in Fig. 6. Processor allocation for tasks 
is performed by calculating heuristic values for 
each task as described in section 2.4 and assigning 
these tasks to the individual processors in their 
domain according to these heuristic values. 

Once the first step of the scheduling model, 
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SEQ 

Allocate Domains 

PAR i=l FOR DN 

Do Task-to-Processor Mapping for domain i 

Inputs: Task Graph (TG) with N tasks; 
numher of domains (DN); 

. AE = TE/DN; 

. Sort c,j in descending order foi V ti, t j 
where pij = 1; 

. Get first element dj of the sotted list; 

. Set curient domain (CD) to first domain; 

. Put U,t j into CD; 

.DO UNTIL V U allocated to a domain 
{if(J2e tas}ks in CD < AE) 

Find max dj for ti and tj 
that are not allocated to a domain; 
Put tj into CD 
Delete-Comm-Cost(); 

else 
if(CD < DN) CD++; /*Set current domain 

to next domain*/ 
else set CD to domain with min(Y)e); 
if there exists cij where 
ti and tj are not allocated to a domain 

Put U, tj into CD; 
Delete-Comm.cost(); 

else if (53 e of tasks in domain DN==0) 
DN-; 
AE=TE/ DN; 

Get next element cij; 
if (ti or tj is not allocated to a domain) 

CD = Domain of task t that is allocated; 
Put task into CD; 
Delete-comm-cost0; 

Figure 4: Domain Allocation Algorithm 

1 2 3 

Figure 5: Task to Processor Mapping. 

namely, domain allocation is performed, task-to-
processor mapping should be completed for each 
domain of the parallel processing system. This se-
cond phase can be performed in parallel for each 
domain as shown in Fig. 5. This makes the sche­
duling process faster especially for MPP systems 
where there are hundreds of processors, and many 
domains. 

2 .3 Task G r a p h G e n e r a t i o n 

A task graph generator, which generates schedu-
lable task graphs with tasks having timing and 
precedence constraints is developed. This stra-
tegy allows us to evaluate performance of domain 
allocation and task-to-processor mapping algori-
thms using various heuristic functions on different 
parallel applications characterized by generated 
task graphs. 

Task Graph Generat ion Algor i thm: The 
approach ušes the strategy of randomly assi-
gnment of tasks to the degrees or positions of the 
graph. Then predecessor and successor task(s) of 
each task are determined. Finally, timing con­
straints of each task and communication costs 
between related tasks are assigned as shown in 
Fig. 7. 

2.4 S c h e d u l i n g h e u r i s t i c s 

During task-to-processor mapping, we have used 
the list scheduling method. List Scheduling is a 
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Inputs: Task Grapii (TG) with N' tasks 
allocated for the domain; 
Delay Matrix D; 

. ni = numher of immediate predecessors 
ofU for i = 1,...,N' 

. Task.type=READY foi W, where m = 0 

. Insert READY tasks into SchedJist 
according to heuiistic values at time =0 

.WHILE (SchedJist is not empty) 
{Get a task t, fiom the SchedJist; 
Switch (Even £_ typ e) 

čase READY : 
map ti to an idle processor P}; 
Event.type = FINISHED; 
Time = Finish-time ofti on Pj 
Inseit-event into SchedJist; 

čase FINISHED : 
For eacii immediate successor tk ofti 
rik = ny, - 1; 
if (nk == 0) Event.type = READY 

Time=Finish.time of ti on PJ; 
Insert-event into SchedJist; 

} 

Figure 6: Task to Processor Mapping Algorithm. 

class of scheduling heuristics in which tasks are 
assigned priorities and placed in a list ordered in 
decreasing priority. Whenever tasks contend for 
processors, the selection of tasks to be immedia-
tely processed is done on the basis of priority with 
the higher priority tasks being assigned to proces­
sors first. The heuristic functions that determine 
the priorities of processes can be explained as fol-
lows: 
E D F (Earliest Deadl ine First): Priority is 
given to the real-time tasks with the earliest-
deadline. 
M L F ( M i n i m u m Laxity First): Priority is gi­
ven to the real-time tasks with minimum laxity 
where task laxity = task deadline - task execu-
tion time. 
H 3 : m i n ( E D F * W l + M L F * W 2 ) : The first two 
heuristic functions are combined by using weight 
values. We have developed a new heuristic func-
tion by using simulation results for EDF and MLF 
heuristic functions. 

3 Dynamic Load Balancing 
The random arrival of processes in a parallel pro-
cessing system can cause some processors to be 
heavily loaded while other processors are idle or 

R.andomly assign N tasks to d degrees in task 
gvaph 
Determine predecessor(s) and successor(s) of each 
task under the constraints such as number of tasks 
in a degree and number of degrees in graph 
Handle timing constraints (e; for Vt;J (di for VtiJ 
E = {ci3 : for Vf;,t, wiiere pij=l} of each task 
generated 

Figure 7: Task Graph Generation Algorithm 

lightly loaded. Dynamic load balancing improves 
the performance by transferring tasks from hea-
vily loaded processors, where service is poor, t o 
lightly processors where the task can take advan-
tage of computing capacity that would otherwise 
go unused. 

Most of the methods used for dynamic load ba­
lancing are either fully distributed or centralized 
methods. Neither fully distributed nor centra­
lized load balancing policies are known to yield 
good performance for M P P systems. Fully distri­
buted algorithms use a small amount of informa-
tion about the state of the system. Small systems 
can yield good performance with limited informa-
tion, but this may not be t rue for large systems. 
Despite the fact that fully distributed algorithms 
incur less overhead due to message exchange, this 
overhead linearb/ increases with the system size. 
Centralized algorithms do have the potential of 
yielding optimal performance, but require accu-
mulation of global information which can become 
a formidable task. The storage requirement for 
maintaining the state information also becomes 
prohibitively high with a centralized model of the 
large system. For a large system consisting of a 
hundred or thousands nodes, the central schedu-
ler will become a bottleneck and lower the throu-
ghput. 

Besides, centralized models are highly vulne-
rable to failures. The failure of any software or 
hardware component of the central scheduler can 
stop the operation of the whole system. 

In our study, a semi-distributed dynamic load 
balancing model is developed for a distributed me-
mory computer system. In this čase, the proces­
sors of an MPP system are divided into domains 
of fewer processors which are managed centrally 
for various services and distributed for other s. 
Domains are allocated dynamically during run 
time in some researches (Kremien et. al. 1993), 
whereas our system is divided into domains in a 
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Schedule List Migration List 

D0MAIN3 DOMAIN 4 

Figure 8: Semi-distributed System Model 

static manner before the system starts . A group 
management module designed for the underlying 
distributed operating svstem provides the neces-
sary group communication in multicast mode for 
the manager processes. A system process in each 
domain called Central Load Balancer (CLB) first 
tries to balance the load within its domain. Ifthis 
is not possible, it communicates with other CLBs 
to find a destination node for the candidate pro­
cess for migration as depicted in Fig. 8. 

This model proposes a two level load balancing 
strategy. At the first level, load balancing is car-
ried out within individual domains where the cen­
tral node of each domain acts as a centralized con-
troller for its own domain. At the second level, the 
load is balanced among different domains of the 
system, thus providing a distributed environment 
among domains. The design of such a strategy in-
volves designing an algorithm for performing op-
timal task scheduling and load balancing within a 
domain as well as among domains and developing 
efficient means for collecting state information at 
interdomain and intradomain levels. 

Central load balancers are responsible for dyna-
mically assigning processes to individual nodes of 
the domain, transferring the load to other doma­
ins if required, and maintaining the load status 
of the domain and nodes. As a result of load ba­

lancing and sharing, a process can be completed 
earlier due to the utilization of o themise idle or 
lightly loaded processors. 

3.1 R e a l - t i m e A p p r o a c h 

In a conventional multitasking operating system, 
processes are interleaved with higher importance 
(or priority) processes receiving preference. Little 
or no account is taken of deadlines. This is clearly 
inadequate for real-time systems. These systems 
require scheduling policies tha t reflect the timeli-
ness constraints of real-time processes . 

A realistic hard real tirne system must guaran-
tee both periodic and non-periodic hard real-time 
processes on the same processor, utilize spare tirne 
by non-critical processes, initialize static alloca-
tion of periodic processes and migrate aperiodic 
processes for response to changing environment 
conditions or local overload. 

Schedulers produce a schedule for a given set 
of processes. If a process set can be scheduled 
to meet given pre-conditions, the process set is 
termed feasible. A typical pre-condition for hard 
real-time periodic processes is tha t they should al-
ways meet their deadlines. An optimal scheduler 
is able to produce a feasible schedule for ali fea­
sible process sets conforming to a given precon-
dition. For a particular process set, an optimal 
schedule is the best possible schedule according 
to some pre-defmed criteria. Typically a schedu­
ler is optimal, if it can schedule ali process sets. 

The system model that has been used allows 
both periodic and aperiodic processes. Prece-
dence constraints among processes are enforced 
by using the process's start times and deadlines 
and no process resource requirements are consi-
dered. Context switch have zero cost and multi-
node, multi-domain systems with dynamic pro­
cess allocation is allowed. 

3.1.1 Deadl ine Characterist ics 

Periodic processes are characterized by their pe­
riod and their required execution tirne per period. 
For each periodic process, its period must be at 
least equal to its deadline. That is, one invoca-
tion of a process must be completed before succes-
sive invocations. This is termed as the runnability 
constraint as shown below: 
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computation-tirne < deadline < period 

The activation of an aperiodic process is essen-
tially, a random event and is usually triggered 
by an action external to the system. Aperiodic 
processes also have timing constraints associated 
with them; i.e. having started execution, they 
must complete within a predefined time period. 
It is not guaranteed that aperiodic processes will 
certainly meet their deadlines. If it is not possible 
to schedule an aperiodic process on any processor 
before its deadline, this process is said to be un­
schedulable. Aperiodic processes can be invoked 
at any time. 

It has been showed that the algorithms that 
are optimal for.single processor systems are not 
optimal for increased numbers of processors. In 
a multiprocessor or distributed system, processes 
that are considered likely to miss their deadlines 
have to be migrated to other processors. But it 
has also been showed that it is better to stati-
cally allocate periodic processes rather than let 
them migrate and, as a consequence, potentially 
downgrade the system's performance (Audsley & 
Burns 1990). 

3.1.2 Schedul ing Pol icy 

Each process is characterized by (A,S,C,D) known 
at the time of process arrival, where A is the pro­
cess^ arrival time, S is the earliest possible time 
at which its execution may begin (start time), C 
is the maximum computation time and D is the 
deadline by which it must complete its execution. 
An aperiodic process is described by (A,S,C,D). 
For each periodic process, an (A,C,P) describes 
its arrival time, computation time, and period. 

The algorithm schedules sets of processes or-
dered by increasing deadlines. Given such a set, 
the algorithm selects the first process and sche­
dules it as near to its start time as possible (i.e. 
at the earliest available time after its start time). 
The process is scheduled by simply accumulating 
ali unused processor time past the process's start 
t ime until sufficient computation time is found. 
If the resulting schedule permits this process to 
complete before its deadline then the process is 
schedulable, else it is unschedulable. 

The scheduling information used by this algo­
rithm is recorded in a list. Each element of the 
list represents a time slot already assigned to a 

process, and has four fields: starting time, en-
ding time, a pointer to the next list element, a 
pointer to the previous list element. Given this 
list, the process schedulability is analyzed by sear-
ching the Ust for available time intervals between 
two elements. This search starts at an element 
compatible with the process start t ime and ends 
at a time point compatible with the process dea­
dline or when the accumulated length of available 
time is equal to the process computation time. 
The process is schedulable if sufficient computa­
tion time is found before its deadline during this 
search, else the algorithm reports the process as 
unschedulable. 

In our svstem, aperiodic processes do not have 
hard deadlines, hence they can be migrated to 
other processors when they can not be scheduled 
on present processor. On the other hand, peri­
odic processes have hard deadlines and they can 
not be migrated to other processors. They are 
statically allocated when the system starts by the 
deterministic scheduler as explained in Section 2. 

In order to schedule an aperiodic real-time pro­
cess with a soft deadline dynamically, a modified 
form of Bryant and FinkePs algorithm is emplo-
yed. 

3.1.3 Bryant and FinkePs A l g o r i t h m 

Bryant and FinkePs algorithm (Bryant & Finkel 
1981) is a dynamic and physically distributed al­
gorithm. In our system, Bryant and FinkePs algo­
rithm is used in a semi-distributed fashion, con-
sidering the deadlines of the aperiodic processes. 
To make a decision, processors cooperate by sen-
ding negotiation messages. The decisions are sub 
optimal and heuristic approach is used to find so-
lution. 

A newly arriving aperiodic process can be cal-
led as schedulable only if its scheduling does not 
danger previousb/ scheduled processes. First, the 
new aperiodic process is placed in order into the 
list, which holds ali previously scheduled proces­
ses on this processor. Then processes in the list 
are rescheduled, using the algorithm explained 
above. If any of the previously scheduled proces­
ses is unschedulable nov/, then newly arriving ape­
riodic process is determined as unschedulable on 
this processor. Otherwise it is schedulable. When 
a process is determined as unschedulable at tha t 
node, a timer starts to work. When the timer rea-
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ches the value that is equal to deadline minus the 
execution tirne of that process, then this process 
is said to be unschedulable elsewhere. 

By using semi-distributed approach, unschedu­
lable newly coming aperiodic processes are tried 
to be scheduled at intradomain level. Each node 
in a domain sends its schedule list and unschedu­
lable aperiodic processes list to the CLB perio-
dically. CLB collects this information, then tries 
to find appropriate empty tirne slots on different 
nodes of its domain for unscheduled aperiodic pro­
cesses. If it can find such a node, then this node 
is determined as destination node, and process 
migration takes plače. Otherwise the process is 
said unschedulable within this domain. If such a 
condition occurs the strategy works in the inter-
domain level in the following way: 

1. The CLB of domain A {CLBA), sends a 
query to one of its nearest neighbors CLB 
of domain B (CLBg), to form a temporary 
pair, which enables a controlled, stable envi-
ronment suitable for process migration. The 
query has two purposes: 
a. it informs the CLBs tha t CLB A wishes 
to form a pair 
b . it contains a list of processes and tirne 
constraints for each processes. 

2. CLBB after receiving the query can perform 
one of three options: 

— rejecting CLB A 'S query; this implies 
that CLB A must send a query to ano-
ther neighbor domain 

— form a pair with CLB A] this implies 
that CLB A as well as CLBB reject ali 
incoming queries until the pair is bro-
ken. 

— postpone CLB A when CLBB is in a mi-
grating state, tha t is, sending processes 
this implies that CLB A must wait until 
CLBB forms a pair with it, or rejects 
it- CLB A cannot query anyone else. 

3. After establishing a pair, CLB A sends un­
schedulable aperiodic real-time processes list 
to the CLBB- Then CLBB broadcasts this 
information to ali of its nodes. Nodes try to 
schedule these processes on their own sche­
dule table. If this is pos sible, scheduled pro-
cessor id and its response tirne are returned 

to the CLBB- As the last step, CLBB com-
pares the response times of the same proces­
ses on different nodes and selects the node 
giving the minimum response time as the de­
stination node. 

4. If no processes can be executed on CLBB, 

then CLBB informs CLB A of this fact and 
the pair is broken. Otherwise the proces­
ses are migrated. This process is repeated 
for ali remaining unscheduled aperiodic real-
time processes until no process is left. 

4 Operating System Support 
In order that the central load balancers can com-
municate efficiently, the operating system should 
provide some form of multicast communication. 
The group management and naming modules de-
scribed below were added on top of the existing 
facilities of the NX/2 kernel of the Intel iPSC/2 
hypercube simulator. 

4 . 1 G r o u p M a n a g e m e n t 

Processes that are functionally related to finish a,n 
overall task are included in a group. These pro­
cesses communicate frequently in multicast mode 
where one process which is the member of a group 
sends a message to ali other members of the 
group as one-to-many communication (Cheriton 
k Mann 1988). 

In our system, groups could be distribu-
ted over the processor domains. Each proces-
sor domain has a group server tha t initiates 
ali local group communication primitives, like 
make_group, kilLgroup, join_group, leave.group, 
etc. Each group server is responsible for only the 
local members of any group. Ali local members 
that are located in a domain send their requests to 
their own group server of the domain. Only group 
server could be in contact with other members of 
the group via other group servers if needed. 

When a process in a domain wants to create 
a group, it sends tha t requests to the group ser­
ver. Group server creates a group control block 
and sends that request to the group servers on 
the other domains. However joining to a group 
or leaving a group are done locally. No interdo-
main communication is needed for these frequent 
services. When a process from a group wants to 
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send a group message to ali other group members 
over the system, it first sends that request to the 
local group server which then sends the message 
to ali other members in that domain and pass the 
message to ali other group servers. These group 
servers on the other domains do the same thing 
simultaneousb/. So group communication is han-
dled in parallel by the group servers distributed 
over the domains of the MPP system. 

1 fe0 

"P 
o 

Domaili Numbers 

h I 2 Si D8 

2 3 4 5 
Sample Task Graphs 

4.2 Naming 

A naming facility in a distributed system, in gene­
ral should provide a mapping from system names 
to addresses where the object is residing, and a ro-
ute to specify how to get there (Goscinski 1991). 
The naming is implemented by the name servers 
in each domain which hold a subset of the glo-
bal naming space for the objects in that domain 
(Cheriton k, Mann 1988). The name servers form 
a process group and communicate as described 
above. The name server in a domain contains the 
address of the objects in its domain and can re-
ceive a request from a local processor or another 
name server for an address of an ob ject. If the re-
quest is local, a check is made to find if the object 
is located at an address in that domain. If this 
is not the čase, a broadcast message is sent to aH 
name servers to receive the address. In this čase, 
only the name server which has the address of the 
object will respond. 

5 Implementation And Results 
The proposed load balancing techniques were im­
plemented in an Intel iPSC/2 hypercube simula­
tor running on OSF/1 MACH Unix environment 
with the following results obtained. 

5.1 Stat ic Scheduling Results 

The performance of T P M (Task-to-Processor Ma­
pping) and DA (Domain Allocation) algorithms 
were evaluated by using sample task graphs ge-
nerated randomly by TGG (Task Graph Ge-
neration) algorithm, generally in the form of 
supervisor-worker model. Results were obtained 
for different number and topologies of processors, 
several heuristic functions for real-time tasks, and 
different number of domains. 

Figure 9: Time Spent for Static Mapping in EDF 

Parallel system topologies are selected as 4-
processor mesh topology, and 8 and 16-processor 
hypercube topology. Processor domain numbers 
are selected as follows: 

• DN = 1 and 2 for 4-processor čase 
• D N = 1 , 2 and 4 for 8-processor čase 
• DN=1,2,4 and 8 for 16-processor čase 

DN=1 means there is only one domain in the sy-
stem. In this čase, domain allocation phase is not 
used. 

For different domain numbers, we have ob­
tained tirne measures for task-to-processor ma­
pping and percentage of real-time tasks whose de­
adlines are met. The following are some of the re­
sults we have obtained for different heuristic func­
tions: 

EDF (Earliest-Deadline-First) Heuristic: 
Fig. 9 shows tirne spent during static mapping of 
tasks to processors for D N = 1 , D N = 2 , D N = 4 and 
DN=8 where M=16 with hvpercube topology. N 
varies between 24 and 48 interrelated tasks. 

Fig. 10 shows the number of real-time tasks 
whose deadlines are met at the end of our static 
scheduling scheme versus the number of real-time 
tasks in sample task graphs for the parallel system 
with M=16 processors and hypercube topologv. 

MLF (Minimum-Laxity-First) He­
uristic: Fig. 11 shows tirne spent during static 
mapping of tasks to processors with varving do­
main size where M=16 with hypercube topology. 
N varies between 24 and 48 interrelated tasks. 

Fig. 12 shows the number of real-time tasks 
whose deadlines are met at the end of our static 
scheduling scheme versus the number of real-time 
tasks in sample task graphs for the parallel system 
with M=16 processors and hypercube topologv. 

HZ = (EDF * W\ + MLF * W2)Heuristic: 
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Figure 10: Deadlines met in EDF 
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Figure 14: Deadlines met in H3 

Fig. 13 shows tirne spent during static mapping of 
tasks to processors for D N = 1 , DN=2, DN=4 and 
DN=8 where M=16 with hypercube topology. N 
varies between 24 and 48 interrelated tasks. 

Fig. 14 shows the number of real-time tasks 
whose deadlines are met at the end of the static 
scheduling scheme versus the number of real-time 
tasks in sample task graphs for the parallel system 
with M=16 processors and hypercube topologv. 
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Figure 12: Deadlines met in MLF 

5.2 D y n a m i c L o a d B a l a n c i n g R e s u l t s 

The dynamic load balancing mechanism is imple­
mented for soft real-time processes described in 
Section 3 by adding group management and na-
ming modules to the existing NX/2 kernel of the 
hypercube simulator. The semi-distributed cen­
tral dynamic load balancers are system processes 
which communicate with other load balancers to 
perform load transfer. Process migration facility 
is simulated. Real-time approach is implemented 
and system's performance is observed for diffe-
rent number of domains and processor numbers. 
In figures 15-17, the percentages of aperiodic pro­
cesses meeting their deadlines that have been in 
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Figure 15: Test of Real-time Approach When Do­
main Number is Constant and Processor Numbers 
in Each Domain are Variable. 
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Figure 17: Test of Real-time Approach When Do­
main Number is Variable But Processor Numbers 
in Each Domain are Constant 

Figure 16: Test of Real-time Approach When Do­
main Number is Variable But Processor Numbers 
in Each Domain are Constant 

migration list are shown. 
Fig. 15 shows the performance of the system 

when domain number is 2 but number of proces-
sors in a domain is varying as 4, 8 and 16. When 
the domain number is constant but the proces­
sor number increases, system goes to a centralized 
manner and performance of the system decreases. 

Fig. 16 shows the system test results when do­
main number is varying but the total processor 
number in the system is constant. As the number 
of domains increases, the system closes to a di-
stributed condition and the system performance 
increases hence the percentage of the number of 
aperiodic processes meeting their deadlines rise. 

Performance of the system, when the domain 
number is varying but the processor number in 
each domain is constant, is shown in Fig. 17. As 
the domain number in the system increases, the 
number of aperiodic processes meeting their dea­
dlines increases. 

Schedulability ratios for 50 processes on varying 
number of domains are represented in Fig. 18. 
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Figure 18: Number of Processes Scheduled Using 
Real-time Approach For Varying Number of Do­
mains 
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Each domain has 4 processors in this čase. It can 
be deduced from the figure that as the number 
of domains in the system increases, schedulability 
chance of the processes also increases. 

6 Conclusions 

We have proposed a framework for load balancing 
and for running applications in a parallel proces-
sing system. The main components of the system 
are the deterministic scheduler, the dynamic load 
balancing mechanism and operating system su-
pport modules for dynamic load balancing. The 
off-line scheduler is used to allocate periodic, hard 
real-time processes and the dynamic load balan-
cers transfer aperiodic soft real-time processes 
from heavily loaded to lightly loaded nodes. The 
processors of the parallel real-time system are di-
vided into domains which are a collection of pro­
cessors. Both static and dynamic schedulers try 
to balance load at intradomain and interdomain 
levels, but in different directions. The static sche­
duler starts from global system information and 
ends in allocation of tasks to processors of indivi-
dual domains whereas the dynamic load balancers 
first t ry to even the load within the domain and 
if this is not possible, communicate with load ba­
lancers of other domains to perform transfers at 
interdomain level. 

The static scheduling model is tested and eva-
luated for approximately 1500 precedence related 
tasks. The results can be summarized as follows: 
It is observed tha t , when the system is partitio-
ned into domains, tirne spent during mapping de­
creases as the number of domains in the system 
increases. This is caused by the fact tha t , do­
main allocation phase minimizes the search space 
of Task-to-Processor Mapping phase during fin-
ding optimal processor for a task. This result is 
especially important for M P P systems. The per-
centage of deadlines met for heuristic functions 
are given in Table 1. 

Partitioning the system into processor doma­
ins is an advantageous approach according to the 
simulation results we have obtained. When the 
system is partitioned into domains, tirne spent 
for static scheduling decreases. Since the perfor-
mance of the model we have proposed is approxi-
mately the same for domain partitioning approach 
and the approach without domains, the domain 

Table 1: Percentage of Real-Time Tasks whose 
deadlines are met. 

EDF 
MLF 
113 

M=4 
0.96 
0.96 
0.97 

M=8 
0.97 
0.98 
0.98 

M=16 
0.94 
0.98 
0.96 

partitioning scheme tha t has less tirne complexity 
will be preferred. Also, the concept of domain 
will provide the base for centralized use of reso-
urces at intradomain level and distributed usage 
of resources at interdomain level. 

For the dynamic load balancing čase, the star-
ting point of our research was the fact tha t nei-
ther fully distributed nor centralized load balan­
cing policies yield good performance for M P P sy-
stems. We therefore designed a semi-distributed 
model which makes use of both approaches. The 
iPSC/2 hvpercube simulator unfortunately crea-
ted problems after 32 processors, so the maximum 
domain number we could test is 16 each with 2 
processors. It is observed tha t when the system 
is tested for varving number of domains and pro­
cessors, the percentage of the scheduled aperio­
dic real-time processes rise sharply as the number 
of domains increase which is in accordance with 
what we expected. 

This semi-distributed management of resources 
by confining local information to domains and 
acquiring this information if needed by use of 
the underlying kernel services can be extended to 
other higher system functions such as flle servers, 
etc. which can be built on this structure using 
the same principle. For example, a process in a 
domain, which wants to open a file, would send 
a message to the file server of tha t domain. If 
the file is not found locally, the other file servers 
can be informed to find the file and transfer data. 
We think this approach eliminates the need for 
central or the replicated data, which would lead 
to bottleneck in the first čase and overhead for 
consistency in the latter. 

The results obtained for both static and dyna-
mic load balancing cases are decisive in accepting 
tha t partitioning a parallel real-time system into 
domains and managing them accordingb/ yields 
better performance than no-domain čase. Secon-
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dly, this idea can further be used for other reso-
urce management purposes. At a more abstract 
level, each domain can be considered a node of a 
distributed real-time svstem connected by a real-
time network. Most of the methodologv deve-
loped is valid for these looselv coupled svstems 
with the modification of the communication costs 
accordinglv. A future investigation area would be 
on how to configure the size of the domains to suit 
an application. 
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The paper presents optimal algorithm for a real-time deadlock-free fault-tolerant distri­
buted processing. Our fault tolerant computations do not incur any postponements in 
the underlying distributed processing and need the minimum number of messages. Both 
the underlying messages and the messages maintaining fault tolerance do not need to 
arrive in the order in which they have been sent. The method is based on the asyn-
chronous, atomic checkpointing of the sender and receiver of a message. Messages not 
balanced in the last permanent checkpoints are recorded in the new checkpoints. The 
fault recovery is based on: a) The repetition of ali messages lost according to a record of 
unbalanced messages in the last permanent checkpoints; and b) Undoing every message 
re-sent during the fault recovery, or undoing of a computation repeated according to a 
record of unbalanced messages in the last permanent checkpoints. 
Our fault recovery involves only processes which communicated before a failure. Proof 
of the resilience of the fault recovery algorithm is presented. 

1 IntroductlOn its checkpoint acknowledgement to the initiator. 
Upon receiving this checkpoint acknowledgement, 

The presented approach1is based on checkpoints2. the initiator changes its tentative checkpoint to 
Checkpointing assures the overall system consi- permanent and then removes its previous perma-
stency after faults during execution of any distri- nent checkpoint. If the dependant fails before the 
buted algorithm. Our checkpoint initiator makes checkpoint acknowledgement is received, then the 
its tentative checkpoint and sends its checkpoint initiator recovers the dependant from the previ-
request to its dependant. To the checkpoint re- ous permanent checkpoints. The reminder of this 
quest, information is appended about ali messa- section discusses advantages of our new approach, 
ges received from the dependant and sent to the and presents technical details associated with it. 
dependant by the initiator. Upon receiving the l . i . General overv iew 
checkpoint request, the dependant treats the ini- Q n e a p p r o a c h t o resiUent fault recovery (so cal-
t iator 's checkpoint as permanent (i.e., if the initi- l e d backward error recovery) on a distributed sy-
ator fails, the dependant wiU recover the initiator s t e m p r o v i d e s a c o m p i e t e execution of the en-
from the initiator's tentative checkpoint). The t i r e a t o m i c c o m p u t a t i o n (transaction ) on ano-
dependant makes its checkpoint, and then deletes t h e r s i t e ( R a n d e l l ) [7]). A commit protocol enfor-
its previous permanent checkpoint treating thus c e s t h e transaction atomicity, i.e., if a transaction 
its current checkpoint as permanent. Then sends i s a c c e p t e d f o r eXecution, it must be completed. 

If the atomic action is too long, it may postpone 
JThis research has been sponsored in part by the Army o t h e r t a s k g m a k i n g t n l l s t h e s y s t e m inconvenien t , 

Research Office under the contract DAAH04-94-C0019. and it is not clear whether there is stili a correct 
computation or an error. As a result, it becomes 

Dallas, 1990 [14]. more difficult to detect a fault, bečause the hand 

The early version of this paper waš presented at the 
2nd IEEE SymP. on Parallel and Distributed Processing, computation or an error. As a result, it becomes 
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shaking procedure cannot be used until the tran-
saction times out. Simply splitting the task into 
a few parts would make it non-atomic. 

This paper presents an approach which allows 
a node to divide a distributed request into se-
gments without affecting the internal consistency 
of the transactions and to implement the typi-
cal hand-shaking procedure for failure detection 
at any tirne. In general, goals of the proposed 
methodology is to enable time-critical real-time 
fault-tolerant computing by the following means: 

- Resilient fault recovery in an asynchronous 
environment in which the messages are not 
received in the order in which they have been 
sent. This is to avoid the necessity of syn-
chronization involving undesired waits for de-
layed or lost messages; 

- Elimination of waits for acknowledgements 
for checkpoint messages and for checkpoint 
decisions (e.g., whether to make checkpoint 
permanent) . Our system messages associa-
ted with fault-tolerance do not involve syn-
chronization with undesired postponements 
of underlying computations; 

- Deadlock freedom for our send-receive 
checkpointing. Deadlock freedom and no 
postponements assure timeliness during our 
fault-tolerant computing; 

- Interruptible tasks (or transactions). Long 
tasks do not need to be started again from 
the beginning in čase of a fault what assures 
real-time execution; 

- Fault recovery of sequences of short tasks or 
transactions if it is too expensive to checkpo­
int every short action; and 

- The minimum number of checkpoint messa­
ges providing optimality of our algorithm. 
The optimality criterion is here both the 
communication tirne (the number of checkpo­
int messages) and the waiting time. 

A delayed or lost message postpones a checkpo­
int and a process in CSP [1,3]. One remedy 
not to postpone indefinitely the processes waiting 
for lost or delayed messages is to undo tentative 
checkpoint [3]. Permanent checkpoint may be po-
stponed indefiniteb/ in this way if many messages 

arrive with some delays. Hence, this approach 
is abandoned in this paper. Because we also use 
point-to-point messages, we significantly improve 
CSP. 

1.2. Basic A s s u m p t i o n s 
Fault recovery resilience is achieved under the 

above goal by merging into one atomic entity 
the sender's and receiver's checkpoints and recor-
ding ali of the messages in the sender's and recei-
ver's checkpoints. A send-receive (point-to-point) 
checkpoint proposed in this paper is a collection 
of records and actions involving: 
1. Sender q's checkpoint (q is referred to as initi-
ator); 
2. Initiator's message iq_r } requesting its P re-
ceivers (dependants) 1, . . . p, . . . P to 
perform their checkpoints, where k is the index of 
subsequent q's message. Each checkpoint request 
i\-v B contains: a) A record of ali sent messages 

tnqJp which should have been received by p; b) A 

record of ali received messages mp_q which have 
been sent by p, where l is the index of subsequent 
p's message; 
3. Ali receivers, ( 'dependants') checkpoints; 
4. Dependanfs acknowledgements atcJ, -,_ to the 
i^_r x sent by ali dependants containing: a) A re­
cord pmp_q of messages mp_q which should be re­
ceived by q; b) A record pmqJp of messages rnqJp 

received from q. 
The information about the initiator's messa­

ges is passed to the dependanfs checkpoint to-
gether with the checkpoint request. The depen-
dant sends a record of its messages attached to its 
acknowledgement. The atomicity of send-receive 
checkpoint operations becomes anew specific con-
straint placed on the structure of distributed ope­
rations. 

The atomic send-receive checkpoints allow a 
node to detect a failure occurring at a time of 
making the checkpoints. If a caller fails during its 
service and there are other requests to the server, 
then the failed caller's task or transaction will be 
aborted or rolled back to its last permanent send-
receive checkpoint to unblock the other requests 
(and to service them by the server). 

A failed task or transaction is rolled back toge-
ther with its server to their last permanent send-
receive checkpoint. The lock acquired by a failed 
task or transaction is relinquished by the fault re-
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covery. No other object is able to access the object 
locked by a failed process before the rolling back 
(because prevention of task or transaction atomi-
city is imposed on the execution). 

One of the advantages of the proposed scheme 
is that many requests may be serviced in both the 
preemptive and the round-robin (RR) manner re-
ducing the average waiting time. Using preemp-
tion, the driver of the preempted job is forced to 
be the checkpoint initiator of its tasks. When de-
aling with RR, a sender (i.e., the transaction ini­
t iator) may decide to make its checkpoint when 
a RR quantum expires. The sender forces the re-
ceiver to make its checkpoint too. Atomicity of 
the operations: send, sender checkpoint, receive, 
receiver checkpoint, is provided. 

The presented method of fault-tolerant compu-
ting based on point-to-point message passing (i.e., 
involving two sites), is directly extendible to bro-
adcasts one-to-many, when many one-to-one mes-
sages are considered (e.g., one-to-eight broadcast 
is treated as eight one-to-one messages). In a si-
milar way, fault tolerance of many-to-many bro-
adcasts can be provided. 

1.3. Paper ' s s tructure 

The rest of the paper is structured as follows: 
Section 2 discusses other approaches to fault-
tolerance. Checkpoint consistency is defined for 
two-phase-commit protocols and consequences of 
inconsistency during fault-recovery are discussed. 
Recovery resilience is defined and a two-phase-
commit protocol is shown to be ineffective in 
čase when messages are not received in the or-
der they have been sent. Section 3 develops a 
remedy for the inconsistency problem of the two-
phase-commit fault recovery protocols when the 
send and receive operations are not synchroni-
zed. Send-receive checkpoint consistency of enti-
rely asynchronous messages is defined. Checkpo­
int protocols and fault recovery protocols for the 
initiator and dependants are formulated. Section 
4 validates the proposed fault recovery protocols. 
Several interesting and very useful properties of 
the send-receive checkpoint fault recovery are pro-
ved, e.g., deadlock freedom, the minimum num-
ber of messages, completeness, effectiveness on a 
distributed environment with optional lengths of 
communication lines, and resilience. 

2 Some Typical Problems in 
Fault Recovery 

Fault tolerance is an important element of real-
time systems to assure service completion before 
a deadline in čase of a fault. When a node in 
a distributed system fails, a process residing on 
it must be restarted in a manner which preser-
ves overall real-time svstem consistency (i.e., the 
execution must continue as if there was no fault). 
Shin at al. [9] concentrate on selecting time mo-
ments of making the checkpoints to minimize the 
mean task execution time for real-time applicati-
ons. System consistency is not considered what 
may lead to errors in čase of a failure, or the sy-
stem must be resumed from the beginning if a 
fault happens. Operating system computations 
to assure consistency may need much more time 
than making the checkpoints. 

Real-time system needs optimization of the 
consistency computations first. Ramanathan and 
Shin [6] realize the need to maintain the overall 
system consistency in real time if a fault happens. 
Because approaches known from literature intro-
duce undefined waits and postponements, they 
offer a special hardware to synchronize ali clocks 
on ali nodes to make checkpoints at ali sites at 
the same time. This avoids time consuming syn-
chronization of the checkpointing operations by 
the messages (see the two-phase commit protocol 
[3] described below). The programmer decides in 
the parallel program of the time points of making 
the checkpoints. The programmer should set the 
checkpoints in the program at points of approxi-
mately the same time of execution from the pre-
vious checkpoint. Tasks.which finish earlier must 
wait for the longest task. 

Our approach to real-time fault-tolerant distri­
buted computing is easier to use, because: (a) It 
does not need a special hardware; (b) It provides 
consistency also on a heterogeneous system; (c) It 
does not spend even a small t ime for waits; (d) It 
does not involve any unexpected postponements 
associated with delayed or lost messages; (e) It 
is deadlock-free; and (f) It does not need a ma-
nual setting of the checkpoints in the program by 
the programmer (ali is done automatically by the 
operating system). 

Generally, to provide system consistency in čase 
of a fault, a strategy of rollbacks to the last per-
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manent checkpoint is used to make the recovery 
[3]. In this section checkpoint consistency and re-
covery resilience are defined, and then some of the 
pitfalls associated with checkpointing are discus-
sed. The following assumptions are made for the 
reminder of the paper: 

ASSUMPTION 1. Ali processes learn of the fai-
lure of any processes they communicate with wi-
thin a finite tirne. A tirne out (i.e., no response 
within a prespecified tirne) signifies a receiver's 
failure or a communication link failure. 

ASSUMPTION 2. Checkpoints are made asyn-
chronously by processes. A message obtained du-
ring a checkpoint waits until checkpoint comple-
tion. 

(a) <^—^-

*- P 

c0(q) failure 

(b) 
co{<l) ci(q) 

ASSUMPTION 3. No failure can partition the Figure 1: Underlying inconsistencies in fault re-

distributed system. covery 

ASSUMPTION 4. Messages sent during the same 
distributed computation carry the same unique 
process ID. Ali messages of the same ID are num-
bered in the increasing order. 

DEFINITION 1. A checkpoint is consistent in a 
system in which messages arrive in the order they 
have been sent if [3]: a) It does not contain a 
record of a received message that is not recorded 
as sent in a checkpoint of a sender; b) No message 
is lost after resumption from the last receiver's 
checkpoint. 

LEMMA 1. Checkpoints made independently of 
send and receive operations can be inconsistent. 
PROOF. Suppose, a failure occurs just before or 
when a checkpoint is made. A message may be 
registered as received in the receiver's checkpoint 
(e.g., in the checkpoint cx(p) in Fig.l .a) but not 
recorded as sent in the checkpoint of the sender 
(e.g., in cQ(q) in Fig. l .a) , violating DEFINITION 
l.a. Also, a message registered as sent (e.g., in 
c\(q) in Fig. l .b) but not registered as received 
may be lost by the failed receiver if a receiver's 
failure occurs just before or when making a rece­
iver's checkpoint violating DEFINITION l .b. • 

Another danger in a fault recovery is the do­
mino effect (Randell [7], Russell [8]) occurring 
when processes are checkpointed after message re-
ceipt. For example, process p (Fig.2) could be re-
sumed from its last checkpoint c2(p) if not its last 

co(p) ci(p) C?(P) fail ure 

7 
i-p 

cofa) c i ( s ) 
c2{q) 

Figure 2: The 'domino effect' 

message rn^_q sent to q. To avoid the service of 
the message twice by q (after p's recovery), the 
process q is rolled back to its previous checkpo­
int c\{q). But p has the record of the received 
message from q in its last checkpoint C2(p). Re-
suming from c\{q), this message would be sent 
again to p, thus would be serviced twice by p. To 
prevent servicing it twice, process p is rolled back 
to its previous checkpoint c-i(q). The only stable 
checkpoint is the original status c0(p), co(q). The 
domino effect involves too much tirne and storage 
space to keep ali checkpoints. 

The live-lock effect [3] results from the lack of 
synchronization and starvation of processes invol-
ved in a communication interrupted by a failure. 
Processes may be rolled back and recovered from 
the failure an infinite number of times. Consi-
der the scenario presented in Fig.3: q must be 
recovered from a failure by resuming it from the 
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co(p) 
— & 

aiCjt1, - acJtBOwIe<Jge teotatire checkpoint 
e,(p) / (mcutge of making tent&tive checkpoint). 

m, Z p-q 

co(g) failure 

Figure 3: The 'live-lock' efFect 

checkpoint c0(g) (defined for both p and q). Re-
ceiving the same message mq-v for the second 
tirne, process p rolls back itself to its checkpo­
int c0(jp) (assuming, the fault recovery is not syn-
chronized). Resuming, p sends its message mp-q 

again, and q receiving it twice rolls back itself to 
its Co(q). The two processes perform the recovery 
(through rollback) infinitely. 

DEFINITION 2. A fault recovery algorithm is 
resilient to a process or channel failure if after a 
rollback operation: 
a) there are no lost messages nor is a request servi-
ced multiple times without undoing the excessive 
computations (i.e., the remaining set of checkpo­
ints is consistent); 
b) global atomicity is achieved (e.g., the commit 
protocolfor transaction execution is not violated); 
c) there are no subsequent rollbacks through a 
sequence of checkpoints (i.e., the fault recovery is 
domino effect free); 
d) synchronization avoids undesired repetition of 
the recovery process (i.e., there is no live-lock). 

A straightforward approach to fault tolerance 
at tempts to save only the last checkpoints of pro­
cesses and the fault recovery takes plače by rolling 
back to the last checkpoints [9]. A fault may ha-
ppen, however, during checkpointing process. To 
make the fault recovery resilient to errors during a 
checkpoint, Koo and Toueg [3] assume an additi-
onal tentative checkpoint. The tentative checkpo­
int is made permanent after the completion of 
the entire send-checkpoint operation (if no fault 
oecurs). If an error oecurs at the time of making 
the tentative checkpoint, the failed process is rol-
led back to the last permanent checkpoint. Any 
operations (including tentative checkpoints) per-
formed after the permanent checkpoints may be 
undone. Any last checkpoint not completed yet 
is tentative (i.e., it may be undone without affec-

lndactha 
oftenUtiva 

^n' checkpoiot. 

p'j Jut permanent vheckpoiat 
daes not record the "*' . 

Message mj_( lost due to 
tendiog it hy a pa (i 
longer than att?+\ «ad « fauJt. 

CanooKaJre the 
tenUtivc checkpoint 

bere. 

Now q'i etecipoint 
reeords the receipt 
o / rn^ , and maka 
fb« tivo checkpoints 

Figure 4: Inconsistencies with fault recovery using 
the two-phase commit protocol: a,) a message 

1 lost if sent by a p&th. longer than the ac-m. p-q 
knowledgement of the checkpoint request and as 
a result of the receiver's failure; b) remedy to the 
loss of the above message by delaying the perma­
nent checkpoints [3]: c) message rnk

q_p lost if pro­
tocol [3] is installed (and if sent by a p&th longer 
than the checkpoint request i*±p and as a result of 
a receiver's failure) and recovered using our send-
receive checkpoint recovery 

ting prospeetive fault recovery). The tentative 
checkpoint becomes permanent after the receiver 
sends its acknowledgement and after the initiator 
makes its own tentative checkpoint. Each perma­
nent checkpoint is consistent. Tentative checkpo­
ints do not need to be consistent. 

One approach to fault recovery ušes a two-
phase-commit protocol. An initiator q creates 
its tentative checkpoint and induces tentative 
checkpoints for other processes (e.g., using a mes­
sage ik

q_v in Fig.4.a) in the first phase, and then 
blocks itself and waits for responses. If q recei-
ves messages of completion for ali of the induced 
tentative checkpoints, it changes ali the tentative 
checkpoints to permanent in the second phase. 
Dependents stay blocked waiting for the initia­
to r^ decision. However, the permanent checkpo­
ints are not consistent, because a message mp_g 

sent by p before making the permanent checkpoint 
c0(p) and received by q after making ali checkpo­
ints permanent will be lost if q fails after tha t . 
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This problem is approached by the following mo-
dification [3]: The dependant p does not make its 
tentative checkpoint induced by q without an ac-
knowledgement of its outstanding message mp_q 

(Fig.4.b). 
However, there is another danger with the mo-

dification presented in [3]. Consider the scenario 
as in Fig.4.c, when the receiver of i tp" fails af-
ter making the checkpoints. The i ^ (checkpo­
int request) contains a record (acknowledgement) 
of ali messages received by q from p (e.g., of 
mp_ ) . According to [3], if the p's latest per­
manent checkpoint does not have the record of 
sending this message to q, then p makes the de-
cision to take its tentative checkpoint. When q 
learns about taking the tentative checkpoint (by 
a message atcl

pt}q), then q changes ali the tenta­
tive checkpoints to permanent (e.g., by a message 
mcpgtp - make checkpoint permanent) in the se-
cond phase. Based on the protocol presented in 
[3], the processes p and q do not see any inconsi-
stencies. However, the rnq gets lost if it is sent 
by a longer path and if the p fails! 

One of remedies not exploited in this current 
paper and in [3] is to suspend the second phase 
of making the tentative checkpoint permanent (by 
the initiator q) until receiving aH the delayed mes­
sages (as mq_ ) . This would lead, however, to 
long delays and even to indefinite postponements 
if one of messages is lost or when delays happen 
frequently. 

3 Fault Recovery Using Atomic 
Send-Receive Checkpoints 

The send-receive checkpoints introduced in this 
paper solve the problems discussed above. To pre-
vent inconsistency and any postponements asso-
ciated with waits for delayed or lost messages, the 
paper assumes tha t the request i~t* for a checkpo­
int carries the record of any messages sent by q 
to p which are not balanced (i.e., not acknowled-
ged by p). Similarly, acknowledgement to the i *p 

contains the record of the p's messages not balan­
ced in the p's record of sent and received messages. 

The method presented in this paper does not 
require the checkpointing of every send. The ini­
t i a to r^ checkpoint must be atomic with its last 
send iq*p (carrying full information of ^'s unba-
lanced send messages) and then the receiver of 

that message makes a tentative checkpoint. To be 
able to resume correctly in čase of a failure, the 
receiver needs to balance its own record of messa­
ges (exchanged with the sender) with the sender's 
record of the messages (exchanged with the rece­
iver) received from the initiator with the request 
iq-l- The balancing makes the receive operation 
atomic with the iqt]>-

The atomic send-receive checkpointing enforces 
transaction atomicity, but it is different from the 
two-phase-commit protocols. The initiator of the 
checkpoint expects an acknowledgement with the 
information as to whether each dependant took its 
checkpoint, together with the information of the 
messages which have been received by the depen­
dant from the initiator. Immediately after sen­
ding the acknowledgement, each dependant chan­
ges its tentative checkpoint to permanent. The 
initiator does not block itself when waiting for 
acknowledgement, because records of any delaved 
messages are exploited for any anticipated fault 
recovery and the last permanent checkpoints are 
valid anyway. The receivers of the checkpoint re-
quest also do not wait blocked for the initiator's 
decision on making the checkpoint permanent (as 
they have to wait in [4]) because they keep track of 
any delayed messages. Because the dependants do 
not wait blocked, the message make-checkpoint-
perm&nent used in [3] (e.g., mcpqtp in Fig.4.c) is 
not necessary for the checkpointing in the propo-
sed approach. There is also no requirement that 
messages be received in the order they have been 
sent. 

DEFINITION 3. A send-receive checkpoint is 
consistent if: 
a) It contains (optionally) a record of a received 
message that is not recorded as sent in the sen­
der^ checkpoint, but the sender's record of ali 
sent and received messages is in the possession of 
the receiver (e.g., this record is passed with the 
i\_v in Fig.5.b); 
b) It has an optional record of sent messages 
which are not recorded as received in the recei­
ver^ checkpoint (compare mp_q, Fig.5.a), but the 
receiver's record is in the possession of the sender 
(e.g., the record is passed with iqtp in Fig.5.a); 
and 
c) no message is lost after resumption from the 
last send-receive checkpoint independently of a 
delay of the message. 
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Send - receive checkpaiat 
with tbe records of messages 
m'f.q and m*_p (if any). 

failure 

Co(p) failure 

M c i(q) 

Figure 5: Resilient atomic send-receive checkpoin-
ting with the minimum number of messages. The 
checkpointing cloes not wait for delayed messages: 
a) a čase when checkpoint request iqt^ reaches 
each dependant p through a path shorter than 
a regular message m'p_q; b) a checkpoint request 
may reach dependant with a longer delay and the 
initiator fails. A message mk

qtl is discarded when 
sent during fault recovery for the second tirne af-
ter the initiator's failure; c) a checkpoint request 
goes through a path much longer than the mes­
sages mk

qtl and ml
p_q and the dependant has a 

fault. Message ml
p_q is repeated when it is unba­

lanced after the dependant's failure, and message 
•mqtl is discarded when it is unbalanced 

T h e i n i t i a t o r g's c h e c k p o i n t p r o t o c o l : 

- Make a q's tentative checkpoint keeping se-
parate records of messages exchanged with 
every dependant p. 

- Send a checkpoint request %\_p to each depen­
dant p for 1 < p < P. Each i\_p contains: 
a) A record qm^}p of ali sent messages mq_p, 
k € {1, ---K}, which should have been recei-
ved by p; b) A record qmp]q of ali received 
messages ml

p_q which have been sent by p; c) 
A hand-shaking ARE-YOU-UP message. 

- Reset a TimeJDut.k counter associated with 
each i\_v\ 

- IF TimeDutJz expired THEN: a) Undo the 

g's tentative checkpoint; b) Recover the p 
from failure. 

- IF &ny a.cknowledgement atcl
p_q recei­

ved THEN make the initiator's tentative 
checkpoint permanent: 

Balance the q's and p's records qm\Jp and 

pmf]p of messages mk_p. The record pm\jp 

is received in the atcp_q, 
{'} Balance the q's and p's records qm>plq and 

pmp
l}q of messages ml

p_q. The record pm{
p±q 

is received in the atcl
p_q; 

Keep in the permanent send-receive checkpo­
int only the record of unbalanced messages. 

- Do not block itself when waiting for the 
atc •p-q-

The dependant p's checkpoint protocol: 
IF ik

q_p received THEN: 

- Make a tentative checkpoint. 

- Send the acknowledgement atcl
p_q to q conta-

ining: a) A record pm^lq of messages ml
p_q, 

l £ {!,...L}, which should have been rece­
ived by q; b) A record p m ^ j , of messages 
mh received from q. 

- Change status of the current p's tentative 
checkpoint to permanent (and do not wait 
for initiator's decision): 

a) Balance the g's and p's records qmx
qJp and 

pm}qJp of messages mq_p; 

b) Balance the g's and p's records qmp
J2q and 

prnplq of messages rnp_ 

{'} 

9" 

DEFINITION 4. A message is fnilure-specific if 
its number is the minimum of the unbalanced 
messages within the same ID. 

A sequence of messages which should be 
exchanged when rolling back as a result of a fa­
ilure starts from a failure-specific message. The 
necessary minimal rolling-back operation is per-
formed by repetition of this failure-specific mes­
sage and the entire sequence of messages follo-
wing it. For instance, a failure specific sequence 
in Fig.4.c consists of one message mq_p. 
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DEFINITION 5. A failure-specific sequence is 
a message exchange starting with the failure-
speciflc message and ending with the last message 
before the send-receive checkpoint. 

A failure-specific sequence consists of messa-
ges which have the same distributed computa-
tion ID. The sequence is ordered by increasing 
numbers. In čase of receiver's failure the entire 
failure-specific sequence must be discarded after 
the sender resumes (e.g., message rnqt.p in Fig.5.c 
is discarded by p when it is re-sent to avoid servi-
cing it twice). See fault recovery protocols given 
below for particulars. 

The dependant's tentative checkpoint lasts only 
for a tirne of sending atc1. If a dependant's 
fault happens when making this checkpoint, the 
permanent checkpoint is not lost. 

Fault recovery protocol carried out by ini-
t iator q: 

IF failure of a dependant p THEN: 

— Wait at most a prespecified quantum for the 
atc i •p-q-

Perform a necessary reconfiguration and roll 
back to the last permanent send-receive 
checkpoint (determined by the last atcl

p_q re­
ceived): 

Repeat any failure-specific message mq_p or 
{k} A'} mp_q recorded in qmqJp or in pmp_q as sent 

and not present in pmq_p or in qinplq (re-
spectively) as received (compare messages 
ml

p_q in Fig.5.c and mq in Fig.4.c). 

Discard any failure-specific sequence (e.g., 
« mq_p in Fig.5.c) recorded in pmqJ as rece-

ived and missing in qmq_ as sent. For in­
stance, rnqtl in Fig.5.c is missing as sent in 
last g's checkpoint. After resuming from per­
manent checkpoints these messages will be 
repeated, so we prevent from servicing them 
twice by discarding them. 

Note tha t q keeps separate checkpoint informa-
tion for each dependant p, so it is possible to roll 
back only a failed dependant. If the expected 
atcl

p_q is not received within a prespecified quan-
tum, the last tentative g's checkpoint is discar­
ded and the p's failure is assumed to occur during 

p's tentative checkpoint. The last tentative send-
receive checkpoint is not treated as permanent by 
q before receiving atcp_q. 

Fault recovery protocol carried out by de­
pendant p: 

IF failure ofinitiator q THEN: 

Perform a necessary reconfiguration and roll back 
to the last permanent send-receive checkpoint: 

1. Repeat any failure-specific message rnq_ or 
{*} A'} mp_q recorded as sent in qmq_p or in pmp_ and 

Ak} A'} not recorded as received in pmq_ or in qmp_ 
respectively (compare Fig.5.a). 

2. Discard any failure-specific sequence (e.g., 
m j _ p in Fig.5.b) recorded in pmqJp as received 
and missing in qmq_p as sent. 

For instance, assume that q fails and its last 
iq_p managed to reach p through a path longer 
than <7's message m~tp (Fig.5.b), and that p le-
arns about q's failure. Then p learns also (from 
<?'s record qmq_p sent with iq_p and from its own 
last record pmq_p kept in its last checkpoint) that 
the received mqtp was not recorded as sent by q 
and that m^l is failure-specific, hence it discards 
rnqtl during a fault recoverv. There could be 
some more messages with the same process IDq 

and higher process numbers, but they are depen­
dant on the failure-specific message and will be 
discarded after rolling back. 

In Fig.5.a process p learns tha t its message 
mp_q is not recorded as received in ^'s last 

checkpoint, because the record qmp_ received 
from q with i t.p does not list it as received. The 
ml

p_q occurs to be failure-specific because it has 
the smallest number l among ali messages with 
IDP. This dependanfs failure-specific message 
will be repeated after rolling back. There could 
be more messages with the same IDP with hi­
gher process numbers, but they will be repeated 
automatically because they belong to the failure-
specific sequence with the same IDP. 
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4 Validation of the 
Send-Receive Checkpoint 
Recovery 

THEOREM 1. Any atomic send-receive checkpo­
int is consistent. 
PROOF. Because of balancing ali messages with 
the received checkpoint records, the failed sender 
will be resumed from its last permanent checkpo­
int but will be prevented from sending the same 
message to the receiver again (Fig.5.b) or a repe-
ated message will be removed from the receiver. 
As a result, the message will be serviced only 
once. Furthermore, no delayed messages recei­
ved after making the permanent checkpoints will 
be lost by a failure of the dependant (Fig.4.c) or 
by a failure of the initiator (Fig.5.a) because the 
sender performing the fault recovery will balance 
the messages and each message received after the 
permanent checkpoint of a failed receiver will be 
repeated. Any messages not acknowledged (e.g., 
mp_q in Fig.5.a) by the checkpoint request (e.g., 
by iq-l) are repeated during the fault recoverv. 
Otherwise the messages would be lost making the 
send-receive checkpoint inconsistent. • 

THEOREM 2. The send-receive checkpointing is 
deadlock free. 

- PROOF. The initiator is not blocked waiting for 
the acknowledgements from its dependants. Also, 
the dependants do not wait for the initiator's de­
cision regarding making the tentative checkpoints 
permanent. If any p and q request the checkpo­
int at the same tirne from each other, both learn 
about their messages, will be ready to balance the 
messages, and will set their tentative checkpoints 
to permanent. Hence, there are no waits neces-
sary for a deadlock. • 

In other words, the send-receive checkpointing 
does not have the two-phase structure as in [3]. It 
is not a one phase protocol, because the initiator 
is not blocked when waiting for dependanfs ac-
knowledgement. The acknowledgement is used by 
the initiator to get rid of the previous permanent 
checkpoint and to receive records about messages. 

In our approach, any dependant is sent (by 
checkpoint request) information of ali other de­
pendants (siblings) taking part in send-receive 
checkpoints and may make decision of fault re-
covery of any sibling treating the initiator's 

checkpoint as permanent and also ali sibling's 
checkpoints as permanent. In the two-phase pro­
tocol [3], initiator's decision is necessary regarding 
making permanent the dependants ' checkpoint. If 
the initiator fails, this decision is difficult to make 
during fault recoverv, because of needing addres-
ses of ali the dependants (which should reside in 
the initiator's tentative checkpoint, but this ten­
tative checkpoint is not safe). Our distributed 
point-to-point checkpoints are safe. 

THEOREM 3 (optimality). The send-receive 
checkpointing incurs the minimum number of 
messages, is without postponements and waits, 
and by having these features is optimal. 
PROOF. Only one request and one acknowled-
gement from each dependant are needed for the 
induced checkpoint carrying data about the mes­
sages which need to be received by appropriate 
addressees to deduce information about delayed, 
lost or repeated messages. By this, to maintain 
consistent distributed computations in čase of a 
fault, we need less messages than any other fault-
tolerant distributed computing known from the 
literature. Using the checkpoint request each de­
pendant is fully informed, and with the aid of the 
acknowledgements the initiator can perform fault 
recovery of ali its dependants. • 

As in [3], no more than one tentative checkpoint 
is involved in the fault recovery. The number of 
potential fault handling initiators is limited to the 
processes sending messages. The checkpoints do 
not need to be made by aH dependants at the same 
tirne. The dependants are allowed to complete 
their current tasks without blocking other depen­
dants who are ready with their checkpoints and 
wait for initiator's decision (in [3] dependants are 
blocked waiting for the decision). So, compared to 
other approaches to fault-tolerance, our method is 
better because of the minimum number of messa­
ges, no waits and no postponements (compare the 
initiator g's and dependant p's checkpoint proto-
cols). 

THEOREM 4. Fault recovery using asynchronous 
atomic send-receive checkpointing executed after 
N send operations, N > 1, is resilient. 
PROOF. Any atomic send-receive checkpoint is 
resilient because it satisfies DEFINITION 2 of 
fault resilience: a) Is consistent (see THEOREM 
1 ). b) If a failure occurs during execution of 
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the receive fragment of the atomic send-receive 
checkpoint operation, the send fragment of the 
atomic send-receive checkpoint operation is ten-
tative and will be undone during the fault re-
coverv. c) Delays in comrminication are recon-
ciled by sending records of the communication 
between the processes taking part in the send-
receive checkpoint, by balancing the messages and 
resending any tmbalanced messages lost due to a 
receiver's failure or by undoing unbalanced mes­
sages sent twice as a result of sender's failure (see 
Fig.5.c). d) There is no domino effect, because 
the fault recovery is synchronized by atomicity of 
the checkpoints; and e) Also, the live-lock effect is 
avoided since ali processes are rolled back to their 
last consistent checkpoints. • 

THEOREM 5. Send-receive checkpointing and 
fault recovery in a real asynchronous distributed 
environment is possible with paths of optional 
lengths. 
PROOF. The checkpointing involving messages 
sent through long paths or lost messages is possi­
ble because of: 

a) Receiving the checkpoint request from the initi­
ator with the record of ali the messages exchanged 
with each dependant; 

b) Making a record of messages exchanged with 
the initiator in each dependant's checkpoint and 
sending that record with the acknowledgement; 
c) Balancing the messages which have been sent 
actually with the received messages (based on 
their records); 
d) Recovering the messages lost by receiver's 
failure and kept in the permanent send-receive 
checkpoints; 

e) Undoing messages sent twice as a result of sen-
der's fault and recoverv. • 

DEFINITION 6. For real-time applications 
with a deadline, an algorithm should satisfy the 
following requirements: a) Be correct; b) Be op-
timal (i.e., with the lowest tirne complexity and 
the minimum number of messages among ali al-
gorithms devised to solved this problem); and c) 
Be deadlock-free and postponement-free. 
LEMMA 2. The initiator can accept messages 
from other processes before receiving acknowled-
gement from its dependants (i.e., after sending 
the checkpoint request), provided that ali records 

of messages are available for prospective recovery 
of the initiator (if it fails). 

PROOF. If the initiator fails after accepting a 
message and before receiving the acknowledge-
ment, and then is recovered by its dependant, the 
dependant treats the initiator's checkpoint as per­
manent. The dependant balances the messages 
and is able to perform the fault recoverv. So, any 
other messages received by the initiator do not 
affect the checkpoint atomicity. • 

THEOREM 6. Any send-receive checkpoint 
operation is suitable for fault-tolerant real-time 
applications (guaranteeing response tirne) with a 
deadline. 

PROOF. Our send-receive checkpointing satis-
fles DEFINITION 6 because of the following: a) 
Is correct (see THEOREMS 1, 4, 5); b) Is optimal 
(see THEOREM 3); and c) Is deadlock-free (see 
THEOREM 2) and postponement-free (see THE­
OREM 2 and LEMMA 2). None of the processes 
taking part in checkpointing waits indefmitely for 
delayed or lost messages, nor they are deadlocked 
by checkpointing procedures. • 

5 Conclusion 

Because of optimality (no other fault-tolerant 
algorithm known from literature involves fewer 
number of messages or is free from waits), de-
adlock - freedom and no unexpected postpone-
ments, the proposed checkpoint protocol can com-
plete execution within a deadline. Our checkpo­
inting is not postponed by any delayed messages, 
because of immediately exchanging the informa-
tion (records) of the messages (i.e., which should 
be received, if sent, and which should be sent, 
when received). The maximum tirne required to 
reach the consistent status of the checkpoints is 
no longer than the tirne of making the checkpo­
int with our method. Other approaches known 
from literature postpone the underlying compu-
tations when exchanging the checkpoint requests 
and checkpoint acknowledgements to reach the 
consistency, thus needing much more tirne than 
the minimum tirne to make checkpoints solely. 

The atomic send-receive checkpoint has the fol-
lowing advantages: a) The number of messages 
is minimal (i.e., only one request is needed for 
the induced checkpoint carrying a da ta about the 
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messages which need to be received by the ad-
dressee, and one for the acknowledgement of that 
request). b) It eliminates the danger of starvation 
(indefinite wait for a lost message); c) Eliminates 
waiting for checkpoint request acknowledgement 
and for initiator's decision; d) Is deadlock free and 
complete (without postponements); e) Is consi­
stent and resilient (i.e., fully correct); f) Is execu-
table at any time moment, even during a long task 
or atomic transaction; and g) Makes operation in 
a real asynchronous distributed environment pos-
sible with paths of any lengths. Messages do not 
need to arrive in the order they have been sent. It 
keeps track over the messages that should be rece­
ived through different paths (e.g., using packets). 

The fault recovery approach using atomic send-
receive checkpoints is local and asynchronous, i.e., 
any process may initiate only its own and the 
receiver's checkpoint operation (e.g., when pre-
empting, after a round-robin quantum expires or 
on the occasion of a message passing). So, the 
checkpoint operations are synchronized by some 
selected process' send and receive operations pro-
viding the global atomicity of the distributed 
computation. Separate processes can be checkpo-
inted independently, rather than ali the nodes of 
a distributed architecture. The checkpoints do 
not need to be executed every send but after any 
arbitrary number of sends and receives, and also 
during a transaction execution. 

The fault recovery through the rolling back 
to the consistent send-receive atomic checkpo­
int does not affect consistency of real-time tasks. 
Each task is handled individually according to 
its consistent checkpoints. Consensus about the 
consistent state of the entire system is computed 
dynamically when making the checkpoints in an 
optimal fashion, without any postponements of 
underlying computations, by balancing messages 
which should be received when sent, and also the 
messages which should be sent if received. This 
consensus is performed in real time, making the 
system ready for immediate recovery if a fault ha-
ppens. If a fault happens, the fault recovery is 
local, involving only tasks communicating with 
the faulty node, without postponing other tasks 
which is ideal for a real-time system. This localitv 
of our fault-tolerant method provides scalability, 
because independently of the hardware configu-
ration, only the nodes involved in the fault take 

part in fault recovery if a fault occurs. 
The implementation of one-to-many communi-

cation by using multiple one-to-one messages is 
inherent in a number of parallel languages (for 
example, Occam and Parallel C) and will evolve 
in this direction. because not shared memorv, 
but private memory enables better scalability of 
parallel architectures. Nodes with private links 
and private memories use point-to-point messa­
ges. Where global bus data is used (with one-to-
many messages), a fault in one of many depen-
dants can be recovered from its checkpoint saved 
in a neighboring node using private links (and also 
by means of point-to-point Communications). 

The presented fault recovery algorithm is also 
resilient to a fault during the atomic checkpo­
int operation by making tentative the sen-
der's checkpoint until completing the receiver's 
checkpoint. The two site čase discussed in this 
paper is easily extendible to a multisite configu-
ration. 

Fault recovery of the producer or consumer can 
be treated in the same way as the fault recovery of 
the writer, because consumer also modifies (cle-
ars) the buffer and is thus also a writef (both con­
sumer and producer impose the exclusive lock on 
the buffer). The buffer crash should be handled 
as a fault of the server. 

Our fault recovery may be easily combined with 
a deadlock-free message routing or with a decen-
tralized distributed deadlock protocol [13] and 
can be embedded on any network or hardware 
configuration. 

The future work needed are the real implemen-
tations. Up to now, fault-tolerance of a real-time 
system is limited by the high costs because of 
inadequate methods (too time consuming or too 
expensive, or even incorrect). The limitations for 
the proposed method are listed as the ASSUMP-
TIONS 1, 3 and 4, especially tha t the net must 
not be partitioned by faults. 

A simple real-time system interacting strongly 
with its environment may no longer need the me-
asurements taken before a fault. A node may sim-
ply resume from the very beginning after a fault, 
and take the new values measured in real time. A 
more complicated real-time system, especially dis­
tributed and possessing higher decision levels, ne-
eds to remember, which part of the entire mission 
have been fulfilled up to the fault, and the roll-
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back consistent with the mission accomplished up 
to a fault is indispensable. Inconsistent resump-
tion may be more disastrous than no resumption. 
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This paper presents a new access protocol, based on a simple CSMA/CD extension to 
improve Ethernet's performance in real-time applications and guarantee predictability. 
An analysis is given ofboth the extended protocol and the standard CSMA/CD. Several 
simulation experiments are conducted to test the two protocols under a meaningful 
variety ofload levels, measuring the tirne it takes each protocol to transmit a predefined 
packet. The results allow making the final analysis to judge each access protocol and 
determine if and how the problem of predictable Ethernet behavior has been solved. 

1 Introduction 

Recent developments in distributed computing 
have brought more stringent requirements on the 
use of local area networks (LANs). This is beca-
use of their spread in real-time applications. The 
real-time constraints are mostly important on the 
Medium Access Control (MAC) sublaver of the 
OSI (Open System Interconnect) Data Link la-
yer, because it is this sublaver that manages the 
acquisition of the common communication chan­
nel through which the actual data packets are 
physically transmitted. The most common appro-
aches to real-time LAN involve the following com­
munication protocols: MAP (Manufacturing Au-
tomated Protocol) [9], FDDI (Fiber Distributed 
Data Interface) [1], Fieldbus [2], Token Ring [10] 
and Ethernet [6]. 

The protocol used by Ethernet is called 
CSMA/CD (Carrier Sense Multiple Access with 
Collision Detection). The CSMA/CD ušes a sha-
red communication channel managed with a dis­
tributed control policy. With this approach there 
is no central controller managing access to the 
channel and there is no pre-allocation of tirne slots 
or frequency bands. 

A station wishing to transmit is said to "con-

tend" for the use of the common communica­
tion channel (Ether) until it acquires the channel. 
Once the channel is acquired, the station ušes it 
exclusively to transmit a packet (not of fixed size). 
To acquire the channel, the station checks whe-
ther the network is busy (ušes carrier sense) and 
defers transmission of its packets until the chan­
nel is quiet. When the channel is quiet, the wai-
ting station immediately begins to transmit . Du-
ring transmission, the transmitt ing station listens 
for a collision because other stations may at tempt 
to transmit simultaneously when they ali realized 
the channel was quiet. 

In a well functioning system, collision occurs 
only within a short tirne interval following the 
start of transmission. This tirne interval is cal­
led the collision window and is a function of the 
length of the communication channel. If no col­
lision occurs during this tirne, a t ransmitter has 
acquired the medium and continues the transmis­
sion of its packet. If a station detects a collision, 
the rest of the packet is immediately aborted. To 
ensure that ali parties to the collision have pro-
perly detected it, any node tha t detects a col­
lision invokes a collision enforcement procedure 
that briefly jams the channel. Each transmitter 
involved in the collision then schedules its packets 
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for retransmission at some later time. To mini-
mize repeated collisions, each station involved in 
the collision tries to retransmit at a different time 
by scheduling the retransmission to take plače af-
ter a random delay period (retransmission inter­
val). 

In order to achieve channel stability under hi-
gher load conditions, the retransmission interval 
is doubled with each successive collision, thus 
extending the range of possible retransmission de-
lays. This algorithm has a very short retran­
smission delay at the beginning and will back-
off quickly, preventing the channel from becoming 
overloaded. After some number of back-offs, the 
retransmission interval becomes large. To avoid 
undue delays and slow response, the doubbng can 
be stopped at some point, with additional retran-
smissions stili being drawn from the interval be-
fore the transmission is fmally aborted. This is 
referred to as truncated binary exponential back-
off. The back-off restarts with a zero retransmis­
sion interval for every new packet. 

Performance comparison of the CSMA/CD and 
other types of protocols, such as a token ring, 
shows that CSMA/CD provides networks with 
excellent performance at lov/ load levels, but de-
grades rapidly in high traffic situation. This de-
gradation of performance of the CSMA/CD pro-
tocol is due to the fact that the probability of 
collisions to happen gets higher as the load in-
creases in the network. This probabilistic na-
ture of the CSMA/CD protocol makes it non-
deterministic and therefore not suitable for hard 
real-time applications. 

2 Previous Work 

Various a t tempts on improving CSMA/CD for 
use in real time, were reported in the literature 
[5, 6, 11], or more recently [3, 12]. The most com-
plete summary of previous studies dealing with 
Ethernet 's (CSMA/CD) use in real-time applica­
tions was presented in [6] and is discussed below. 

According to this report, Nut and Bayer stu-
died the effect of different backoff algorithms used 
to resolve collisions by scheduling a different re-
try interval for each node. They found that al-
though the exponential back-off algorithm used 
in the standard Ethernet was not very suitable 
for combined voice and data, it was suitable for 

voice (periodic sources) provided the netvvork did 
not get overloaded. 

Chlamtac and Eisenger, as reported in [6], stu-
died the behavior of the standard CSMA/CD pro­
tocol for combined voice and data using a variety 
of da ta traffic patterns. They also concluded that 
the exponential backoff algorithm is not suitable 
for mixed voice and data traffic. They also found 
tha t an alteration to the backoff policy which re-
duces the number of collisions helped not only 
voice but also data traffic throughput. This was 
their suggestion to the alteration of the back-off 
policy: increase the first retransmission interval 
to give better randomization and ensure the se-
paration of voice traffic into non-competing time 
slots. 

Maxemchuk, as reported in [6], simulated a va-
riation of CSMA/CD applicable to any system 
with periodic and aperiodic (synchronous and 
asynchronous) sources, with periodic sources ha-
ving the same transmission requirements. In this 
čase, periodic sources are voice packets and ape­
riodic sources are da ta packets. This new proto­
col ušes standard CSMA/CD techniques for data 
transmission and the following technique to tran-
smit voice. Periodic sources (voice) operate as if 
a time-division multiplexed (TDM) channel has 
been assigned to each source. This technique re-
sults in a decrease in the network delay (reduced 
collisions). 

Girma and Dunlop, according to [6], reported 
a hardv/are implementation of moving TDM slots 
for Ethernet voice transmission. This technique 
involves extending the Ethernet frame preamble 
of 64 bits by another 512 bits. The idea is to 
resolve collisions during the extended preamble, 
before the data frame is t ransmitted. 

Hutchison himself [6] used the standard 
CSMA/CD with no alteration to examine, by me-
ans of simulation, the feasibility of carrying data 
in real-time environment. He first determined the 
maximum load under which the delay will remain 
below a given threshold. Next, he investigated 
the idea of time division multiplexing as described 
by Maxemchuk, but using data instead of voice. 
Hutchison found that using the standard Ether­
net, nodes can acquire the channel quickly enough 
to operate in real-time assignment, provided that 
the load is kept below the threshold value calcu-
lated for that particular application. 
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In a more recent work, Court [4] used a varia-
tion of a delay priority scheme, with a parallel ar-
bitration technique to enable a node to obtain pri-
ority access to the network. This implementation 
ušes standard.network components and requires 
a low cost hardware adapter. A brief description 
of his approach follows. 

There are two reasons for collisions on the ne-
twork. The first is when two nodes make a simul-
taneous check of the network and detect an idle 
condition; they both talk and a collision occurs. 
This collision is coincidental and has a low pro-
bability of occurring. The second type is when a 
node detects a busy network and waits for an idle 
condition at the same tirne as other nodes may be 
waiting for the idle condition, and thus they will 
collide when it occurs. This type of collision has 
a higher probability of occurring. 

To avoid type 1 collisions, the protocol states 
tha t access to the network can only be made rela-
tive to a busy/idle transition. To avoid type 2 col­
lisions, a delay arbitration protocol is used. Each 
node is allocated a priority. After a busy/idle 
transition, a node waits for a tirne interval that is 
proportional to its priority; any network activity 
during this interval will force the node to wait for 
the next busy/idle transition. If the network is 
inactive for the node's allotted time, then a na-
rrow time window is opened. A node can then 
talk; if it does then the window is stretched to 
encompass the frame, otherwise the window is clo-
sed and the node must wait for the next available 
window. The amount of dead time caused by the 
delay is proportional to the size of the network. 
To ensure that a busy/idle transition takes plače, 
ali nodes check the idle time. If it exceeds a set 
t ime which is longer than any delay time, a node 
will generate a dummy frame to ensure that the 
network stays alive. This concludes Court 's pro­
tocol. 

The discussed approaches either change the 
standard CSMA/CD protocol to nt or tolerate 
one particular application, or have signihcant 
overhead and restrictions or extra rules and are 
less fiexible or performant than the standard 
CSMA/CD. In general, none of them guarantees 
a bounded time for message delivery with accep-
table restrictions. 

3 Problem and Its Solution 
The objective of this research is to extend the 
standard Ethernet CSMA/CD protocol for the 
MAC to guarantee bounded message delivery 
time, under the assumption that there is neither 
a communication error (due to noise) nor a node 
or channel failure. 

The assumed topology includes a series of no­
des representing physical units connected to the 
medium. The medium represents the means by 
which nodes communicate. Nodes can be inserted 
or removed at any given moment with no need for 
synchronization. 

3.1 G e n e r a l D e s c r i p t i o n 

The main idea behind our solution is to preserve 
the efnciency of Ethernet in low trafhc situations 
while managing collisions as they occur. This idea 
is implemented by allowing at most one collision 
to happen until ali nodes involved in the collision 
transmit their packets. With this technique, a 
bounded delivery time for a message can be cal-
culated as a function of the maximum number of 
nodes on the network. A general explanation of 
this solution called METHOD_X follows. 

METHOD_X tries to solve the drawback of the 
CSMA/CD by preassigning priorities to ali no­
des in the network. Node interfaces are equipped 
with two fiags (cJnv_flag and c_stat_flag) and 
a unique priority number. These interfaces are al-
ways active. The protocol of METHOD_X differs 
from CSMA/CD only from the point where a col-
Usion occurs; before any collision, METHODJC 
has the same functionality as CSMA/CD. The 
full protocol is presented in Figures 1-3. When 
a collision occurs, a jam is invoked by any of the 
nodes which detects it, and aH the nodes in the ne-
twork set their collision status nag c_stat_flg on. 
Ali nodes that were involved in the collision also 
set their collision involved flag c_inv_flg on. At 
this point ali nodes involved in the collision (cal­
led collided nodes) have both their c_inv_flg and 
c_stat_flg on, and ali other nodes on the network 
(called regular nodes) have only the c_stat_flg 
on, so they could not interfere with the collision 
resolution process. 

Each node with its c_inv_flg on, fetches a 
priority number from a counter, in the range 
[l..MaxNode], where MazNode is the maximum 
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number of nodes on the network. This counter 
is a logical part of the controller which is in turn 
part of a node. Ali these counters must be syn-
chronized upon installation, upon upgrading or 
upon modifying the network to ensure that no two 
or more nodes can fetch the same priority num­
ber from their counters. The node with priority 
number 1 acquires the channel and therefore in-
forms others of the acquisition by broadcasting a 
don't_worry message. After this node gets thro-
ugh using the channel, it sends a done message 
to ali other nodes on the network so that they 
could decrement their priority numbers and then 
take their turns (Fig. 3). This process continues 
until ali nodes involved in the collision have used 
the communication channel. If there is a priority 
gap (nonconsecutive priority number was fetched 
by the next node to acquire the communication 
channel), ali nodes involved in the collision will 
decrement their priority number if they do not 
receive a don't_worry message after a collision 
window tirne c_w (Fig. 3). 

While the collision resolution is in progress, no­
des that do not have their c i n v J lg on are aware 
of this through the status of their c_stat_flg (on) 
and therefore do not interfere or try to access the 
communication channel until they found the ne-
twork continuously quiet for KT time (KT = Col­
lision Window * MaxNode). This means that if 
they hear any transmission on the channel, they 
start counting the time again by resetting swait 
t imeout. When KT time expires, the waiting 
node will acquire the channel, use it and finally 
broadcast an end_col_res (end of collision resolu­
tion) message so that ali the nodes that stili have 
their c_stat_fig on can turn them off and there­
fore resume the standard CSMA/CD protocol. 

3.2 Deta i led Descript ion 

To clarify the functionality of METHOD_X 
further, and to determine that it is deadlock free, 
the following four scenarios are presented, going 
through ali possible paths of METHODJC algori-
thm in Figures 1-3. 

Scenario 1. The first pat h is enter ed in Fi­
gure 1 with both c_inv_flg and c_stat_flg set to 
false. This situation means there is neither a pre-
sent collision nor a collision resolution in progress. 
As a result, this node will behave like a regular 
CSMA/CD node trying to access the communi-
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Fig. 1. METHOD X 

cation channel as shown in Figure 2. This proves 
an extremely low overhead of METHOD_X impo-
sed on the standard CSMA/CD, when no collision 
occurs. 

Scenario 2. The second possible path is also 
entered in Figure 1 with both c i n v J l g and (au-
tomatically) c_stat_flg set to t rue. This situa­
tion means that a collision has just occurred and 
the node in question was involved in that colli­
sion. Actually the situation originates in Figure 
2 when two or more nodes found the network idle 
and started their transmission. As a result of the 
collision, ali c_stat_flg's were set to t rue (on) and 
ali collided nodes had their c_inv_flg set to t rue 
(on). The example in Figure 4 illustrates this si­
tuation using a sample configuration of nodes. 

Figure 4 represents a network with a MaxNode 
of 5, and with nodes A, B, C and D which have 
just collided and want to access the medium. No­
des A, B, C and D fetch 5, 3, 1 and 4 respecti-
vely as their priority numbers. At this point, each 
node checks its priority number to see if it is equal 
to 1 (highest priority). 

On one hand, the node with the highest pri-
ority (node C) will acquire the network by first 
broadcasting a don't_worry message to ali other 
nodes, followed by the transmission of its packet, 
and by finally broadcasting a done message to 
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ali nodes on the network (the rightmost path in 
Figure 1). 

On the other hand, nodes with lower priori-
ties will wait for the don't_worry message within 
the first collision window; otherwise they will de­
crement their priority numbers and continue the 
cycle until they have the highest priority (the mid-
dle path in Fig. 1). If these nodes receive the 
don't_worry message on tirne, they will uncondi-
tionally wait for a done message after which they 
will decrement their priority numbers and repeat 
the cycle until they have the highest priority. 

Node C will then transmit its packet and bro-
adcast a done message. Nodes A, B and D will 
decrement their priority numbers after receiving 
the done message. Since none of these nodes 
has the highest priority, they will not receive a 
don't_worry message within the first Collisio-
nWindow tirne; this accounts for a priority gap. 
These nodes (A, B and D) will thus decrement 
their priority numbers to have 3, 1 and 2 respec-
tivelv. Going through the same path, nodes B, D 
and A will transmit their packets respectivelv. At 
this moment, ali c_stat_flg's are stili set to true 
(on). 

Scenario 3. The third possible path is also en-
tered in Figure 1 with c_inv_flg set to false (off) 
and c_stat_flg set to true (on). This situation 

<^ don't_iuarrg 
^ message s 

sivait > c_tu 

^ r e c e f v e d ^. 
s* Done "̂  
\ message ^S" 

MBS 

siuatt - sitent urait (no message or signal recelped) 
c_w - collision ivindouv 

Fig. 3. Handle Messages 

implies the following: a collision resolution pro-
cess is either in progress, or a collision has just 
been resolved. If the node in question finds the 
network continuously idle for KT time (the left-
most path in Figure 1), it assumes the collision 
resolution process is over and will thus broad-
cast an end_col_res (end of collision resolution) 
message to ali other nodes (ali c_stat_flg will be 
set to false), after which it behaves like a regular 
CSMA/CD node as shown in Figure 2. 

Scenario 4. An interesting situation using the 
third path is also depicted in Figure 1 when two 
nodes enter this path at slightly different times, 
with their c_inv_tlg set to false and c_stat_flg 
set to true. The first node to enter this path will 
consume the overhead of KT time mentioned in 
the preceding paragraph, after which it will bro-
adcast an end_col_res message to ali other nodes 
on the network (ali c_stat_flg set to false) and re-
sume the regular CSMA/CD algorithm in Figure 
2. The next node to enter this path will soon 
find c_stat_flg to be false and will also resume 
the CSMA/CD algorithm in Figure 2. If both 
nodes involved collide, they use the METHODJC 
resolution scheme, as discussed in Scenario 1. 
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Fig. 4. Example for Scenario 2 

4 Simulation Experiments 

The standard CSMA/CD protocol and the pro-
tocol of METHOD_X are simulated to see how, 
upon collision, these two algorithms resolve the 
collision and a t tempt to transmit their packets. 
The main basis of performance comparison is the 
tirne it takes each algorithm to resolve the col­
lision and transmit its packet. This is called 
PacketTransmissionT tirne. In the rest of this 
section the procedures used to obtain results are 
discussed. 

4 .1 S i m u l a t i o n of C S M A / C D 

In this simulation, the following network parame-
ters are selected: 

- packet size, 1526 bytes (maximum for the 
Ethernet) 

- medium transmission rate, 10 Mbits/second 

- CollisionWindow (round trip propagation de-
lay), 64 bytes, to compute the PacketTran­
smissionT tirne as: 
PacketTransmissionT — 
PurePacketT + DeferTime + 

(CollisionCount * CollisionWindow) 
where 

- PurePacketT = 
(12208 bits)/(10 Mbits/second) = 
1.220 microseconds 

- PacketSize = 1526 bytes * 8 bi ts /byte 

= 12208 bits 

- DeferTime, the binary exponential 
back_off used to compute the retran-
smission delay within a range 
[0..(2 * *N) - 1], with 1 < = JV < 1024 

- CollisionWindow = 
(64 bytes * 8 bi ts /byte) / (10 Mbit /s ) = 
51.2 microseconds 

4 .2 M E T H O D _ X 

METHODJC ušes the same parameters as descri-
bed abovefor CollisionWindow and PurePacketT, 
on the same physical medium. The total tirne 
(PacketTransmissionT) used to resolve a collision, 
called therefore the maximum collision resolution 
tirne, is computed differently from the CSMA/CD 
approach. and follows the algorithm paths from 
Figures 1-3: 

PacketTransmissionT — 
PurePacketT + C'ollisionWindow * 2 + 
CollisionT + GapT + MaxWaitT 
where 

- CollisionT = CollisionCount * CollisionWin-
dow 

- CollisionCount = 1 (because there may be 
only one collision in M E T H O D J t ) 

- GapT = GapCount * CollisionWindow 

- GapCount, total number of gaps (gap is a di-
fference between the priority numbers of any 
two consecutive nodes that want to access the 
communication channel) 

- MaxWaitT, tirne used by a regular node so as 
not to interfere with the collision resolution 
process in progress. 

The formula to compute PacketTransmissionT 
for METHODJC corresponds to Figures 1-3 as 
explained below. 

P u r e P a c k e t T . This is the tirne incurred by the 
actual transmission of the data packet on the me­
dium. This tirne is only consumed by the packet 
size. In Figure 1, this time emanates from the 
transmit box (when c_inv_flg is true). 

Col l i s ionWindow*2. This is the over-
head time incurred by broadcasting both, the 
don't_worry message and the done message. 
In Figure 1, boxes labeled send_done_to_all 
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and send_don't_worry_message_to_all repre-
sent this time. 

Coll is ionT. This is the time used by the sin-
gle collision which required the collision resolu-
tion process in question (Figure 2 when colli-
s ion_detect is t rue) . 

G a p T . This is the time used by priority 
gaps. These gaps emanate from the box labeled 
Handle_Messages in Figures 1 and 3 when a 
don't_worry message is not received within the 
first CollisionWindow time. There is a gap when 
none of the nodes involved in the collision has the 
highest priority equal one. 

M a x W a i t T . This is the time incurred by the 
first node tha t enters the algorithm in Figure 1 
with c_inv_flg set to false and c_stat_flg set to 
true. The box labeled is_swait_gt_KT in Figure 
1 is where this time is consumed. 

5 Results and Discussion 

This section examines the results generated by 
both CSMA/CD and METHOD_X simulations. 
These results are used to first analyze and validate 
the CSMA/CD simulation, next to analyze ME-
THOD_X simulation, and then to proceed with a 
thorough interpretation and comparison of both 
methods, and finally to discuss the real-time im-
plications. 

5.1 A n a l y s i s a n d V a l i d a t i o n of t h e 
C S M A / C D S i m u l a t i o n 

The graph in Figure 5 represents an average time 
it takes collided nodes to resolve collision and to 
each transmit a data packet of Max^size (maxi-
mum size), 2 /3 of Maxj;ize and 1/3 of Max_size. 
Each line represents a different packet size as spe-
cified in the legend. It is consistent with known 
behavior of CSMA/CD. This graph also shows 
that , as smaller packet size (Max_size/3) doubles 
and even triples, their t ime merely increases, or 
does not increase proportionally to the increment 
in packet size. This observation confirms Hut-
chinson's point tha t the ratio of propagation delay 
to packet transmission time must be kept below 
5% or else the collision frequency significantly de-
grade throughput performance [6]. 

Figure 6 represents the number of collisi-
ons that occurred during the collision resolution 

H J 100 

/ — 
S t I 

..£-& 

3 -

M a x _ s i « 

2 / 3 Max_size 

t / 3 Max_size 

< & • " 

tJl^o-o 
Collided Hodes 

20 

Fig. 5. Average Time to Transmit (CSMA/CD) 

i -o 

^ 
W » ' • 

/ tf 
^ 

1 / 3 Max_siz<? 

2 / 3 Max—size 

Max_size 

Collided Nodes 

0 10 20 

Fig. 6. Average Collisions Incurred (CSMA/CD) 

process of different packet sizes (Maxjsize, 2 /3 
Maxjsize and 1/3 Max_size). It appears tha t bi-
gger packet sizes are involved in fewer collisions 
than smaller ones [11]. This is because shorter 
busy/idle transition period with smaller packet 
size results in more collisions. Figures .7 and 8 
further confirm this point and support Hutchin-
son's observations [6]. 

Figure 7 represents the number of nodes tha t 
are involved in collisions after a collision resolu­
tion process, using different packet sizes. This 
figure indicates that on the average, more nodes 
with larger packet size are involved in a collision 
than those with smaller ones. This is due in part 
to the larger busy/idle transition period incurred 
with larger packet sizes. 

Figure 8 represents the number of nodes tha t 
failed and were not able to transmit their packets 
due to excessive number of collisions (more than 
10 collisions according the backoff method used by 
CSMA/CD). This fi gure reveals that nodes" with 
larger packet size are more likely to fail than those 
with smaller ones. This fact can be explained as 
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follows: on the average, more nodes with larger 
packet size are involved in a collision than those 
with smaller ones because those with larger packet 
size have a longer busy/idle transition period on 
the network. A longer busy/idle transition period 
keeps more nodes waiting for that idle period after 
which they ali collide. 

The results of this simulation are consistent 
with observations of other authors [6, 7, 8] and 
thus validate the CSMA/CD simulation. 

5.2 Analysis of M E T H O D J C 
Simulat ion 

One particular aspect of METHODJC is the fact 
that it ušes a priority scheme to resolve collisions. 
The order of these priorities, as fetehed by collided 
nodes to resolve collisions, can slow the collision 
resolution process as the number of unused priori­
ties (gaps) inereases. This simulation experiment 
takes such gaps into consideration and allows two 
types of situations: best čase using no gaps and 
worst čase using the maximum number of gaps 

possible. 
Figure 9 represents the tirne it takes collided no­

des to each transmit a Max_size packet using ME­
THODJC under worst čase. AH collided nodes are 
guaranteed to deliver their packets by the time in-
dicated. Figure 10 represents the maximum over-
head time incurred by gaps during the collision 
resolution process using METHODJC. This over-
head time decreases as the number of collided no­
des inereases, because the range of priorities is 
better fiDed with more nodes colliding. 

Figure 11 shows the time it takes collided nodes 
to each transmit their maximum size packets un­
der both best čase (no gap) and worst čase (maxi-
mum gaps) situations. It is noticeable that the 
difference between both cases is of the order of 
magnitude of the packet transmission time. 

The graph in Figure 12 reports a time per­
formance comparison of both simulation models 
(METHODJC and CSMA/CD) . This graph reve-
als a break-even point when about 4 nodes are 
involved in the collision. Below tha t break-even 
point, CSMA/CD has a better performance over 
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METHODJC. This behavior can be explained by 
the fact tha t with just a few nodes coUiding, the 
probability of repeated collision is quite small and 
have small retransmission intervals (CSMA/CD's 
backoff technique). Beyond the break-even po-
int in Figure 12, CSMA/CD begins to deterio-
rate (its packet transmission tirne grows exponen-
tially), while METHODJC keeps the same pattern 
(straight line). 

5.3 Rea l -T ime Characteristics of 
M E T H O D _ X 

As mentioned in Section 3, upon a collision, ME­
THODJC resolves the collision, allowing no more 
collisions to happen until ali nodes involved in 
tha t collision have successfully transmitted their 
packets. With this in mind, it becomes apparent 
that knowing the maximum number of nodes on 
the network, the t ime to resolve the collision tha t 
involves ali nodes can be computed. This com-
puted tirne would be the guaranteed packet de-
livery time for any node on the network using 

METHODJC, from the time when the collision 
occurred. 

It should be stressed that any external node 
not involved in the collision can not disrupt or 
affect the collision resolution process under ME­
THODJC, which is not the čase with CSMA/CD. 
This non-interruptive aspect of METHODJC is a 
key aspect of it being able to guarantee a maxi-
mum delivery time for its packets. 

It can therefore be argued tha t METHODJC 
is deterministic and can be used for real-time 
applications. For any node on the network, its 
packet delivery time should be less or equal to 
the maximum collision resolution time (specified 
by the formula in Section 4.2), plus the maximum 
busy/idle transition period (which is the time a 
node waits for the medium to be idle when it was 
previously busy). 

6 Conclusion 

This paper looked at a new medium access pro-
tocol to improve Ethernet 's performance and also 
allow it to be deterministic. The approach used 
here, called METHODJC was to isolate the pro­
blem of collisions in CSMA/CD and extend the 
protocol to resolve these collisions in a predicta-
ble way (to guarantee a maximum packet delivery 
time), by adding two flags and a priority counter 
to each node. 

The following results were obtained from the 
simulation of performance of both methods: 

- The CSMA/CD simulation revealed known 
behavior of the standard Ethernet and was 
successfully validated. 

- Theoretical properties of METHODJC were 
confirmed experimentally, which means that 
METHODJC proves to be deterministic and 
deadlock-free. 

- The final comparison showed tha t at very low 
traffic CSMA/CD performs slightly better, 
but beyond that point METHODJC perfor­
mance is far better than that of CSMA/CD. 

- Although a disadvantage of METHODJC is 
that worst čase gap inflicts an overhead time 
of the order of packet transmission time, this 
overhead decreases as more nodes are invol­
ved in the collision. 
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The article deals with some basic problems of a formal axiomatic structure pertaining 
to the phenomenalism of the informational. In this way, solid philosophical and formal 
foundations of an emerging informational science are set from the strict informational 
point of view [9]. A general informational theory conjoins the so-called object theory 
and its metatheory, in contrariness to a narrower mathematical theory, where the meta-
mathematical theory serves as an exterior means for proving of the object theory. The 
principles of informational axioms are treated from the dualistic point of view conjoi-
ning the axioms of the object theory and inference axioms of the metatheory. Inference 
rules become regular informational formulas which arise informationally as any other 
informational operands (entities). 

1 Introduction 
Axiomatic structure1 of a general informational 
theory (GIT) is a problem per se, for it must 
be, for example, according to [9], self-contained 
in respect to the basic theory axioms on one side 
and the necessary initial inference rules (deduc-
tion, induction, abduction, modi of other possible 
inference) on the other side. Conception of GIT is 
certainly logistic [1] and formalistic [7], but not in 
the traditional mathematical sense. On contrary 
to the traditional mathematical theories, GIT can 
keep the inference rules within the theory itself 
while, in mathematics, deduction rules for exam-
ple, remain outside the particular theory (e.g., in 
the so-called inferential metadomain, that is, me-
tamathematics) as means by which a mathemati-
cian or machine can prove the correctness, logical 
consistency or non-contradictoriness of the the-
ory. 

Mathematics is not more rigorous than histori-
ology, but only narrouier, because the ezistential 
foundations relevant for it lie mithin a narromer 

:This paper is a private author's work and no part of 
it may be used, reproduced or translated in any manner 
whatsoever vrithout written permission except in the čase 
of brief quotations embodied in critical articles. 

range. (Heidegger [4], p. 195.) In mathematics, 
the metatheory by which an object theory is pro-
ved, lies outside of the object theory. It is mathe-
matically unimaginable (uncommon) to join, for 
instance, an arithmetic theory (dealing with num-
bers) with the theory of deduction and induction, 
by which arithmetical theorems are proven and 
dealing with objects of logic of predicates. An 
object theory in mathematics is always meant as 
a narrower theory from which the metatheory is 
excluded. 

Axiomatization in the described (informatio­
nal) sense is a necessary step towards a sufficiently 
strict theory which can be applied as a construc-
ting or designing tool for particular informational 
machines and programs. It is a sort of informa­
tional formalization [7] by which a calculus is in-
troduced. On each step of formalization, there is 
certainly possible a look into the real world when 
formulas are deformalized, tha t is, made less for­
mal through their interpretation (translation) in 
a less formal or object language (natural , picture, 
voice, signal, process language, etc.) 

GIT is a theory of well-formed formulas of 
operands, operators, and parentheses pairs. It 
has a straightforward syntax where the formation 
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of its formulas depends on several informational 
views, possibilities, and principles (methods), gi-
ving the theory the so-called informationally ari-
sing (emerging, generating) character. For in­
stance, some of the principles of informational ari-
sing concern procedures of formula and formula 
system decomposition and composition. Decom-
position means, for example, deconstruction [3] in 
the sense of a particular semantic and pragmatic 
analysis of a formal item (operand, operator, for­
mula, formula system) in the form of additional 
arising, enlarging, changing or modifying. 

Several formal means have to be introduced be-
fore the axiomatization of the informational can 
begin. During our axiomatic discourse, we have 
the substantially different theoretical entities, the 
aim and purpose of which must be explained in a 
clear and defmite manner. These entities are: 

1. Definitions are a kind of preaxiomatic and 
pretheoretical determination entities which 
explain the introduced svmbolism and sym-
bolic structures (markers, variables, formu­
las, formula systems) used within the course 
of an informational theory advancing. Defi­
nitions are nothing else than transparent in-
terpretations of formal svmbolism for the re-
ader in a natural language. They connect 
the emerging logistic and formalistic world 
([1, 7]) with the natural one. They simul-
taneously enable the emerging of the formal 
theory world and its informational connec-
tion with a common (linguistic) individual 
consciousness. As such, definitions function 
like initiators beyond a particular axiomati-
zed theorv, linking the emerging formal world 
and the existing conscious world of the theo-
retically concluding mind. 

2. Theory azioms are the essential origins of 
a theory obtained by an intuitive investiga-
tion of the basics by a theory setter (e.g., an 
expert of a scientific discipline). Informatio­
nal axioms are formulas that commend them-
selves to general acceptance; they are infor-
mationally well-established and universally-
concerned principles presenting the maxima 
of the possible, assignable degree of recogni-
tion. 

3. Inference azioms are rules (laws) for deriving 
formulas from theory axioms and formulas 

obtained already through regular derivation. 
Inference axioms are the very initial rules for 
inferring, that is, for the drawing of conclusi-
ons from theory and inference axioms. Infe­
rence rules can be derived in the form of in­
ference theorems, lemmas, consequences, etc. 
getting more complex and informationally in-
terweaved inference rules. In this function, 
derived inference rules represent regular pro-
cesses for drawing conclusions within an in­
formational theory. 

4. Theorems, lemmas, conclusions etc. are in­
f o r m a t i o n a l derived theory formulas by me­
ans of inference axioms and inferred inference 
rules from axioms and already derived the­
orems, lemmas, conclusions, etc. They are 
"object-theoretical" (non-inferential) as well 
as "inferential". 

5. Proofs of theorems, lemmas, and conclusi­
ons are procedures (informational processes) 
using inference axioms and generated rules 
with the aim to achieve certain results (in 
the form of theorems, lemmas, etc.) E.g., 
metamathematics can be understood to be 
a proof theory (D. Hilbert, see, for instance, 
[7]). In formally loose theories, the process 
of proving becomes an art instead of a for­
mal procedure. 

6. Anahjsis of theorv azioms, theorems, and 
proofs occurs after the process of proving a 
theorem, lemma, etc. to see what could be 
improved, complemented, and added for the 
sake of a more complete and powerful theory. 
Thus, one can glance at induced axioms, de­
rived theorems, and accomplished proofs. 

The enumerated theory entities (definitions, the-
ory axioms, inference axioms, theorems, proofs, 
and analyses) constitute a spontaneous and cir-
cular discourse in the following sense: 

A . Construction of definitions and theorv azi­
oms is an informational approach by which 
the theory designer is getting his/her master 
for the emerging formal theory. The infe­
rence of further axioms and their notional 
improvement is on the way to the theorv-
axiomatic consolidation (fortifying, streng-
thening). 
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B . Construction of the inference axioms belongs 
to the functioning of the master and without 
them there would not be possible to deduce 
(prove) new axioms and the initial theorems, 
lemmas, and consequences. In čase of an 
informational theory, inference axioms are 
parts of the particular informational theory 
and are not excluded from the object theory 
as it is the čase in mathematics ([8], p. 30). 
Thus the entire informational master domain 
which governs the emerging of a theory ušes 
definitions, theory axioms, and inference axi-
oms for the mastering of the informational 
arising (development) of the theory. 

C . Construction of theorems lemmas, con-
seguences, etc. brings to the surface the so-
called universitij or teaching discourse. The­
orems, lemmas, consequences, etc. can now 
be taught as a theory t ru th concerning the 
theory relevant entities. Derived theorems 
can be used in the same way as axioms to-
gether with the derived inference rules. But, 
new theorems have to be proved in a con-
sequent manner, so that the teaching domain 
obtains the theory legacy. 

D . Construction of proofs can become a questi-
onable task because someone tuishes to prove 
a certain theorem which was constructed in 
advance, with the one's intention for some 
particular purpose, that is, intuitivelv. In 
this respect, proving of theorems can con-
stitute the so-called histeric's discourse. In 
mathematics, the object domain (a theory) 
and the metadomain (metamathematics as 
a proof theory) are separated. A mathema-
tician, proving his/her theory ušes the me-
tamathematical principles intuitivelv, for in­
stance, in the mixed form of a natural and a 
formal mathematical language. 

E . Construction of analvses of the arisen theoru 
constitutes the so-called analyst's discourse. 
Analysis governs the arising of cycles A , • • •, 
D and constitutes also the long cycle of a 
theory design, that is, A , • • •, E, A , • • •. 

The mentioned names (markers) of discourses 
have been invented by Lacan [14] and constitute 
a theoretical, cyclically and subcyclically structu-
red discourse in its entirety. 

2 Introducing Informational 
Operands and Operators 

Informational operands and operators are, toge-
ther with parenthesis pairs, the basic entities of 
informational formulas. It must be determined 
definitely, what these entities are, hov/ they are 
structured and which kind of symbolism is used 
for their presentation. 

2.1 I n f o r m a t i o n a l O p e r a n d s 

Informational operands are simple and complex 
entities in the most general sense. They have ac-
tive and passive informational properties, when 
we say that they inform and are informed. In 
this manner, active components of entities can 
be explicated by two usual forms: as informati­
onal operands and as included informing entities 
within entities themselves. The included entities 
perform again as regular informational entities. 

2.1.1 A n Introduct ion to Informational 
Operands as Informing Ent i t ies 

Informational philosophy says tha t , irrespective 
of their physical, mental, social, individual na-
ture, entities inform and are informed. This sta-
tement has the meaning of the fact tha t entities 
impact entities and themselves, and are impac-
ted by entities and themselves in an phenome-
nal way, that is, according to the entities' pro-
prietary possibilities of entities-concerning pheno-
mena (e.g., physicalism, biologicism, mentalism, 
linguisticism, or any specific phenomenalism). 

On the abstract or any informational level, phe-
nomena concerning things can be marked (speci-
fically encoded) and structured into formulas and 
formula systems. Usuallv, an entity is informatio-
nally represented by an adequate formula system 
in which phenomenal components of the entity 
occur as entities, that is informational operands, 
constituting together with informational opera­
tors and parenthesis pairs the so-called formula 
system. Markers, formulas, and formula systems 
are operands in the sense of informational varia-
bles if compared to adequately constructed ma­
thematical entities. 

An informational operand, representing (mode-
ling, phenomenalizing) a real entity, is informatio-
nally structured, irrespective of the instantaneous 
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possibilities of revealment or hiding ofits informa-
tional nature. The operand structure can come 
to the surface through a stepwise, informationally 
consistent, and consequent decomposition, which 
is nothing else than a process of deconstruction [3] 
in the sense of semantic and pragmatic analysis 
and synthesis of the entity-structural čase. This 
procedure of decomposition is carried of by prin­
ciples (axioms, inference rules) of informational 
decomposition which is a part of the so-called co-
unterinformational phenomenon of the entity it-
self and it impacting environment. 

Operands are representatives of simple, compo-
sed and the most complex entities of the world. 
In this respect, operands are operand markers, in-
formationally well-formed formulas, and formula 
systems. They represent informationally arising 
entities in the sense of informational spontaneity 
and circularity, according to the principles of in-
formation [9] called informational principles. 

2.1.2 Operands Marking Informational 
Ent i t ies 

Simple informational entities, marked as simple 
operands, are the beginning of something or so-
mething which is not informationally decomposed 
yet. On the other hand, arbitrary complex for­
mulas and systems can be represented by simple 
markers. 

Definit ion 1 [ O P E R A N D S R E P R E S E N T I N G I N ­

FORMATIONAL E N T I T I E S ] Informational entities 
are distinguished markers for simple operands, in­
formational formulas and informational formula 
svstems represented as operands. The so-called in­
formational entities tulnch hide the entity's infor-
ming are marked by small letters of the Greek or 
Fraktur alphabet, vohich can be subscribed and su-
perscribed and written in a functional form. E.g., 

<*l,/?belief>7a, • ' ' ^1\ 
_1 f,belief -cx .T. 

«(/?)>/^(7):7consdoUsness(C), ' ' ^ M « ) 

are ezamples of single simple, subscribed, super-
scribed and functional operands, respectively. • 

2.1.3 Informational Operands Marking 
the Informing of Ent i t ies 

Informing of an entity is meant to be an active 
component of (within) the entity, characterizing 
the entity's informational properties which can be 
observed by another entity or the entity itself. In­
forming of an entity is expressive (informational 
externalism) and impressive (informational inter-
nalism). Or said by other words: informing of an 
entity is distinguished in two characteristic ways 
that belong to the basic verbal forms which are 
to inform and to be informed. 

There is no conceptual difference between infor­
mational operands as entities and informational 
operands as informings of entities. They are me-
rely marked differently to distinguish them clearly 
between each other. 

Definit ion 2 [ O P E R A N D S R E P R E S E N T I N G I N ­

FORMING E N T I T I E S OF INFORMATIONAL E N T I ­

TIES] Informing entities of informational enti­
ties are distinguished markers for simple infor­
ming operands, informational formulas and in­
formational formula sgstems represented as ope­
rands belonging to the informings of entities. The 
so-called informings of informational entities can 
hide other informational entities and their infor­
mings and are marked by capital calligraphic or 
Fraktur letters, which can be subscribed and su-
perscribed and ruritten in a functional form. E.g., 

A, D, • • •, JJ] 

21 ,» , C • • •, 3; 

2t\ «Bbelieve, £",-•• , 3 r ; 
e_conscious( W> ' JZ\&) 

are ezamples of single simple, subscribed, super-
scribed and functional operands of informing of 
entities, respectively. • 

Operands of informing explicate the operational 
properties (like informational operators) to them 
belonging or they including informational entities. 

2.1.4 Functional Informational Operands 

Functional operands express the informational 
functionalism which is an extreme generalization 
of function. The notion of mathematical function 
on the other (lower) side is a simple, reductioni-
stic notion. In the last consequence, it represents 
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an algorithm (mathematical definition) by which 
an argument set is mapped onto or into a value 
set, where arguments and values can be any ab-
stractly determined objects. On the other side, 
informational functions are arbitrary formulas or 
formula systems being informationally dependent 
in a complex manner, e.g. as defined recursively 
and mutually-informingly in [13]. 

Definit ion 3 [ O P E R A N D S R E P R E S E N T I N G IN­
FORMATIONAL F U N C T I O N S ] There are two equi-
valent forms offunctional notation, <p(£) and <p*£. 
The first form follouis the mathematical notation 
convention while the second one is more transpa­
rent in cases where p> and £ are arbitrarihj com-
plex formulas or formula systems. The second 
form shows already the substantial (structural) di-
fference between a mathematical and an informa­
tional function. For instance, an informational 
function of the form 

(a |= /?)*(7 |= S) 

lahere \= is an informational operator, has not 
an adeguate notional eguivalent in mathematics. 
According to [13], the folloioing definition of an 
informational function is senseful: 

m "def 

/ V l=of £; \ 
£ h w 
O hof 0 c <p; 

\ (f \= (p) Cof V J 
In this formula, operator ^def means means by 
definition, hof means is a function of or depends 
informationally on, etc. Operators of informatio­
nal inclusion C and Cof are determined recursi-
vely, in this particular čase, by 

(v h O hof<*); \ 
(v hof a) h v; 
O h (V hof «)) C tf>\ 

V ((V hof a) \=<p)C<pJ 
vahere operator ^ is read means and, for the 
second informational includedness, according to 
[12], 

(<P hof (a |= (p); \ 
(a |= (p) |=of <p-
O hof (a |= ¥>)) Cof <f\ 

\((a h V) hof V) C0{ (p J 

((ep hof " ) C <p) 

(a |= ¥>) Cof p) — 

2.1.5 Other Informational Operands 

Other informational operands concern special ar-
rays of formulas as a consequence of, for exam-
ple, informational decomposition, composition, 
gestalt, etc. 

Definition 4 [OPERANDS REPRESENTING IN­

FORMATIONAL DECOMPOSITION, COMPOSITION, 

G E S T A L T , ETC. ] Special informational operands 
are distinguished markers for simple operands, in­
formational formulas and informational formula 
systems which represent arrays of formulas be­
ing a consequence of informational decomposi­
tion, composition and gestalt strueturing. The so-
called special informational operands hide syste-
matically (e.g. metaphysically, syntactically, etc.) 
derived formulas and are marked by the distin­
guished capital letters of the Greek alphabet [11], 
that is T, A, 0 , A, E, IT, S, T, $ , $ , fi, uihich can be 
subseribed and superseribed and voritten in a func-
tional form. E.g., 

r,A,0,--. ,fi; 
1 composition.) 1 gestalt) ^decomposit ion) ' ' > ' ' a ! 

1 » , A B e r i a l ( « ) , A ^ i a T - p a l - a U e ^ ) ' ' " " > ^ 

r s e r i a l ( a i , « 2 , - * •,<**.), ' ' ", 

are examples of single simple, subseribed, super­
seribed and funetional special operands, respeeti-
vely [13]. • 

Definition 5 [OPERANDS REPRESENTING IN­

FORMATIONAL INFERENCE RULES, PREMISES, 

CONCLUSIONS, AND OTHER ENTITIES] Many 
other operand symbols can be introduced marking 
special informational entities or to them belonging 
formulas. For instance, for inferential rules, their 
premises and conclusions, the various alphabets of 
small and capital letters, e.g. 

Operators as informational entities will be defined 
in the next subseetion. D 

A, 1, C, • • •, Z, 
a, b, c, • • •, z, 
A,B,C,--- ,Z 

can be introduced. Thus, 

irarule,«' / a r> \ _^ -^premise ( .^ ' i °«'J 
^ in fe ren t i a lV^) D*7 , — fpi /n.N 

conclusiorA s / 

ivhere A,- and Bi are variables of the premise and 

the conclusion function, respectively. • 
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Other specific operand symbols can be used to 
make entities clearly (characteristically) distingu-
ished from each other. 

2.2 I n f o r m a t i o n a l O p e r a t o r s 

Informational operators inform the properties of 
the entities to which they belong. In this sense, 
they are dualistic entities in regard to the infor­
ming of entities [e.g. marked by T(a) or Ia\. Like 
informing of an entity, the corresponding informa­
tional operator expresses the entity's property in 
an active informational manner. This correspon-
dence is twofold: the informingness of the entity 
(informational externalism) and the informedness 
of the entity (informational internalism). In prin-
ciple, various sorts of operators belong to an en-
tity's externalistic and internalistic informing. 

2.2.1 A n Introduct ion to the N o t i o n of 
Informational Operator 

An informational operator expresses the general 
property of an entity in the form of entity's in­
forming. It does not mean that by an operator 
the entire operational possibility of an operand is 
exhausted. A general čase operator can be par-
ticularized and universalized in many ways, de-
pending on the happening of an operand as infor-
mer and observer. We introduce the most general 
operator and its possible particularizations and 
universalizations by the following definitions. 

Definition 6 [GENERAL INFORMATIONAL OPE­
RATOR AS A UNIQUE OPERATIONAL JOKER] 
The general informational operator, marked by 
\=, ezpresses the most general property of an en-
tity, represented by an informational operand in 
a simple (rnarker) or a complez form (formula 
system). Although this operator is from-the-left-
to~the-right-oriented, to enable its reading in the 
form inform(s) and are (is) informed, it does not 
mean that operator \= does not possesses, roithin 
its generality, the potentiality of being from-the-
right-to-the-left-oriented. Thus, any particulari-
zed, universalized or direction-concerning infor­
mational operator has its ground in \= and repre-
sents nothing less and nothing more than a special 
čase of this operator^ Operator \= performs as an 
informational joker which can act as a substitute 
and (mutual) replacement of any operational phe-
nomenon. D 

A general informational operator embraces 
everything which can be imagined as operator, 
as an informational activity (informing and infor­
med property) of the operand to which it belongs, 
to which it is attributed. Introducing the ope­
rational joker has the notional roots in the po-
tentiality for leaving open any possibility of in­
forming and determining the joker just in čase 
when the property of an operand (informational 
entity) becomes (arises, emerges as) clearly iden-
tified. Thus, general informing means informing 
in a free and unforeseeable way, to guarantee the 
phenomenalism of informational spontaneity and 
circularity of the entity. • The operational joker 
implicitly expresses just this informational situa-
tion and at t i tude of an entity which informs and 
is being informed. 

2.2.2 General Informational Operator 
and Its Part icularizat ion and 
Universal izat ion 

Everything which is not a general informational 
operator, that is, |=, can be understood to be 
particularized or universalized through a meaning 
attributed to the operator. Operator particulari­
zation and universalization concerns a semanti-
cal content belonging to the operator as a con-
sequence of the operand to which the operator is 
bound in an informing (externalistic) or informed 
(internalistic) manner. 

The difference between particularization and 
universalization is merely semantic. In fact, both 
mean a specialization or concretization of the ope­
rational joker. On the other hand, a particulari­
zed operator can be meaningly universalized (re-
placed) to some extent and up to the joker itself. 

Definit ion 7 [GENERALLY PARTICULARIZED 
A N D / O R UNIVERSALIZED O P E R A T I O N A L J O K E R ] 
One can introduce, together with the operational 
joker, four groups of four operators in the follo-
wing way: 

— Symbols | = , | ^ , = | , ^ | are operators of infor­
ming. non-informing, alternative informing, 
and alternative non-informing, respectively. 
The alternative operators are read (from the 
left to the right) as is (are) informed and is 
(are) not informed. 
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— Symbols ||=, | |^ ,=| | , 7̂ || represent operators of 
parallel, non-parallel, alternative parallel, 
and alternative non-parallel informing, re-
spectivehj. They are read in the folloiving 
sense: inform(s), do(es) not inform, alterna­
tive^ inform(s), alternatively do(es) not in­
form in parallel. 

— Symbols |— , \/- , —\, -f\ represent operators of 
circular (cyclical, loop-like) informing, non-
informing, alternative informing, and alter­
native non-informing, respectively. They are 
read in the folloiving way: inform(s), do(es) 
not inform, alternativehj inform (s), alterna-
tively do(es) not inform circularhj. 

— Symbols ||— , \\/- , -\\, -/\\ represent operators 
of parallel-circular (parallel-cyclical, paral-
lel-loop-like) informing, non-informing, al­
ternative informing, and alternative non-
informing, respectivelg. They are read in the 
folloiving way: inform(s), do(es) not inform, 
alternatively inform(s), alternativehj do(es) 
not inform parallel-circularly. 

Although, according to informational principles 
[9], informational entities inform in a circular way, 
the circular non-informing represents a particular 
(abstract) situation where circularity is excluded 
(e.g., mathematical formulas). 

Definit ion 8 [SEMANTICALLY PARTICULAR-
IZED A N D / O R UNIVERSALIZED O P E R A T I O N A L 
J O K E R ] Arbitrary informational subscripts and 
superscripts for informational operators can be 
used. The folloiving ezamples demonstrate such 
possibilities: 

L± L_ alternatively L£ alternatively 
c u r a t r « ' xr a ) 

|_ in_parallel I / in_parallel I in^aral le l 
\ a > F a ) F alternatively, a' 

h i circularly 
circularly, F in_parallel,c*' 

i i inferentially 
Finferentially> Fby_modus4>onens 

etc. • 

Particularization and universalization of infor­
mational operators can be chosen pragmatically, 
according to a language convention. 

2.2.3 Informational Semicolon as an 
Operator of Paral le l ism 

Parallelism of phenomena belong to the most ge­
neral happening of the informational. Informati­
onal semicolon, marked by ';'> has the meaning of 
parallelism of formulas between which it is set. It 
can be interpreted operator-rigorously by the use 
of parenthesis pairs. But usually, the parenthesis 
pairs are omitted. 

Definition 9 [SEMICOLON REPRESENTING IN­
FORMATIONAL PARALLELISM] A semicolon be-
tiveen two markers, formulas or formula sgstems 
a and /3 means that these operands inform in pa­
rallel irrespective of their mutual informational 
connection. In traditional logic, parallelism me­
ans a conjunction of logical operands, e.g. a&/3 
or a A j3. Informationallg, operator || could be 
used. The predse definition is 

(a; /3) ?^ d e f ( a |=jn_parallel P) 

Thus, operator ';' can represent any of operators 
Fin_paraiiei, &; A, |(= f=|| for an alternatively pa­
rallel čase) and ||. • 

Circularly parallel operators describe circularly 
perplexed parallel cases. 

2.2.4 Operator of Informational 
Implicat ion 

Informational implication differs essentially from 
the logical implication. As an operator, it appro-
priates the most general linguistic meaning of the 
verb to imply. For instance [15, 16], 

— to enfold, enwrap, entangle, involve; 

— to involve or comprise as a necessary logical 
consequence; 

— to involve the t ru th or ezistence of (some-
thing not expressly asserted or maintained); 

— to involve as a necessary circumstance: in-
former entity implies an informed entitg (in­
formational observer); 

— to indicate or suggest as something naturally 
to be inferred, without express statement; 

— to involve by signification or import; 
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— to signify, import, mean; 

— to signify as much as, to be equivalent to , to 
mean or intend for; 

— to express indirectly, to insinuate, hint at; 

— to assume, include (synonymously); and 

— to ascribe, at t r ibute 

are cases of a semantic correspondence. On the 
other hand, to imphj informationally can simply 
appropriate the meanings as 

— to interweave, interwine, interlace informati-
onally; and 

— to embrace, involve informationally. 

Definition 10 [OPERATOR OF INFORMATIONAL 

IMPLICATION] Operator of informational implica-
tion, marked by =$>, is a particularized form of 
the general informational operator \=, e.g. \=—*.. 

F=implicatively; f=involvingly; eZC. J. (le injormatlO-

nally obvious reading of operator =$• is 'implies 
informational ly' or Hnforms implicatively' (from 
the left to the right side of formula). D 

Similarly as in the traditional logic, informational 
implication is one of the keystones of the informa­
tional reasoning and inference, by which various 
informational derivations can come into existence. 

2.2.5 Informational Operator of 
Inference 

Informational operator of detachment in an infe­
rence rule has usually the form of a fraction line 
and a specific meaning. 

Definition 11 [OPERATOR OF INFORMATIONAL 

INFERENCE] In an ezpression (informational for­
mula) of the form %, where formula a is called the 
premise and formula f3 the conclusion, the frac­
tion line (777) is an operator of informational in­
ference ivhich reads Hnform(s) inferentially' (or 
detachably). Thus, 

a 

1 
\® F inferentially P j 

Premise a is marked by P and is a function of at 
least two operands, e.g., A and B, that is, P (A, B). 
Conclusion P is marked by C and is a function of 

B, that is, C(B) . Thus, instead of the inferential 
rule R in the form 

R(A,B) 
P(A,B) 

C(B) 

there is 

L(A,B)^(P(A,B)h inferentially 
C(B)) 

D 

There are many "standard" forms of inference ru-
les with characteristic premise and conclusion en-
tities; they will be informationally examined in 
Section 6. 

2.2.6 Operator of Informational 
Be ing- in—Informat ional 
Inclus iv ism 

Informational inclusion is a recursive concept 
which brings to the surface the informational con-
nectedness or interweavement of informational en-
tities. 

Definition 12 [OPERATOR OF INFORMATIONAL 

INCLUSION] Operator of informational inclusion 
or informational Being-in is marked by C. In the 
contezt of operands a and P, it is defined by the 
folloiving recursive (circular) informational for­
mula [12]: 

(P\=a; \ 
(a C /3) ^Def \a\=p; 

\E(acP)J 

where for the eztensional part E ( a C /?) of the in-
cludedness a C P, there is, 

( 
2(a C P) G V 

{(P\=a)cP,)\ 
(4«c P, 
(p |= a) C a, 
(a \= P) C a }) 

The most complez element of power set V is de-
noted by 

5 Ž > C P) 
(P\=a)cP,a; 
(a\=p)cP,a 

Cases, where S ( a C P) ̂  0, and 0 denotes an 
empty entity (informational nothing), are excep-
tional (reductionistic). • 
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2.2.7 Operator of Informational 
Being-of—Informational 
Funct ional i sm 

Informational function, as defined by Deflnition 3 
(the informational Being-of), is a recursive con­
cept of informational dependence between infor­
mational entities and represents a generalization 
of the concept of a function known in mathema-
tics. Within a functional notation, e.g. (p(£), the 
operator of functionality remains hidden, that is, 
not explicitly visible. That which happens be-
tween the functional formula (p and its argument 
formula £, is ladled by Deflnition 3. We can un-
derstand that informational structure, if instead 
</?(£) the notation <,#*£ or even (<p)*(£) is used, 
where both informational parts are clearly opera-
tionally distinguished. Thus, operator * functions 
as a complex operator according to Deflnition 3. 

On the other hand, operator [=0f is a narro-
wer functional operator, expressing only a part 
of the functional concept. This operator can be 
determined into further details, symbolizing the 
informational dependence of functional entity <p 
on argumentative entity £. 

Deflnit ion 13 [ O P E R A T O R S OF INFORMATION­

AL F U N C T I O N A L I S M ] Symbols, which mark infor­
mational functionality of a broader and a narro-
wer sense, are 

_a_function_of j N o r , -

They can be variouslij defined in a concrete infor­
mational manner. • 

2.2.8 C o m p o s i t i o n and Decompos i t i on of 
Informational Operators 

Informational operators can be composed and de­
composed. Composition is a process of operatio-
nal design where distinguished informational ope­
rators are composed into bigger operator units. 
Decomposition of an operator means to decon-
struct it by means of an adequate formula part in-
troducing the so-called informational gestalts [13] 
into a formula with certain operands. 

Deflnit ion 14 [ C O M P O S E D AND D E C O M P O S E D 

INFORMATIONAL O P E R A T O R S ] TWO informatio­

nal operators, \=a and [=p can be composed into 
a new operator, applving the special symbol o, that 

is, \=a° \=p- More complex operator compositions 
of operators \=ai! \=a2> '"> l=«„ must be properly 
parenthesized, e.g. 

( ' • ' ( (Ki 0 K 2 ) ° K 3 ) 0 - - - | = « n - l ) 0 l=«n» 

l=ai0(l=a2
0(l=«3 • • • 0 (Kn-1° |=«J • • 0) 

To decompose an informational operator \=, for 
instance in a formula a (= (3, means to put be-
tween operands a and /3 a part of formula, that 
is an informational frame ([13], Deflnition 12), 
where the original formula a \= /3 becomes <&a ^ 
P 2) or, formalhj, 

[a |= (3) |= by.decomposition ( < Š a ^ /?2)) 

There ezist infinitely many possibilities of an ope­
rator |= decomposition. • 

2.2.9 Other Informational Operators 

Other informational operators can be introduced 
pragmatically considering a language convention 
and the appropriateness of operator symbols. In 
this sense, direct (clearly symbolical), particula-
rized and universalized operators can be introdu­
ced. For example, |=, G, —>,* in <^*£, C, ==>, 
^ , etc. belong to the class of direct informa­
tional operators. Particularized operators, e.g. 
H inferentially5 express a special, narrower proper-
ties of informing entities, while universahzed ope­
rators express broader properties of entities which 
inform and are informed. There is a hierarchy of 
operators in the sense of the particular towards 
the general, which is particular-universal-general. 

3 Concept of Informational 
Formula 

Informational formula is a well-formed sequence 
of informational operands, operators and paren-
thesis pairs. The well-formedness of informational 
formulas is determined recursively. A formula re­
presents an informationally arising informational 
entity and behaves by itself as an arising infor­
mational entity. From the philosophical point of 
view, a formula is nothing else than a result of 
an observer's informational process, which repre­
sents the observed entity at the site and through 
the view of the observer. 
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Informational formula is a model of the infor-
ming entity which is being analyzed, deconstruc-
ted and decomposed. This process of the informa­
tional identification of an entity through an infor­
mational formula or formula system can be conti-
nued to new forms, facts, constructions, designs, 
etc. according to the abilities of the observing en-
tity. The observing entity can observe itself and 
perform informational changes on itself, so, this 
principle leads to the circular informing of an en-
tity, that is, to the circular structure of an entity 
representing formula. 

3.1 A General Syntax of 
Informational Formulas 
(Operands and Operators) 

Informational formula is a general term including 
also the system of informational formulas. A well-
formed informational formula acts as an informa­
tional operand. E.g. informational markers are 
formulas which mark complex, composed formu­
las. 

Definition 15 [INFORMATIONAL FORMULA 

SYNTAX] Let a mark different informational ope­
rands a, (3, • • -, u>, A, B, • • -, Z, 21, OS, • • •, 3 ; F, 
A, • • -, $7, A, 3, • • -, Z, • • • and let \= be the most 
general informational operator which can repre-
sent any operational particularization and univer-
salization. Then, an informational formula (IF 
for short) is informationally well-formed, if it is 
constructed by the follouiing syntactic rules, where 
operator <— has the meaning 'becomes (gets, is re-
placed by)': 

1. Operand a (as a marker) is IF. 

2. Rule a <— (a) says that operand a, represen­
ting a marker, formula or formula system, 
can be put into parentheses. Ezpression (a) 
is IF. 

3. Rule a <— («i, 0:2, • • -,an) permits the re-
placement of a by a list (of mutually non-
informing) operands a.\, ct2, •••, an. Such 
list of operands is IF. 

M 
4- Rule a *— I ' I says that a can be paralle-

lized by a uihere a's can represent different 

entities informing in parallel. The parenthe-

ses can be omitted. Ezpression ' i s IF. 

w 
5. Rule a <— (a |=) allows the replacement of 

a by a\=. Expression a |= is IF. 

6. Rule a <— (|= a) enables the replacement of 
a by |= a. Ezpression |= a is IF. 

7. Rule a <— (a (= a) says that operand a can 
be replaced by a \= a (where the parenthe­
ses are omitted), and the first and the second 
operand a can differ arbitrarihj. Expression 
a \= a is IF. 

This list of syntactic rules can be broadened if ne-
cessary. • 

Other syntactic structures are already deduced by 
the defined list of syntactic rules. For instance, 
function y>(£) is nothing else than an expression 
<£>*£, where * is informational operator, that is, 

^ ( O ^ ( ^ 1= functionaUy.on £ ) • 

Definition 16 [INFORMATIONAL OPERATOR 
COMPOSITIONS] Compositions of informational 
operators (10 for short), uihere o marks the ope­
rator composition, underlie the follouiing operator 
syntactic rules: 

1. Syrnbol f= represents the general 10. 

2. Operator rule |= <— (\=a° \=p) says that 
operator (= can be replaced by a meaningly 
adeguate composition \=a o \=p of operators 
\=a and |=0. An operator composition is 10. 

S. If in an operator composition there are more 
than two operators, they must be adeguatehj 
parenthesized, e.g. 

\=a°(\=l30 N7) o r (N«° K?)° K-

etc, uihere complez compositions are IO's. 

4- Operator rule 

particularly V I— universally » |— directlyj 

uihere V means 'is alternative to', says 
that 10 |= can be replaced by operators 
F particularly •-"* p 2 universally OT f= directly U1HICH 

are IO's. Operator |=directiy represents the 
so-called directly ezpressed operators, e.g. C, 
^, = > , *, •-, etc. 
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Operator compositions follow a conceptual seman-
tics of the designing and designed entity and their 
syntax (parenthesizing) is determined by Defini-
tion 14- D 

The presented informational syntax is in no way 
a final čase. The syntactic concepts can be re-
fined or detailed according to informational cir-
cumstances. 

3.2 Equivalence of Informational 
Formulas 

There does not exist an informaional equiva-
lence of different informational formulas. But, 
equivalence relations between different formalized 
expressions can be introduced on an abstract and 
reductionistic level, e.g. in mathematics. Within 
GIT, it is possible to observe different formulas 
with similar informational meaning (semantics, 
pragmatics). Thus, for example, formulas a and 
a \= a are not equivalent because the second for­
mula is a derivation of the first formula in the 
sense of a consecutive application of modus po-
nens. The meaning of a is a marker, the meaning 
of a \= a points to an inner circular (metaphysi-
cal, deconstructive, decompositional) structure of 
entity represented by a. 

3.3 Implic i tness and Explicitness of 
Informational Formulas 

In concern to the discussion in the previous sub-
section, formula a as a marker is entirely impli-
cit as long as it s meaning is determined on some 
other plače by some other formula. We say, that 
irrespective of the existence of such other, mea-
ningly determined formulas, formula a hides the 
implicitness of its informational potentiality. This 
means that a as any other, regular informational 
entity, can be decomposed into more details, de-
termining its structure which, through decompo-
sition, becomes more and more complex, e.g. seri-
ally as well as in a parallel manner. For example, 
a \= a is the first (although formally trivial) step 
on the way of informational decomposition. In 
this sense, formula a \= a informs more explicitly 
than does formula a. The possibility for a further 
explicitness of a formula does always exist. 

3.4 Formula Parallel ism 

The possibilities of parallelism of informational 
formulas do always exist. The syntactic rule 

is simultaneously a regular principle of an entity 
parallel decomposition. By this rule, parallel for­
mulas, concerning entity a can be generated ad 
infinitum. 

Informational parallelism is straightforward 
and cyclic, depending on the structure of parallel 
formulas. 

3.5 Formula Serialism 

The possibilities of serialism of informational for­
mulas do always exist. The syntactic rule 

a <- (a |= a ) 

assures the arising of serial formulas, which can 
be straightforward, circular or metaphysical [10]. 
A straightfonvard serial formula is, for example, 

( . . . ( a | = / ? ) l = - " V O I = " 

and ali other formulas obtained by the well-
formed displacement of the parenthesis pairs. A 
cyclical serial formula is, for instance, 

( ( . • • (a |=/?) |=. . .y , ) l=^)ha 

and ali other formulas obtained by the well-
formed displacement of the parenthesis pairs. A 
metaphysical serial formula is, for example, 

(((((a \= X) |= <£a) |= C„) |= <B„) |= ta) \= « 

where 3a is informing, <£a is counterinforming, ca 

is counterinformational entity, <Ba is informatio­
nal embedding, and ea is embedding informatio­
nal entity of informational entity a. Ali other me-
taphysical formulas concerning a can be obtained 
by the well-formed displacement of the parenthe­
sis pairs. 

3.6 Parallel and Serial Circularity of 
Informational Formulas 

The circularity of formulas can become very 
complex, for example, parallel-serial and serial-
parallel. 
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A parallel-serial circularity is given by a set 
of parallel formulas which are structured in such 
a manner that a certain transitivity of occur-
ring operands through these parallel formula ta-
kes plače. A trivial example of a parallel-serial 
scheme would be a formula system, marked by 
ij)\\ tha t is, 

Q 

v>" 
(a |= a\\ 

« i |= «2 5 

an-i ' 

\ 

a„ 
\an \= a J 

A serial-parallel circularity is obtained if in a se-
rial formula parallel subformulas appear, for in­
stance, in the form 

(---««!= 41) |= «!) I «l[) |= a 

where o^, alj, • • • , aH are parallel arrays of for­
mulas. 

The reader can imagine how this basic example 
can become more and more complicated. 

3 . 7 T h e Č a s e of F o r m u l a a \= /3 

The čase of formula a |= (3 offers a unique oppor-
tunity for clarification of the problem existing be-
tween a as informer and /3 as observer of a 

Definition 17 [THE INFORMER AND OBSERVER 
PROBLEM CONCERNING FORMULA a |= /3] Con-
sidering the concept of operator composition in 
Definition 14, one has the folloiving definition: 

(a \= (3) ?^def (« Na° N/? Z3) 

Operator composition \=a o \=@ performs as an 
informational transition filter betiueen entities re-
presented by operands a and /3. • 

This definition explains how observer /3 can be 
informed about a only to the extent within which 
a informs in an a 's specific way and f3 is capable 
to be informed in a (3's specific way. 

It seems senseful to explain the nature of infor-
mingness a \= and informedness |= (3 additionally. 
The first čase belongs to informational externa-
lism and means tha t entity represented by an ope­
rator marked by a informs strictly within the in-
forming abilities of a, that is, a-characteristically, 
or 

--ao \= 

The occurring operator composition f=ao |= de-
monstrates tha t the informing of a happens 
openly to the entire informational domain (field, 
space, also realm) through operator |= at the right 
end of the operator composition. 

In the second čase we have to do with informa­
tional internabsm, which means that entity repre­
sented by operator marked by (3 is informed (in 
fact, can be informed) strictly in the framework of 
the informing abilities (informedness) of /?, tha t 
is, /3-characteristically, or 

The occurring operator composition |= o \=p de-
monstrates that the informedness of /3 happens 
openly to the entire informational domain thro­
ugh operator |= at the left beginning of the ope­
rator composition. 

Within formula a |= (3 the described informati­
onal openness of the left and the right operand is 
blurred (however, implicitly present). Thus, pos-
sible complete meanings of the formula would be 

ct{\=ao\=)o{\=o\=p)p 
"((Na0 N)° N)° N/3 P 

«MNo(N°hP 

or 
or 

where in the basic form a \= (3 the characteristic 
operator parts \=a and \=p are implicit (invisible) 
and in the compositional form a |= a o |=/3 the ge­
neral operator (joker) |= is superfluous. 

3 .8 I n f e r e n t i a l I n f o r m a t i o n a l F o r m u l a s 

An inferential informational formula or inference 
in short has a general form 

-^ or C 

where a marks the premise (marked also by P) 
and j3 the conclusion (marked also by C ) . Thus, 
by % (or P / C ) , there is an inferring (informing in 
an inferential manner) from a to /3 (or P to C) . 
What stands under the inferential line (informati­
onal operator of inference) is always a conclusion 
(operand marker, formula or formula system) and 
above of it, a premise (operand marker, formula 
or formula system). Premise means assumption, 
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postulate, hypothesis, axiom, principle, and the 
like. E.g., a postulate is something (informational 
formula) t aken as self-evident or assumed without 
proof as a basis for reasoning. Thus, a postulate 
within a premise performs as an axiom or as an 
already derived operand, theorem, formula, for­
mula system, etc. 

E.g., one cannot say that a infers /3; but, one 
can always observe that a informs inferentialhj (3, 
for instance in the sense, that the occurrence of 
a calls for an inference to /3 or that from a, there 
can be inferred to (3, etc. In this manner, the 
informing of something expresses the capability or 
characteristics of the informing entity in respect 
to the informed entity. 

In čase § we have the situation which must not 
be forgotten: 

\& |—a,inferentially ° |—/3,inferentially P) 

If a |=a,inferentiaUy, there can be not only 
|=/5,inferentially /?, but any other kind of conclu-
sion, say, |=7,inferentially 7: w i t h another, informa-
tionally different (logical) structure of 7 in com-
parison to /3. Rules of inference can arise as any 
other regular informational formula. If one proce-
eds from standard inferential rules (e.g., tertium 
non datur, modus ponens, modus tollens, e t c ) , 
it does not mean that arbitrary inferential rules 
cannot come to the theoretical surface or cannot 
emerge during the theoretical discourse. 

Further, it must be clarified what can the appli-
cation of an inferential rule p (or E ) upon an in-
formationally approved formulas a and /3 (acting 
as a premise P and conclusion C ) mean, for in­
stance, in the form of the informational Being-of 
or functionalism /J(Q:, /3) [or R ( P , C)] . In this čase, 
inferential rule p becomes an informational func-
tion over formulas (formula systems) marked by 
a and /3. 

4 The Propositional and the 
Predicate versus the 
Informational 

4 . 1 T r a d i t i o n a l a n d I n f o r m a t i o n a l 
L o g i c 

Theory of logical propositions and predicates (for 
instance, [5, 8]) introduces propositions and pre­

dicates (logical functions concerning elements as 
functional arguments belonging to arbitrary sets) 
in the value domain of t ru th and falseness (un-
t ru th) . Informational entities and informational 
functions concern formulas which, within them 
and in parallel, can produce formulas. as results 
or "values". Let us demonstrate the difference 
between both approaches on the level of existence 
of something, t ru th of predicates, and informing 
of something. 

Something, marked by a, certainly has the 
property of existence. The framed expression 
something exists is a formula which transits in 

a predicate form something exists is true 

a formalized way, the predicate form 
In 

a exists is true 

corresponds to the predicate E(a). A predicate is 
always understood to be a mat ter of the observer, 
e.g. mathematician. On the other hand, informa­
tional formula which expresses the fact ' a exists' 
or, more precisely, ' a informs to exist', or ' a in­
forms existingly', that is, a |=exist) belongs not 
to the observer, but to the informer a as a pro-
perty of its informing. The predicate form E(a), 
expressed in an informational form, would be 

( a |=exist) |= true 

The truth of a predicate concerns the predicate 
and not the entity as an argument of the predi­
cate. Thus, the framed expression 

entity exists informs true 

can be understood as a predicate E(a) with an 
implicit (assumed) faculty of trueness on one side 
and as an informational formula ( a |=exist) |=true 
which transparently (expressively) informs the fa-
culty of the entity itself, for example, in the form 
as: entity is, as it does exist, and as it does exist 
in a true way. 

The other (contrary) čase is 

entity does not exist informs true 

which corresponds to the predicate form E(a) and 
to the informational form 

( « |^exist) |= true 
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In this point, one has to clarify how does entity 
a (in German, das Seiende a ) not exist. The an-
swer is: in a certain iuay! Informational operator 
b^exist is in respect to operator |=exist nothing else 
than a particularized operator of the type (=exist-
This is uniquely not clear in čase of E(a). 

The difference which can now be drawn be-
tween the predicate view and the informational 
one is the following: the predicate view concerns 
implicitly the observer of an entity while, on con-
trary, the informational view concerns explicitly 
the informer and the observer and where both can 
perform in one and/or another way, that is, in­
former as informer and observer, and observer as 
informer and observer, simultaneously. In the in­
formational čase, the observer must be explicitly 
present (marked) and must inform and be infor-
med explicitly, through concrete, particularized 
or universalized informational operators. While 
the predicate čase concentrates on the observer 
and the informer (the argument or variable of the 
predicate) is only an object of the observer, the 
informational view distributes the informing be-
tween both the observer (the informedness) and 
informer (the informingness). 

Axiomatically, the informer stands before the 
observer and the observed (the informing entitv, 
tha t is, informer) can only be tha t which informs. 
Both are informationalb/ active and passive en-
tities (subject and object, simultaneously) and 
explicitly present (informationalb/ determined). 

Propositional and predicate logic stress the ob­
server^ view, tha t is, the so-called informational 
internalism. Informational logic unites the so-
called informational ezternalism and internalism 
in the framework of informational metaphysica-
lism and phenomenalism. And, in this kind of 
view lies the novelty and the power of informati­
onal arising as a spontaneous and circular pheno-
menon, within the discourse which is on the way 
and which follows. 

4.2 The "Value" of an Informational 
Formula 

The concept of value belongs to the basic mathe-
matical concepts. In mathematics [15, 16], value 
is the precise number or amount represented by 
figure, quantity, etc. For instance, numbers, ele-
ments of sets, t ru th and falsity, magnitude, a po­
int in the range of a function, the value of a word, 

etc. are values for variables and functions. A simi-
lar question can be reasonabb/ put to the surface 
in čase of the informational: which are the values 
of informational operands as variables, markers, 
formulas and formula systems? Hov/ can infor­
mational values be achieved (accessed) and what 
do they represent as informational formulas? 

In music, value is the relative length or duration 
of a tone signified by a note. In painting, it is due 
or proper effect or importance; relative tone of 
colour in each distinct section of a picture; a patch 
characterized by a particular tone. In philosophy, 
value means axiology. 

An informing formula produces formula-like re-
sults. A result can be understood as a part , piece 
of formula, as an arising parallel formula or for­
mula system, which value is a semantically and 
pragmatically converted, transverse sort of infor-
mation, e.g. text, picture, voice, signal, etc. The 
same principle can be used for the domain of input 
operands, tha t is, informational variables, formu­
las, etc. as informing entities. 

Informational formulas are, in respect to the 
natural means (languages, pictures, voices, si-
gnals, e t c ) , adequately informationally encoded 
entities which, in any state or position, can be 
understandingly decoded as values, in a "natural" 
form. Informational encoding and decoding can 
use any formalized (mathematized, systemized, 
procedur al, etc.) means, methods, concepts, al-
gorithms, apparatuses, approaches, formulas, etc. 
as well as those of the informational view, science, 
theory, systems, etc. 

4.3 Logical and Informational 
Examples 

Tautology and (informational) circularity are the 
focal problems of traditional mathematical and 
informational logic. We will show how a syntac-
tically circular formula in mathematical logic is 
never comprehended as a circular (tautological) 
scheme while within an informational logic just 
this type of syntactic expression is considered to 
be circular. Thus, traditionally, the formula cir-
cularity (tautology) is pushed off the conscious 
horizon, while informationally circularity is con­
sidered as a cyclically operating kind of informing. 
To get a clear picture of such phenomenalism, we 
will use examples concerning the so-called foun-
dations of mathematics, tha t is, its metatheory. 
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E x a m p l e 1 [ IMPLICATIVE A X I O M S FOR P R O ­

POSITIONAL C A L C U L U S ] Formalizing the logical 
reasoning (inference) in propositional calculus ([5] 
p. 66), Hilbert lists a (geometrical) group of his 
axiom formulas of implication: 

A - ( 5 - A), 
(A^{A^B)). - (A->B), 

{A^B) - p_>c)-(A->CB 
Informationallu, these implicative formulas exert 
a sort of circularitu regarding propositional ope-
rands A, B and C. • 

The first formula says that proposition A, if not 
an axiom, has its logical cause in a proposition 
B. It simply means the following: Something im­
plies that it is implied by something other. The 
second formula stresses that if proposition A im­
plies an implication A —» B, then A implies B. It 
can be interpreted as: If something implies that 
it implies something other then something implies 
something other. The third formula says: if A im­
plies B then the implication B -» C implies also 
the implication A —• C. Said by other words, 
there is: Something implies something other im­
plies the folloming: if something other implies so­
mething third then something implies something 
third. 

The listed axioms are in a certain accord with 
common sense. Ali of them are identically true 
logical formulas, which can be easily verified by 

_A V Š V A, 
( i A J ) V I V 5 , _ 
(AAB) V (BAC)VAVC 

respectively. 
Reading the original formulas, a mathematician 

does not observe the circular structure of the li­
sted axiomatic formulas. Implication seems to be 
such a kind of the logical operator which does 
not evoke the 'feeling' of circularity although the 
markers of one and the same kind are used se-
veral times in the implicative expression (e.g. in 
implication of implication). This fact becomes in-
formationally true if in original formulas the lo-
gic implication operator is replaced (universali-
zed) by the informational joker and operands are 
adequately marked by aA, (3g and -je that is, 

<*A f= (PB \= aA); 
(aA \= (aA \= PB)) \= (<*A N PB); 
(<*A \= PB) h ((PB |= le) h (<*A |= lc)) 

The first formula is circular in aA, the second one 
in aA and PB, and the third one in aA, PB and 7c-
AU together form a parallel informational system 
(operator ' ; ' ) . 

Example 2 [ IMPLICATIVE AxiOMS FOR I N -
FORMING OF INFORMATIONAL ENTITIES ( O P E R -
ANDS)] An instruetive, now informational čase 
with informational implication operator => is 

a = ^ (/3 =>• a ) ; 
(a = • (a = • y9)) = » (a = » / ? ) ; 

(a=>P) =^ ((P=^7)=> 
(a = > 7)) 

which leads to the basic informational axioms, for 
example, of the form 

(«N) => (a=»(a|=J); 
(a =>. (a = » (a (=))) = > (a ==> (a |=)); 

(«=>(« 1=3) => (K*l=)=» 

((a = • (\= a))) 

The last example shows how the "global" Hil­
bert^ implicative axioms can reasonablv be applied 
in the informational čase where the traditional 
Truth of Propošitions is replaced by the Informing 
of Informational Formulas. • 

5 Phenomenalistic Axioms of 
the Informational 
Zur Erleichterung soli bei den ersten 
Axiomen die sprachliche Fassung hinzu-
gefiigt werden. 

—D. Hilbert und P. Bernays [5] 5 

The so-called phenomenalistic axioms of the in­
formational are meant to be the axioms of the 
object and metatheory, and the inference axioms 
(initial rules for informational inference) underlie 
the general informational phenomenalism. Gene­
ral informational theory is, namely, a unit of the 
formal object theory and the formal metatheory, 
that is, the theory of informational inferring (pro-
ving, causing, concluding—deriving). As stated 
in the quotation of this seetion, the natural langu-
age comprehension cannot be avoided at the very 
beginning of the presented informational axioma-
tization. 
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In this section the basic axioms will be presen-
ted in an aprioristic and postprioristic manner. 
The independence of axioms will not be conside-
red. Later on, it will become clear that only one 
informational axiom can be chosen, however, by 
the use of informational inference rules, other axi-
oms can be derived (deduced). 

5.1 Informational External ism 

Let us try to state which sort of axiom could be 
quite on the top of the informational. Already in 
Example 2 we have applied Hilberfs axioms [5] 
for the informational čase. 

Axiom 1 [INFORMATIONAL EXTERNALISM] A-
prioristically (commonsensically, trivially, intui­
tiven [6]) at the top of the informational (system) 
has to be something which deepeningly (most es-
sentially) concerns an informational entity a. So, 
let it be an informational implication of the form 

(a^(a=^ (a \=)J) = > (a = > (a |=)) 

This axiomatic formula says: "If informational 
entity (represented by operand a) implies that it 
implies its informing(ness), then the entity im­
plies that it informs." The next, substantial axi-
omatic rule of informational ezternalism (accor-
ding to Example 2 [5]) is 

(a |=) = * (« = > (a h)) 

Informing(ness) of a implies that a itself is the 
cause of its informing(ness). • 

According to the last axiomatic formulas, 
everything informational, irrespective of its infor­
mational structure or complexity, informs. Both 
formulas are informationally (and traditional-
logically) consistent, that is, informationally (lo-
gically) noncontradictory. In traditional logic, 
pertaining to truth, it would mean, that both for­
mulas are true (even identically true) or, expres-
sed informationally, (a = > (a (=)) f=true-

Example 3 [EXTERNALISM OF NON-INFORM-
ING] Informing and non-informing of an entity 
a are parallel phenomena. Non-informing may be 
comprehended as a particular phenomenon of in­
forming. Thus, operator \£ which reads 'does not 
inform', is a particular čase of operator |=. 

a |= means that a informs in a specific man­
ner, that is a-characteristically. a \£ means that 
a does not inform in a certain way, that is, it 
informs a-non-characteristically. Thus, 

(a |=) ?=± (a 1=0«) and (a ^ ) ^ (a \£a) 

Operator \=^a would mean informs differenthj in 
comparison to a-characteristically. 

According to Axiom 1, for a particular čase con-
cerning a, there is a = > (a |=particularly)- Accor­
ding to this principle, also 

holds. This implication will become significant in 
our further discussion. • 

5.2 Informational Internalism 

Informational internalism is a dualistic concept 
in regard to informational externalism. Axioma-
tically, the question arises, which of both pheno­
mena is the primary one and which is the con-
sequence of the other. Thus, quite at the begin-
ning of axiomatization, the next axiom could also 
be accepted. 

Axiom 2 [INFORMATIONAL INTERNALISM] A-
prioristicallg (commonsensically, trivially) at the 
top of the informational could also be something 
vohich deepeninglg (most essentialhj) concerns an 
informational entity a in the sense of its infor-
medness. So, let introduce an informational im­
plication of the form 
(a =* (a = > (|= a))) = > (a = > ( ^ a)) 
This axiomatic formula says: "If informational 
entity (represented by operand a) implies that it 
implies its informedness, then the entity implies 
that it is informed." The next, substantial axio-
matic rule of internalism is, for instance, 

(1= < * ) = • ( « = • (h «)) 
Informedness of a implies that a itself is the ca­
use of its informedness. • 

According to the last axiomatic formulas, 
everything informational, irrespective of its in­
formational structure or complexity, is infor­
med. Both formulas are informationally (and 
traditional-logically) consistent, that is, informa-
tionally (logically) noncontradictory. In traditi­
onal logic, pertaining to truth, it would mean, 
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tha t both formulas inform true (are identically 
t rue) , or expressed informationally, (a ==>• ()= 

Ot)) |= t rue-

5.3 Informational Metaphysical ism 

Informational metaphysicalism is a general and 
entity specific way of circular informing. In ge­
neral, it proceeds from the initial circular form 
a \= a which is trivially circular, but becomes 
structurally circular by decomposition. Specifi-
cally, the decomposition of this form can be stan-
dardized to some extent, introducing explicitly 
the components of informing, counterinforming 
and informational embedding as entities which in­
form within an informational entity [10]. 

A x i o m 3 [ INFORMATIONAL M E T A P H V S I C A L ­

ISM] Aprioristically (commonsensically, trivially, 
intuitively) at the top of the informational could 
also be something tohich deepeningly (most essen-
tially) concerns an informational entity a in it­
self, as its inner informing or informational ari-
sing, called metaphysicalism. So, we can intro-
duce an informational implication of the form 

(a =$• (a =>• (a |= a))) => ( a = > (a |= a)) 

This axiomatic formula says: "If informational 
entity (represented by operand a) implies that it 
implies its metaphysicalism, then the entity im­
plies that it informs and is informed circularly." 
The next, essential aziomatic rule of metaphysi-
calism is, for instance, 

(a j= a ) => (a =>• (a |= a)) 

Circular informing voithin a itself implies that a. 
itself is the cause (phenomenon) of its metaphysi-
calism. • 

According to the last axiomatic formulas, 
everything informational, irrespective of its infor­
mational structure or complexity, informs and is 
informed in a metaphysical manner. 

5.4 Informational Phenomenal i sm 

Informational phenomenalism means a paralle-
lism of informational externalism and internalism 
regarding an informational entity a. By'this, an 
entity is open as an informer and observer to its 

environment and to itself (metaphysicalism). In­
formational phenomenalism is the most general 
concept of informing of entities. This belief can 
lead to the axiom which follows. 

A x i o m 4 [ INFORMATIONAL P H E N O M E N A L I S M ] 

Aprioristically (intuitively, commonsensically, 
trivially) at the top of the informational could also 
be something tohich deepeningly (most essentially) 
concerns an informational entity a toiuard the 
outside (outward, externally), toward the inside 
(inward) and in itself, as its entire informing or 
informational arising, called phenomenalism. So, 
we can introduce an informational implication of 
the form 

( . - ( - ( # - ( . - ( # 

This aziomatic formula says: "If informational 
entity (represented by operand a) implies that it 
implies its phenomenalism, then the entity implies 
that it informs externalistically and is informed 
internalistically." The next, essential aziomatic 
rule of phenomenalism is, for instance, 

Phenomenal informing of a implies that a itself 
is the cause (phenomenon) of its phenomenalism. 
D 

According to the last axiomatic formulas, 
everything informational, irrespective of its infor­
mational structure or complexity, informs and is 
informed in a phenomenal manner. 

It will be shown how Axioms 2, 3 and 4 can be 
derived form Axiom 1 if the axiomatic inference 
rule of informational modus ponens is adopted. 

6 Axioms Related to 
Informational Rules of 
Inference 

Inference rules of a theory pertain to the theory's 
metatheorv, which performs as a theory of theory. 
In this function, a metatheory concerns the pro-
ving, founding, logicism and formalism of a the-
ory, that is, in regard to metatheory, the object 
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theory. Separation between the object and me-
tareasoning is traditional and roots in mathema-
tics, in its platonistic (tautological) approach with 
the intention to make theories function in a non-
contradictory, logically consistent and reductioni-
stic way. 

6 .1 T h e T r u e v e r s u s t h e I n f o r m a t i o n a l 

Truth is the central concept of any mathematical 
theory and of mathematics as such. Everything 
derived from axioms by rules of inference must be 
true. Through mathematical proofs, the t ruth of 
theorems or derived consequences must be veri-
fied. Otherwise, the derived results are not ma-
thematically correct. The basic question is how 
this traditional approach could be diversified in 
such a way that the mathematical t ru th becomes 
only a particular informational entity (operand) 
or an entity's property (operator)? 

In Subsection 4.3 we have shown a possible di-
fference between the t rue and the informational. 
The difference can exist in the following different 
manners: 

N 

1 
2 
3 
4 

5 
6 
7 

8 

9 

10 
11 

12 

The true 

Logicism 
Particularization 
Tertium non datur 
A is true or 

false 
A informs true 
A |=true 
A informs false 

A |= false Or 

A |7=true 
A is informed 

true 

F true "• 
A is not informed 

true 
l^true A or 

pfalse A 

The informational 

Informationalism 
Generalization 
Various informing 
a is informational 

a informs 
a \= 
a does not inform 

in a way 

a is informed 

(= a 
a is not informed 

The last list of differences illustrates only the ini-
tial possibilities; so the reader can continue to list 
further imaginable differences. 

6.1.1 Identical Truth of Propos i t ions and 
Pred icates 

Propositional formulas (which are propositions re-
presenting logically connected propositions) can 
be constructed in such a way tha t they do not 
depend on the true and false values of their ope-
rands. Such formulas are said to be identically 
true or identically false. For instance, propo­
sitional formula A —> (B —> A) is identically 
true, while formula (its negation) A —»• (B —> A) 
is identically false. 

The triviality of logical axioms and rules of in­
ference lies in their identical trueness. For in­
stance, the pure implicative axioms of logic ([5], 
p. 66) are identically true, tha t is, they do not 
depend on the values of their propositional ar-
guments. The same is valid for the derivation 
(deduction) rules of the type modus ponens and 
modus tollens, which can be logically transcribed 
into (A A (A -+B))-*B and ((A -> B) A ~B) -»• B, 
respectively. In this way, something hidden (unre-
vealed, intuitive and, also, tautological) remains 
in the background of these rules of inference. 

6.1.2 T h e Value D o m a i n of t h e Logical 

Following the principle of tertium not datur, there 
are only two values of propositions and predica­
tes in traditional logic, that is—true and false. In 
multivalued logic, more than two values are per-
mitted and gradations between true and false va­
lue are possible. But the nature of the principles 
of trueness remains preserved in various manners 
(e.g., probabilistically, modally [2], e t c ) . A valu-
ation is an assignment of t ru th values (T and i.) 
to the proposition sentences after their semantic 
analysis. 

6.1.3 T h e Formula Value D o m a i n of the 
Informational 

The informational formula value domain is 
formula-like. Arguments and values of informati­
onal formulas are formulas as inputs and outputs. 
The difference to the traditional-logical is tha t ar­
guments can influence the entity in question to 
an informational extent (in trivial cases also to 
an 'entire' extent) and that the so-called values 
(results) are 'produced' (influenced) only to some 
informational extent (triviallv, to a full extent). 
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Informational formulas simply absorb the propo-
sitional and predicate power of a traditional-logic 
apparatus (calculus). 

'To influence to an informational extent ' me-
ans to impact something informationally not as 
a product but as an already existing entity; and 
the similar concerns the informational impacte-
dness, where something performs its influence on 
the entity impacted by it. 

6.2 M a t h e m a t i c a l I m p l i c a t i o n v e r s u s 
I n f o r m a t i o n a l I m p l i c a t i o n 

As the mindful reader can observe, the mathe­
matical implication is not only logical. In fact, 
the implication is a metamathematical (philoso-
phical, intuitive) connective of arguments, closely 
tied to the semantics of each argument and the 
implication as a semantic structure in particular. 

Informational implication approaches to vari-
ous dictionary (informational) concepts of the 
word 'implication'. It certainly absorbs the con-
cept of mathematical implication. 

6 .3 R u l e s ( A x i o m s ) of I n f o r m a t i o n a l 
M o d u s p o n e n s 

Modus ponens (MP for short) belongs to the most 
popular rules of inference as a mechanism for ma­
thematical deduction of formulas from an object 
theory axioms and already deduced particular for­
mulas, called theorems. Simultaneously, modus 
ponens is the main instrument in the proof pro-
cedures which are nothing else than just deduc­
tion processes as described. It considers the con-
veyance (an old law) and is the way in which 
anything deduced is obtained. MP is a mode of 
deductive operation (e.g. modus operandi or mo­
dus agendi). 

The Latin verb pono (posui, positum) means to 
set down, before; to lay out, put out at interest 
in the sense to lay down as true, assert, assume, 
etc. MP is a mood that affirms (in German, be-
jahender Modus). It is a rule by which from if 
p then q together (and) with p, the operand q 
may be inferred. The full meaning in Latin is 
modus ponendo ponens or law of detachment (in 
German, Abtrennungsregel), written in the form 
(p, p —> q) —> q. The meaning is: if, simultaneo-
usly (in German, sowohl), p and also 'if p then q' 
is valid (true), then also q is valid (true). Because 

MP is a rule, the rule arrow —> has to be used 
as a communication. sign for an action (operation) 
instruction. 

6.3.1 Interpretat ion of Logical M o d u s 
ponens 

In traditional logic, modus ponens (the rule of 
detachment) has the form 

P,P^ g 

where the inferring line is the operator of de­
tachment. As already shown, this rule (when 
neglecting its communication role) represents an 
identically true formula in the form (p A (p —> 
? ) ) — • <?• 

The uttermost informational interpretation of 
the above formula regarding the t ru th as the only 
relevant logical value could be the following: 

({p h t rue ; {P -> q) h t m e ) |= t rue \ •_ 
I p 1 p t rue 
V q |—true / 

In the last čase, by the entering into formula of 
MP, the t ruth of q has to be verified. If g is a 
true theorem, then in the premise, p and p —»• q 
are assumed to be valid, tha t is, t rue. Such an 
understanding of MP seems to be commonsensi-
cal. However, MP informs t rue without regard to 
the t ruth of the constituting components (p and 
p - * q). 

6.3.2 Informational M o d u s p o n e n s and 
Its Poss ib le Interpretat ions 

Together with the fundamental axiom of the 
object informational theory, tha t is, a = > (a |=), 
we need a fundamental inference axiom, by which 
from the initial informational entity a the result 
a |= can be derived (deduced). 

Inference A x i o m 1 [INFORMATIONAL MODUS 
PONENS] We adopt the following basic inference 
axiom for informational derivation: 

a; ( a = ^ / 3 ) 

By this rule, marked by Kmp(a,(3), ivhere 'mp' in 
the subscript stands for 'modus ponens', operand 
(formula, formula system) j3 voill be derived from 
operand o. (formula, formula system), that is, 
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a ~* mp P or> simply, a -»/3 

Formula a -»/3 is called derivation (by modus po-
nens) from a to /3. D 

By means of the last inference axiom from the 
first object axiom (e.g., Axiom 1) a theorem can 
be proved which follows. 

Theorem 1 [EXTERNALISTIC INFORMING OF 
AN INFORMATIONAL ENTITY] If a is an infor-
mational formula, then a \= is an informationallu 
regular (a-equivalent, a-replaceable) formula. It 
means that in decompositions of a (serial, pa-
rallel, circular, metaphusical or ivhichever de-
construction), formula a (= performs as another 
phenomenon of formula a. There is, certainlu, 
a -» (a \=). • 

Proof 1 [FORMULA 
a |= AS A REGULAR OCCURRENCE OF a] The 
initial 'axiom' of an informational operand a is 
the operand itself. We must prove, that formula 
a \= is derivable from a. Axiom 1 offers the in­
formational validitv of formula a = ^ (a f=). In 
this way, we dispose with elements of the premise 
necessary for modus ponens. Finally, 

a- (g = > • ( a |=)) 

«1= 
In fact, this is a trivial (aprioristic) proof of the 
informational existence of a f= if the existence of 
operand a was axiomatized. Thus, the ezistence 
of derivation a -» (a |=) is proved. O 

Theorem 2 [INTERNALISTIC INFORMING OF AN 
INFORMATIONAL ENTITY] / / a is an informatio­
nal formula, then \= a is an informationally regu­
lar (a-equivalent, a-replaceable) formula. It me­
ans that in decompositions of a (serial, parallel, 
circular, metaphysical or ivhichever deconstruc-
tion), formula |= a performs as another phenome­
non of formula a. There is, certainly, a-» (|= a), 
a 

Proof 2 
[FORMULA \= a AS A REGULAR OCCURRENCE 
O F a] We must prove, that formula \= a is deri­
vable from a. Axiom 2 offers the informational 

validity of formula a =$• (|= a). Let us shoiv 
cases of proving the derivability of \= a. 

The first possible čase (Axiom 2) is 

a;(a=> (|= a)) 
f= a 

The second possible čase considers the axiomatic 
fact (a |=) =3> (|= a) as a necessity ivhich says 
that if something informs, something must be in-
formed. Thus, 

(«H;((^)=>(h4 
| =a 

At the end of the proof, let us show informati-
onallij three axiomatic implications ivhich follow 
according to Example 1, the third rule: 

( a ' (« 1=)) 
(((a \=) = > (|= a)) 

(a = » (|= a)) = » 
(((H a) = • (a h)) 

((a |=) = • ( h «)) = » 
( « | = a ) = * a ) = > ( C a | = ) 

(a =* ( h a))); 

(a = » (a h)))! 

The implicative circularity of entities a, a\= and 
|= a. is complete. 

Thus, the existence of derivation a -» (|= a) is 
proved. D 

Theorem 3 [PHENOMENALISTIC INFORMING 
OF AN INFORMATIONAL ENTITY] If a is an infor­
mational formula, then formula system a |=; |= a 
is an informationally regular (a-equivalent, a-
replaceable) formula. It means that in decompo­
sitions of a (serial, parallel, circular, metaphysi-
cal or ivhichever deconstruction), formula system 
a |=; |= a performs as another phenomenon of 
formula a. There is, certainlij, a -»(a [=; |= a). 
a 

Proof 3 [FORMULA SYSTEM a |=; |= a AS A R E ­
GULAR OCCURRENCE OF a) A consequence of the 
previous axioms and theorems is formula 

a =$• (a |=; |= a) 

By informational modus ponens, there is, 

a ; ( a = » (a |=; |= a)) 
a\=;\=a 

This proves a -» (a |=; |= a ) . D 
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T h e o r e m 4 [METAPHYSICALISTIC INFORMING 

OF AN INFORMATIONAL E N T I T Y ] / / a is an 

informational formula, then formula a \= a is 
an informationallv regular (a-equivalent, a-
replaceable) formula. It means that in decompo-
sitions of a (serial, parallel, circular, metaphvsi-
cal or uihichever deconstruction), formula a \= a 
performs as another phenomenon of formula a. 
There is, certainlu, a-»(a\= a). • 

P r o o f 4 [ F O R M U L A a\=a AS A R E G U L A R 

O C C U R R E N C E OF a] A conseguence of the pre-

vious azioms and theorems is formula 

(a \=;\= a) =>- (a \= a) 

By informational modus ponens, there is, 

( g |= ; |= g ) ; ( (g |=; [= g ) = » • ( g |= g)) 

a \= a 

(See Definition 15 for a \= a.) This proves a -» 
(a \= a). • 

C o n s e q u e n c e 1 [ R E P L A C E M E N T POSSIBILITIES 

FOR AN INFORMATIONAL OR INFORMING E N -

T I T Y ] Let us have 

a, 6 G {a , a \=, \= a, a \= a, (a |=; |= a } 

Then, for a 7̂  b, there is a -» b and, so, a <— 6. • 

Consequence P r o o f 1 [PROVING o <— 6 FOR 
E N T I T I E S AND T H E I R INFORMING] The last con­
seguence means the possibilities of replacements in 
decomposition (deconstruction) procedures, that 
is, 

a <— 

/« K \ 
\= a, 
a \= a, 

("t-\ 
; ( « ! = ) 

\\\=<*)J 
(<*, \ 

( ! = « ) « -

a |=, 
a \= a, ; ( a 

VVN«;/ 
(a, \ 

a NA ^ 
{>") 

a |=, 

[ = ", 
\a |= a J 

<-

\= 

The conseguence can be prove 
previou s axt 077 is and i heorem. 

/ a , . 
\= a, 

\ 

a \= a, 

( a.\-

\{\=o 

a ) « -

d by co 
?. D 

A 
i 

<)) 

/ « , \ 
a |=, 

\{\=<*j) 

nsidering 

> 

the 

According to Subsubsection 6.3.1 where the lo-
gical modus ponens was informationally interpre-
ted, we can interpret the informational modus po­
nens in several informational manners. The first 
possible and informationally consequent interpre-
tation of MP is externalistic and yields 

(ah(tt=>)9)l=)l= 1= 

where a and /3 can be arbitrarily complex formu-
las. As we see, its components (three of them in 
the premise, one in the conclusion) and the en-
tire rule of MP inform in an externalistic manner. 
The exact meaning of this interpretation could 
be the following: if a informs its informational 
existence and, in parallel, the implication a im-
plies /3 informs its informational existence, then /3 
informs its informational existence. Under these 
conditions, the respective formula of MP informs 
its informational existence. 

Other interpretations of informational MP co­
uld be internalistic, metaphysicalistic and pheno-
menalistic. The consequent internalistic interpre­
tation of MP is 

t = ( | = a ; [ = ( « = > / ? ) ) 

The consequent metaphysicalistic interpretation 
becomes pretty cumbersome, tha t is, 

( g |= g; ( g = » /3) |= ( g =>• /3)) \= 

(g h c ; M P) 1= (" =• P)) 
c M h 

(g |= g; (g = » /3) |= (g = » /3)) \= 
(g |= g; (g = » /3) |= (g = > /3)) 

where metaphysicalism must be considered on ali 
five components of the inference rule (metaphysi-
calism of two components of the premise; the pre­
mise as a whole; the conclusion; and the rule as a 
whole). 

The consequent phenomenalistic interpretation 
is cumbersome too, which becomes evident from 
the two equivalent inference rules, where the flrst 
one informs and the second one is informed: 
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A«N;N«); \ 

'(a |=; |= a ) 

h I A(a=^/3)N;h(«=^))H 

/3 | = ; |= ^ h 

\ 

h 

/ ( a ) = ; | = a ) ; 

/ « a = * / 3 ) h h ( « = • / * » 

( a | = ; | = a ) ; 

h | / ' ((a=M) h N (* =•#&!=; 
h ((a =» /?) h N (a =» d)) j) 

The reader can imagine how mixed externalistic, 
internalistic, metaphysicalistic and phenomenali-
stic interpretations are possible. In this way an 
informational explosion of MP possibilities exists. 

6 .4 A G e n e r a l i z a t i o n of I n f o r m a t i o n a l 
I n f e r e n c e R u l e I n t e r p r e t a t i o n 

The čase of informational MP interpretation calls 
for a generalization principle in the following 
sense. 

Inference Axiom 2 [INFERENCE RULE PHE-
NOMENALISM] An inference rule 

L(A,B) 
F(A,B) 

C(B) 

is by itself an informational formula ivhich under-
lies the principles of informational phenomena-
lism. Cases of the externalistic, internalistic, me-
taphvsicalistic and phenomenalistic forms of in­
ference rules, respectivelv, can be understood as 
permissive replacements, that is as transformati-
ons of the initial rule R(A, B). Thus, 

l(A,B) 

/ R ( A , B ) h \ 
^ R ( A , B ) , 
R(A,B) | = R ( A , B ) , 

\(1(A,B)HNR(A,B)V 

Concerning premise F (A, B) and conclusion C(B) 
of a rule R(A, B), the following double-phenom-
enal cases are convenient, called ex-externalism, 

in-internalism, meta-metaphysicalism and pheno-
phenomenalism of inferential rules, respectivelu: 

P ( A , B ) h 
C(B) |= h 

• N F ( A , B ) 
H | = C ( B ) ' 

P(A, B) \= P(A, B) F (A, B) |= F(A, B) 
C(B) |= CB) C(B) |= CB) 

/ P ( A , B ) h ; h P ( A , B ) \ 
C ( B ) | = ; I = C ( B ) F ' 
P ( A , B ) | = ; | = P ( A , B ) 

\ h C(B)^CB) J 
Phenomenalism of arguments A and B depends on 
the structure of premise P and conclusion C . • 

6.5 R u l e s of I n f o r m a t i o n a l M o d u s 
t o l l e n s 

Modus tollens (MT for short) , in full modus tol-
lendo tollens, belongs to the mood tha t denies and 
is the rule that from ifp then q together with not-
q, not-p may be inferred. An inference in modus 
tollendo tollens yields the contrary of the original 
contrary hypothesis. It is the principle tha t , if a 
conditional holds and also the negation of its con-
sequent, then the negation of its antecedent holds 
[15]. MT is a mode of deductive operation. 

The Latin verb tollo (sustuli, sublatum) me-
ans to lift or take up; to take away, remove, take 
or carry off, make away with, destroy; to annul, 
cancel, abolish. MT is a mood tha t denies (in 
German, verneinender Modus). 

6.5.1 Interpretat ion of Logical M o d u s 
tol lens 

In logic, modus tollens has the form 

P^ g, g 
P 

where the inferring line is the operator of deta-
chment. This rule (when neglecting its communi-
cation role) represents an identically t rue formula 
in the form ((p —> q) Aq) —»• p. 

The uttermost informational interpretation of 
the above formula regarding the t ru th as the only 
relevant logical value is the following: 

'((P - > i) h t rue ;<7 |= t rue ) h t r u e " 

PN true 
h true 
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6.5.2 Informational M o d u s tol lens and 
Its Poss ib le Interpretat ions 

Together with the fundamental axioms of the 
object informational theory, we need an inference 
axiom, by which from the initial informational en-
tity a the result a \fc can be derived (deduced). 

Inference A x i o m 3 [ INFORMATIONAL MODUS 

TOLLENS] We adopt the follouiing basic inference 
axiom for informational derivation: 

By this rule, raarked by R m t ( a , / 3 ) , where 'mt' 
in the subscript stands for 'modus tollens', ope­
rand (formula, formula system) a \fi will be de­
rived from operand a (formula, formula system), 
that is, 

a - » m t ( a | ^ ) or, simply, a^(a\£) 

Formula a -» ( a \fi) is called derivation from a to 
a \£ (by informational modus tollens). O 

By means of the last inference axiom from the 
first object axiom (e.g., Axiom 1) a theorem can 
be proved which follows. 

T h e o r e m 5 [ E X T E R N A L I S T I C N O N - I N F O R M I N G 
OF AN INFORMATIONAL E N T I T Y ] / / a is an in­
formational formula, then a \£ is an informati-
onally regular (a-equivalent, a-replaceable) for­
mula. It means that in decompositions of a (se-
rial, parallel, circular, metaphysical or ivhichever 
deconstruction), formula a \fi performs as ano-
ther phenomenon of formula a. There is, cer-
tainly, a -» (a \j£). D 

Proof 5 [FORMULA a ^ AS A REGULAR 
O C C U R R E N C E OF a] The initial 'axiom' of an in­
formational operand a is the operand itself. We 
must prove, that formula a\fc is derivable from 
a. Example 3 explains the informational validity 
of formula a =£• (a \fi). In this way, we dis-
pose with elements of the premise necessary for 
both modus ponens and modus tollens. Firstly, by 
MP, 

a; (g = » ( a \£)) 

<*& 

and secondly, by MT, 

( a = > ( a | = ) ) ; a ^ . 

In fact, these are trivial (aprioristic) proof s of the 
informational existence of a \fc at the given (alre-
ady derived) formula a. Thus, the existence of 
derivation a-»(a\fi) is proved. • 

We can join the theorems concerning the interna-
listic, phenomenalistic and metaphysicalistic non-
informing in the following manner. 

T h e o r e m 6 [INTERNALISTIC, PHENOMENALI-
STIC AND M E T A P H Y S I C A L I S T I C N O N - I N F O R M I N G 
OF AN INFORMATIONAL E N T I T Y ] / / a is an in­
formational formula, then \fc a, (a \fi;\fi a) and 
a \fi a are informationally regular (a-equivalent, 
a-replaceable) formulas. It means that in de­
compositions of a (serial, parallel, circular, me-
taphysical or whichever deconstruction), these 
formulas perform as. distinguished phenomena of 
formula a. There is, certainlv, a -»( \£ a), a -» 
(a \£; \fc a) and a -» ( a \fi a ) . • 

Proof 6 [FORMULAS \fi a, (a\£]\fia) AND 
a \£ a AS R E G U L A R O C C U R R E N C E S OF a} The 
initial formula (axiom, theorem) of an infor­
mational operand a is represented by the ope­
rand itself. We must prove, that formulas \fc a, 
(a \fc;\fc ct) and a \£ a are derivable from a. 
Adequately as in Proof 5 we can infer by MP and 
MT for the internalistic čase, 

a ; ( a = ^ ( ^ a ) ) ( a = » (\= a));\£ a 
\^a #a 

for the phenomenalistic čase, 

a;(a=^ (g fcfi g)) _ 
a\£;\£a 

( q = » . ( a | = ; | = a ) ) ; ( a | ^ ; ^ a ) 
a\£;\£a 

and for the metaphysicalistic čase, 

a ; (Q = > (g \£ a)) (a = > (a \= a ) ) ; ( a \£ a) 
a \£ a ' a \fi a 

Thus, the existence of derivations a -» (\£ a), a-» 
(a \£; \fi a) and a -» (a \fc a) is proved. D 
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Cases of (with, through, in, by) informational ari-
sing can be illuminated through simultaneous in-
forming and particular non-informing of an infor­
mational entity. These cases may be seen as phe-
nomena belonging to the realm of informational 
spontaneity. So, the following mixed externalistic, 
internalistic, metaphysicalistic and phenomenali-
stic occurrences are possible: 

(a |=; a \£); (f= a; ^ a); (a (= a; a & a); 
(a \=; \£ a); (a ^ ; \= a); (a |^; |= a; \£ a) 

e tc , infinitely. 

6.6 Rules of Informational Modus 
rectus 

Modus rectus (MR for short) represents a direct 
inference orientation to an experienced reality 
(e.g. intention). It is a hidden, yet unrevealed in­
formational impacting governing an informing en-
tity in an informingly specific manner (e.g., ideo-
logically, cynically, demagogically, sociologically). 
The informational hidenness of something j3 in 
something a concerns the so-called informational 
Being-in (inchidedness) [12], that is (3 C a. By 
modus rectus, the yet-hidden component j3 in a 
is inferred, that is, derived in the form a -^mif3. 

In music, in a fugal composition, rectus has the 
meaning of the version of a theme performed in 
the basic or original, as opposed to the reversed 
or inverted, order [15]. 

In Latin, rector means controller, director, go-
vernor, steersman, tutor, etc. By MR the con-
trolling, directing, governing, steering, tutoring 
informational component is detached out of some 
informing entitv. The Latin adjective rectus me­
ans straight; upright, erect; right, correct, proper, 
appropriate, suitable, due; plain, simple, natural, 
etc. 

Inference Axiom 4 [INFORMATIONAL MODUS 

RECTUS] We can adopt several inference axioms 
for informational modus rectus: 

(a; (i C a ) ) ;^ (a; (a ==» t)); (t C o) _ 
i L 

(a; (a = » i); (t, C oQ);^ i C a 
i i 

etc. By these rules, marked by RJnr(a,A), where 
'mr' in the subscript stands for 'modus rec­
tus', operand (formula, formula system) i *± 

( t NintentionaUy; Hntent.ionally 0 Ulill be derived from 

operand a (formula, formula system), that is, 

a -»*mr (i) or, simply, a -» t 

Formula a -» t, is called derivation from a to t. D 

Formula t C a is recursively defined in [12]. Va-
rious theorems concerning modus rectus can be 
derived according to concrete situations. 

6.7 Rules of Informational Modus 
obliquus 

Modus obliquus (MO for short) represents an obli-
que, devious, indirect, evasive (winding) inference 
orientation which appears simultaneously with a 
direct orientation (e.g. intention). It is a hid­
den, also contradictorv, yet unrevealed informa­
tional impacting governing the background of an 
informing entity in an informingly specific man­
ner (e.g., obliquely, trickily; cunningly, slyly, gui-
lefully, artfully; craftily; astutely; wile-likely). 

The informational obliquity (divergence, per-
versity) of something fi in something a con­
cerns the so-called informational Being-in (inclu-
dedness) [12] and Being-of (functionalism) [13], 
that is /3 C a and /3(a) or (3*a. By modus obli-
quus, the obliquely informing component f3 in a 
is inferred, that is, derived in the form a -^mo/3. 

The figurative meaning of the adjective obliaue 
is not taking the straight or direct course to the 
end in view; not going straight to the point; in-
directly stated or expressed; resulting or arising 
indirectly; deviating from right informing or tho-
ught; informationally one-sided or perverse. 

In Latin, obliquo means to turn sideways or 
aside, turn awry. Obliauus means slanting, side-
ways, oblique; indirect, covert; envious. 

Inference Axiom 5 [INFORMATIONAL MODUS 

OBLIQUUS] We can adopt several inference axi-
oms for informational modus obliquus: 

(a; (o C a)); o_ (a; (a =$> o)); o(a) 
o o 

( a ; ( a=»- o);(oC«);o(a)) ;o 
o 

etc. By these rules, marked by R4o(a)0)> where 
'mo' in the subscript stands for 'modus obli-
quus', operand (formula, formula system) o ^ 
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(o |=obliquely; hobiiquely o) will be derived (deta-
ched) from operand a (formula, formula system), 
that is, 

a -»-Jno (o) or, simply, a-» o 

Formula a -» o is called derivation from a to o (by 
informational modus obliquus). D 

Formulas o C a and o(a) are recursively defined 
in [12] and [13], respectively. Various theorems 
concerning modus obliquus can be derived accor-
ding to concrete situations. As premises of modus 
obliquus, various afnrmative, negatory, contrary, 
subalternate, contradictory, absurd and other in­
formational entities can be conjoined. Such a pre-
mise structure can cause a parallel set of conclu-
sions by which the so-called zigzag effects of the 
oblique discourse are coming into existence. 

6.8 Informing of Informational 
Inference Rules 

Informational inference rules of the form R(a, /3) 
inform as any other regular informational entity, 
tha t is, by the entirely possible informational phe-
nomenalism. This principle does not coincide 
with the traditional metamathematical inference 
rules which are fixed once for ali. Thus, an IIR 
can become not only as complex as possible but 
also as unique (individual) as possible. Such a 
principle enables the emerging of formulas, their 
informational development in the sense of infor­
mational spontaneity and circularity. 

7 Axioms of Informational 
Operand Decomposition 

Decomposition of informational operands (mar-
kers, formulas, formula systems) roots in particu-

• lar (particularized) inference rules by which infor­
mational items (parts, subformulas, informational 
frames, gestalts) are informationally adequately 
composed, added, connected [in]to existing for-
mal (symbolically identified) entities. 

An operand decomposition applies serialization 
(deconstruction) of formulas and their paralleliza-
tion according to some analytical criteria, enlar-
ging the initial formula system. The philosophy 
of an informational operand decomposition calls 
.for a separate exhaustive presentation since it is 

one of the main informational phenomena of infor­
mational arising in the sense of spontaneity and 
circularity. 

8 Axioms of Informational 
Operator Decomposition 

It is possible to make a distinction between the 
so-called operand decomposition and operator de­
composition. It depends from the view of the ob-
server which kind of decomposition will be prefer-
red in a čase of analytical investigation. In čase 
of operator decomposition we are primarily con-
fronted with the so-called informational frames, 
frame pairs or frame triplets (the left-, middle-
and the right-positioned frame) which constitute 
a certain operator decomposition. 

The advantage of operator decomposition lies 
in the independence of an operand position wi-
thin a formula. This means that between any 
two, arbitrarily positioned operands in a well-
structured formula, an adequate, in a decompo-
sing way structured frame, frame pair or frame 
triplet can be positioned. We have shown some 
characteristic possibilities of operator framing in 
[13]. 

Informational operator decomposition is a new 
discipline being not anchored in the traditional 
mathematics (metamathematics) or elsewhere. 
The philosophy of an informational operator de­
composition calls for an original and exhaustive 
analysis and discussion since it belongs to the 
main informational phenomena of informational 
particularization (and universalization) in the 
sense of spontaneity and circularity. 

9 Conclusion 

At the end, it is significant to stress that the key 
to a theoretical and machine-oriented usage lies 
in the axiomatization of the informational. There 
are stili some philosophical and formal-theoretical 
obstacles on the way to a well-formed axiomatiza-
tion, for instance, covering the axiomatic princi-
ples already known in metamathematics (see, for 
example, at [5, 8]). 

On the other hand, the contemporary infor­
mational mind is aware of the syllogistic, trivial, 
intuitive, tautological but also contradictory and 
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absurd nature of the mathematical art and phi-
losophy of axiomatization within metamathema-
tics. The author recommends the reading of La­
katos' papers (for instance, [6]). It becomes evi-
dent that there do not exist entirely (universally) 
axiomatized theories being completely free from 
contradiction and that problems as stated within 
the different fundamental mathematical programs 
have been set on an idealistic or Platonic gro-
und through the history from the ancient Greek 
era on. However, in spite of these philosophical 
faultinesses and deficiencies, man has constructed 
computing systems as successful tools in different 
areas of his methodology and technology. 

The tirne of sobering and disillusion has dawned 
much prior to the appearance of the consciousness 
of the informational. Thus, a general informati­
onal theory does not search anymore for an ide­
alistic (non-contradictory, decisive, algorithmic) 
systems of information. 

There are certainly substantial philosophical di-
fferences existing between metamathematics and 
GIT. For example, logical quantifiers V and 3 re-
duce in ordinary informational operators. Irre-
spective of their nature, verbs are treated as ope­
rators and the verb to exist has not a specific in­
formational advantage as in logic, where it is tre­
ated as a quantifying entity. In the informational, 
the verb to exist means to inform the existence of 
something informational and nothing else. 

The program of the informational axiomatiza-
tion continues into new directions and the discus-
sion shown in this article is merely a beginning. 
Finally, informational axioms have to be develo-
ped to a satisfactory step of recognition—enabling 
the general informational theory to become a solid 
fundament for the development of new informati­
onal (intelligent) methodologies, tools, calculuses, 
apparatuses, machines, etc. 
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IVEINDS AND MACHINES - Review essays discussing current problem si-
tuations will appear; 

Minds and Machines is a journal for artificial in-
telligence, philosophy, and cognitive science. The 
editor is James H. Fetzer and the book review 
editor is William J. Rapaport. The editorial bo-
ard members are: Jon Barwise, Andy Clarc, Ro­
bert Cummins, Fred Dretske, Jerry Fodor, Clarc 
Glymour, Stevan Harnad, John Haugeland, Jaa-
kko Hintikka, David Israel, Philip Johnson-Laird, 
Frank Keil, Henry Kyburg, John McCarthy, Do-
nald Nute, Zenon Pylyshyn, Barry Richards, Da­
vid Rumelhart, Roger C. Schank, John Searl, 
Brian Cantwell Smith, Paul Smolensky, Stephen 
Stich, and Terry "VVmograd. 

Minds and Machines is published in 4 issues 
a year and, in 1995, Volume 5 is on the way. 
Subscription priče, per volume is NLG 424 (or 
USD 221.50) including postage. Subscriptions 
should be sent to KLUWER ACADEMIC PUBLI-
SHERS GROUP, P.O. Box 322, 3300 AH Do-
RDRECHT, T H E NETHERLANDS, or at P.O. Box 
358, ACCORD STATION, HINGHAM, MA 02018-
0358, U.S.A., or to any subscription agent. Pri-
vate subscriptions should be sent direct to the pu-
blishers. A special rate is available. For more 
information, write to Professor James H. Moor, 
Department of Philosophy, 6035 Thornton Hali, 
Dartmouth College, Hanover, NH 03755-392, 
U.S.A. or e-mail to james.moor@dartmouth.edu. 

Aims and Scope 

Minds and Machines affords an international fo­
rum for discussion and debate of important and 
controversial issues concerning significant deve-
lopments within its areas ofeditorial focus. Well-
reasoned contributions from diverse theoretical 
perspectives are welcome and every efFort will be 
made to ensure their prompt publication. Among 
the features that are intended to make this jour­
nal distinctive within the field are these: 

— Strong stands on controversial issues are 
especially encouraged; 

— Important articles exceeding normal journal 
length may appear; 

— Special issues devoted to specific topics will 
be a regular feature; 

- Critical responses to previousb/ published pi-
eces are also invited. 

This journal is intended to foster a tradition of 
criticism within the Al and philosophical com-
munities on problems and issues of common con-
cern. Its scope explicitly encompasses philosophi­
cal aspects of computer science. Ali submissions 
will be subject to review. 

Information for Authors 

Four copies of the manuscript should be sent di-
rectly to the editor: James H. Fetzer, Department 
of Philosophy, University of Minnesota, 10 Uni-
versity Drive, Duluth, MN 55812, U.S.A. 

Use double spacing and leave wide margins. In-
clude^an abstract of 100-200 words and a list of 
key-words for use in indexing. 

The author receives two sets of first page proofs 
together with the manuscript. 25 offprints free 
of charge will be supplied. No page charges are 
levied on authors or their institutions. 

Consent to publish in this journal entails the 
author irrevocable and exclusive authorisation of 
the publisher to collect any sums or considerati-
ons for copying or reproduction payable by third 
parties. 

Microfilm and microfiche editions of this jour­
nal are available from University Microfilm Inter­
national, 300 North Zeeb Road, Ann Arbor, MI 
48106, U.S.A. 

Minds and Machines is surveved by Cur­
rent Contents, Information Technologv and the 
Lam, INSPEC, Psychological A bstracts, PsycLIT, 
PsycINFO online database, Computer Abstracts, 
Engineering Index, Ei Page One, Compendex 
Plus. 

A Look into the Journal 

For the reader, the first look into a journal may 
be essential and challenging. Such a look into No. 
3 (August 1994) discovers the following contents:. 
—CRITICAL EXCHANGE: Intentionality, Qualia, 
and Mind/Brain Identity (Paul Schweizer); Tho-
ught and Qualia (David Cole); 

mailto:james.moor@dartmouth.edu
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— G E N E R A L A R T I C L E S : The Secret Operations of 
the Mind (Saul Traiger); Representational Trajec-
tories in Connectionist Learning (Andy Clark); 
Can Computers Carry Content 'Inexplicitly'? 
(Paul G. Skokowski); 
— D I S C U S S I O N R E V I E W : James H. Fetzer, Philo-
sophy and Cognitive Science, in Jay L. Garfleld 
(ed.), Foundation of Cognitive Science: The Es-
sential Readings (Robert L. Causey); 
—BOOK R E V I E W S : Hubert L. Dreyfus, Being-in-
the-World: A Commentary on Heidegger's Be-
ing and Time (Beth Preston); Daniel C. Den-
net t , Consciousness Explained (Matthew Elton); 
Andy Clark, Microcognition: Philosophy, Cogni­
tive Science, and Parallel Distributed Processing 
(Michael Losonsky); Leonard Angel, How to Bu-
ild a Conscious Machine (Saul Traiger); Geoffrey 
Brown, Brains and Machines (Randall R. Di-
pert); David M. Rosenthal (ed.), The Nature of 
Mind (Jerome A. Shaffer). 

Citat ions from Minds and Machines 

Let us show some interesting citations from Minds 
and Machines, vol. 4 (1994), No.3, for the readers 
of Informatica. 

—(259, P. Schweizer) The two most important di-
stinguishing characteristics of the mind are often 
taken to be intentionality and the experience of 
subjective presentation or 'qualia'. Genuine co­
gnitive states are purported to possess a unique 
and intrinsic property of 'aboutness ' or 'directe-
dness', and, in the tradition of Brentano, this in-
tentional aspect is held to be of central impor-
tance in distinguishing the mental from the non-
mental. 

—(265, P. Schweizer) Subjective experience su-
pplies the starting point from which the objective 
principles of science are gradually inferred, and 
the resulting system of inferred principles is not 
a sufficient basis from which to move in the re-
verse direction and deduce the nature of subjec­
tive experience. Only sentences are deducible wi-
thin the framework of a scientific/mathematical 
formalism, and the formalism alone cannot yield 
an interpretation of these sentences. 

—(293, D. Cole) The qualia are the internal re-
presentations. Ali of their phenomenal properties, 
the subjective character of the experience of thin-

king a thought, may be accounted for by the func-
tional role of the linguistic representation. But it 
is not primarily the semantic representation that 
is important here. It is the qualitative represen­
tation. 

—(300-301, D. Cole) Computationalists such as 
myself take qualia seriously. Having qualia is in-
formation processing. So having qualia is not epi-
phenomenal; it is essential for human mentality. 
It is required to account for human behavior. It 
seems to me that other accounts either t reat ha­
ving qualia as epiphenomenal or head off towards 
a mysterious dualism. Having qualia is a brain 
process, but it cannot perspicuously be under-
stood at the neural level—one can't see why there 
are qualia, even given a complete neurophysiolo-
gical description of their activity (Leibniz's Mili). 

—(303, P. Traiger) It is a common practice among 
philosopher of psychology to trace the origins of 
functionalism, and cognitive science more gene-
rally, to texts deep within the history of philoso-
phy. Plato, for example, is described by Hubert 
Dreyfus as a "knowledge engineer" for the view 
he develops in the Euthgphro of expertise as the 
mastery of explicit rules and for the doctrine of 
recollection in the Mono ... 

—(319, A. Clark) One way of solving a learning 
problem is, in effect, to give up on it. Thus it 
could be argued that certain features are simply 
unlearnable, by connectionist means, on the basis 
of certain bodies of training data . . . 

—(369, M. Elton) . . . i f you take čare of inten-
tionality, consciousness will take čare of itself. 
. . . Arguments for reducing the problem of con­
sciousness to the problem of intentionality would 
be of interest to the many philosophers who have 
claimed that the phenomenon of consciousness is 
a special challenge for functionalist theories of 
mind. 

The undersigned believes that information con-
cerning Minds and Machines is instructive for the 
readers and authors of Informatica in the sense of 
a journal aims, scope, possibilities, and contents 
which concern philosophy, Al, computer science, 
and information technology. 

A.P. Zeleznikar 
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First Call for Papers 

The Eighth Australian Joint Conference on Artificial Intelligence (AF95) 
13 - 17 November 1995 

Hosted by 
Department of Computer Science 
Universitv College, The University of New South Wales 
Australian Defence Force Academy, Canberra, ACT 2600, Australia 

About AI'95 

AI'95 is the Eighth Australian Joint Conference 
on--Artificial Intelligence. The last two conferen­
ces were held in Melbourne, Victoria (AF93), and 
Armidale, New South Wales (AI'94). This an-
nual conference is the largest Australian Al con­
ference and also at t racts many overseas partici-
pants. Over 45% of submitted papers to AI'93 
and AI'94 came from overseas. The proceedings 
of previous conferences were published by World 
Scientific Publishing Co. Ltd. 

The main theme of AI'95 is "bridging the gaps" 
i.e., bridging the gap between the classical symbo-
lic approach and other subsymbolic approaches, 
such as artificial neural networks, evolutionary 
computation and artificial life, to Al, and brid­
ging the gap between the Al theory and real world 
apphcations. The goals of the conference are to 
promote cross-fertilisation among different appro­
aches to Al and provide a common forum for both 
researchers and practitioners in the Al held to 
exchange new ideas and share their experience. 
Tutorials and workshops on various topics of Al 
will be organised before the main conference. A 
separate call for proposals for tutorials and wor-
kshops will be distributed. 

Paper Submission 

Authors are invited to submit papers describing 
both theoretical and practical work in any areas of 
artificial intelligence. (Papers accepted or under 
review by other conferences or journals are not 
acceptable.) Topics of interest include, but are 
not limited to: 
Adaptive Behaviours 
Artificial Life 
Artificial Intelligence Applications 

Automated Reasoning 
Aiitonomous Intelligent Systems 
Bayesian and Statistical Learning Methods "' 
Cognitive Modelling Computer Vision 
Distributed Artificial Intelligence 
Evolutionary Learning 
Evolutionary Optimisation 
Fuzzy Systems 
Group Decision Support Systems 
Hybrid Systems 
Image Analysis and Understanding 
Intelligent Decision Support Systems 
Knowledge Acquisition 
Knowledge-Based Systems 
Knowledge Representation 
Machine Learning 
Natural Language Processing 
Neural Networks 
Pattern Recognition 
Philosophy of Al Planning and Scheduling 
Robotics 
Speech Recognition 

Five hard copies of the completed paper must 
be received by the conference programme commit-
tee chair before or on 9 J u n e 1994. Fax and 
electronic submission are not acceptable. Papers 
received after 9 June 1994 will be returned uno-
pened. A best š tudent paper award will be 
given at the conference. The first author of the 
paper must be a full-time študent, e.g., a PhD, 
MSc, or Honours študent. A letter from the head 
of the s tudenfs department, confirming the sta­
tus of the študent, must be submitted along with 
the paper in order to be considered for the best 
študent paper award. The award includes a $200 
cheque and a certificate issued by the AI'95 Pro­
gramme Committee. Send ali paper submissions 
to: 
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Dr X. Yao 
AI'95 Programme Committee Chair 
Department of Computer Science 
Universitv College, 
The University of New South Wales 
Australian Defence Force Academy 
Canberra, ACT 2600, Australia 
Email: xin@csadfa.cs.adfa.oz.au 
Phone: +61 6 268 8819 
Fax: +61 6 268 8581 

Preparation of Manuscript 

Ali five hard copies must be printed on 8.5 X 11 
(inch2) or A4 paper using 12 point Times. The 
left and right margin should be 25mm each. The 
top and bottom margin should be 35mm each. 
Each submitted paper must have a separate ti­
tle page and a body. The title page must include 
a title, a 300 — 400 word abstract, a list of key-
words, the names and addresses of ali authors, 
their email addresses, and their telephone and fax 
numbers. The body must also include the title 
and abstract, but the author information must be 
excluded. The length of submitted papers (exclu-
ding the title page) must be no more than 8 single-
spaced, single-column pages including ali figures, 
tables, and bibliography. Papers not conforming 
to the above requirements may be rejected wi-
thout review. 

Programme Committee 

Dr. Xin Yao (Chair), UNSW/ADFA 
Prof. Zeungnam Bien, KAIST, Korea 
Mr. Phil Collier, University of Tasmania 
A/Prof. Paul Compton, UNSW 
Dr. Terry Dartnall, Griffith University 
Prof. John Debenham, University of Technology, 
Sydney 
Dr. David Dowe, Monash University 
Dr. David Fogel, Natural Selection, Inc., USA 
A/Prof. Norman Foo, University of Sydney 
A/Prof. Matjaž Gams, Jožef Štefan Institute, 
Slovenia 
Prof. Ray Jarvis, Monash University 
A/Prof. Jong-Hwan Kim, KAIST, Korea 
Prof. Guo-Jie Li, NCIC, PRC 
Dr. Dickson Lukose, University of New England 
Dr. Bob McKay, UNSW/ADFA 

Prof. Zbigniew Michalewicz, UNC-Charlotte, 
USA 
Mr. Chris Rowles, Telecom Research Laborato­
ries 
Dr. John Slaney, Australian National University 
Prof. Rodney Topor, Griffith University 
Dr. Chi Ping Tsang, University of Western Au­
stralia 
Dr. Olivier de Vel, James Cook University of 
North Queensland 
Dr. Geoff Webb, Deakin University 
Dr. Wilson Wen, Telecom Research Laboratories 
A/Prof. Kit Po Wong, University of Western Au­
stralia 
Dr. Chengqi Zhang, University of New England 

Organising Committee 

Dr. Bob McKay (Chair), UNSW/ADFA 
Dr. Jennie Clothier, Defence Science and Tech-
nology Organisation 
Dr. Richard Daviš, Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) 
Mr. Warwick Graco, Health Insurance Commis-
sion 
Dr. Tu Van Le, University of Canberra 
Mr. John 0'Neill, Defence Science and Techno-
logy Organisation 
Mr. Peter Whigham, UNSW/ADFA 
Dr. Graham Williams, CSIRO 
Dr. Xin Yao, UNSW/ADFA 

Conference Location 

AF95 will be held at ADFA (Australian Defence 
Force Academy) in Canberra, the capital city of 
Australia. ADFA is located less than 5km from 
the CBD of Canberra. 

Proposal Submission 

Tutorials on various Al related topics will be or-
ganised on 13 and 14 November 1995 in paral-
lel with pre-conference workshops. The length of 
each tutorial is 3 hours. Proposals dealing with 
any Al related topics are solicited. Application-
oriented tutorials are particularly welcome, espe-

mailto:xin@csadfa.cs.adfa.oz.au
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cially those relating to topics of interest to Can-
berra's large administrative sector. Topics of in­
terest include, but are not limited to: 

Three hard copies of the tutorial proposal must 
be received by the tutorial/workshop coordinator 
at the following address before or on 7 April 
1995. 

Dr. J. R. Daviš 
AI'95 Tutorial/Workshop Coordinator 
CSIRO Division of Water Resources 
P 0 Box 1666 
Canberra City 2601, Australia 
Email: r i c h a r d d @ c b r . d w r . c s i r o . a u 
Phone: +61 6 246 5706 
Fax: + 6 1 6 246 5800 

Further Information 

Further information about AI'95 can be obtained 
by emailing the following address (preferred): 

ai95@adfa .edu .au 

or by contacting the organising committee chair 
Dr. Bob McKay at the following address: 

Dr Bob McKay 
AI'95 Organising Committee Chair 
Department of Computer Science 
University College, The University of New South 
Wales 
Australian Defence Force Academy 
Canberra, ACT 2600, Australia 
Email: r im@csadfa .cs .adfa .oz .au 
Phone: +61 6 268 8169 
Fax: +61 6 268 8581 

Workshop Proposal Submission 

AI'95 continues the tradition of organising high 
standard pre-conference workshops. Some of pre-
vious workshops have resulted in either journal 
special issues or published proceedings. However, 
workshops which focus on informal talks and di-
scussions are equally welcome. We invite poten-
tial workshop organisers to submit their proposals 
for pre-conference workshops to AF95. The wor-
kshop organisers are only responsible for technical 
issues such as sending out their CFPs , reviewing 
submitted papers, inviting speakers, and prepa-
ring the programme. The conference organising 

committee will look after aH the organisational 
issues such as venue booking, registration, accom-
modation, etc. 

Ali workshops will be held on 13 and 14 Novem­
ber 1995 in parallel with tutorials. The length of 
a workshop should be at least half a day and at 
most two days. Three copies of the proposal must 
be received by the tutorial/workshop coordinator 
Dr. J.R. Daviš before or on 7 Apri l 1995. 

Important Dates 

7 Apri l 1995 Deadline for VVorkshop Proposals. 
5 M a y 1995 Notification of Proposal Accep-
tance. 
9 June 1995 Deadline for Paper Submission. 
21 July 1995 Notification of Acceptance. 
18 Augus t 1995 Camera Ready Copy. 
9 October 1995 Camera Ready Copy of Wor-
kshop Papers. 
1 3 - 1 4 N o v e m b e r 1995 Tutorials/Workshops. 
15—17 N o v e m b e r 1995 Conference Sessions. 

mailto:richardd@cbr.dwr.csiro.au
mailto:ai95@adfa.edu.au
mailto:rim@csadfa.cs.adfa.oz.au
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This is the 2nd Call For Papers for a special journal issue of INFORMATICA on the topic: 

MIND <> COMPUTER 
[i.e. Mind NOT EQUAL Computer] 

In this special issue we want to reevaluate the 
soundness of current Al research positions (espe-
cially the heavily disputed strong-AI paradigm) as 
well as pursue new directions aimed at achieving 
true intelligence. This is a brainstorming special 
issue about core ideas tha t will shape future AL 
We are interested in critical papers representing 
ali positions on the issues. 

The first part of this special issue will be a small 
number of invited papers, including papers by Wi-
nograd, Dreyfus, Michie, McDermott, Agre, Te-
cuci etc. Here we are soliciting additional papers 
on the topic. 

TOPICS: Papers are invited in ali subareas and 
on ali aspects of the above topic, especially on: 

— the current state, positions, and advance-
ments achieved in the last 5 years in parti-
cular subfields of Al, 

— the trends, perspectives and foundations of 
natural and artificial intelligence, 

— strong Al versus weak Al and the reality of 
most current "tvpical" publications in Al, 

— new directions in AL 

TIME TABLE AND CONTACTS: Papers in 5 
hard copies should be received by May 15, 1995 
at one of the following addresses (please, no e-
mail/FAX submissions): 

North & South America: 
Marcin Paprzycki 
paprzycki_m@gusher .pb .u texas .edu 
Department of Mathematics and 
Computer Science ~ 
University of Texas of the Permian Basin 
Odessa, TX 79762, USA 

Asia, Australia: 
Xindong Wu 
x indong@insec t . sd .monash . edu .au 
Department of Software Development, 
Monash University 
Melbourne, VIC 3145, Australia 

Europe, Africa: 
Matjaž Gams 
m a t j a z . g a m s O i j s . s i 
Jožef Štefan Institute, Jamova 39 
61000 Slovenia, Europe 

E-mail information about the special issue is 
available from the above 3 contact editors. 

The special issue will be published in late 1995. 

FORMAT AND REVIEWING PROCESS: Pa­
pers should not exceed 8,000 vvords (including fi-
gures and tables but excluding references. A full 
page figure should be counted as 500 words). Ide-
ally 5,000 words are desirable. 

Each paper will be refereed by at least two ano-
nymous referees outside the author 's country and 
by an appropriate subset of the program commit-
tee. 

When accepted, the authors will be asked to 
transform their manuscripts into the Informatica 
]$TEX style (available from f t p . a r n e s . s i ; direc-
tory / m a g a z i n e s / i n f o r m a t i c a ) . 

More information about Informatica and the 
Special Issue can be accessed through URL: 
f t p : / / f t p . a r n e s . s i / m a g a z i n e s / i n f o r m a t i c a . 

mailto:xindong@insect.sd.monash.edu.au
ftp://ftp.arnes.si
ftp://ftp.arnes.si/magazines/informatica
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Call For Papers: KDD-95 
The First International Conference on Knowledge Discovery and 
Data Mining 

Knowledge Discovery in Databases (KDD) and 
Data Mining are areas of common interest to re-
searchers in machine learning, machine discovery, 
statistics, intelligent databases, knowledge acqui-
sition, da ta visualization, high performance com-
puting, and expert systems. The rapid growth 
of data and information created a need and an 
opportunity for extracting knowledge from data­
bases, and both researchers and application deve-
lopers have been responding to that need. KDD 
applications have been developed for astronomy, 
biology, finance, insurance, marketing, medicine, 
and many other fields. Core Problems in KDD 
include representation issues, search complexity, 
the use of prior knowledge, statistical inference, 
and algorithms for the analysis of massive amo-
unts of da ta both in size and dimensionality. 

Due to strong demand for participation and the 
growing demand for formal proceedings, it has be-
come necessary to change the format of the pre-
vious KDD workshops to a conference with open 
attendance. This conference will continue in the 
tradition of the 1989, 1991, 1993, and 1994 KDD 
workshops by bringing together researchers and 
application developers from different areas, and 
focusing on unifying themes such as the use of 
domain knowledge, managing uncertainty, inte-
ractive (human-oriented) presentation, and appli­
cations. The topics of interest include: 

— Foundational Issues and Core problems in KDD 

— Database Mining Tools and Applications 
— Computationally Efficient Search for Structure in 

Data 
— Interactive Data Exploration and Discovery 
— Knowledge Representation Issues in KDD 
— Data and Knowledge Visualization 

— Data and Dimensionality Reduction 

— Prior Domain Knowledge and Re-use of Discove-
red Knowledge 

— Statistical and Probabilistic Aspects of KDD 

— Dependency Models and Inference 
— Machine Learning/D iscovery Algorithms for 

Large Databases 

— Managing Model Selection and Model Uncerta-
inty 

— Assessment of Model Predictive Performance 
— Integrated Discovery Systems and Theories 
— Parallel techniques for data management and se­

arch 
— Security and Privacy Issues in Machine Discovery 

This list of topics is not intended to be exhau-
stive but an indication of typical topics of interest. 
Prospective authors are encouraged to submit pa­
pers on any topics of relevance to Knowledge Di-
scovery and Data Mining. We also invite working 
demonstrations of discovery systems. The confe­
rence program will include invited talks, a demo 
and poster session, and panel discussions. Active 
discussion format will be encouraged to maintain 
the v/orkshop feel that previous participants fo-
und valuable and constructive. The conference 
proceedings will be published by AAAI. As in pre­
vious KDD Workshops, a selected set of KDD-95 
papers will be considered for publication in Jour­
nal special issues and as chapters in a book. 

Please submit 5 *hardcopies* of a short paper 
(a maximum of 9 single-spaced pages not inclu-
ding cover page but including bibliography, 1 inch 
margins, and 12pt font) by March 3, 1995. A 
cover page must include author(s) full address, 
E-MAIL, a 200 word abstract, and up to 5 key-
words. This cover page must accompany the 
paper. IN ADDITION, an electronic version of 
the cover page MUST BE SENT BY E-MAIL to 
kdd95@aig.jpl.nasa.gov by March 3, 1995. 

Please mail the papers to : 
KDD-95 
AAAI 
445 Burgess Drive 
Menlo Park, CA 94025-3496 
U.S.A. 

send e-mail queries regarding submissions logi-
stics to: kdd@aaai.org 

Important D a t e s 
Submissions Due: March 3, 1995 
Acceptance Notice: April 10, 1995 
Camera-ready paper due: May 12, 1995 

Conference Co-Chairs: 

Usama M. Fayyad (Jet Propulsion Lab, Califor-
nia Institute of Technology) 

mailto:kdd95@aig.jpl.nasa.gov
mailto:kdd@aaai.org
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Ramasamy Uthurusamy (General Motors Rese­
arch Laboratories) 
Program Committee 

Rakesh Agrawal (IBM Almaden Research Center, USA) 

Tej Anand (AT&T Global Information Solutions, USA) 

Ron Brachman (AT&T Bell Laboratories, USA) 

Leo Breiman (University of California, Berkeley, USA) 

Wray Buntine (NASA AMES Research Center, USA) 

Peter Cheeseman (NASA AMES Research Center, USA) 

Greg Cooper (University of Pittsburgh, USA) 

Brian Gaines (University of Calgary, Canada) 

Clark Glymour (Carnegie-Mellon University, USA) 

David Heckerman (Microsoft Corporation, USA) 

Se June Hong (IBM T. J. Watson Research Center, USA) 

Larry Jackel (ATfcT Bell Labs, USA) 

Larry Kerschberg (George Mason University, USA) 

Willi Kloesgen (GMD, Germanv) 

David Madigan (University of Washington, USA) 

Chris Matheus (GTE Laboratories, USA) 

Heikki Mannila (University of Helsinki, Finland) 

Gregory Piatetsky-Shapiro (GTE Laboratories, USA) 

Daryl Pregibon (AT&T Bell Laboratories, USA) 

Arno Siebes (CWI, Netherlands) 

Evangelos Simoudis (Lockheed Research Center, USA) 

Andrzej Skowron (University of Warsaw, Poland) 

Padhraic Smyth (Jet Propulsion Laboratory, USA) 

Alex Tuzhilin (NYU Sloan School, USA) 

Xindong Wu (Monash Universitv, Australia) 

Wojciech Ziarko (University of Regina, Canada) 

Jan Zytkow (Wichita State University, USA) 

Publicity Chair: 

Padhraic Smyth, Jet Propulsion Laboratory 

Industry Liason: 

Gregory Piatetsky-Shapiro, GTE Laboratories 

Usama M. Fayyad 
Machine Learning Systems Group 
Jet Propulsion Lab M/S 525-3660 
California Institute of Technology 
Pasadena, CA 91109 
U.S.A. 
(+1 818) 306-6197 Phone 
( + 1 818) 306-6912 FAX 

Ramasamy Uthurusamy 
Computer Science Department, AP/50 
General Motors Research, Bldg 1-6 
30500 Mound Road, Box 9055 
Warren, MI 48090-9055 
U.S.A. 
( + 1 810) 986-1989 Phone 
( + 1 810) 986-9356 Fax 

Please send KDD-95 Publicity and related 
inguiries to: 

Padhraic Srnyth (KDD-95) 
Email: kdd95@aig.jpl.nasa.gov 

Jet Propulsion Laboratory 
California Insti tute of Technology 
4800 Oak Grove Drive 
Pasadena, CA 91109 U.S.A. 
Phone: (+1 818) 306-6422 
Fax: ( + 1 818) 306-6912 

Contact Information 

Please send KDD-95 conference registration and 
related inquiries to: 

KDD-95 
American Association for Artificial Intelligence 

(AAAI) 
445 Burgess Drive Menlo Park 
CA 94025-3496, U.S.A. 
Phone: (+1 415) 328-3123; 
Fax: (+1 415) 321-4457 
Email: kdd@aaai.org 

Please send technical program related gueries to 
Program Co-Chairs: 
(Email: kdd95@aig.jpl.nasa.gov) 

Inguiries about KDD-95 sponsorship and 
industry participation to: 

Gregory Piatetsky-Shapiro 
GTE Laboratories, MS-45 
40 Sylvan Road 
Waltham MA 02154-1120 USA 
e-mail: gps@gte.com 
tel: 617-466-4236 
fax: 617-466-2960 
URL: http: / / info.gte.com/ kdd/ 

mailto:kdd95@aig.jpl.nasa.gov
mailto:kdd@aaai.org
mailto:kdd95@aig.jpl.nasa.gov
mailto:gps@gte.com
http://info.gte.com/
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CALL FOR PAPERS 
International Conference on Software Quality 

ICSQ '95 
November, 6 - 9 1995 

Maribor, Slovenia 

Organised by: 
University of Maribor 
Faculty of Electrical Engineering and Computer 
Science, 
Faculty of Business and Economics, 
Slovenia Section IEEE, 
Association of Economics Maribor, 
Slovene Society Informatika 

Objectives 

The aim of ICSQ '95 is to provide a platform for 
technology and knowledge transfer between aca-
demia, industry and research institutions in the 
software quality fleld, by: 

— the introduction and discussion new research 
results in software quality, 

— offering the practising quality engineers an 
insight into the results of ongoing research, 

— acquainting the research community with the 
problems of practical application. 

Topics 

Some important topics for the Conference include, 
but are not limited to the following: 

— quality management systems (QMS), 

— metrics, 

— process improvement, 

— risk Management, 

— methodologies, 

— verification & validation methods, 

— quality planning, 

- QMS tools, 

- total quality management (TQM), 

- audits systems, 

- human factors in quality management, 

- standards. 

Instructions for Authors 

Four copies (in English) of the original work, not 
longer than 4000 words (10 pages), should be sub-
mitted to the Scientific Conference Secretariat be-
fore May 15th, 1995. Papers should include a ti-
tle, a short abstract and a list of keywords, the 
author's name, address and title should be on a 
separate page. Ali papers received will be refereed 
by the International Program Committee. The 
accepted papers will be published in the Confe­
rence Proceedings and will be available to the de-
legates at the tirne of registration. The language 
of the conference will be English. 

Important Dates 

May 15th, 1995 Full paper 
June 30th, 1995 Notification of final acceptance 
October l s t , 1995 Camera Ready Copy 

Conference Location 

The town Maribor was founded in the 12th cen-
tury. Today it is the second largest town of Slo­
venia, located in its North, close to the Austrian 
border. Many businessmen and tourists enjoy the 
variety of cultural, sports and gastronomic pos-
sibilities of the town. Maribor is surrounded by 
vineyards and has one of the largest wine-cellars 
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in this part of Europe. Maribor is easily accessi-
ble by international air lines from the airport of 
Brnik (Slovenia) and from Graz (Austria). 

Conference Organisation 
Organising Chairperson: 
Marjan Pivka 
Faculty of Business and Economics 
Razlagova 14, Maribor 62000 
Slovenia 
Tel.: +386 62 224 611 
Fax.: +386 62 227 056 
Email: pivka@uni-mb.si 
Programme Chairperson: 
Ivan Rozman 
Faculty of Electrical Engineering and Computer 
Science 
Smetanova 17, Maribor 62000 
Slovenia 
Tel.: +386 62 25 461, +386 62 221 112 
Fax: +386 62 227 056 
Email: i.rozman@uni-mb.si 
Conference Secretariat: 
Miss Cvetka Rogina 
Association of Economics Maribor 
Cafova ulica 7, 62000 Maribor 
Slovenia 
Tel.: +386 62 211 940 
Fax.: +386 62 211 940 

Machine Learning List 
The Machine Learning List is moderated. Con-
tributions should be relevant to the scientific 
study of machine learning. Mail contributi-
ons to ml@ics.uci.edu. Mail requests to be 
added or deleted to ml-request@ics.uci.edu. 
Back issues may be FTP'd from i c s . uc i . edu 
in pub /ml - l i s t /V<X>/<N> or N.Z where X 
and N are the volume and number of the is-
sue; ID: anonymous PASSWORD: <your mail 
address> URL- h t tp : / /www. ics .uc i . edu /AI / -
ML/Machine-Learning.html 

Programme Committee 
Boris I. Cogan, Institute for Automation and 
Control, Vladivostok (Russia) 
Saša Dekleva, DePaul University (USA) 
Matjaž Gams, J. Štefan Institute, Ljubljana (Slo­
venia) 
Hannu Jaakkola, Tampere University of Techno-
logy (Finland) 
Marjan Pivka, University of Maribor (Slovenia) 
Heinrich C. Maver, University of Klagenfurt (Au­
stria) 
Erich Ortner, University of Konstanz (Germany) 
Ivan Rozman, University of Maribor (Slovenia) 
Franc Solina, University of Ljubljana (Slovenia) 
Stanislaw Wrycza, University of Gdansk (Poland) 
Jože Zupančič, University of Maribor (Slovenia) 

mailto:pivka@uni-mb.si
mailto:i.rozman@uni-mb.si
mailto:ml@ics.uci.edu
mailto:ml-request@ics.uci.edu
http://ics.uci.edu
http://www.ics.uci.edu/AI/-
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The Fourteenth International Conference on 
Object-Oriented & Entity Relationship Modelling 
(Formerly the Entity-Relationship Conference) 
Application of Entity-Relationship &; Object-Oriented Technology to 
Information Systems Modelling. 
December 13-15, 1995 
Bond University, Gold Coast, Queensland, 
Australia 

The Conference 

The objective of the Object-Oriented Entity-
Relationship ( 0 - 0 ER) Conference is is to pro-
vide a forum for researchers and practitioners in 
the area of conceptual modelling to interact, pre-
sent existing results and explore directions that 
will affect the current and future generation of 
information systems. 

The conference has been renamed to encom-
pass current technological thrusts and directions 
in the area of conceptual modelling and to provide 
a broader forum for researchers and practitioners 
to exchange ideas and report on progress. 

This year's theme will be dedicated to the 
Application of Object-Oriented/Entity-Relation-
ship Technologies to Information Systems Model­
ling. 

The Entity-Relationship approach has been 
extensively used in many database systejn and in­
formation system design methodologies. Recen-
tly, Object-Oriented Technology has drawn tre-
mendous interest not only from the research com-
munity but it has also moved into mainstream 
industrial software design and development. 

The 0 - 0 ER conference provides an opportu-
nity towards integrating these two technologies 
and opens new opportunities for modelling by 
promoting better understanding of applications, 
cleaner design practices, more updatable and ma-
intainable systems and provides a basis for re-
using and retrofitting existing systems and tech-
nology. 

The topic of the conference is of tremendous 
interest to both academia and industry and one 
where technological advances in conceptual mo­
delling can have a profound impact on how or-
ganisations will model and meet future business 

objectives and čope with an evolving technology. 

Topics of Interest (not l imited to:) 

Original papers are solicited on, and should cle-
arly emphasize, describe the role of modelling 
tools and methodologies based on the 0 - 0 and /or 
ER approaches. The topics of interest include: 

Integrating the ER & 0 - 0 technologies, Com-
paring the power and methodologies of 0 - 0 and 
ER modelling, Design Methodologies for Object-
Oriented Information Systems, Re-Engineering of 
Database Systems, Business Process Modelling, 
Enterprise Modelling, Active Databases, Wor-
kflows & Flexible Transaction Models, Inteili-
gent Object-Oriented Systems, View Mechani-
sms, Object Dynamics, Temporal Databases, Ge-
ographic Information Systems, Secure Databases, 
Schema evolution, Interoperable Information Sy-
stems, Object-oriented Multi-media Databases, 
Advanced Query Interfaces, ČASE Environments, 
Expert Systems and Apphcations. 

For the purposes of 0 - 0 ER'95 modelling will 
be considered in a broad sense and can cover any 
theoretical as well as practical issue. Practitio­
n e r s papers reporting on actual experience are 
particularly welcome and will be reviewed in a 
separate category. 

Information for Authors 

Five copies of original and compelling unpubli-
shed papers up to 5000 words tha t are not under 
consideration for publication elsev/here during the 
reviewing period should be sent to the Program 
Committee Chair. Submissions must include con-
tact information (contact name, postal and e-mail 
address, and phone number), a 100-word abstract , 
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and explicitly indicate the paper area. 
The edited proceedings of 0 -0 ER'95 will be 

published by Springer-Verlag as part of the Lec-
ture Notes in Computer Science (LNCS) series. 

Important Dates 

Paper, Tutorial & Panel Submission: 21 April, 
1995. 
Notification of Acceptance: 26 June, 1995. 
Camera Ready Papers due: 27 August, 1995. 

General Conference Chair 

Fred Lochovsky, 
Dept. of Computer Science, 
Hong-Kong Univ. of Science & Technology, 
Clear Water Bay, 
Kawloon, 
Hong-Kong 
tel. +852- 358-6996 
fax. +852- 358-1477 
e-mail: fred@cs .us t .hk 

Program C o m m i t t e e Chair 

Mike Papazoglou, 
Queensland Univ. of Technology, 
School of Information Svstems, 
GPO Box 2434, 
Brisbane 4001, 
Australia 
tel. +61-7-864 1972, 
fax. nr. +61-7-864 1969. 
e-mail: mikep@icis.qut.edu.au 

Organizing Chair 

Zahir Tari 
Queensland Univ. of Technology, 
School of Information Systems, 
GPO Box 2434, 
Brisbane 4001, 
Australia 
tel. +61-7-864 1945, 
fax. nr. +61-7-864 1969. 
e-mail: zah i r t@ic is .qu t .edu .au 

Tutorial Chair 

Makoto Takizawa (Tokyo Denki Univ.) 

Panel Chair 

Leszek Maciaszek (Macquarie Univ., Sydney) 

Program C o m m i t t e e 

Peter Apers (Twente Univ., Holland), Janis Bu-
benko (SISU, Sweden), Athman Bouguettaya 
(QUT, Australia), Tiziana Catarci (Univ. of 
Rome, Italy), Sang Cha (Seoul National Univer-
sity, Korea), Chin-Wan Chung (KAIST, Korea), 
David Edmond (QUT, Australia), Ramez ElMa-
sri (Univ. of Texas, Arlington, USA), Opher Et-
zion (Technion, Israel), Joseph Fong (City Po-
lytechnic of Hong-Kong), Terry Halpin (Univ. of 
Queensland, Australia), Jean-Luc Hainaut (Univ. 
of Namur, Belgium), Igor Hawryszkiewycz (Univ. 
of Technology, Sydney), Yahiko Kambayashi (Ko-
yoto Univ., Japan), Dimitris Karagiannis (Univ. 
of Vienna, Austria), Roger King (Univ. of Co-
lorado, USA), Qing Li (HKUST, Hong-Kong), 
Tok Wang Ling (NUS, Singapore), Peri Louco-
poulos (UMIST, UK), Robert Meersman (Univ. 
of Tilburg, Holland), John Mylopoulos (Univ. 
of Toronto, Canada), Erich Neuhold (GMD-
IPSI, Germany), Anne Ngu (UNSW, Australia), 
Oscar Nierstrasz (Bern Univ., Switzerland), Ma-
rian Nodine (Brown Univ., USA), Christine Pa-
rent (Univ. of Burgundy, France), Niki Pissinou 
(Univ. of SouthWestern Louisiana, USA), Sudha 
Ram (Univ. of Arizona, USA), Gunter Schlage-
ter (Fern Univ. Hagen, Germany), Arie Segev 
(Berkeley Univ., USA), Graeme Shanks (Monash 
Univ., Australia), Amit Sheth (Univ. of Geor-
gia, USA), Arne Solvberg (Univ. of Trondheim, 
Norway), Stefano Spaccapietra (EPFL, Switzer-
land), A. Min Tjoa (Technical Univ. of Vienna, 
Austria), Kazumasa Yokota (ICOT, Japan), Kyu 
Whang (KIST, Korea), Carson Woo (Univ. of 
British Columbia), John Zeleznikow (La Trobe 
Univ., Australia) 

mailto:mikep@icis.qut.edu.au
mailto:zahirt@icis.qut.edu.au
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3rd International Conference on 
Computer Aided Engineering Education 

Slovak Technical University in Bratislava 
Facultv of Electrical Engineering and Information Technologv 

13 - 15 September 1995 
Bratislava, Slovakia 

Introduct ion Organizer of the conference 

The International Conference on Computer Ai­
ded Engineering Education CAEE'95 is the 3rd 
in the series of biennial CAEE conferences. It 
follows CAEE'91 in Prague and CAEE'93 in Bu-
charest, and also the conferences on Computer 
Aided Learning and Instruction in SCience and 
Engineering CALISCE'91 held in Lausanne and 
CALISCE'94 in Pariš. Since 1994, the conferences 
CAEE and CALISCE have been twinned and are 
organized alternateb/. The aim of the Conference 
is to bring together people involved in the theory, 
design and exploitation of Computer Aided Lear­
ning/ Instruction methods and tools (CAL, CAI, 
multimedia, simulations) in learning of fundamen-
tal and technical sciences. The aspiration of the 
Conference is to promote existing hardware and 
software products, to encourage mutual exchange 
of expertise in higher scientific and technical edu­
cation, and to create an opportunity for establi-
shing new professional contacts. 

Scopes of the conference 

The scopes of the Conference include the theory 
of educational and learning software, which opens 
new ways towards more efficient interactions be-
tween students and computers, mainly through 
the use of multimedia and hypermedia. Much at-
tention will be paid to the development of new 
educational software (courseware) and to its bet-
ter and more productive exploitation. Finally, 
experience will be exchanged and practical train­
ing methods will be discussed and/or demonstra-
ted, particularly those based on modelling and 
simulation. 

The Conference is organized by the Slovak Tech­
nical University (STU) in Bratislava. The main 
mission of STU is to provide a broad spectrum 
and various forms of technical education by uni-
fying the educational and research activities. At 
the same time, STU is one of the most important 
centres of science, fundamental and applied rese­
arch in Slovakia. The Conference will be held in 
the premises of the Faculty of Electrical Enginee­
ring and Information Technology. 

The Conference is organized in co-operation 
with Apple Computer, Sweden. 

Scientific programme 

The invited lectures will be given by internati-
onally renowned experts in currently important 
topics. 

The preliminary list of invited speakers inclu-
des: 
A. DRESLING (Aalborg Universitv, Denmark) 
E. FORTE (EPFL Lausanne, Switzerland) 
P. J. HICKS (UMIST Manchester, UK) 
M. F. ISKANDER (University of Utah, USA) 
J. KORVINK (ETH Zurich, Switzerland) 
J. de SOUSA PIRES (Apple Computer, 
Stockholm, Sweden). 

The scope of the Conference is very wide and 
it is assumed that the presented lectures will con-
tribute to the development of education in nume-
rous branches of science. Nevertheless, particular 
attention will be paid to electronics, electrical en­
gineering and information technology. The pro­
gramme of the Conference will be divided into 
parallel sections, in accordance with discussed to­
pics. Sufncient space will be given to presen-
tations of new software, practical training, and 
exchange of software tools for educational purpo-
ses. 
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International programme commit t ee 

J. BREZA (STU Bratislava, Slovakia) 
I. F. de CASTRO (University of S. Sebastian, 
Spain) 
M. CHRZANOWSKI (Polvtechnic Krakow, Po-
land) 
F. de COULON (EPFL Lausanne, Switzerland) 
J. L. DESSALLES (Telecom Pariš, France) 
D. DONOVAL (STU Bratislava, Slovakia) 
E. FORTE (EPFL Lausanne, Switzerland) 
N. FRISTACKY (STU Bratislava, Slovakia) 
P. J. HICKS (UMIST Manchester UK) 
D. IOAN (Universitv of Bucharest, Romania) 
G. KARLSSON (KTH Stockholm, Sweden) 
J. KORVINK (ETH Zurich, Switzerland) 
K. KVETON (CTU Praha, Czech Republic) 
L. MACARI (MEDC Paislev, UK) 
S. MEDHAT (University Bournemouth, UK) 
J. MICHEL (ENPCH Pariš, France) 
J. MURGAS (STU Bratislava, Slovakia) 
J. MURIN (STU Bratislava, Slovakia) 
P. NAVRAT (STU Bratislava, Slovakia) 
D. PONTA (University of Genoa, Italy) 
J. de SOUSA PIRES (Apple Computer 
Stockholm, Sweden) 
J. VANNEUVILLE (KIHWV Oostende, Bel-
gium) 
G. WACHUTKA (TU Munich, Germany) 
M. WALD (HAP Hamburg, Germany) 

Registrat ion fee 

The Conference fee is 500,- DM or equivalence in 
the local currencv. The fee includes admission to 
ali scientific sections, a copy of the proceedings, 
luncheons and the conference banquet. The štu­
dent rate is 200,- DM. To qualify for the študent 
rate a letter of recommentation from the supervi-
sor should be submitted along with the applica-
tion form. 

Official language 

The language of the Conference is English, neither 
translation nor interpretation will be provided. 

Location 

vakia, Austria. and Hungary. The city is nicely 
located on the southern slopes of the Small Car-
pathian Mountains, in an area of excellent and 
famous wines. It can be reached easily by air, 
train or road (or even by regular ship connecti-
ons from Vienna or Budapest). The visitors are 
advised to use the services of the Airport in Bra­
tislava, or they can fly to the Airport in Vienna-
Schwechat, which lies approximately 50 km west 
of Bratislava. Regular bus or taxi transport from 
the Airport in Schwechat is provided.The most 
convenient road and train links lead from Vienna 
(60 km), Prague (350 km) or Budapest (200 km). 

Social programme 

In the course of the Conference, short guided trips 
and sightseeing tours through the city of Brati­
slava and the closest vicinity will be organized 
for accompanying persons. In the weekend fol-
lowing the Conference, the organizers are ready 
to prepare a longer trip through Slovakia for ali 
interested participants. 

Further information can be obtained and ali 
correspondence should be addressed to: 
CAEE '95 
Conference Secretariat 
Slovak Technical University 
Microelectronics Department 
Ilkovicova 3 
SK - 812 19 Bratislava 
SLOVAKIA 

phone: +42-7-723486 
fax: +42-7-723480 
e-mail: caee95@elf.stuba.sk 

Bratislava, the capital of Slovakia, lies on the Da-
nube, near the border of three countries - Slo-

mailto:caee95@elf.stuba.sk
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Announcement and Call For P a p e r s 

GLOCOSM 
Global Conference on Small & Medium Industry &c Business 
3-5 January 1996 
Bangalore, India 
Organized by 
S D M Inst i tute for Management Deve lopment , India 
and Indiana Universi ty Purdue University Fort Wayne, U .S .A. 

Educators, executives and government ofiicials 
from around the world are invited to participate 
in this unique conference whose theme is "Small 
& Medium Industry & Business in the New Glo­
bal Environment: Prospects & Problems." Pa­
pers, abstracts or symposium/workshop propo-
sals related to the theme are solicited. Submissi-
ons in accounting, commerce, economics, finance, 
human resources management/organizational be-
haviour, information systems, operations manage-
ment, quantitative methods/statistics, strategy, 
environmental/ethical/legal issues, public sector 
management, social/cultural issues, technology 
management and other topics relevant to the glo-
bal community of management professionals scho-
lars are also welcome. 

Deadline for submission of contribution: 15 
April 1995. 

The Address of General Chair 

Dr. B.P. Lingaraj 
General Chair - GLOCOSM 
Department of Management & Marketing 
Indiana University Purdue University 
Fort Wayne, IN 46805, U.S.A 
E-mail: l i nga ra j@cvax . ipfw. i n d i a n a . e d u 

For other details (instructions for the auth-
ors etc.) please contact the member of the Pro-
gramme Committee: 
Professor Ludvik Bogataj 
University of Ljubljana 
Faculty of Economics 
Kardeljeva ploščad 17, P.O.Box 103 
61000 Ljubljana 
Slo veni a 
Phone: +386 (061) 168-33 -33 
Fax: +386 (061) 301-110 
E-Mail: l u d v i k . b o g a t a j @ u n i - l j . s i 

http://indiana.edu
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THE MINISTRY OF SCIENCE AND TECHNOLOGY 
OF THE REPUBLIC OF SLOVENIA 

Address: Slovenska 50, 61000 Ljubljana, Tel.: +386 
61 1311 107, Fax: +386 61 1324 140. 
WWW:http://www.mzt.si 
Minister: Prof. Rado Bohinc, Ph.D. 
State Secretarv for Int. Coop.: Rado Genorio, Ph.D. 
State Secretarv for Sci. and Tech.: Ciril Baškovič 
Secretarv General: Franc Hudej, Ph.D. 

The Ministrv also includes: 
The Standards and Metrologv Institute of the Repu-
blic of Slovenia 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 314 882., and 
The Industrial Propertv Protection Office of the Re-
public of Slovenia 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 318 983. 

Scientific Research and Development Potential. 
The statistical data for 1993 showed that there were 
180 research and development-institutions in Slovenia. 
Altogether, they emploved 10,400 people, of whorn 
4,900 were researchers and 3,900 expert or technical 
staff. 

In the past ten years, the number of researchers has 
almost doubled: the number of Ph.D. graduates incre-
ased from 1,100 to 1,565, while the number of M.Se.'s 
rose from 650 to 1,029. The "Young Researchers""(i.e. 
postgraduate students) program has greatly helped to-
wards revitalizing research. The average age of rese­
archers has been brought down to 40, with one-fifth of 
them being younger than 29. 

The table below shows the distribution of resear­
chers aceording to educational level and sectors (in 
1993): 

Sector Ph.D. M.Sc. 
Business enterprises 
Government 
Private non-profit organizations 
Higher education organizations 
Total 

51 
482 

10 
1022 

1,565 

196 
395 

12 
426 

1,029 

Financing Research and Development. Stati­
stical estimates indicate that US$ 185 million (1,4% 
of GDP) was spent on research and development in 
Slovenia in 1993. More than half of this comes from 
public expenditure, mainly the state budget. In the 
last three years, R&D expenditure by business organi­
zations has stagnated, a result of the current economic 
transition. This transition has led to the fmancial de-
cline and inereased insolvency of firms and companies. 
These cannot be replaced by the growing number of 

mainly small businesses. The shortfall was addres-
sed by inereased public-seetor spending: its share of 
GDP nearly doubled from the mid-seventies to 0,86% 
in 1993. 

Income of R&D organizations spent on R&D aeti-
vities in 1993 (in million US$): 

Sector 

Business ent. 
Government 
Private non-p. 
Higher edu. 
Total 

Total 

83,9 
58,4 

1,3 
40,9 

184,5 

Basic 
res. 
4,7 

16,1 
0,2 

24,2 
45,2 

App. 
res. 
32,6 
21,5 

0,6 
8,7 

63,4 

Exp. 
dev. 
46,6 
20,8 
0,5 

8 
75,9 

The policy of the Slovene Government is to inere-
ase the percentage intended for R&D in its budget. 
The Science and Technology Council of the Republic 
of Slovenia is preparing the draft of a national research 
program (NRP). The government will harmonize the 
NRP with its general development policy, and submit 
it first to the parliamentary Committee for Science, 
Technology and Development and after that to the 
parliament. The parliament approves the NRP each 
year, thus setting the basis for deciding the level of 
public support for R&D. 

The Ministry of Science and Technology is mainly 
a government institution responsible for controlling 
expenditure of the R&D budget, in compliance with 
the NRP and the eriteria provided by the Law on Re­
search Activities. The Ministry finances research or 
co- finances development projeets through public bid-
ding, partially finances infrastrueture research insti­
tutions (national institutes), while it directly finances 
management and top-level science. 

The focal points of R&D policy in Slovenia are: 

— maintaining the high level and quality of research 
activities, 

— stimulating collaboration between research and 
industrial institutions, 

— (co)financing and tax assistance for companies 
engaged in technical development and other 
applied research projeets, 

— research training and professional development of 
leading experts, 

— close involvement in international research and 
development projeets, 

— establishing and operating facilities for the trans-
fer of technology and experience. 

http://www.mzt.si
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Jožef Štefan (1835-1893) was one of the most pro-
minent physicists of the 19th čentury. Bom to Slovene 
parents, he obtained his Ph.D. at Vienna Universitg, 
where he ivas later Director of the Physics Institute, 
Vice-President ofthe Vienna Academij of Sciences and 
a member of several scientific institutions in Europe. 
Štefan explored many areas in hydrodynamics, optics, 
acoustics, electricity, magnetism and the kinetic the-
°H/ °f gases. Among other things, he originated the 
lavi that the total radiation from a black body is pro-
portional to the Jfth poiver of its absolute temperature, 
known as the Stefan-Boltzmann law. 

The Jožef Štefan Insti tute (JSI) is the leading in­
dependent scientific research in Slovenia, covering a 
broad spectrum of fundamental and applied research 
in the fields of phvsics, chemistrv and biochemistrv, 
electronics and information science, nuclear science te-
chnologv, energv research and environmental science. 

The Jožef Štefan Institute (JSI) is a research orga-
nisation for pure and applied research in the natural 
sciences and technologv. Both are closelv intercon-
nected in research departments composed of different 
task teams. Emphasis in basic research is given to the 
development and education of young scientists, while 
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the deve­
lopment of the national economy and society in gene­
ral. 

At present the Institute, with a total of about 
700 staff, has 500 researchers, about 250 of whom 
are postgraduates, over 200 of whom have doctora-
tes (Ph.D.) , and around 150 of whom have permanent 
professorships or temporary teaching assignments at 
the Universities. 

In view of its activities and status, the JSI plays the 
role of a national institute, complementing the role of 
the universities and bridging the gap between basic 
science and applications. 

Research at the JSI includes the following major fi­
elds: physics; chemistry; electronics, informatics and 
computer sciences; biochemistry; ecology; reactor te-
chnology; applied mathematics . Most of the activities 
are more or less closely connected to information sci­
ences, in particular computer sciences, artiticial intel-
ligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics 
and robotics, computer automation and control, pro-
fessional electronics, digital Communications and ne-

tworks, and applied mathematics . 

The Institute is located in Ljubljana, the capital of 
the independent state of Slovenia (or S^n ia ) . The 
capital today is considered a crossroad between East, 
West and Mediterranean Europe, offering excellent 
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana 
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče, 
Bern and Munich, ali within a radius of 600 km. 

In the last year on the site of the Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technologi-
cal development to foster synergies between research 
and industry, to promote joint ventures between uni-
versity bodies, research institutes and innovative in-
dustry, to act as an incubator for high-tech initiatives 
and to accelerate the development cycle of innovative 
products. 

At the present tirne, part of the Insti tute is being 
reorganized into several high-tech units supported by 
and connected within the Technology park at the Jožef 
Štefan Institute, established as the beginning of a re-
gional Technology park "Ljubljana". The project is 
being developed at a particularly historical moment, 
characterized by the process of state reorganisation, 
privatisation and private initiative. The national Te-
chnology Park will take the form of a shareholding 
company and will host an independent venture-capital 
institution. 

The promoters and operational entities of the pro­
ject are the Republic of Slovenia, Ministry of Science 
and Technology and the Jožef Štefan Insti tute. The 
framevrork of the operation also includes the Univer-
sity of Ljubljana, the National Inst i tute of Chemistry, 
the Institute for Electronics and Vacuum Technology 
and the Institute for Materials and Construction Re­
search among others. In addition, the project is su­
pported by the Ministry of Economic Relations and 
Development, the National Chamber of Economy and 
the City of Ljubljana. 

Jožef Štefan Insti tute 
Jamova 39, 61000 Ljubljana, Slovenia 
Tel.:+386 61 1773 900, Fax.:+386 61 219 385 
Tlx.:31 296 JOSTIN SI 
W W W : http:/ /www.ijs.si 
E-mail: matjaz.gams@ijs.si 
Contact person for the Park: Iztok Lesjak, M.Se 
Public relations: Natalija Polenec 

http://www.ijs.si
mailto:matjaz.gams@ijs.si
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REVIEW REPORT 

Bas ic Ins truct ions 
Informatica publishes scientific papers accepted 

by at least two referees outside the author's co-
untry. Each author should submit three copies of 
the manuscript with good copies of the figures and 
photographs to one of the editors from the Edi-
torial Board or to the Contact Person. Editing 
and refereeing are distributed. Each editor can 
conduct the refereeing process by appointing two 
new referees or referees from the Board of Referees 
or Editorial Board. Referees should not be from 
the author 's country. The names of the referees 
should not be revealed to the authors under any 
circumstances. The names of referees will appear 
in the Refereeing Board. Each paper bears the 
name of the editor who appointed the referees. 

It is highly recommended that each referee wri-
tes as m a n y remarks as possible directly 
on t h e manuscript , ranging from typing errors 
to global philosophical disagreements. The cho-
sen editor will send the author copies with re­
marks, and if accepted also to the Contact Per­
son with the accompanying completed Review 
Reports. The Executive Board will inform the 
author that the paper is accepted, meaning that 
it will be published in less than one year after re-
ceiving original figures on separate sheets and the 
text on an IBM P C DOS floppy disk or through e-
mail - both in ASCII and the Informatica LaTeX 
format. Style and examples of papers can be ob-
tained by e-mail from the Contact Person or from 
F T P or W W W (see the last page of Informatica). 

Date Sent: 

Date to be Returned: 

Name and Country of Referee: 

Signature of Referee: 

Name of Editor: 

Title: 

Authors: 

Additional Remarks: 

Ali boxes should be filled with numbers 1-10 
with 10 as the highest rated. 

The final mark (recommendation) consists of 
two orthogonal assessments: scientific quality and 
readability. The readability mark is based on the 
estimated perception of average reader with fa-
culty education in computer science and informa-
tics. It consists of four subfields, representing if 
the article is interesting for large audience (intere-
sting), if its scope and approach is enough gene­
ral (generality), and presentation and language. 
Therefore, very specihc articles with high scienti­
fic quality should have approximately similar re­
commendation as general articles about scientific 
and educational viewpoints related to computer 
science and informatics. 

• SCIENTIFIC QUALITY 

I J Originality 

| | Significance 

j | Relevance 

I I Soundness 

| I Presentation 

• R E A D A B I L I T Y 

I | Interesting 

| | Generality 

j | Presentation 

| J Language 

• F I N A L R E C O M M E N D A T I O N 

j | Highly recommended 

| j Accept without changes 

I | Accept with minor changes 

I | Accept with major changes 

| | Author should prepare a major revision 

j | Reject 
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INVITATION, COOPERATION 

Submi.ssions and Refereeing 

Please submit three copies of the rnanuscript with 
good copies of the figures and photographs to one of 
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the author's 
country will examine it, and they are invited to make 
as many remarks as possible directly on the rnanu­
script, from typing errors to global philosophical di-
sagreements. The chosen editor will send the author 
copies with remarks. If the paper is accepted, the edi­
tor will also send copies to the Contact Person. The 
Executive Board will inform the author that the paper 
has been accepted, in which čase it will be published 
within one year of receipt of the original figures on se-
parate sheets and the text on an IBM PC DOS floppy 
disk or by e-mail - both in ASCII and the Informatica 
I#TEX format. Style and examples of papers can be 
obtained by e-mail from the Contact Person or from 
FTP or WWW (see the last page of Informatica). 

Opinions, news, calls for conferences, calls for papers, 
etc. should be sent directly to the Contact Person. 

Q U E S T I O N N A I R E 

I I Send Informatica free of charge 

| Yes, we subscribe 

Please, complete the order form and send it to 
Dr. Rudi Murn, Informatica, Institut Jožef Štefan, Ja­
mova 39, 61111 Ljubljana, Slovenia. 

Since 1977, Informatica has been a major Slovenian 
scientific journal of computing and informatics, inclu-
ding telecommunications, automation and other rela-
ted areas. In its 16th year (more than two years ago) 
it became truly international, although it stili rema-
ins connected to Central Europe. The basic aim of 
Informatica is to impose intellectual values (science, 
engineering) in a distributed organisation. 

Informatica is a journal primarily covering the Euro-
pean computer science and informatics community -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Com­
munications between different European structures on 
the basis of equal rights and international refereeing. 
It publishes scientific papers accepted by at least two 
referees outside the author's country. In addition, it 
contains information about conferences, opinions, cri-
tical examinations of existing publications and news. 
Finally, major practical achievements and innovations 
in the computer and information industry are presen-
ted through commercial publications as well as thro-
ugh independent evaluations. 

Editing and refereeing are distributed. Each editor 
can conduct the refereeing process by appointing two 
new referees or referees from the Board of Referees 
or Editorial Board. Referees should not be from the 
author's country. If new referees are appointed, their 
names will appear in the Refereeing Board. 

Informatica is free of charge for major scientific, edu­
cational and governmental institutions. Others should 
subscribe (see the last page of Informatica). 

ORDER FORM - INFORMATICA 

Name: Office Address and Telephone (optional): 
Title and Profession (optional): 

E-mail Address (optional): 
Home Address and Telephone (optional): 

Signature and Date: 
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