
Volume 19 N u m b e r 1 February 1995 ISSN 0350-559

Informatica
An International Journal of Computing
and Informatics

Special Issue: Parallel and
Distributed Real-Time Systems
Guest Editors: Marcin Paprzycki

Janusz Zalewski

Profile: Haneef Fatmi

The Slovene Society Informatika, Ljubljana, Slovenia

Informatica
An International Journal of Computing and Informatics

Basic info about Informatica and back issues may be FTP'd from ftp.arnes.si in
magazines/informatica ID: anonymous PASSWORD: <your mail address>
FTP archive may be also accessed with WWW (worldwide web) clients with
URL: ftp://ftp.arnes.si/magazines/informatica

Subscr ip t ion Information: Informatica (ISSN 0350-5596) is published four times a year in
Spring, Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika,
Vožarski pot 12, 61000 Ljubljana, Slovenia.

The subscription rate for 1994 (Volume 18) is -
- DEM 50 (US$ 34) for institutions,
- DEM 25 (US$ 17) for individuals, and
- DEM 10 (US$ 4) for students
plus the mail charge DEM 10 (US$ 4).

Claims for missing issues will be honored free of charge within six months after the
publication date of the issue.

M ^ X Tech. Support: Borut Žnidar, DALCOM d.o.o., Stegne 27, 61000 Ljubljana, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Zibertova 1, 61000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please
call Mr. R. Murn, Department for Computer Science, Jožef Štefan Institute: Tel (+386) 61
1259 199, Fax (+386) 61 219 385, or use the bank account number 900-27620-5159/4
Ljubljanska banka d.d. Slovenia (LB 50101-678-51841 for domestic subscribers only).

According to the opinion of the Ministry for Informing (number 23/216-92 of March 27,
1992), the scientific journal Informatica is a product of informative matter (point 13 of the
tariff number 3), for which the tax of traffic amounts to 5%.

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pat tern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences (Janez Peklenik)

Referees: David Abramson (Australia), David Cliff (U.K.), Hugo de Garis (Japan), Terrence
Forgarty (U.K.), David Green (Australia), Inman Harvey (U.K.), Li-Shan Kang (P.R. China),
Raymond Lister (Australia), Zbigniew Michalewicz (U.S.A.), Stefano Nolfi (Italy), William
Spears (U.S.A.), Jurij Tasič (Slovenia)

The issuing ofthe Informaticajournal is financially supported by the Ministry for Science and
Technology, Slovenska 50, 61000 Ljubljana, Slovenia.

ftp://ftp.arnes.si
ftp://ftp.arnes.si/magazines/informatica

Informatica 19 (1995) 1

PROFILES
Profiles is a peculiar gallery of personalities in the
field(s) covered by Informatica. To remember the
readers, in this column we have had the profiles
of the following researchers: Terry VVinograd—Al
and cognitive science philosopher and researcher
(1/93); Jirf Šlechta — physicist and cyberneticist
(2/93); Hubert L. Dreyfus—American philosopher
of Being and critic of the traditional Al approach
(3/94); Gheorghe Tecuci—machine learning and
knowledge acquisition researcher (4/93); Robert
Trappl—Al scientist and medical cyberneticist
(1/94); Branko Souček — computer engineer and
author of the six generation computing (2/94);
and Hiroaki Kitano—inventor of computer simul-
taneous translation and Al researcher (3/94).

Professor Haneef Fatmi is a well-distinguished
researcher, teacher, and organizer especially in
the field where the most attractive development of
scientific thought and technological development
is expected, that is, in the field of cybernetic sy-
stems and machines. It is to stress tha t he is the
chairman of a symposium held within the large
cybernetics conference in the coming August, in
Namur, Belgium.

Haneef Fatmi

Haneef Fatmi is currently Honorary President of
the Cybernetics Society of the United Kingdom.
He is also a member of the Governing Body of
the International Association for Cybernetics, Na­
mur, Belgium and the Governing Body of the
journal "Cybernetica". In addition he is a Se-
nior Member of the American Institute of Elec­
tronic and Electrical Engineers. For his outstan-
ding services for the advancement of Cyberne-
tics and information theory he was presented a
Deed of Appreciation by the Cybernetics Society
in 1992, founding in perpetuity a "Fatmi Lecture
in Cybernetics".

Dr. Fatmi was educated at the Inns of Court
School, Lincoln's Inn, London, where he obtained
his Barrister's Degree, and Imperial College Lon­
don where he was awarded a PhD degree for his
work on plasma electrodynamics and information
theory in 1961. From 1961 he worked on various
problems of plasma electrodynamics and informa­
tion theory in coUaboration with Professor Dennis

Gabor, FRS, Nobel laureate at Imperial College
London, and the Atomic Energy Research Esta-
blishment Harwell, U.K. In 1968 he was appoin-
ted Director of the Cybernetics Research Group
at the University of London and served in tha t
capacity until recently. He has successfully di-
rected over 30 PhD and 100 Master 's projects in
cybernetics.

In 1970 Haneef Fatmi published a world famous
Definition of Intelligence in Nature, London which
was a subject of comments by the leading resear­
chers ali over the world. It was republished by
the Institute of Physics as one of the 2000 leading
quotations of ali times. The subject mat te r of the
Definition was used by Professor H.B. Barlow to
investigate a new approach to the measurement
of intelligence and to relate guesswork, language
and inteUigence under the same common ground.

During the last 25 years Haneef Fatmi and his
coUaborators published over 150 technical papers
on various aspects of cybernetics, informatics, ar-
tificial intelligence, robotics, knowledge-based sy-
stems, Communications, control and information
theory, ali over the world.

His main research interests include the deve­
lopment of a novel approach to human psycho-
logy based on the understanding of psycho-
physiological mechanism of perception and awa-
reness; development of a novel theory of cyberne-
tics and intelligence machines; definition of intel-

. ligence in humans and the machines; intelligent
neural networks and systems; distributed compu­
ting, control and Communications networks; com-
pression of data by pattern recognition and ruled-
based algorithms; forecasting of financial data.
Some of his papers has been published in Infor­
matica.

Publications

Limited space does not allow to give a complete
list of Dr. Fatmi's publications; Below is a short
list of selected papers.

Gabor, D. and Fatmi, H.A., "A thermionic gene­
rator," Nature, London, 1961, 868.

Gabor, D. and Fatmi, H.A., "The theory of gas
discharges with extraneous ion supply," Advanced
Energy Conversion, IEE, London, 1964, 307.

Fatmi, H.A. and Young, R.W., "A definition of

2 Informatica 19 (1995) Haneef Fatmi

intelJigence," Nature, London, 1970, 97.

Fatmi, H.A., "The concept of a creative society,"
Electronics and power, IEE London, 1974.

Fatmi, H.A. and Resconi, G., "A new computing
principle," Nuovo Cimento, Bologna, Italy, 1988,
239-242.

Fatmi, H.A. et al, "Theory of cybernetics and
intelligent machine," in Proč. General Systems,
USA, 1990, 123-164.

Lee C.C. and Fatmi, H.A., "Run-time support for
parallel functional programming," J. of Systems
and Software, Sept. 1991.

Fatmi, H.A. et al, "The nature of the stochastic
method in cybernetics," in Proč. Int. Congress
on Cybernetics, Belgium, 1972, 328-333.

Fatmi, H.A. et al, "Principles of discrimination in
pat tern recognition," Biokybernetik, Germany, 5,
1974,281-287.

Fatmi, H.A. et al, "The concept of associative me-
mories," in Proč. Int. Congress on Cybernetics,
1980,303-310.

Fatmi, H.A. et al, "Parallel processors for cyber-
netic systems," Cybernetics and Systems, USA,
11, 1982,179-192.

Fatmi, H.A. and Todd, S.J., "A cybernetic appro-
ach to intelligence based space system," in Proč.
IEEE-SMC, New York, 1176-1181.

Ciupa, M. and Fatmi, H.A., "An expert system
for da ta networks and services offering strategic
planning support," in Proč. Network 90, UK,
241-250.

Oliver, A. and Fatmi, H.A., "Nonlinear adaptive
filtering by the Gabor-Kolmogorov method," IEE
Control, UK, 1991, 105-110.

Russel, LE. and Fatmi, H.A., "A novel approach
to interface design for a neural network expert
system," IEEE IJCNN, USA, 1991, 384-388.

Sherif, H.T. and Fatmi, H.A., "3-dimentional mo-
ving object recognition by the neuro-optic field,"
IEEE IJCNN, China, 1992, 637-640.

Gilani, S. and Fatmi, H.A., "Organizational pro-
fessional rontextual issues," in Proč. Int. Con­

gress on Cybernetics, 1992, 199.

Khan, H.U., Ahmad, J., Mahmood, A. and Fatmi,
H.A., "Text compression as rule based pat tern
reorganization," IEE Electronics Letters, 29(20),
1993,1752-1753.

Khan H.U. and Fatmi, H.A., "Text compression
using rule base encoder," IEE Electronics Letters,
30(3), 1994, 199-200.

Mahmood, A., Khan, H.U. and Fatmi, H.A.,
"Adaptive hle allocation in distributed informa-
tion systems," Informatica, 18(1), 1994, 37-46.

Mahmood, A., Khan, H.U. and Fatmi, H.A.,
"Data reorganization in distributed information
systems," Informatica, 18(3), 1994, 325-336.

Mahmood, A., Khan, H.U. and Fatmi, H.A.,
"Adaptive file allocation in distributed computer
systems," IEE Distributed systems and enginee-
ring journal, December 1994.

Khan, H.U., Mahmood, A. and Fatmi, H.A., "A
novel approach to text compression," Informatica,
18(4), 1994, 485-490.

Ahmad, J. and Fatmi, H.A., "Recognition of
objects data in computer integrated manufactu-
ring," in Proč. IEE Control'94, 1994, 805-808.

Ahmad, J. and Fatmi, H.A., "Signal recovery by
feed forward neural networks," in Proč. ITA'94,
UK, 1994, 79-83.

Ahmad, J. and Fatmi, H.A., "A novel method
of speech recognition using feed forward neural
network," in Proč. IEEE-SMC, USA, 1994, 2 1 -
25.

Russel, I. and Fatmi, H.A., "A novel defmition
of expert knowledge in expert systems," in Proč.
IEEE-SMC, USA, 1994, 2208-2211.

Khan, H.U. and Fatmi, H.A., "Application of pat­
tern recognition in text compression," in Proč.
IEEE-SMC, USA, 1994, 1657-1659.

Ahmad, J. and Fatmi, H.A., "Quadric neural ne-
twork for the prediction of financial tirne series
data," IEE world congress on computational in­
telligence, USA, 1994, 3667-3670.

Edited by A.P. Zeleznikar

Informatica 19 (1995) 3

PARALLEL AND DISTRIBUTED REAL-TIME SYSTEMS:
INTRODUCTION TO THE SPECIAL ISSUE

Marcin Paprzycki
Science and Mathematics
University of Texas-Permian Basin
Odessa, TX 79762-0001, USA
paprzycki_m@gusher . p b . u t e x a s .edu
and
Janusz Zalewski
Dept. of Computer Science
Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA
zalewski@db.erau.edu

The purpose of this Introduction is to present
the rationale behind selecting the structure of
this Special Issue. It follows the general scheme
of real-time systems' development: from require-
ments specihcation, to design, to implementation.
A bibliography of books on parallel and distribu-
ted real-time systems for the last ten years is also
included.

Real-Time Systems have two major characteri-
stics: they always interact with the environment
other than the human operator, and usually deal
with timing constraints, mostly in a form of de-
adlines on the reaction to external stimuli. Be-
cause responsiveness and timeliness are so impor-
tant in their behavior, real-time systems are al-
most exclusively concurrent, that is, consist of
multiple program units, usually called tasks or
processes, running simultaneously to perform re-
quired functions. Concurrent execution of tasks
on a single processor may be in many respects
inadequate for achieving the required level of per-
formance or required level of reliability - the two
primary system requirements. Therefore the ta­
sks are often moved to different interconnected
processors, making a real-time system parallel or
distributed. Although it is sometimes hard to dis-
tinguish between parallel and distributed systems,
especially in real-time computing, the principal
distinction between the two is that of the com-
munication speed versus processing speed. If the
communication time between processing units is
negligible with respect to the processing speed,
then the system is called parallel; otherwise it is
distributed.

Our approach to real-time systems, in general,
is based on the system development view: from
application requirements, to specification and de­
sign, to implementation issues considered on three
different levels, that is, programming languages,
operating systems, and hardware architectures.
From the system development point of view, it
does not make any difference whether a system
is to be implemented on a single processor or on
a parallel or distributed architecture; the deve­
lopment process must proceed in the same way.
Therefore the sequence of articles in this special
issue resembles the system development process
and is structured in that way.

The first article, by McKay and Atkinson, di-
scusses one of the most demanding applications
for a real-time system: a part of the NASA's Mis-
sion project. Our interest in this paper is not
that much in the solutions, which are described
on a relatively general level, but in system re-
quirements, which include reliability, safety and
security. The major characteristic of an applica­
tion described in this article is that as systems get
more and more complicated. a unified approach
to account for critical system properties, such as
those listed above, combined with real-time pro­
perties is needed. Such systems are usually called
high-assurance systems or high-integrity systems.

Because of extremely critical nature of high-
assurance systems, whose failure may involve loss
of lives, loss of precious property or significant
environmental damage, unconventional develop­
ment methods are needed to ensure their correc-
tness. One very promising, although not fully te-

mailto:zalewski@db.erau.edu

4 Informatica 19 (1995) M. Paprzvcki, J. Zalewski

sted yet, approach to ensure correctness on the
high level of development is the use of formal me-
thods. These are the methods that employ proof
techniques to ensure tha t the system is correct.
In the article by van Katwijk and Toetenel, one
such formal method, named MOSCA, is presen­
ted. MOSCA, based on an extension of VDM
(Vienna Development Method), is a specification
language providing facilities to specify real-time
requirements for parallel and distributed applica-
tions.

Moving from the specification to the design le­
vel, system developers need to be equipped with
modern methodologv, usually consisting of the
rigorous notation, techniques for development,
and support tools. One such approach, object-
oriented technology received significant attention
in the last decade, but not necessarily for real-
time systems development. In the article by Lin,
Kung and Hsia, an object-oriented approach is
presented to designing real-time systems whose
critical system properties constitute a dominant
part of the requirements and play a significant
role in the development.

To convert the system/software design into a
running application, the implementor usually fa-
ces a problem of dealing with programming langu­
age constructs to support design concepts. Of the
many constructs tha t explicitly support real-time,
parallel, and distributed programming, one stili
needs further development: exception handling.
Colnarič, Verber and Halang deal with eception
handling in their paper. Again, this problem is
especially important because of the necessity to
meet critical requirements in exceptional situati-
ons and the major contribution of this article is
in providing exceptions on the language level.

If the implementation is to run according to the
specification, the language constructs ought to be
adequately mapped onto and supported by the
operating system kernel. A real-time kernel, and
especially a parallel or ditributed real-time ker­
nel, needs to provide specific functionality which
is very different from traditional understanding
of an operating system. Corresponding problems
are so critical tha t this special issue includes four
articles related to this subject.

The first paper in this group, by Yu and Welch,
presents an off-line scheduling approach based on
the analysis of tasks ' behavior for concurrency en-

hancement. The second paper, by Davari and
Dhall, discusses two heuristic on-line algorithms
to solve the allocation problem, that is, the assi-
gnment of tasks to processors so they can success-
fully meet deadlines. The next paper, by Er-
ciye§, Ozkasap and Aktas, describes a dynamic
load balancing mechanism for massively parallel
processing systems, and finally, a paper by W6jcik
and VVojcik presents a universal method of achi-
eving fault tolerance in a distributed system via
checkpointing.

As the implementors well know, finding the
perfect solutions to the most difficult software
problems may be not enough, if the underlying
hardware architecture is not functioning properly.
From the multitude of problems which can be li-
sted on the architecture level of a parallel or distri­
buted real-time system, only one is tackled here,
that of hardware guarantees on communication
deadlines. Tchouaffe and Zalewski, in their ar­
ticle, deal with the problem of predictability of
Ethernet - one of the most widely used local area
networks.

Although we attempted to provide readers with
a comprehensive coverage of problems and their
solutions in parallel and distributed real-time sy-
stems, certainly no such coverage can be exhau-
stive. Those readers who are especially interested
in this topic and want to pursue further studies
may want to look into three other collections of
papers [12, 18, 27] or access some of the books
on this subject which have been published throu-
ghout the last ten years and are listed below.

Acknowledgements

The following reviewers are gratefully thanked for
their time and effort to make this special issue a
reality:

— Azer Bestavros, Boston Universitv, USA

— Travis Craig, University of Washington, USA

— Hesham El-Rewini, University of Nebraska-
Omaha, USA

— Rod Howell, Kansas State Universitv, USA

— Eric Johnson, New Mexico State University,
USA

INTRODUCTION Informatica 19 (1995) 5

— Gilad Koren, Bar-llan University, Israel

- Phil Laplante, Fairleigh-Dickinson Univer-
sity, USA

— Bud Lawson, Lawson Publishing & Consul­
ting, Sweden

— Joseph Y-T. Leung, University of Nebraska-
Lincoln, USA

- Doug Locke, Loral Federal Systems, USA

— Daniel Mosse, University of Pittsburgh, USA

— Jerzy Nogiec, Fermilab, USA

- Warren Persons, Lawrence Livermore Natio­
nal Laboratory, USA

- Gary Preckshot, Lawrence Livermore Natio­
nal Laboratory, USA

- Michael Quinn, Oregon State University,
USA

— Felix Redmill, Redmill Consultancy, UK

- Bo Sanden, George Mason University, USA

- Przemyslaw Stpiczyriski, University of Maria
Curie-Sklodowska, Poland

— Ken Tindell, University of York, UK

References

[1] Atkinson C., T. Moreton, A. Natali (Eds.),
Ada for Distributed Systems, Cambridge
University Press, London, 1988

[2] Bishop J. (Ed.) , Distributed Ada: Develop-
ments and Experiences, Cambridge Univer-
sity Press, London, 1990

[3] Conte G., D. Del Corso (Eds.),
Multi-Microprocessor Systems for Real-Time
Applications, Reidel Publishing, Dordrecht,
1985

[4] de la Puente J.A., M.G. Rodd (Eds.), Di­
stributed Computer Control Systems 1994,
Pergamon Press, Oxford, 1994

[5] Fleming P.J. (Ed.) , Parallel Processing in
Control: The Transputer and Other Archi-
tectures, Peter Peregrinus, Stevenage, UK,
1988

[6] Fortier P.J., Design and Analysis of Distribu­
ted Real-Time Systems, McGraw-Hill, New
York, 1985

[7] Garcia Nocetti F. , P.J. Fleming, Paral­
lel Processing in Digital Control, Springer-
Verlag, London, 1992

[8] Irwin G.W., P.J. Fleming (Eds.), Transpu-
ters in Real-Time Control, John Wiley and
Sons, New York, 1992

[9] Knuth E., M.G. Rodd (Eds.), Distributed
Databases in Real-Time Control, Pergamon
Press, Oxford, 1989

[10] Kopetz H., M.G. Rodd (Eds.), Distributed
Computer Control Systems 1991, Pergamon
Press, Oxford, 1992

[11] Lawson H.W., Parallel Processing in Real-
Time Applications, Prentice Hali, Engle-
wood Cliffs, NJ, 1992

[12] Lawson H.W. (Ed.), Special Issue on Paral­
lel Processing in Embedded Real-Time Sy-
stems, Microprocessing and Microprogram-
ming, Vol. 40, No. 2-3, April 1994

[13] Liebowitz B.H., J.H. Carson, Multiple Pro-
cessor Systems for Real-Time Applications,
Prentice Hali, Englewood Cliffs, NJ, 1985

[14] Lukas M.D., Distributed Control Systems:
Their Evaluation and Design, Van Nostrand
Reinhold, New York, 1986

[15] Motus L., S. Narita (Eds.), Distributed
Computer Control Systems 1989, Pergamon
Press, Oxford, 1990 .

[16] Nielsen K., Ada in Distributed Real-Time
Systems, McGraw-Hill, New York, 1990

[17] Popovic D., V.P. Bhatkar, Distributed Com­
puter Control for Industrial Automation,
Marcel Dekker, New York, 1990

6 Informatica 19 (1995)

[18] Reeves D.S.L K.G. Shin (Eds.), Special Issue
on Parallel clnd Distributed Real-Time Com-
puting, IEEE Parallel and Distributed Tech-
nology, Vol. 2, No. 4, Winter 1994

[19] Rodd M.G., Th. Lalive d'Epinay (Eds.), Di­
stributed Computer Control Svstems 1988,
Pergamon Press, Oxford, 1989

[20] Rodd M.G., K.D. Mueller (Eds.), Distribu­
ted Computer Control Svstems 1987, Perga­
mon Press, Oxford, 1988

[21] Rogers E., Y. Li (Eds.), Parallel Processing
in a Control Svstems Environment, Prentice
Hali, Englewood Cliffs, NJ, 1993

[22] Schuetz W., The Testability of Distributed
Real-Time Systems, Kluwer Academic Publi-
shers, Boston, MA, 1994

[23] Stein R.M., Real-Time Multicomputer Soft-
ware Systems, Ellis Horwood, New York,
1992

[24] Suski G.J. (Ed.), Distributed Computer Con­
trol Systems 1985, Pergamon Press, Oxford,
1986

[25] Theus J., The Futurebus+ Handbook, VITA,
Scottsdale, AZ, 1993

[26] Thoeni U., Programming Real-Time Mul-
ticomputers for Signal Processing, Prentice
Hali, New York, 1994

[27] Welch L., D.K. Hammer (Program Cha-
irs), Proč. 2nd IEEE Workshop on Paral­
lel and Distributed Real-Time Systems, Can-
cun, Mexico, 28-29 April 1994, IEEE Com­
puter Society Press, Los Alamitos, CA, 1994

[28] Zalewski J. (Ed.), Advanced Multimicropro-
cessor Bus Architectures, IEEE Computer
Society Press, Los Alamitos, CA, 1995

Informatica 19 (1995) 7-24 7

Supporting the Evolution of Distributed, Non-stop, Mission and
Safety Critical Systems

K e y w o r d s : distribution, environments, non-stop, real-time, safety-critical

Edited by: Marcin Paprzycki and Janusz Zalewski

Rece ived: February 12, 1994 Rev ised: October 20, 1994 Accepted : January 9, 1995

Jn coming years embedded systems which are distributed, non-stop and "mission and
safety critical" (MASC) are likely to assume increasing importance. The construction,
operation and maintenance of this class of system presents a unique blend of problems
which many traditional tools and techniques, targeted to just one problem area, can-
not currently address. This paper provides an overview of a promising, model-based
framework for supporting such systems that has been developed as part of NASA's
MISSION project. Based on well-established research advances in computing, the MIS­
SION approach provides a domain-specihc, life-cycle support framework encompassing
three separate environments: host, integration and target. Although the individual ele-
ments ofthe framev/ork are not ali new, their synergistic packaging within the MISSION
project is believed to be unique. This paper focuses upon the systems-level support for
applications executing in the target environment.

Charles W. McKay and Colin Atkinson
University of Houston - Clear Lake
2700 Bay Area Boulevard, Houston, TX. 77058.
Phone: +713 283 3830, Fax: +713 283 3869
E-mail: mckay@cl.uh.edu

1 Introduction

An embedded system is a computer system which
is constructed to monitor and/or control a set of
devices and processes constituting some larger en-
gineering system. The term "embedded" is used
to reflect the fact that such computing systems
are physically encapsulated by the engineering sy-
stem they monitor/control. An important charac-
teristic of embedded systems is that they are typi-
cally real-time - not only must they produce the
correct result, but they must do so within a spe-
cihed period of tirne. Because of their monitoring
and controlling role, the reliable execution of an
embedded system is often critical to the success of
the overall mission and to the safety of life, health,
property or the environment. In such circumstan-
ces the embedded system is termed a mission and
safety critical (MASC) system.

As the reliability and efflciency of networking
technology has increased, and the cost of micro-
processors has plummeted, there has been an in­

creasing trend towards the implementation of em­
bedded svstems as distributed systems made up of
autonomous, cooperative processors interconnec-
ted by communication channels. Not only does
such an implementation enable processing power
to be located physically close to the individual
devices in the system, but it also opens up the
possibility of extending, or modifying, parts of
a system while other parts are stili running. In
other words, it opens up the possibility of buil-
ding non-stop systems which can be dynamically
upgraded and reconfigured.

In coming years there is likely to be an increa­
sing need for embedded systems which exhibit ali
the properties identified above, namely the pro-
perties of being mission and safety critical, real-
time, distributed and non-stop. Such systems are
essential in extremely hostile and/or inaccessible
environments, such as space or the depths of the
ocean, and are therefore crucial to pending NASA
projects (e.g., space station, lunar outpost, hu­
man missions to Mars). Such systems are also

mailto:mckay@cl.uh.edu

8 Informatica 19 (1995) 7-24 C.W. McKay et al.

likely to be used in large process control appli-
cations such as factory automation, power plant
control, etc.

In recent years numerous projects have addres-
sed one or more of the issues mentioned above.
To meet the real-time requirements of embedded
systems, for example, advanced scheduling tech-
niques have been developed (e.g., rate monotonic
scheduling [37] and best effort decision making
[20]). The requirements of distribution, on the
other hand, are addressed by new and more po-
werful networking hardware and Communications
protocols such as the Open Systems Interconnec-
tion Model [33]. Reliability and safety are addres­
sed by advanced software features such as distri-
buted nested transactions [24], while the needs of
non-stop operation and dynamic upgradeability
[44, 42] are addressed by modular approaches to
operating system organization.

Because of the complex way in which the above
characteristics are interrelated in embedded sy-
stems, however, it is not always possible to use
these tools and techniques together in a system
which exhibits several, if not ali, of these pro-
perties. Often a technique which is very success-
ful at solving one particular problem cannot be
used with another technique developed to solve
another problem because of the way they over-
lap and interact. The different techniques, and in
particular the combination of technologies, have
the potential to introduce new problems or exa-
cerbate others. This difRculty is compounded by
the fact tha t systems of this kind are inherently
complex and typically very large. In fact, some of
the largest software systems to date fit into this
category.

For this reason, rather than tackling individual
aspects of the problem of supporting the evolu-
tion of non-stop, distributed, real-time, MASC sy-
stems, the MISSION1 project has focused on de-
fining the overall development strategy and infra-
structure into which such solutions will fit. Speci-
fically, this work has two main thrusts . The first
part is to lay the foundation for a new generation
of integrated systems softwarefor the target envi-
ronment in which MASC computing applications
are deployed and operated. The second part is
to define an accompanying infrastructure which
is capable of supporting the construction, verih-

MlSsion and Safety crltical SuppOrt ENvironment

cation, reuse and maintenance of the kind of soft-
ware artifacts required in the target environment.
The MISSION approach is believed to be unique
in the integration of these advancements across
the three environments.

This paper provides an overview of the MIS­
SION approach for supporting distributed, non-
stop MASC systems with a particular focus upon
the systems software support for applications exe-
cuting in the target environment. Before descri­
bing the approach itself, however, we first describe
the main issues that arise in the construction and
maintenance of this type of system. In addition
to providing a definition and description of each
issue, we identify some of the applicable termino-
logy and technologies. The following section then
describes the MISSION strategy for dealing with
these issues, first introducing the general context
in which MASC software is developed, operated
and maintained, and then describing the target
architecture. We conclude by describing each of
the subsystems making up this architecture.

2 Principal Issues

Important issues and requirements for MASC
computing systems operating in hostile enviro­
nments have been discussed in publications such
as [1, 14, 36, 38]. This section discusses. only five
of the principal issues: Me cycle approaches; di­
stribution; safety; reliability, security and inte-
grity; and fault tolerance.

Clearly, the requirements for the project as a
whole are driven by the target environment. The
Me cycle requirements for the integration enviro­
nment, which serves as the site from which the
target is monitored, controlled and updated, are
principally driven by the need to provide safe
and affordable support for the target environment
over its complete Metime. The requirements for
both the target and integration environments are,
in turn, the principal drivers of the life cycle re-
quirements of the host environment, which is the
plače where the initial application development
and testing takes plače. Since the entire set of Me
cycle requirements for this class of MASC compu­
ting applications and systems will probably never
be known in advance, an iterative approach to Me
cycle support is essential.

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 9

2.1 Life Cycle Approaches

As might be expected, one of the major deficien-
cies in the current state of the practice for this
domain is the lack of predictablv-dependable, in-
tegrated approaches [11, 23, 29]. Such approaches
should be traceable, controllable, and applied ite-
ratively from the system's initial inception thro-
ugh to its retirement. MISSION's goal of defming
and verifying such approaches is mirrored in other
projects such as Spring [11] and the PDCS project
[29].

An important goal of MISSION is to demon-
strate that an object-oriented discipline can be
used to control the complexity of this MASC tar-
get environment. Related issues include the appli-
cation of the object-oriented discipline to the de­
sign of the generic architecture for the target en­
vironment systems software. Of particular im-
portance is the evolution of a MASC kernel for
this svstems software [26, 39, 29]. The kernel is
intended to provide a small but powerful set of
mechanisms designed especially to support trac-
table, rigorous reasoning about MASC functions
and systems. Support for such reasoning is cri-
tical for the infrastructure in the integration and
host environments. In addition, safe and affor-
dable approaches should consider the integrated
issues of the software, (both applications level
and systems level), the hardware,,communication
links and human-machine subsystems as well as
interactions with the environment in which the
system is deployed and operated. Techniques cur-
rently addressing these system level issues are not
well integrated. The Alpha project [26] shares the
goal of using the object paradigm to develop sy-
stems software tha t supports tractable, rigorous
reasoning about MASC properties.

2.2 Distr ibut ion

Providing support for distributed operations is
both a problem and an opportunity. Distribution
should facilitate new and more powerful forms of
fault tolerance along with opportunities to im-
prove performance for real- time command and
control systems [30, 41]. Related issues include
when and how to assign software components to
phvsical processing sites [5] and what support can
and should be provided for migrating components
among processing sites [45]. This support must be

integrated with the ability to dynamically evolve
and reconfigure both the applications and the sv­
stems software in the non-stop, distributed target
environment (DTE). Unfortunatelv, no known sy-
stem currently integrates a full set of acceptable
solutions to these requirements with the needed
attention to safetv.

The need to capture a broad spectrum of in-
formation for system objects is even more crucial
when real-time decisions are to be made [40]. In
a distributed system the universal system state
changes faster than can be communicated thro-
ughout the system [15]. Furthermore it may ne-
ver be possible to "snap-shot" a view of the en-
tire system state at any point in time. Decisions
therefore must often be made in environments of
incomplete and sometimes inaccurate da ta [20].
The goal of safely supporting dvnamic evolution
and reconfiguration of non-stop, distributed sy-
stems is shared by the Real Time Mach project
[43].

2.3 Safety

The following working. defmition of safety is used
in this project "safety is the probability tha t a
system, including ali hardware, software, com-
munication links, human-machine subsystems,
and interactions with the environment, will pro­
vide appropriate protection against the effects of
faults, errors, and failures which could endanger
life, health, property, or the environment." Safety
depends upon related issues such as integritv, re-
hability, security and others to be discussed in
the following sub.-.ections. Safety cannot be gu-
aranteed, especially not for the class of MASC
computing applications under discussion in this
paper. Many important risks, nevertheless, can
be managed to improve the probability of susta-
ining safety across the life cycle [28, 7]. MISSION
supports the traditional goal for aerospace appli­
cations that no single point of failure can endan­
ger a mission and no two points of failure can
endanger safetv.

Safety is the most important aspect of any di­
stributed MASC computing system. The system
must guard itself against any event or action, in-
tentional or accidental, tha t compromises its sa-
fety [6]. Safety requirements should be considered
at each point of the system's life cycle [19, 34].

The ultimate aim of the work reported in this

10 Informatica 19 (1995) 7-24 C.W. McKay et al.

paper is to define a small but powerful set of
constructs that can be used to compose MASC
computing applications and systems. These con­
structs are being deftned to support safety proper-
ties. Systems composed of such constructs should
facilitate tractable, rigorous reasoning about sa-
fety. The MISSION project is fairly unique in its
emphasis on evolving and verifying approaches to
composing safe, non-stop, real tirne, distributed
systems.

2.4 Reliability, Security and Integrity

The safe and affordable support of lives, health,
property, environment, and mission in the target
environment depend upon system level reliability,
security and integrity. System reliability refers to
the ability of the system to function under stated
conditions for a stated period of tirne [25], and
should be maximized for MASC applications and
systems. This requires more than certihcation of
correct software components and highly reliable
hardware components. It also requires systems
level design for fault tolerance and survivability
[16, 31].

System security refers to the protection of the
system from accidental or malicious access, use,
modification, destruction, or disclosure [9]. Dis­
tributed systems which support a diverse group
of users are particularly vulnerable to problems
which result from improper access to information
and other resources. At the minimum, protection
is necessary for inadvertent access due to program
or operation error. At the other extreme, delibe-
rate disruption must be prevented. The MISSION
project seeks to provide security to at least the
multilevel security class B3 of the DoD stand-ard
for security [9]. Such security should be suppor-
ted within the target environment and in ali its
interactions with the integration environment.

System integrity refers to the ability of the sy-
stem to perform its intended function irrespec-
tive of changes in its operational environment
[32, 8, 31]. The MISSION approach for ensu-
ring integrity in the target environment builds
upon research in executable assertions[35]; moni-
tors [18]; checkpointing and recovery schemes [21];
and distributed, nested transactions [24]. The
approach also introduces the concept of the inte­
gration environment. These aspects of the appro­
ach are discussed in more detail in the following

section.

2.5 Fault Tolerance and Recovery

In a perfect world, functionally correct softv/are,
hardware, communication links, and human ma-
chine subsystems would operate safely and re-
liably in their intended environment. TJnfortu-
nately, in the domain addressed by MISSION,
faults, errors, and failures will occur which co-
uld be disastrous if not detected and handled pro-
perly. MASC systems are needed which can tole-
rate such problems or, when the problems cannot
be tolerated, enact survivability policies.

A failure means that a functional unit can no
longer satisfy its requirements at run-time, and
may be caused by a defect in the softv/are design
or implementation. A fault occurs at run-time
and may leave errors in some part of the system,
and may sometimes lead to failures. Detection
may refer to the detection of either a fault, an
error or failure [27]. Recovery refers to the process
of restoring normal operation after the occurrence
of a fault or failure [21].

Classes of faults, errors, failures, and their
combinations should be identified and prioritized
according to their probability of occurrence du-
ring execution, and the consequences of not pro-
perly dealing with them [7, 12]. A safe system is
not only able to monitor its s tatus and detect an
occurrence of such classes as soon as possible, but
can also analyze and control the propagation of
the effects and recover safely.

The fundamental issue behind MASC softv/are
support is handling the consequences of faults.
Two approaches are commonly identified: fault
tolerance and fault avoidance. Fault avoidance
depends on ultra-reliable hardv/are, early detec­
tion of low-level faults with redundant processing,
and the ability to use this redundancy to mask
faults in the system from its environment. Spe-
cincally, the faults are masked from the system
state vectors. Avoidance techniques are valuable
but not sufficient [13, 41].

Large, complex systems with intricate dynamic
interactions severeb/ limit the ability of fault avo­
idance to assure safe and correct performance.
Even if systems v/ith millions of lines of defect-free
code could be built (and they currently can not) ,
they would not execute v/ithout faults, errors and
failures throughout a long, non-stop, operational

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 11

lifetime. Some combination of hardware failure,
communication links failure, operator errors, la-
tent software defects or acts of providence will
cause problems at runtime. Many of these can be
tolerated if the software is built to do so. Others
cannot be tolerated but survivability can be maxi-
mized if the software is so designed [26].

Fault tolerance is a complementary approach
to fault avoidance. Fault tolerance is based upon
the assumption tha t any computation might be-
come defective and result in an erroneous system
state vector. Either forward or backward reco-
very schemes may be used to restore the system
to a safe and correct state. Since the possibi-
lity for the introduction of such problems exists
at ali levels of the software hierarchy, it should
be considered and addressed at aH levels. In so
doing, the ability to manage or at least mitigate
the effects of faults, errors and failures throughout
large and complex systems may be made possible
[4, 12, 13, 16, 17, 41]. The MISSION goal to le-
verage combinations of fault avoidance and fault
tolerance in support of MASC requirements is si-
milar to a goal of the MARS project [17].

3 The MISSION Approach

The previous section has described some of the
principal issues involved in the construction and
maintenance of distributed, non-stop MASC sy-
stems. In this section we provide an overview
of the MISSION approach for tackling the issues,
and integrating the various separate technologies
tha t have been developed to date. In particular,
we describe how the MISSION approach addres-
ses the need for precise (semantic) modeling, three
computing environments, and a generic architec-
ture for the systems software that executes MASC
applications.

3.1 Semantic Model ing

As depicted in Figure 1, the key requirements ori-
ginate within the distributed target environment
(DTE) , flow traceably and cumulatively across
the integration environment to the host enviro­
nment and back. System level modeling is funda-
mental to improved understanding and progress
toward safe solutions. The need for such mode­
ling extends beyond the final executing system,

and encompasses also the interrelated processes
that produce the improved solutions. Such mo­
deling of products and processes has implications
for aH three environments in the MISSION appro­
ach.

A key requirement for an integrated solution
is the capability to model system level com-
ponents and interrelationships among software,
hardware, communication links, human-machine
subsystems, and their operational environment.
The representation of such svstem level compo-
nents and their interrelationships should facilitate
automated support for tractable, rigorous reaso-
ning about their MASC properties.

To respond to these needs, the MISSION team
has adapted an object-oriented modeling appro­
ach developed by Embley, Kurtz and Woodfield
[10] and augmented the approach with additi-
onal semantics in entity- attribute/relationship-
attribute (EA/RA) form. The approach by Em-
bley et. al. is based upon a formal deflnition
and depicts object-oriented models in three views.
Object-relationship models provide the structu-
ral view of the part of the system being mo-
deled. The behavior of each object class that
appears in the object-relationship models is de­
picted in an object-behavior model. Interacti-
ons among object classes are depicted in object-
interaction models. Although the combination of
the three modeling views does support a large de-
gree of tractable, rigorous reasoning about the sy-
stems being modeled, the semantics defined in the
approach do not provide sufficient granularity to
capture ali details of interest in the MISSION pro­
ject. Examples include redundant objects, bin-
dings between software and hardware, workload
profiles, reconfiguration of systems resources,
etc. An entity- at tr ibute/relationship-attr ibute
(EA/RA) form of representation which has been
systematically extended to include object classes,
relationship sets, states, transitions, interactions
and attributes is a feasible choice for represen-
ting these system level components, interrelati­
onships, and their MASC properties. The IRDS
standard [3] for this form of semantic representa­
tion has been legally extended by the MISSION
team to meet these needs. However, a discipline
is required to systematically address the inherent
complexity within the problem space. The same
discipline should also control the associated com-

12 Informatica 19 (1995) 7-24 C.W. McKay et al.

Host A

HostB

Host C

Advanced Host
Environments

Monitor

. Update

Monitoring,
Integration and

Control
Environment

Control f S

~r>?
Distributed

Target
Environment

Figure 1: Three Environments

plexity of the processes of evolving and sustaining
safe and affordable solutions.

As a scenario to illustrate the modeling disci­
pline and processes advocated by MISSION, con-
sider a proposal to replace and to add types and
instances of vehicles in NASA's Space Transpor­
tation System. The MISSION process would be-
gin with domain analysis to determine the num-
ber of product lines needed (types of vehicles in
this example) and the variations needed among
instances of each type. Along with attributes such
as costs, benefits, risks, opportunities, e t c , this
"business model" would be captured in object-
oriented form and conveved to the client. Ba-
sed upon priorities, constraints, and other busi­
ness and pohtical factors shaping decisions and
commitments, the business model would be ma-
pped to a scoping model to identify which pro­
duct lines and their variations will be evolved,
when, and in what order. The object-oriented
scoping model would then be mapped to a "con-
cept of operations" model for each product line
and its variations. System requirements mode­
ling for the domain would then proceed by re-
vising the concept models to represent common
requirements and constraints as-well-as differen-
ces among the product lines and their variations.
Later, this "domain model" would be mapped to
a partitioning and allocation of requirements and
constraints among models of: software, hardware
and Communications, and human interfaces. This
stage would be followed by the creation, evalua-
tion and selection of generic architectures appro-
priate for the domain. The domain engineering
process would continue and would eventually be
followed by application engineering to create spe-
cific instances of the product lines.

Some important points to be noted about this
scenario are as follows. First, ali products of the
process are represented in an extended object- ori-
ented form (i.e., extended via E A / R A notations)
whether the products are business models, models
of svstem requirements and constraints, or models
of software, hardware and Communications, hu­
man interfaces, and interactions with the enviro­
nment. Second, a complete set of semantic infor-
mation typically requires three views of the object
models. Third, tools exist to facilitate such mode­
ling and reasoning about the models. Fourth, the
domain engineering processes and the application
engineering processes that evolve these products
are also represented as object models.

Precise semantic modeling using an object-
oriented discipline provides the foundation for
constructing system level fault tolerance and avo-
idance. Systems built from such models can also
be designed and verihed to enforce policies for
survivability when faults and failures occur that
cannot be tolerated or avoided. For example,
to support fault tolerance, classes of faults, er-
rors, and failures can be identified and modeled
for the software, hardware, communication links,
human-machine subsystems and operational envi­
ronment that comprise the intended MASC com-
puting system. Assertions can be formulated to
provide context sensitive detection and responses
for certain classes of faults, errors, or failures -
namely, those classes that are not only likely to
occur but which will also produce unacceptable
behavior and effects if they not properly handled.
One or more monitors to enforce these assertion
checks and responses can then be generated to
accompany the functional software to the target
environment.

Of the research projects that focus on domains
overlapping with that of MISSION, MISSION is
somewhat unique in its emphasis on process and
methodologies tha t leverage object modeling as
a unifying paradigm at the systems level. Alpha
shares the commitment to software objects and
Spring shares the commitment to tools and me-
thods for the host and the target environment.

3.2 Three Environments

Developers of software for embedded systems have
traditionally been concerned with two enviro­
nments: the host environment (the computers on

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 13

which ali software requirements analysis, design,
implementation, and testing is performed) and
the target environment (the embedded compu-
ters on which the software is intended to execute).
However, these two types of environments are in-
sufficient for MASC systems which are developed
by several different organizations, and which are
required to execute non-stop. Typically there will
be many "host" environments, each used to de-
velop a part of the final system. For example,
different host environments could be responsible
for different (sub)applications to be added to the
existing system. To enable the products from the
various "hosts" to be combined, and to provide an
interface to the software executing on the target
environment, MISSION envisions a third enviro­
nment - the monitoring, integration and control
environment (MICE). The provision of a coherent
framework for modeling the structure and beha-
vior of MASC systems impacts ali three enviro­
nments throughout the full life-cycle of the sy-
stem.

The Monitoring, Integration and Control Envi­
ronment (MICE), is intended to mitigate the risk
in evolving and sustaining remoteb/ distributed,
non- stop, MASC computing applications and sy-
stems. The MICE serves as an interface between
the various hosts and the target environment and
is the environment where software from the hosts
is integrated. The MICE additionally serves to
safely upgrade software components in the target
environment, monitor the performance of the tar­
get environment, and possibly assist the target
environment in performing major reconfigurati-
ons in response to faults. To properly perform
these tasks the MICE must have up-to-date mo-
dels of the structure, functionalitv, behavior and
constraints of the elements of the executing tar­
get environment. The MICE must also present
an appropriate command interface, and provide
powerful diagnostic support.

The MISSION project is believed to be unique
in its attention to the integration environment wi-
thin a research context, although environments of
this type have historically been an important part
of NASA applications (e.g., the Mission Control
Center for shuttle operations).

3.3 Generic Architecture

A generic solution architecture is proposed for the
domain of MASC computing applications and sy-
stems addressed by the MISSION research. As
shown in Figure 2, the target environment is a
distributed system composed of interacting, mul-
tiprocessor clusters. Local area networks (LANs)
may be configured from these clusters, and wide
area networks (WANs) may be configured from
these local area networks. The applications soft-
ware on each cluster is supported by systems soft-
ware providing intra- and inter-cluster communi-
cation and reliable execution in the presence of
component failures. To limit the damage caused
by faults, and to increase the feasibility of deve-
loping and sustaining such a system, the software
on the processor clusters is separated into the fol-
lowing "firewalled" partitions2 -

1. MASC Kernel

2. Distributed Application Svstem (DAS)

3. Distributed Monitoring svstem (DMS)

4. Distributed Policy Svstems (DPS)

5. Distributed Information System (DIS)

6. Distributed Communication System (DCS)

If, for example, a new space vehicle were requi-
red, the number and type of applications and the
profile of the intended workload can be used to
determine hov/ many clusters (and with what re-
sources), and what LAN and WAN resources will
be needed.

»
Much of the research and development of dis­

tributed systems has evolved from an assumption
of single processor nodes interconnected by LANs
and WANs. Even multiple processor nodes have
frequently been configured as "N redundant" pro-
cessors to avoid certain types of faults. In effect,
such processors process a single instruction and
data stream with a "voting mechanism" to assure
majority rule (e.g., the primary flight control sy-
stem of NASA's space shuttles).

As a partial result of the "single processor
node" mind set, a t tempts to evolve distributed

2By firewalled, we mean that certain steps have been
taken to ensure tliat a fault, failure or error in one partition
does not adverselv affect other partitions.

14 Informatica 19 (1995) 7-24 C.W. McKay et al.

rfz
2 K

ernel

DAS

DMS

DPS

DIS

DCS

K
ernel

DAS

DMS

DPS

DIS

DCS

rfŽ
>
2

^

K
ernel

DAS

DMS

DPS

DIS

DCS

K
ernel

DAS

DMS

DPS

DIS

DCS
> 1 >
2 D C S 2

Figure 2: Generic Architecture

systems with tightly constrained, real-time con-
trol functions have not been widely successful.
Such systems typically experience severe perfor-
mance problems in meeting their functional requi-
rements. At tempts to integrate a software based
approach to supporting systems level fault tole­
rance tend to exacerbate the overhead problem
responsible for the poor performance.

Much of the performance overhead in a single
processor node is associated with the tirne requi-
red for context switches. Unfortunately, the eli-
mination of context switches can result in the loss
of opportunities to help prevent faults that occur
in the execution of one instruction stream from
corrupting the subsequent execution of other in­
struction streams. A key concept of the MISSION
approach is to "flatten" the traditional software
architecture to take advantage of multiprocessing
clusters as illustrated by the cluster architecture
in Figure 2. If, for example, such a cluster was
located at a geographical site with requirements
for four local, hard constrained, real- tirne con-
trol functions, then as many as four or more pro-
cessors could be assigned to the parallel proces-
sing of these control functions. Even if interaction
existed among the four functions, parallel proces-

sing may offer benefits over a single processor. In
the MISSION architecture, the units of functional
code are intended to execute in parallel with co-
routines on other processors that check for faults,
errors, or failures. As long as no flaws are de-
tected, only a minimal performance overhead is
added to the execution of the functional code of
the applications. Stili another performance bene-
fit may be derived by also allowing parallel exe-
cution of services and resources tha t are shared
among the applications. For example, persistent
information and Communications may be organi-
zed in such as way as to maximize parallel proces-
sing among these subsystems and the applications
as indicated in Figure 2.

The MISSION goal to exploit parallel proces-
sing capabilities among LANs and WANs of mul­
tiprocessing clusters is also a goal of other pro-
jects such as Alpha, Spring and Real-Time Mach.
The approach to "fiattening" the architecture to
achieve the intended throughput improvements is
particularly evident in Alpha and MISSION.

3.3.1 T h e Clusters

MISSION clusters have the following properties.
Clusters:

— do not share physical memory,

— have access to a hierarchy of memory subsy-
stems including stable storage controlled by
transaction mechanisms,

— may be connected to any number of LANs
and WANs,

— may have predetermined types of hardware
resources, including processors, added to a
cluster without changing systems software,

— may fail completely or partially,

— may be repaired and returned to full service,
typically without stopping processing,

— may be added/removed at any tirne,

— may have changes to applications and sy-
stems software made without stopping pro­
cessing, and

— may control access to both physical and vir-
tual svstems resources.

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 15

3.3.2 T h e Communica t ions Links

MISSION Communications links must be able to
tolerate faults, errors and failures which include
messages which have lost parts , garbled parts,
out-of- order parts , duplicated parts, or parts
which are arbitrarily delayed.

3.3.3 M I S S I O N C o m p u t i n g S y s t e m s

MISSION computing systems are expected to to­
lerate, to a specified level, combinations of faults,
errors and failures to include: Communications
failures, abortion of application and system pro­
gram components, crashes of one or more clusters
participating in an application, and lock cycles.

3 . 4 T h e K e r n e l

The MASC kernel is a critical part of the MIS­
SION approach to improving runtime support for
the execution and evolution of MASC functions
and components in the distributed target enviro-
nment (DTE) . It is similar to the"microkernels"
of other projects such as Alpha, Mars and Spring,
and provides the foundation on which the firewal-
led subsystems are built. These mechanisms di-
rectly affect the ability of the infrastructure in the
integration and host environments to support the
DTE. This is because the integrated approaches
to semantic modeling are based upon the generic
architecture of the D T E systems software.

The kernel is responsible for encapsulating
hardware and providing mechanisms to support
the policies, operations, and interactions of the
other five firewalled partitions. Any communica-
tion entering or leaving a partition is a result of
invoking the kernel for a message passing service.
No direct communication among partitions is al-
lowed apart from with the kernel. The five fire-
walled partitions, shown in Figure 2, (DAS, DIS,
DCS, DPS and DMS) are also referred to as the
five nrewalled subsystems. Thus, for example a
DAS component that wishes to request a resource
from the local DIŠ or from a remote DAS compo­
nent must invoke a message passing service from
the kernel. This modularity allows rigorous reaso-
ning about the kernel independent of the sources
or destinations of messages. Since the properties
of the structure, functionalitv, behavior and con-
straints of the kernel can be assured, the same

approach to rigorous reasoning can be indepen-
dently extended to each of the five firewalled sub-
systems.

As in [2], MISSION treats the kernel's message-
passing relationships with the other subsystems
as explicit, first class semantic entities. Protocols
are used to describe allowable interactions, their
constraints, and their responses to constraint vio-
lations, much as in the Mars project. In contrast
with the Mars approach, however, MISSION does
not assume a clock that is universally available to
ali clusters in real tirne.

3.4.1 Twelve Features of t h e Generic
Archi tec ture

The MISSION system architecture embodies
twelve features which are either not found at ali in
today's systems software or are not found as an in­
tegrated set. There are at least two important re-
asons why this set of features is used. First, they
facilitate the provision of runtime support needed
for the domain of MASC computing applications
and systems addressed by the project. Second,
they facilitate precise modeling and the associated
discipline of rigorous reasoning about the system.
These twelve features are identified below:

F l . Model-based reasoning

F2. Firewalled partitions of applications and
subsystems

F3. Tailorable interfaces based on classes,
objects and messages

F4. Life cycle unique identification of classes,
objects and messages at runtime

F5. Extensible and modifiable sets of classes,
objects and messages at runtime

F6. Separation of policies and mechanisms

F7. Multiple and adjustable levels of security
and integrity

F8. Synchronous and asynchronous Communica­
tions mechanisms

F9. Adaptable policies for scheduling, redun-
dancy management and the management of
other runtime services and resources

16 Informatica 19 (1995) 7-24 C.W. McKay et al.

F10. Stable storage for checkpointing and reco-
very

F l l . Distributed, nested transactions

F12. "System" level fault tolerance and surviva-
bility through systems software.

We elaborate upon these features below.

F l . Mode l -Based Reasoning

MISSION engineering processes and products em-
phasize semantically rich, object-oriented models
to support tractable, rigorous reasoning about
MASC properties. These models can be partially
leveraged in the target environment since the ker-
nel contains a finite set of mechanisms designed
especially to support the interpretation, mainte-
nance and modification of runtime models. For
example, runtime policies are maintained in the
DPS as models. In addition, current configura-
tion details are also maintained as on-line models.
When an overload condition arises at a cluster, in­
terpretation of the overload policy in terms of the
current configuration will determine the response
(e.g., load sharing with another cluster or local
load shedding).

Although model based reasoning is certainly
not new, MISSION is believed to be one of the
flrst projects to investigate its application to non-
stop, distributed, MASC systems. Initial studies
have focused upon its use in configuration ma-
nagement For example, a resource might initiate
one particular recovery response under one set of
conditions, and a different recover response un­
der different conditions. Since most elements of
the workload and system configuration are well-
defined in the D T E models, context sensitive con-
tingency determinations can often be made in pa-
rallel with workload processing and be available
for rapid response in the presence of one or more
anomalies of a predetermined type.

F2. Firewalled Partit ions

Firewalled partitions are used in MISSION to
maximize the opportunities for identification, is-
olation, and selection of recovery capabilities. In
the host environment, objects are created and as-
signed to one-and-only-one of the five firewalled

subsystems or to the kernel. As the semantic mo­
dels of the DTE applications and system are evol-
ved, these objects are further allocated to specific
clusters. This partitioning and allocation infor-
mation is exported to the DTE for use by the ker­
nel and the five subsystems. This means that if,
for example, an application object executing in a
cluster's DAS requests information from an object
in the local DIS, the message is passed from the
first subsystem to the second by invoking the ker­
nel. Similarly, if an object in the cluster's DAS re-
quests information from a DAS object in a remote
cluster, the kernel recognizes that a local object is
requesting information from a remote object and
invokes the appropriate operation. The message
is passed to the local DCS where a communication
object will prepare to effect the remote communi­
cation.

The result of this organization is to isolate each
partition of objects by explicit message passing
through the kernel services. For example, suppose
a DAS object passes a message to a DIS object
which accepts the message and then fails. The
opportunities for tolerating the failure are enhan-
ced since the DAS object was preserved in a heal-
thy state when the message was sent. In much the
same way, different applications vvithin the DAS,
different information systems within the DIS, etc.
are also protected from corruption within their
own subsystems.

F3. Tailorable and Extensible
Interfaces

Dynamic extensibility and other forms of dyna-
mic reconfiguration are facilitated by this feature.
Each segment of the generic architecture for the
DTE systems software interacts with other se-
gments of the local cluster and with peers in re­
mote clusters through carefully defmed interfaces.
These interfaces are specified in CIFOs (Cata-
logues of Interface Features and Options). The
interfaces are tailorable in that the given set of
applications and system requirements for a given
cluster determine which features and options will
be selected as CIFO subsets for each cluster. The
interfaces are extensible in that precisely modeled
rules exist for extending these CIFOs as needed
over tirne. As an example of such rules, no device
driver can be replaced until certain preconditions
are satisfied such as: "Complete ali input /output

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 17

operations in progress when the replacement com-
mand arrives until a 'recoverable' state is reached.
Then effect the replacement."

F4. Life Cycle Unique Identification

This feature also supports tractable and rigo-
rous reasoning about the MISSION models. In
the DTE, classes templates, executable images
of objects and messages are uniquely identifia-
ble. For example, suppose an object is a part
of an application that requires about five minu-
tes to complete and that is intended to run every
hour on the hour. The executable image reta-
ins its unique identification but, in addition, each
hourly activation receives a different thread-of-
control identifier. Each thread assignment is pro-
vided a unique identification so that the effects of
each activation are traceable. Similarly, an itera-
tive object structure may complete and send the
same message structure many times during the
life span of each object. In the MISSION appro-
ach, the effects of each message are intended to
be traceable through the unique identifiers of each
message, source, and destination(s). The element
of the MISSION approach has been strongly in-
fluenced by the work of Moss [24].

F5. Extens ib le and Modifiable
R u n T i m e Sets

This feature complements ali the preceding featu-
res, but is particularly germane to: "F3. Tailora-
ble and Extensible Interfaces". The ability to tai-
lor and extend CIFOs in the host and integration
environment is important, but a corresponding
capability is needed for objects inside any cluster
partition of an operational, non-stop DTE. More
specifically, the interfaces to each segment of a
cluster architecture should allow existing class de-
finitions internal to the segment to be modified or
new ones to be added. Once the modified or new
class definitions are installed, the interfaces sho­
uld encapsulate the ability to create new objects
and messages of the new and modified classes. In
addition, the interfaces should support the retire-
ment and replacement of old classes, objects, and
messages as needed. This mechanism is analogous
to the polymorphism/dynamic binding mechani-
sms of object-oriented languages

F6. Separation of Policies and
Mechanisms

This feature not only facilitates tractable, rigo-
rous reasoning, but it also facilitates the domain
and application engineering processes through se­
paration of concerns. The MISSION approach
partitions and allocates policies to various mem-
bers of the firewalled subsystems. The shared me­
chanisms used to effect these policies are in the
kernel. For example, the DPS is intended to con-
tain polices for the management of shared services
and resources within and among clusters. These
policies are encapsulated within DPS modeling
objects. The effects are somewhat analogous to
earlier techniques of operating systems enforcing
"table driven" policies. The interpretation and
enforcement of the policies encapsulated by the
firewalled subsystems is dependent upon the uti-
lization of the kernel mechanisms. This feature is
also supported in Alpha.

F7. Multi level Security and Integrity

Ali threads-of-control are created, assigned, su-
stained and retired via the MASC kernel. A re-
quirement for each active object (i.e., one with
its own thread-of-control) is to maintain a regi-
stration of its unique identity and its current ca-
pabilities. This is particularly important when
the active object is about to request a service of
another object. A unique identity is required for
the destination object and its services and reso­
urces. In addition, two other points should be
noted. First, the match of a sender's capabilities
to a receiver's list of required access rights should
be enforced for each access. Second, these rights
may sometimes have to be temporarily sacrificed
in the cause of higher level policy issues related
to a system's fault tolerance and survivabilitv.

F8. Synchronous and Asynchronous
Communicat ions Mechanisms

The domain of interest to MISSION researchers
includes applications requiring telemetry data to
be broadcast as it becomes available and without
regard for the status of intended receivers at the
tirne of the broadcast. The domain also inclu­
des applications such as multidimensional colli-
sion avoidance and proximity operations tha t re-
quire hard constrained, real tirne synchronization

18 Informatica 19 (1995) 7-24 C.W. McKay et al.

and control. The literature on communication
mechanisms to support distributed and concur-
rent processing requirements reveals two distinct
solutions with certain advantages claimed for each
[22].

The first type of mechanism supports the use
of asynchronous transmissions and receptions wi-
thout blocking the sending process or the recei-
ving process(es). Instead, transmission is a čase
of "send when ready and then proceed". Recep-
tion is a čase of "receive when ready, if message
is available, and then proceed". Variations of this
type of mechanism have also been studied.

The second type of mechanism is used for
two distinct cases of synchronous communication.
The first čase involves an active object which
calls for a service from a passive object (a pas-
sive object borrows its thread-of-control). This
čase is analogous to a local thread-of-control in
a "main" procedure calling a remote subroutine.
Tha t is, the thread and its request are passed to
the environment of the called subroutine. After
"borrowing" the thread-of- control to execute, the
passive object returns both the results and the
thread- of-control to the calling environment.

The second čase of synchronous Communica­
tions involves a need for synchronization and
exchange of information among two-or-more co-
operating, active objects. This čase addresses,
among other things, the issues of the Ada rende-
zvous among two cooperating threads-of-control.
This support for multiple forms of Communicati­
ons is very different than the approaches taken in
many other related projects such as Mars which
only use datagrams.

F9. Adaptable R u n t i m e Services and
Resources

The provision of shared system services and reso-
urces to an evolving collection of applications is
intended to be based upon well-defined policies,
configurations and circumstances. Some resour-
ces and services will be replicated to maximize
availability and fault tolerance. Such redundancy
will need to be managed at a variety of levels. At
one extreme, the redundant copies could be ma­
naged as "hot standbys" which are ready to be
substituted for the primary copy at any tirne. At
another extreme, the redundant copy can be sub­
stituted for the primary copy only after processing

is performed to prepare the "cold standby" to take
over. Depending upon criticality, workload, and
the status of system resources, the type and amo-
unt of redundancy is intended to vary according
to adaptable policies.

Another important aspect of adaptable poli­
cies is scheduling. Some real-time applications
map naturally to a collection of periodic proces-
ses. Others are interrupt driven and are aperi-
odic. Stili others have sporadic service require-
ments that may be of varying frequency and dura-
tion. An important aspect of the approach, there-
fore, is the use of adaptable scheduling policies to
maximize support for MAS C functions and com-
ponents under conditions that vary from normal
to various types of emergencies. A similar feature
is also found in Real Time Mach.

F10. Stable Storage

Fault tolerance among clusters of distributed
MASC systems benefits from the next feature,
distributed nested transactions. However, im-
plementation approaches to such transactions re-
quire stable storage. Stable storage has two cha-
racteristics that facilitate check pointing and re-
covery. First, it survives temporary losses of po-
wer. Second, it is always updated in an atomic
operation.

F l l . Distr ibuted, N e s t e d Transactions

Fault tolerance among interactive, distributed
processing clusters is facilitated by support for
distributed, nested transactions [24, 26]. This is
particularly true when a fault, failure or error can
not be detected in a single state vector, but de-
pends instead upon detection of incorrect sequen-
ces of processing. Transactions bracket a named
collection of operations between "Begin transac-
tion X" and "End transaction X". The effects
of the transaction are to make the set of enclo-
sed operations appear to be a single atomic ac-
tion. That is, either ali of the operations complete
successfully or the system can detect and reco-
ver from the effects of partial completion. Distri­
buted transactions support hierarchies of parallel
and distributed operations. Nesting allows higher
level transactions to be composed of sets of enclo-
sed transactions. Transactions of this kind can be
used to provide fault tolerance and survivability

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 19

in the DTE, and also facilitate reasoning in the
host and integration environments. Other related
projects employing this mechanism include Alpha
and Mars.

F12. S y s t e m Level Fault Tolerance and
Survivability

The MISSION approach leverages systems soft-
ware to support true systems level fault tolerance
and survivabilitv. Since object classes and relati-
onship sets are used to model software. hardware
and Communications, human interfaces, and inte-
ractions with the environment, systems software
monitors can be used to monitor and control sy-
stems level resources as appropriate.

An important component of the MISSION
approach is the concept of coroutines which asso-
ciate monitors in the DPS with functional objects
elsewhere in the system. The job of the moni­
tors is to detect faults, errors, and failures as soon
as possible and to then provide support for effec-
ting isolation, analysis, and recovery. Such detec-
tion is based upon assertions that are associated
with MASC properties. These assertions may be
about values of state or about sequences of state
transformations. The Mars project also employs
kernel-level mechanisms to support system-level
fault tolerance.

3.5 Firewalled partit ions

As mentioned above, and illustrated in Figure
2, the generic architecture employs five firewal-
led partitions that interact by means of the mes-
sage passing services provided by the kernel. In
this subsection we outline further the role of each
subsytem.

Distr ibuted Applicat ions Sys tem

The DAS is the firewalled subsystem containing
MASC applications that are to be executed on
the MASC computing system. The focus of the
research in the D T E is on the generic architecture
of the systems software rather than the DAS. The
DAS developers are intended to leverage the fea-
tures and options of this generic architecture to
improve runtime support of MASC functions and
component s.

Only two aspects of the DAS are within the
scope of this research project. The first is the set
of interfaces to the local cluster and to DAS pe-
ers in remote clusters. The second is the set of
abstractions made available to applications pro-
gramming teams to improve safety and afforda-
bilitv. However, another important point should
also be understood about a DAS partition of a
cluster. Any component within a DAS applica-
tion is nrewalled from the other partitions and
from other applications within the DAS. That is,
different applications and partitions have no di-
rect means of communication, but must invoke
a message service of the kernel. This additional
firewalling of applications is also supported wi-
thin the other partitions and is used to facilitate
tractable, rigorous reasoning about the individual
parts of a partition.

Distributed Information S y s t e m

The DIS is responsible for managing shared
and persistent information services and resour­
ces. Whenever information is shared by more
than one application, access to the information
is provided via a virtual interface set by reque-
sting services from the DIS. For example, a DAS
component could request auni t of shared informa­
tion from the DIS by invoking a message service
from the kernel. Also, some applications do not
execute continuously and have requirements for
persistent information. For example, a program
that takes five minutes to complete may be sche-
duled to execute once every eight hours. At each
execution, the program updates some information
in the DIS that must persist between executions.
In addition, the DIS manages shared and persi­
stent information on behalf of the systems soft-
ware. Examples include: performance and wor-
kload by cluster, LAN, WAN, and system; health
and status of ..., etc. As with the other firewalled
partitions, portions of multiple DISs may reside
on the same cluster. Each DIS represented on the
cluster is firewalled from the other DISs also on
the cluster.

The class of MASC computing applications and
systems addressed by MISSION will typically be
long lived. Many type definitions that will be ne-
eded in the future cannot be known when the sy-
stem is initially developed and deployed. Since
non-stop operation requirements prohibit brin-

20 Informatica 19 (1995) 7-24 C.W. McKay et al.

ging the system down to recompile existing code
in the context of the new type definitions, an al­
ternative is needed to upgrade the system. The
approach under study is based upon controlled
inheritance. A set of commands in the Distribu-
ted Command Interpreter is intended to allow the
MICE to first extend/add the definitions and then
create instances of the types. The reader should
note tha t the problem of dynamic type extensibi-
lity is not limited to just the DIS.

Distr ibuted Communicat ions Sys tem

The DCS corresponds to the upper three layers
and a portion of the fourth layer of the seven la-
yer ISO model for Open Systems Interconnection
[33]. (The lower layers are encapsnlated as device
drivers within the kernel.) The DCS is responsible
for managing Communications services and reso­
urces among clusters, LANs and WANs. Within
a cluster, whenever an applications component or
a systems software component needs to commu-
nicate with a peer at another cluster, the DCS is
responsible for effecting this communication. A
virtual interface set shared with its DCS peers at
other clusters is used to resolve issues of routing,
congestion control, relocation, and other services.
Such resolution is transparent to the applications
components or to any systems software compo-
nents located outside the DCS partition.

Distr ibuted Pol icy Sys t em

The DPS is responsible for the evolution and en-
forcement of policies regarding the sharable servi­
ces and resources of the integrated systems soft-
ware. The DPS contains a library of policies
which are used in conjunction with the mechani-
sms of the kernel to manage such issues as: con-
tention between local cluster priorities and uni-
versal system priorities, multiparameter schedu-
ling, emergency load shedding, dynamic recon-
figuration and others. An important premise is
tha t support can be predictably and dependably
provided for different policies needed by different
applications if a known set of sufficient resources
are available and if a known set of universal and
local policies permit. This is somewhat similar to
the approaches taken in Alpha and Spring.

Distr ibuted Monitoring S y s t e m

One of the most important and unique features
of the MISSION "smokestack" model is the di­
stributed monitoring system. This contains the
objects responsible for monitoring the correct exe-
cution of the application objects. In fact, monitor
objects are also introduced to monitor the correct
execution of system level objects.

For any MAS C component or any set of com-
municating MAS C components in any of the other
firewalled partitions, the engineers in the host en­
vironment are responsible for identifying those
classes of faults tha t must be tolerated or tha t
must invoke survival policies. Context sensitive
assertion checks can then be generated to detect
such faults at run tirne, and handlers can be pre-
pared to respond to such detections. These as-
sertions and handlers can then be combined into
monitors. Together with policies in the DPS, they
are responsible for system level fault tolerance and
survivability.

When a work module (i.e. an application or
system module) is installed in the DAS, or other
appropriate partition, the corresponding monitors
are installed in the DMS. The work module and
associated monitors are scheduled to run concur-
rently on separate processors, although the work
module is modified to write key information about
state values and state changes to designated bul-
letin boards as it executes. The monitor is pro-
grammed to read this information for its assertion
checks, and as long as no violations are detected,
the work module is allowed to continue. Howe-
ver, if a violation is detected, the corresponding
policy is consulted and the appropriate handler is
invoked. If the fault is entirely local to a single
work object, then the associated monitor may be
able to insure proper tolerance by itself. Howe-
ver, faults that will cause temporal, spatial, or
value errors in other objects or faults among co-
operating objects are addressed by monitors tha t
coordinate the activities of the monitors of the
affected objects (i.e., monitors that monitor and
coordinate other monitors).

Another primary function of the DMS is to be
the "window" to the target environment for the
MICE. Under normal operation, the DMS will
monitor the health and status of the clusters,
LANs and WANs and report this information (via
the DCS) to the MICE. Other normal facilities

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 21

that it will control or monitor include: the intro-
duction or removal of a new object to a cluster;
the movement of an object from one cluster to
another; linking, loading and starting new pro-
grams downloaded from the MICE; suspending or
aborting threads of control; etc. Although other
projects such as Mars have explored the use of mo-
nitors for fault detection at the cluster level, MIS-
SION is somewhat unique in its use of monitors
to detect faults and coordinate recovery among
multiple applications spanning multiple clusters.

4 The Testbed

The MISSION testbed ušes Sun workstations for
the host and integration environments. A version
of a Verdix Ada (1983) compiler that supports
post- partitioning and distribution of code has
been used to generate code for the target envi-
ronment. Although other processor types have
been successfully used in this target environment
(e.g., object-oriented processors by Ericsson), the
major clusters consist of multiprocessing clusters
of Motorola 68030s. „

5 Conclusion

Distributed, non-stop MASC systems are some of
the largest and most complex computer systems
to have been tackled to date. As described in sec-
tion 2, they require many independent technolo-
gies, developed separately for smaller systems, to
be brought together and integrated into a single
unified whole. This integration, and the defini-
tion of the environment to support it, presents
a major technological challenge. This paper has
outlined some of the major issues which arise in
the construction and maintenance of this category
of embedded system, and has provided an outline
of the MISSION approach to achieving this goal.
This strategy has two principal components: the
definition of a generic architecture for the target
systems software, and the design of a supporting
infrastructure and processes.

A key component of the proposed infrastruc­
ture is the monitoring, control and integration
environment (MICE) which bridges the gap be-
tween the traditional host and target environment
used today for embedded systems. The MICE

serves as the location at which new software com­
ponents and (sub)applications from the various
contractors can be tested, assembled and eventu-
allv downloaded to become part of the executing
MASC embedded system. To perform this func-
tion the MICE employs a set of precise semantic
models which describe the current structure, func-
tionality and behavior of the executing system.
Such semantic modeling pervades ali three enviro­
nments, over the full life-of the system, and forms
the cornerstone of the MISSION software process
used to develop and sustain distributed, nonstop,
MASC systems. Each process is domain-specific
and leverages the object paradigms for modeling
ali aspects of the svstems across the life cycle.

The paper also outlined the nature of the gene­
ric architecture for the multi- processor clusters,
interconnected by LANs and WANs, which make
up the distributed target environment. This ar­
chitecture is based on the principal of segregating
functionally cohesive components into separate,
firewalled, partitions which can only interact in-
directly via the special MASC kernel. Prelimi-
nary prototypes of these subsystems have demon-
strated the feasibility of the architecture and the
overall approach, but further work is needed to
elaborate upon the detailed make up of the sepa­
rate subsystems, and to evaluate the concepts in
a pilot project.

Acknowledgments

The MISSION research has been partially suppor-
ted by NASA. The authors wish to thank: the
NASA sponsors and monitors; our fellow resear-
chers from the faculty, staff and students at the
University; our fellow researchers from industry;
our support staff in RICIS; and the volunteers on
our Industrial Advisory Committee.

References

[1] AIA/SEI (Aerospace Industries Associa-
tion/Software Engineering Insti tute), Wor-
kshop on Research Advances Required for Real
Time Softivare Systems in the 1990s, Software
Engineering Institute, 1991.

[2] Allen, R., D. Garlan, "Formalizing Architec-
tural Connection", Proceedings of the 16th In-

22 Informatica 19 (1995) 7-24 C.W. McKay et al.

ternational Conference on Softiuare Enginee-
ring, Sorrento, Italy, 1994.

[3] "American National Standard Information
Resource Dictionary System", American Na­
tional Standards Institute, Group X3H4, New
York, 1985.

[4] Arlat, J., K. Kanoun, J. Laprie, "Dependa-
bility Modeling and Evaluation of Software
Fault Tolerance: Recovery Blocks, N VeT-
sion Programming, N Self Checking Program-
ming", First Year Report on Predictably De-
pendable Computing Systems, Volume 3 of 3,
Esprit Project 3092, 1990.

[5] Atkinson, C , T. Moreton. A. Natali, Ada for
Distributed Systems, Ada Companion Series,
Cambridge University Press, 1988.

[6] Burns, A. and C. McKay, "A Portable
Common Execution Environment for Ada",
Ada: The Design Choice - Proceedings of the
Ada- Europe International Conference, Ma­
drid, 1989, Cambridge Uriiversity Press, 1989.

[7] Charette, R., Softiuare Engineering Risk Ana-
lysis and Management, McGraw Hill, 1989.

[8] Deswarte, Y., J. Fabre, J. Laprie, D. Powell,
"A Saturation Network to Tolerate Faults
and Intrusion", Proceedings of the 5th Sym-
posium on Reliability in Distributed Softiuare
and Database Systems, IEEE Computer Sy-
stems Press, 1986.

[9] DOD (Department of Defense, United States
of America), "Trusted Computer System Eva­
luation Criteria", DOD 5200.28-STD, 1985.

[10] Embley, D., B. Kurtz, S. Woodfield, Object-
Oriented Systems Analysis: A Model-Driven
Approach, Yourdon Press, 1992.

[11] ESPRIT (European Strategic Program for
Research and Development in Information Te-
chnology), First Year Report on Predictably
Dependable Computing Systems, Volumes 1,
2, 3, ESPRIT, 1990.

[12] Ezhilchelvan, P. and S. Shrivastava, "Cha-
racterization of Faults in Systems", Procee­
dings of the 5th Symposiurn on Reliability in
Distributed Softiuare and Database Systems,
IEEE, 1986.

[13] Ezhilchelvan, P. and S. Shrivastava, "A Di­
stributed Systems Architecture Supporting
High Availability and Reliabilitv", Procee­
dings of the 2nd International Working Con­
ference on Dependable Computing For Critical
Applications, IEEE, February 1991.

[14] GAO (Government Accounting Office),
"Space Station: NASA's Software Develop­
ment Approach Increases Safety and Cost Ris-
ks - Report to the Chairman", Committee on
Science, Space and Technology, House of Rep-
resentatives, GAO, 1992.

[15] Jensen, E., Chapter 8, Distributed Sy-
stems: Architecture and Irnplementation, (B.
Lampson, M. Paul and H. Siegert, editors),
Springer-Verlag, 1981.

[16] Knight, J. and J. Urquhart , "On the Irnple­
mentation and Use of Ada on Fault-Tolerant
Distributed Systems", IEEE Transactions on
Softiuare Engineering, Vol SE-13, No. 5, May
1987.

[17] Kopetz, H., A. Damm, C. Koza, M. Mu-
lazzani, W. Schwabi, C. Senft, R. Zainlin-
ger, "Distributed Fault-Tolerant Real-Time
Systems: The MARS Approach," IEEE Mi­
cro, February 1989.

[18] LeBlanc, R. and A. Robbins, "Event Driven
Monitoring of Distributed Programs", Procee­
dings the 5th International Conference on Di­
stributed Computing Sijstems, IEEE 1985.

[19] Leveson, N., "Building Safe Software", Pro­
ceedings of COMPASS. 1986, IEEE, 1986.

[20] Locke, D., "Best Effort Decision Making for
Realtime Scheduling", CMU-CS-86-134, Car-
negie Mellon Universitv, 1986.

[21] Long, J., W. Fuchs, J. Abraham, "Implemen-
ting Forward Recovery Using Checkpointing
in Distributed Systems", Proceedings of the
2nd International Working Conference on De­
pendable Computing For Critical Applications,
IEEE, February 1991.

[22] McKay, C. W. and C. Atkinson, Volumes
I, II and III of the MISSION Concept Docu-
ment, RICIS Report, University of Houston-
Clear Lake, 1992.

EVOLUTION OF MASC SYSTEMS Informatica 19 (1995) 7-24 23

[23] McKay, C , D. Auty, K. Rogers, "A
Study of System Interface Sets (SIS) For
the Host, Target, and Integration Enviro-
nments of the Space Station Program (SSP)",
SERC(UHCL) Report SE. 10, NCC9-16,1987.

[24] Moss, J., Nested Transactions: An Appro-
ach to Reliable Distributed Computing,
M I T / L C S / T R 260, Massachusetts Institute of
Technology, April 1981.

[25] Musa, J., A. Iannino, K. Okumoto, Software
Reliability: Measurement, Prediction. Appli­
cation, McGraw Hill, 1987.

[26] Northcutt , J., Mechanisms for Reliable Dis­
tributed Real- Time Operating Svstems: The
Alpha Kernel, Academic Press, Boston, 1987.

[27] Parker, D., G. Popek, A. Rudison, A. Stou-
ghton, B. Walker, E. Walton, J. Chow, D. Ed-
wards, S. Kiser, C. Kline, "Detection of Mu­
tual Inconsistency in Distributed Systems",
IEEE Transactions on Software Engineering
Vol. SE-9, No. 3, IEEE, May 1983.

[28] Pyle, L, Developing Safety Svstems: A Guide
Using Ada, Prentice Hali, 1991.

[29] Ramamri tham, K., J. Stankovic, Overvieiv of
the Spring Project, University of Massachu­
setts Amherst, COINS Technical Report 89-
03, January 1989.

[30] Randall, C , P. Rogers, C. McKay, "Distri­
buted Ada: Extending the Runtime Enviro-
nment for the Space Station Program", Si-
xth National Conference on Ada Technologv,
March, 1988.

[31] Randell, B. and J. Dobson, "Reliability and
Security Issues in Distributed Computing Sy-
stems", Proceedings of the 5th Svmposium on
Reliabilitv in Distribute Softviare and Data-
base Svstems, IEEE, 1986.

[32] Redmill, E. (Editor), Dependabilitv of Criti-
cal Computer Svstems 2, Elsevier Applied Sci­
ence, 1989.

[33] "Reference Model of Open Systems Intercon-
nection". ISO/TC97/SC16/N227, Internatio­
nal Standards Organization, 1979.

[34] Rogers, K., M. Bishop, C. McKay, "An
Overview of the Clear Lake Life Cycle Mo­
del (CLLCM)", Proceedings of the 9th Annual
Conference on Ada Technologv, ACM, March,
1991.

[35] Sankar, S., "Automatic Runtime Consi-
stency Checking and Debugging of For-
mally Specifled Programs", STAN-CS-89-
1282, Stanford University, 1989.

[36] SATWG (Space Avionics Technology Wor-
king Group), Space Avionics Requirements
Study, (Integrated by General Dynamics),
1990.

[37] Sha, L. and J. Goodenough, "Realtime Sche-
duling Theory and Ada", IEEE Computer,
April 1990.

[38] Shankar, K., C. McKay, "Why NASA, Code
R, Should Sponsor Advanced Research in
Software Engineering: A White Paper", Pro­
ceedings of the Computing in Aerospace 9
Conference, American Institute of Aeronau-
tics and Astronautics, San Diego, October
1992.

[39] Stankovic, J. and K. Ramamri tham, "The
Design of the Spring Kernel", Proceedings of
the Real Time Svstems Svmposium, IEEE, De­
cember 1987.

[40] Stankovic, J., K. Ramamri tham (editors),
Tutorial: Hard Real Time Systems, IEEE
Computer Societv Press, 1988.

[41] Strigini, L., "Software Fault Tolerance",
First Year Report on Predictablv Dependable
Computing Svstems, Volume 2 of 3, Esprit
Project 3092, 1990.

[42] Tindell, K., "Dynamic Code Replacement
and Ada", Ada Letters, Vol. X, No. 7, 1990.

[43] Tokuda, H., T. Nakajima, P. Rao, "Real-
Time Mach: Towards a Predictable Real-
Time System", Proceedings of the Usenix Ma-
chine Workshop, October 1990.

[44] Vincente,. B., A. Alonso, J. Amador, "Dyna-
mic Software Replacement Model and It 's Ada'
Implementation", Proceedings of Tri Ada'91,
ACM, 1991.

24 Informatica 19 (1995) 7-24 C.W. McKay et al.

[45] Zicari, R., "Operating System Support For
Software Migration in a Distributed System",
Proceedings of the 5th Symposium on Reliabi-
lity in Distributed Software and Database Sy-
stems, IEEE, 1986.

Informatica 19 (1995) 25-42 25

Loose Specification of Real Time Systems

Jan van Katwijk and Hans Toetenel
Delft Universitv of Technologv
Faculty of Technical Mathematics and Informatics
P.O. Box 356, 2600 A J Delft The Netherlands

K e y w o r d s : MOSCA language, multiple threads, semantic basis

Edited by: Marcin Paprzycki and Janusz Zalewski

Rece ived: February 15, 1994 Rev i sed: October 14, 1994 A c c e p t e d : January 31, 1995

MOSCA is an experimental la.ngua.ge that equips the Vienna Development Method speci­
fication language VDM-SL to be applicable in the area of developing distributed, parallel
and real-time systems. As is generally known, plain VDM is not adequate for these ap-
plication areas since it lacks facilities to specify multiple threads of control and does
not allow the use of tirne within specifications. MOSCA is designed to overcome these
restrictions. This paper presents an overview of some of the process specification ca-
pabilities of the notation. It highlights the semantic basis and treats in particular the
interpretation of loosevaluespecification and looseprocessspecification.

1 Introduction and overview

In the last two decades many techniques and
methodologies were developed with as common
aim the systematic and orderly development of
computer software. With the emerging techniques
came the recognition tha t the development of soft-
ware was not a simple huge homogeneous activity,
but should be split up in different phases. Analy-
sis results in a description of a solution (a model)
which after thorough design leads to the desired
software product.

Research over the last 20 years has developed
formal techniques for the modeling and design
of sequential systems. These techniques are ac­
cepted within the research community and are
adopted in many industrial applications. Sequen-
tial systems can be characterized as computation
oriented systems having strictly limited and well-
guarded interaction with their environment, as
opposed to computer systems with an ongoing in­
teraction with their environment.

Unfortunately systems of the latter class cannot
be sensibly viewed within the sequential frame-
work. Most of these systems are highly concur-
rent, distributed and often have real-time proper-
ties. The development of these systems is far more
complex than the development of data driven sys-

tems. Many authors like e.g. B R O O K S [6], P A R -

NAS [18], and L E V E S O N [13] have stressed that
standard techniques currently used in the devel­
opment of data driven systems do not match the
demands put on development techniques for real-
time and distributed systems. Even worse, at-
tempts to build such systems using the same ap-
proaches developed and used for da ta processing
and information processing systems must lead to
grave failures.

LEVESON argues in [13] that modeling and anal-
ysis form the main challenges in building real-time
(control) svstems. STANKOVIC [22] states tha t the
main challenge in the development of advanced
computing systems lies in modelling and verifi-
cation of timing constraints. Inclusion of a tirne
metric increases the semantic power of concur-
rency models to a great extend, and thus com-
plicate the verification. One of the more difficult
problems is verification of these systems, which
requires the satisfaction of timing constraints.

Figure 1 schematically depicts the relationships
between notations and tools that partake in the
notational framework for system modelling and
analysis! The primary part is the system speci­
fication language which enables the creation of a
model of the svstem, based on the overall require-
ments. Often a simple conceptual model is used to

http://la.ngua.ge

2 6 Informatica 19 (1995) 25-42 J. van Katwijk et al.

Conceptual
Model

System
specification

language

Requirement
specification

language

V

Verification
technique

Figure 1: The notational framework

give a semantics (S) to both the svstem specifi­
cation language and the reguirement specification
language (RSL). A RSL offers means to specify
requirements or properties (RS) of the svstem
model. To decide whether the svstem model mod-
els the requirements and has the desired proper­
ties a verification technigue must be applied (V),
such as model-checking or axiomatic reasoning.

In this paper the svstem specification language
MOSCA is introduced as a vehicle for modelling
reactive and real-time svstems. One of its distin-
guished features is the possibilitv for loose spec­
ification. Loose specification is the possibilitv of
writing constructs that may have several differ-
ent meanings. The specification of a system is
necessarily loose specified if the final system may
wait until execution tirne to determine the oUt-
comeofthe constructs. Loose specified constructs
may also arise in specifications even when the sys-
tem finally developed is deterministic. The phe-
nomenon of looseness arises in this context be-
cause a specification (of a model) is often stated
at a greater level of abstraction than that of the
final source code of the deterministic system.

The article is further organized as follows. In
section 2 an overview is presented of the syntax
of the specification language MOSCA. Section 3
presents the conceptual model on which the se­
mantics of MOSCA is defined. It highlights in
particular the semantics of tirne dependent con-
structions and the incorporation of looseness into
the semantics. Section 4 presents a larger example
of the use of MOSCA. Finally section 5 summa-
rizes the results so far and compares the MOSCA
notation to related work.

2 The MOSCA notation

MOSCA1 [23], [24], [25] is an experimental nota­
tion based on the Vienna Development Method
specification language VDM-SL 2 [7], [11]. The
aim of its development was to increase the appli-
cability of VDM in the area of distributed, parallel
and real-time systems. MOSCA incorporates no­
tational aspects of CCS, the Calculus of Commu­
nicating Systems [15]. The model-oriented speci­
fication language of VDM acts as the process al­
gebrah value manipulation language. The com-
bination is further extended with capabilities to
describe tirne dependent behaviour. MOSCA of­
fers a timing facility based on the Timed CCS
notation of WANG [27].

MOSCA is an experimental specification lan­
guage. Although both VDM and CCS have a very
firm position as accepted notations, a combina-
tion of the two is rather experimental. Recently
some results are established by HENNESSY [10]
on combining a process algebra like CCS with a
value passing mechanism capable of manipulat-
ing natural numbers. Semantically the problems
of combining VDM-SL with TCCS are substan-
tial. Without claiming to give a solution to ali
problems a fairly simple semantic model for the
combination was constructed. 3

A MOSCA specification describes four aspects
of complete systems of communicating pro-
cesses: their data-containment, their functional

1 MOSCA is an acronym for Model- Oriented
Specification of Communicating j4gents.

2The specification language for VDM for which
an ISO standard is currently being developed (ISO
SC22/WGl9/N-20).

3For a full rationale on the design of the MOSCA lan­
guage the reader is referred to [23].

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 27

BeTfT

agentservice (i d X (> l Vexpr KT)

Figure 2: Syntax of behaviour expressions

behaviour, their process-structure and their tirne
characteristics. Associated with these aspects are
different constructions : data type definitions,
functions and operations on the data types, agent
definitions, and timed actions. The basic element
in the MOSCA model of a system is a process,
called agent. The constructions to specify the be­
haviour of agents are shown in Figure 2. In the
following sections these constructions are intro-
duced by example to describe the various aspects
of agent behaviour.

The first option in the syntax diagram is ded-
icated to agent invocation. The syntax class
Vezpr denotes ali value expressions as defined
by the VDM-SL part of MOSCA. It offers ba­
sic types like natural numbers (N), integers (Z) ,
reals (M), booleans (B), product and union types,
record types optional types, function and opera-
tion types. Further it offers complex data struc-
turing facilities based on set types, sequence types
and map types. It features subtyping through
type invariants.

The agenti/ expression enables conditional be­

haviour specification. The agentlet enables local
agent definitions and local value bindings, either
fixed or loose. E.g. in

let x = 3 in x

the value 3 is bound to the identifier x in a deter-
ministic way. In

let x G {1,2, 3} in x

it is not deterministically decided what the value
of the expression will be. It may be either 1, or 2
or 3, depending on the context of the expression
whether the choice is made in specification tirne or
in execution tirne. The last form of the agentlet
offers a means to constrain the set of bindings.
The expression

let x:N be s.t. x < 10 in z

defines a value expression for which the value
ranges from 0 to 9.

The next option is dedicated to the various
forms of prefix expressions. The first form is reg-
ular CCS extended with an explicit synchroniza-
tion prefix. The second form describes the idle

28 Informatica 19 (1995) 25-42 J. van Katwijk et al.

Agent

agentheading
-(agent)—(id)-

\ "'«'»""' (lyJ[^^(^J N

T •ports-pec s v • v ^—s
(^ p o r t s _ / - s j — (, s y n / - \ i d /

J
(E) 7 ~ < j d } - 0 - | type

T statepart
fieldlist invariant initialisation

T T sharelist
-(shares)— j—(jd/

valuepart statepart

-o-
f agentbehaviour ^—^

—rvi>

portspec

pattern

{!)—| Bexp7

C
1 l o cal d efiniti o ri

- \where}- typedefinitions X
valuedefinitions

functiondefinitions

operationdefinitions

Figure 3: Syntax of agent defmitions

prefix, which involves time manipulation. The
third form handles the infusion of value state ma­
nipulation. It specifies a VDM-SL statement that
is allowed to manipulate the state of the agent in
which the construction appears.

The next four options describe standard CCS
operators. The choice construction enables non-
deterministic selection of specific behaviour. com-
position, and restriction involve agent communi-
cation. Through relabelling port labels can be re-
named. They originate in CCS and have a mean-
ing equivalent to their CCS counterparts.

The syntax of agent defmitions is defined by the
Agent syntax rule, presented in Figure 3. Agent
defmitions can be given in various stvles, ranging
from simple agents without any means to handle
values — through agents with value parts — to
agents with local s tate and associated operations

that act on the state of the agent.

Speciflcation 2.1

agent Clock

ports in reset : T

out time : T

shares RClock (T)

Clock t
reset(inittime) 0 RClock (inittime)

RClock {t} t
\d\t(tick) 0 RClock (tick + t)

(B reset [inittime) 0 RClock (inittime)
© time(t),-kd 0

\d\s(tick - d) O RClock (tick + t)

file://-/where}-

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 29

vvhere

values

tick : T = 0.001
en d

In specification 2.1 the first line states the
agentheading. The value part is absent. The next
two lines define two communication ports, the in-
put port reset and the output port time (an out­
put por tname is marked by an over bar, e.g. like
tirne. Both ports handle data elements from the
time domain T. The Clock has two different be-
haviour definitions, Clock and RClock. The sec-
ond behaviour definition ušes a value part to hold
the current reading of the clock. The shares clause
defines additional behaviour definitions that share
the interface of the surrounding agent definition
in the following sense: additional ports and state
extend the interface of the surrounding agent, an
additional value part replaces the value part of
the surrounding agent definition. The Clock be­
haviour definition

Clock £
reset(inittime) 0 RClock (inittime)

is defined through the agentbehaviour syntax con-
struction. The behaviour expression

reset(inittime) © RClock (inittime)

is a prefix construction. The left operand is an
input action where reset is the name of the port
through which the input action will operate and
inittime is the pattern on which the input value
will be matched to form a new pattern bind. The
right operand is an example of an agentservice
construction. It resembles the function call of the
VDM-SL part of MOSCA. An agent service con­
struction consists of the agent name it invokes and
optionallv an actual value to match the valuepart.
The behaviour expression

Rclock (inittime)

is an agentservice expression tha t sets the value
part of the RClock behaviour definition to the
value bound to inittime and behaves just like
the behaviour expression associated with the be­
haviour definition RClock.

An slightlv different specification of the Clock
agent is presented in specification 2.2. It illus-
trates the state facilities of MOSCA.

Specif ica t ion 2.2

agent SClock
ports in reset : T

out time : T

state reading : T

i nit reading & reading = 0

SClock £
\d\e(tick) 0

a (reading: = reading + tick)
0 SClock

© reset (inittime) Q

a (reading: = reading + tick)
0 SClock

© time(t),*d 0 \d\e(tick — d)

0 a (reading: = reading + tick)
0 SClock

vvhere

values

' tick : T = 0.001
end

The reading of the clock is nov/ stored in a state
component. State components act as global vari-
ables. In contrast with Clock wiH SClock always
start with a zero reading. SClock can also be ini-
tialized with a start reading. The form

a (reading: = reading + tick) 0 . . .

is a special form of an prefix construction. It is
not associated with an external action, but with
a completely internal action, i.e. a manipulation
of one or more state variables. In state manipu-
lations old values are 'hooked', i.e. they appear

with an hooked overbar, like reading.

The model of time in MOSCA is centered around
the following elements.

- There is neither a central clock, nor any other
ticking device that registers the current time.

— Passing of time is measured related to ac-
tions: from the moment an action becomes
enabled, i.e. offered to the environment, to
the moment the action is actually taken. The

30 Informatica 19 (1995) 25-42 J. van Katwijk et al.

passed tirne is recorded in a variable associ-
ated with the involved action. E.g. in

time(t),*d 0 idle (tick - d) 0 ...

the passing of tirne between the moment the
Ume action becomes enabled and the actual
taking of the action is bound to the variable
d.

— Time progression is modelled by taking idle
actions. Time flows continuouslv. There are
no tirne stops.

Time identifiers of timed preflx constructions may
occur as free variable within the behaviour ex-
pression following the O operator. After taking
the action of the prefix construction the actual
value of the variable t is substituted in each free
occurrence of the identifier within the behaviour
expression following the © operator. Thus in

act,-ktQ P

each free occurrence of t in P is bound by -kt.
Upon taking the action act the actual value of
the tirne variable t is substituted in ali free occur-
rences of t in Bexpr.

Time progression is due to the taking of idle
actions. E.g.

idle tick 0 RClock (inittime)

specifies a prefix expression, in which taking the
action causes the tirne to progress with the value
tick. Time progression is strongly connected to
the semantics of the prefix construction, choice
and composition operator.

The domain T for the values of the idle actions
is chosen to be MQ~, the set of real values greater
or equal to zero. The set of reals creates a model
that fits more closely to reality than e.g. N, the
natural numbers. For a fully synchronous sys-
tem one may take a discrete tirne domain (like
with SCCS in [14]), since ali subagents refer to
the same global intuition of tirne (e.g. a global
clock), and events happen at certain moments in
tirne. In the asynchronous čase, any two agents
may perform actions at times that are not equal,
but arbitrary close to each other. Hence a dense
tirne domain is preferred.

The parallel composition is synchronous with
respect to tirne actions. E.g. in

idle 6 0 P | idle 8 0 Q

after 2 tirne units have passed a situation de-
scribed by

idle 4 © P | idle 6 0 Q

is reached. However, time progression is asyn-
chronous for the normal actions (except for Com­
munications between its different components).
In

P\ Q
P and Q can perform actions asynchronously un-
til synchronization between two subcomponents
is due.

In the example above the reading of the clock,
modelled by the action time may take some time,
due to idling elsewhere. Thus in

time(t),-kd 0 \d\e(tick — d) Q RClock {tick + t)

the passing of time between the enabling of the
time action and the taking of the action is bound
to d. The structure of the specification of RClock
ensures that d will never be greater than tick so
after idling tick — d t ime units exactly one whole
tick is passed and the reading of the clock is up-
dated accordingly.

3 The semantics of MOSCA

MOSCA's structured operational semantics is
based on the common notion of labeled transi-
tion systems ([19]) and exhibits three particular
properties, i.e.

— the state domain of the labeled transition
system holds a notion called environment,
capturing bindings from identifiers to both
semantic value denotations and syntactic
agent definitions;

— the label domain holds values from (i) the
set of visual ports (as usual), (ii) values of
the semantic value domain of VDM-SL and
(iii) values of the semantic domain TIME,
corresponding with the syntactic domain T.

— the state transition relation reflects loose-
ness. To this end the transition rules are de-
fined over states constructed of sets of items.
Each item corresponds to a possible different
transition.

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 31

The values in the semantic value domain of VDM-
SL are defined through a denotational semantic
approach. E.g. the svntactic domain of natural
numbers, N is represented by a semantic domain
of natural number denotations, NATURALS,
which is constructed as a chain complete partial
ordering. The semantics of VDM-SL are defined
through recursive functions over the semantic do-
mains. Currently the semantics is as part of the
draft VDM-SL ISO standard, under review. It is
rather elaborate. It contains over 200 semantic
functions together taking 400 pages of formatted
output [11].

The state space is infinite. Although the infin-
ity aspect has difRcult theoretical properties the
labeled transition system offers a base for the op-
erational description of the behaviour of agents.

3 . 1 T h e s t a t e s p a c e

The labeled transition system for MOSCA is a
triple

((Bexpr X p)-set, Act, —>).

The first part defines the state space, the second
part the label space and the third part the tran­
sition relation. Bexpr ranges over behaviour ex-
pressions, p ranges over environments, Act ranges
over the set of defined port labels and —> is a re­
lation

(Bexpr X /o)-set X Act X (Bezpr X /a)-set.

The state space is built from states, consisting of
sets of tuples (be, env), where be € Bexpr and
env is an environment. A single element (P,p) of
a state is further referenced by the notion state
item.

The environment captures the set of defmitions
in which behaviour expressions operate. These
defmitions include ali da ta defmitions like types,
values and functions, agent defmitions, the set of
local bindings resulting from value let construc-
tions, pat tern matching etc. The environment
records

— ali possible value bindings, i.e. bindings be-
tween identifiers and semantic denotations of
value constructions such as types, functions,
values, operations and states, and

- ali possible agent bindings, i.e. bindings
between identifiers and syntactic representa-
tions of agent defmitions.

3.2 T h e l a b e l s e t Act

The label set Act for MOSCA is defined by the
union of the external action names, the timed ac-
tion labels and the internal action. The external
action names correspond to the port identifiers.
The timed action labels r are the semantic coun-
terparts of the idle actions. Each idle action spec-
ifies a delay d tha t is attached to the timed ac­
tion label T like r(d). The class of tirne actions
TimeActs contains the idle action specifiers r(d).
Each value of d specifies a denotation of a tirne
value. E.g. the transition

{(P,P)}T-^{(Q,P')}

denotes that agent P will become Q after d €
TIME units of tirne. The behaviour expression
idle 0.5 0 P, operating in an environment p could
make the transition

{(idle 0.5 O P, p)} T^] {{P, p')}.

The last action label is t, labeling an internal ac­
tion. Notice the difference with CCS where there
is an action r that models an internal action on
the syntactic level. In MOSCA an internal action
with very similar semantics can be constructed by
taking e.g. a state manipulation with a dummy
statement, or an idle action with delay 0.

3 .3 T h e t r a n s i t i o n r e l a t i o n

The —> relation is defined implicitb/ as the least
relation defined by a set of inference rules. The
general form of the inference rules are more com-
plex than in the structural operational semantics
of CCS. This is caused by the state extension with
environments and the interplay of the loose value
semantics with the agent behaviour expressions.

A transition step is denoted with the notation
S —> S' with a ^ t or S =3- S' where = > is
an abbreviation for — K S is called the basis of
the transition step, a the action label and S' the
result of the transition. When S is a singleton set
the notation {s} is used.

The semantic rules fall into different classes:
the internal action rules, external action rules and
timed action rules. In general these rules appear
as

.L i
rp u rpf

32 Informatica 19 (1995) 25-42 J. van Katwijk et al.

where L is an identifying tag. The intuition un-
delying the inference rule is something like " if S
can proceed to S' by taking an a action, T can
proceed to T' by taking a b action ". The part
above the line is the hypothesis for the inference,
the part under the line is the conclusion. The hy-
pothesis may be absent, in which čase the action
step in the conclusion can be taken always.

The internal action rules cover ali cases where
evaluation or manipulation of values is involved.
Examples are the rules for agentservice, agentlet,
agenti/ and prefix expressions. Their basic form
is like

S E
M S

These rules describe the effect of taking an inter­
nal action in the context of singleton states and
result in general in state expansion (SE) . The ef­
fect of taking internal actions in the context of
states built from multiple state items is described
by the next rule.

E P W s
S' U {s} => S' U S

It signifies state expansion propagation (E P) .
Next there are rules that describe the effect of
taking internal actions in the context of the stan­
dard CCS operations. E.g. the rule for state ex-
pansion in the context of a choice expression is as
follows.

C E
{(Aj,p)}=>S

{(A1®A2ip)}=>
= 1,2

It states tha t whenever an operand of a choice
expression leads through state expansion to some
expanded state S, the whole choice expression
leads to this state S. That is, taking an internal
action will force the choice to be evaluated. The
choice is thus not only directed by external action
steps but is also directed by internal actions.

Opposed to state expansion there are state re­
duction rules. There are two different causes for
s tate reduction: (i) external actions and (ii) idling
actions. Action state reduction is defined as

A S R M - ^ {''}

The rule states that whenever a single state item
can take an external action, the whole state is

reduced to the result of the action step.
state reduction is defined as

Idling

I S R is} ^ {s'}
Su{s}T-n{s'}

which states that whenever a single state item
takes an idling action, the whole state is reduced
to the effect of the idling step. The foUowing ex-
amples may elucidate the effect of s tate expansion
and reduction in different contexts.

E x a m p l e 3.1 The evaluation of value construc-
tions is captured in an internal action step. E.g.
the rule for the agent value let expression is

AVL
{(avl,p)}=$- EvalAVL(avl,p)

where avl represents an agent value let expres-
sion and EvalAVL is a semantic evaluation func-
tion that results in a set of s ta te items tha t share
the body of the let expression as continuation be­
haviour but hold different values in the environ-
ment part tha t resulted from loose value evalua-
tions. E.g. suppose the expression

leta; G {1,2, 3} in P (z)

operates in an environment p in which P is de­
fined. The rule AVL states tha t the state

11 = {(let« 6 {1,2 ,3} in P (x) ,p)}

is transformed through an internal action i into
the result of EvalAVL(ll), which in this particular
čase would be the following state

{{P(x),pU{x^l}),
(P(x),pU{x»2}),
(P(x),pU{x»3})}.

The cardinality of this state is equal to the cardi-
nality of the set in the patternbind of the let con-
struction. Each state item is the starting point
of the same behaviour expression operating in a
different environment. D

Example 3.2 demonstrates the effect of the action
state reduction rule A S R .

E x a m p l e 3.2 The evaluation of agent service
construction is also captured in an internal action

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 33

{(\ttx e {1,2 ,3} in P (x) ,p)}

''AVL

{(P,Pl),(P,p2),(P,p3)}

LSA L A S

LAS

{(P,Pl),(P,P2),(P,P3)} {(P,Pl),(p,P2),(P,P3)} {(P,Pl),(P,P2),(p,P3)}

{(P,Pl),(P,P2),(P,P3)}

L AS .A'V
{(P;Pl),(P,p2),(P,p3)

{ (Q , p U { n ^ l }) } {{Q,pU{n^2})} {{Q,p U {n » 3})}

Figure 4: Transition tree for loose let construction

step. The rule, completely analogue to the AVL
rule, is

A S
{(as,p)}=$- EvalAS(as,p)

where as represents an agent service expression
and EvalAS a semantic function, that takes the
syntactical form of a specihc agent service and
an environment as arguments and computes the
set of s tate items resulting from the agent service
application.

Suppose the agent P in example 3.1 is defined
through the single agent behaviour definition

P (n) ^ p~ri(n)QQ.

The rule for agent service can nov/ be applied on
each of the s ta te items of s tate 11. The effect of the
rule applied on state item { (P (x) ,pU{x >-+ 1})}
is as follows.

{{P{z),P\j{x»l})}
{(put(n)OQ,p\j{n^l})}

According to rule E P the state // now will have a
transition resulting in

{(put(n)QQ,pU{n^l})>

(P(x),pU{x^2}),
(P(x),pU{x»3})},

but also an internal transition leading to

{{P_(x),pU{x^l}),
(put(n)Q Q,pL){n^ 2}),
(P(x),pU{x^3})},

and equally an internal transition leading to

{(P{x),pU{x»l}),
(P_(x),pU{x»2}),
(put(n)Q Q,pU{n^ 3})}.

In Figure 4 these state transitions are depicted
as a derivation tree. The internal actions t are
indexed with the action rule label. The state
item (P,pi) is a shorthand for (P (a;) ,p U {x i-»-
i}). State item (p,p\) svmbolizes the state item
(put(n) 0 Q,pU {n i-> i}).
A rule for external output actions is

E O A
{(a(expr)OX,p)}-^{(X,p)}

34 Informatica 19 (1995) 25-42 J. van Katwijk et al.

This rule can be applied to state items (p, p,)
which have ali external actions put(i). This ac-
tion step will reduce the states according to rule
A S R . a

3 .4 S e m a n t i c s of T i m e

The basic properties of the semantics of tirne are
summarized below. They originate from the work
on TCCS in e.g. [16] and [27] and are extended
to fit into the semantic setting of MOSCA.

— M a x i m a l Progress Whenever an agent can
proceed by taking an internal action it will
not wait.

{,} = > {s'} *

$d e TIME • {s} T-^l {s"}

Whenever an agent can proceed by taking an
external action it will not wait.

3a G ExtAct • {s} - ^ {s'} =>

$d 6 TIME • {s} '-^l {s"}

— T i m e D e t e r m i n a c y To ensure the progress
of tirne each agent, even the null agent and
divergent agent can take idle actions. When
tirne goes, if an agent idles, it can never reach
different states:

{ S } I « M A { S } I W { S « } ^
{S} EE {S"}

where = means state equality. Time deter-
minacy results from the properties of idling
in combination with and choice and composi-
tion. The divergent agent _L must be able to
take idle actions as well. As tirne progression
in compositions is synchronous, P | J_ would
not allow the tirne to proceed if J. would only
take internal actions and no idle actions as
well.

— T i m e Cont inui ty During idling no tirne
moment may be passed without notice.

{sy^{s»}^
{s) m {s'} MS'} TM {s"}

T i m e pers i s tency By idling an agent will
not loose the ability to perform an action that
it is able to perform originally.

{*'} -^ {*"}
{s"}) =>

These basic properties of time in MOSCA reflect
the incorporation of idling in the semantic rules of
prefix, choice, composition, the null agent and di­
vergent agents. The null agent is inactive but can
be engaged in idling, to enable time progression
in compositions that involve a null agent. The di­
vergent agent is either idling or busy with internal
actions.

4 Čase study: a railroad
controller

In order to be able to evaluate notations for use in
the development of real-time software systems, we
are performing a comparative review of some se-
lected system specification notations. The study
emphasizes the use of the notations in the do-
main of real-time (control) applications. Our re-
view will be based on a simple railroad controller
model. This čase contains data modeling aspects,
functional aspects as well as temporal aspects. A
(toy) railroad with computer interface, is avail-
able in our laboratory, used for lab assignments.
An Ada encoded controller, loosely based on the
specification is running on a P C for demonstra-
tions. Typical elements to consider are usability
with regard to the specification in relation to the
requirements, and secondb/, usability with respect
to further program development. In this section
we briefly address some issues of the MOSCA
specification of the controller. For a complete
MOSCA specification the reader is referred to [3].

This section is further organized as follows.
Section 4.1 shortly covers the problem descrip-
tion. Section 4.2 presents an analysis of the prob­
lem. Section 4.3 present fragments of a MOSCA
specification.

4.1 I n f o r m a l p r o b l e m d e s c r i p t i o n

A (toy) railroad system is built up from connected
rail elements (straight elements, bowed elements,
crossings and switches). Connected rail elements

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 . 35

are grouped into physical blocks. These blocks are
connected to hardwired function decoders. The
average length of rail elements is 23 cm, the speed
of a train can be varied between 0 and 30 cm per
second.

Through a computer (serial) interface, com-
mands can be given:

— status enquiry commands (i.e. blocks being
occupied or not) .

— switch setting/resetting commands.

— train commands, setting a particular speed,
setting lights, a horn and a direction.

The problem is to specify (and subsequently de­
sign and implement) a software controller through
which the behaviour of the system can be con-
trolled. The behaviour of the train should con-
form to reguirements, expressed as missions, one
for each train. Missions specify routes which are
expressed in terms of tracks and the train be­
haviour along the route. A track is a path over
a sequence of connected rail elements. The se-
quence of rail elements itself, is called a block.

Obviously, the system should obey elementary
safety precautions:

— trains should not collide, modeled by pre-
venting two trains to ride on the same block;

— when a train is on a block, no switch in this
block should be changed. Setting a switch
while a train passes, might cause considerable
physical damage.

The complete reference specification of the rail-
road controller is contained in [2].

4 .2 A n a l y s i s of t h e p r o b l e m

For each train, the controller has been given a
mission that specifies actions to be taken by that
train.

A mission is built up from a sequence of com­
mands. A command consists of an action specifi­
cation, a position specification and a specification
of temporal constraints.

Command = I N I T | S T A R T | S T O P | PASS

Mission = Command*

I N I T causes a train to be initialized. The initial
position is assumed to be in the middle of
the specified track, the latter specified by the
block identification (a number) and identifi-
cations of entry and exit points on this block
(numbers as well).

S T A R T causes a train to start from the (as­
sumed) position at the middle of the spec­
ified track (at Start tirne), and to reach the
end of the track no later than Exit tirne.

S T O P causes the train to stop, at Stop Time,
near the middle of track Track.

P A S S causes the train to run over a given track
Track, with a speed sufficient to reach the
end of this track no later than Exit Time.

A typical sequence of commands for a particular
train that is to drive from the middle of a starting
track (1, 1, 2) to the middle of track (4, 1, 2) and
vice versa, may look like:

INIT
START
PASS
PASS
STDP
START
PASS
PASS
STOP

(1,
(1,
(2,
(3,
(4,
(4,
(3,
(2,
(1,

1,
2,
1,

1,
1,
2,
2,
2,
2,

2)

D,
2),
2),
2),
1),
D,
D,
D,

1000,
1020
1030
1035
1035,
1050
1060
1070

1010

1040

According to the above mentioned informal re-
quirements, the system consists of (i) a railroad
with a number of trains, (ii) some logic private
to the railroad, and (iii) a controlling computer
system. In line with observations in e.g. [21], we
prefer a closed description, i.e. one that provides
an integral description of both the behaviour of
the controller and of the controlled system. Only
then, the model can be used for (safety) analysis.

A first step in the development is to identify
the different elements in the requirements model.
Different brands of trains provide different fea-
tures, abstraction from physical details is there-
fore necessary. The resulting structure of the re-
quirements specification is schematically depicted
in figure 5. In this model, we identify:

— The controller (further indicated with S CM),
observes the positions of the trains and issues
(speed setting and switch setting) commands

36 Informatica 19 (1995) 25-42 J. van Katwijk et al.

INIT

Figure 5: Structure of the controller

to correct observed deviations of the required
position. The SCM is responsible for main-
taining safety on the rail road.

— The controlled part (further indicated with
ARM) provides information over train posi-
tions to the controller. It reacts upon the
SCM by setting switches and by handhng
speed setting and direction commands for the
trains.

— An interface. The interface between the
ARM and SCM is chosen to be data oriented.
It contains:

- for each train the specification of the re-
quired speed, maintained by the SCM, to
be interpreted by the ARM.

- for each train an indication of the ob­
served position, as determined by the
ARM.

- a specification of the reguired settings of
switches.

Within the requirements model, trains, blocks
and switches are typical entities with state. The
state of a block indicates whether or not it is oc-
cupied, the state of a switch indicates its setting.
A train is in one of eight states, the states and
transitions are given in figure 6. Relevant for the
discussion in section 4.3 are the following states.

— A train in state PA S S remains running un-
til it enters the next track on its route. If
the command to be performed on this next
track is a PASS command, an attempt will
be made to allocate the next track on the
route. If allocation fails, the train will slow

STOPPED

STOPPING

START

PASS

HALT

SLOW

ERROR

Figure 6: Train state diagram

down (and enter state SLOW), if allocation
succeeds state PASS will be reentered. If the
command on this track is STOP command,
state STOPPING will be entered.

- In state STOPPING, the train will move
forward until reaching the middle of the
track. There it will take state STOPPED
and halt. In this state, the only valid com­
mand is a START command.

- In state SLOW, the train will continue to
attempt to allocate the required resource.
If the train reaches the middle of the track
before allocation succeeds, it enters state
HALT and the train halts. If the train does
obtain the required resource, state PASS will
be (re)entered, and the train will move with
the speed required to meet its temporal con-
straint.

The SCM 'observes' the position of each of the
trains and sets (i) the switches for tracks that are
entered next, and (ii) the speed of the trains. In
this process, the SCM reacts upon the occurrence
of events. The events are chosen such that the
change in state for each individual train becomes
clear.

The temporal constraints on the system only
follow indirect. They are determined by the speed
of the trains and the speed with which the system
needs to react upon changes.

Typical elements from which specific temporal
constraints are to be be derived, are:

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 37

— Switches should be set before a train en-
ters the block containing these switches. if
the settings for switches for a next track are
given, before the train reaches the middle of
the current track, more than 0.5 seconds is
available for the ARM to set the switches.

— accuracv of position reading depends on the
frequency with which this reading is updated.

The speed of the train dictates the setting of dead-
lines. Since the maximum speed of the train is
app. 30 cm/second, and most of the rail elements
are app. 23 cm, most of the deadlines can be set
to app 100 msec, leaving room for a deviation of
app. 3 cm.

CONTROLLER
state RegSpeed

ReqSwitches
Position
Conf

SpeedTable
SvaitchTable
PositionTable
RailRoad

shares TIME
ports syn DurationEvent

syn InitEvent
out Time

ARM
ports syn DurationEvent

in SpeedEvent

in SmitchEvent
out TrackEvent

out PositionEvent

state CurrSpeed
CurrSwitch.es

SCM
ports in Time

syn InitEvent
in TrackEvent
in PositionEvent
out SpeedEvent

out SivitchEvent
state AllocatedTracks

TheTra ins

N

SpeedTable
SwitchTable

Train
Train

SpeedTable
StvitchTable

N

Train
Train

TrackTable
TrainTable

CONTROLLER * TIME I ARM I SCM

4.3 A model for the s y s t e m

The MOSCA model is systematically derived
from the reference specification, which is based
on an event/action paradigm [12]. In [26] we de-
scribe a simple method to transform a specifica­
tion based on the event/action paradigm into a
process oriented specification.

The complete MOSCA model of the railroad
controller consists of (i) an elaborate model of the
physical railroad, (ii) a description of the mission
data structure, (iii) a distributed model of the
state of the system, (iv) specifications for the tim-
ing device, the ARM and the SCM. The overall
structure of the model is presented in figure 7.

DurationEvent

SpeedEvent
SwitchEvent

PositionEvent
TrackEvent

Figure 7: Structure of MOSCA model

The MOSCA specification is given in specifi­
cation 4.1. From the globally addressable vari-
ables (the state) of the CONTROLLER agent
are ReqSpeed and ReqSwitches read by the ARM
agent, set by SCM. The component Position is
set by ARM and read by SCM. The model of the
railroad Conf is (for convenience) assumed to be
properly initialized. The local variables of ARM
model the actual devices, i.e. the trains and the
switches. The local variables of SCM model the
controller's view of the trains and the actual allo-
cation of tracks per train. The TIME agent offers
the tirne service to the SCM agent and two inter­
val timers, the duration interval timer and the init
event timer.

The timing device consists of two parallel com-
ponents vvhich are the clock and the interval
timer. The clock ticks measure 1 msec. The du-

http://CurrSwitch.es

38 Informatica 19 (1995) 25-42 J. van Katwijk et al.

ration interval measures 100 msec. The specifica-
tion of the timing device (4.2) starts by defining
its interface to the other two processes. It consists
of three ports offering a time service Time and sig-
nals that mark the ending of the timed interval.
The behaviour of the TIME agent is defined as
two processes running in parallel, the Clock and
the IntervalTimer. The clock merely ticks and
offers the time service. The interval timer times
an interval of 100 msec. The event that marks
the end of the interval is signaled by two parallel
running signal servers that stop after passing the Specification 4.3
signal on to the ARM and the SCM processes.

is unbiased with respect to its realization which
can be either in hardware, software or a mixed
implementation partly in hardware and partly in
software. A clock with an expected skew can eas-
ily be modeled by adding a skew factor to the idle
action following the Tick action,

Tick,-ktQ
idle (tick-delay — t + skew()) © . . .

such that the function skew delivers a skew value.

Specif ication 4.2

agent TIME
ports syn DurationEvent

syn InitEvent
out Time : N

shares Clock (N)
ports syn Tick
IntervalTimer (N)
ports syn Tick

TIME ^
(idle tick-delay © Clock (1) |
IntervalTimer (0)) \{Tick}

Clock (r) ^
Tick,*tQ
idle (tick.delay — t) ©
Clock (r + 1)

© Time(r),*tlQ
Tick,*t2Q
idle (tick.delay - (ti + t2) ©
Clock (r + 1)

IntervalTimer (count) =
if count = duration
then (DurationEvent 0 null |

InitEvent 0 null |
Tick O IntervalTimer (1))

else Tick © IntervalTimer (count + 1)

where

alues

tick-delay
duration

T = 0.001
N = 100

end

The TIME agent models an ideal clock, an infal-
lible device without any skew. The specification

agent ARM
ports syn DurationEvent

in SpeedEvent : SpeedTable
in SuiitchEvent : SvritchTable

state CurrSpeed : SpeedTable
CurrSwitches : SwitchTable
extCon/ : RailRoad
&KtPosition : PositionTable

shares NevoPosHandler

ports out PositionEvent
out TrackEvent

SpeedSettingHandler (SpeedTable)
SvjitchSettingHandler (SivitchTable)

ARM t
DurationEvent ©
NeivPosHandler \ ARM

© SpeedEvent(trainspeed) ©
SpeedSettingHandler (train.speed)

© SwitchEvent(switch) ©
SvjitchSettingHandler (switch)

Specification 4.3 presents the ARM. It is mod­
eled as an event handler offering for each event
a specialized handler. The DurationEvent signals
the computation of new positions of the trains.

Specification 4 .4

agent NeivPosHandler
ports out PositionEvent

out TrackEvent
state ct : B

Train

Train

shares NewPosHandling (Tram-set)

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 39

NeivPosHandler =

let ts = dom CurrSpeed in
NewPosHandling (ts)

NeivPosHandling (ts) =
if ts = { }
then null
else let t £ ts in

a(ct: = ComputeNeivPos(t)) 0

if c«

then TrackEvent(t) 0
NeivPosHandling (ts\{t})

else PositionEvent(t) 0
NeivPosHandling (ts\{t})

Specification 4.4 presents the event handler
tha t is activated on the duration event from the
interval timer. Each event is given a associated
handler. For each train in the svstem (registered
in the domain of the CurrSpeed state element) it
computes a new position through the VDM-SL
operation ComputeNewPos.

NeivPosHandling features a loose let construc-
tion. By selection of arbitrarv trains from the
set of trains in its value part it computes for
each member of the set a new position. The
changed position is subsequently signaled to the
SCM by either a PositionEvent when the train
has just moved within its current track, or by a
TrackEvent when the train has moved on to a new
track. The boolean state value ct holds the value
true if a track change occurred during the change
of position. The position handler, being part of
SCM is given as a final example of a MOSCA
agent. It handles the mode changes from S L O W
to H A L T and from S T O P P I N G to S T O P P E D
which were indicated in figure 6. In mode PASS
First the current reading of the clock is bound
to the name noiv. The computation proceeds by
checking whether the train can reach its target
within its t ime limit. If so, the train proceeds
running, else the train enters mode E R R O R . If
the position of the train is near the middle of the
track it either slows down to halt, or it stops com-
pletely.

5 Summary

The work on MOSCA is inspired by many other
approaches on combining value manipulation, be-

haviour and time. In this context at least the fol-
lowing pioneering research should be mentioned:
BJ0RNER. and J O N E S for their work on VDM [4],
H E N N E S S Y for his work on denotational semantics
for process algebras [9]), MiLNER, for his work on
CCS and scientists working on time extensions of
process algebraic notations [1]), [27]. The LOTOS
[5] and RAISE [8] specification languages come
most closely to MOSCA in its current form. The
main differences are the nature of the semantic
treatment of the embedded value manipulation
language. Whereas LOTOS and RAISE offer a
value manipulation mechanism based on the alge­
braic approach, MOSCA offers a model oriented
approach, taken from VDM-SL, which is based on
combinations of simple mathematical models like
sets, sequences, maps, trees, etc. and which is
given a denotational semantics.

The specification language LOTOS (Language
Of Temporal Ordering Specification) was designed
to enable formal description of OSI architectural
concepts such as services, protocols service access
points, etcetera. Contrary to the name suggest,
LOTOS is not related to temporal logic. LOTOS
is based on CCS, with influences of CSP. CCS
is used as semantical basis for the process part
of the language. The requirements for abstract-
ness favored the choice of an abstract datatype
definition technique as value description device.
Here ACT-ONE was chosen as a starting point.
LOTOS is an executable notation. Recentb/ ex-
periments have been carried out to incorporate a
notion of time in LOTOS [20].

RAISE (Rigorous Approach to Industrial Soft-
ware Engineering) is a collection consisting of a
specification language called RAISE Specification
Language (RSL), a development method, and a
set of supporting tools. The RAISE Method is,
just like VDM, based on the notion of stepwise
refinement. Its specification language RSL con-
tains notions to express data-abstraction through
model-oriented and propertv-oriented facilities.
Control abstraction for parallel activities is based
on the process concept of CSP extended with
the facility to specify processes implicitly through
trace and failure assertions. RSL does not handle
the notion of time.

MOSCA shares with RAISE the notion of data-
refinement. MOSCA lacks the facility to spec-
ify processes implicitly. MOSCA offers a prim-

40 Informatica 19 (1995) 25-42 J. van Katwijk et al.

Specif ication 4.5

agent PositionHandler (Train)
ports out StoppedEvent : Train

out OnErrorEvent : Train
state ext TheTrains : TrainTable

ext Position : PositionTable
NeioSpeed : SpeedTable

PositionHandler (t) ~
if TheTrains(t).Mode = PASS
then Time(now) 0 let CD = TheTrains(t).CurrentTarget.Distance in

let CO = Position(t).CurrentOffset in
let DistanceToPass = CD - C0 in
if now > TheTrains(t).CurrentTarget.Time

A DistanceToPass > MAXDIFFERENCE
then a(TheTrains(t).Mode: = ERROR) 0

OnErrorEvent(t) 0
null

else null
else if NearMiddleOfTrack(Position(t))

then if TheTrains(t).Mode = SL0W
then Time(now) 0

a(FromSlowToHalt(t, now)) 0
(SpeedEvent(NewSpeed) 0
null | CDTimer (MAXDELAY))

else if TheTrains(t).Mode = STOPPING
then a(FromStoppingToStopped(t)) 0

SpeedEvent(NewSpeed) 0
StoppedEvent(t) 0 null

else null
else null

itive structuring mechanism based on packaging
concepts found in Ada and Modula-2 to control
the complexity of large specifications. RSL of-
fers, similar to LOTOS, the notion of abstract
datatype specification as main structuring mecha­
nism. MOSCA enables state-based development,
like RAISE, and unlike LOTOS. This work difFers
from the other approaches mainly in the definition
of the semantics, by combining a denotational se­
mantics with an operational semantics. The com-
bination was chosen on practical reasons. The
VDM-SL language has been given a full denota­
tional semantics, whereas the TCCS notations has
been given a SOS semantics. It is an open ques-
tion whether a single denotational or SOS seman­

tics can be given that covers both the VDM-SL
and TCCS notations.

The MOSCA project is in its beginning phase.
A system specification language together with a
conceptual model have been defined. The defi­
nition of the syntax and semantics forms a firm
basis to address the other topics of interest con-
cerning the notation such as a requirement speci­
fication language (a logic) and a verification tech-
nique (proof system). A further interesting topic
is refinement of value-manipulation expressions
and equivalences between behaviour expressions
and their interrelationship.

This article has put the emphasis on the pre-
sentation of some aspects of handling looseness

LOOSE SPECIFICATION OF. . . Informatica 19 (1995) 25-42 41

and timing facilities of MOSCA. Currently the
main focus in the project is on two related top-
ics: tool development and analysis techniques. A
rapid prototyper has been developed that gener-
ates ADA code from MOSCA specifications [17].
Next to the prototyper a state space analysis
tool is being developed. State space analysis is
a technique that can be successfully applied to
safety and liveness problems. A serious problem
remains the efficient generation of finite derived
state spaces out of infinite full state spaces which
is a current topic of research.

References

[1] J .C.M. Baeten and J.A. Bergstra. Real Time
Process Algebra. Format Aspects of Comput-
ing, 3:142-188, 1991.

[2] T. Biegstraaten, K. Brink, J. van Katwijk,
W.J . Toetenel. A simple railroad controller:
a čase study in real-time specification using
AE/VDM. Delft University of Technology,
Faculty of Technical mathematics and Infor­
matics, report 94-86

[3] T. Biegstraaten, K. Brink, R. Lutje-
Spelberg, J. van Katwijk, W.J. Toetenel. A
simple railroad controller: a čase study in
real-time specification using MOSCA. Delft
University of Technology, Faculty of Techni­
cal mathematics and Informatics, report 94-
87

[4] D. Bj0rner and C.B. Jones. Formal Specifica­
tion & Softvoare Development. PHI. Prentice
Hali, 1982.

[5] T. Bolognesi and E. Brinksma. Introduc-
tion to the ISO Specification Language LO­
TOS. In P.H.J. van Eijk, C A . Vissers, and
M. Diaz, editors, The Formal description
Technique LOTOS, pages 23-77. North Hol-
land, 1989.

[6] F.P. Brooks Jr. No Silver Bullet: Essence
and Accidents of Software Engineering.
IEEE Computer, 20(4):10-19, April 1987.

[7] J. Dawes. The VDM-SL Reference Guide.
Pitman, 1991.

[8] A. Haxthausen and K. Havehmd. RSL
Reference Manual. Technical Report
R A I S E / C R I / D 0 C / 2 / V 1 , CRI, April 1990.

[9] M. Hennessy. A Proof System for Commu-
nicating Processes with Value-Passing. For­
mal Aspects of Computing, Springer Verlag,
3(4):346-366, 1991.

[10] M. Hennessy and Ingolfsdottir. A Theory of
Communicating Processes Value-passing. In
M.S. Paterson, editor, Automata, Languages
and Programming (ICALP), volume 443 of
LNCS, pages 209-220. Springer Verlag, 1990.

[11] Inormation Technology, Programming Lan­
guages - VDM-SL First Commitee Draft
Standard: CD 13817-1, November 1993.
Document ISO/IEC/JTC1/SC22/VVG19 N-
20

[12] F. Jahanian and A.K-L. Mok. Safety Anal-
ysis of Timing Properties in Real-Time Sys-
tems. IEEE TSE, se-12(9):890-904, Septem­
ber 1986.

[13] N.G. Leveson. The Challence of Building
Process-Control Software. IEEE Software,
pages 55-62, November 1990.

[14] R. Milner. Calculi for Synchrony and Asyn-
chronv. TCS, 25:267-310, 1983.

[15] R. Milner. Communication and Concur-
rency. PHI. Prentice Hali, 1989.

[16] F. Moller and C. Tofts. A Temporal
Calculus of Communicating Systems. In
J.C.M. Baeten and J .W. Klop, editors, CON-
CUR'90: Theories of Concurrencij: Unifica-
tion and Extension, volume 458 of LNCS,
pages 401-415, Amsterdam, The Nether-
lands., August 1990. Springer Verlag.

[17] A. Ottens and W.J . Toetenel. Simulation
of Mosca Specifications in Ada. In J. van
Katwijk, editor, Proceedings of the Ada-
Europe'92 conference, LNCS. Springer Ver­
lag, 1992.

[18] D.L. Parnas. Software Aspects of Strate-
gic Defence Systems. Communications of the
ACM, 28(12):1326-1335, 1985.

42 Informatica 19 (1995) 25-42

[19] G. Plotkin. A Structural Approach to Oper-
ational Semantics. Technical Report DAIMI
FN-19, Aarhus University, 1981.

[20] J. Quemada, A. Azcorra, and D. Frutos.
TIC: A Timed Calculus for LOTOS. In S.T.
Vuong, editor, Formal Description Tech-
niques II. Elsevier Science Publishers B.V.
(North Holland), 1990.

[21] K .Sima'an. Design principles for Real-Time
Process Control Svstems. Delft Universitv of
Technologv, Facultv of Technical mathemat-
ics and Informatics, report 94-42

[22] J.A. Stankovic. Misconceptions About Real-
Time Computing: A Serious Problem for
next generation Systems. IEEE Computer,
21(10):10-19, October 1988.

[23] W.J. Toetenel. Model Oriented Specification
of Communicating Agents. PhD thesis, Fac­
ultv of Technical Mathematics and Informat­
ics, Delft Universitv of Technologv, 1992.

[24] W.J. Toetenel. VDM + CCS + TIME =
MOSCA. In Proceedings of the 18th work-
shop ofIFIP/IFAC WRTP'92. Brugge, 1992.

[25] W.J. Toetenel. Loose Real-time Communi­
cating Agents. In Proceedings first viorkshop
on Semantics of Specification Languages
(SOSL), Utrecht, London, 1993. Springer
Verlag.

[26] W.J. Toetenel and J. van Katwijk. Step-
wise development of model-oriented real-
time specifications from action/event mod-
els. In J. Vvtopil, editor, Formal Tech-
niques in Real- Time and Fault- Tolerant Sys-
tems, volume 571 of LNCS. Springer Verlag,
1992. Proceedings of RTFT'92, Nijmegen.

[27] Y. Wang. Real-Time Behaviour of Asyn-
chronous Agents. In J.C.M. Baeten and J.W.
Klop, editors, CONCUR'90 Theories of Con-
currencv: Unification and Extension, volume
458 of LNCS, pages 502-520. Springer Ver­
lag, 1990.

Informatica 19 (1995) 43-58 43

An Object-Oriented Approach for Modeling and Analysis of
Safety-Critical Real-time Systems

Jyhjong Lin, David Chenho Kung and Pei Hsia
Computer Science Engineering
The University of Texas at Arlington
P.O. BOX 19015, Arlington, TX 76019-0015
E-mai l : j l in |kung |hs ia@cse . u ta .edu

K e y w o r d s : object-oriented conceptual modeling, distributed and parallel real-time system, control
fiow, safety, failure, analysis

Edited by: Marcin Paprzycki and Janusz Zalewski

Rece ived: February 15, 1994 Rev i sed: October 21, 1994 Accepted : December 22, 1994

This paper presents an object-oriented approach that deals with modeling and analysis
of concurrent real-time systems whose behavior must satisfy certain safety considerati-
ons. The approach describes the structural aspect and the tirne dependent behavioral
aspect of objects in one model, and allows formal analysis of the model properties. The
description ofobject behavior also contains a representation of control How that speciHes
desirable execution sequences of object activities. For designing for fault tolerance and
safety, it also supports modeling offailures to object behavior and their resultant faults.
In particular, including the types of faults is useful for modeling and analysis offailures
in more general situations.

1 Introduction

Conceptual modeling is an important step in de-
veloping a computer based application which col-
lects adequate user requirements about the appli­
cation domain (i.e., the structural and behavio­
ral aspects of the application). It has been re-
cognized tha t failure to identify the real appli­
cation domain knowledge may result in late de-
liverv, poor quality, and high maintenance co-
sts. Traditionally, conceptual modeling is done
by using function-oriented approaches (Cameron
1986, Jackson 1983) or data-oriented (Hull &
King 1987, Peckham & Maryanski 1988).

In function-oriented approaches, software deve-
lopment begins from the analysis of system func-
tionality to obtain a data flow diagram of the sy-
stem. Entity-relationship diagrams are also used
to identify the relationship betv/een the data en-
tities. The contents and logical structures of the
data flows and data entities are often specified
in a da ta dictionary. This paradigm has seve-
ral drawbacks: (1) Consistency between the data
flow and the data dictionary is hard to maintain;

(2) Since the functions/data are not mappings to
the objects in the real world, a change in the
application could result in the modifications to
many functions/data; (3) The separate treatment
of data and functions makes software reuse difR-
cult.

In contrast, data-oriented approaches start
from the modeling of data structures. The spe-
cification of system functionality is then done
according to the data structures. Usually, these
two aspects are specified in two separate models:
a structural model and a process model. The
drawbacks of this paradigm are: (1) Consistency
between the structural model and the process mo­
del is difncult to maintain; (2) Interaction be-
tween functions is not explicitly modeled. So, its
effect is difncult to comprehend; and (3) Since
data and functions are treated separateh/, soft-
ware reuse is stili difncult.

The development of object-oriented modeling
approaches is motivated by the problems in
function-oriented and data-oriented approaches.
It starts with the modeling of objects which re-
present as close as possible real-world entities.

http://uta.edu

44 Informatica 19 (1995) 43-58 J. Lin et al.

The data and operations are encapsulated in an
object. This allows software to be easily adapted
to changes in the application. Other significant
features and benefits of object-oriented models
are: (1) Inheritance greatly simplifies the design
and development of applications; (2) Encapsula­
tion supports information hiding, increases soft-
ware reuse, and reduces maintenance costs.

As modern real-time svstems become larger and
more complex, the features and benefits of object-
oriented techniques have also stimulated using
them to produce real-time software that is easy
to understand, maintain, and reuse. This paper
presents an object-oriented approach for mode-
ling and analysis of concurrent real-time systems
whose behavior must satisfy certain safety consi-
derations. For the complex features of these sy-
stems such as concurrency, nondeterminism, sa-
fety, and fault tolerance, the approach should
have the following features: (1) The modeling
constructs are intuitive and easy to comprehend
(e.g., the use of graphical representations); (2)
The structural and behavioral aspects of objects
are described in one cognitive model (Balzer &
Goldman 1979). This enhances maintaining con-
sistency between these two aspects when changes
are made to one of them; (3) Timing characteri-
stics are encapsulated in an object. This facili-
tates object reuse for various real-time applicati­
ons. For example, different objects have the same
functionality with the same interface but with di­
fferent timing characteristics; (4) The model is
able to represent concurrency and synchroniza-
tion to manage concurrent access to objects; (5)
The behavioral modeling contains a representa­
tion of desirable execution sequences of object ac-
tivities; (6) Failures to object behavior and their
resultant faults must also be able to be modeled
for the requirements of designing for fault tole­
rance and safety; and (7) The model supports su-
fficient formality so that formal analysis can be
conducted to verify its properties.

The proposed model is an extension and re-
finement of an object-based executable concep-
tual model (Kung 1989). The extensions include
object structure, encapsulation, timing characte­
ristics, modeling of control fiow, and specification
of failures and faults. It describes the structural
aspect and the time dependent behavioral aspect
of objects in one model, and allows formal analysis

of the model properties. Structural modeling de­
scribes object types, at tr ibutes, and relationships
between object types, while behavioral modeling
describes the operations of objects and their ef-
fects on other objects. The description of object
behavior also contains a representation of control
flow that specifi.es desirable execution sequences
of object activities. In particular, it also supports
modeling of failures to object behavior and their
resultant faults for the requirements of designing
for fault tolerance and safety. Including the types
of faults is useful for modeling and analysis of fa­
ilures in more general situations. An advantage
of the presented approach is tha t it encapsulates
object states for ease to comprehend and to use.
System behavior from individual objects can be
readily obtained and analyzed. The modeling of
system behavior is based on a timed transition
net. This net is chosen here for the following rea-
sons: (1) It is able to deal with concurrencv, syn-
chronization, and nondeterminism in a reasonable
manner; (2) It is very conveniertt for analyzing
and verifying desirable properties.

This paper is organized as follows. Section 2
presents the modeling constructs of our approach.
For illustration, a simple example of the alterna-
ting bit protocol is presented and modeled. The
modeling of control flow, failures, and faults, is
described in Section 3. Section 4 discusses how sy-
stem behavior is obtained and analyzed. Finally,
Section 5 has the related work and conclusions.

2 Object Type

In our approach, objects are divided into
persistent ones, control ones, and fault ones.
A persistent object models an entity or thing in
the application domain with behavior satisfying
application imposed constraints (i.e., static con-
straints and t ime/ temporal constTaints). Con­
trol objects are used to give control flow between
the operations of persistent objects, while fault
objects" are used to model failures of the beha­
vior of persistent objects and faults which result
from the failures. We shall present in the next
section hov/ control and fault objects are used for
the requirements of designing for fault tolerance
and safetv. In this section, we introduce persistent
object types that model the persistent objects.

A persistent object type T is a 7-tuple given

http://specifi.es

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 45

by: T = (NT, AT, ST, GT, © T , $ T , 1 »
(except for NT, the other components are optio-
nal), where

1. NT is its name to be denoted by a string of
characters.

2. AT is a set of attributes. Each attr ibute has
an associated type, which can be a set, a tu-
ple, a list, or a persistent object type.

3. ST is sets of subtypes, disjoint subtypes (ds),
generalization subtypes (gs), and/or parti-
tion subtypes (ps). Objects of two subtypes
may be overlapping; objects of disjoint sub-
types are disjoint; the union of the objects
of ali the generalization subtypes must equal
to the objects of the supertype at aH times;
partition subtypes are both disjoint and ge­
neralization subtypes. For a formal defini-
tion of these subtypes, the reader is referred
to (Kung 1990). Attributes, constraints, and
operations of a supertype are inherited by ali
of its subtypes.

4. GT is a set of component object types with
associated ranges. The ranges indicate the
number of objects of the component types
tha t an object of the type may have.

5. &T is a set of static constraints. These con­
straints are specified as closed tuple calcu-
lus like expressions and must be satisfied by
every object of the type at any tirne.

6. $ T is a set of t ime/temporal constraints.
They are specified in a real-time logic and
must be satisfied by every permissible evolu-
tion of every object of the type.

7. TT is a set of operations. Each operation
7 G TT is a 5-tuple 7 = (iV7, P7 , i"7 , 0 7 , IL,)

(except for iV7, the other components are op-
tional), where N^ is its name, P 7 is a list of
parameters with associated types, / 7 is a set
of input object types, 0 7 is a set of output
object types, and iž7 is a list of execution
rules.

The parameters in P 7 specify additional in-
puts tha t must be supplied externally when
7 is executed. Objects of the types in J 7 are
either consumed or referenced by 7, while

objects of the types in 0 7 are produced by
7. An object type can be both in / 7 and in
0 7 , meaning tha t its objects are updated by
7. Each execution rule Ri G R~, is a 4-tuple
Ri = (L, [l, h],pre,post)

where L is a label 'Ri ' denoting (it is) the
ith rule, [/, h] is a tirne interval, pre is a pre-
condition, and post is a postcondition. The
tirne interval [l, h] is closed in its two ends
l and h, and l must be less than or equal
to h. The precondition pre is specified in a
QUEL-like langulage that refers to (referen-
ces/consumes) trie objects of the types in / 7 .
The postcondition post tha t produces new
objects of the types in 0 7 is a conjunction
of assignments of the form x.A = expr me­
aning that the at tr ibute A of object x is set
to the value of the expression expr.

7 is executable if and only if a tuple of in­
put objects (i.e., one object per input type
in / 7) makes the precondition pre of some
execution rule Ri true (for some i, j.Ki.pre
is true). Note that the specification of the
execution rules must be that only one rule's
precondition can be satisfied by such a tu­
ple of input objects. That is, if for some i,
"/.Ri.pre is true, then for ali j , j 7̂ i, 7-Rj.pre
must be false. Once 7 becomes executable
on rule Ri, the time interval [l, h] of Ri spe­
cifies a period during which an execution on
Ri must be performed. The execution produ­
ces a tuple of output objects tha t satisfy the
postcondition post of Ri. (If *y.Ri.pre is t rue,
then f.Ri.post must become t rue during / to
h units of time.)

In illustration, we show in Figure 1 the speci­
fication of a simple alternating bit protocol be-
tween two entities (Bartlett et al. 1969). An
entity object type is specified to model the t.wq
entities. The clause "Component Object Type ••
sender[l], receiver[l]n specifies an aggregation
relationship between entity and sender/receiver:
an entity object is composed of a sender object
and a,receiver object. The static referential con-
straint

(3s G sender)(3r G receiver)(e# = s.e#Ae# = r.ejf)

for the e # attr ibute of the entity object type is
specified to illustrate this. In the sender object

4 6 Informatica 19 (1995) 43-58 J. Lin et al.

Persistent Object Type entity;
Attr ibute e # : Int (3s G sender)(3r G receiver)(e# = s . e# A e # = r . e #) ;
Component Object Type senderfl] , receiver [1];

End Persistent Object Type;
Persistent Object Type sender;

Attr ibute e # : Int, outmsg: String[80l, dest: Int, seg>#: Int, waitack: boolean;
Operation send_msg(Message: String[80], Dest: Int);

Persistent Object Updated s G sender, Produced m G message.packet;
Execution Rule:
R l : [0, oo] pre s . e# ^ Dest As.uiaitack — false;

post m{from = s.e#,dest = Dest, se<?# = s.seq#,msg = Message)A
„ , p . ,. _ s{outrnsg — Message, dest = Dest, tvaitack = t rue) ;

Operation receive_ack();
Persistent Object Updated s G sender, Consumed a G ackjpacket;
Executi'on Rule:
R l : [0,1] pre s . e # = a.dest A s.seq# — a.seq# A s.vuaitack = t rue ;

post s(seq# = (s.seq# + 1) mod 2,waitack =false);
End Operation;

End Persistent Object Type;

Persistent Object Type receiver;
Attr ibute e # : Int, inmsg: String[80], from: Int, s eg# : Int, acksent: boolean;
Operation receive_msg();

Persistent Object Updated r G receiver, Consumed m G message.packet;
Execution Rule:
R l : [0,1] pre r . e # = m.dest A r.seq# ^ m.seq#;

post r(inrnsg — m.msg, from = m.from, s e g # = m.seq#, acksent =false);
R2: [0,1] pre r . e # = m.dest A r.seq# — m.seq#;

post r(acksent =false);
End Operation;
Operation send_ack();

Persistent Object Updated r G receiver, Produced a G ackjpacket;
Execution Rule:
R l : [0,1] pre r.acksent = false;

post a{from = r . e # , dest = r.from, seq# = r.seq#) A r{acksent = t rue) ;
End Operation;

End Persistent Object Type;

Figure 1: Object type specification

outmsg frtringfcu
desK Tnt >

entity

&
ider

e# e #
-(Tnt.) T Tnt >•

J 7~1 ") e # (3s G sender) (3r G receiver)
H M J (e # = S . e # A e # = r . e # /

II
> ^ ^-^tring^ll]) inmsg

— • • " " (Tnt) / ™ m
(Tnt) se</#

"(hnnlpari) acksent
sender.send_msg(Message, Dest);

sender

f send "\
l msg J "

receiver

Execution Rule:
R l : [0,oo]
pre s . e# ^ Dest A s.vuaitack = false;
post m(from = s . e # , . . . , rnsg =Message) A

s(outmsg =Message, . . . , vuaitack — true);

from dest
(Int) (Int)

©" message
packet zz

(Ilft) Č>trrngf8U|)

Figure 2: Graphical representation of object type

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 4 7

type, the clause "Persistent Object Updated s G
sender, Produced m G message-packet" speci-
fies the input /output of its send_msg() operation.
The operation has an execution rule R l that as-
sures if a message is going to be sent out and
the sender currently is not waiting for some ack
from the other entity, then a packet carrying the
message is produced and transmitted to the other
entity (although its tirne interval [0, oo] indica-
tes that no time constraint is given for sending
the packet). After sending the packet, the sen­
der waits for a corresponding ack (set waitack =
t rue) . Rule R l of the receive_ack() operation as-
sures that the sender can transmit another packet
(numbered a modulo-2 sequence number by set-
ting s.seq# = (s.seq# + l) mod 2) after it receives
the ack.

The (modulo-2) sequencing function is introdu-
ced to let the receiver, upon reception of a packet,
be able to decide whether this packet carries a new
message or a duplicate of the immediately prece-
ding one. The modulo-2 is chosen because it is
sufficient to distinguish messages which are tran­
smitted one at a time. The receive_msg() opera­
tion of the receiver object type is to receive (num­
bered) messages from the other entity. Rule R l
assures tha t it receives a new message, while rule
R2 makes sure that the message received is a du­
plicate, and hence, simply discards it. However,
an ack will be sent out after receiving a message
no mat ter whether this message is new or dupli­
cate. This is modeled by rule R l of the send_ack()
operation.

Here, it should be noted that since a packet
from the sender of an entity must be received by
the receiver of the other entity (by recognizing
s .e# 7̂ Dest), two senders are able to send out
their message to each other at the same time (if
there exists a transmission medium between each
pair of sender and receiver). However, since our
specification considers only the transmission be-
tween two entities, it cannot correctly model the
čase of three or more entities. For example, the
receiver of an entity is unable to distinguish which
packet comes from which sender of other entities.

Figure 2 is the graphical specification of part of
the sender object type that is textually specified
in Figure 1. The upper part depicts its structu-
ral aspect and the relationship with other object
types, while the lower part specifies its send_msg()

operation together with the interaction with other
objects. The objects updated and produced by
the operation are referred to by the small circles
which are the interface between these objects and
the operation.

This graphical representation is an important
feature of our approach because it gives a high le-
vel abstraction of the modeled system which ma­
kes it easier to communicate with users and un-
derstand the conceptual model. The operations
of an object type are specified one at a t ime, dis-
played together with the structural aspect of the
object type and its interaction with other objects.
Hence, the effects of the modifications on objects
and attributes by an operation become explicit
and visible. We feel this is a good way to mo­
del encapsulation because an analyst can concen-
trate on one operation at a time while specifying
the interaction between objects. The complexity
of a conceptual model is thus largely reduced so
as to alleviate the difficulty of modeling a non-
trivial application. When the graphical specifi-
cations of the operations are put together, they
show the complete behavior of the objects of the
object type as in the textual specification. Fi­
gure 3 shows the most commonly used graphical
symbols of our approach.

3 Designing for Safety and
Fault Tolerance

The modeling of control flow, failures, and faults,
is essential in conceptual modeling for safety-
critical real time systems. In our approach, it
is achieved by introducing control objects to mo­
del control flows between the activities of persi­
stent objects, failure operations to denote the
failure events, and fault objects to specify the
faulty conditions caused by the failures. (Note
that the modeling of failures and faults was first
proposed in (Leveson & Stolzy 1987) upon which
our approach is based.)

A control object type C contains a name Ne
and a set AQ of attributes (see their counter-
part in Section 2). Control objects are in gene­
ral introduced between two persistent object ope­
rations, to be consumed/produced by these two
operations, to model the desirable control fiows
between them (i.e., the chronological ordering of

•their executions). Figure 4 shows how some com-

4 8 Informatica 19 (1995) 43-58 J. Lin et al.

Instances of a persistent
object type referred to
by a variable x

O

Instances of a control Instances of a fault
object type referred to ' 1 ' object type referred
by a variable c I to by a variable /

-C J An attribute, which may have a constraint

J^. Object type hierarchy, which may be overlapping subtypes,
^ls,gs,ps disjoint subtypes (ds), generalization subtypes (gs) or

partition subtypes (ps)

Jz
O

o-

Aggregation relationship with
associated ranges

An operation of a persistent
object type

Persistent or control object consumed

-*_J Persistent or control object produced

__) •- Persistent or control object referenced

C_)"* *~ Persistent or control object updated

Object encapsulation

An operation of a fault object type

Fault object consumed

Fault object produced

Fault object referenced

Fault object updated

Figure 3: Graphical symbols for object-oriented models

TiM)\ T,

H.A()|—!7r—

or.
doX

O
\

®-

Control
Type

O

T2.B() OE

<$-

o

(a) A() BEFORE B()

Control
Type

T2.B(), T2

OH
<S>-

•o
T * *

* (B ()

(b) A() CONCURRENT B()

Control
Type

•T2. 'B'()'

r^r

33Z

T
O

3S>

o-

O-f

o-
(c) A() EXCLUDES B()

** B()'s execution rules must have tirne interval [0,0] for synchronization with A()

Figure 4: Specification of some common chronological orderings

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 49

Execution Rule
Rl: [0,5]
pre (3c) A ...;
post 6(...);

Execution Rule:
Rl: [6,6]
pre (3c);
post / (. . .) ;

Figure 5: maximum tirne constraint between operations A() and B()

mon chronological orderings between two persi­
stent object operations can be modeled by using
control objects. We use two example operations
A() and B() in the figure; each one consumes an
input persistent object and produces an output
persistent object. A control object c is consu-
med/produced by them to model their possible
relationships.

For safety requirements, failures of the behavior
of persistent objects must be detected during ana-
lysis of the model. The modeling of failures and
faults is done by specifying fault object types. A
fault object type F contains a name Np, a set
Ap of at tr ibutes, and a set Tp of operations (see
their counterpart in Section 2). These operations
consume (or produce spurious) persistent/control
objects to denote the occurrences of failures. If
it is needed to determine the states after these
failures have occurred (i.e., to analyze their con-
sequences on the system to differentiate their co-
sts), fault objects of the type will be produced
to specify the resultant faulty conditions by these
failures.

With the fault object types, one can model and
analyze failures in more general situations. In this
paper, we illustrate only their usefulness on con­
trol failures such as failing to ensure minimum (or
maximum) tirne constraints between two operati­

ons and the occurrence of an undesirable event.
Figure 5 shows, for example, a maximum time
constraint between two persistent object operati­
ons: executing operaUon A() implies that some-
time within 5 Ume units operaUon B() must be
ezecuted. The time interval [6.6] of rule R l of
the failure operation is specified such tha t it can
be executed only if operation B() is not executed
within 5 time units (a failure by exceeding the
maximum time constraint). A fault object is pro­
duced to specify the faulty condition. This object
(faulty condition) will remain in the system until
a terminating activity for it (i.e., the execution of
a persistent object operation tha t consumes it) .

In our illustrative example of the alternating
bit protocol, a possible failure is the loss of a mes-
sage or ack packet being transmitted. As shown
in Figure 6, this is modeled by specifying the
lose_msg() and lose_ack() operations of the fault
object type F\ that consume the message packet
and the ack packet respectively.' Objects of the
control object type C are used to model the or-
der of executing the send_msg() and receive_ack()
operations: after sending a message, the sender
waits for a responsive acknoivledgment. Beca-
use of the possible loss of messages or acknowled-
gments, it is necessary to have a maximum time
constraint between them: the sender waits for the

50 Informatica 19 (1995) 43-58 J. Lin et al.

.Fi.lose_msg0

Fl

Execution Rule:
Rl: [0,11
pre (3m);
post / (. . .) ;

sender. receive_ack()

ider

. L

o~

Execution Rule:
Rl: [6,6]
pre (3c);
post / (. . .) ;

message
packet

i*\.lose-ack()

Fi

Execution Rule:
Rl: [0,1]
pre (3a);
post / (. . .) ;

- @

ack
packet

r eceiver. receive_ms sg()

receiver

O

receiver. send_ack(.)

Figure 6: Specification of recoverable alternating bit protocol

Persistent Object Type entity;
Attr ibute e # : Int (3s 6 sender)(3r G receiver)(e# = s . e# A e # = r . e #) , s iate: String[8];
Component Object Type sender[l], receiver[l];

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 5 1

End Persistent Object Type;

Persistent Object Type sender;
Attr ibute e # : Int, outmsg: String[80], dest: Int, s eg# : Int, maitack: boolean;

Operation send_msg(Message: String[80], Dest: Int);
Persistent Object Updated s G sender, Produced m G message.packet,
Control Object Produced c £ C;

Execution Rule:
R l : [0,oo] pre s . e# ^ Dest hs.voaitack = false;

post m(frorn = s.e#,dest = Dest, s e g # = s.seq#,msg = Message) A
sfoutmsg = Message, desi = Dest, ivaitack = true) A
c(from = s .e# , dest = Dest, seq# = s.seq#);

End Operation;
Operation resend_msg();

Persistent Object Referenced s G sender, Produced m G messagejpacket,

Control Object Produced c G C, Fault Object Consumed / G F2,
Execution Rule:
R l : [0,1] pre s . e# = f.from A s.dest = f.dest A s.seq# = /.se</# A s.ivaitack = true;

post rn(from = s . e# , dest = s.dest, seq# = s.seq#, msg = s.outmsg) A
c(from = s . e# , dest = s.dest, s e g # = s - s e 9#)>

End Operation;
Operation receive_ack();

Persistent Object Updated s G sender, Consumed a G ackjpacket,

Control Object Consumed c G C;
Execution Rule:
R l : [0,1] pre s . e# = a.dest A s.seq# = a.seq# A s.iuaitack — true A

c.from — a.from A c.dest = a.dest A c.seq# = a.seq#;
post s(seq# = (s.seq# + 1) mod 2,waitack = false);

End Operation;
End Persistent Object Type;

Persistent Object Type receiver;
Attr ibute e # : Int, inmsg: String[80], from: Int, s e ? # : Int, acksent: boolean;
Operation receive_msg();

Persistent Object Updated r G receiver, Consumed m G message.packet;

Execution Rule:
R l : [0,1] pre r . e # = m.dest A r.seq# ^ m.seq# A r.acksent = true;

post r(inmsg = m.msg, from — m.from, s e ? # = rn.seq#, acksent = false);
R2: [0,1] pre r . e # = m.dest A r.seq# = m.seq# A r.acksent = true;

post r(acksent = false);
End Operation;
Operation send_ack();

Persistent Object Updated r G receiver, Produced a G ackjpacket;
Execution Rule:
R l : [0,1] pre r.acksent — false;

post a(from = r.e#, dest = r.from, s eg# = r - s e ? #) A r(acksent = true);
End Operation;

End Persistent Object Type;

Figure 7: Textual specification of recoverable alternating bit protocol (to be continued)

52 Informatica 19 (1995) 43-58 J. Lin et al.

Fault Object Type Fx;
Attribute / # : Int, from: Int, dest: Int, se<7#: Int;
Operation lose_msg();

Persistent Object Consumed m G message jpacket, Fault Object Produced / G F\\
Execution Rule:
Rl: [0,1] pre (3m);

post f(from = m.from, dest = m.dest, seq# = m.seq#);
End Operation;
Operation lose_ack();

Persistent Object Consumed a G ack.packet, Fault Object Produced f £ Fi,
Execution Rule:
Rl : [0,1] pre (3a);

post /(from = a.from, dest = a.dest, seg# = a.seq#);
End Operation;

End Fault Object Type;
Fault Object Type F2;

Attribute / # : Int, from: Int, dest: Int, seq#: Int;
Operation fail();

Control Object Consumed c G C, Fault Object Produced / G F2,
Execution Rule:
Rl: [6,6] pre (3c);

post f(jrom = c.from,dest = c.dest,seq-#- = c.seqjf);
End Operation;

End Fault Object Type;

Figure 7: Textual specification of recoverable alternating bit protocol (continued.)

acknoivledgment at most 5 tirne units. Failure to
meet this constraint will result in resending the
message. The fail() operation of the fault object
type F2 denotes the failure. It consumes the con­
trol object if the sender cannot receive the ac-
knowledgment timely (also, cannot consume the
control object timely). An object of type F2 is
produced to specify the faulty condition, which
is then used to invoke the resend_msg() opera­
tion to retransmit the message. This fault object
is consumed by the resend_msg() operation to
terminate the faulty condition. Figure 7 shows
textual specification of the recoverable alternating
bit protocol.

4 System Behavior Analysis

Analyzing the system behavior of our model is
achieved by first modeling overall behavior among
persistent objects in a t imed transition net. Then,
the reachability graph for the net is constructed
to analyze its properties.

4 . 1 T i m e d T r a n s i t i o n N e t

Based upon the approach in (Chao & Kung 1991,
Kung 1989), the net consists of a set of transiti­
ons and places. Transitions model the events tha t
occur instantaneously in a system, and places are
the input /output of transitions. Each transition
is associated with a tirne interval [l, h], where Z
and h represent the minimum and maximum tirne
delay that must elapse before the transition is exe-
cuted. Times / and h are relative to the moment
at which the transition becomes executable.

In addition, functional capabilities are incor-
porated in the net. That is, typed tokens are
assigned to places, and each token in a plače re-
presents an object of some (object) type. A tran­
sition is executable if and only if each of its in-
put places contains a token and its precondition
is true. Tokens in input places are either consu­
med or referenced by the transition, while tokens
in output places are produced by the transition.
For modeling failures and faults in the net, tran­
sitions are divided into normal ones and failure
ones (Leveson & Stolzy 1987). The faulty condi-
tions caused by failure transitions are denoted by
the fault output places of these failure transiti-

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 53

[I, h]

O k IT
\ y * Nori

Qh Nori

O *"" Nor

Timed normal transition

-nal token consumed (i

-nal token produced (j

-nal token referenced '

[l,h]

Timed failure transition

J) "** l a u l t LoKen consumeu

J}*"' r au l l loken produced

ij) *" Fault token referenced

Figure 8: Graphical symbols of timed transition nets

[0,1]

^sendmsgRl

*receiveackRl

[0,oo]

[0,1]

Pn © \™) V\i

^sendmsgRl [O.oo]

Pl3© ©P14

P21 © Q P22

L^
^receiveackRl [0,1]

P23 0 0 p 2 4

Figure 10.

losemsgRl

tresendmsgRl

tfailRl

^loseackRl

[0,1]

[6,6]

[0,1]

Figure 9.

P3iCi

losemsgRl [0,1]

^™J P32

P 4 1 ©

^resendmsgRl [0,1]

T
! tP43

P420 © Q p44

P51© © P 5 2

failRl [6,6]

0 P61

1
W<?5eacfc.Rl

T
[0,1]

Jj P62

^receivemsgRl

receivemsgR'2

sendackRl

[0,1]

[0,1]

[0,1]

Pn
0

LreceivemsaRl [0,1]

P72 \™j Kjrj Pn

Psi® 0ps2

treceivemsgR2 [0,1]

0 P S 3

0 P 9 1

£sendacA:_Rl [0,1]

P92 0 0 P93

54 Informatica 19 (1995) 43-58 J. Lin et al.

P31

tlosemsgRl [0,1]

P i l © © P l
\[y P32

P41©

^sendmsgRl [0,oo]

P l 3 @

P 2 1 ©

C>Pl4

C) P22

^receiveackRl [0,1]

P23 (S , © P24

Figure 11.

IresendmsgRl [0,1] t T)
i +P43 I

P42 © S O P44

P51© Uj PS2

tjailRl [6,6]

<*) Pei

tloseackRl [0,1]

J} P62

^receivemsgRl [0,1]

KSJP73

P S I © ©P82

^receiv emsgR2 [0,1]

P83 G)-
J J P 9 1

t sendackRl

P92 (a) Q) P93

[0,1]

i sendmsgRl

© ©
pi

1P2

[O.oo]

P3

^receiveac&iŽl [0,1]

P4

^losemsgRl

P5

tresendmsgRl [0,1]

J j P e

tfailRl [6,6]

©
P7

Woaeacfc.Rl [0,1]

L", J J 'receivemsgRl [0 , I j

P9

l>r eceiv ems g R2 [0,1]

*senrfaci /? l [0,1]

Figure 12.

©
"Pio

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 55

ons. Figure 8 shows the graphical svmbols of the
net.

4.2 Model ing of Sys t em Behavior

The following steps are used to model overall be­
havior of our model.

Step 1: For each operation 0 ; of an object type,
create a transition tij for each execution rule Rj
which has the same time interval and pre/post
conditions as in the rule. For example, as shown
in Figure 9, the send_msg() operation in Figure
7 corresponds to the tsencimsgRi transition. The
receive_ack() operation corresponds to transition
treceiveackm- AH these transitions have the same
time interval and pre/post conditions as their cor-
responding execution rules have.

Step 2: For each transition tij derived in the
last step, create its input /output places, depen-
ding upon input /output object types of Of.

— For each consumed (resp. referenced) object
type whose object is referred to in the precon-
dition of tij, create a consumed (resp. refe­
renced) input place whose containing objects
are of the type.

— For each produced object type whose object
is produced by some assignment statements
of the postcondition of tij, create a produced
output place whose containing objects are of
the type.

— For each updated object type whose object is
referred to in the precondition of tij, create a
consumed input place and a produced output
place where their containing objects are of
the type.

Figure 10 shows the input /output places crea-
ted for each transition.

Step 3: Merge redundant input places. Two
places pi and p2 are redundant if (1) their con­
taining objects are of the same type and (2) each
one is an input place of a transition where the
two transitions were derived in Step 1 from two
execution rules of one operation. For our exam-
ple in Figure 10, the two consumed input places
P72 and p 8 1 are redundant and hence should be
merged. Figure 11 results from Figure 10 after
merging redundant places.

Step 4: Connect related transitions by merging
common places. Two places p\ and p2 are com-
mon if (1) their containing objects are of the same
type, (2) p\ is an output place of a transition
t\, and p2 is an input place of a transition ti,
and (3) the objects in p\ produced by t\ are use-
ful for satisfying the precondition of t2, meaning
that they can used through p2 for the firings of t2.
For example, in Figure 11 the message packets in
place p\2 produced by transition tstn&msgm are
useful for satisfying the precondition of transition

treceivemsgRl Or treceivemsgR2 (thrOUgh place pg\),

hence pi2 and p 8 1 are common and then merged.
Figure 12 results from Figure 11 after merging
common places.

Applying these steps, the system behavior of
our model can be described in a timed transition
net (as shown in Figure 12).

4.3 Construction of Reachabil i ty
Graph

With the timed transition net, its reachability
graph then can be constructed for analyzing desi-
rable properties such as liveness, fairness, and ti-
ming properties. Since our timed transition nets
use the same timing constructs as in time Petri
nets (TPN's) (Merlin 1974, Merlin & Faber 1976),
the technique in (Berthomieu & Diaz 1991) for
building the reachability graph of a time Petri
net can be applied directly for our nets. That is,
each node (or stote class defined in (Berthomieu
& Diaz 1991) of the resulting reachability graph
is a pair n = (M, D) where M is the marking that
contains the current status of objects and D is a
set of inequalities that specify the bounds of fi-
ring times of the transitions made executable by
M (assume ali parameters, such as Message and
Dest in Figure 1, tha t must be supplied exter-
nally for executing these transitions are provided
adequately).

Given any node n = (M(n),D(n)), a succe-
eding node n' = (M(n'),D(n')) can be defined
when a transition l < t < h m D(n) is exe-
cuted. The edge between them is denoted as
(n,t[l,h],n'). In node n', M(n') is the marking
that contains the new object status resulting from
the effects of t on M{n). Transitions in D(n')
can be divided into two sets: (1) The transitions
that are newly made executable by M(n'); and
(2) The transitions that were already executable

56 Informatica 19 (1995) 43-58 J. Lin et al.

treceiveackRlvJ) J-J

tsendmsgRl ly j OO

TreceivemsgRli^: J-J

(

tsendackRl[®, 1]

^/ai(m[5,6]

tjailRl[3, 6]

Figure 13: Reachability graph for the timed transition net

in n (already in D(n)) are stili executable in n'.
In the first set, the firing bounds of each transi­
tion are equal to the bounds of the tirne interval
associated with the transition. But, in the second
set, the firing bounds of each transition i*, are gi-
ven by: max(0,/fc—h) < tk < max(0,/ifc—1), where
lk and hk are the firing bounds of tk in D(n). For
more details about s tate classes and reachability,
the reader is referred to (Berthomieu & Menasche
1982, 1983, Berthomieu & Diaz 1991).

Figure 13 shows the resulting reachability
graph from the net in Figure 12. In the graph,
nodes are labeled with the present state class and
arcs represent transitions between state classes
with associated bounds of firing times. Since the
fault objects in places p^ and p$ are produced
only to denote losses of messages and acknowled-
gments, which are not used for retransmitting
messages, we do not include them in the mar-
kings of state classes for simplifying the graph.
The nodes of the graph are as follows.

Node n i : M : pi,pio, D : 0 < tsendmsgR\ < 00
Node n2: M : P2,P3,Pn,Pio

JJ '. (J <-. tiosemsgJix \ i, U \ treceivemsgRl S -M
0 < treceivemsgR2 < 1| 6 < tfaURl < 6

N o d e n 3 : M : p2,P3,P9
D : 0 < tsendackRl < 1, 5 < tfaHRi < 6

Node n4: M : P2,P3,P7,Pio
D : 0 < tioseac/cRl < 1, 0 < treceiveackRi < 1,

4 < tfailRl < 6
Node n5: M : P2,P3,Pw, D : 5 < tfaiiRi < 6
Node n6: M : P2,P6,Pio, D : 0 < tresendmsgRi < 1
Node n7: M : P2,P3,Pio, D :3 < tfaiiRi < 6

The graph then can be used as a usual state
transition system for verifying properties that
characterize the correct behaviors of our model.
For instance, we can veriiy real-time logic as-
sertions (desired t ime/ temporal constraints) by
traversing its nodes (state classes). In addition,
we can also decide the safety of our model by
checking whether in the control plače P3 its mar-
king (number of control objects) has only a value
0 or 1 during the execution of the system. Conta-
ining more than one object in ps is considered as a
design error (only one message packet can be tran-
smitted at a tirne), and hence, must be uncovered
during the behavior analysis. Likewise, we mi-
ght consider the maximum permissible number of
fault objects in the plače p4 or p8 as the maximum
allowable number of times of losing messages or
acknowledgments. Excessive number of message
or acknowledgment losses could mean the extre-
mely unreliable transmission medium, and then,
result in the invocation of some necessary actions
(Le., replace the medium with a new one).

5 Related work and
Conclusions

Object-oriented conceptual modeling starts with
the description of objects which represent as close
as possible real-world entities. An object-oriented
method must support the encapsulation of the
structural and behavioral aspects in an object. In
particular, it must provide constructs for mode­
ling of object tijpeSf relationships, object behavior,

AN OBJECT-ORIENTED APPROACH . . . Informatica 19 (1995) 43-58 57

and interactions behueen objects.

Shlaer and Mellor (Shlaer & Mellor 1988) pro-
posed a model that describes an application in an
information model, a state model, and a DFD pro-
cess model. Since these three models are not in-
tegrated and the state model and DFD notations
are less formal, their work is prone to inconsisten-
cies and ambiguities. In addition, because there
is no formal object interaction mechanism, overall
system behavior can not be deduced from the be­
havior of individual objects. Thus, it is impossible
to check that the state model is consistent with
the process model. These drawbacks also present
in other similar approaches such as Booch's (Bo-
och 1991) and Rumbaugh et al's (Rumbaugh et
al. 1991).

de Champeaux (de Champeaux 1991, de Cham-
peaux & Olthoff 1989) presented a similar model
which augments the state model by attaching to
transitions: (1) a trigger that indicates whether a
triggering event is required; and (2) a casual list
tha t describes the events that are generated as a
consequence of the transition and act as triggers
for subsequent transitions. The process model
ušes these triggers and messages to describe the
casual interactions between objects. As a result,
consistency between the state model and the pro­
cess model can be checked. However, his appro-
ach has drawbacks: (1) The structural aspect and
the behavioral aspect are not integrated; and (2)
The object interaction mechanism is less formal
(based on broadcast communication), and hence,
formal analysis of system behavior is difficult.

Kim and Moon (Kim & Moon 1992) propose
a diagrammatical representation, called Object-
Relationship Diagrams, which provides a uni­
form model of the structure and the behavior of
objects. Object-Relationship diagrams consist of
structure diagrams and behavior diagrams. Struc­
ture diagrams describe the structure of objects
and their relationships. Behavior diagrams de­
scribe the behavior of objects by identifying sta-
tes, events, and interactions between objects.
Since object interaction is described by the same
informal \vay as that in de Champeaux's appro-
ach, formal analysis is stili difficult.

Hayes and Coleman (Hayes & Coleman 1991)
propose a coherent analysis model to capture both
the structure and the behavior of objects. Three
models are used in this approach. The object

structure model describes the static aspect of
objects that provides the information to be used
in behavioral (dynamic and function) models. In
the dynamic model, objectchart (Coleman 1992),
which is extended statechart (Harel 1988), is used
to describe object behavior. A formal object inte­
raction mechanism is used to describe interactions
one at a tirne, so system behavior can be dedu­
ced and analyzed from individual object behavi-
ors. In the function model, pre/post conditions
are used to describe system level behavior. The
consistency between the dynamic model and the
function model can be checked.

Our approach presents a different way of mo-
debng both the structural aspect and the beha­
vioral aspect of objects in a uniform representa­
tion. Unlike the methods surveved above that
describe object behavior by identifying and spe-
cifying ali the possible states an object can be in
its life cycle, our model supports encapsulation
of object states by allowing an analyst to focus
on modeling of one operation for one object at a
time. The complete behavior (states) of an object
can be obtained by putt ing together and mapping
ali its operations into a timed transition net. This
largely reduces the complexity of our model, and
hence, alleviates the difficulty of modeling a non-
trivial application. In addition, our modeling con-
structs can have a graphical representation and a
textual representation. The graphical representa­
tion makes it easier to communicate with users
and makes the conceptual model easier to un-
derstand, while the textual representation can be
used for other purposes (i.e., compile for syntax
and consistency checking). For the requirements
of designing for safety and fault tolerance, it also
supports modeling of failures to object behavior
and their resultant faults. Since system behavior
can be easily deduced and modeled in a timed
transition net, many existing techniques (Bertho-
mieu & Diaz 1991, Leveson & Stolzy 1987) can be
exploited for analyzing desirable properties.

A c k n o w l e d g e m e n t

We are grateful to Chaoying Chen for her help
in preparing the art work of the manuscript.

References

[1] Balzer R. and Goldman N. (1979) Principles

58 Informatica 19 (1995) 43-58 J. Lin et al.

of good software specification and their im-
plications for specification languages. Proč.
of Specifications for Reliable Softmare, Cam-
bridge, MA, p. 58-67.

[2] Bartlett K., Scantlebury R. and Wilkinson P.
(1969) A note on reliable full-duplex transmis-
sion over half-duplex link. Communications of
the ACM, Vol. 12, No. 5.

[3] Berthomieu B. and Menasche M. (1982) A
state enumeration approach for analyzing
Time Petri Nets. Proč. of Srd European Wor-
kshop Applications and Theory of Petri Nets,
Varenna, Italy.

[4] Berthomieu B. and Menasche M. (1983) An
enumerative approach for analyzing Time Pe­
tri Nets. Proč. of IFIP Congress 1983, Pariš.

[5] Berthomieu B. and Diaz M. (1991) Modeling
and verification of time dependent systems
using Time Petri Nets. IEEE Trans, on Soft­
mare Engineering, Vol. 17, No. 3, p. 259-273.

[6] Booch G. (1991) Object-Oriented Design with
Applications. Benjamin/Cummings.

[7] Cameron J. (1986) An overview of JSD. IEEE
Trans, on Softmare Engineering, Vol. 12, p.
222-240.

[8] Chao J. and Kung C. (1991) Rapid proto-
typing of conceptual database design on a rela-
tional database management system. Proč. of
lOth Int'1 Conference on Entity-Relationship
Approach, San Mateo, p. 93-109.

[9] Coleman D., et al. (1992) Introducing Object-
charts or how to use Statecharts in object-
oriented design. IEEE Trans, on Softmare En­
gineering, Vol. 18, no. 1, p. 9-18.

[10] de Champeaux D. (1991) Object-oriented
analysis and Top-Down software development.
Proč. of ECOOP, p. 361-376.

[11] de Champeaux D. and Olthoff W. (1989)
Towards an object-oriented analysis method.
Proč. of 7th Annual Pacific Northmest Soft­
mare Quality Conference, Portland, OR, p .
323-338.

[12] Harel D. (1988) On visual formalisms. Com­
munications of the ACM, Vol. 31, No. 5, p .
514-531.

[13] Hayes F. and Coleman D. (1991) Coherent
models for object-oriented analysis. Proč. of
OOPSLA Conference, p. 171-183.

[14] Hull R. and King R. (1987) Semantic da ta
modeling: survev, applications, and research
issues. ACM Computing Surveys, Vol. 19, No.
3, p. 201-260.

[15] Jackson M. (1983) System Development.
Prentice-Hall, Englewood Cliffs, New Jersey.

[16] Kim Y. and Moon S. (1992) Object-
relationship diagrams for object-oriented mo­
deling with concurrency feature. Microproces-
sing and Microprogramming, Vol. 33, North-
Holland, p. 207-221.

[17] Kung C. (1989) Conceptual modeling in the
context of software development. IEEE Trans,
oh Softmare Engineering, Vol. 15, No. 10, p.
1176-1187.

[18] Kung C. (1990) Object subclass hierarchy in
SQL: a simple approach. Communications of
the ACM, Vol. 33, No. 7, p. 117-125.

[19] Leveson N. and Stolzy J. (1987) Safety ana-
lysis using Petri Nets. IEEE Trans, on Soft­
mare Engineering, Vol. SE-13, No. 3, p. 386-
397.

[20] Merlin P. (1974) A study of the recoverabi-
lity of computer svstem," Thesis, Dept. of
Computer Science, Univ. of California, Irvine.

[21] Merlin P. and Faber D. (1976) Recoverability
of communication protocols. IEEE Trans, on
Softmare Engineering, Vol. COM-24, No. 9, p .
1036-1043.

[22] Peckham J. and Maryanski F. (1988) Seman­
tic data models. ACM Computing Surveys,
Vol. 20, No. 3, p . 153-190.

[23] Rumbaugh J., et al. (1991) Object-oriented
modeling and design. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

[24] Shlaer S. and Mellor S. (1988) Object-
Oriented Systems Analysis. Yourdon Press.

Informatica 19 (1995) 59-69 59

Supporting High Integrity and Behavioural Predictability of Hard
Real-Time Systems

M. Colnarič and D. Verber
University of Maribor, Faculty of Technical Sciences
Smetanova 17, Maribor, Slovenia
č o l n a r i c @ u n i - m b . s i
AND
W. A. Halang
FernUniversitat Hagen, Faculty of Electrical Engineering
D-58084 Hagen, Germany
wo l fgang .ha l angOfe rnun i -hagen .de

K e y w o r d s : hard real-time systems, high-integrity requirements (safety-related systems), exception
handling, real-time programming languages, process run-time estimation

Edited by: Marcin Paprzycki and Janusz Zalewski
Rece ived: February 19, 1994 Rev ised: October 30, 1994 A c c e p t e d : December 19, 1994

The main objective of this paper is to present a method for handling non-preventable
and non-avoidable catastrophic exceptions in embedded hard real-time environments in
a well-structured and predictable way, and as painlessly as possible.
First, apt hardware and software platforms which are pre-requisite for predictable sy-
stem behaviour are briefly presented. Then, some existing techniques are shown and
their suitability for implementation in embedded hard real-time environments is discus-
sed. Further, a classification of exceptions and our own approach for handling them is
presented and elaborated. Finally, a method for the estimation ofthe resulting temporal
behaviour is descrihed.

1 Introduction

In this paper, embedded hard real-time systems
are dealt with. In general, they are emploved to
control different processes; the integrity of these
applications relies on their temporally and functi-
onally correct operation. Depending on the appli-
cation, these systems can be extremely safety cri-
tical; their malfunction may cause major damage,
material loss, or even endangerment of human li-
ves. Thus, for such systems high integrity and
safety is required, and mechanisms must be devi-
sed to čope with partial or complete failures.

While in the systems, which are usually used in
process control, testing of conformance with func-
tional specifications is well established, temporal
circumstances are seldom consistently verified. It
is almost never proven at design tirne that such
a system will meet its temporal requirements in
every situation that it may encounter.

In his reference paper [20], Stankovic is unma-
sking several misconceptions in the domain of
hard real-time systems. Seemingly the most cha-
racteristic one is that real-time computing is often
considered fast computing. It is obvious tha t Com­
puter speed itself cannot guarantee that specified
timing requirements will be met.

Instead, a different ultimate objective was set:
predictability of temporal behaviour. Being able
to assure that a process will be serviced within
a predefined tirne frame is of utmost importance.
In multiprogramming environments this condition
can be expressed as schedulability: the ability to
find a schedule such that each task will meet its
deadline [22].

For schedulability analysis, execution times of
tasks must be known in advance. These, howe-
ver, can only be determined if a system func-
tions predictably. To assure overall predictabi-
lity, ali system layers must behave predictably

mailto:olnaric@uni-mb.si

60 Informatica 19 (1995) 59-69 M. Colnarič et al.

in the temporal sense, from the processor to the
system architecture, language, operating system,
and exception handling (layer-by-layer predicta-
bility, [21]).

In recent years, the domain of real-time sy-
stems substantially gained research interest. Cer-
tain sub-domains have been examined very thoro-
ughly, such as scheduling and analysis of program
execution times. It is typical that most of the re­
search done was dedicated to higher level topics
and presumes that the underlying features behave
fully predictablv.

Exception handling is one of the most severe
problems to be solved when a system is to be­
have predictably. By an exception any unexpec-
ted intrusion into the normal program flow which
cannot be considered during schedulability ana-
lysis phase is meant. It is usually related to resi-
dual specification and implementation errors and
to failures. Anticipated timing events and events
from the environment, which trigger associated
processes, do not belong to this category. They
should be implemented in a way, which does not
cause any non-deterministic delays in the execu-
tion of the running tasks. That can be achieved
by migrating event recognition and operating sy-
stem services out of main task processors [11], and
was also implemented in the Spring project [19].
Results of our previous studies were presented in
[4] and are used in the design of an experimental
platform as described in the next section.

When an exception occurs in a program, the
latter is inevitably delayed causing a serious pro­
blem with respect to the a priori determined exe-
cution tirne. Therefore, exceptions should be pre-
vented by ali means, whenever and wherever it is
possible [1]. If it is not possible to prevent them
to happen, thev should be handled in a consistent
and safe way in conformity with the hard real-
time systems design guidelines, i.e. timeliness, si-
multaneity, predictability, and dependability [13].
The need for consistent solutions to the exception
problem is exacerbated by the fact that excepti-
ons are often the results of some critical systems
states, which is when computer control is needed
most.

In this paper we show constructively how be-
havioural predictability can be achieved by pre-
senting an experimental system and considering
different aspects of its design. Although the main

emphasis of the paper is on consistent exception
handling, it is necessary to present some princi-
ples used to provide the necessary pre-conditions
for deterministic system behaviour; only then it
is reasonable to consider the upper layers of a sy-
stem design. In Section 2 we start offwith descri-
bing the basic layers of an asymmetrical paraUel
hardware architecture and the operating system
concepts which prevent process control tasks to
be disturbed (and thus delayed) by events occur-
ring in the environment. Further, in Section 3,
a real-time programming tool supporting the ar­
chitecture is described by which process control
programs with deterministic temporal behaviour
can be designed and their run-times determined.

Exception handling was integrated into a high-
level programming language, \vhich is the subject
of Section 4. First, we classify exceptions and
show that a number of them can be either pre-
vented or avoided. Further, we summarise some
known solutions to handle the remaining excepti-
ons, which were ali combined in the implemented
approach. Finally, an analysis of the impact the
approach has on overall process timing predicta-
bility is given.

2 Concept of an Experimental
Hardware Platform

In multi-tasking systems, dynamic scheduling al-
gorithms to generate appropriate schedules must
be implemented. The ones which fulfUl the re-
quirement that ali tasks must meet their deadli-
nes are referred to as feasible. In the literature,
several such algorithms have been reported (an
overview is given in [13]). For our purpose, the
earliest-deadline-first scheduling algorithm is cho-
sen. It has been shown that it is feasible for sche­
duling tasks on single processor systems; with the
throw-forward extension it is also feasible on ho-
mogeneous multiprocessor systems. However, this
extension leads to more pre-emptions and is more
complex and, thus, less practical.

For process control applications, where pro­
cess interfaces are usually physically hard-wired
to sensors and actuators establishing the contact
to the environment, it is natural to implement ei­
ther single processor systems or dedicated multi-
processors acting and being programmed as sepa-
rate units. Thus, the earliest-deadline-first sche-

file:///vhich

SUPPORTING HIGH INTEGPJTY AND... Informatica 19 (1995) 59-69 61

External Process Environment

Figure 1: Scheme of an experimental hardware
platform

duling policy can be employed without causing
any restrictions, resulting in a number of advan-
tages discussed by Halang and Stoyenko [13].

In the classical computer architecture the ope­
rating system is running on the same processor(s)
as the application software. In response to any
occurring event, the context is switched, system
services are performed, and scheduling is done.
Although it is very likely that the same process
will be resumed, a lot of performance is wasted
by superfluous overhead. This suggests to em-
ploy a second, parallel processor, to carry out the
operating system services. Such an asymmetrical
architecture turns out to be advantageous, since,
by dedicating a special-purpose, multi-layer pro­
cessor to the real-time operating system kernel,
the user task processor(s) are relieved from any
administrative overhead.

This concept was in detail elaborated in [11]
and further refined in [3, 4]. Our experimental
hardware platform is to a high extent complying
with these principles, and is currently under con-
struction. In Figure 1 it is shown that it consists
of task processors (TPs) with intehgent process
interfaces (IPI) and a kernel processor (KP) with
an external event recognition interface (EERI),
which are fully separated from each other.

The external process is controlled by tasks run­
ning in task processors without being interrup-
ted by the operating system functions. Any event
from the environment is fed to the kernel pro­
cessor and scheduling is performed based on the

modified earliest-deadline-first policy: the inten-
tion is to find a schedule such that ali waiting
tasks including the newly arrived one meet their
deadline while the running task remains in exe-
cution. Thus, a running task is only pre-empted
if it is necessary to assign the highest priority to
an incoming task in order to allow that aH tasks
meet their deadlines.

The task processors are implemented with
INMOS T805 transputers. In the task processors'
external memory the code of each task assigned
to be run is loaded. Also, a part of the control
blocks of these tasks is residing there, holding the
context of eventually pre-empted tasks. The fast
on-chip RAM of the transputers is holding task
internal variables except for the large data struc-
tures which are held in the external memory.

The IPI process interface is based on a Moto­
rola MC68000 microprocessor which adds the ne-
cessary intelligence to peripheral devices. It is
accessible by a bi-directional link via an INMOS
converter and is acting as a slave to the task pro­
cessors) . Services of the intelligent process inter­
face are available by calling pre-defined peripheral
device drivers and providing parameters and data.

Synchronisation of tasks running in different
task processors is carried out with the help of
semaphores residing in the kernel processor and
being accessible through systems calls.

The kernel processor is responsible for ali ope­
rating system services. It consists of an INMOS
T425 transputer performing the operating system
kernel services, and a Motorola MC68000 based
external event recognition interface. The latter 's
task is administering the real-time clock in the
form of Julian time, receiving signals from the
process environment, providing them with time
stamps, and periodically triggering events by sen-
ding messages to the transputer containing Infor­
mation about ali events that happened recently,
and serving as a synchronisation means.

The time between two synchronisation messa­
ges from the EERI is further sub-divided in slots
in the kernel processor. In these slots the informa-
tion from the external event recognition module
is processed, time events are administered, and
OS service calls from the task processors are ser-
viced, each triggering scheduling of an associated
application task.

It is to be mentioned that our nomenclature

62 Informatica 19 (1995) 59-69 M. Colnarič et al.

is not strictb/ conforming with [11], although the
functions implemented in our architecture com-
ply with the layers proposed there. The exter-
nal event administration part of the hardware la-
yer functions is implemented in the EERI, the
others — primary and secondary reaction level
— in the kernel processor. The hierarchy is re-
tained by executiong these functions in strictly
defined slots. We are considering migrating the
scheduling-related secondary reaction level servi-
ces into a separate transputer to enhance perfor-
mance.

Through this concept, preventing non-
deterministic interruptions from the environment,
careful avoidance of the sources of unpredictable
processor and system behaviour, loose coupling of
task processors, and svnchronous operation of the
kernel processor, the predictability of the tempo-
ral system behaviour will provide the necessary
basis for the higher system design levels.

3 Concept of a Real-Time
Programming Tool

To program applications on the above hardware
platform a tool is being constructed, in which the
proposed exception handling mechanism is built
in. Its ultimate objective is to produce temporally
predictable and optimal program code for embed-
ded hard real-time applications, and estimations
of their execution times.

In the tool two parts are closely integrated: a
compiler for an adapted standard real-time pro­
gramming language, and a program execution
tirne analyser. The latter is providing the ne-
cessary information for a schedulability analyser
which is currently beyond the scope of our rese-
arch.

In the design of the tool, the following guideli-
nes were followed:

1. Target system independence. The compiler
should produce executable application code for a
variety of target systems. This is achievable by
implementing target system specinc macros which
transpose each element of intermediate code into
a corresponding piece of executable code. In the
specification file for each target system its own set
of macros is defined.

2. Generation of efficient code. Although being
system independent, the compiler is expected to

generate fast and compact code. This can be achi-
eved by the simplicity of the programming langu­
age, and the possibility of global syntax tree opti-
misation (register scheme, local and global varia-
bles' locations and other implementation specific
information are given in the system specification
file). Also, in translation macros full information
about the operands (constant, register, local or
global variables) is contained.

3. Realistic estimation of task ezecution times.
A drawback of many methods for task execution
tirne estimation is that they yield such pessimistic
results that their relevance is seriously diminished
[18]. To čope with that , the tool supports two di-
fferent methods to determine the execution time
of a task: compile-time program analysis and di-
rect measurement of worst-case (partial) task exe-
cution time.

3.1 M i n i P E A R L

To program an application, the programming lan­
guage miniPEARL is introduced. It is a simpli-
fied version of PEARL [9], a standard language
for programming real-time applications, which,
however, may produce temporally unpredictable
code for several reasons. To eliminate these pro-
blems, PEARL's syntax is modified. Further, to
support efficient mapping onto typical target ar-
chitectures certain features are reduced. Finally,
it is enhanced by some constructs specific to real-
time systems, proposed by Halang and Stoyenko
[13, 12]. MiniPEARL is described in more detail
in [23].

The main differences between PEARL and mi­
niPEARL are:

l.There are no GOTOs. The use of GOTO
statements can result in unstructured and hardly
manageable code. Instead of these, EXIT and
LOOP statements are introduced for preliminary
exit from an innermost structure, and for imme-
diate initiation of the next iteration of a loop,
respectivelv.

2.Each loop block is stricthj bounded. In the
REPEAT statement, lower and upper counts of
a loop are obligatory and defined with compile-
time constant expressions to limit the number of
iterations.

3.Pointers and recursion are not allouied.
Dvnamic data structures and recursion can result
in severe memory management problems. They

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 63

may cause temporally non-deterministic actions
tha t cannot be considered in timing analysis.

A.Signals are not directly supported. In our ar-
chitecture model interrupts and signals are mana-
ged by the kernel processor. Events can be indu-
ced by the synchronisation mechanism.

5. Each statement ezecution is temporally boun-
ded. Commands whose execution tirne is non-
deterministic must be either forbidden, or ta-
ken special čare of in a real-time systems. Each
of such commands which are unavoidable must
be temporally guarded, and time-out alternatives
must be defined explicitly. Commands that must
be guarded are the ones that are dealing with pro-
cess inputs and outputs (if handshaking is imple-
mented), and synchronisation mechanisms.

6.Explicitly asserted execution time. Frequen-
tly, because of the nature of a program, estimation
may yield very pessimistic execution times. To re-
solve this problem, additional information about
program execution must be given by the program-
mer. This can be done by adding new constructs
(pragmas) into program code as proposed in [18].
But such constructs require complex analysis and
are not feasible for ali situations. To overcome
this problem, the execution tirne of code segments
known through competent measurement, detailed
analysis of the program behaviour, experience, re-
use, etc. may be exphcitly asserted by the system
developer who also takes the responsibility. In
such čase, execution time analysis is overriden.
However, to guarantee that the actual execution
time will not be longer than declared, blocks must
be guarded by time-out controls, and time-out ac-
tion must be present.

8.DATIONs are not used. Mass storage and
asynchronous input /output devices as used in PE-
ARL are not suitable for hard real-time systems.
For this reason and because of the relative comple-
xity of these structures, DATIONs are excluded
from the structure of the language. Input /output
devices (registers) are accessed at the lower pro-
gramming level.

9.Improved task activation scheme. In miniPE-
ARL task activation, deactivation, etc. can be
done through signals from the environment, time-
related conditions, or specific states of synchroni-
sers, as proposed in [13]. A time-related and one
non-time-related condition may be combined.

10. Scheduler support. The scheduling algori-

thm performed in the kernel processor relies on
the residual execution time of a task. This time
is computed as maximum execution time of the
task minus cumulative running time. However,
the actual execution time is expected to be shor-
ter than the estimated one. To achieve better
performance, the actual residual task execution
time can be explicitly asserted at ceratin points
to update the estimated one.

3.2 Est imat ion of Task Execut ion
Times

To allow for schedulability analysis, precise exe-
cution times of application tasks must be known
in advance. In our tool, two methods for the esti­
mation of program run-times are supported:

1. Analysis of executable code. In this method,
an automatic analyser is used to estimate execu-
tion times (compare also [18, 17]). Source code is
transformed into an intermediate form (modified
syntax tree) prior to executable code generation.
Each element of this form is associated with a ma-
cro block that is used for two purposes. The first
is to generate the code and the second is to obtain
its execution time. Because the execution time of
the same block can be data-dependent, as much
information as possible about operands should be
passed to it. The operand can be a register, a con-
stant, a local variable or a global variable. When
the macro is expanded, the sum of times needed
for accessing these operands is added to the basic
execution time of the macro.

2. Direct measurement of ezecutable code. This
method can be used when more precise execution
time than estimated is desired. To achieve tha t ,
object code is executed on the target system and
the execution time is recorded. Direct implemen-
tation of this method has some disadvantages:

- The complete target system must be imple-
mented. That is inappropriate in earlv phases of
development when the target-system is not com-
pletely implemented, yet.

- Through recording, only average execution ti­
mes can be obtained. For usable analysis, howe-
ver, worst-case execution times are needed. A test
scenario to obtain that situation is usually diffi-
cult to determine.

- The input /output devices must be active and
interact with the environment. Thus, the embed-

64 Informatica 19 (1995) 59-69 M. Colnarič et al.

ding environment or a simulation of it is needed.

By our approach, these disadvantages are eli-
minated. Only a task processor or its equivalent
must be implemented. The longest path through
a task is determined by the compiler and a pi­
lot code is generated running only through that
path. From a set of alternative constructs (IF and
ČASE statements, for example), the longest one
is statically routed. Ali time-guarded commands
and input /output variable accesses are replaced
by appropriate delays. This pilot code is then
executed on the hardware platform or, because of
the substitution of every system-specific function,
a delay is inserted.

4 Handling of Exceptions in
Hard Real-Time Systems

Our previous work in the domain of dealing with
exceptions was published in [5]. With the goal to
avoid non-deterministic delays in the execution of
application tasks it was shown that a great num-
ber of exceptions can be either prevented from
happening, or they can be handled within the con-
text of task requirements:

- Preventable ezceptions: Some exceptions can
be prevented by restricting the use of potentially
dangerous features. Compliance with these re-
strictions must be checked by the compiler. For
example, no dynamic features like recursion, refe-
rences, virtual addressing, or dynamic file names
and other parameters etc. are allowed.

Other features are, e.g., strong type checking
(see [8]), or extensions of the input and output
data types by two "irregular" values representing
"signed infinity" to accommodate overflows and
underflows and "undefined", as proposed in the
IEEE 32-bit floating point standard [2] implemen­
ted also in the INMOS transputers ' Floating Po­
int Unit (FPU) (compare also [16]). Thus, com-
puted irregular values do not raise exceptions, but
are propagated to the subsequent or higher-level
blocks, which must be able to handle them.

- Non-preventable, anticipated ezceptions: If
the potential danger of irregularity can be reco-
gnised during design time, it has to be taken čare
of in the specifications. For example, periphe-
ral devices shall be intelligent, fault-tolerant and
self-checking in order to be able to recognise their

own malfunctions, and to react in a predefmed
way if a value which is sent to them is irregu­
lar. Further, a number of exceptions resulting
from irregular data can be avoided by prophylac-
tic run-time checks before entering critical opera-
tions. Many tasking errors are also avoidable by
previously using monadic operations to check the
system state.

Falling into this category, an obvious and fre-
quently used way of avoiding critical failures in
hard real-time systems design is redundancy (an
example for consistent implementation of redun-
dancy is the MARS system [15]). Redundant sy-
stem components must be implemented according
to thorough analysis of fa,ult hvpotheses.

If there is no way to predict an error, an excep-
tional situation caused must be handled in order
to survive it. These are situations when "the im-
possible happens" [1], in which programs do not
follow their specifications due to hardware fai­
lures, residual software errors, or wrong specifi­
cations. For example, failure of a part of me-
mory can result in the change of constant values;
an error in file management or on a disk is usu-
ally unexpected. In safety-critical control systems
non-anticipated exceptions may have catastrophic
consequences. There it is especially important to
implement a mechanism for their safe and consi­
stent handling.

In his early paper, Goodenough [10] presen-
ted the idea of assigning default or programmed
exception handlers to every potentially dangerous
operation. According to the severity of an excep-
tion raised the running process was either termi-
nated, or suspended and resumed later. A similar
mechanism although considerabb/ more elaborate
and adapted for use in hard real-time systems was
implemented in Real-Time Euclid [14]. There,
exception handlers were (optionally) located wi-
thin block constructs and were executed in the
čase of an exception. If there were no exceptions
the handlers had no effect except for their impact
on a block's execution time estimated by a sche-
dulability analyser, thus making it more difficult
to be scheduled. Exceptions may be raised by
kili, terminate or except statements, to terminate
a process entirely or only its frame, or to execute
the handler without termination of the process,
respectivelv.

A reference study in the domain of non-

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 65

preventable exceptions was done by Cristian [6.
7]. Certain principles from this work were further
detailed in [1] and were also adopted in our excep-
tion handling mechanism.

According to Cristian, exceptional situations
can be handled (a) by programmed exception
handling and (b) by default exception handling
based on automatic backward recovery using re-
covery blocks. Since in embedded hard real-time
systems programmed exception handling should
be included in the system requirements and can,
thus, be treated as normal actions, in the follo-
wing the alternative technique will be dealt with
briefly.

The principle of backivard recoverij is to return
to the previous consistent system state after an
inconsistency is detected by consistency tests cal-
led post-conditions. It can be done in two ways,
(a) by the operating system recording the current
context before the program is "run" and restoring
it after its unsuccessful termination, or (b) by re-
covery blocks inside the context of a task whose
syntax is as follows:

RB = ensure post b y Po e lse b y P i else b y . . .
else failure

where Po, P i , etc. are alternatives which are
tried consecutively until either consistency is en-
sured by meeting the pos£-condition, or the failure
is executed. Each alternative should be indepen-
dently capable to ensure consistent results.

In the forward error recovery technique it is
tried to obtain a consistent state from partly in-
consistent data. Which data are usable can be
determined by consistency tests, error presump-
tions, or with the help of independent external
sources.

To handle catastrophes we propose a combina-
tion of pre-conditions, post-conditions and modi-
fied recovery blocks implementing both backward
and forward recovery. Its syntax is shown in Fi­
gure 2.

A block (plain block structure, task, procedure,
loop, or other block structure) consists of alter­
native sequences of statements. Each alterna­
tive can have its own pre- and/or post-conditions,
represented by Boolean expressions. When the
program flow enters a surrounding block, the
state" variables, tha t are modifiable by alterna­
tives which might fail, are stacked (see below).

block : := block_begin block_ta i l

block-begin : := BEGIN
| PROCEDURE parameters & a t t r i b u t e s ;
| TASK parameters & a t t r i b u t e s ;
| parameters REPEAT

block_ta i l : : = [declarationj3equence]
[al ternat ive_sequence] END;

declaration-sequence : := block-specific declarations
[PRESERVE global .varJLis t]

a l ternat ive .sequence : : =
{[ALTERNATIVE [PRE bool—exp;] [POST

bool—exp;]]
[statement.sequence] }

Figure 2: Syntax of an exception handhng mecha­
nism

Then, the first alternative statement sequence,
whose pre-condition (if it exists) is fulfilled, is exe-
cuted. At the end, its post-condition is checked,
and if this is also Mfilled, execution of the block
is successfully terminated. If the post-condition
is not fulfilled, the next alternative is checked for
its pre-condition and eventually executed. If ne-
cessary, values of the state variables recorded at
the beginning of the block are first restored.

If an alternative fails, any effect on the system
state should be discarded; thus, it is necessary
that the original value of any variable is restored,
which was modified and lies outside of the scope
of the failed alternative. For tha t purpose, the
state of any such variable must be stacked at the
tirne of entering the block. Whether and which
variables must be stacked can be determined by
the compiler. It is only necessary to restore non-
local variables that appear on the left hand side
of an assignment in alternatives which have post-
conditions, since only they may fail after modi-
fying the s ta te . . It is a task of the compiler to
scan the block for such variables and take čare
of their stacking. Further, after a non-successful
evaluation of a post-condition, only the variables
that were modified in this alternative are automa-
tically restored.

Stacking ali global variables tha t can be modi­
fied within a block may require a relatively large
amount of tirne. There are situations where the
value of a global variable is not needed any more
after an unsuccessful termination of an alterna-

66 Informatica 19 (1995) 59-69 M. Colnarič et al.

tive. In such situations the application program-
mer may wish to declare which modifiable global
variables should be restored after the unsuccess-
ful alternative. This can be requested by the
optional PRESERVE declaration in the declara-
tion_sequence. If this declaration is present, the
automatic search for modifiable global variables
is prevented; hence, the explicitly given list must
contain the complete set. The compiler then scans
for global variables that are both in the list and
appear on a left hand side in the alternative pro­
gram, and restores their original values after an
unsuccessful try.

A good technique which prevents the above
problem is to work with private copies of glo­
bal s tate variables inside the alternatives that
may cause backward recoverv, and to export their
values after a successful post-condition check.
However, this is more time-consuming, especi-
ally when there are more such alternatives in a
block, which require (counter-productive) trans-
fer of global into local variables and back.

Since embedded hard real-time systems, which
are the main subject of this paper, are, as a rule,
used in process control a severe problem arises if
there are any actions triggered like commencing
a peripheral process which causes an irreversible
change of initial state inside an alternative that
failed. In this čase, backward recovery is gene-
rally not possible. As a consequence, it is our su-
ggestion tha t no physical control outputs should
be generated inside the alternatives which may
cause backward recovery in čase of failure, i.e.,
inside those which have post-conditions. In this
čase only forward recovery is possible, bringing
the system to a certain predefined, safe, and sta-
ble state.

Both forward and backward recovery methods
can be implemented using the proposed syntax.
In the following these approaches will be shown:

— Backward recoverv: bearing in mind the
dangers of backward recovery in process con­
trol systems, it may be (carefully) implemen­
ted. Backward recovery can be recognised by
the post-conditions an alternative must meet.
Its functioning is obvious: if an alternative
fails to meet its post-condition, the next al­
ternative fulfilling its pre-condition is used to
do the task of the block. Thus, it is necessary
to restore the system state variables possibly

modified in previous unsuccessful alternati­
ves.

— Forward recoverv: this technique may be
somewhat less obvious. Consider the čase
where an alternative is checking the success
of its operation, according to its design spe-
cifications. According to the results of the
check, different actions may be taken to re-
solve different situations. To control the pro­
gram flow, this alternative then, according
to the outcome of these checks, sets some
states with which the pre-conditions of al­
ternatives in the subsequent block are set.
There may be an alternative with empty sta-
tement_sequence whose pre-condition is met
if a previous alternative was successful; by
this example, classical exception handling
can be implemented.

The alternatives should contain independently
designed and coded programs to comply with spe-
cifications and to eliminate possible implementa-
tion problems or residual software errors. They
can contain alternative design solutions or re-
dundant resources, when problems are expected.
A further possibility is to assert less restrictive
pre- and/or post-conditions and to degrade per-
formance gracefully. By the means presented in
[23] it is also possible to bound the execution ti-
mes of alternatives. If one of them fails to com­
plete inside a predefined period, a less demanding
alternative is taken.

If there is no alternative, \vhose pre- and post-
conditions are fulfilled, the block execution was
unsuccessful. If the block was nested inside an al­
ternative on the next higher level, this alternative
fails as well and the control is given to the next
one, thus providing a chance to resolve the pro­
blem in a different way. On the highest level, the
last alternative must not have any pre- or post-
conditions. It must solve the problem by applving
some conventional actions like employing fault-
tolerance measures or performing smooth power-
down. Since the system is then in an extreme
and unrecoverable catastrophic condition, diffe­
rent control and timing policies are put in ac-
tion, requesting safe termination of the process
and possibly post-mortem diagnostics.

Using this exception handling mechanisrn the
worst-case program execution times required for

file:///vhose

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 67

schedulabilitv analvsis can be estimated at com-
pile time. In the following paragraphs three diffe-
rent cases will be considered.

(a) Ezclusive backivard recovery (aH alternati­
ves have post-conditions): in the worst-case exe-
cution time estimation ali times must be conside­
red, i.e., time for stacking ali global variables' con-
tents, for evaluating ali pre- and post-conditions,
alternative program execution times, and times to
restore used variables.

*"u>c = Ist T / j ''prej T l-bodyi T tposti T tresti

where

i

tst
tprei
'•bodyi
tposti

number of alternatives in the block
worst-case block execution time
time to store global variables

— afterwards, one proceeds as in čase (b).

Actuallv, the last method (c) is generallv valid
and also applicable in both previous cases.

Especially the backward recovery method ine-
vitably yields pessimistic execution time estima-
tions. However, this is not due to this specific
solution. In safety-critical hard real-time systems
it is necessary to consider worst-case execution
times, which must also include exceptional condi­
tions. Depending on the performance reserve of
a system, more or less alternatives may be pro-
vided, performing more or less degraded functi-
ons. In extremely time-critical systems just a sin-
gle alternative in the highest level block may be
implemented only performing a safe and smooth
power-down.

To čope with the problem of the pessimism of
run-time estimation of execution of alternatives

i-th alternative pre-condition evaluation time some further solutions are possible. Each sub-
i-th alternative program execution time sequent alternative of a set of backward recovery
i-th alternative post-condition evaluation timealternatives may be bounded to h alf of the exe-

t resti t ime to restore global variables in i-th
alternative

(b) No backivard recovery (no alternatives have
post- conditions): in this čase it must be scan-
ned for the maximum time composed of an al­
ternative body execution time plus the sum of
non-successful pre-condition evaluation times of
ali preceeding alternatives; there is no stacking or
restoring of variables.

k

'"wc == 'mQ'%k=l,n\J'body)s T / y ^prej j
i=l

(c) Mixed alternatives with and voithout post-
conditions: in this čase, estimation of the worst-
case execution time is slightly more complicated.
During operation, alternatives are tried one after
another according to their sequence in the block.
Thus, execution times are evaluated as follows:

— the execution time of the sequence of alter­
natives with post-conditions is calculated as
in čase (a) and is added to the execution
time of the body of the subsequent alter­
native v/ithout post-condition if it exists, or
forms a virtual alternative without pre- or
post-condition if it is at the end of the block.

cution time of the previous one; thus, the block
will terminate in at most twice the execution time
of the primary alternative. Also, from a failure
of an alternative it is possible to deduce which
subsequent alternatives in subsequent blocks are
reasonable and which are not, and to set their pre-
conditions accordingly. However, this requires a
sophisticated run-time analyser.

5 Conclusion

In order to assure a predictable behaviour of real-
time systems, it is necessary to determine a pri-
ori bounds for the task execution times. In this
paper a consistent design of a computing system
for embedded applications operating in the do-
main of hard real-time is described. While the
experimental hardware platform and program de-
velopment tool are only outlined, the exception
handling mechanism, which represents the most
severe obstacle to overall predictability, is dealt
with in more detail. Catastrophic exceptions are
coped with in a well-structured environment by
providing sequences of gradually more and more
evasive software reactions.

Embedded hard real-time systems for process
control often operate in safety critical enviro-

68 Informatica 19 (1995) 59-69 M. Colnarič et al.

nments. Uncontrolled malfunctions can have dra-
stic consequences with regard to repair costs, pro-
duction loss, or even endangerment of human he-
alth or lives. By our approach, overall system
safety is greatly enhanced. Possible system failu-
res are already being considered during the design
phase, and alternative solutions are devised and
prepared. Having to use them, performance may
be reduced, but safety is retained, since they will
either solve the problem, or bring the system into
some controlled and safe state. These alterna­
tive measures either employ software approaches
or redundant hardware means, or are gradually
less complex and, thus, less sensitive to distur-
bances and failures. Therefore, they rely on very
simple fault-tolerance measures, employing mini­
mum resources. They may even employ electrical
or mechanical means, such as safe passive state of
inactive relays or automatic activation of mecha­
nical brakes when the system loses control, etc.

Applications designed this way fulflll the requi-
rements of hard real-time systems, viz., timeli-
ness, simultaneity, predictability, and dependabi-
lity. Although the worst-case analysis necessa-
rily introduces pessimism in run-time estimation,
the proposed methodology is practically usable
for the development of safety critical embedded
hard real-time applications if the alternative so­
lutions to the critical parts of control tasks are
designed reasonablv.

References

[1] Andrew P. Black. Exception handling: The
čase against. Technical Report TR 82-01-
02, Department Of Computer Science, Uni-
versity of Washington, May 1983. (originally
submitted as a PhD thesis, University of Ox-
ford, January 1982).

[2] W.J . Cody, J .T . Coonen, D.M. Gay, K. Han-
son, D. Hough, W. Kahan, R. Karpin-
ski, J. Palmer, F.N. Bis, and D. Steven-
son. A proposed radix- and word-length-
independent standard for floating-point ari-
thmetic. IEEE Micro, 4(4):86-100, August
1984.

[3] Matjaž Colnarič. Predictability of Temporal
Behaviour of Hard Real-Time Systems. PhD
thesis, University of Maribor, June 1992.

[4] Matjaž Colnarič and VVolfgang A. Halang.
Architectural support for predictability in
hard real-time systems. Control Engineering
Practice, l (l) :51-59 , February 1993. ISSN
0967-0661.

[5] Matjaž Colnarič and Wolfgang A. Halang.
Exception handling and predictability in
hard real-time svstems. In Proceedings of
the 12th International Conference on Com­
puter Safety, Reliability and Security SAFE-
COMP '93, pages 371-378, Poznan - Kiekrz,
Poland, October 1993. Springer-Verlag, Lon­
don, 1993.

[6] Flaviu Cristian. Exception handling and
software fault tolerance. IEEE Transactions
on Computers, 31(6):531-540, June 1982.

[7] Flaviu Cristian. Correct and robust pro-
grams. IEEE Transactions on Softuiare En­
gineering, 10(2): 163-174, March 1984.

[8] lan F. Currie. NewSpeak: a reliable pro-
gramming language. In High-integrity Soft-
ware, pages 122-158. Pi tman Publishing,
London,1988.

[9] DIN 66 253: Programmiersprache PEARL,
Teil 1 Basic PEARL. Berlin, 1981.

[10] John. B. Goodenough. Exception handling:
Issues and a proposed notation. Communi-
cation of the ACM, 18(12):683-696, 1975.

[11] Wolfgang A. Halang. Definition of an auxi-
liary processor dedicated to real-time opera-
ting system kernels. Technical Report UILU-
ENG-88-2228 CSG-87, University of Illinois
at Urbana Champaign, 1988.

[12] Wolfgang A. Halang and Alexander D. Sto-
yenko. Comparative evaluation of high-level
real-time programming languages. Real-
Time Systems, 2(4):365-382, 1990.

[13] Wolfgang. A. Halang and Alexander D.
Stoyenko. Constructing Predictable Real
Time Systems. Kluwer Academic Publishers,
Boston-Dordrecht-London, 1991.

[14] Eugene Kligerman and Alexander Stoyenko.
Real-time Euclid: A language for reliable
real-time systems. IEEE Transactions on

SUPPORTING HIGH INTEGRITY AND... Inforrnatica 19 (1995) 59-69 69

Softivare Engineering, 12(9):941-949, Sep­
tember 1986.

[15] Hermann Kopetz, A. Damm, Ch. Koza,
M. Mulazzani, W. Schwabl, Ch. Senft, and
R. Zainlinger. Distributed fault-tolerant real-
time systems: The MARS approach. IEEE
Micro, 9(l) :25-40, February 1989.

[16] Barbara H. Liskov and Alan Snyder. Excep-
tion handling in CLU. IEEE Transactions
on Softivare Engineering, 5(6):546-558, No­
vember 1979.

[17] Chang Yun Park. Predicting program execu-
tion times by analyzing static and dynamic
program paths. Real-Time Systems, 5(1):31—
62, March 1993.

[18] Peter Puschner and Christian Koza. Cal-
culating the maximum execution tirne of
real-time programs. Real-Time Systems,
1(2):159-176, 1989.

[19] Krithi Ramamritham and John A. Stanko­
vic. Overview of the SPRING project. Real-
Time Sgstems Nevosletter, 5(l) :79-87, Win-
ter 1989.

.[20] John A. Stankovic. Misconceptions about
real-time computing. IEEE Computer,
21(10):10-19, October 1988.

[21] John A. Stankovic and Krithi Ramamri­
tham. Editorial: What is predictability
for real-time systems. Real-Time Systems,
2(4):246-254, November 1990.

[22] Alexander Stoyenko. A Real-Time Language
With A Schedulability Analyzer. PhD thesis,
University of Toronto, December 1987.

[23] Domen Verber and Matjaž Colnarič. A tool
for estimation of real-time process execution
times. In Proceedings of Softivare Enginee­
ring for Real-Time Applications Workshop,
pages 166-171, Cirencester, September 1993.
IEE.

Informatica 19 (1995) 71-82 71

A Novel Approach to OfF-line Scheduling in Real-Time Svstems

Guohui Yu and Lonnie R. Welch
Department of Computer and Information Science
New Jersey Institute of Technology
University Heights
Newark, NJ 07102
Email: g r a y @ e a r t h . n j i t .edu, we lch@vienna .n j i t .edu

K e y w o r d s : real-time, multiprocessor, off-line scheduling, ADTs, replication, concurrency

Edited by: Marcin Paprzycki and Janusz Zalewski

Rece ived: February 25, 1994 Rev i sed: October 31, 1994 A c c e p t e d : December 26, 1994

This paper presents a new off-line scheduling approach for object-based real-time systems
using a periodic model of execution. The approach differs from previous off-line schedu­
ling workin that it constructs a feasible schedule by exploiting concurrency. Concurrency
is achieved by replication of abstract data type (ADT) module instances to reduce con-
tention caused by multiple accesses to shared ADTs. Concurrency is also achieved by
asynchronous remote procedure calls (ARPCs), which allow caller and callee to execute
concurrently. By enhancing concurrency, the execution times of processes are reduced,
and the chance for finding a feasible schedule is significantly increased.

1 Introduction

In hard real-time systems, the most important
goal is to guarantee that ali timing constraints are
satisfied. Since scheduling problems are NP-hard
in multiprocessor systems [28], no algorithm exi-
sts to solve the problems efficiently. On-line sche­
duling approaches are not typically sufficient to
guarantee timeliness, due to the limited amount
of time for scheduling and the overhead of opti-
mal scheduling. However, on-line scheduling tech-
niques [16, 19, 22, 42, 23] are necessary in applica-
tions tha t have unpredictable environments. For
fully predictable, or almost fully predictable, envi­
ronments, off-line scheduling techniques are used
to guarantee timeliness. Contention for shared
resources (processors, devices, and Communicati­
ons) is avoided by constructing schedules before
runtime for each shared resource. If there exist
a few unpredictable factors, several schedules are
constructed according to the factors. At run-time,
one of the schedules is chosen. Off-line schedu­
ling is being used successfully in many application
areas including factory automation, telecommuni-
cation, aerospace, and robotics [29, 7, 32].

Traditional off-line scheduling approaches t ry

ali possible permutations of the scheduling objects
(processes, tasks, segments of processes, etc.)
to seek a feasible solution. The timing beha-
vior of scheduling objects is unchanged during
scheduling, thus ali effort is devoted to optimi-
zing the search path for finding feasible schedules
[21, 37, 30, 14, 17. 24, 2]. This paper presents a
new approach for constructing off-line schedules
for applications composed of abstract data type
(ADT) modules using a periodic model of execu-
tion. The execution time of scheduling objects
is reduced by enhancing concurrency. Given an
initial schedule and a list of processes missing de-
adlines, the scheduler identifies a list of candidate
opportunities to enhance concurrency within pro­
cesses missing deadlines. Candidates are evalu-
ated by analyzing effects on the entire schedule,
the utilization and availability of demanded re­
sources, and the amount of concurrency produ-
ced. The best. candidate (possibly a combination
of several candidates) is chosen to improve the as-
signment and schedule. The chance of finding a
feasible schedule is significantly increased by con-
currency enhancement.

mailto:gray@earth.njit
mailto:welch@vienna.nj

72 Informatica 19 (1995) 71-82 G. Yu et al.

1.1 A D T Modules

This paper considers concurrent real-time systems
built from reusable components which are con-
structed from ADT modules. ADTs, which are
supported by languages such as Ada, Clu and
Modula-2, provide a way to limit the complexity
of the interface between data structures and asso-
ciated methods, and programs tha t use the da ta
structures and methods. ADTs also provide a
mechanism for information hiding and encapsu-
lation, which are desired properties for reusable
software components [34, 13, 25, 33, 39]. In dis-
tributed systems terminology, ADT instances are
servers tha t provide services, and the programs
built on top of ADTs are clients that request the
services.

Applications constructed with ADTs tend to
have many method calls, which may cause ineffi-
ciencies at execution tirne. Asynchronous remote
procedure call (ARPC) [15, 36] is used to allow
the caller to continue execution until it requires a
busy parameter. With the ARPC model [36, 31],
there are three factors that may prevent two me­
thod calls from running concurrently. They are
(1) control dependence, which describes the requi-
red sequence of execution; (2) data dependence,
which describes the exclusive use of a data object;
and (3) code (ADT instance) dependence, which
dictates exclusive access to the code of a module
instance. Control dependence can be resolved
by techniques such as concurrent speculative exe-
cution of multiple branches of if-statements and
case-statements, or concurrent execution of loop
iterations. Data dependence can often be resol­
ved by data replication techniques and variable
renaming. Instance dependence can be resolved
by instance replication (cloning) techniques. This
paper focuses on how cloning is used for construc-
ting feasible schedules.

While cloning increases concurrency, it may in-
crease CPU and network contention, and may
also increase synchronization costs. These over-
heads vary for different kinds of ADTs. For clo­
ning stateless ADTs, there is no need to main-
tain consistency of data. For cloning ADTs with
state, additional effort on maintaining data consi-
stency is needed. Therefore, the balance between
the increased concurrency and the synchroniza-
tion overhead is an important issue. In this paper,
only stateless ADTs are considered for cloning. In

applications constructed by abstract da ta types,
typically, an ADT instance is used to manage
more than one data object. It is the clienfs
responsibility for maintaining the consistency of
data. Therefore, most ADT module instances are
stateless. That is one of the design principles for
developing ADT modules [13]. We make the ADT
module as general as possible (generic ADT mo­
dules). Applications built with ADT module in­
stances typically have many stateless ADT instan­
ces [13, 34]. Note tha t cloning of ADT instances
allows granularity of concurrency at the method
level, not at the statement level. Therefore, com-
munication costs are typically much smaller than
the execution times of methods, especially since
only pointers to data structures need to be pas-
sed in most remote procedure calls [36]. Since
instance cloning introduces overheads to the sy-
stems, we do not want to plače a clone on every
processor. Several clients may share an ADT in­
stance without any contention if they call the in­
stance at different times. To determine the mini­
mum number of clones of an ADT instance needed
to resolve ali possible contention in a given appli-
cation, dependence relations among statements,
method calls, and ADT instances must be ana-
lyzed [41].

1.2 Previous Work

The cloning considered here is the replication of
aggregate code components (not da ta or hard-
ware components, which are considered in data
management systems [12] and hardware design).
Previous work on cloning has mainly concentra-
ted on compiler optimization and fault tolerance.
Keith Cooper [5] ušes cloning techniques for com­
piler optimization. Clones of procedures are used
to inherit an environment that aliows for better
code optimization. Procedure or task cloning for
fault tolerance is discussed in [21, 3, 4], where
clones of procedures or ta.sks are used to obtain
high availabilitv. Cloning of ADTs for concur-
rency was first addressed in [35]. The contention
for an ADT is revealed by partitioning the state­
ments of an ADT module into units, where an unit
is a sequence of statements that must be executed
in order, due to data dependence. The approxi-
mate upper bound on the number of clones of a
module instance that can be used concurrently is
determined by a polynomial-time algorithm. This

A NOVEL APPROACH T O . . . Informatica 19 (1995) 71-82 73

work is different from [35] in the following aspects:

1. the program dependence graph (PDG) [8, 6,
1, 11] is extended to represent instance de­
pendence;

2. the new PDG is used to perform dependence
and cloning analysis at three levels (intra-
method, inter-method, and inter-instance);

3. a more accurate upper bound than [35] on
the number of clones of each ADT module
instance that can be used concurrently is de-
termined;

4. the new PDG is used to trace the incremental
changes of contention of ADT module instan-
ces dur ing cloning;

5. cloning of ADT module instances is used for
schedule construction.

Previous work on assignment and scheduling
using cloning of ADT module instances for en-
hancing concurrency has not been observed.

Much of the previous off-line scheduling algo-
rithms deal with only one or two processor sche­
duling problems [9, 18, 38]. Multiprocessor sche­
duling problems are addressed in work [17, 24, 2],
but the scheduling problem is simplified by vari-
ous assumptions, such as same release times, same
deadlines, no precedence relations among proces­
ses, identical computation times, and others. Ge­
neral models are used in [30, 21, 37], where ar-
bitrary release times, arbitrary deadlines, arbi-
t rary computation times, and precedence relati­
ons among processes are considered in multipro­
cessor systems. This work ušes a more general
model [31, 30], which ušes processes as assignment
and scheduling units. Concurrency exists only
at the process level. In this work, ADT module
instances are used as assignment and scheduling
units. Concurrency is exploited at the method
level and is enhanced in processes missing deadli­
nes. The framework of our scheduling approach
was first introduced in [40], the work is elaborated
and details of the approach are presented in this
paper.

In the following sections, the programming and
execution paradigms are introduced. This is fol-
lowed by discussion of our scheduling approach
and concurrency enhancement. Finally, we dis-
cuss the contributions of this work, and identify
future work.

2 Programming Paradigm

The programming paradigm used in this work
supports object-based programming. The con-
structs of the programming paradigm include mo­
dule classes (such as Ada packages [20] and C + +
classes), activitij classes (such as Ada tasks and
DEDOS activities [10]), and applications. In this
section, a brief introduction to this language mo­
del is given. An example of an application pro­
gram which is a portion of a factory simulation
application is used to illustrate the programming
model. Complete details of the model can be fo-
und in [31].

2.1 Module Classes

An abstract data type (ADT) is defined as a mo­
dule class template, the basic reusable software
component. A typical ADT exports a type that
can be used to declare variables, and a set of ope-
rations used to manipulate the variables. In other
words, variables declared to have the type expor-
ted by an ADT instance can be accessed only
through the operations exported by the instance.
ADTs can be defined as generic templates (i.e.,
they can be parameterized by types and operati­
ons) to increase their reusability. Templates must
be instantiated with actual parameters before be-
ing used. To make the programs analysible, no
aliased variables or goto statements are allowed,
unbounded loops and unbounded recursion are
forbidden (to enable timing analysis), the types
of variables are determined staticallv, and instan-
tiation of classes must be done statically. Those
restrictions are acceptable for real-time systems
since nondeterministic behavior cannot guaran-
tee timeliness of real-time applications [26]. Fi­
gure 1 (a) shows a module class Queue which is
declared as a generic ADT module. The Queue
takes a parameter T which is a type used to define
the elements of the queue. When different types
are provided, different queues can be instantia­
ted from this ADT module. The ADT module
Queue provides a type QueueType which can be
used to declare queue variables such as InQueue
and OutQueue in ADT module Machine (shown
in Figure 1 (b)). Two methods insert and remove
are provided by the Queue which is used to ma­
nipulate variables of QueueType.

74 Informatica 19 (1995) 71-82 G. Yu et al.

module class Queue(type T);
p rov ided t y p e QueueType;
ins tance • • •
m e t h o d insert(var Q:QueueType;var x:T);

begin
• • - access Q and x for S tirne units

end m e t h o d insert;
m e t h o d remove(var Q:QueueType; var x:T);

begin
• • • access Q and x for S tirne units

end m e t h o d remove;
end modu le class Queue;

w
module class Machine;

p rov ided t y p e MachineType;
i n s t ance part is Part(- • •);
i n s t ance product is Product(* • •);
i n s t ance Q is Queue(part.PartType);
var inQueue, outQueue : Q.QueneType;
var part : part.PartType;
var prod : product.ProductType;
m e t h o d perform_next(var M:MachineType);

beg in
• • • instructions for 2 tirne units
Q.remove(inQueue,part);
• • • access M, part, and prod for 3 tirne units
Q. insert (ou t Queue, prod);
• - • instructions for 2 tirne units

e n d m e t h o d peiform_next;
end m o d u l e class Machine;

ac t iv i ty class Task;
i n s t ance M is Machine;
var Ml, M2 : M.MachineType;
begin

M.perform.next(Ml);

end ac t iv i ty class Task;
(•o

appl ica t ion factory;
process Taskl is Task

vvith per iod=30, deadl ine=12,re lease- t ime=0;
process Task2 is Task

vvith per iod=60, deadl ine=21,re lease- t ime=0;
end appl ica t ion factory;

(d)

Figure 1: Factory Simulation

2.2 Act iv i ty Classes

An activity class can be used to define a process
template, the basic thread of execution. Each ac-
tivity class is a sequence of statements and pro­
cedure calls to methods provided by instances of
module classes. An activity class is used for in-
stantiating processes. A process can be created
as a normal process or an periodic process. The
timing constraints of a periodic process (such as
frame, deadline, and release tirne) are parame-
ters given when processes are instantiated. Thus,
using the same activity class with different pa-
rameters, different processes can be instantiated.
To increase reusability, an activity class can also
have types and/or operations as parameters. An
instance created in one activity class can be used
by operations in another activity class by using
export and import mechanisms. In Figure 1 (c),
activity class Task is defined. An ADT instance
M is created from module class Machine, and is
used to declare two machines Ml and Ml. Fi-

Queue
QUEUETYPE

C T i n s e r C ^

(^ " r e m o v e j ^ }

lnQueue OutOueue

Figure 2: Instance relations created in factory
application

gure 1 (c) shows only one statement of the Task
which is a call to method per f ormjaext{) provi­
ded by the ADT instance M.

2.3 Applicat ions

An application is defined by instantiating global
ADT instances (i.e., module class instances) and
processes (i.e., activity class instances), and by
describing timing relations among processes. In
an application definition, activity classes are in­
stantiated as processes with timing constraints
and other actual parameters. Timing constraints
of processes can be expressed by either absolute
timing constraints (ATCs) or relative timing con­
straints (RTCs). An ATC is a tirne or tirne pe­
riod which is imposed on a process to relate the
timing behavior of the process with the system
time. Frames (periods), deadlines, and release-
times of processes are described with ATCs. An
RTC is a time or time period which is imposed on
a process to relate the timing behavior of the pro­
cess with another process. Precedence relations
and exclusive access relations between processes
can be described with RTCs. Figure 1 (d) shows
a portion of a factory simulation which is defined
by instantiating two processes, Taskl and Task2.
Figure 2 shows a few call relations (edges) among
three instances in the application.

A NOVEL APPROACH TO. Informatica 19 (1995) 71-82 75

PEk

procedure ml
% ?

/ process PSi
| IPC ! IPC return

& O

PEi y-'"}
remove(lnQueue, p a r t) Insert(outQueue, p rod)

9 = O 9 ? ©

ADTln r f anceM 9 O & ^—€> 6 O
/ Q.remove(lnQueue,part); Q.to9ert{lnQueue,prod)j \

M.pe rform-n «rt (M l)
Esi=0

FT=17 ;

D = i 2 ;

Figure 3: Interna! Procedure Calls

•"'instance i

.'process PSj

procedure ml
"V ";

AEPČ returfi\

;' instance i

:'process psj

procedure

8
1
i

!EPC

ml

!

!EPCietnm'\

(»)

Figure 4: External Procedure Calls

3 Execution Paradigm

The execution platform used in this paper is a
distributed memory MIMD system which is de-
seribed in [36, 31]. Each processing element (PE)
consists of a CPU, a communication co-processor
and local memory. PEs are connected by either
buses and /or high-speed, bidireetional point-to-
point links. We assume that there is a physical
route of buses and links between any pair of PEs.

Communication is handled by the communica­
tion co-processor in either a synchronous or in an
asynchronous manner. Device resources are ei­
ther phvsical devices or logical devices. Physical
devices are hardware devices managed by software
packages sueh as disks, sensors, and monitors. Lo­
gical devices are ADT module instances.

As shown in Figure 3, ezecution graphs are used
to deseribe the executions of processes. In an exe-
cution graph, solid lines show executions of pro­
cess segments, and dashed direeted lines indicate
calls and returns. The solid boxes indicate PEs,
and the dashed ovals enclose operations of instan­
ces. EST stands for earliest start tirne, FT for
finish time, and D for deadline of a process.

An inter-instance call is an internal proce­
dure call (IPC) if the calling operation is pro-
vided by an instance created within the aeti-
vity class (as in Figure 3). For example, call

Figure 5: Assignment of Taskl and ADT instan­
ces in the factory application

M.perforni..next(Ml) in activity class Task is
an IPC since method per formjnext() is provi-
ded by M which is instantiated within the aeti-
vity class. An inter-instance call is an ezternal
procedure call (EPC) if the calling operation is
provided by an instance created outside the aeti-
vity class (as shown in Figure 4). Based on the
physical location, IPCs and EPCs are implemen-
ted with local procedure calls (LPCs) and remote
procedure calls (RPCs). An LPC oecurs when the
caller and the callee are on the same PE. An RPC
oecurs when the caller and callee are on two di-
fferent PEs (as shown in Figure 4 (b)). An IPC
is implemented by using an LPC which is simply
a local context switch. An EPC is implemented
by an LPC if the called operation is on the same
P E (as shown in Figure 4 (a)) , or by an RPC if
the called operation is on a different P E (as in
Figure 4 (b)). Processes are distributed among
the PEs. A process and ali of its ADT module
instances are initially assigned to the same PE
(as shown in Figure 5 for Taskl in the factory
simulation). Concurrency can be gained among
processes if they are running on different PEs.
RPCs can be svnchronous remote procedure calls
(SRPCs) or asvnchronous remote procedure calls
(ARPCs). With SRPCs, the caller is blocked to
wait for the call to return. With ARPCs, concur-
rency is obtained by allowing the caller to conti-
nue execution until it requires a busy parameter.
When the required parameter is returned, the cal­
ler resumes execution. Therefore, not only calls
in different processes, but also calls in the same
process, run concurrently.

To control the complexity of scheduling, a
hybrid scheduling model is used. Full preemption
indicates that the execution of a process can be
interrupted by other processes (with higher pri-
orities) at any time. Nonpreemption describes a

76 Informatica 19 (1995) 71-82 G. Yu et al.

scheduling approach wherein a process must run
to completion once it starts . Full preemption gi-
ves the scheduler more flexibility to find a feasible
schedule, but it increases the steps of scheduling
because more cases are considered, and also may
cause too much overhead (context switch) at run
time. On the other hand, nonpreemption simpli-
fies the scheduling job, but reduces the flexibility
(chances to find a feasible schedule). To balance
the flexibility and the complexity, we use a semi-
preemption model [31] tha t restricts preemption
to points called preemption points. When state­
ments are used as scheduling units, there is maxi-
mal flexibility for scheduler and maximal over­
head. Statements are grouped into segments cal­
led beads [31]. A bead is a group of statements
tha t have to be executed together without pre­
emption, i.e., a bead is a nonpreemptable schedu­
ling and execution unit. There are the following
types of preemption points:

1. an EP C or an EP C return;

2. the beginning and ending of a blocking device
access; and

3. the beginning and ending of the sending
phase of an inter-process communication.

Semi-preemption is a balance between the flexi-
bility and the complexity of traditional schedu­
ling approaches. More details about this execu-
tion model can be found in [31].

8»

nfeaslble Schedule

f Applic allon ^

ner *f

^ ~ ~ 1 '
Dependence Analysls

Processes missing dcadlins

ty CFGs,CDGs,CDDGs,PDCs

Acllvity Segmeittalion

y B, RTC,IC,CC,PDGs

Initial
Assignment & Scheduling

Feasible Schedule

"*
CDDGs,PDGs V InteaslbleSchedule

Clotiing Analysis

Upper Bounds
IDGs.PDGs

11 ICG

Schedule Assessnicnt

Impossiblc
Feasible Schedule

y Candidate Opportunlty Llsts

Candidate Evaluation

11 Opportunit.y Lbts

Schedule Adjuslmcnt

Figure 6: The scheduling approach

2. Dependence anahjsis identifies the depen­
dence relations among statements, beads,
blocks, and module instances. A control
flow graph (CFG), a control dependence
graph (CDG), a control and data flow graph
(CDDG), and a program dependence graph
(PDG) are constructed for each module in­
stance in the application.

3. Activity segmentation groups statements into
beads based on the dependence relations. It
may also include the clustering of beads into
blocks, to reduce scheduling complexity and
the number of context switches.

4 T h e Off-line Scheduling
Approach

The job of scheduling is to decide the start times
of scheduling objeets so tha t their timing constra-
ints are satisfied. As mentioned previously, the
general scheduling problem on multiprocessors is
NP-hard. Optimal solutions [38, 2, 24, 17] are not
praetical for large applications. Therefore, a he-
uristic approach is used in this work to construct
a schedule before run-time [40, 32].

The framework of our off-line scheduling appro­
ach (shown in Figure 6) consists of the following
elements:

1. Application designer designs applications
using reusable ADT module components and
process templates.

4. Initial assignment and scheduling generates
an assignment and schedule for each PE . In
this work, the technique deseribed in [30] is
used to perform the initial assignment and
scheduling. If the timing constraints of an
application are quite loose, even the initial
scheduling can generate a feasible schedule.
If the initial schedule is not feasible, concur-
rency is enhanced and applied to the proces-
ses (or beads) missing deadlines.

5. Cloning analysis produces the PDGs. In­
stance dependence graphs (IDGs) are gene-
rated to expose the instance dependence re­
lations in each method of a module instance.
An upper bound on the number of clones of
each ADT module instance that can run con-
currently is determined.

A NOVEL APPROACH T O . . . Informatica 19 (1995) 71-82 77

6. Schedule assessment evaluates the infeasible
schedule. If ali resources have 100% utiliza-
tion and no extra resources are available, the
only thing we can do is to ask the application
designer to relax the timing constraints. The
evaluation process includes identification of
(1) the beads of the processes missing deadli-
nes and (2) a list of candidate opportunities
to enhance concurrency. The opportunities
tha t we may consider to be a candidate in-
clude:

— cloning module instances to resolve con­
tention;

— using ARPCs to allow caller and callee
to run concurrently;

— reordering statements to enable
ARPCs;

— load distribution;

— classical parallelizing compiler tech-
niques.

7. During candidate evaluation and schedule
adjustment, the candidate opportunities
identified are evaluated to balance the amo-
unt of concurrency they would produce aga-
inst the overhead they would cause. Since
the evaluation process is NP-hard, we use de-
pendence relations to narrow the search for
effects of applying opportunities. Among the
candidate opportunities, one of them is cho-
sen to be applied to the infeasible schedule to
shorten the response time of a process mis­
sing its deadline.

5 Concurrencv Enhancement

The goal of scheduling is to resolve contention for
shared resources. Generally, there are two kinds
of shared resources: hardware resources (CPUs,
I /O devices, and communication media) and soft-
ware resources (ADT module instances). One way
to resolve contention for shared resources is by re-
plication of resources, as a multiprocessor system
is used to resolve contention for the single CPU
in an uniprocessor system. On the extreme, if the
number of resources allows every client to get a
resource at any time, there is no contention and
there is minimal need for scheduling. However,

bi
!? S.

M

b4

b i

jP

>' b2
o-oe—o

%-

-.
~~-

b3 '
0

•5p—o

(b)

Figure 7: (a) SRPCs and (b) ARPCs

•t b2 M .
| ' jI ~ ', f ~», }

PEi
;'*' f b2 M

b5 A b6.

\ ' f ', /
PEi

•<r
>•••

bi

' ./'

b1 ,'. bi . j bS...b6 .

PEj ...',....
(X

;
- ^ ' l

PEj

;'_ f t- M ; \

Figure 8: (a) Using neither ARPCs nor cloning.
(b) With ARPCs only. (c) With cloning only. (d)
With ARPCs and cloning.

the quantity of hardware resources is typically fi-
xed in computing systems. Therefore, scheduling
of hardware resources is necessary. Similarly, re-
plication of software resources is also a way to
resolve contention. In programs built by layering
ADT module instances, an instance is often used
to manage several da ta objects, and there will
be contention for getting access to the instance
if multiple data objects need to be accessed con-
currently by multiple clients. Cloning an ADT in­
stance allows each clone to manage only one data
object, or a subset of the data objects.

In the following sections, several ways to en­
hance concurrency are presented. The example
in Figure 1 is used to show ho\v each kind of con­
currencv enhancement works in conjunction with
the scheduling approach.

5.1 Enhancing Concurrency via
A R P C s

One way to introduce concurrency is to use
ARPCs instead of SRPCs. With SRPCs, the cal­
ler is blocked after making a remote procedure
call. Most of the scheduling approaches switch
the calling processor to another process, but the

78 Informatica 19 (1995) 71-82 G. Yu et al.

calling process is blocked until the call returns.
To reduce the execution tirne of the calling pro­
cess, ARPCs can be used to let the caller continue
execution if no memory conflict is caused. For the
example in Figure 7 (a), we can see that the exe-
cution of 62 and 64 are blocked until the return of
the two synchronized calls to 61 and 63, respec-
tively. If we change the calls from SRPCs into
ARPCs and assume the parameters used by 61
and 63 are not used until 64, the two calls can run
concurrently as shown in Figure 7 (b). In Figure 8
(a), ali calls are SRPCs and no concurrency exists.
If instance / is allocated on another PE, and pa­
rameters used by bead 62 are not used until bead
65, and the parameters used by bead 64 are not
used until bead 66, with the use of ARPCs, beads
63 and 65 can run concurrently with beads 62 and
64, respectively, and concurrency is achieved (as
shown in Figure 8 (b)).

ARPCs make the caller and called method run
concurrently if they do not access the same me-
mory location at the same tirne. By looking at
the dependence relations among method calls, the
opportunities for applying ARPCs can be identi-
fied [41]. In our scheduling approach, ARPCs are
also used to reduce the execution times of proces-
ses missing deadlines.

5.2 Enhancing Concurrency via
Instance Cloning

Cloning of resources can reduce contention for re-
sources. If the number of clones of software re­
sources in every processor is sufflcient, then no
contention exists. The question is, "How many
clones of a resource is enough?" Another impor-
tant question is "How many clones are needed
to enhance concurrency to enable a schedule to
meet deadlines?". To determine the lower bound
on the number of clones needed, program depen­
dence relations are analyzed. In [41], techniques
are presented for determining the lower bound on
the number of clones of each ADT module in­
stance needed to resolve ali possible contention of
the ADT module instances. The technique em-
ploys dependence analysis techniques at the sta-
tement, method, and instance levels of granula-
rities. The program dependence graph (PDG),
which was previously used to describe data and
control dependence relations among statements,
is extended to include instance dependence rela­

tions in object-based systems. Several theorems
are proved with respect to the instance depen­
dence properties of the new PDG graph in [41].
In Figure 8 (c), ADT instance / is cloned and is
placed on a different PE. Now two clones of in­
stance / can serve two calls at the same tirne.

5.3 Enhancing Concurrency via a
Combination of Cloning and
ARPCs

If two calls do not access the same memory loca­
tion at any tirne, but they call the same method
or different methods provided by the same ADT
module instance, the two cannot run concurrently
since they have contention to access same ADT
module instance. Cloning can be used to resolve
the contention, and the SRPC can be converted
into an ARPC. In the example in Figure 8 (d),
ARPCs are combined with instance cloning so
that maximum concurrency is achieved.

For the application in Figure 1, there exists
no feasible schedule (no matter how process and
module instances are assigned and scheduled) if
concurrency enhancement is not applied. Assume
an initial schedule is constructed as shown in Fi­
gure 5. Since ali instances are in the same PE,
ali calls are LPCs. Therefore, only one thread of
execution exists, i.e., the schedule of PE{ con-
tains only one bead. Given such a schedule,
our approach is to try to improve the schedule
by enhancing concurrency. By examining the
execution graph of the process Taskl, we see
that Queue is shared by two calls. Only one
call is granted access to the Queue at any time;
the other call is put into waiting. We also see
that the two calls Q.remove(inQueue,part) and
Q .insert(outQueue,prod) do not have common
parameters, and do not call the same method, but
they call the methods provided by the same ADT
module instance Q. The two calls cannot run con-
currently due to the contention for the instance
Q. Cloning of Q can resolve the contention and
turn the SRPC to an ARPC. In Figure 9, ADT
instance Queue is cloned and placed on a diffe­
rent PE, and the two calls (Queue.insert{) and
Queue.remove()) made by instance M can run
concurrently. The one thread of execution in Fi­
gure 5 is broken into 4 beads. Beads 62 and 63
run concurrently. The execution time of Taskl
is reduced from 17 to 13. Therefore, concurrency

A NOVEL APPROACH TO. Informatica 19 (1995) 71-82 79

P R _. remove(liiQiiMie, part)

j doo«orADTI iuUiKeQ 9 ~ ©

. - '•• V

, ' ' ,••*'" .' laser IfoutOoeue, prod)
t • O \—0
(d o o e o f ADTlnrtanceQ ,' J 5 \ \

i i i >i \
• C 2 ; i '; 'i o

! \ j b l b 3 Q.lusert(autQuMM, prod}* \

• P r o e * « T « k l ^ ^

M-perfonn-iiex1(MI)

Est=0

FT=13

E>=12

; i

J
Figure 9: Two clones of Queue serve two calls
concurrently, so that an almost feasible schedule
is constructed by cloning.

PEj

PEj'

{

done »T A DT nutance Q

/ done oTADT instance Q

,'

novc<iiiQaeiie, pari)

? bl \

iiuerl(oDtQD

0 5 ' '

; M \

,' Qxemove(iaQueue,part);
;' Qinser1(<mtQQeiM

Procesi Taikl .'
O

M4KTfonii-nut(Ml)

ene, prod)

-O
l

—*4
bff,

-prod) \

4

,
J

2)

-?)
— -"'

Figure 10: Enhancing Concurrency by Load Dis­
tribution

is enhanced and an almost feasible schedule is fo-
und by using cloning and ARPCs, as shown in
Figure 9.

5 .4 L o a d D i s t r i b u t i o n t o A l l o w
C l o n i n g a n d A R P C s

A good schedule has high utilization of resources.
If one process is unable to continue execution, the
resource is given to another process. As we menti-
oned before, if the utilization of a P E reaches 100
percent, no ARPCs and cloning can be applied.
To enable ARPCs and cloning, load distribution
is necessary. In the example shown in Figure 1,
note tha t the deadline of process Taskl is 12 time
units, but its fmishing time is 13 time units. The
schedule in Figure 9 needs to be further impro-
ved. Although an ARPC opportunity exists (the
first part of 64 will not access variables OutQueue
and prod which are the parameters used by the
call insert()), PEi is scheduled to execute me-

sl f.opl(x);

s2 g.opl(x);

s3 f.opl(y);

(b)

Figure 11: A program segment (a) and its PDG
(b) where solid arrows represent da ta dependent
relations, and dashed ares denote instance depen­
dent relations

PEI

' f ">

6

est = 0

s i

6

; §

i

2

S

-<b

s3

6 1

8

FT = 14

Figure 12: Statements s2 blocks the execution

thod call insert(OutQueue,prod). If the ADT
instance Q on PEi is placed on PEk as shown in
Figure 10, bead 64 can be an ARPC and can run
concurrently with bead 65. Thus, the fmishing
time of the task is reduced to 12 time units, and
process Taskl can meet its deadline due to the
load distribution.

5.5 S t a t e m e n t R e o r d e r i n g t o E x p o s e
C o n c u r r e n c y

Although the upper bound of clones of an instance
tells the maximum number of clones tha t can run
concurrently, the statement order might prevent
part of the concurrency. Let us see a simple exam-
ple in Figure 11 (a). From its extended PDG [41]
in Figure 11 (b), we can see tha t the maximum
number of clones of instance / is 2, and the maxi-
mum number of clones of instance g is 1. However,
the statement order s j , S2, S3 prevents statements
5i and S3 from being executed in parallel, since
statement s2 would be blocked due to the busy
parameter x until statement si completes. The
schedule is shown in Figure 12.

If we reorder the statements as (s\, S3, 52) or
(S3, s\, S2), statements si and 53 can be execu-
ted concurrently (allow two clones of instance f
to be used in parallel). For the schedule shown

80 Informatica 19 (1995) 71-82 G. Yu et al.

PEl
•."clone off s3 """'••.
•; * š V /

i O N.< . . ,

"' r " / ' ""-. si
Q l : ^ 9 — — — O !
• : - g Y i •••-'

E P C ! '•-. |. " F T = 12
o—$ <?—ffl

1 ' , 1
I 1 ,
b u s i i — i — i i — i — i

PE2 g-<?
1 ;

'•.. clone of f

si

6

1

1

Return EPC

Figure 13: Statements s i and s3 run concurrently
by reordering statements s2 and s3

in Figure 12, if we swap the two statements 52
and s3 and plače a clone of instance / on PE2,
the execution tirne of this program segment can
be reduced from 14 tirne units to 12 tirne units,
as shown in Figure 13.

6 Conclusion and Future Work

ADT modules increase reusability, but potential
inefficiencies may occur at execution tirne. Con-
current execution with ARPCs and instance clo-
ning can greatly improve the performance of pro-
grams constructed with ADTs. This is especi-
ally useful for real-time systems, where the ti-
ming constraints are a concern. The scheduling
approach presented in this paper differs from pre-
vious off-line scheduling techniques by employing
concurrency enhancement to reduce the execution
tirne of processes missing deadlines.

A platform [27] (including ADA+BJESOLVE
compiler, linker, parallel virtual machine, real-
time kernel, timing analysis tools, global sche-
duler (allocation algorithms) and graphical inter-
face) has been developed for executing programs
constructed with ADTs on SUN workstations and
Ncube. Dependence.analysis and cloning analysis
techniques are being developed currently. Ongo-
ing research includes implementing and experi-
mentally evaluating the scheduling algorithm, de-
veloping concurrency metrics to measure amount

of concurrency, and applying concurrency enhan­
cement techniques to reengineer existing systems.
Future work includes method cloning to reduce
the number of clones of instances needed to re-
solve contention of shared ADT module instances.
When the number of clones of an ADT module
instance does not reach the upper bound, assi-
gnment of variables to clones so tha t maximum
concurrency can be achieved is a research issue.

7 Acknowledgments

Thanks is due to A. K. Ganesh, D. Hammer, T.
J. Marlowe, J. McHugh, P. Ng, B. Ravindran, A.
D. Stovenko, J. P. C. Verhoosel, and W. Zhao
for discussions that helped to refine this work.
We are very grateful to NJIT (SBR 421290) and
the US NSWC (N60921-94-M-G096) who have in
part supported this work.

References

[1] R. A. Ballance, A. B. Maccabe, and K. J.
Ottenstein. The program dependence web:
A representation supporting control-, data-
and demand-driven interpretation of impe­
rative languages. In Proceedings of the ACM
SIGPLAN'90 Conference on Programming
Language Design and Implementation, pages
257-271. ACM, June 1990.

[2] P. Bratley, M. Florian, and P. RobiUard.
Scheduling with earliest start and due date
constraints on multiple machines. Nav. Res.
Log. Quart, 22:165-173, 1975.

[3] V. Cherkassky. Redundant task-allocation
in multicomputer systems. IEEE Trans, on
Soft. Eng., 41(3):336-342, September 1992.

[4] E. C. Cooper. Circus: A replicated procedure
call facility. In Proč. 4th Symp. Reliability
in Distributed Software and Databases, pages
11-24, 1984.

[5] K. D. Cooper, M. W. Hali, and K. Kennedy.
A methodology for procedure cloning. In The
International Conference on Computer Lan­
guages. IEEE, April 1992.

[6] R. Cytron, J. Ferrante, B. K. Rosen, and
M. N. Wegman. Efficiently computing static

A NOVEL APPROACH T O . . . Informatica 19 (1995) 71-82 81

single assignment form and the control de-
pendence graph. ACM Trans, on Program-
ming Languages and Sijstems, 13(4):451-490,
October 1991.

[7] K. Driscoll and K. Hoyme. The airplane in-
formation management system: An integra-
ted real-time flight-deck control system. In
Real-Tirne Systems Symposium, 1992.

[8] J. Ferrante, K. J. Ottenstein, and J. D. War-
ren. The program dependence graph and its
use in optimization. ACM Trans, on Pro-
gramming Languages and Sijstems, 9(3):319-
349, July 1987.

[9] M. R. Garey, D. S. Johnson, B. B. Simons,
and R. E. Tarjan. Scheduling unit-time ta-
sks with arbitaray release times and deadli-
nes. SIAM Journal of Computing, 10:256-
269, May 1981.

[10] D.K. Hammer and O.S. van Roosmalen. An
object-oriented model for the construction
of dependable distributed systems. In In­
ternational Workshop on Object-Orientation
in Operating Sijstems (I-WOOOS 92), Pariš,
France, September 1992.

[11] M. J. Harrold, B. A. Malloy, and G. Rother-
mel. Efficient construction of program de­
pendence graphs. Technical Report 92-128,
Clemson University, December 1992.

[12] Maurice Herlihy. Concurrency versus availa-
bility: Atomicity mechanisms for replicated
data. ACM Trans, on Computer Svstems,
5(3):249-274, August 1987.

[13] Joseph E. Hollingsworth. Software Compo-
nent Design-for-Reuse: A Language-Inde-
pendent Discipline Applied to Ada. PhD the-
sis, The Ohio State University, 1992.

[14] H. Kopetz, A. Damm, C. Koza, M. Mulaz-
zani, W. Schwabl, C. Senft, and R. Zainlin-
ger. Distributed fault-tolerant real-time sy-
stems: The MARS approach. IEEE MICRO,
9(l) :25-40, February 1989.

[15] B. Liskov and L. Shrira. Promises: Linguistic
support for efficient asynchronous procedure
calls in distributed systems. In Proceedings of

the SIGPLAN '88 Conference on Program-
ming Language Design and Implementation,
pages 260-267. ACM, June 1988.

[16] C. L. Liu and J. W. Layland. Scheduling
algorithms for multiprogramming in a hard-
real-time environment. Journal of ACM,
20(1):46-61, Jan. 1973.

[17] C. Martel. Preemptive scheduling with rele­
ase times, deadlines, and due times. Journal
of ACM, 29(3):812-829, July 1982.

[18] G. McMahon and M. Florian. On schedu­
ling with ready times and due dates to mini-
mize maximum lateness. Operation Research,
23:475-482,1975.

[19] A. Mok and M. Dertouzos. Multiprocessor
scheduling in a hard real-time environment.
In Proceedings of the 7th Texas Conference
on Computing Sijstems, pages 5.1-5.12, No­
vember 1978.

[20] Department of Defense. Reference Manual
for the Ada Programming Language. Ada
Joint Program Office, Washington, D.C.,
Government Printing Office, ansi/mil-std-
1815a-1983 edition, 1983.

[21] K. Ramamritham. AUocation and schedu­
ling of complex periodic tasks. In Internatio­
nal Conf. on Distributed Computing Svstems.
IEEE, May-June 1990.

[22] K. Ramamritham and J. A. Stankovic.
Dynamic task scheduling in distributed hard
real-time systems. In Proč. of the J^th IEEE
International Conf. on Distributed Compu­
ting Sijstems, pages 96-107, May 1984.

[23] L. Sha, R. Rajkumar, and J. Lehoczky.
Priority inheritance protocols: An appro­
ach to real-time synchronization. Technical
Report Technical Report CMU-CS-87-181,
Carnegie-Mellon Universitv, November 1987.

[24] B. Simons. Multiprocessor scheduling of
unit-time jobs with arbitrary release times
and deadlines. SIAM Journal of Computing,
12:294-299, May 1983.

[25] M. Sitaraman, L. R. Welch, and D. E.
Harms. Infiuences of a component-based in-
dustry on the expression of specifications of

82 Informatica 19 (1995) 71-82 G. Yu et al.

reusable software. The International Jour­
nal of Software Engineering and Knovoledge
Engineeeing, pages 207-229, June 1993.

[26] J.A. Stankovic. Misconceptions about
real-time computing. IEEE Computers,
21(10):10-19, October 1988.

[27] A.D. Stoyenko, L.R. Welch, P.L. Laplante,
T J . Marlowe, C. Amaro, B. Cheng, A. K.
Ganesh, M. Harelick, X. Jin, M. Younis, and
G. Yu. A platform for complex real-time
applications. In The Complez Systems En­
gineering Synthesis and Assessment Techno-
logy Workshop. Naval Surface Warfare Cen­
ter, July 1993.

[28] J. D. Ullman. Np-complete scheduling pro-
blems. Journal of Comput. System Science,
10:384-393, 1975.

[29] P.D.V. van der Stok, F. van den Berk,
R. Deckers, Y. van de Vijver, J.I.M. Botman,
and C.J. Timmermans. Object-oriented de­
sign for accelerator control. In IEEE Trans,
on Nuclear Science, No.l pages 200-208, Feb.
1994.

[30] J. P. C. Verhoosel and et al. A static schedu­
ling algorithm for distributed hard real-time
systems. Journal of Real-Time Systems, pa­
ges 227-246, 1991.

[31] J. P. C. Verhoosel, L. R. Welch, D. K.
Hammer, and A. D. Stovenko. A mo­
del for assignment and pre-runtime schedu­
ling of object-based, distributed real-time sy-
stems. Journal of Real-Time Systems, 1994
(to appear) .

[32] J.P.C. Verhoosel, G. Yu, L.R. vVelch, and
D.K. Hammer. Pre-run-time scheduling for
object-based, concurrent, real-time applica­
tions. In Proceedings of the 2nd IEEE Wor-
kshop on Real-Time Applications, pages 8 -
11, July 1994.

[33] B. W. Weide, W. F. Ogden, and S. H. Zwe-
ben. Reusable software components. In M.C.
Yovits, editor, Advances in Computers, vo-
lume 33, pages 1-65. Academic Press, 1991.

[34] Bruce W. VVeide, Stephen H. Edwards, Do-
uglas E. Harms, and David A. Lamb. De­
sign and specification of iterators using the

swapping paradigm. IEEE Transactions on
Software Engineering, 20(8):631-643, Au-
gust 1994.

[35] L. R. Welch. Cloning ADT modules to incre-
ase parallelism: Rationale and techniques. In
Fifth IEEE Symposium on Parallel and Di­
stributed Processing, pages 430-437. IEEE,
December 1993.

[36] L. R. vVelch. A parallel virtual machine for
programs composed of abstract da ta types.
IEEE Trans, on Computers, 43(11), Novem­
ber 1994.

[37] J. Xu. Multiprocessor scheduling of proces-
ses with release times, deadlines, precedence,
and exclusion relations. IEEE Transactions
on Softuiare Engineering, 19(2):139-154, Fe-
bruary 1993.

[38] J. Xu and D.L. Parnas. Pre-run-time sche­
duling of processes with execlusion relati­
ons on nested or overlapping critical secti-
ons. In Proceedings of llth Annual IEEE In­
ternational Phoeniz Conference on Compu­
ters and Communications (IPCCC-92), pa­
ges 774-782. IEEE, April 1992.

[39] G. Yu, L. R. Welch, W. Rossak, and A. D.
Stoyenko. Automatic retrieval of formally
specified real-time software components. In
Fifth Annual Workshop on Softvoare Reuse,
October 1992.

[40] Guohui Yu. Use of concurrency enhance-
ment in off-line schedule construction. In The
Second Workshop on Parallel and Distribu­
ted Real-Time Sgstems, pages 32-37. IEEE,
April 28-29, Cancun, Mexico 1994.

[41] Guohui Yu and Lonnie R. Welch. Program
dependence analysis for concurrency explo-
itation in programs composed of abstract
data type modules. In Sixth IEEE Sympo-
sium on Parallel and Distributed Processing.
IEEE, October 1994. .

[42] VV. Zhao, K. Ramamri tham, and J. A. Stan­
kovic. Preemptive scheduling under time and
resource constraints. IEEE Transactions on
Computers, C-36(8):949-960, August 1987.

Informatica 19 (1995) 83-96 83

On-line Algorithms for AUocating Periodic-time-critical Tasks on
Multiprocessor Systems

Sadegh Davari
Department of Computing and Mathematics
Universitv of Houston-Clear Lake
Houston, TX 77058
AND
Sudarshan K. Dhall
School of Computer Science
Universitv of Oklahoma
Norman, Ok 73019

K e y w o r d s : scheduling, multiprocessors, tirne critical, on-line, heuristic algorithms, real-time

Edited by: Marcin Paprzvcki and Janusz Zalewski

Rece ived: Februarv 9, 1994 Rev ised: October 27, 1994 Accepted : Januarv 19, 1995

The problem of allocating a set of Periodic-Time-Critical (PTC) tasks to processors
in a multiprocessor system is considered. A PTC ta.sk is a real-time task for which
requests are made periodically, at some hxed interval of tirne, by means of some external
signals. Associated with each request there is a computation tirne and a deadline for
the completion ofthe computation. The Rate-Monotonic algorithm, which is an optimal
static priority driven algorithm for scheduling PTC tasks on single processor systems
(Liu k Layland 1973, Serlin 1972, Sha k Goodenough 1990, Locke 1992), does not
perform as well for multiprocessor systems (Dhall 1977, Dhall k Liu 1978, Davari 1985,
Davari k Dhall 1986a, 1986b, 1986c, Oh k Son 1994). The allocation problem is to
distribute a set of PTC tasks among various processors so that the tasks assigned to
each processor can be feasibly scheduled on that processor using the Rate-Monotonic
algorithm. Moreover, the aim is to use as few processors as possible. This problem is
NP-hard (Davari 1985, Leung k Whitehead 1982). In this paper we present two heuristic
on-line algorithms and analyze their complexity and worst čase performance.

1 Introduction
Process control computers are now being used to
control and monitor a wide varietv oftime-critical
processes. In many of these applications, the com-
puter is required to execute a certain number of
time-critical tasks in response to periodic external
signals, and to guarantee that each task is com-
pletelv executed within a specified interval oftime
following the occurrence of the signal that caused

Section 2 is based on On-line Algorithms for Real-Time
Tasks Allocation by Davari &: Dhall, Twentieth Conference
on Information Sciences and Svstems, 1986, p.178-182, and
Section 3 is based on An On-Line Algorithm for Real-Time
Tasks Allocation by Davari and Dhall which appeared in
the Proceedings of the Real-Time Svstems Symposium,
Dec 1986, New Orleans, LA, p. 194-200, ©1986 IEEE.

the initiation of the task. Each such task is refer-
red to in this paper as a Periodic-Time-Critical
(PTC) task.

1.1 Problem Formulation

In this paper we study the problem of distribu-
ting a set of P T C tasks among various processors
so that when the allocated tasks are scheduled on
the processor according to a given scheduling al­
gorithm, every request of each one of the tasks is
executed before the corresponding deadline. Mo­
reover, the aim is to use as few processors as pos­
sible.

We assume tha t the tasks to be allocated satisfy
the following characteristics:

http://ta.sk

84 Informatica 19 (1995) 83-96 Davari et al.

1 The requests of each task are periodic, with
constant intervals between requests.

2 Deadlines consist of runability constraints
only, i.e. each request must be completed be-
fore the next request of the same task occurs.

3 The tasks are independent in that the reque-
sts of a task do not depend on the initiation
or the completion of the requests of the other
tasks.

4 Computation tirne for the requests of a task
is constant for the task. Computation tirne
refers to the tirne a processor takes to execute
the request without interruption.

It follows tha t a task is completely defined by
two numbers, the computation time of each re-
quest and the request period. We will denote a
task T by the ordered pair (c,t), where c is the
computation tirne and t is the request period. The
ratio j is called the request rate, and the ratio | ,
denoted by u is called the utilization factor of the
task. Note that the utilization factor of a task
is the proportion of the processor time taken by
the task. Therefore, the utilization factor of the
processor over a set of tasks is the sum of the
utilization factors of ali the tasks in the set.

A scheduling algorithm provides a set of rules
that determines the task to be executed at a par-
ticular point in time. We say that a set of tasks
can be feasiblv scheduled by an algorithm, if the
schedule produced by the algorithm meets the de­
adlines of ali the requests of each task in the set.
In this paper we consider only preemptive prioritv
driven scheduling algorithms. In these algorithms,
a currently running task of lower priority will be
taken off the processor whenever there is a re-
quest for a higher priority task, even though the
lower priority task has not yet completed. The
interrupted task is resumed later from the point
of interruption. We will assume the cost of in­
terruption to be negligible. The priority-driven
scheduling algorithms can be classified into two
categories: static prioritv algorithms, and dyna-
mic prioritv algorithms. In static prioritv algori­
thms, the priorities of tasks are fixed in advance
once and for ali; whereas in the dvnamic prio­
ritv algorithms, the priorities of tasks may change
from time to time, depending upon certain condi-
tions. The implementation of a dynamic priority

algorithm requires a lot more overhead than the
implementation of a static priority algorithm. In
this paper, we will only consider static priority
algorithms.

We call a scheduling algorithm on-line if it sche-
dules tasks as they arrive. In other words, the ta­
sks are available one at a t ime, and the algorithm
schedules each task as and when it becomes avai­
lable vvithout taking into consideration the tasks
to follow. In contrast, we call a scheduling algori­
thm off-line, if it has to have complete information
about ali the tasks before the scheduling process
can begin.

1.2 Single Processor Sys t ems

The problem of scheduling a set of P T C tasks
on a single processor system has been considered
by a number of researchers (Liu k Layland 1973,
Serlin 1972. Sha k Goodenough 1990, LabetouUe
1974, Dhall 1977). The Rate-Monotonic Schedu­
ling (RMS) algorithm, introduced independently
by Liu and Layland (Liu k Layland 1973) and
Serlin (Serlin 1972], is the best static priority al­
gorithm available for this problem (Locke 1992).
This algorithm schedules tasks in decreasing or-
der of their request rate. For ease of reference,
we present the main result about this algorithm
in the form of the following theorem:

T h e o r e m 1.1 (Liu k Lavland 1973) A set of m
P T C tasks can be feasibly scheduled on a single
processor by the rate-monotonic scheduling algo­
rithm, if the utilization factor of the set is less
than or equal to m(2™ — 1), and this bound is
tight in the sense that for each m, there exists a
set of m tasks with utilization factor m(2™ — 1)
which fully utilizes the processor.

The value m(2™ — 1) approaches In 2 (» 0.69) as
m approaches infmity. That is, in the worst čase,
the processor may be only 69 per cent utilized.
Note that Theorem 1.1 provides only a sufficient
condition. It implies that sets of m tasks with
utilization factor greater than m(2™ - 1) may or
may not be feasibly scheduled on one processor
by the rate-monotonic algorithm.

Recently, the original RMS algorithm, which
dealt with P T C type tasks only, has been exten-
ded to include aperiodic tasks with time constra­
ints (Sha & Goodenough 1990, Sprunt et. al.
1989) and task synchronization (Sha k Goode­
nough 1990, Sha et. al. 1990, Davari k Sha

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 85

1992). Recently, RMS has also been considered
for distributed systems (Agrawal et. al. 1994).
NASA has adapted RMS as a baseline technology
for the Space Station Freedom [Davari & Zhao
1991, Davari et. al. 1993). The European Space
Agency has also specified RMS as the baseline
theory for its Hard Real-Time Operating System
project (ESA 1990).

1.3 Mult ip le Processor Systems

It has been shown that (Dhall 1977, Davari 1985)
a simple extension of the scheduling algorithms
which perform well for scheduling PTC tasks on
single processor systems does not provide satisfac-
tory results for multiprocessor systems. Recently,
Leung (Leung 1989) proposed an algorithm, cal-
led the Slack-Time Algorithm for scheduling real-
time tasks on a single and multiprocessor system.
However, the problem of deciding if a task sy-
stem is schedulable by Slack-Time algorithm, the
Deadline algorithm, the Rate-Monotonic algori­
thm, or any other fixed priority scheduling algo­
rithm was shown to be NP-hard for each fixed m,
the number of processors in the system (Leung
k Whitehead 1982, Leung 1989). An alternative
approach to designing algorithms for multiproces­
sor systems would be to first partition the set of
tasks into different groups, and then schedule the
tasks in each group on one processor using the al­
gorithm for a single processor. This reduces the
problem to finding a good partitioning scheme
in order to use a minimum number of proces­
sors. The scheduling algorithm to be used on each
group of tasks will certainb/ influence the parti­
tioning process. Bannister and Trivedi (Banni-
ster & Trivedi 1983) also considered the problem
of distributing P T C tasks on different processors.
Their goal was to provide fault-tolerance by repli-
cating each task on r (> 1) processors. Further,
the distribution was required to achieve load ba-
lance for the processors.

A partitioning algorithm is said to be optimal if
it produces a partition with a minimum number
of subsets for any given set of tasks to which it
is applicable. Note that since the tasks in each
subset of the partition can be feasibb/ schedu-
led on a single processor, an optimal partitioning
scheme will require a minimum number of pro­
cessors for the execution of the entire set of tasks.
The problem of partitioning a set of PTC tasks

with respect to the rate-monotonic-scheduling al­
gorithm has been shown to be NP-hard (Davari
1985, Leung & Whitehead 1982). This partitio­
ning problem is similar to the bin packing pro­
blem (Johnson 1974, Johnson et. al. 1974, Lee &
Lee 1985, Yao 1980) where it is required to pack
a given list of pieces into a minimum number of
bins of a fixed size. The similarity stems from the
fact that the utilization factor of a task can be
treated as the size of a piece, and the processor
capacity as the bin size. However, major diffe-
rence is that when tasks are partitioned using the
rate-monotonic scheduling algorithm, it cannot be
guaranteed that a task set with a total utilization
factor less than one, can be feasibly scheduled on
the processor.

1.4 Subopt imal Solution

In vievv of the inherent difficulty of finding effici-
ent optimal algorithms for our problem, we look
for sub-optimal heuristic partitioning algorithms
which produce satisfactory results with compara-
tively less effort, and analyze their performance.

Let N* and N(A) denote, respectivelv, the
number of subsets in the partition produced by
an optimal partitioning algorithm and by a heu­
ristic algorithm A when applied to a given set of
tasks. Then, the Worst-Case Performance Ratio
of algorithm A, denoted by r(A) is defined as:

As with many heuristic combinatorial algori­
thms, we have chosen to measure the worst-case,
rather than the average-case, performance of our
algorithms. The quantity r(A) gives the asymp-
totic least upper bound on the ratio -jpr-- For
large problems, therefore, the algorithm A may
be r(A) times as costly as an exhaustive search,
but no worse.

Dhall and Liu considered two heuristic algori­
thms for this problem in (Dhall 1977). They were
called the Rate-Monotonic Next-Fit (RMNF) and
the Rate-Monotonic First-Fit (RMFF) algorithm.
Davari and Dhall (Davari & Dhall 1986a) conside­
red another one called the First-Fit-Decreasing-
Utilization-Factor (FFDUF) algorithm. These
are ali off-line algorithms because they require
that information about ali the tasks be available
before the scheduling decisions can be made. The

86 Informatica 19 (1995) 83-96 Davari et al.

Table 1: Comparison of the Worst Čase Perfor­
mance Ratio of Some Off-line Partitioning Algo-
rithms for a set of n tasks

Algorithm Time
Worst-Case

Space Performance
Ratio

RMNF 0(nlogn) 0(n) 2.4 < r(RMNF) < 2.67

RMFF 0(n2) 0{n) 2 < r(RMFF) < 2.24

FFDUF Q(n 2) Q(n) r(FFDUF)-2.

results about these algorithms are given in Table
1.

Dhall k Liu (Dhall k Liu 1977) conjectured
that the upper bound of RMFF can be reduced
to 2. Their conjecture was based on the following
Lemma, which they could not prove at the tirne:

Lemma: If n tasks cannot be feasibly schedu-
led on n — 1 processors according to RMFF, then
the total utilization of the n tasks is greater than

In this paper, we present only on-line algori­
thms and analyze their performance. Recently,
Oh & Son (Oh & Son 1994) have also presented
some on-line algorithms. Two on-line algorithms
RM-FF and RM-BF have an upper bound of 2.33
and lower bound of 2.28. Further refinements of
these two algorithms called RRM-FF and RRM-
BF are shown to have a worst-case bound of 2.
The tirne and space complexity of these algori­
thms is O(nlogn) and 0(n). As will be shown
later, the algorithms presented in this paper have
a tirne complexity of 0(n), and a space comple-
xity of 0(1). The worst-case performance of the
Next-Fit-M algorithm is better than the worst-
case performance of the RM-FF and RM-BF al­
gorithms.

Before we go to the next section we state and
prove one more result (Davari 1985) which will be
used in the proof of some of the following theo-
rems.

Theorem 1.2: Let m > 0. Then, the function
/ (m) = m(2™ — 1) is monotonically decreasing
with m, and the function g{m) = (m - 1)(2 ™ - 1)
is monotonically increasing with m. As m appro-
aches infinity both these functions approach In 2.

Proof: To show that / (m) is monotonically

decreasing with m, we show that f'(m) < 0

/ ' (m) = 2 - (l _ —) - l

Since for x > 0, e~x > 1 — x, we have

In 2, _J_ _ ln_2 .

2 m = e "> > (1
m

O-

Therefore, 1 > 2™(1 - ^) . Hence / ' (m) < 0.
To show that g(m) is monotonically increasing

with m, we show that g'(m) > 0 :

g (m) = (m- l)(2m - 1) = m(2^ — 1) — 2 ^ + 1.

and
// N „1- / , m 2 In 2, g'(m) = 2^(1 + —) - l m mz

Since for x > 0, e x < 1 — x + ^-, we get

<

<

e

1-

1-

In 2
m

In 2
m

In 2

+

+

(ln2)2

2m2

In 2

m m"
Therefore,

, n±„ In 2 ln2.
K 2 m (l +—o") m m '

Hence, g'(rn) > 0.
Also, it is well known that limm^00m{2m —

1) = In 2, and it is straightforward to see that
/imm_>00g'(m) = In 2.

The rest of the paper is organized as follows.
Section 2 contains description and analvsis of the
algorithm Next-Fit-2, and Section 3 introduces
and analyzes the algorithm Next-Fit-M. Finally,
some concluding remarks are made in Section 4.

2 The Algorithm Next-Fit-2
The basic approach of this paper for partitioning
a given set of tasks is to use some threshold va-
lue(s). A task whose utilization factor lies within
a certain range is placed in the corresponding par-
tition. First, we use only a single threshold value
and divide the tasks into two classes. Then, in
the next section we extend this idea to have M
threshold values to improve the performance of
the algorithm. Naturally, with the increase in the

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 87

number of threshold values, a little bit of extra
work will be needed to classify a task into pro-
per partition. The two algorithms thus show a
cost-performance tradeoff.

In this section, we describe an algorithm which
partitions tasks into two classes. The division into
classes is based on some fence value x. An opti-
mum value for x is also derived.

Let T\, T2, • • •, Tn be a set of tasks with utili­
zation factors ui,u2, • • • ,un , respectively. Di-
vide this set of tasks into two different classes
as follows. Let any task Tf belong to class-1 if
U{ > (2* — 1), where a; is a positive integer gre-
ater than 1; otherwise let it belong to class-2, as
shown below:

Class of Task Range of
Utilization Factor

1 (2 i - i . i l

2 (0,2« - 1]

The choice of the irrational number 2^ — 1 is
motivated by the result of Theorem 1.1. Hidden
in the statement of Theorem 1.1 is the fact that
for any integer n, there exists a set of n tasks each
with utilization factor 2« — 1 which fully utilize
the processor. We say that a task system fully
utilizes a processor, if the tasks can be schedu-
led on a single processor using the Rate Monoto-
nic Scheduling Algorithm honoring the deadline
of each and every request, and any slight increase
in the computation tirne of any one of these tasks
renders the task system infeasible according to
the Rate-Monotonic-Scheduling Algorithm, that
is there will be some requests whose deadlines can-
not be honored.

Similarly, divide the set of ali processors into
two different classes. A processor designated to
process class-fc tasks exclusively is referred to as a
class-fc processor, 1 < k < 2. For convenience, let
a processor of class-&, 1 < k < 2, be called filled
if it has been used and it is not intended to assign
any more tasks to it. Let a class-fc processor (
1 < k < 2) be called active if it is the processor
which will be considered for the assignment of the
next class-A; task. The algorithm that determines
the assignment of tasks to various processors is
given in Figure 1.

/ * Pkj = the j t h processor of class-fc * /
/ * Uk = the total utilization factor of ali t he tasks assigned
to the active processor of class-fc * /

/ * Mk = the number of tasks assigned to t he active pro­
cessor of class-fc * /
/ * The final value of Nk will be t he number of class-fc
processors used by the algorithm */

1. for k = 1 to 2 do

set Nk = l\
set Uk= Mk= 0;

end-for;
2. set »'.= 1 ;
3. while i < n do

if M,- > (2* — 1)
then set k = 1 / * Ti is a class-1 task */
else set k — 2 / * Ti is a class-2 t ask */

end-if;

if Uk > {Mk + l)(21 / (M '=+1) - 1) - Ui

then set Nk = Nk + 1 ;
set Uk = Mk = 0;

end-if;

assign T,- to Pk,Nk;

set Uk = Uk + Ui;
set Mk = Mk + l;
set i = i -f 1

end while;
4. if Mk = 0,1 < k < 2,

then set Nk = Nk - 1;

The final values of Nk, 1 < k < 2 would be the number of
class-fc processors used by the algorithm.

Figure 1: Algorithm Next-Fit-2.

2.1 Worst-Case Analysis of Next -F i t -2

The upper bound for the worst-case performance
ratio of Next-Fit-2 denoted by r(NF2), is ob-
tained in two parts . In part I we calculate the
upper bound for r(NF2) when x = 2, and in part
II we calculate the bound for x > 2. We will
assume the following definitions throughout this
section.

Let Ni and N2 denote, respectively, the number
of class-1 processors and the number of class-2
processors needed by Next-Fit-2 to schedule the
given set of tasks.

Let S, Si, and £2 denote, respectivelv, the sum
of the utilization factors of ali tasks, the sum of
the utilization factors of ali class-1 tasks, and the
sum of the utilization factors of ali class-2 tasks
in the given set.

Part I: x = 2.
L e m m a 2.1: For x = 2, we have Ar

1 < -^—(-1
2 5 - 1

http://2i-i.il

88 Informatica 19 (1995) 83-96 Davari et al.

Proof: Because the utilization factor of any
class-1 task in this čase is greater than (2ž — 1)
and any filled class-1 processor must have at least
one task assigned to it.

L e m m a 2.2: For x = 2, we have N2 < f^f+ 2.
Proof: By Theorem 1.1, the total utilization

factors of the tasks assigned to any two adjacent
class-2 processors must be greater than In 2.

Corollary 2.1: By Theorem 1.1, Lemma 2.1,
and Lemma 2.2, for x = 2, we have

29
N(NF2) = N1 + N2<— + 3.

m 2

T h e o r e m 2.1: For x = 2, we have:

/ , n x ,. N(NF2) 2 r(NF2) = lim — ^ - <
N* N* In 2

Proof: Since N* > S, the proof follows by
Corollary 2.1.

Part II: x > 2.
L e m m a 2.3: For x > 2, we have

Ni<
25i + 4.

(x- 1)(2^T - 1)

Proof: Divide ali the filled class-1 processors
into two groups as follows. Let ali filled class-
1 processors which have less than (x — 1) tasks
assigned to them along with their next immediate
neighbors belong to group-1 and the rest of the
filled class-1 processors belong to group-2. Before
we continue further, let us make some additional
definitions.

— Let S\:i, 1 < i < 2, denote the sum of the
utilization factors of class-1 tasks assigned to
aH group-i processors.

— Let Ni:i, 1 < i < 2, be the number of class-1
processors in group-i. For group-2 proces­
sors, we obviously have

#1.2 <
Si, + 1.

(a : - l) (2 ? - l)

We next consider group-1 processors. Relabel
group-1 processors in increasing order of their in-
dex as P\. P%,..., P/Vj t . Let Ui be the total utili­
zation factors of the tasks assigned to processor
-Pijl < i < # i , i - For now, let us assume that
Ni i is an even number. If we consider these pro­
cessors as a group of JVi- adjacent pairs, then,

by delinition, the first processor in each pair has
less than (x — 1) tasks assigned to it. Let Pi
and Pi+i be one such pair, where Pi has m <
(x — 1) tasks assigned to it. Then, we must have
Ui + Ui+1 > (m + l) (2 1 / (' n + 1) - l) . For otherwise,
the assignment of tasks to P,+i is made illegally.
Since by Theorem 1.2, (m + l) (2 1 / (m + 1) - 1) de-
creases as m increases, by substituting the maxi-
mum possible value of m in terms of a;, we get
Ui + Ui+i > (x - l) (2^ r i ' - 1). Since this is true
for any such pair of group-1 processors, we have

Ni A <
25i

(x - l) (2 = r _ i)

If Niti is odd, then we have

+ 2.

Nt A <
2Si

+ 3.
(a: - 1)(2^=5" - 1)

We proceed to fmish the proof of Lemma 2.3.

Nt

<
25!,!

(x

+ •

1)(2=T - 1)
25i,2

2{x - i) (2 j - 1) 4.

We next show that (x - l) (2*-i - 1) < 2(x -
1)(2S - 1).

By Theorem 1.2, for x > 1, (x - 1)(2^T - 1)
is a decreasing function of x, tha t is it has its
maximum value when x has its minimum possi-
ble value. Similarly, (a; — 1)(2^ — 1) has its mi­
nimum value when x has its minimum possible
value. Then, by substituting the minimum value
of x, which is 3, in both sides of the above ine-
quality the proof of our claim becomes obvious.

Thus, we have

Ni =
26*1

(x - l) (2 1 / (^- i) - i)

L e m m a 2.4: For x > 2, we ha,ve

>?2

+ 4.

No<
In 2 - (2 « - 1)

+ 1.

Proof: By Theorems 1.1 and 1.2, as long as
the utilization factor of a set of tasks is less than
or equal to In 2 the set of tasks can be scheduled

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 89

on one processor by Next-Fit-2. Since any class-2
task has a utilization factor of at most (2* — 1),
the total utilization factors of the tasks assigned
to each class-2 processor must be greater than
In 2 — (2* — 1). The proof of the Lemma then
follows from this fact.

Corollary 2.2: For x > 2, we have

25*
N{NF2) < T + 5.

(a; - 1) (2 ^ - 1)

Proof:

N(NF2) = Ni + N2

25 a
<

(a ; - l) (2 ^

2S2

2 (l n 2 - (2 * •

-1)

+ 5.
1))

- 1) < 2 (l n 2 -We next show that (x — l)(2*-'i

The right hand side of this inequality has its
minimum value when x has its minimum possible
value, and by Theorem 1.2, for x > 1, the left
hand side has its maximum value also when x has
its minimum possible value. By substituting the
minimum possible value of x, which is 3, in both
sides we prove our claim.

As a result, we get

29
N(NF2) < 5 + 5.

(x- l) (2 ^ r _ j)

T h e o r e m 2.2: For x > 2, we have

2
r{NF2) <

- (3 _ i) (2 ^ r - 1)

Proof: Since N* > S, by Corollary 2.2, we
have

r(NF2) = Um SZ2< \ .
«._=o JV« - (x _ 1) (2 i±T _ i)

The numerical values of bounds in Theorems
2.1 and 2.2 for different values of x are shown in
Table 2. By looking at the values in this table,
we see that the best choice for rc is 3.

To establish a lower bound for r(NF2), let us
consider the following two examples.

E x a m p l e 2 .1: In this example the set of tasks
to be scheduled consists of a combination of three
different types of tasks:

Table 2: The upper bounds for worst-case perfor-
mance ratio of Next-Fit-2.

x Upper Bound
2
3
4
5
6

0 0

2.8853...
2.4142...
2.5648...
2.6426...
2.6900...

2.8853...

- Type-1: Tasks with utilization factors (22 —

!)•

— Type-2: Tasks with utilization factors In 2 —

(2 * - l) .

- Type-3: Tasks with utilization factors 1/n2,
where n is a sufficiently large integer.

The appearance of tasks in the list is as follows:

— n repetitions of (one type-l task, n type-3
tasks, one type-2 task. n type-3 tasks).

An optimal algorithm can schedule this set of
tasks on ^p processors as follows:

— ^ processors each with (one type-l task, two
type-2 tasks, 2n type-3 tasks)

— ^ processors each with (two type- l tasks, An
type-3 tasks)

When x = 2, the Next-Fit-2 algorithm would
use 2n processors as follows:

- n processors each with (one type-l task,- n
• type-3 tasks)

- n processors each with (one type-2 task. n
type-3 tasks)

Therefore, for x — 2, we have ^,—'- = | =
2.6666....

E x a m p l e 2 .2: In this example the set of tasks
to be scheduled consists of a combination of two
different types of tasks:

- Type-1: Tasks with utilization factor \.

90 Informatica 19 (1995) 83-96 Davari et al.

- Type-2: Tasks with utilization factor | . 3 The Algorithm Next-Fit-M

The appearance of tasks in the list is as follows:

- n repetition of (one type-l task, one type-2
task)

An optimal algorithm can schedule this set of
tasks on —• processors as follows:

- j processors each with two type-l tasks

- ^ processors each with three type-2 tasks

When x > 2, the Next-Fit-2 algorithm would
use 2n processors as follows:

- n processors each with one type-l task

- n processors each with one type-2 task

Therefore, for x > 2 we have ^N^ ' = 2.4
Example 2.1 establishes a lower bound for

r(NF2) when x = 2, and the Example 2.2 esta­
blishes a lower bound for r(NF2) when x > 2.

The best choice of x will depend on the type of
tasks to be scheduled. But in general, when the
tasks to be scheduled are not always a specific
type, then the choice of x = 3 is the best. The
lower bound and upper bound for r(NF2) for x —
3 are: 2.4 < r(NF2) < 2.4143.

2.2 The Complex i ty of Next -F i t -2

For each task T,-, 1 < i < n, this algorithm first
determines its class by a single test, and then by
an additional test it determines whether or not
it is feasible on the active processor of its class.
If the task is feasible on the active processor of
its class, the algorithm assigns it to the proces­
sor. Otherwise, it picks a new processor to be
the active one. Therefore, by a constant amount
of computation this algorithm assigns a task to a
processor. Hence, the tirne complexity of Next-
Fit-2 is O(n).

If we consider a filled processor as the output
of the algorithm, then the storage requirement of
Next-Fit-2 will depend on the number of active
processors, which is two, and not the input size.
Therefore, the space complexity of Next-Fit-2 is
0(1).

Let Ti, T2, • • •, Tn be a set of tasks with utiliza­
tion factors u-i,U2,- • • ,un , respectivelv. Let M
be a positive integer greater than 2. Divide the
set of tasks into M different classes as follows. Let
a task Ti belong to class-A; if (2^+iT - 1) < n; <
(2* - 1), for 1 < k < M, and let it belong to
class-M if 0 < Ui < (2« - 1), as shown below.

Class of Range of
task Utilization Factors

1 ^ - 1 , 1]

2 (2? - 1 , 2 5 - 1]

3 (2 1 / 4 - 1 , 2 3 - 1]

M (0,2Jr - 1]

Similarly, divide the set of ali processors into M
different classes. A processor designated to pro-
cess class-A; tasks exclusively is referred to as a
class-A; processor. Note that since the utilization
factor of a task in class-A; is less than or equal to
(2* - 1), by Theorem 1.1, at least k class-A; tasks
can be scheduled by the rate-monotonic algorithm
on one class-A; processor. The algorithm in Figure
2 assigns exactly A; class-A; tasks to each proces­
sor (except possibb/ the last processor) used from
class-A;, for 1 < k < M. The algorithm assigns
class-M tasks to class-M processors so that the
total utilization factors of ali the tasks assigned to
each class-M processor does not exceed In 2. Since
Next-Fit-M assigns k class-A; tasks to each class-
k processor and since the utilization factor of any
class-A; task is greater than (2*+i" — 1), 1 < A; < M,
therefore, the total utilization factors of ali the ta­
sks assigned to any fUled class-A;, 1 < A; < M, pro­
cessor is greater than A;(2*+i" — 1). Also, since any
class-M task has a utilization factor of at most
(2M — 1), the total utilization factor of ali the ta­
sks assigned to each filled class-M processor must
be greater than In2 — (2M - 1). Another impor-
tant property of Next-Fit-M is that the number
of class-A; processors, 1 < k < M, used by the
algorithm is independent of the order of arrival
of the tasks. In other words, except for class-M
processors, any permutation of the tasks in the
original list will result in the same number of pro­
cessors used by Next-Fit-M. These properties are

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 91

/* Let Pk,i refer to the ith processor of class-A; */
1. for k = 1 to M do set Nk = 1;
2. set i = 1;
3. while i < n do

if T; is a task from class-fc, 1 < k < M,
then assign Ti to Pk,Nk',

if Pk,Nk h as currently
fc tasks assigned to it,
then set Nk = JVfc + 1

end-if;
else /* Ti is a task from class-M */

if the total utilization factor of
ali the tasks assigned to PM,NM
is greater than In 2 — m,
then set NM = NM + 1

end-if;
assign T to PM,NM

end-if;
set t = «' + 1

end-while;
4. if Pk,Nk, 1 < k < M, has no task assigned to it

then set Nk - Nk - 1;

The final values of iVfc, 1 < k < M, will be the number of
class-fc processors used by the algorithm.

Figure 2: Algorithm Next-Fit-M'

usefully exploited in the analysis of the worst čase
performance of Next-Fit-M. For convenience, let
a processor of class-fc, 1 < k < M , be called filled
if it has been used and it is not intended to assign
any more tasks to it. Let a class-A; processor (
1 < k < M) be called active if it is the processor
which will be considered for the assignment of the
next class-A; task.

scheduled. Since the total utilization factors of
the tasks assigned to each filled class-M processor
is greater than In 2 — (2M — 1), we have,

UM NM <
I n 2 - (2 M - 1)

Thus,

N(NFM) < n i + ^ + y + --- +
nM-i +

UM

M -1 ln2- (2if - 1)
+ (M - 1) .

The algorithm Next-Fit-M assigns one class-
1 task to each class-1 processor it ušes, and it
assigns k class-A; tasks to each class-& processor
(except possibly the last one) it ušes, for 2 < k <
M, therefore, asymptotically, each class-A; task co-
sts Next-Fit-M \ processor, for 1 < k < M , and
each class-M task T,- with utilization factor Ui co-
sts Next-Fit-M, at most Ui/(ln2-(2'M - 1)), pro­
cessors. We, therefore, define a cost function /
as:

/0;) = <

£ if Ti is a class-A; task
and 1 < k < M

, l n 2 - (2 M - l) .

Thus, in terms of the cost function / we can re
write (1) as

N(NFM) < J2 f(ui) + (M - 1). (2)

3 .1 W o r s t - C a s e A n a l y s i s of
N e x t - F i t - M

For a given set of tasks, the total number
of processors used by Next-Fit-M, denoted by
N(NFM), is YjkL\ Nk, where Nk is the number
of class-A; processors used. Let nk,\ < k < M,
denote the number of class-A; tasks in the set of
tasks to be scheduled. Then,

M
N{NFM) = Y,Nk

k=i

- + rf i + rf i +
r^i+tf«-

• +

M - l • (1 '

Let UM denote the sum of the utilization factors
of ali the class-M tasks in the set of tasks to be

The term M — 1 in (2) accounts foi the last
processors used from class-A;, 2 < k < M , for
which we may not have enough class-A; tasks to
assign to them. Furthermore, if Ti is a class-A;
task, for 1 < k < M, theh we have (2 w - 1) <
Ui < (2* — 1) and f(ui) = ^. Therefore,

f{uj) 1 c 1
Ui kui ^(2fcTT _ i) '

By Theorem 1.2, A;(2Hrr — 1) is monotonically in-
creasing with A;. Therefore, we have the following
inequality:

f(Ui) <
fc(2fc+T _ 1)

if 2*TT < Ui < 2*

a n d 1 < k < M. (3)

92 Informatica 19 (1995) 83-96 Davari et al.

Now consider a set of n tasks. Assume an op-
timal scheduling algorithm ušes N* processors to
schedule this set of tasks. Further assume that
the tasks assigned to the i processor. 1 < i <
N*, are Tn,Ti2, • • -,Titi with utilization factors
Uii,ui2, ...,uiti, respectively.

Since for any processor, the sum of the utiliza­
tion factors of ali the tasks assigned to it by any
algorithm cannot exceed 1, we have

U
£ > ; < 1,1 <i<iV*.
3 = 1

In terms of the cost function / , let FitM denote the
cost of the ith processor. Then, if Th,T,2, ...,Tjt;
are the tasks assigned to the ith processor by Next-
Fit-M. with utilization factors un,v,i2, ...,ua^ re-
spectively, we get

Table 3: Values of Ki in Worst-Case Analysis of
Next-Fit-M.

Ki
1
2
3
4
5
6

1
1
4
30
2635
7145847

will result in the same number of class-fc, 1 < k <
M, processors used by the algorithm. Therefore,
without loss of generality, we may assume that
u'i > u2 — u3 — ' ' ' ^ u't- Define a sequence of
integers Ki. as follows:

3=i

Now, let T' = {T[, T'2, • • •, T(} be a set of tasks
with utilization factors u\,u2,- • • ,u't respecti-
vely, with the following properties:

(i) u'm > 0 ,1 < m < t

00 E m = i < < l -

(iii) FM = Y!m=i / «) > FitM, for 1 < i < N*.

Then, we can rewrite (2) as:

n

N(NFM) < £ / (« , -) + (M - 1)
i=\
N* U

= EE/fe) + (tf-1)
< N*FM + (M-1).

This implies tha t FM is the worst-case perfor-
mance ratio of Next-Fit-M because,

r(NFM) = lim N(NFM)N* < FM.
N*—>oo

Thus, it is sufficient to find the upper bound on
the number Fm, where

t t

Yl f(U'm)> Subject tO J2 U'm < 1-
m = l m = l

R\ = K 2 = 1.

For i > 2, Ki is the smallest integer S such that
the follo\ving inequality is satisfied:

' ' - 1 - J —
(2š+T _ i) < i _ Y&Ki+x - 1). (4)

Some of the values of Ki are shown in Table 3. It
is not hard to see tha t , for i > 2,

(2 ^ - l) > l - ^ (2 ^ + 1 - 1) . (5)
3 = 1

T h e o r e m 3 .1: For M > 2 and Ki < M <
Ki+i, where Ki's are given by (4), we have

FM = £ / «)
m = l

< y 1 i t-ZUi21^1-1)
i^Kj I n 2 - (2 W - 1)

Proof: Let

i I - E ; = I (2 ^ + I - i) j_ . _ . . . J ^ , - + I

S M = / J -7T +
friFj I n 2 - (2 M - 1)

According to the property of the Next-Fit-M
Algorithm, any permutation of a given set of tasks

The numerical values of S M for different values
of M are listed in Table 4.

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 93

Table 4: Values of SM i n Worst-Case Analysis of
Next-Fit-M

M SM
3
4
5
6
7
8
9
10
11
12
13
30
31
0 0

2.3960...
2.3404...
2.2920...
2.2900...
2.2888...
2.2879...
2.2873...
2.2868...
2.2864...
2.2860...
2.2858...
2.2841...
2.2837...
2.2837...

We at tempt to show that FM is upper boun-
ded by SM- To prove our claim, we consider the
following three cases:

Čase 1: T[is not a class-1 task. Then u'm <
(25 - 1), 1 < m < t. By (3) we have

/K) < 2(23 - i
- ,1 < m < t.

Therefore,

^ f [m) 2 (2 ^ - 1)

i T < 1.93 < SM-

m = l

<
2(2š - 1)

Čase 2: T{ is a class-1 task but T'2 is not a
class-1 task. Then,

t
£ u'm < 1 - (2§ - 1),

m = 2

and
u'm < (25 - 1) , 2 < m< t.

By (3) we have

/ «) < 2(2š - 1)
, 2 < m < t.

Therefore,

£ / «) < /«) +

< i +

ro=l

2_/m=l Um
2(23 - 1)

l - (2 i - - l)

2(23 - 1)
< 2.1269 < SM-

Čase 3 : Both T[and T'2 are class-1 tasks. First
we consider the subcase where T[G class-A'i, T'2 G
class-A'2, • • • , T/ G class-JiT.;. Then,

E ^ < (i - B 2 ^ + 1 - 1)) - (e)

Since M < Ki+i, from equation (6), we see that
T'm G class-M for ali i + 1 < m < t. Therefore,

FM = £ / « J
771 = 1

< f l . 1 - E } = i (2 ^ + 1 - 1)

I n 2 - (2 F - 1)

We next show that FM will have its maximum
value when Tj G class-ifj, for ali 1 < j < -i.

Suppose Tj £ class-A'j for j = i > 2. Then,
1

we have ' ^ < (2A">+1 - 1), for aH i < m < t.
This wiU reduce the above value of FM by -^ and
increase it by a maximum value of

(2^7+T _ j)

(Jf,- + 1)(2*.-+2 - 1)

Thus, total change in the above value of FM will
at most be

(2K'i+1 - 1)

(A;- + l) (2 ^ + 2 - 1)

We claim that

(2A',+1 _ J)

(Jd + 1)(2*.+2 - 1)

From Theorem 1.2, we know that

1
~Ki

1

(7)

(8)

IU{2*'.+J - 1) < (A'i + l)(2*<+a - 1).

94 Informatica 19 (1995) 83-96 Davari et al.

Dividing both sides of this inequality by Ki(IQ +

l)(21?i+T - 1), we get

(2 ^ + i - 1) J ^

(Ki + 1) (2 ^ " - 1) ^

Thus, in this čase, the value of FM decreases
further.

Now, suppose that Tj £ class-ifj for j — i — 1.
Then, repeating the argument, further change in
the value of FM will be given by expression (7)
with i replaced by i - 1. In view of inequality (8),
this change also may only result in further decre-
Rsing the value of FM- Repeating these argument
for j = i — 2, i — 3, • • •, 3, it follows tha t FM has
its maximum value when we have Tj G cla,ss-Kj,
for ali 1 < j < i, and that this maximum value is
bounded above by SM-

This completes the proof.
Comparing the values of F^ and F^,\ (Table 4),

we see tha t little improvement on performance is
achieved beyond M = 31. Therefore, for practi­
cal purposes, one may choose any M within the
region 3 < M < 31.

To examine the tightness of the bound given by
Theorem 3.1, we consider the following example.

E x a m p l e 3 .1: Let M = Ki+i, for some i > 2.
Let N be an integer divisible by M , and e be a
sufficiently small quantity.

Consider a set of tasks consisting of:

N subsets of i tasks with utilization factor
Uj of the tasks in each subset given by Uj =

i
(2Jci+1 - 1 + e), for 1 < j < i, and

N tasks, with utilization factor of each task
denoted by Ui+i as follows:

i

ui+i = (i-j2uJ-i€)-
3=1

Since M = iT;+i, by (4) and (5), we have

(2 i / (M+i) _1^< u.+i < (2 ^ _ i) .

Therefore, Next-Fit-M assigns exactly M tasks,
each with utilization factor «j+i, to each class-M
processor it ušes, and it assigns K j tasks each with
utilization factor Uj to each class-ifj processor it

ušes, for 1 < j < i. Thus, the total number of
processors needed by Next-Fit-M would be

J^ N N

3=1 J

Since J2)t?i uj ~ ^-i ^ n e number of processors, N*,
needed by an optimal algorithm is > N.

Therefore,

NjNFM) _ y- J_ J_ _ y i J_
3=1 J 3 = 1 J

Let QM = I 3 j i i ~k~- The numerical values of QM
for various values of M, along with those of S M
in Theorem 3.1 are shown below.

M QM SM

4 2.2500 2.3404
30 2.2833 2.2841

2635 2.2837 2.2837

oo 2.2837 2.2837

Therefore, for small values of M, the bound
given by Theorem 3.1 is close to tight, and for
large values of M , it is very tight.

When the set of tasks to be scheduled does not
contain any task with utilization factor in the
range (2š — 1 , |] , then it is not too difficult to
show that r(NFM) < 1.911 (Davari 1985, Da­
vari & Dhall 1986c).

3.2 The Complex i ty of N e x t - F i t - M

For each task T,-,l < i < n, this algorithm first
determines its class, and then assigns the task to
the active processor of its class. Since the class of
a task can be determined in 0(logM) tirne and
there is only one active processor in each class at
any time, the tirne-complexity of this algorithm
is 0(nlogM). From Table 4, we see that approxi-
mate values of 63, 5i2, S31, and 6*00 are, respecti-
vely, 2.3960, 2.2860, 2.2837, and 2.2837. Thus, as
M increases bevond a certain value, say, 31, the
gain in the performance of the algorithm is ne-
gligible. For ali practical purposes, therefore, one
can flx the value of M in the range 3 < M < 31.

ON-LINE ALGORITHMS FOR ALLOCATING... Informatica 19 (1995) 83-96 95

As a result, M can be considered as a constant.
Hence, the tirne-complexity of Next-Fit-M, with
M < 31, is 0(n).

If we consider a filled processor as the output
of the algorithm, then the storage requirement
of Next-Fit-M will depend on M, the number of
active processors, and not on n, the input size.
Therefore, the space complexity of Next-Fit-M is
0 (1) .

4 Conclusions

In this paper we studied the problem of partitio-
ning a set of periodic-time-critical tasks into di-
fferent groups, subject to the conditions that : (i)
each group of tasks can be feasibb/ scheduled on
a single processor using the rate-monotonic algo­
rithm (which is the best static priority driven al­
gorithm available for scheduling this type of tasks
on a single processor system); and (ii) the number
of processors required is minimum.

There exists three off-line algorithms for this
problem. Since the nature of the arriving tasks in
an on-line processing is unpredictable, an on-line
scheduling algorithm is expected to be more di-
fficult than an off-line one. In general the perfor-
mance of an on-line scheduling algorithm is sub-
stantially affected by the permutation of tasks in
a given set.

In this paper we presented two 0(n)- t ime and
0 (l) - space on-line algorithms, called Next-Fit-2
(NF2) and Next-Fit-M (NFM). These algori­
thms are less complex than the existing off-line
algorithms. The Worst-case Performance Ra-
tio (WPR) of NF2 was shown to be less than
2.4143, and W P R of NFM was shown to be
less than 2.2838. These ratios are comparable to
those of the existing off-line algorithms. These
ratios are also comparable to the on-line algori­
thms RM - FF and RM - BF (Oh k Son 1994).
However, the performance is not as good as that
of RRM-FF and RRM-BF (Oh & Son 1994).
But the redeeming feature of the algorithms pre­
sented here is that their time complexity is linear
and they require a constant amount of space, as
opposed to the time complexity of O(n logn) and
space requirement of 0(n). It may also be poin-
ted out tha t when NFM is applied to the special
čase in which the set of tasks to be scheduled does
not contain any task with utilization factor in the

range (2ž - 1 , |] , then the W P R of this algorithm
is less than 1.911.

Ali of the algorithms considered for this pro­
blem, so far, are preemptive algorithms. Preemp-
tive scheduling does cost overhead. The overhead
is assumed to be negligible in the analysis of ali
algorithms reported in literature. It would be in-
teresting to analyze the performance of these algo­
rithms by including overhead penalty for preemp-
tions. Also, in the area of non-preemptive sche­
duling for periodic time critical tasks, not much
work has been done. It would be interesting to
investigate the behavior of non-preemptive algo­
rithms for this problem.

References

[1] Agrawal G., Chen B., Zhao W., k Davari S.
(1994) Guaranteeing Synchronous Message De-
adlines with the Timed Token Medium Access
Control Protocol. IEEE Transactions on Com-
puters, 43(3), p. 327-339.

[2] Bannister J. and Trivedi K. (1983) Task Allo-
cation in Fault Tolerant Distributed Systems.
ACTA Informatica, 20, p. 261-281.

[3] Davari S. (1985) Scheduling Periodic-Time
Critical Tasks on Multiprocessor Computing
Systems. Ph.D. Dissertation, University of
Oklahoma, Norman, Oklahoma.

[4] Davari S. and Dhall S. K. (1986a) On a Real-
Time Task Allocation Problem. Proceedings of
the Nineteenth Annual Hawaii International
Conference on System Sciences, p. 133-141.

[5] Davari S., and Dhall S.K. (1986b) A Simple
On-line Algorithm For Real-Time Tasks Al­
location, Proceedings of the Ttventieth Confe­
rence on Information Sciences and Systems,
Princeton, New Jersey. p . 178-182.

[6] Davari S. and Dhall S,.K. (1986c) An On-line
Algorithm For Real-Time Tasks Allocation.
Proceedings of the Real-Time Systems Sympo-
sium, p.194-200.

[7] Davari S., Leibfried T., Natarajan S., Pruet t
D., Sha L., k Zhao W. (1993) Real-Time Issues
in the Design of the Data Management System

96 Informatica 19 (1995) 83-96 Davari et al.

for Space Station Freedom. First IEEE Wor-
kshop on Real-Time Applications, Neto York,
NY, p. 161-165.

[8] Davari S. and Sha L. (1992) Sources of Un-
bounded Priority Inversions in Real-Tirae Sy-
stems and a Comparative Study of Possible So­
lutions. ACM OSR. 26(2), p.110-120.

[9] Davari S. and Zhao W. (1991) RMS Aids Real-
Time Scheduling. RICIS Review. 3(1), p . 2,8-9.

[10] Dhall S.K. (1977) Scheduling Periodic Time-
Critical Jobs on Single Processor and Multipro-
cessor Systems. University of Illinois, Technical
Report No. UIUCDCS-R-77-859.

[11] Dhall S.K. and Liu C.L. (1978) On a Real-
Time Scheduling Problem. Operations Rese­
arch. 26(1), p. 127-140.

[12] ESA. (1990) Stalement of Work, Hard Real-
Time OS Kernel. On-Board Data Division, Eu-
ropean Space Agency.

[13] Johnson D.S. (1974) Fast Algorithms for Bin-
Packing. J. Compt. System Sci. 8, p 272-314.

[14] Johnson D.S., Demers A., Ullman J.D., Ga-
rey M.R., & Graham R.L. (1974) Worst-Case
Performance Bound For Simple One Dimen-
sional Packing Algorithms. SIAM Journal of
Computing, 3, p. 299-325.

[15] Labetoulle J. (1974) Some Theorems on
Real-Time Scheduling, in Computer Architec-
ture and Netivorks, E. Gelenbe, R. Mahi (Eds.),
North Holland Publishing Co., p. 285-298.

[16] Lee C.C., and Lee D.T. (1985) A Simple
On-line Bin-Packing Algorithm. Journal of the
ACM. 32(3), p.562-572.

[17] Leung J.Y.T. and Whitehead T. (1982) On
the Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks. Performance Evalu-
ation. 2, p . 237-250.

[18] Leung Joseph Y.T. (1989) A New Algorithm
For Scheduling Periodic, Real-Time Tasks. Al-
gorithmica. 4, p . 209-219.

[19] Locke D.C. (1992) Software Architecture for
Hard Real-Time Applications: Cyclic Executi-
ves vs. Fixed Priority Executives. Journal of
Real-Time Svstems. 4, p.37-53.

[20] Liu C. L. and Layland J .W. (1973) Sche­
duling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. JACM. 20,
p.46-61.

[21] Oh Y. and Son S.H. (1994) Allocating Fixed-
Priority Periodic Tasks on Multiprocessor Sy-
stems. Journal of Real-Time Stjslems. 5, p.1-33.

[22] Serlin O. 1972) Scheduling of Time-Critical
Processes. Proceedings of the SJCC p . 925-932.

[23] Sha L. and Goodenough J. B. (1990) Real-
Time Scheduling Theory and Ada. IEEE Com­
puter. 23, p.53-62.

[24] Sha L., Rajkumar R., & Lehoczky J.
P. (1990) Priority Inheritance Protocol: An
Approach to Real-Time Synchronization. IEEE
Transactions on Computers. 39(9), p. 1175-
1185.

[25] Sha L. and Sathaye S. (1993) A systematic
Approach to Designing Distributed Real-Time
Svstems. IEEE Computer. 26(9), p . 68-78.

[26] Sprunt B., Sha L., & Lehoczky J.P. (1989)
Aperiodic Task Scheduling for Hard Real-Time
Svstems. Journal of Real-Time Sgstems. 1,
p.27-60.

[27] Yao A.C. (1980) New Algorithms For Bin-
Packing. Journal of the Association for Com­
puting Machinenj 27(2), p . 207-227.

Informatica 19 (1995) 97-109 97

A Semi-Distributed Load Balancing Model for Parallel Real-time
Systems

Kayhan Erciye§, Oznur Ozkasap and Nilgiin Akta§
Ege University Computer Eng. Dept.
35100 Bornova, Izmir, Turkey
e-mail: erciyes@baum01 . e g e . e d u . t r , ozkasapObaumOl . e g e . e d u . t r , aktasObaumOl . e g e . e d u . t r

K e y w o r d s : parallel processing, load balancing, real-time system, deterministic scheduling

E d i t e d by : Marcin Paprzycki and Janusz Zalewski

R e c e i v e d : February 18, 1994 R e v i s e d : November 11, 1994 A c c e p t e d : January 14, 1995

We propose static and dynamic load balancing policies for parallel real-time systems. A
parallel real-time system in this context is considered as a computational environment
consisting of a number of processors where stringent timing requirements of processes
should be met. This would encompass massively parallel systems at one end of the
spectrum and a group of computers connected by a local network at the other end. The
static and dynamic load balancing policies developed are suitable for both types of sy-
stems with parameters such as communication costs to be tuned for each environment.
For massively parallel processing systems, we introduce the concept of a domain which
is a pool of processors and is governed locally for various services such as dynamic load
balancing. The dynamic load balancing is implemented by central load balancers per
domain which make use of the group communication facility for distributed communica­
tion with the other load balancers. This semi-distributed approach eliminates the need
for maintaining a central node or replicated data by providing local data and control
confined to that domain. The distributed data and control transfer is performed among
the servers of the domains. The static scheduler however works off line for tasks with
known characteristics such as execution tirne, communication constraints and deadlines
prior to their execution which would be the usual čase for hard real-time tasks.

1 Introduction

Recent developments in hardware technologies
have made it possible to build systems consi­
sting of clusters of processors usually referred to
as Massively Parallel Processing (MPP) systems.
M P P systems are increasingly finding many appli-
cations in hard real-time systems such as particle
phvsics. A heterogeneous parallel real-time sy-
stem is envisioned as a MPP system and host
computers connected by a real-time network as
shown in Fig. 1.

. Our study focuses on load balancing in %the
M P P system of such an environment. We pro­
pose a deterministic scheduler, a dynamic load
balancing mechanism and operating system mo-
dules to support dynamic load balancing. The
central theme is to consider the MPP system as a

MPP

System

Actuator Sensor

Host
Computer

£9
Host

Computer

r
Operator
Interface

Real-time Network

Figure 1: A Parallel Real-Time System

http://ege.edu.tr
http://ege.edu.tr
http://ege.edu.tr

98 Informatica 19 (1995) 97-109 K.Erciye§ et al.

collection of domains of processors which are ma-
naged centrally for various services in a domain
and as distributed for interdomain services.

The system comprises minimum functionality
required from a distributed memory parallel sy-
stem to achieve coarse to medium grain paralle-
lism for single or multiple applications. The de-
terministic scheduler accepts task graphs and the
deadlines of tasks in the čase of real-time tasks,
as its input. It first puts the tasks with heavy
communication into sets to be allocated to doma­
ins and then calculates various heuristic values for
each task in the set and assigns these tasks to the
processors in the domain according to these heu­
ristic values. Different than the previous work in
this area, namely, static scheduling of real-time
tasks (Liu & Layland 1973), (Stankovic & Ra-
mamri tham 1988), we have considered communi­
cation costs among tasks and defined a heuristic
which is a function of communication costs and
is a component in the total heuristic value for a
task.

The dynamic load balancing mechanism ušes a
semi-distributed approach. The periodically in-
voked central load balancer in a domain of pro­
cessors tries to establish balance among them by
first balancing the load within individual doma­
ins, then among different domains of the system in
the second step. The operating system supports
the dynamic load balancing mechanism by pro-
viding necessary group communication primitives
for multicast communication.

2 Static Scheduling

Task Scheduling is one of the most challenging
problems in parallel and distributed computing.
Informally, the scheduling problem arises because
the concurrent parts of a parallel program must
be arranged in tirne and space so that the overall
execution tirne of the parallel program is mini-
mized. It is known to be NP-complete in its ge­
neral form as well as sever al restricted cases. In
an a t tempt to solve the problem in the general
čase, a number of heuristics have been introdu-
ced. The effectiveness of these heuristics depends
on a number of factors such as grain size, inter-
connection topology, communication bandwidth
and program structure (El-Rewini 1989).

The maximization of the speedup of a parallel

program on a target parallel computer requires
the allocation of the tasks among the processors
in such a way that the total computational load is
distributed as evenly as possible. To minimize the
amount of processor idle time, the tirne required
to perform necessary interprocess communication
is minimized (Sadayappan & Ercal 1987).

Efe (Efe 1982) developed a heuristic allocation
algorithm to balance processor load and to mini­
mize communication cost. His algorithm consists
of two phases. First, tasks are clustered with each
other to optimize the communication cost and
each cluster of tasks is assigned to a processor.
Then, tasks are shifted from overloaded to under-
loaded processors in order to meet load-balance
constraints. The algorithm is repeated until a
satisfactory degree of load-balancing is achieved
whereas we first group closely related tasks for
domains and then allocate them individually to
the processors of domains.

2.1 Problem Statement

This section describes the components of the sta­
tic scheduling model we have developed. In gene­
ral, there are four components in any scheduling
system:

1. the target machine

2. the parallel tasks

3. the generated schedule

4. the performance criterion

In our model, the parallel application that con-
tains real-time tasks is characterized by an acyclic
directed graph G(V,E) as shown in Fig. 2. Vertex
weights V = {ti : i = 1,2, ...,N} represent com­
putational load, or worst-case execution time of
the tasks, and edge weights E = {cij : for Vi,-,tj
where p^ = 1} represent interprocess communi­
cation costs. Precedence relation between tasks is
defined as follows :

Pij — 1 if there exists a precedence relation
> between ti, tj task pairs

p^ = 0 otherwise

Since, real-time systems are static and it is as-
sumed that ali task characteristics are known a
priori (Stankovic & Ramamri tham 1988), "iti of

A SEMI-DISTRIBUTED LOAD BALANCING MODEL... Informatica 19 (1995) 97-109 99

Figure 2: A General Task Graph.

Figure 3: A Target PPA (Parallel Processing Ar-
chitecture) and its delay matrix.

the parallel application has known timing charac-
teristics such as execution time (e; for Vi;) and
deadline (d,- for Vi»)

The topologies of the target Parallel Processing
Architecture (PPA) are in the form as shown in
Fig. 3. P = {Pi : i = 1,2,..., M } is a se t ofhomo-
genous processors with local memory, which com-
municate via message passing paradigm or chan-
nel structures. A delay matrix, D is introduced
to represent physical overheads among processors
in the parallel processing system.

D = {Dij : number of hops between pro­
cessors Pi and Pj for VPi,Pj
where i ^ j}

The intraprocessor overhead Da for Vi is as-
sumed to be zero. Also, speeds of processors in
the system are assumed as equal, that is, they are
homogeneous processors.

We considered tha t N > M where N is the num­
ber of tasks in task graph and M is the number
of processors in the system.

Definit ion: A domain is a group of fixed-size
processors, which includes closely related, there-

fore heavily communicating tasks of an applica­
tion. Processors forming a domain are selected as
physically closed ones in' the parallel processing
architecture.

Definition: If tasks ti and i,-'are mapped to
processors Pi and Pj respectively, and p^ = 1
(that is, there exists a precedence relation be-
tween i,- and tj), then the cost function is defined
as F(C) = min{Y^CijDij for 'iti,t j)

2.2 S c h e d u l i n g M o d e l

The deterministic scheduler of the load balancing
model proposed works off-line for scheduling tasks
of a parallel application. Inputs of the scheduler
are a task graph that shows precedence constra-
ints, communication costs among tasks, execution
times and deadlines of tasks, and interprocessor
communication delays for the PPA. The off-line
scheduler works in two phases:
Domain AUocation : Tasks with heavy commu­
nication are put into groups to be allocated to
domains.

Task-to-Processor Mapping : Heuristic values for
each task in a domain are calculated and the tasks
are assigned to the individual processors in their
domain.
D o m a i n AUocation Algor i thm: The Domain
AUocation (DA) Algorithm that is shown in Fig. 4
considers timing constraints of tasks such as exe-
cution time, precedence constraints among tasks
and interprocess communication. The procedure
is to group tasks into domains of the parallel pro­
cessing system. The objectives considered during
this procedure are putting tasks with heavy com­
munication into the same domain in order to mi-
nimize communication costs and balancing them
by trying to ensure that total execution time of
tasks allocated to each domain are approximately
the same. The result obtained is an allocation
scheme that permits parallel execution of tasks in
the target PPA.

Task-to-Processor M a p p i n g A l g o r i t h m The
Task-to-Processor Mapping (TPM) Algorithm is
shown in Fig. 6. Processor allocation for tasks
is performed by calculating heuristic values for
each task as described in section 2.4 and assigning
these tasks to the individual processors in their
domain according to these heuristic values.

Once the first step of the scheduling model,

1 0 0 Informatica 19 (1995) 97-109 K.Erciyes et al.

SEQ

Allocate Domains

PAR i=l FOR DN

Do Task-to-Processor Mapping for domain i

Inputs: Task Graph (TG) with N tasks;
numher of domains (DN);

. AE = TE/DN;

. Sort c,j in descending order foi V ti, t j
where pij = 1;

. Get first element dj of the sotted list;

. Set curient domain (CD) to first domain;

. Put U,t j into CD;

.DO UNTIL V U allocated to a domain
{if(J2e tas}ks in CD < AE)

Find max dj for ti and tj
that are not allocated to a domain;
Put tj into CD
Delete-Comm-Cost();

else
if(CD < DN) CD++; /*Set current domain

to next domain*/
else set CD to domain with min(Y)e);
if there exists cij where
ti and tj are not allocated to a domain

Put U, tj into CD;
Delete-Comm.cost();

else if (53 e of tasks in domain DN==0)
DN-;
AE=TE/ DN;

Get next element cij;
if (ti or tj is not allocated to a domain)

CD = Domain of task t that is allocated;
Put task into CD;
Delete-comm-cost0;

Figure 4: Domain Allocation Algorithm

1 2 3

Figure 5: Task to Processor Mapping.

namely, domain allocation is performed, task-to-
processor mapping should be completed for each
domain of the parallel processing system. This se-
cond phase can be performed in parallel for each
domain as shown in Fig. 5. This makes the sche­
duling process faster especially for MPP systems
where there are hundreds of processors, and many
domains.

2 .3 Task G r a p h G e n e r a t i o n

A task graph generator, which generates schedu-
lable task graphs with tasks having timing and
precedence constraints is developed. This stra-
tegy allows us to evaluate performance of domain
allocation and task-to-processor mapping algori-
thms using various heuristic functions on different
parallel applications characterized by generated
task graphs.

Task Graph Generat ion Algor i thm: The
approach ušes the strategy of randomly assi-
gnment of tasks to the degrees or positions of the
graph. Then predecessor and successor task(s) of
each task are determined. Finally, timing con­
straints of each task and communication costs
between related tasks are assigned as shown in
Fig. 7.

2.4 S c h e d u l i n g h e u r i s t i c s

During task-to-processor mapping, we have used
the list scheduling method. List Scheduling is a

A SEMI-DISTRIBUTED LOAD BALANCING MODEL. Informatica 19 (1995) 97-109 101

Inputs: Task Grapii (TG) with N' tasks
allocated for the domain;
Delay Matrix D;

. ni = numher of immediate predecessors
ofU for i = 1,...,N'

. Task.type=READY foi W, where m = 0

. Insert READY tasks into SchedJist
according to heuiistic values at time =0

.WHILE (SchedJist is not empty)
{Get a task t, fiom the SchedJist;
Switch (Even £_ typ e)

čase READY :
map ti to an idle processor P};
Event.type = FINISHED;
Time = Finish-time ofti on Pj
Inseit-event into SchedJist;

čase FINISHED :
For eacii immediate successor tk ofti
rik = ny, - 1;
if (nk == 0) Event.type = READY

Time=Finish.time of ti on PJ;
Insert-event into SchedJist;

}

Figure 6: Task to Processor Mapping Algorithm.

class of scheduling heuristics in which tasks are
assigned priorities and placed in a list ordered in
decreasing priority. Whenever tasks contend for
processors, the selection of tasks to be immedia-
tely processed is done on the basis of priority with
the higher priority tasks being assigned to proces­
sors first. The heuristic functions that determine
the priorities of processes can be explained as fol-
lows:
E D F (Earliest Deadl ine First): Priority is
given to the real-time tasks with the earliest-
deadline.
M L F (M i n i m u m Laxity First): Priority is gi­
ven to the real-time tasks with minimum laxity
where task laxity = task deadline - task execu-
tion time.
H 3 : m i n (E D F * W l + M L F * W 2) : The first two
heuristic functions are combined by using weight
values. We have developed a new heuristic func-
tion by using simulation results for EDF and MLF
heuristic functions.

3 Dynamic Load Balancing
The random arrival of processes in a parallel pro-
cessing system can cause some processors to be
heavily loaded while other processors are idle or

R.andomly assign N tasks to d degrees in task
gvaph
Determine predecessor(s) and successor(s) of each
task under the constraints such as number of tasks
in a degree and number of degrees in graph
Handle timing constraints (e; for Vt;J (di for VtiJ
E = {ci3 : for Vf;,t, wiiere pij=l} of each task
generated

Figure 7: Task Graph Generation Algorithm

lightly loaded. Dynamic load balancing improves
the performance by transferring tasks from hea-
vily loaded processors, where service is poor, t o
lightly processors where the task can take advan-
tage of computing capacity that would otherwise
go unused.

Most of the methods used for dynamic load ba­
lancing are either fully distributed or centralized
methods. Neither fully distributed nor centra­
lized load balancing policies are known to yield
good performance for M P P systems. Fully distri­
buted algorithms use a small amount of informa-
tion about the state of the system. Small systems
can yield good performance with limited informa-
tion, but this may not be t rue for large systems.
Despite the fact that fully distributed algorithms
incur less overhead due to message exchange, this
overhead linearb/ increases with the system size.
Centralized algorithms do have the potential of
yielding optimal performance, but require accu-
mulation of global information which can become
a formidable task. The storage requirement for
maintaining the state information also becomes
prohibitively high with a centralized model of the
large system. For a large system consisting of a
hundred or thousands nodes, the central schedu-
ler will become a bottleneck and lower the throu-
ghput.

Besides, centralized models are highly vulne-
rable to failures. The failure of any software or
hardware component of the central scheduler can
stop the operation of the whole system.

In our study, a semi-distributed dynamic load
balancing model is developed for a distributed me-
mory computer system. In this čase, the proces­
sors of an MPP system are divided into domains
of fewer processors which are managed centrally
for various services and distributed for other s.
Domains are allocated dynamically during run
time in some researches (Kremien et. al. 1993),
whereas our system is divided into domains in a

102 Informatica 19 (1995) 97-109 K.Erciye§ et al.

Schedule List Migration List

D0MAIN3 DOMAIN 4

Figure 8: Semi-distributed System Model

static manner before the system starts . A group
management module designed for the underlying
distributed operating svstem provides the neces-
sary group communication in multicast mode for
the manager processes. A system process in each
domain called Central Load Balancer (CLB) first
tries to balance the load within its domain. Ifthis
is not possible, it communicates with other CLBs
to find a destination node for the candidate pro­
cess for migration as depicted in Fig. 8.

This model proposes a two level load balancing
strategy. At the first level, load balancing is car-
ried out within individual domains where the cen­
tral node of each domain acts as a centralized con-
troller for its own domain. At the second level, the
load is balanced among different domains of the
system, thus providing a distributed environment
among domains. The design of such a strategy in-
volves designing an algorithm for performing op-
timal task scheduling and load balancing within a
domain as well as among domains and developing
efficient means for collecting state information at
interdomain and intradomain levels.

Central load balancers are responsible for dyna-
mically assigning processes to individual nodes of
the domain, transferring the load to other doma­
ins if required, and maintaining the load status
of the domain and nodes. As a result of load ba­

lancing and sharing, a process can be completed
earlier due to the utilization of o themise idle or
lightly loaded processors.

3.1 R e a l - t i m e A p p r o a c h

In a conventional multitasking operating system,
processes are interleaved with higher importance
(or priority) processes receiving preference. Little
or no account is taken of deadlines. This is clearly
inadequate for real-time systems. These systems
require scheduling policies tha t reflect the timeli-
ness constraints of real-time processes .

A realistic hard real tirne system must guaran-
tee both periodic and non-periodic hard real-time
processes on the same processor, utilize spare tirne
by non-critical processes, initialize static alloca-
tion of periodic processes and migrate aperiodic
processes for response to changing environment
conditions or local overload.

Schedulers produce a schedule for a given set
of processes. If a process set can be scheduled
to meet given pre-conditions, the process set is
termed feasible. A typical pre-condition for hard
real-time periodic processes is tha t they should al-
ways meet their deadlines. An optimal scheduler
is able to produce a feasible schedule for ali fea­
sible process sets conforming to a given precon-
dition. For a particular process set, an optimal
schedule is the best possible schedule according
to some pre-defmed criteria. Typically a schedu­
ler is optimal, if it can schedule ali process sets.

The system model that has been used allows
both periodic and aperiodic processes. Prece-
dence constraints among processes are enforced
by using the process's start times and deadlines
and no process resource requirements are consi-
dered. Context switch have zero cost and multi-
node, multi-domain systems with dynamic pro­
cess allocation is allowed.

3.1.1 Deadl ine Characterist ics

Periodic processes are characterized by their pe­
riod and their required execution tirne per period.
For each periodic process, its period must be at
least equal to its deadline. That is, one invoca-
tion of a process must be completed before succes-
sive invocations. This is termed as the runnability
constraint as shown below:

A SEMI-DISTRIBUTED LOAD BALANCING MODEL... Informatica 19 (1995) 97-109 103

computation-tirne < deadline < period

The activation of an aperiodic process is essen-
tially, a random event and is usually triggered
by an action external to the system. Aperiodic
processes also have timing constraints associated
with them; i.e. having started execution, they
must complete within a predefined time period.
It is not guaranteed that aperiodic processes will
certainly meet their deadlines. If it is not possible
to schedule an aperiodic process on any processor
before its deadline, this process is said to be un­
schedulable. Aperiodic processes can be invoked
at any time.

It has been showed that the algorithms that
are optimal for.single processor systems are not
optimal for increased numbers of processors. In
a multiprocessor or distributed system, processes
that are considered likely to miss their deadlines
have to be migrated to other processors. But it
has also been showed that it is better to stati-
cally allocate periodic processes rather than let
them migrate and, as a consequence, potentially
downgrade the system's performance (Audsley &
Burns 1990).

3.1.2 Schedul ing Pol icy

Each process is characterized by (A,S,C,D) known
at the time of process arrival, where A is the pro­
cess^ arrival time, S is the earliest possible time
at which its execution may begin (start time), C
is the maximum computation time and D is the
deadline by which it must complete its execution.
An aperiodic process is described by (A,S,C,D).
For each periodic process, an (A,C,P) describes
its arrival time, computation time, and period.

The algorithm schedules sets of processes or-
dered by increasing deadlines. Given such a set,
the algorithm selects the first process and sche­
dules it as near to its start time as possible (i.e.
at the earliest available time after its start time).
The process is scheduled by simply accumulating
ali unused processor time past the process's start
t ime until sufficient computation time is found.
If the resulting schedule permits this process to
complete before its deadline then the process is
schedulable, else it is unschedulable.

The scheduling information used by this algo­
rithm is recorded in a list. Each element of the
list represents a time slot already assigned to a

process, and has four fields: starting time, en-
ding time, a pointer to the next list element, a
pointer to the previous list element. Given this
list, the process schedulability is analyzed by sear-
ching the Ust for available time intervals between
two elements. This search starts at an element
compatible with the process start t ime and ends
at a time point compatible with the process dea­
dline or when the accumulated length of available
time is equal to the process computation time.
The process is schedulable if sufficient computa­
tion time is found before its deadline during this
search, else the algorithm reports the process as
unschedulable.

In our svstem, aperiodic processes do not have
hard deadlines, hence they can be migrated to
other processors when they can not be scheduled
on present processor. On the other hand, peri­
odic processes have hard deadlines and they can
not be migrated to other processors. They are
statically allocated when the system starts by the
deterministic scheduler as explained in Section 2.

In order to schedule an aperiodic real-time pro­
cess with a soft deadline dynamically, a modified
form of Bryant and FinkePs algorithm is emplo-
yed.

3.1.3 Bryant and FinkePs A l g o r i t h m

Bryant and FinkePs algorithm (Bryant & Finkel
1981) is a dynamic and physically distributed al­
gorithm. In our system, Bryant and FinkePs algo­
rithm is used in a semi-distributed fashion, con-
sidering the deadlines of the aperiodic processes.
To make a decision, processors cooperate by sen-
ding negotiation messages. The decisions are sub
optimal and heuristic approach is used to find so-
lution.

A newly arriving aperiodic process can be cal-
led as schedulable only if its scheduling does not
danger previousb/ scheduled processes. First, the
new aperiodic process is placed in order into the
list, which holds ali previously scheduled proces­
ses on this processor. Then processes in the list
are rescheduled, using the algorithm explained
above. If any of the previously scheduled proces­
ses is unschedulable nov/, then newly arriving ape­
riodic process is determined as unschedulable on
this processor. Otherwise it is schedulable. When
a process is determined as unschedulable at tha t
node, a timer starts to work. When the timer rea-

104 Informatica 19 (1995) 97-109 K.Erciyes et al.

ches the value that is equal to deadline minus the
execution tirne of that process, then this process
is said to be unschedulable elsewhere.

By using semi-distributed approach, unschedu­
lable newly coming aperiodic processes are tried
to be scheduled at intradomain level. Each node
in a domain sends its schedule list and unschedu­
lable aperiodic processes list to the CLB perio-
dically. CLB collects this information, then tries
to find appropriate empty tirne slots on different
nodes of its domain for unscheduled aperiodic pro­
cesses. If it can find such a node, then this node
is determined as destination node, and process
migration takes plače. Otherwise the process is
said unschedulable within this domain. If such a
condition occurs the strategy works in the inter-
domain level in the following way:

1. The CLB of domain A {CLBA), sends a
query to one of its nearest neighbors CLB
of domain B (CLBg), to form a temporary
pair, which enables a controlled, stable envi-
ronment suitable for process migration. The
query has two purposes:
a. it informs the CLBs tha t CLB A wishes
to form a pair
b . it contains a list of processes and tirne
constraints for each processes.

2. CLBB after receiving the query can perform
one of three options:

— rejecting CLB A 'S query; this implies
that CLB A must send a query to ano-
ther neighbor domain

— form a pair with CLB A] this implies
that CLB A as well as CLBB reject ali
incoming queries until the pair is bro-
ken.

— postpone CLB A when CLBB is in a mi-
grating state, tha t is, sending processes
this implies that CLB A must wait until
CLBB forms a pair with it, or rejects
it- CLB A cannot query anyone else.

3. After establishing a pair, CLB A sends un­
schedulable aperiodic real-time processes list
to the CLBB- Then CLBB broadcasts this
information to ali of its nodes. Nodes try to
schedule these processes on their own sche­
dule table. If this is pos sible, scheduled pro-
cessor id and its response tirne are returned

to the CLBB- As the last step, CLBB com-
pares the response times of the same proces­
ses on different nodes and selects the node
giving the minimum response time as the de­
stination node.

4. If no processes can be executed on CLBB,

then CLBB informs CLB A of this fact and
the pair is broken. Otherwise the proces­
ses are migrated. This process is repeated
for ali remaining unscheduled aperiodic real-
time processes until no process is left.

4 Operating System Support
In order that the central load balancers can com-
municate efficiently, the operating system should
provide some form of multicast communication.
The group management and naming modules de-
scribed below were added on top of the existing
facilities of the NX/2 kernel of the Intel iPSC/2
hypercube simulator.

4 . 1 G r o u p M a n a g e m e n t

Processes that are functionally related to finish a,n
overall task are included in a group. These pro­
cesses communicate frequently in multicast mode
where one process which is the member of a group
sends a message to ali other members of the
group as one-to-many communication (Cheriton
k Mann 1988).

In our system, groups could be distribu-
ted over the processor domains. Each proces-
sor domain has a group server tha t initiates
ali local group communication primitives, like
make_group, kilLgroup, join_group, leave.group,
etc. Each group server is responsible for only the
local members of any group. Ali local members
that are located in a domain send their requests to
their own group server of the domain. Only group
server could be in contact with other members of
the group via other group servers if needed.

When a process in a domain wants to create
a group, it sends tha t requests to the group ser­
ver. Group server creates a group control block
and sends that request to the group servers on
the other domains. However joining to a group
or leaving a group are done locally. No interdo-
main communication is needed for these frequent
services. When a process from a group wants to

A SEMI-DISTRIBUTED LOAD BALANCING MODEL... Informatica 19 (1995) 97-109 105

send a group message to ali other group members
over the system, it first sends that request to the
local group server which then sends the message
to ali other members in that domain and pass the
message to ali other group servers. These group
servers on the other domains do the same thing
simultaneousb/. So group communication is han-
dled in parallel by the group servers distributed
over the domains of the MPP system.

1 fe0

"P
o

Domaili Numbers

h I 2 Si D8

2 3 4 5
Sample Task Graphs

4.2 Naming

A naming facility in a distributed system, in gene­
ral should provide a mapping from system names
to addresses where the object is residing, and a ro-
ute to specify how to get there (Goscinski 1991).
The naming is implemented by the name servers
in each domain which hold a subset of the glo-
bal naming space for the objects in that domain
(Cheriton k, Mann 1988). The name servers form
a process group and communicate as described
above. The name server in a domain contains the
address of the objects in its domain and can re-
ceive a request from a local processor or another
name server for an address of an ob ject. If the re-
quest is local, a check is made to find if the object
is located at an address in that domain. If this
is not the čase, a broadcast message is sent to aH
name servers to receive the address. In this čase,
only the name server which has the address of the
object will respond.

5 Implementation And Results
The proposed load balancing techniques were im­
plemented in an Intel iPSC/2 hypercube simula­
tor running on OSF/1 MACH Unix environment
with the following results obtained.

5.1 Stat ic Scheduling Results

The performance of T P M (Task-to-Processor Ma­
pping) and DA (Domain Allocation) algorithms
were evaluated by using sample task graphs ge-
nerated randomly by TGG (Task Graph Ge-
neration) algorithm, generally in the form of
supervisor-worker model. Results were obtained
for different number and topologies of processors,
several heuristic functions for real-time tasks, and
different number of domains.

Figure 9: Time Spent for Static Mapping in EDF

Parallel system topologies are selected as 4-
processor mesh topology, and 8 and 16-processor
hypercube topology. Processor domain numbers
are selected as follows:

• DN = 1 and 2 for 4-processor čase
• D N = 1 , 2 and 4 for 8-processor čase
• DN=1,2,4 and 8 for 16-processor čase

DN=1 means there is only one domain in the sy-
stem. In this čase, domain allocation phase is not
used.

For different domain numbers, we have ob­
tained tirne measures for task-to-processor ma­
pping and percentage of real-time tasks whose de­
adlines are met. The following are some of the re­
sults we have obtained for different heuristic func­
tions:

EDF (Earliest-Deadline-First) Heuristic:
Fig. 9 shows tirne spent during static mapping of
tasks to processors for D N = 1 , D N = 2 , D N = 4 and
DN=8 where M=16 with hvpercube topology. N
varies between 24 and 48 interrelated tasks.

Fig. 10 shows the number of real-time tasks
whose deadlines are met at the end of our static
scheduling scheme versus the number of real-time
tasks in sample task graphs for the parallel system
with M=16 processors and hypercube topologv.

MLF (Minimum-Laxity-First) He­
uristic: Fig. 11 shows tirne spent during static
mapping of tasks to processors with varving do­
main size where M=16 with hypercube topology.
N varies between 24 and 48 interrelated tasks.

Fig. 12 shows the number of real-time tasks
whose deadlines are met at the end of our static
scheduling scheme versus the number of real-time
tasks in sample task graphs for the parallel system
with M=16 processors and hypercube topologv.

HZ = (EDF * W\ + MLF * W2)Heuristic:

106 Informatica 19 (1995) 97-109 K.Erciye§ et al.

sP

tS
1 »p
(D

1 ^0

Q
\0

Domain Numbers

|l 1 2 fl4 • *

24 24 32 40 48 48
Number of Tasks in Sample Task Graphs

Figure 10: Deadlines met in EDF

eP

1 *°
(D
| tP

Domain Numbers

51 i | 2 | 4 D 8

1 " 2 3 " 4 ' 5
Sample Task Graphs

Figure 11: Time Spent for Static Mapping in
MLF

\"jP

E
IT 6°
E

t- No

o

Domain Numbers

II 1 2 | 4 D8

2 ' 3 4 ^ 5
Sample Task Graphs

Figure 13: Time Spent for Static Mapping using
H3

<čP

'S

O)
C

1 oP
o

\0

Domain Niunbers

ll 1 2 • > D*

24 24 32 40 48 48
Number of Tasks in Sample Task Graphs

Figure 14: Deadlines met in H3

Fig. 13 shows tirne spent during static mapping of
tasks to processors for D N = 1 , DN=2, DN=4 and
DN=8 where M=16 with hypercube topology. N
varies between 24 and 48 interrelated tasks.

Fig. 14 shows the number of real-time tasks
whose deadlines are met at the end of the static
scheduling scheme versus the number of real-time
tasks in sample task graphs for the parallel system
with M=16 processors and hypercube topologv.

<čP

_ "P IS
« «P
CD

1 ?P
\Q?

Domain Numbers

ll 1 2 | 4 Q*

24 24 40 48
Number of Tasks in Sample Task Graphs

48

Figure 12: Deadlines met in MLF

5.2 D y n a m i c L o a d B a l a n c i n g R e s u l t s

The dynamic load balancing mechanism is imple­
mented for soft real-time processes described in
Section 3 by adding group management and na-
ming modules to the existing NX/2 kernel of the
hypercube simulator. The semi-distributed cen­
tral dynamic load balancers are system processes
which communicate with other load balancers to
perform load transfer. Process migration facility
is simulated. Real-time approach is implemented
and system's performance is observed for diffe-
rent number of domains and processor numbers.
In figures 15-17, the percentages of aperiodic pro­
cesses meeting their deadlines that have been in

A SEMI-DISTRIBUTED LOAD BALANCING MODEL. Informatica 19 (1995) 97-109 107

C «Pl
ra

tio

i feO

* i
1 »P;

CD
O
C

1 ̂ 1
o t
0) '

—j
j
|

1
| 3

o- 0 . t '

(

i u«

2x16

f
| S

3

™ .

Figure 15: Test of Real-time Approach When Do­
main Number is Constant and Processor Numbers
in Each Domain are Variable.

C &P
o **3
CO

o -
i ^
o
o

1 tf>
CD
CJ
C

£ «£
o t
CD

°- 0

E i
E
E

4 x 8 *

^ 1

16x2

Hi?

Bli
3

8 x 4
r «P
o
cO

^
o
o
2 h°

C

E ^0

O

°- o
1

i
1 2)

_ t |jgjj£
-

4

3

Figure 17: Test of Real-time Approach When Do­
main Number is Variable But Processor Numbers
in Each Domain are Constant

Figure 16: Test of Real-time Approach When Do­
main Number is Variable But Processor Numbers
in Each Domain are Constant

migration list are shown.
Fig. 15 shows the performance of the system

when domain number is 2 but number of proces-
sors in a domain is varying as 4, 8 and 16. When
the domain number is constant but the proces­
sor number increases, system goes to a centralized
manner and performance of the system decreases.

Fig. 16 shows the system test results when do­
main number is varying but the total processor
number in the system is constant. As the number
of domains increases, the system closes to a di-
stributed condition and the system performance
increases hence the percentage of the number of
aperiodic processes meeting their deadlines rise.

Performance of the system, when the domain
number is varying but the processor number in
each domain is constant, is shown in Fig. 17. As
the domain number in the system increases, the
number of aperiodic processes meeting their dea­
dlines increases.

Schedulability ratios for 50 processes on varying
number of domains are represented in Fig. 18.

CD N 0
3
-o CD
SZ

ti »P
CD
CO

S t 0

o
Q_

o \ 0
CD

. D

E n
=> 0
Z

>•'''
X

»'

1 2

/ ~

--•̂ ,,-»"""

3 4 5 ' 6 ' 7
Number of Domains

-a

8

Figure 18: Number of Processes Scheduled Using
Real-time Approach For Varying Number of Do­
mains

108 Informatica 19 (1995) 97-109 K.Erciye§ et al.

Each domain has 4 processors in this čase. It can
be deduced from the figure that as the number
of domains in the system increases, schedulability
chance of the processes also increases.

6 Conclusions

We have proposed a framework for load balancing
and for running applications in a parallel proces-
sing system. The main components of the system
are the deterministic scheduler, the dynamic load
balancing mechanism and operating system su-
pport modules for dynamic load balancing. The
off-line scheduler is used to allocate periodic, hard
real-time processes and the dynamic load balan-
cers transfer aperiodic soft real-time processes
from heavily loaded to lightly loaded nodes. The
processors of the parallel real-time system are di-
vided into domains which are a collection of pro­
cessors. Both static and dynamic schedulers try
to balance load at intradomain and interdomain
levels, but in different directions. The static sche­
duler starts from global system information and
ends in allocation of tasks to processors of indivi-
dual domains whereas the dynamic load balancers
first t ry to even the load within the domain and
if this is not possible, communicate with load ba­
lancers of other domains to perform transfers at
interdomain level.

The static scheduling model is tested and eva-
luated for approximately 1500 precedence related
tasks. The results can be summarized as follows:
It is observed tha t , when the system is partitio-
ned into domains, tirne spent during mapping de­
creases as the number of domains in the system
increases. This is caused by the fact tha t , do­
main allocation phase minimizes the search space
of Task-to-Processor Mapping phase during fin-
ding optimal processor for a task. This result is
especially important for M P P systems. The per-
centage of deadlines met for heuristic functions
are given in Table 1.

Partitioning the system into processor doma­
ins is an advantageous approach according to the
simulation results we have obtained. When the
system is partitioned into domains, tirne spent
for static scheduling decreases. Since the perfor-
mance of the model we have proposed is approxi-
mately the same for domain partitioning approach
and the approach without domains, the domain

Table 1: Percentage of Real-Time Tasks whose
deadlines are met.

EDF
MLF
113

M=4
0.96
0.96
0.97

M=8
0.97
0.98
0.98

M=16
0.94
0.98
0.96

partitioning scheme tha t has less tirne complexity
will be preferred. Also, the concept of domain
will provide the base for centralized use of reso-
urces at intradomain level and distributed usage
of resources at interdomain level.

For the dynamic load balancing čase, the star-
ting point of our research was the fact tha t nei-
ther fully distributed nor centralized load balan­
cing policies yield good performance for M P P sy-
stems. We therefore designed a semi-distributed
model which makes use of both approaches. The
iPSC/2 hvpercube simulator unfortunately crea-
ted problems after 32 processors, so the maximum
domain number we could test is 16 each with 2
processors. It is observed tha t when the system
is tested for varving number of domains and pro­
cessors, the percentage of the scheduled aperio­
dic real-time processes rise sharply as the number
of domains increase which is in accordance with
what we expected.

This semi-distributed management of resources
by confining local information to domains and
acquiring this information if needed by use of
the underlying kernel services can be extended to
other higher system functions such as flle servers,
etc. which can be built on this structure using
the same principle. For example, a process in a
domain, which wants to open a file, would send
a message to the file server of tha t domain. If
the file is not found locally, the other file servers
can be informed to find the file and transfer data.
We think this approach eliminates the need for
central or the replicated data, which would lead
to bottleneck in the first čase and overhead for
consistency in the latter.

The results obtained for both static and dyna-
mic load balancing cases are decisive in accepting
tha t partitioning a parallel real-time system into
domains and managing them accordingb/ yields
better performance than no-domain čase. Secon-

A SEMI-DISTRIBUTED LOAD BALANCING MODEL... Informatica 19 (1995) 97-109 109

dly, this idea can further be used for other reso-
urce management purposes. At a more abstract
level, each domain can be considered a node of a
distributed real-time svstem connected by a real-
time network. Most of the methodologv deve-
loped is valid for these looselv coupled svstems
with the modification of the communication costs
accordinglv. A future investigation area would be
on how to configure the size of the domains to suit
an application.

[9] Sadavappan P. k Ercal F. (1987) Nearest
Neighbor Mapping of Finite Element Graphs
onto Processor Meshes. IEEE Transactions
on Computers, vol.c-36, no.12, p . 1408-1424.

[10] Stankovic J.A. k Ramamri tham K. (1988)
The Spring Kernel: A New Paradigm for
Real-Time Operating Svstems. COINS Te-
chnical Report 88-97, Universitv of Massac-
husetts, Amherst.

References

[1] Audsley N. k Burns A. (1990) Real-time Sv­
stem Scheduling. Technical Report YCS134.
Department of Computer Science, University
ofYork, UK.

[2] Bryant R.M. k Finkel R.A. (1981) A Sta-
ble Distributed Scheduling Algorithm. Pro-
ceedings of the 2nd International Conference
on Distributed Computing Svstems.

[3] Cheriton, D.R. k Mann T.P. (1988) Decen-
tralizing a Global Naming Facility for Impro-
ved Performance and Fault Tolerance. ACM
Transactions on Computer Svstems, 7(2), p.
147-183.

[4] Efe K. (1982) Heuristic Models of Task As-
signment Scheduling in Distributed Systems.
IEEE Computer, June 82, p. 50-56.

[5] El-Rewini H. (1989) Task Partitioning and
Scheduling on Arbitrary Parallel Processing
Systems. PhD. Thesis, Oregon State Univer­
sitv.

[6] Goscinski, A. (1991) Distributed Opera­
ting Systems: The Logical Design. Addison-
Wesley, p. 300-344.

[7] Kremien O., Kramer J. k Magee J. (1993)
Scalable, Adaptive Load Sharing for Distri­
buted Systems. IEEE Parallel & Distributed
Technologv, vol.l , no.3.

[8] Liu J. k Layland J. (1973), Schedu­
ling Algorithms for Multiprogramming in a
Hard Real-time Environment. Journal of the
A CM, 20(1), p.40-61.

Informatica 19 (1995) 111-122 1 1 1

Optimal Algorithm for Real-Time Fault Tolerant Distributed
Processing Using Checkpoints

Zbigniew M. Wojcik and Barbara E. Wojcik
Smart Machines, 13703 Morningbluff Drive, San Antonio, TX 78216, USA
Phone: (210)496-7287, Fax:(210)496-6218

K e y w o r d s : fault-tolerant computing, distributed processing, real-time systems

Edited by: Marcin Paprzycki, Janusz Zalewski
Rece ived: February 28, 1994 Rev i sed: November 7, 1994 A c c e p t e d : February 28, 1995

The paper presents optimal algorithm for a real-time deadlock-free fault-tolerant distri­
buted processing. Our fault tolerant computations do not incur any postponements in
the underlying distributed processing and need the minimum number of messages. Both
the underlying messages and the messages maintaining fault tolerance do not need to
arrive in the order in which they have been sent. The method is based on the asyn-
chronous, atomic checkpointing of the sender and receiver of a message. Messages not
balanced in the last permanent checkpoints are recorded in the new checkpoints. The
fault recovery is based on: a) The repetition of ali messages lost according to a record of
unbalanced messages in the last permanent checkpoints; and b) Undoing every message
re-sent during the fault recovery, or undoing of a computation repeated according to a
record of unbalanced messages in the last permanent checkpoints.
Our fault recovery involves only processes which communicated before a failure. Proof
of the resilience of the fault recovery algorithm is presented.

1 IntroductlOn its checkpoint acknowledgement to the initiator.
Upon receiving this checkpoint acknowledgement,

The presented approach1is based on checkpoints2. the initiator changes its tentative checkpoint to
Checkpointing assures the overall system consi- permanent and then removes its previous perma-
stency after faults during execution of any distri- nent checkpoint. If the dependant fails before the
buted algorithm. Our checkpoint initiator makes checkpoint acknowledgement is received, then the
its tentative checkpoint and sends its checkpoint initiator recovers the dependant from the previ-
request to its dependant. To the checkpoint re- ous permanent checkpoints. The reminder of this
quest, information is appended about ali messa- section discusses advantages of our new approach,
ges received from the dependant and sent to the and presents technical details associated with it.
dependant by the initiator. Upon receiving the l . i . General overv iew
checkpoint request, the dependant treats the ini- Q n e a p p r o a c h t o resiUent fault recovery (so cal-
t iator 's checkpoint as permanent (i.e., if the initi- l e d backward error recovery) on a distributed sy-
ator fails, the dependant wiU recover the initiator s t e m p r o v i d e s a c o m p i e t e execution of the en-
from the initiator's tentative checkpoint). The t i r e a t o m i c c o m p u t a t i o n (transaction) on ano-
dependant makes its checkpoint, and then deletes t h e r s i t e (R a n d e l l) [7]). A commit protocol enfor-
its previous permanent checkpoint treating thus c e s t h e transaction atomicity, i.e., if a transaction
its current checkpoint as permanent. Then sends i s a c c e p t e d f o r eXecution, it must be completed.

If the atomic action is too long, it may postpone
JThis research has been sponsored in part by the Army o t h e r t a s k g m a k i n g t n l l s t h e s y s t e m inconvenien t ,

Research Office under the contract DAAH04-94-C0019. and it is not clear whether there is stili a correct
computation or an error. As a result, it becomes

Dallas, 1990 [14]. more difficult to detect a fault, bečause the hand

The early version of this paper waš presented at the
2nd IEEE SymP. on Parallel and Distributed Processing, computation or an error. As a result, it becomes

112 Informatica 19 (1995) 111-122 Z. Wojcik

shaking procedure cannot be used until the tran-
saction times out. Simply splitting the task into
a few parts would make it non-atomic.

This paper presents an approach which allows
a node to divide a distributed request into se-
gments without affecting the internal consistency
of the transactions and to implement the typi-
cal hand-shaking procedure for failure detection
at any tirne. In general, goals of the proposed
methodology is to enable time-critical real-time
fault-tolerant computing by the following means:

- Resilient fault recovery in an asynchronous
environment in which the messages are not
received in the order in which they have been
sent. This is to avoid the necessity of syn-
chronization involving undesired waits for de-
layed or lost messages;

- Elimination of waits for acknowledgements
for checkpoint messages and for checkpoint
decisions (e.g., whether to make checkpoint
permanent) . Our system messages associa-
ted with fault-tolerance do not involve syn-
chronization with undesired postponements
of underlying computations;

- Deadlock freedom for our send-receive
checkpointing. Deadlock freedom and no
postponements assure timeliness during our
fault-tolerant computing;

- Interruptible tasks (or transactions). Long
tasks do not need to be started again from
the beginning in čase of a fault what assures
real-time execution;

- Fault recovery of sequences of short tasks or
transactions if it is too expensive to checkpo­
int every short action; and

- The minimum number of checkpoint messa­
ges providing optimality of our algorithm.
The optimality criterion is here both the
communication tirne (the number of checkpo­
int messages) and the waiting time.

A delayed or lost message postpones a checkpo­
int and a process in CSP [1,3]. One remedy
not to postpone indefinitely the processes waiting
for lost or delayed messages is to undo tentative
checkpoint [3]. Permanent checkpoint may be po-
stponed indefiniteb/ in this way if many messages

arrive with some delays. Hence, this approach
is abandoned in this paper. Because we also use
point-to-point messages, we significantly improve
CSP.

1.2. Basic A s s u m p t i o n s
Fault recovery resilience is achieved under the

above goal by merging into one atomic entity
the sender's and receiver's checkpoints and recor-
ding ali of the messages in the sender's and recei-
ver's checkpoints. A send-receive (point-to-point)
checkpoint proposed in this paper is a collection
of records and actions involving:
1. Sender q's checkpoint (q is referred to as initi-
ator);
2. Initiator's message iq_r } requesting its P re-
ceivers (dependants) 1, . . . p, . . . P to
perform their checkpoints, where k is the index of
subsequent q's message. Each checkpoint request
i\-v B contains: a) A record of ali sent messages

tnqJp which should have been received by p; b) A

record of ali received messages mp_q which have
been sent by p, where l is the index of subsequent
p's message;
3. Ali receivers, ('dependants') checkpoints;
4. Dependanfs acknowledgements atcJ, -,_ to the
i^_r x sent by ali dependants containing: a) A re­
cord pmp_q of messages mp_q which should be re­
ceived by q; b) A record pmqJp of messages rnqJp

received from q.
The information about the initiator's messa­

ges is passed to the dependanfs checkpoint to-
gether with the checkpoint request. The depen-
dant sends a record of its messages attached to its
acknowledgement. The atomicity of send-receive
checkpoint operations becomes anew specific con-
straint placed on the structure of distributed ope­
rations.

The atomic send-receive checkpoints allow a
node to detect a failure occurring at a time of
making the checkpoints. If a caller fails during its
service and there are other requests to the server,
then the failed caller's task or transaction will be
aborted or rolled back to its last permanent send-
receive checkpoint to unblock the other requests
(and to service them by the server).

A failed task or transaction is rolled back toge-
ther with its server to their last permanent send-
receive checkpoint. The lock acquired by a failed
task or transaction is relinquished by the fault re-

OPTIMAL ALGORITHM FOR... Informatica 19 (1995) 111-122 113

covery. No other object is able to access the object
locked by a failed process before the rolling back
(because prevention of task or transaction atomi-
city is imposed on the execution).

One of the advantages of the proposed scheme
is that many requests may be serviced in both the
preemptive and the round-robin (RR) manner re-
ducing the average waiting time. Using preemp-
tion, the driver of the preempted job is forced to
be the checkpoint initiator of its tasks. When de-
aling with RR, a sender (i.e., the transaction ini­
t iator) may decide to make its checkpoint when
a RR quantum expires. The sender forces the re-
ceiver to make its checkpoint too. Atomicity of
the operations: send, sender checkpoint, receive,
receiver checkpoint, is provided.

The presented method of fault-tolerant compu-
ting based on point-to-point message passing (i.e.,
involving two sites), is directly extendible to bro-
adcasts one-to-many, when many one-to-one mes-
sages are considered (e.g., one-to-eight broadcast
is treated as eight one-to-one messages). In a si-
milar way, fault tolerance of many-to-many bro-
adcasts can be provided.

1.3. Paper ' s s tructure

The rest of the paper is structured as follows:
Section 2 discusses other approaches to fault-
tolerance. Checkpoint consistency is defined for
two-phase-commit protocols and consequences of
inconsistency during fault-recovery are discussed.
Recovery resilience is defined and a two-phase-
commit protocol is shown to be ineffective in
čase when messages are not received in the or-
der they have been sent. Section 3 develops a
remedy for the inconsistency problem of the two-
phase-commit fault recovery protocols when the
send and receive operations are not synchroni-
zed. Send-receive checkpoint consistency of enti-
rely asynchronous messages is defined. Checkpo­
int protocols and fault recovery protocols for the
initiator and dependants are formulated. Section
4 validates the proposed fault recovery protocols.
Several interesting and very useful properties of
the send-receive checkpoint fault recovery are pro-
ved, e.g., deadlock freedom, the minimum num-
ber of messages, completeness, effectiveness on a
distributed environment with optional lengths of
communication lines, and resilience.

2 Some Typical Problems in
Fault Recovery

Fault tolerance is an important element of real-
time systems to assure service completion before
a deadline in čase of a fault. When a node in
a distributed system fails, a process residing on
it must be restarted in a manner which preser-
ves overall real-time svstem consistency (i.e., the
execution must continue as if there was no fault).
Shin at al. [9] concentrate on selecting time mo-
ments of making the checkpoints to minimize the
mean task execution time for real-time applicati-
ons. System consistency is not considered what
may lead to errors in čase of a failure, or the sy-
stem must be resumed from the beginning if a
fault happens. Operating system computations
to assure consistency may need much more time
than making the checkpoints.

Real-time system needs optimization of the
consistency computations first. Ramanathan and
Shin [6] realize the need to maintain the overall
system consistency in real time if a fault happens.
Because approaches known from literature intro-
duce undefined waits and postponements, they
offer a special hardware to synchronize ali clocks
on ali nodes to make checkpoints at ali sites at
the same time. This avoids time consuming syn-
chronization of the checkpointing operations by
the messages (see the two-phase commit protocol
[3] described below). The programmer decides in
the parallel program of the time points of making
the checkpoints. The programmer should set the
checkpoints in the program at points of approxi-
mately the same time of execution from the pre-
vious checkpoint. Tasks.which finish earlier must
wait for the longest task.

Our approach to real-time fault-tolerant distri­
buted computing is easier to use, because: (a) It
does not need a special hardware; (b) It provides
consistency also on a heterogeneous system; (c) It
does not spend even a small t ime for waits; (d) It
does not involve any unexpected postponements
associated with delayed or lost messages; (e) It
is deadlock-free; and (f) It does not need a ma-
nual setting of the checkpoints in the program by
the programmer (ali is done automatically by the
operating system).

Generally, to provide system consistency in čase
of a fault, a strategy of rollbacks to the last per-

114 Informatica 19 (1995) 111-122 Z. Wojcik

manent checkpoint is used to make the recovery
[3]. In this section checkpoint consistency and re-
covery resilience are defined, and then some of the
pitfalls associated with checkpointing are discus-
sed. The following assumptions are made for the
reminder of the paper:

ASSUMPTION 1. Ali processes learn of the fai-
lure of any processes they communicate with wi-
thin a finite tirne. A tirne out (i.e., no response
within a prespecified tirne) signifies a receiver's
failure or a communication link failure.

ASSUMPTION 2. Checkpoints are made asyn-
chronously by processes. A message obtained du-
ring a checkpoint waits until checkpoint comple-
tion.

(a) <^—^-

*- P

c0(q) failure

(b)
co{<l) ci(q)

ASSUMPTION 3. No failure can partition the Figure 1: Underlying inconsistencies in fault re-

distributed system. covery

ASSUMPTION 4. Messages sent during the same
distributed computation carry the same unique
process ID. Ali messages of the same ID are num-
bered in the increasing order.

DEFINITION 1. A checkpoint is consistent in a
system in which messages arrive in the order they
have been sent if [3]: a) It does not contain a
record of a received message that is not recorded
as sent in a checkpoint of a sender; b) No message
is lost after resumption from the last receiver's
checkpoint.

LEMMA 1. Checkpoints made independently of
send and receive operations can be inconsistent.
PROOF. Suppose, a failure occurs just before or
when a checkpoint is made. A message may be
registered as received in the receiver's checkpoint
(e.g., in the checkpoint cx(p) in Fig.l .a) but not
recorded as sent in the checkpoint of the sender
(e.g., in cQ(q) in Fig. l .a) , violating DEFINITION
l.a. Also, a message registered as sent (e.g., in
c\(q) in Fig. l .b) but not registered as received
may be lost by the failed receiver if a receiver's
failure occurs just before or when making a rece­
iver's checkpoint violating DEFINITION l .b. •

Another danger in a fault recovery is the do­
mino effect (Randell [7], Russell [8]) occurring
when processes are checkpointed after message re-
ceipt. For example, process p (Fig.2) could be re-
sumed from its last checkpoint c2(p) if not its last

co(p) ci(p) C?(P) fail ure

7
i-p

cofa) c i (s)
c2{q)

Figure 2: The 'domino effect'

message rn^_q sent to q. To avoid the service of
the message twice by q (after p's recovery), the
process q is rolled back to its previous checkpo­
int c\{q). But p has the record of the received
message from q in its last checkpoint C2(p). Re-
suming from c\{q), this message would be sent
again to p, thus would be serviced twice by p. To
prevent servicing it twice, process p is rolled back
to its previous checkpoint c-i(q). The only stable
checkpoint is the original status c0(p), co(q). The
domino effect involves too much tirne and storage
space to keep ali checkpoints.

The live-lock effect [3] results from the lack of
synchronization and starvation of processes invol-
ved in a communication interrupted by a failure.
Processes may be rolled back and recovered from
the failure an infinite number of times. Consi-
der the scenario presented in Fig.3: q must be
recovered from a failure by resuming it from the

OPTIMAL ALGORITHM FOR... Informatica 19 (1995) 111-122 115

co(p)
— &

aiCjt1, - acJtBOwIe<Jge teotatire checkpoint
e,(p) / (mcutge of making tent&tive checkpoint).

m, Z p-q

co(g) failure

Figure 3: The 'live-lock' efFect

checkpoint c0(g) (defined for both p and q). Re-
ceiving the same message mq-v for the second
tirne, process p rolls back itself to its checkpo­
int c0(jp) (assuming, the fault recovery is not syn-
chronized). Resuming, p sends its message mp-q

again, and q receiving it twice rolls back itself to
its Co(q). The two processes perform the recovery
(through rollback) infinitely.

DEFINITION 2. A fault recovery algorithm is
resilient to a process or channel failure if after a
rollback operation:
a) there are no lost messages nor is a request servi-
ced multiple times without undoing the excessive
computations (i.e., the remaining set of checkpo­
ints is consistent);
b) global atomicity is achieved (e.g., the commit
protocolfor transaction execution is not violated);
c) there are no subsequent rollbacks through a
sequence of checkpoints (i.e., the fault recovery is
domino effect free);
d) synchronization avoids undesired repetition of
the recovery process (i.e., there is no live-lock).

A straightforward approach to fault tolerance
at tempts to save only the last checkpoints of pro­
cesses and the fault recovery takes plače by rolling
back to the last checkpoints [9]. A fault may ha-
ppen, however, during checkpointing process. To
make the fault recovery resilient to errors during a
checkpoint, Koo and Toueg [3] assume an additi-
onal tentative checkpoint. The tentative checkpo­
int is made permanent after the completion of
the entire send-checkpoint operation (if no fault
oecurs). If an error oecurs at the time of making
the tentative checkpoint, the failed process is rol-
led back to the last permanent checkpoint. Any
operations (including tentative checkpoints) per-
formed after the permanent checkpoints may be
undone. Any last checkpoint not completed yet
is tentative (i.e., it may be undone without affec-

lndactha
oftenUtiva

^n' checkpoiot.

p'j Jut permanent vheckpoiat
daes not record the "*' .

Message mj_(lost due to
tendiog it hy a pa (i
longer than att?+\ «ad « fauJt.

CanooKaJre the
tenUtivc checkpoint

bere.

Now q'i etecipoint
reeords the receipt
o / rn^ , and maka
fb« tivo checkpoints

Figure 4: Inconsistencies with fault recovery using
the two-phase commit protocol: a,) a message

1 lost if sent by a p&th. longer than the ac-m. p-q
knowledgement of the checkpoint request and as
a result of the receiver's failure; b) remedy to the
loss of the above message by delaying the perma­
nent checkpoints [3]: c) message rnk

q_p lost if pro­
tocol [3] is installed (and if sent by a p&th longer
than the checkpoint request i*±p and as a result of
a receiver's failure) and recovered using our send-
receive checkpoint recovery

ting prospeetive fault recovery). The tentative
checkpoint becomes permanent after the receiver
sends its acknowledgement and after the initiator
makes its own tentative checkpoint. Each perma­
nent checkpoint is consistent. Tentative checkpo­
ints do not need to be consistent.

One approach to fault recovery ušes a two-
phase-commit protocol. An initiator q creates
its tentative checkpoint and induces tentative
checkpoints for other processes (e.g., using a mes­
sage ik

q_v in Fig.4.a) in the first phase, and then
blocks itself and waits for responses. If q recei-
ves messages of completion for ali of the induced
tentative checkpoints, it changes ali the tentative
checkpoints to permanent in the second phase.
Dependents stay blocked waiting for the initia­
to r^ decision. However, the permanent checkpo­
ints are not consistent, because a message mp_g

sent by p before making the permanent checkpoint
c0(p) and received by q after making ali checkpo­
ints permanent will be lost if q fails after tha t .

116 Informatica 19 (1995) 111-122 Z. Wojcik

This problem is approached by the following mo-
dification [3]: The dependant p does not make its
tentative checkpoint induced by q without an ac-
knowledgement of its outstanding message mp_q

(Fig.4.b).
However, there is another danger with the mo-

dification presented in [3]. Consider the scenario
as in Fig.4.c, when the receiver of i tp" fails af-
ter making the checkpoints. The i ^ (checkpo­
int request) contains a record (acknowledgement)
of ali messages received by q from p (e.g., of
mp_) . According to [3], if the p's latest per­
manent checkpoint does not have the record of
sending this message to q, then p makes the de-
cision to take its tentative checkpoint. When q
learns about taking the tentative checkpoint (by
a message atcl

pt}q), then q changes ali the tenta­
tive checkpoints to permanent (e.g., by a message
mcpgtp - make checkpoint permanent) in the se-
cond phase. Based on the protocol presented in
[3], the processes p and q do not see any inconsi-
stencies. However, the rnq gets lost if it is sent
by a longer path and if the p fails!

One of remedies not exploited in this current
paper and in [3] is to suspend the second phase
of making the tentative checkpoint permanent (by
the initiator q) until receiving aH the delayed mes­
sages (as mq_) . This would lead, however, to
long delays and even to indefinite postponements
if one of messages is lost or when delays happen
frequently.

3 Fault Recovery Using Atomic
Send-Receive Checkpoints

The send-receive checkpoints introduced in this
paper solve the problems discussed above. To pre-
vent inconsistency and any postponements asso-
ciated with waits for delayed or lost messages, the
paper assumes tha t the request i~t* for a checkpo­
int carries the record of any messages sent by q
to p which are not balanced (i.e., not acknowled-
ged by p). Similarly, acknowledgement to the i *p

contains the record of the p's messages not balan­
ced in the p's record of sent and received messages.

The method presented in this paper does not
require the checkpointing of every send. The ini­
t i a to r^ checkpoint must be atomic with its last
send iq*p (carrying full information of ^'s unba-
lanced send messages) and then the receiver of

that message makes a tentative checkpoint. To be
able to resume correctly in čase of a failure, the
receiver needs to balance its own record of messa­
ges (exchanged with the sender) with the sender's
record of the messages (exchanged with the rece­
iver) received from the initiator with the request
iq-l- The balancing makes the receive operation
atomic with the iqt]>-

The atomic send-receive checkpointing enforces
transaction atomicity, but it is different from the
two-phase-commit protocols. The initiator of the
checkpoint expects an acknowledgement with the
information as to whether each dependant took its
checkpoint, together with the information of the
messages which have been received by the depen­
dant from the initiator. Immediately after sen­
ding the acknowledgement, each dependant chan­
ges its tentative checkpoint to permanent. The
initiator does not block itself when waiting for
acknowledgement, because records of any delaved
messages are exploited for any anticipated fault
recovery and the last permanent checkpoints are
valid anyway. The receivers of the checkpoint re-
quest also do not wait blocked for the initiator's
decision on making the checkpoint permanent (as
they have to wait in [4]) because they keep track of
any delayed messages. Because the dependants do
not wait blocked, the message make-checkpoint-
perm&nent used in [3] (e.g., mcpqtp in Fig.4.c) is
not necessary for the checkpointing in the propo-
sed approach. There is also no requirement that
messages be received in the order they have been
sent.

DEFINITION 3. A send-receive checkpoint is
consistent if:
a) It contains (optionally) a record of a received
message that is not recorded as sent in the sen­
der^ checkpoint, but the sender's record of ali
sent and received messages is in the possession of
the receiver (e.g., this record is passed with the
i_v in Fig.5.b);
b) It has an optional record of sent messages
which are not recorded as received in the recei­
ver^ checkpoint (compare mp_q, Fig.5.a), but the
receiver's record is in the possession of the sender
(e.g., the record is passed with iqtp in Fig.5.a);
and
c) no message is lost after resumption from the
last send-receive checkpoint independently of a
delay of the message.

OPTIMAL ALGORITHM FOR... Informatica 19 (1995) 111-122 117

Send - receive checkpaiat
with tbe records of messages
m'f.q and m*_p (if any).

failure

Co(p) failure

M c i(q)

Figure 5: Resilient atomic send-receive checkpoin-
ting with the minimum number of messages. The
checkpointing cloes not wait for delayed messages:
a) a čase when checkpoint request iqt^ reaches
each dependant p through a path shorter than
a regular message m'p_q; b) a checkpoint request
may reach dependant with a longer delay and the
initiator fails. A message mk

qtl is discarded when
sent during fault recovery for the second tirne af-
ter the initiator's failure; c) a checkpoint request
goes through a path much longer than the mes­
sages mk

qtl and ml
p_q and the dependant has a

fault. Message ml
p_q is repeated when it is unba­

lanced after the dependant's failure, and message
•mqtl is discarded when it is unbalanced

T h e i n i t i a t o r g's c h e c k p o i n t p r o t o c o l :

- Make a q's tentative checkpoint keeping se-
parate records of messages exchanged with
every dependant p.

- Send a checkpoint request %_p to each depen­
dant p for 1 < p < P. Each i_p contains:
a) A record qm^}p of ali sent messages mq_p,
k € {1, ---K}, which should have been recei-
ved by p; b) A record qmp]q of ali received
messages ml

p_q which have been sent by p; c)
A hand-shaking ARE-YOU-UP message.

- Reset a TimeJDut.k counter associated with
each i_v\

- IF TimeDutJz expired THEN: a) Undo the

g's tentative checkpoint; b) Recover the p
from failure.

- IF &ny a.cknowledgement atcl
p_q recei­

ved THEN make the initiator's tentative
checkpoint permanent:

Balance the q's and p's records qm\Jp and

pmf]p of messages mk_p. The record pm\jp

is received in the atcp_q,
{'} Balance the q's and p's records qm>plq and

pmp
l}q of messages ml

p_q. The record pm{
p±q

is received in the atcl
p_q;

Keep in the permanent send-receive checkpo­
int only the record of unbalanced messages.

- Do not block itself when waiting for the
atc •p-q-

The dependant p's checkpoint protocol:
IF ik

q_p received THEN:

- Make a tentative checkpoint.

- Send the acknowledgement atcl
p_q to q conta-

ining: a) A record pm^lq of messages ml
p_q,

l £ {!,...L}, which should have been rece­
ived by q; b) A record p m ^ j , of messages
mh received from q.

- Change status of the current p's tentative
checkpoint to permanent (and do not wait
for initiator's decision):

a) Balance the g's and p's records qmx
qJp and

pm}qJp of messages mq_p;

b) Balance the g's and p's records qmp
J2q and

prnplq of messages rnp_

{'}

9"

DEFINITION 4. A message is fnilure-specific if
its number is the minimum of the unbalanced
messages within the same ID.

A sequence of messages which should be
exchanged when rolling back as a result of a fa­
ilure starts from a failure-specific message. The
necessary minimal rolling-back operation is per-
formed by repetition of this failure-specific mes­
sage and the entire sequence of messages follo-
wing it. For instance, a failure specific sequence
in Fig.4.c consists of one message mq_p.

118 Informatica 19 (1995) 111-122 Z. VVbjcik

DEFINITION 5. A failure-specific sequence is
a message exchange starting with the failure-
speciflc message and ending with the last message
before the send-receive checkpoint.

A failure-specific sequence consists of messa-
ges which have the same distributed computa-
tion ID. The sequence is ordered by increasing
numbers. In čase of receiver's failure the entire
failure-specific sequence must be discarded after
the sender resumes (e.g., message rnqt.p in Fig.5.c
is discarded by p when it is re-sent to avoid servi-
cing it twice). See fault recovery protocols given
below for particulars.

The dependant's tentative checkpoint lasts only
for a tirne of sending atc1. If a dependant's
fault happens when making this checkpoint, the
permanent checkpoint is not lost.

Fault recovery protocol carried out by ini-
t iator q:

IF failure of a dependant p THEN:

— Wait at most a prespecified quantum for the
atc i •p-q-

Perform a necessary reconfiguration and roll
back to the last permanent send-receive
checkpoint (determined by the last atcl

p_q re­
ceived):

Repeat any failure-specific message mq_p or
{k} A'} mp_q recorded in qmqJp or in pmp_q as sent

and not present in pmq_p or in qinplq (re-
spectively) as received (compare messages
ml

p_q in Fig.5.c and mq in Fig.4.c).

Discard any failure-specific sequence (e.g.,
« mq_p in Fig.5.c) recorded in pmqJ as rece-

ived and missing in qmq_ as sent. For in­
stance, rnqtl in Fig.5.c is missing as sent in
last g's checkpoint. After resuming from per­
manent checkpoints these messages will be
repeated, so we prevent from servicing them
twice by discarding them.

Note tha t q keeps separate checkpoint informa-
tion for each dependant p, so it is possible to roll
back only a failed dependant. If the expected
atcl

p_q is not received within a prespecified quan-
tum, the last tentative g's checkpoint is discar­
ded and the p's failure is assumed to occur during

p's tentative checkpoint. The last tentative send-
receive checkpoint is not treated as permanent by
q before receiving atcp_q.

Fault recovery protocol carried out by de­
pendant p:

IF failure ofinitiator q THEN:

Perform a necessary reconfiguration and roll back
to the last permanent send-receive checkpoint:

1. Repeat any failure-specific message rnq_ or
{*} A'} mp_q recorded as sent in qmq_p or in pmp_ and

Ak} A'} not recorded as received in pmq_ or in qmp_
respectively (compare Fig.5.a).

2. Discard any failure-specific sequence (e.g.,
m j _ p in Fig.5.b) recorded in pmqJp as received
and missing in qmq_p as sent.

For instance, assume that q fails and its last
iq_p managed to reach p through a path longer
than <7's message m~tp (Fig.5.b), and that p le-
arns about q's failure. Then p learns also (from
<?'s record qmq_p sent with iq_p and from its own
last record pmq_p kept in its last checkpoint) that
the received mqtp was not recorded as sent by q
and that m^l is failure-specific, hence it discards
rnqtl during a fault recoverv. There could be
some more messages with the same process IDq

and higher process numbers, but they are depen­
dant on the failure-specific message and will be
discarded after rolling back.

In Fig.5.a process p learns tha t its message
mp_q is not recorded as received in ^'s last

checkpoint, because the record qmp_ received
from q with i t.p does not list it as received. The
ml

p_q occurs to be failure-specific because it has
the smallest number l among ali messages with
IDP. This dependanfs failure-specific message
will be repeated after rolling back. There could
be more messages with the same IDP with hi­
gher process numbers, but they will be repeated
automatically because they belong to the failure-
specific sequence with the same IDP.

OPTIMAL ALGORITHM FOR... Informatica 19 (1995) 111-122 119

4 Validation of the
Send-Receive Checkpoint
Recovery

THEOREM 1. Any atomic send-receive checkpo­
int is consistent.
PROOF. Because of balancing ali messages with
the received checkpoint records, the failed sender
will be resumed from its last permanent checkpo­
int but will be prevented from sending the same
message to the receiver again (Fig.5.b) or a repe-
ated message will be removed from the receiver.
As a result, the message will be serviced only
once. Furthermore, no delayed messages recei­
ved after making the permanent checkpoints will
be lost by a failure of the dependant (Fig.4.c) or
by a failure of the initiator (Fig.5.a) because the
sender performing the fault recovery will balance
the messages and each message received after the
permanent checkpoint of a failed receiver will be
repeated. Any messages not acknowledged (e.g.,
mp_q in Fig.5.a) by the checkpoint request (e.g.,
by iq-l) are repeated during the fault recoverv.
Otherwise the messages would be lost making the
send-receive checkpoint inconsistent. •

THEOREM 2. The send-receive checkpointing is
deadlock free.

- PROOF. The initiator is not blocked waiting for
the acknowledgements from its dependants. Also,
the dependants do not wait for the initiator's de­
cision regarding making the tentative checkpoints
permanent. If any p and q request the checkpo­
int at the same tirne from each other, both learn
about their messages, will be ready to balance the
messages, and will set their tentative checkpoints
to permanent. Hence, there are no waits neces-
sary for a deadlock. •

In other words, the send-receive checkpointing
does not have the two-phase structure as in [3]. It
is not a one phase protocol, because the initiator
is not blocked when waiting for dependanfs ac-
knowledgement. The acknowledgement is used by
the initiator to get rid of the previous permanent
checkpoint and to receive records about messages.

In our approach, any dependant is sent (by
checkpoint request) information of ali other de­
pendants (siblings) taking part in send-receive
checkpoints and may make decision of fault re-
covery of any sibling treating the initiator's

checkpoint as permanent and also ali sibling's
checkpoints as permanent. In the two-phase pro­
tocol [3], initiator's decision is necessary regarding
making permanent the dependants ' checkpoint. If
the initiator fails, this decision is difficult to make
during fault recoverv, because of needing addres-
ses of ali the dependants (which should reside in
the initiator's tentative checkpoint, but this ten­
tative checkpoint is not safe). Our distributed
point-to-point checkpoints are safe.

THEOREM 3 (optimality). The send-receive
checkpointing incurs the minimum number of
messages, is without postponements and waits,
and by having these features is optimal.
PROOF. Only one request and one acknowled-
gement from each dependant are needed for the
induced checkpoint carrying data about the mes­
sages which need to be received by appropriate
addressees to deduce information about delayed,
lost or repeated messages. By this, to maintain
consistent distributed computations in čase of a
fault, we need less messages than any other fault-
tolerant distributed computing known from the
literature. Using the checkpoint request each de­
pendant is fully informed, and with the aid of the
acknowledgements the initiator can perform fault
recovery of ali its dependants. •

As in [3], no more than one tentative checkpoint
is involved in the fault recovery. The number of
potential fault handling initiators is limited to the
processes sending messages. The checkpoints do
not need to be made by aH dependants at the same
tirne. The dependants are allowed to complete
their current tasks without blocking other depen­
dants who are ready with their checkpoints and
wait for initiator's decision (in [3] dependants are
blocked waiting for the decision). So, compared to
other approaches to fault-tolerance, our method is
better because of the minimum number of messa­
ges, no waits and no postponements (compare the
initiator g's and dependant p's checkpoint proto-
cols).

THEOREM 4. Fault recovery using asynchronous
atomic send-receive checkpointing executed after
N send operations, N > 1, is resilient.
PROOF. Any atomic send-receive checkpoint is
resilient because it satisfies DEFINITION 2 of
fault resilience: a) Is consistent (see THEOREM
1). b) If a failure occurs during execution of

120 Informatica 19 (1995) 111-122 Z. Wojcik

the receive fragment of the atomic send-receive
checkpoint operation, the send fragment of the
atomic send-receive checkpoint operation is ten-
tative and will be undone during the fault re-
coverv. c) Delays in comrminication are recon-
ciled by sending records of the communication
between the processes taking part in the send-
receive checkpoint, by balancing the messages and
resending any tmbalanced messages lost due to a
receiver's failure or by undoing unbalanced mes­
sages sent twice as a result of sender's failure (see
Fig.5.c). d) There is no domino effect, because
the fault recovery is synchronized by atomicity of
the checkpoints; and e) Also, the live-lock effect is
avoided since ali processes are rolled back to their
last consistent checkpoints. •

THEOREM 5. Send-receive checkpointing and
fault recovery in a real asynchronous distributed
environment is possible with paths of optional
lengths.
PROOF. The checkpointing involving messages
sent through long paths or lost messages is possi­
ble because of:

a) Receiving the checkpoint request from the initi­
ator with the record of ali the messages exchanged
with each dependant;

b) Making a record of messages exchanged with
the initiator in each dependant's checkpoint and
sending that record with the acknowledgement;
c) Balancing the messages which have been sent
actually with the received messages (based on
their records);
d) Recovering the messages lost by receiver's
failure and kept in the permanent send-receive
checkpoints;

e) Undoing messages sent twice as a result of sen-
der's fault and recoverv. •

DEFINITION 6. For real-time applications
with a deadline, an algorithm should satisfy the
following requirements: a) Be correct; b) Be op-
timal (i.e., with the lowest tirne complexity and
the minimum number of messages among ali al-
gorithms devised to solved this problem); and c)
Be deadlock-free and postponement-free.
LEMMA 2. The initiator can accept messages
from other processes before receiving acknowled-
gement from its dependants (i.e., after sending
the checkpoint request), provided that ali records

of messages are available for prospective recovery
of the initiator (if it fails).

PROOF. If the initiator fails after accepting a
message and before receiving the acknowledge-
ment, and then is recovered by its dependant, the
dependant treats the initiator's checkpoint as per­
manent. The dependant balances the messages
and is able to perform the fault recoverv. So, any
other messages received by the initiator do not
affect the checkpoint atomicity. •

THEOREM 6. Any send-receive checkpoint
operation is suitable for fault-tolerant real-time
applications (guaranteeing response tirne) with a
deadline.

PROOF. Our send-receive checkpointing satis-
fles DEFINITION 6 because of the following: a)
Is correct (see THEOREMS 1, 4, 5); b) Is optimal
(see THEOREM 3); and c) Is deadlock-free (see
THEOREM 2) and postponement-free (see THE­
OREM 2 and LEMMA 2). None of the processes
taking part in checkpointing waits indefmitely for
delayed or lost messages, nor they are deadlocked
by checkpointing procedures. •

5 Conclusion

Because of optimality (no other fault-tolerant
algorithm known from literature involves fewer
number of messages or is free from waits), de-
adlock - freedom and no unexpected postpone-
ments, the proposed checkpoint protocol can com-
plete execution within a deadline. Our checkpo­
inting is not postponed by any delayed messages,
because of immediately exchanging the informa-
tion (records) of the messages (i.e., which should
be received, if sent, and which should be sent,
when received). The maximum tirne required to
reach the consistent status of the checkpoints is
no longer than the tirne of making the checkpo­
int with our method. Other approaches known
from literature postpone the underlying compu-
tations when exchanging the checkpoint requests
and checkpoint acknowledgements to reach the
consistency, thus needing much more tirne than
the minimum tirne to make checkpoints solely.

The atomic send-receive checkpoint has the fol-
lowing advantages: a) The number of messages
is minimal (i.e., only one request is needed for
the induced checkpoint carrying a da ta about the

OPTIMAL ALGORITHM FOR... Informatica 19 (1995) 111-122 121

messages which need to be received by the ad-
dressee, and one for the acknowledgement of that
request). b) It eliminates the danger of starvation
(indefinite wait for a lost message); c) Eliminates
waiting for checkpoint request acknowledgement
and for initiator's decision; d) Is deadlock free and
complete (without postponements); e) Is consi­
stent and resilient (i.e., fully correct); f) Is execu-
table at any time moment, even during a long task
or atomic transaction; and g) Makes operation in
a real asynchronous distributed environment pos-
sible with paths of any lengths. Messages do not
need to arrive in the order they have been sent. It
keeps track over the messages that should be rece­
ived through different paths (e.g., using packets).

The fault recovery approach using atomic send-
receive checkpoints is local and asynchronous, i.e.,
any process may initiate only its own and the
receiver's checkpoint operation (e.g., when pre-
empting, after a round-robin quantum expires or
on the occasion of a message passing). So, the
checkpoint operations are synchronized by some
selected process' send and receive operations pro-
viding the global atomicity of the distributed
computation. Separate processes can be checkpo-
inted independently, rather than ali the nodes of
a distributed architecture. The checkpoints do
not need to be executed every send but after any
arbitrary number of sends and receives, and also
during a transaction execution.

The fault recovery through the rolling back
to the consistent send-receive atomic checkpo­
int does not affect consistency of real-time tasks.
Each task is handled individually according to
its consistent checkpoints. Consensus about the
consistent state of the entire system is computed
dynamically when making the checkpoints in an
optimal fashion, without any postponements of
underlying computations, by balancing messages
which should be received when sent, and also the
messages which should be sent if received. This
consensus is performed in real time, making the
system ready for immediate recovery if a fault ha-
ppens. If a fault happens, the fault recovery is
local, involving only tasks communicating with
the faulty node, without postponing other tasks
which is ideal for a real-time system. This localitv
of our fault-tolerant method provides scalability,
because independently of the hardware configu-
ration, only the nodes involved in the fault take

part in fault recovery if a fault occurs.
The implementation of one-to-many communi-

cation by using multiple one-to-one messages is
inherent in a number of parallel languages (for
example, Occam and Parallel C) and will evolve
in this direction. because not shared memorv,
but private memory enables better scalability of
parallel architectures. Nodes with private links
and private memories use point-to-point messa­
ges. Where global bus data is used (with one-to-
many messages), a fault in one of many depen-
dants can be recovered from its checkpoint saved
in a neighboring node using private links (and also
by means of point-to-point Communications).

The presented fault recovery algorithm is also
resilient to a fault during the atomic checkpo­
int operation by making tentative the sen-
der's checkpoint until completing the receiver's
checkpoint. The two site čase discussed in this
paper is easily extendible to a multisite configu-
ration.

Fault recovery of the producer or consumer can
be treated in the same way as the fault recovery of
the writer, because consumer also modifies (cle-
ars) the buffer and is thus also a writef (both con­
sumer and producer impose the exclusive lock on
the buffer). The buffer crash should be handled
as a fault of the server.

Our fault recovery may be easily combined with
a deadlock-free message routing or with a decen-
tralized distributed deadlock protocol [13] and
can be embedded on any network or hardware
configuration.

The future work needed are the real implemen-
tations. Up to now, fault-tolerance of a real-time
system is limited by the high costs because of
inadequate methods (too time consuming or too
expensive, or even incorrect). The limitations for
the proposed method are listed as the ASSUMP-
TIONS 1, 3 and 4, especially tha t the net must
not be partitioned by faults.

A simple real-time system interacting strongly
with its environment may no longer need the me-
asurements taken before a fault. A node may sim-
ply resume from the very beginning after a fault,
and take the new values measured in real time. A
more complicated real-time system, especially dis­
tributed and possessing higher decision levels, ne-
eds to remember, which part of the entire mission
have been fulfilled up to the fault, and the roll-

122 Informatica 19 (1995) 111-122 Z. Wojcik

back consistent with the mission accomplished up
to a fault is indispensable. Inconsistent resump-
tion may be more disastrous than no resumption.

6 References

[1]. K.M. Chandy, L. Lamport, Distributed snap-
shots: Determining global states of distributed
system, ACM Trans. Comput. Syst., v.3, No.l,
1985, pp 63-75.

[2]. W. H. Kohler, A Survey for techniques
for Synchronization and Recovery in Distribu­
ted Computer Systems, Computing Surveys, v.13,
no.2, pp 149-183, 1981.

[3]. R. Koo, S. Toueg, Checkpointing and Roll-
back - Recovery for Distributed Systems, IEEE
Trans. Soft. Eng., v. SE-13, No.l, pp 23-31,
1987,

[4]. L. Lamport, Time, Clocks, and the Or-
dering of Events in a Distributed System, Com­
munications of the ACM, v.21, no.7, pp 558-565,
1978.

[5]. M. Malek, "Responsive systems: A Mar-
riage between Real-Time and Fault Tolerance",
Fifth International Symposium on Fault-Tolerant
Computing Systems" Nurenberg, 1991.

[6]. P. Ramanathan, G. K. Shin, "Use of Com-
mon Base for Checkpointing and Rollback Reco-
very in a Distributed System", IEEE Trans, on
Software Engineering, v.19, No.6, 1993, pp 571-
583.

[7]. B. Randell, Reliable computing systems, in:
Operating systems: an advanced course, Eds. R.
Bayer, R. M. Graham, G. Seegmunller, Springer
Verlag, 1979, pp 282-391.

[8]. D. L. Russell, State Restoration in Systems
of Communicating Processes", IEEE Trans. Soft.
Eng., v.SE-6, no.2, pp 183-194, 1980.

[9]. K. G. Shin, T. H. Lin, Y. H. Lee, "Op-
timal Checkpointing of Real-Time Tasks", IEEE
Trans, on Computers, v.C-36, No.11, 1987, pp
1328-1341.

[10]. D.P. Siewiorek, R. S. Swarz, Reliable
Computer Systems, Digital Press, 1992.

[11]. D. Skeen, A Formal Model of Crash Re-
covery in a Distributed System, in: Concurrency
Control and Reliability in Distributed Systems,
Ed. B. K. Bhargava, Van Nostrand Reinhold,
1987, pp.295-317.

[12]. Y. Tamir, C.H. Sequin, Error recovery
in multicomputers using global checkpoints, Proč.
13th Int. Conf. Parallel Processing, Aug. 1984.

[13]. B.E. Wojcik, Z.M. Wojcik, Sufficient Con-
dition for a Communication Deadlock and Di­
stributed Deadlock Detection, rm IEEE Trans,
on Software Engineering, V.15, No.12, 1989, pp
1587-1595.

[14]. Z. M. Wojcik, B. E. Wojcik, "Fault-
Tolerant Distributed Computing Using Atomic
Send-Receive Checkpoints", Proč. 2ns IEEE
Symp. on Parallel Distributed Processing, Dal-
las, Dec. 1990, pp 212-222.

[15]. Z. M. Wojcik, B. E. Wojcik, "Rough
Grammar for Efficient and Fault -Tolerant Com­
puting on a Distributed System", IEEE Trans
Software Engineering, V. 17, No. 7, July 1991,
pp 652-668.

Informatica 19 (1995) 123-132 123

Fully Deterministic Real-Time Protocol for a CSMA/CD Type
Local Area Network

Bonaventure TchouafFe and Janusz Zalewski
Dept. of Computer Science, Embry-Riddle Aeronautical University,
Daytona Beach, FL 32114, USA
Phone: (904)226-7034, Fax: (904)226-6678
E-mail: zalewski@db.erau.edu

K e y w o r d s : Ethernet, CSMA/CD, real-time communication

Edited by: Marcin Paprzycki, Janusz Zalewski

Rece ived: February 28, 1994 Rev i sed: November 15, 1994 A c c e p t e d : February 28, 1995

This paper presents a new access protocol, based on a simple CSMA/CD extension to
improve Ethernet's performance in real-time applications and guarantee predictability.
An analysis is given ofboth the extended protocol and the standard CSMA/CD. Several
simulation experiments are conducted to test the two protocols under a meaningful
variety ofload levels, measuring the tirne it takes each protocol to transmit a predefined
packet. The results allow making the final analysis to judge each access protocol and
determine if and how the problem of predictable Ethernet behavior has been solved.

1 Introduction

Recent developments in distributed computing
have brought more stringent requirements on the
use of local area networks (LANs). This is beca-
use of their spread in real-time applications. The
real-time constraints are mostly important on the
Medium Access Control (MAC) sublaver of the
OSI (Open System Interconnect) Data Link la-
yer, because it is this sublaver that manages the
acquisition of the common communication chan­
nel through which the actual data packets are
physically transmitted. The most common appro-
aches to real-time LAN involve the following com­
munication protocols: MAP (Manufacturing Au-
tomated Protocol) [9], FDDI (Fiber Distributed
Data Interface) [1], Fieldbus [2], Token Ring [10]
and Ethernet [6].

The protocol used by Ethernet is called
CSMA/CD (Carrier Sense Multiple Access with
Collision Detection). The CSMA/CD ušes a sha-
red communication channel managed with a dis­
tributed control policy. With this approach there
is no central controller managing access to the
channel and there is no pre-allocation of tirne slots
or frequency bands.

A station wishing to transmit is said to "con-

tend" for the use of the common communica­
tion channel (Ether) until it acquires the channel.
Once the channel is acquired, the station ušes it
exclusively to transmit a packet (not of fixed size).
To acquire the channel, the station checks whe-
ther the network is busy (ušes carrier sense) and
defers transmission of its packets until the chan­
nel is quiet. When the channel is quiet, the wai-
ting station immediately begins to transmit . Du-
ring transmission, the transmitt ing station listens
for a collision because other stations may at tempt
to transmit simultaneously when they ali realized
the channel was quiet.

In a well functioning system, collision occurs
only within a short tirne interval following the
start of transmission. This tirne interval is cal­
led the collision window and is a function of the
length of the communication channel. If no col­
lision occurs during this tirne, a t ransmitter has
acquired the medium and continues the transmis­
sion of its packet. If a station detects a collision,
the rest of the packet is immediately aborted. To
ensure that ali parties to the collision have pro-
perly detected it, any node tha t detects a col­
lision invokes a collision enforcement procedure
that briefly jams the channel. Each transmitter
involved in the collision then schedules its packets

mailto:zalewski@db.erau.edu

124 Informatica 19 (1995) 123-132 B. Tchouaffe et al.

for retransmission at some later time. To mini-
mize repeated collisions, each station involved in
the collision tries to retransmit at a different time
by scheduling the retransmission to take plače af-
ter a random delay period (retransmission inter­
val).

In order to achieve channel stability under hi-
gher load conditions, the retransmission interval
is doubled with each successive collision, thus
extending the range of possible retransmission de-
lays. This algorithm has a very short retran­
smission delay at the beginning and will back-
off quickly, preventing the channel from becoming
overloaded. After some number of back-offs, the
retransmission interval becomes large. To avoid
undue delays and slow response, the doubbng can
be stopped at some point, with additional retran-
smissions stili being drawn from the interval be-
fore the transmission is fmally aborted. This is
referred to as truncated binary exponential back-
off. The back-off restarts with a zero retransmis­
sion interval for every new packet.

Performance comparison of the CSMA/CD and
other types of protocols, such as a token ring,
shows that CSMA/CD provides networks with
excellent performance at lov/ load levels, but de-
grades rapidly in high traffic situation. This de-
gradation of performance of the CSMA/CD pro-
tocol is due to the fact that the probability of
collisions to happen gets higher as the load in-
creases in the network. This probabilistic na-
ture of the CSMA/CD protocol makes it non-
deterministic and therefore not suitable for hard
real-time applications.

2 Previous Work

Various a t tempts on improving CSMA/CD for
use in real time, were reported in the literature
[5, 6, 11], or more recently [3, 12]. The most com-
plete summary of previous studies dealing with
Ethernet 's (CSMA/CD) use in real-time applica­
tions was presented in [6] and is discussed below.

According to this report, Nut and Bayer stu-
died the effect of different backoff algorithms used
to resolve collisions by scheduling a different re-
try interval for each node. They found that al-
though the exponential back-off algorithm used
in the standard Ethernet was not very suitable
for combined voice and data, it was suitable for

voice (periodic sources) provided the netvvork did
not get overloaded.

Chlamtac and Eisenger, as reported in [6], stu-
died the behavior of the standard CSMA/CD pro­
tocol for combined voice and data using a variety
of da ta traffic patterns. They also concluded that
the exponential backoff algorithm is not suitable
for mixed voice and data traffic. They also found
tha t an alteration to the backoff policy which re-
duces the number of collisions helped not only
voice but also data traffic throughput. This was
their suggestion to the alteration of the back-off
policy: increase the first retransmission interval
to give better randomization and ensure the se-
paration of voice traffic into non-competing time
slots.

Maxemchuk, as reported in [6], simulated a va-
riation of CSMA/CD applicable to any system
with periodic and aperiodic (synchronous and
asynchronous) sources, with periodic sources ha-
ving the same transmission requirements. In this
čase, periodic sources are voice packets and ape­
riodic sources are da ta packets. This new proto­
col ušes standard CSMA/CD techniques for data
transmission and the following technique to tran-
smit voice. Periodic sources (voice) operate as if
a time-division multiplexed (TDM) channel has
been assigned to each source. This technique re-
sults in a decrease in the network delay (reduced
collisions).

Girma and Dunlop, according to [6], reported
a hardv/are implementation of moving TDM slots
for Ethernet voice transmission. This technique
involves extending the Ethernet frame preamble
of 64 bits by another 512 bits. The idea is to
resolve collisions during the extended preamble,
before the data frame is t ransmitted.

Hutchison himself [6] used the standard
CSMA/CD with no alteration to examine, by me-
ans of simulation, the feasibility of carrying data
in real-time environment. He first determined the
maximum load under which the delay will remain
below a given threshold. Next, he investigated
the idea of time division multiplexing as described
by Maxemchuk, but using data instead of voice.
Hutchison found that using the standard Ether­
net, nodes can acquire the channel quickly enough
to operate in real-time assignment, provided that
the load is kept below the threshold value calcu-
lated for that particular application.

FULLY DETERMINISTIC REAL-TIME... Informatica 19 (1995) 123-132 125

In a more recent work, Court [4] used a varia-
tion of a delay priority scheme, with a parallel ar-
bitration technique to enable a node to obtain pri-
ority access to the network. This implementation
ušes standard.network components and requires
a low cost hardware adapter. A brief description
of his approach follows.

There are two reasons for collisions on the ne-
twork. The first is when two nodes make a simul-
taneous check of the network and detect an idle
condition; they both talk and a collision occurs.
This collision is coincidental and has a low pro-
bability of occurring. The second type is when a
node detects a busy network and waits for an idle
condition at the same tirne as other nodes may be
waiting for the idle condition, and thus they will
collide when it occurs. This type of collision has
a higher probability of occurring.

To avoid type 1 collisions, the protocol states
tha t access to the network can only be made rela-
tive to a busy/idle transition. To avoid type 2 col­
lisions, a delay arbitration protocol is used. Each
node is allocated a priority. After a busy/idle
transition, a node waits for a tirne interval that is
proportional to its priority; any network activity
during this interval will force the node to wait for
the next busy/idle transition. If the network is
inactive for the node's allotted time, then a na-
rrow time window is opened. A node can then
talk; if it does then the window is stretched to
encompass the frame, otherwise the window is clo-
sed and the node must wait for the next available
window. The amount of dead time caused by the
delay is proportional to the size of the network.
To ensure that a busy/idle transition takes plače,
ali nodes check the idle time. If it exceeds a set
t ime which is longer than any delay time, a node
will generate a dummy frame to ensure that the
network stays alive. This concludes Court 's pro­
tocol.

The discussed approaches either change the
standard CSMA/CD protocol to nt or tolerate
one particular application, or have signihcant
overhead and restrictions or extra rules and are
less fiexible or performant than the standard
CSMA/CD. In general, none of them guarantees
a bounded time for message delivery with accep-
table restrictions.

3 Problem and Its Solution
The objective of this research is to extend the
standard Ethernet CSMA/CD protocol for the
MAC to guarantee bounded message delivery
time, under the assumption that there is neither
a communication error (due to noise) nor a node
or channel failure.

The assumed topology includes a series of no­
des representing physical units connected to the
medium. The medium represents the means by
which nodes communicate. Nodes can be inserted
or removed at any given moment with no need for
synchronization.

3.1 G e n e r a l D e s c r i p t i o n

The main idea behind our solution is to preserve
the efnciency of Ethernet in low trafhc situations
while managing collisions as they occur. This idea
is implemented by allowing at most one collision
to happen until ali nodes involved in the collision
transmit their packets. With this technique, a
bounded delivery time for a message can be cal-
culated as a function of the maximum number of
nodes on the network. A general explanation of
this solution called METHOD_X follows.

METHOD_X tries to solve the drawback of the
CSMA/CD by preassigning priorities to ali no­
des in the network. Node interfaces are equipped
with two fiags (cJnv_flag and c_stat_flag) and
a unique priority number. These interfaces are al-
ways active. The protocol of METHOD_X differs
from CSMA/CD only from the point where a col-
Usion occurs; before any collision, METHODJC
has the same functionality as CSMA/CD. The
full protocol is presented in Figures 1-3. When
a collision occurs, a jam is invoked by any of the
nodes which detects it, and aH the nodes in the ne-
twork set their collision status nag c_stat_flg on.
Ali nodes that were involved in the collision also
set their collision involved flag c_inv_flg on. At
this point ali nodes involved in the collision (cal­
led collided nodes) have both their c_inv_flg and
c_stat_flg on, and ali other nodes on the network
(called regular nodes) have only the c_stat_flg
on, so they could not interfere with the collision
resolution process.

Each node with its c_inv_flg on, fetches a
priority number from a counter, in the range
[l..MaxNode], where MazNode is the maximum

126 Informatica 19 (1995) 123-132 B. Tchouaffe et al.

number of nodes on the network. This counter
is a logical part of the controller which is in turn
part of a node. Ali these counters must be syn-
chronized upon installation, upon upgrading or
upon modifying the network to ensure that no two
or more nodes can fetch the same priority num­
ber from their counters. The node with priority
number 1 acquires the channel and therefore in-
forms others of the acquisition by broadcasting a
don't_worry message. After this node gets thro-
ugh using the channel, it sends a done message
to ali other nodes on the network so that they
could decrement their priority numbers and then
take their turns (Fig. 3). This process continues
until ali nodes involved in the collision have used
the communication channel. If there is a priority
gap (nonconsecutive priority number was fetched
by the next node to acquire the communication
channel), ali nodes involved in the collision will
decrement their priority number if they do not
receive a don't_worry message after a collision
window tirne c_w (Fig. 3).

While the collision resolution is in progress, no­
des that do not have their c i n v J lg on are aware
of this through the status of their c_stat_flg (on)
and therefore do not interfere or try to access the
communication channel until they found the ne-
twork continuously quiet for KT time (KT = Col­
lision Window * MaxNode). This means that if
they hear any transmission on the channel, they
start counting the time again by resetting swait
t imeout. When KT time expires, the waiting
node will acquire the channel, use it and finally
broadcast an end_col_res (end of collision resolu­
tion) message so that ali the nodes that stili have
their c_stat_fig on can turn them off and there­
fore resume the standard CSMA/CD protocol.

3.2 Deta i led Descript ion

To clarify the functionality of METHOD_X
further, and to determine that it is deadlock free,
the following four scenarios are presented, going
through ali possible paths of METHODJC algori-
thm in Figures 1-3.

Scenario 1. The first pat h is enter ed in Fi­
gure 1 with both c_inv_flg and c_stat_flg set to
false. This situation means there is neither a pre-
sent collision nor a collision resolution in progress.
As a result, this node will behave like a regular
CSMA/CD node trying to access the communi-

c_w - collteton wIndow J : Impttcatlon
<t - max_node * c_w | * i
jwa* t - sllent walt(no signal or message rečetved)
c_stal_fkj - collision status Mag (collision resolution In progress)
cjnr_flg - collision Invotved flag (node was Involved In the collision)

(START) r
f Q)-i—r'" c_5tol-tlg ^ > 1 ^ c\Jno_i
V J X ^ on ? .s T \ on 7

~X!je>

' luralt > kt>

*pnd
end_col_res

message
loa l l

00
set c_s1at_flg

orr

:' prlot'lty numbe|>^—
get o

prlotlttj
number

Honole
Messeges

IFIgure 31

send
don'l moliu

mesioge
1o sil

gel.
detrement

prioillu
number

send done to ali
r$el c_lni'_flg

of l

Fig. 1. METHOD X

cation channel as shown in Figure 2. This proves
an extremely low overhead of METHOD_X impo-
sed on the standard CSMA/CD, when no collision
occurs.

Scenario 2. The second possible path is also
entered in Figure 1 with both c i n v J l g and (au-
tomatically) c_stat_flg set to t rue. This situa­
tion means that a collision has just occurred and
the node in question was involved in that colli­
sion. Actually the situation originates in Figure
2 when two or more nodes found the network idle
and started their transmission. As a result of the
collision, ali c_stat_flg's were set to t rue (on) and
ali collided nodes had their c_inv_flg set to t rue
(on). The example in Figure 4 illustrates this si­
tuation using a sample configuration of nodes.

Figure 4 represents a network with a MaxNode
of 5, and with nodes A, B, C and D which have
just collided and want to access the medium. No­
des A, B, C and D fetch 5, 3, 1 and 4 respecti-
vely as their priority numbers. At this point, each
node checks its priority number to see if it is equal
to 1 (highest priority).

On one hand, the node with the highest pri-
ority (node C) will acquire the network by first
broadcasting a don't_worry message to ali other
nodes, followed by the transmission of its packet,
and by finally broadcasting a done message to

FULLY DETERMINISTIC REAL-TIME... Informatica 19 (1995) 123-132 127

| En!ry Polni j

continue
transmission

C Done)

set
c_inu_flg -JsTBRT I

Bil nodes set
c_stal_flg

J »I : Impllcatlon

c_stat_ng - collision status llag (collision resolution in progross)
c_lnv_flg • collision involvodflag (node was Involved In collision)

Fig. 2. METHODJC (Ethernet Part)

ali nodes on the network (the rightmost path in
Figure 1).

On the other hand, nodes with lower priori-
ties will wait for the don't_worry message within
the first collision window; otherwise they will de­
crement their priority numbers and continue the
cycle until they have the highest priority (the mid-
dle path in Fig. 1). If these nodes receive the
don't_worry message on tirne, they will uncondi-
tionally wait for a done message after which they
will decrement their priority numbers and repeat
the cycle until they have the highest priority.

Node C will then transmit its packet and bro-
adcast a done message. Nodes A, B and D will
decrement their priority numbers after receiving
the done message. Since none of these nodes
has the highest priority, they will not receive a
don't_worry message within the first Collisio-
nWindow tirne; this accounts for a priority gap.
These nodes (A, B and D) will thus decrement
their priority numbers to have 3, 1 and 2 respec-
tivelv. Going through the same path, nodes B, D
and A will transmit their packets respectivelv. At
this moment, ali c_stat_flg's are stili set to true
(on).

Scenario 3. The third possible path is also en-
tered in Figure 1 with c_inv_flg set to false (off)
and c_stat_flg set to true (on). This situation

<^ don't_iuarrg
^ message s

sivait > c_tu

^ r e c e f v e d ^.
s* Done "̂
\ message ^S"

MBS

siuatt - sitent urait (no message or signal recelped)
c_w - collision ivindouv

Fig. 3. Handle Messages

implies the following: a collision resolution pro-
cess is either in progress, or a collision has just
been resolved. If the node in question finds the
network continuously idle for KT time (the left-
most path in Figure 1), it assumes the collision
resolution process is over and will thus broad-
cast an end_col_res (end of collision resolution)
message to ali other nodes (ali c_stat_flg will be
set to false), after which it behaves like a regular
CSMA/CD node as shown in Figure 2.

Scenario 4. An interesting situation using the
third path is also depicted in Figure 1 when two
nodes enter this path at slightly different times,
with their c_inv_tlg set to false and c_stat_flg
set to true. The first node to enter this path will
consume the overhead of KT time mentioned in
the preceding paragraph, after which it will bro-
adcast an end_col_res message to ali other nodes
on the network (ali c_stat_flg set to false) and re-
sume the regular CSMA/CD algorithm in Figure
2. The next node to enter this path will soon
find c_stat_flg to be false and will also resume
the CSMA/CD algorithm in Figure 2. If both
nodes involved collide, they use the METHODJC
resolution scheme, as discussed in Scenario 1.

128 Informatica 19 (1995) 123-132 B. Tchouaffe et al.

Nodes

P
ri

or
it

y
N

u
m

b
er

s

R

5

4

3

2

1

Dane

B

3

2

1

Done

C

I

Dane

0

4

3

2

1

Dane

GHPS

1 gap

Fig. 4. Example for Scenario 2

4 Simulation Experiments

The standard CSMA/CD protocol and the pro-
tocol of METHOD_X are simulated to see how,
upon collision, these two algorithms resolve the
collision and a t tempt to transmit their packets.
The main basis of performance comparison is the
tirne it takes each algorithm to resolve the col­
lision and transmit its packet. This is called
PacketTransmissionT tirne. In the rest of this
section the procedures used to obtain results are
discussed.

4 .1 S i m u l a t i o n of C S M A / C D

In this simulation, the following network parame-
ters are selected:

- packet size, 1526 bytes (maximum for the
Ethernet)

- medium transmission rate, 10 Mbits/second

- CollisionWindow (round trip propagation de-
lay), 64 bytes, to compute the PacketTran­
smissionT tirne as:
PacketTransmissionT —
PurePacketT + DeferTime +

(CollisionCount * CollisionWindow)
where

- PurePacketT =
(12208 bits)/(10 Mbits/second) =
1.220 microseconds

- PacketSize = 1526 bytes * 8 bi ts /byte

= 12208 bits

- DeferTime, the binary exponential
back_off used to compute the retran-
smission delay within a range
[0..(2 * *N) - 1], with 1 < = JV < 1024

- CollisionWindow =
(64 bytes * 8 bi ts /byte) / (10 Mbit /s) =
51.2 microseconds

4 .2 M E T H O D _ X

METHODJC ušes the same parameters as descri-
bed abovefor CollisionWindow and PurePacketT,
on the same physical medium. The total tirne
(PacketTransmissionT) used to resolve a collision,
called therefore the maximum collision resolution
tirne, is computed differently from the CSMA/CD
approach. and follows the algorithm paths from
Figures 1-3:

PacketTransmissionT —
PurePacketT + C'ollisionWindow * 2 +
CollisionT + GapT + MaxWaitT
where

- CollisionT = CollisionCount * CollisionWin-
dow

- CollisionCount = 1 (because there may be
only one collision in M E T H O D J t)

- GapT = GapCount * CollisionWindow

- GapCount, total number of gaps (gap is a di-
fference between the priority numbers of any
two consecutive nodes that want to access the
communication channel)

- MaxWaitT, tirne used by a regular node so as
not to interfere with the collision resolution
process in progress.

The formula to compute PacketTransmissionT
for METHODJC corresponds to Figures 1-3 as
explained below.

P u r e P a c k e t T . This is the tirne incurred by the
actual transmission of the data packet on the me­
dium. This tirne is only consumed by the packet
size. In Figure 1, this time emanates from the
transmit box (when c_inv_flg is true).

Col l i s ionWindow*2. This is the over-
head time incurred by broadcasting both, the
don't_worry message and the done message.
In Figure 1, boxes labeled send_done_to_all

FULLY DETERMINISTIC REAL-TIME... Informatica 19 (1995) 123-132 129

and send_don't_worry_message_to_all repre-
sent this time.

Coll is ionT. This is the time used by the sin-
gle collision which required the collision resolu-
tion process in question (Figure 2 when colli-
s ion_detect is t rue) .

G a p T . This is the time used by priority
gaps. These gaps emanate from the box labeled
Handle_Messages in Figures 1 and 3 when a
don't_worry message is not received within the
first CollisionWindow time. There is a gap when
none of the nodes involved in the collision has the
highest priority equal one.

M a x W a i t T . This is the time incurred by the
first node tha t enters the algorithm in Figure 1
with c_inv_flg set to false and c_stat_flg set to
true. The box labeled is_swait_gt_KT in Figure
1 is where this time is consumed.

5 Results and Discussion

This section examines the results generated by
both CSMA/CD and METHOD_X simulations.
These results are used to first analyze and validate
the CSMA/CD simulation, next to analyze ME-
THOD_X simulation, and then to proceed with a
thorough interpretation and comparison of both
methods, and finally to discuss the real-time im-
plications.

5.1 A n a l y s i s a n d V a l i d a t i o n of t h e
C S M A / C D S i m u l a t i o n

The graph in Figure 5 represents an average time
it takes collided nodes to resolve collision and to
each transmit a data packet of Max^size (maxi-
mum size), 2 /3 of Maxj;ize and 1/3 of Max_size.
Each line represents a different packet size as spe-
cified in the legend. It is consistent with known
behavior of CSMA/CD. This graph also shows
that , as smaller packet size (Max_size/3) doubles
and even triples, their t ime merely increases, or
does not increase proportionally to the increment
in packet size. This observation confirms Hut-
chinson's point tha t the ratio of propagation delay
to packet transmission time must be kept below
5% or else the collision frequency significantly de-
grade throughput performance [6].

Figure 6 represents the number of collisi-
ons that occurred during the collision resolution

H J 100

/ —
S t I

..£-&

3 -

M a x _ s i «

2 / 3 Max_size

t / 3 Max_size

< & • "

tJl^o-o
Collided Hodes

20

Fig. 5. Average Time to Transmit (CSMA/CD)

i -o

^
W » ' •

/ tf
^

1 / 3 Max_siz<?

2 / 3 Max—size

Max_size

Collided Nodes

0 10 20

Fig. 6. Average Collisions Incurred (CSMA/CD)

process of different packet sizes (Maxjsize, 2 /3
Maxjsize and 1/3 Max_size). It appears tha t bi-
gger packet sizes are involved in fewer collisions
than smaller ones [11]. This is because shorter
busy/idle transition period with smaller packet
size results in more collisions. Figures .7 and 8
further confirm this point and support Hutchin-
son's observations [6].

Figure 7 represents the number of nodes tha t
are involved in collisions after a collision resolu­
tion process, using different packet sizes. This
figure indicates that on the average, more nodes
with larger packet size are involved in a collision
than those with smaller ones. This is due in part
to the larger busy/idle transition period incurred
with larger packet sizes.

Figure 8 represents the number of nodes tha t
failed and were not able to transmit their packets
due to excessive number of collisions (more than
10 collisions according the backoff method used by
CSMA/CD). This fi gure reveals that nodes" with
larger packet size are more likely to fail than those
with smaller ones. This fact can be explained as

130 Informatica 19 (1995) 123-132 B. Tchouaffe et al.

100 -

<- sS
^ y

J0" J* I J
I

Collided Nodes

Max_sizo

2 / 3 Max_si l*

I / 3 Max_siz<.

* 20

„ V

#»'
-B METH0D_X

Collided Kodes

Fig. 7. Average Collision Involved Nodes (CSMA/CD)
Fig. 9. Worst Čase Time to Transmit (METHODJC)

/V,
10 Collided Nodes 20

3 / 3 M»x_size

2 / 3 Max_size

1 / 3 Max_size

Fig. 8. Average Failed Nodes (CSMA/CD)

Collided Nodes

15 20

Fig. 10. Time Used for Gaps (METHODJC)

follows: on the average, more nodes with larger
packet size are involved in a collision than those
with smaller ones because those with larger packet
size have a longer busy/idle transition period on
the network. A longer busy/idle transition period
keeps more nodes waiting for that idle period after
which they ali collide.

The results of this simulation are consistent
with observations of other authors [6, 7, 8] and
thus validate the CSMA/CD simulation.

5.2 Analysis of M E T H O D J C
Simulat ion

One particular aspect of METHODJC is the fact
that it ušes a priority scheme to resolve collisions.
The order of these priorities, as fetehed by collided
nodes to resolve collisions, can slow the collision
resolution process as the number of unused priori­
ties (gaps) inereases. This simulation experiment
takes such gaps into consideration and allows two
types of situations: best čase using no gaps and
worst čase using the maximum number of gaps

possible.
Figure 9 represents the tirne it takes collided no­

des to each transmit a Max_size packet using ME­
THODJC under worst čase. AH collided nodes are
guaranteed to deliver their packets by the time in-
dicated. Figure 10 represents the maximum over-
head time incurred by gaps during the collision
resolution process using METHODJC. This over-
head time decreases as the number of collided no­
des inereases, because the range of priorities is
better fiDed with more nodes colliding.

Figure 11 shows the time it takes collided nodes
to each transmit their maximum size packets un­
der both best čase (no gap) and worst čase (maxi-
mum gaps) situations. It is noticeable that the
difference between both cases is of the order of
magnitude of the packet transmission time.

The graph in Figure 12 reports a time per­
formance comparison of both simulation models
(METHODJC and CSMA/CD) . This graph reve-
als a break-even point when about 4 nodes are
involved in the collision. Below tha t break-even
point, CSMA/CD has a better performance over

FULLY DETERMINISTIC REAL-TIME... Informatica 19 (1995) 123-132 131

S

y

Vorst Čase

Best Čase

Collided Nodes

Fig. 11. Wors t /Bes t Čase Time to Transmit (METHODJC)

CSMA/CD

METHOD_X

15 20
Collided Nodes

Fig. 12. Time to Transmit (CSMA/CD vs METHOD_X)

METHODJC. This behavior can be explained by
the fact tha t with just a few nodes coUiding, the
probability of repeated collision is quite small and
have small retransmission intervals (CSMA/CD's
backoff technique). Beyond the break-even po-
int in Figure 12, CSMA/CD begins to deterio-
rate (its packet transmission tirne grows exponen-
tially), while METHODJC keeps the same pattern
(straight line).

5.3 Rea l -T ime Characteristics of
M E T H O D _ X

As mentioned in Section 3, upon a collision, ME­
THODJC resolves the collision, allowing no more
collisions to happen until ali nodes involved in
tha t collision have successfully transmitted their
packets. With this in mind, it becomes apparent
that knowing the maximum number of nodes on
the network, the t ime to resolve the collision tha t
involves ali nodes can be computed. This com-
puted tirne would be the guaranteed packet de-
livery time for any node on the network using

METHODJC, from the time when the collision
occurred.

It should be stressed that any external node
not involved in the collision can not disrupt or
affect the collision resolution process under ME­
THODJC, which is not the čase with CSMA/CD.
This non-interruptive aspect of METHODJC is a
key aspect of it being able to guarantee a maxi-
mum delivery time for its packets.

It can therefore be argued tha t METHODJC
is deterministic and can be used for real-time
applications. For any node on the network, its
packet delivery time should be less or equal to
the maximum collision resolution time (specified
by the formula in Section 4.2), plus the maximum
busy/idle transition period (which is the time a
node waits for the medium to be idle when it was
previously busy).

6 Conclusion

This paper looked at a new medium access pro-
tocol to improve Ethernet 's performance and also
allow it to be deterministic. The approach used
here, called METHODJC was to isolate the pro­
blem of collisions in CSMA/CD and extend the
protocol to resolve these collisions in a predicta-
ble way (to guarantee a maximum packet delivery
time), by adding two flags and a priority counter
to each node.

The following results were obtained from the
simulation of performance of both methods:

- The CSMA/CD simulation revealed known
behavior of the standard Ethernet and was
successfully validated.

- Theoretical properties of METHODJC were
confirmed experimentally, which means that
METHODJC proves to be deterministic and
deadlock-free.

- The final comparison showed tha t at very low
traffic CSMA/CD performs slightly better,
but beyond that point METHODJC perfor­
mance is far better than that of CSMA/CD.

- Although a disadvantage of METHODJC is
that worst čase gap inflicts an overhead time
of the order of packet transmission time, this
overhead decreases as more nodes are invol­
ved in the collision.

132 Informatica 19 (1995) 123-132 B. Tchouaffe et al.

References
[1] Alijani G. S., Morrison R. L., An Evaluation

of IEEE 802 Protocols and FDDI in Real-
Time Distributed Systems. Proč. 15th Confe-
rence on Local Computer Networks, pp. 334-
342. IEEE, New York, 1990

[2] Armitage B., Dunlop G., Hutchison D., Yu
S., Fieldbus: An Emerging Communica-
tion Standard. Microprocessors and Micro-
systems, Vol. 12, No. 12, pp. 555-562, De­
cember 1988

[3] Boudenant J., B. Feydel, P. Rolin, LYNX:
An IEEE 802.3 Compatible Deterministic
Protocol. Proč. INFOCOM '87 6th Ann.
Conf. on Global Networks, pp. 573-579.
IEEE Press, New York, 1987

[4] Court R., Real-Time Ethernet. Computer
Communication, Vol. 15, No. 3, pp. 198-201,
April 1992

[5] Hainich R., An Improved Ethernet for Real-
Time Applications. Proč. Conf. on Real-
Time Data Handling and Process Control,
E.G. Kingham et al. (Eds.), pp. 293-301.
North-Holland, Amsterdam, 1984

[6] Hutchison D., Merabti M., Ethernet for Real-
time Application. IEE Proceedings, Vol. 134,
Pt. E, No. 1, pp. 47-53, January 1987

[7] Kim C , Kim J., A Mean Value Analysis of
The Ethernet Throughput. Information Pro­
cessing Letters, Vol. 43, pp. 315-320, October
1992.

[8] van Oorschot J., A. Dekkers, Measuring and
Simulating an 802.3 CSMA/CD LAN. Micro-
processing and Microprogramming, Vol. 35,
pp. 765-772, 1992

[9] Rzehak H., Abd E. E., Rudolf J., Analysis
of Real-time Properties and Rules For Set-
ting Protocols Parameters of MAP Networks,
Real-Time Systems, Vol. 1, pp. 221-241, 1989

[10] Strosnider J.K., T. Marchok, J. Lechoczky,
Advanced Real-Time Scheduling Using the
IEEE 802.5 Token Ring. Proč. 9th IEEE
Real-Time Systems Symposium, pp. 42-52.
IEEE Computer Society Press, Los Alami-
tos, CA, 1988

[11] Uuspaa P.T., Ethernet in Real Time. Proč.
Conf. Hardware and Software for Real-Time
Process Control, J.Zalewski, VV.Ehrenberger
(Eds.), pp. 441-452. North-Holland, Amster­
dam, 1989

[12] Venkatramani C , T. Chiueh, Supporting
Real-Time Traffic on Ethernet. Proč. 15th
IEEE Real-Time Systems Symposium, pp.
282-286. IEEE Computer Society Press, Los
Alamitos, CA, 1994

Informatica 19 (1995) 133-158 133

Principles of a Formal Axiomatic Structure of the Informational

Anton P. Železnikar
Volaričeva ulica 8, 61111 Ljubljana, Slovenia
a.p.zeleznikarOijs.si

K e y w o r d s : axiom, circularitv, derivation, functionalism, general informational theory, inclusiveness,
inference rule, parallelism, propositional vs. informational, serialism

Edited by: Vladimir Fomichov
Rece ived: June 6, 1994 Rev i sed: August 27, 1994 Accepted : September 15, 1994

The article deals with some basic problems of a formal axiomatic structure pertaining
to the phenomenalism of the informational. In this way, solid philosophical and formal
foundations of an emerging informational science are set from the strict informational
point of view [9]. A general informational theory conjoins the so-called object theory
and its metatheory, in contrariness to a narrower mathematical theory, where the meta-
mathematical theory serves as an exterior means for proving of the object theory. The
principles of informational axioms are treated from the dualistic point of view conjoi-
ning the axioms of the object theory and inference axioms of the metatheory. Inference
rules become regular informational formulas which arise informationally as any other
informational operands (entities).

1 Introduction
Axiomatic structure1 of a general informational
theory (GIT) is a problem per se, for it must
be, for example, according to [9], self-contained
in respect to the basic theory axioms on one side
and the necessary initial inference rules (deduc-
tion, induction, abduction, modi of other possible
inference) on the other side. Conception of GIT is
certainly logistic [1] and formalistic [7], but not in
the traditional mathematical sense. On contrary
to the traditional mathematical theories, GIT can
keep the inference rules within the theory itself
while, in mathematics, deduction rules for exam-
ple, remain outside the particular theory (e.g., in
the so-called inferential metadomain, that is, me-
tamathematics) as means by which a mathemati-
cian or machine can prove the correctness, logical
consistency or non-contradictoriness of the the-
ory.

Mathematics is not more rigorous than histori-
ology, but only narrouier, because the ezistential
foundations relevant for it lie mithin a narromer

:This paper is a private author's work and no part of
it may be used, reproduced or translated in any manner
whatsoever vrithout written permission except in the čase
of brief quotations embodied in critical articles.

range. (Heidegger [4], p. 195.) In mathematics,
the metatheory by which an object theory is pro-
ved, lies outside of the object theory. It is mathe-
matically unimaginable (uncommon) to join, for
instance, an arithmetic theory (dealing with num-
bers) with the theory of deduction and induction,
by which arithmetical theorems are proven and
dealing with objects of logic of predicates. An
object theory in mathematics is always meant as
a narrower theory from which the metatheory is
excluded.

Axiomatization in the described (informatio­
nal) sense is a necessary step towards a sufficiently
strict theory which can be applied as a construc-
ting or designing tool for particular informational
machines and programs. It is a sort of informa­
tional formalization [7] by which a calculus is in-
troduced. On each step of formalization, there is
certainly possible a look into the real world when
formulas are deformalized, tha t is, made less for­
mal through their interpretation (translation) in
a less formal or object language (natural , picture,
voice, signal, process language, etc.)

GIT is a theory of well-formed formulas of
operands, operators, and parentheses pairs. It
has a straightforward syntax where the formation

134 Informatica 19 (1995) 133-158 A.P. Zeleznikar

of its formulas depends on several informational
views, possibilities, and principles (methods), gi-
ving the theory the so-called informationally ari-
sing (emerging, generating) character. For in­
stance, some of the principles of informational ari-
sing concern procedures of formula and formula
system decomposition and composition. Decom-
position means, for example, deconstruction [3] in
the sense of a particular semantic and pragmatic
analysis of a formal item (operand, operator, for­
mula, formula system) in the form of additional
arising, enlarging, changing or modifying.

Several formal means have to be introduced be-
fore the axiomatization of the informational can
begin. During our axiomatic discourse, we have
the substantially different theoretical entities, the
aim and purpose of which must be explained in a
clear and defmite manner. These entities are:

1. Definitions are a kind of preaxiomatic and
pretheoretical determination entities which
explain the introduced svmbolism and sym-
bolic structures (markers, variables, formu­
las, formula systems) used within the course
of an informational theory advancing. Defi­
nitions are nothing else than transparent in-
terpretations of formal svmbolism for the re-
ader in a natural language. They connect
the emerging logistic and formalistic world
([1, 7]) with the natural one. They simul-
taneously enable the emerging of the formal
theory world and its informational connec-
tion with a common (linguistic) individual
consciousness. As such, definitions function
like initiators beyond a particular axiomati-
zed theorv, linking the emerging formal world
and the existing conscious world of the theo-
retically concluding mind.

2. Theory azioms are the essential origins of
a theory obtained by an intuitive investiga-
tion of the basics by a theory setter (e.g., an
expert of a scientific discipline). Informatio­
nal axioms are formulas that commend them-
selves to general acceptance; they are infor-
mationally well-established and universally-
concerned principles presenting the maxima
of the possible, assignable degree of recogni-
tion.

3. Inference azioms are rules (laws) for deriving
formulas from theory axioms and formulas

obtained already through regular derivation.
Inference axioms are the very initial rules for
inferring, that is, for the drawing of conclusi-
ons from theory and inference axioms. Infe­
rence rules can be derived in the form of in­
ference theorems, lemmas, consequences, etc.
getting more complex and informationally in-
terweaved inference rules. In this function,
derived inference rules represent regular pro-
cesses for drawing conclusions within an in­
formational theory.

4. Theorems, lemmas, conclusions etc. are in­
f o r m a t i o n a l derived theory formulas by me­
ans of inference axioms and inferred inference
rules from axioms and already derived the­
orems, lemmas, conclusions, etc. They are
"object-theoretical" (non-inferential) as well
as "inferential".

5. Proofs of theorems, lemmas, and conclusi­
ons are procedures (informational processes)
using inference axioms and generated rules
with the aim to achieve certain results (in
the form of theorems, lemmas, etc.) E.g.,
metamathematics can be understood to be
a proof theory (D. Hilbert, see, for instance,
[7]). In formally loose theories, the process
of proving becomes an art instead of a for­
mal procedure.

6. Anahjsis of theorv azioms, theorems, and
proofs occurs after the process of proving a
theorem, lemma, etc. to see what could be
improved, complemented, and added for the
sake of a more complete and powerful theory.
Thus, one can glance at induced axioms, de­
rived theorems, and accomplished proofs.

The enumerated theory entities (definitions, the-
ory axioms, inference axioms, theorems, proofs,
and analyses) constitute a spontaneous and cir-
cular discourse in the following sense:

A . Construction of definitions and theorv azi­
oms is an informational approach by which
the theory designer is getting his/her master
for the emerging formal theory. The infe­
rence of further axioms and their notional
improvement is on the way to the theorv-
axiomatic consolidation (fortifying, streng-
thening).

PRINCIPLES OF A FORMAL AXIOMATIC Informatica 19 (1995) 133-158 135

B . Construction of the inference axioms belongs
to the functioning of the master and without
them there would not be possible to deduce
(prove) new axioms and the initial theorems,
lemmas, and consequences. In čase of an
informational theory, inference axioms are
parts of the particular informational theory
and are not excluded from the object theory
as it is the čase in mathematics ([8], p. 30).
Thus the entire informational master domain
which governs the emerging of a theory ušes
definitions, theory axioms, and inference axi-
oms for the mastering of the informational
arising (development) of the theory.

C . Construction of theorems lemmas, con-
seguences, etc. brings to the surface the so-
called universitij or teaching discourse. The­
orems, lemmas, consequences, etc. can now
be taught as a theory t ru th concerning the
theory relevant entities. Derived theorems
can be used in the same way as axioms to-
gether with the derived inference rules. But,
new theorems have to be proved in a con-
sequent manner, so that the teaching domain
obtains the theory legacy.

D . Construction of proofs can become a questi-
onable task because someone tuishes to prove
a certain theorem which was constructed in
advance, with the one's intention for some
particular purpose, that is, intuitivelv. In
this respect, proving of theorems can con-
stitute the so-called histeric's discourse. In
mathematics, the object domain (a theory)
and the metadomain (metamathematics as
a proof theory) are separated. A mathema-
tician, proving his/her theory ušes the me-
tamathematical principles intuitivelv, for in­
stance, in the mixed form of a natural and a
formal mathematical language.

E . Construction of analvses of the arisen theoru
constitutes the so-called analyst's discourse.
Analysis governs the arising of cycles A , • • •,
D and constitutes also the long cycle of a
theory design, that is, A , • • •, E, A , • • •.

The mentioned names (markers) of discourses
have been invented by Lacan [14] and constitute
a theoretical, cyclically and subcyclically structu-
red discourse in its entirety.

2 Introducing Informational
Operands and Operators

Informational operands and operators are, toge-
ther with parenthesis pairs, the basic entities of
informational formulas. It must be determined
definitely, what these entities are, hov/ they are
structured and which kind of symbolism is used
for their presentation.

2.1 I n f o r m a t i o n a l O p e r a n d s

Informational operands are simple and complex
entities in the most general sense. They have ac-
tive and passive informational properties, when
we say that they inform and are informed. In
this manner, active components of entities can
be explicated by two usual forms: as informati­
onal operands and as included informing entities
within entities themselves. The included entities
perform again as regular informational entities.

2.1.1 A n Introduct ion to Informational
Operands as Informing Ent i t ies

Informational philosophy says tha t , irrespective
of their physical, mental, social, individual na-
ture, entities inform and are informed. This sta-
tement has the meaning of the fact tha t entities
impact entities and themselves, and are impac-
ted by entities and themselves in an phenome-
nal way, that is, according to the entities' pro-
prietary possibilities of entities-concerning pheno-
mena (e.g., physicalism, biologicism, mentalism,
linguisticism, or any specific phenomenalism).

On the abstract or any informational level, phe-
nomena concerning things can be marked (speci-
fically encoded) and structured into formulas and
formula systems. Usuallv, an entity is informatio-
nally represented by an adequate formula system
in which phenomenal components of the entity
occur as entities, that is informational operands,
constituting together with informational opera­
tors and parenthesis pairs the so-called formula
system. Markers, formulas, and formula systems
are operands in the sense of informational varia-
bles if compared to adequately constructed ma­
thematical entities.

An informational operand, representing (mode-
ling, phenomenalizing) a real entity, is informatio-
nally structured, irrespective of the instantaneous

136 Informatica 19 (1995) 133-158 A.P. Zeleznikar

possibilities of revealment or hiding ofits informa-
tional nature. The operand structure can come
to the surface through a stepwise, informationally
consistent, and consequent decomposition, which
is nothing else than a process of deconstruction [3]
in the sense of semantic and pragmatic analysis
and synthesis of the entity-structural čase. This
procedure of decomposition is carried of by prin­
ciples (axioms, inference rules) of informational
decomposition which is a part of the so-called co-
unterinformational phenomenon of the entity it-
self and it impacting environment.

Operands are representatives of simple, compo-
sed and the most complex entities of the world.
In this respect, operands are operand markers, in-
formationally well-formed formulas, and formula
systems. They represent informationally arising
entities in the sense of informational spontaneity
and circularity, according to the principles of in-
formation [9] called informational principles.

2.1.2 Operands Marking Informational
Ent i t ies

Simple informational entities, marked as simple
operands, are the beginning of something or so-
mething which is not informationally decomposed
yet. On the other hand, arbitrary complex for­
mulas and systems can be represented by simple
markers.

Definit ion 1 [O P E R A N D S R E P R E S E N T I N G I N ­

FORMATIONAL E N T I T I E S] Informational entities
are distinguished markers for simple operands, in­
formational formulas and informational formula
svstems represented as operands. The so-called in­
formational entities tulnch hide the entity's infor-
ming are marked by small letters of the Greek or
Fraktur alphabet, vohich can be subscribed and su-
perscribed and written in a functional form. E.g.,

<*l,/?belief>7a, • ' ' ^1\
_1 f,belief -cx .T.

«(/?)>/^(7):7consdoUsness(C), ' ' ^ M «)

are ezamples of single simple, subscribed, super-
scribed and functional operands, respectively. •

2.1.3 Informational Operands Marking
the Informing of Ent i t ies

Informing of an entity is meant to be an active
component of (within) the entity, characterizing
the entity's informational properties which can be
observed by another entity or the entity itself. In­
forming of an entity is expressive (informational
externalism) and impressive (informational inter-
nalism). Or said by other words: informing of an
entity is distinguished in two characteristic ways
that belong to the basic verbal forms which are
to inform and to be informed.

There is no conceptual difference between infor­
mational operands as entities and informational
operands as informings of entities. They are me-
rely marked differently to distinguish them clearly
between each other.

Definit ion 2 [O P E R A N D S R E P R E S E N T I N G I N ­

FORMING E N T I T I E S OF INFORMATIONAL E N T I ­

TIES] Informing entities of informational enti­
ties are distinguished markers for simple infor­
ming operands, informational formulas and in­
formational formula sgstems represented as ope­
rands belonging to the informings of entities. The
so-called informings of informational entities can
hide other informational entities and their infor­
mings and are marked by capital calligraphic or
Fraktur letters, which can be subscribed and su-
perscribed and ruritten in a functional form. E.g.,

A, D, • • •, JJ]

21 ,» , C • • •, 3;

2t\ «Bbelieve, £",-•• , 3 r ;
e_conscious(W> ' JZ\&)

are ezamples of single simple, subscribed, super-
scribed and functional operands of informing of
entities, respectively. •

Operands of informing explicate the operational
properties (like informational operators) to them
belonging or they including informational entities.

2.1.4 Functional Informational Operands

Functional operands express the informational
functionalism which is an extreme generalization
of function. The notion of mathematical function
on the other (lower) side is a simple, reductioni-
stic notion. In the last consequence, it represents

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 137

an algorithm (mathematical definition) by which
an argument set is mapped onto or into a value
set, where arguments and values can be any ab-
stractly determined objects. On the other side,
informational functions are arbitrary formulas or
formula systems being informationally dependent
in a complex manner, e.g. as defined recursively
and mutually-informingly in [13].

Definit ion 3 [O P E R A N D S R E P R E S E N T I N G IN­
FORMATIONAL F U N C T I O N S] There are two equi-
valent forms offunctional notation, <p(£) and <p*£.
The first form follouis the mathematical notation
convention while the second one is more transpa­
rent in cases where p> and £ are arbitrarihj com-
plex formulas or formula systems. The second
form shows already the substantial (structural) di-
fference between a mathematical and an informa­
tional function. For instance, an informational
function of the form

(a |= /?)*(7 |= S)

lahere \= is an informational operator, has not
an adeguate notional eguivalent in mathematics.
According to [13], the folloioing definition of an
informational function is senseful:

m "def

/ V l=of £; \
£ h w
O hof 0 c <p;

\ (f \= (p) Cof V J
In this formula, operator ^def means means by
definition, hof means is a function of or depends
informationally on, etc. Operators of informatio­
nal inclusion C and Cof are determined recursi-
vely, in this particular čase, by

(v h O hof<*); \
(v hof a) h v;
O h (V hof «)) C tf>\

V ((V hof a) \=<p)C<pJ
vahere operator ^ is read means and, for the
second informational includedness, according to
[12],

(<P hof (a |= (p); \
(a |= (p) |=of <p-
O hof (a |= ¥>)) Cof <f\

\((a h V) hof V) C0{ (p J

((ep hof ") C <p)

(a |= ¥>) Cof p) —

2.1.5 Other Informational Operands

Other informational operands concern special ar-
rays of formulas as a consequence of, for exam-
ple, informational decomposition, composition,
gestalt, etc.

Definition 4 [OPERANDS REPRESENTING IN­

FORMATIONAL DECOMPOSITION, COMPOSITION,

G E S T A L T , ETC.] Special informational operands
are distinguished markers for simple operands, in­
formational formulas and informational formula
systems which represent arrays of formulas be­
ing a consequence of informational decomposi­
tion, composition and gestalt strueturing. The so-
called special informational operands hide syste-
matically (e.g. metaphysically, syntactically, etc.)
derived formulas and are marked by the distin­
guished capital letters of the Greek alphabet [11],
that is T, A, 0 , A, E, IT, S, T, $, $, fi, uihich can be
subseribed and superseribed and voritten in a func-
tional form. E.g.,

r,A,0,--. ,fi;
1 composition.) 1 gestalt) ^decomposit ion) ' ' > ' ' a !

1 » , A B e r i a l («) , A ^ i a T - p a l - a U e ^) ' ' " " > ^

r s e r i a l (a i , « 2 , - * •,<**.), ' ' ",

are examples of single simple, subseribed, super­
seribed and funetional special operands, respeeti-
vely [13]. •

Definition 5 [OPERANDS REPRESENTING IN­

FORMATIONAL INFERENCE RULES, PREMISES,

CONCLUSIONS, AND OTHER ENTITIES] Many
other operand symbols can be introduced marking
special informational entities or to them belonging
formulas. For instance, for inferential rules, their
premises and conclusions, the various alphabets of
small and capital letters, e.g.

Operators as informational entities will be defined
in the next subseetion. D

A, 1, C, • • •, Z,
a, b, c, • • •, z,
A,B,C,--- ,Z

can be introduced. Thus,

irarule,«' / a r> \ _^ -^premise (.^ ' i °«'J
^ in fe ren t i a lV^) D*7 , — fpi /n.N

conclusiorA s /

ivhere A,- and Bi are variables of the premise and

the conclusion function, respectively. •

138 Informatica 19 (1995) 133-158 A.P. Zeleznikar

Other specific operand symbols can be used to
make entities clearly (characteristically) distingu-
ished from each other.

2.2 I n f o r m a t i o n a l O p e r a t o r s

Informational operators inform the properties of
the entities to which they belong. In this sense,
they are dualistic entities in regard to the infor­
ming of entities [e.g. marked by T(a) or Ia\. Like
informing of an entity, the corresponding informa­
tional operator expresses the entity's property in
an active informational manner. This correspon-
dence is twofold: the informingness of the entity
(informational externalism) and the informedness
of the entity (informational internalism). In prin-
ciple, various sorts of operators belong to an en-
tity's externalistic and internalistic informing.

2.2.1 A n Introduct ion to the N o t i o n of
Informational Operator

An informational operator expresses the general
property of an entity in the form of entity's in­
forming. It does not mean that by an operator
the entire operational possibility of an operand is
exhausted. A general čase operator can be par-
ticularized and universalized in many ways, de-
pending on the happening of an operand as infor-
mer and observer. We introduce the most general
operator and its possible particularizations and
universalizations by the following definitions.

Definition 6 [GENERAL INFORMATIONAL OPE­
RATOR AS A UNIQUE OPERATIONAL JOKER]
The general informational operator, marked by
\=, ezpresses the most general property of an en-
tity, represented by an informational operand in
a simple (rnarker) or a complez form (formula
system). Although this operator is from-the-left-
to~the-right-oriented, to enable its reading in the
form inform(s) and are (is) informed, it does not
mean that operator \= does not possesses, roithin
its generality, the potentiality of being from-the-
right-to-the-left-oriented. Thus, any particulari-
zed, universalized or direction-concerning infor­
mational operator has its ground in \= and repre-
sents nothing less and nothing more than a special
čase of this operator^ Operator \= performs as an
informational joker which can act as a substitute
and (mutual) replacement of any operational phe-
nomenon. D

A general informational operator embraces
everything which can be imagined as operator,
as an informational activity (informing and infor­
med property) of the operand to which it belongs,
to which it is attributed. Introducing the ope­
rational joker has the notional roots in the po-
tentiality for leaving open any possibility of in­
forming and determining the joker just in čase
when the property of an operand (informational
entity) becomes (arises, emerges as) clearly iden-
tified. Thus, general informing means informing
in a free and unforeseeable way, to guarantee the
phenomenalism of informational spontaneity and
circularity of the entity. • The operational joker
implicitly expresses just this informational situa-
tion and at t i tude of an entity which informs and
is being informed.

2.2.2 General Informational Operator
and Its Part icularizat ion and
Universal izat ion

Everything which is not a general informational
operator, that is, |=, can be understood to be
particularized or universalized through a meaning
attributed to the operator. Operator particulari­
zation and universalization concerns a semanti-
cal content belonging to the operator as a con-
sequence of the operand to which the operator is
bound in an informing (externalistic) or informed
(internalistic) manner.

The difference between particularization and
universalization is merely semantic. In fact, both
mean a specialization or concretization of the ope­
rational joker. On the other hand, a particulari­
zed operator can be meaningly universalized (re-
placed) to some extent and up to the joker itself.

Definit ion 7 [GENERALLY PARTICULARIZED
A N D / O R UNIVERSALIZED O P E R A T I O N A L J O K E R]
One can introduce, together with the operational
joker, four groups of four operators in the follo-
wing way:

— Symbols | = , | ^ , = | , ^ | are operators of infor­
ming. non-informing, alternative informing,
and alternative non-informing, respectively.
The alternative operators are read (from the
left to the right) as is (are) informed and is
(are) not informed.

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 139

— Symbols ||=, | |^ ,=| | , 7̂ || represent operators of
parallel, non-parallel, alternative parallel,
and alternative non-parallel informing, re-
spectivehj. They are read in the folloiving
sense: inform(s), do(es) not inform, alterna­
tive^ inform(s), alternatively do(es) not in­
form in parallel.

— Symbols |— , \/- , —\, -f\ represent operators of
circular (cyclical, loop-like) informing, non-
informing, alternative informing, and alter­
native non-informing, respectively. They are
read in the folloiving way: inform(s), do(es)
not inform, alternativehj inform (s), alterna-
tively do(es) not inform circularhj.

— Symbols ||— , \\/- , -\\, -/\\ represent operators
of parallel-circular (parallel-cyclical, paral-
lel-loop-like) informing, non-informing, al­
ternative informing, and alternative non-
informing, respectivelg. They are read in the
folloiving way: inform(s), do(es) not inform,
alternatively inform(s), alternativehj do(es)
not inform parallel-circularly.

Although, according to informational principles
[9], informational entities inform in a circular way,
the circular non-informing represents a particular
(abstract) situation where circularity is excluded
(e.g., mathematical formulas).

Definit ion 8 [SEMANTICALLY PARTICULAR-
IZED A N D / O R UNIVERSALIZED O P E R A T I O N A L
J O K E R] Arbitrary informational subscripts and
superscripts for informational operators can be
used. The folloiving ezamples demonstrate such
possibilities:

L± L_ alternatively L£ alternatively
c u r a t r « ' xr a)

|_ in_parallel I / in_parallel I in^aral le l
\ a > F a) F alternatively, a'

h i circularly
circularly, F in_parallel,c*'

i i inferentially
Finferentially> Fby_modus4>onens

etc. •

Particularization and universalization of infor­
mational operators can be chosen pragmatically,
according to a language convention.

2.2.3 Informational Semicolon as an
Operator of Paral le l ism

Parallelism of phenomena belong to the most ge­
neral happening of the informational. Informati­
onal semicolon, marked by ';'> has the meaning of
parallelism of formulas between which it is set. It
can be interpreted operator-rigorously by the use
of parenthesis pairs. But usually, the parenthesis
pairs are omitted.

Definition 9 [SEMICOLON REPRESENTING IN­
FORMATIONAL PARALLELISM] A semicolon be-
tiveen two markers, formulas or formula sgstems
a and /3 means that these operands inform in pa­
rallel irrespective of their mutual informational
connection. In traditional logic, parallelism me­
ans a conjunction of logical operands, e.g. a&/3
or a A j3. Informationallg, operator || could be
used. The predse definition is

(a; /3) ?^ d e f (a |=jn_parallel P)

Thus, operator ';' can represent any of operators
Fin_paraiiei, &; A, |(= f=|| for an alternatively pa­
rallel čase) and ||. •

Circularly parallel operators describe circularly
perplexed parallel cases.

2.2.4 Operator of Informational
Implicat ion

Informational implication differs essentially from
the logical implication. As an operator, it appro-
priates the most general linguistic meaning of the
verb to imply. For instance [15, 16],

— to enfold, enwrap, entangle, involve;

— to involve or comprise as a necessary logical
consequence;

— to involve the t ru th or ezistence of (some-
thing not expressly asserted or maintained);

— to involve as a necessary circumstance: in-
former entity implies an informed entitg (in­
formational observer);

— to indicate or suggest as something naturally
to be inferred, without express statement;

— to involve by signification or import;

140 Informatica 19 (1995) 133-158 A.P. Zeleznikar

— to signify, import, mean;

— to signify as much as, to be equivalent to , to
mean or intend for;

— to express indirectly, to insinuate, hint at;

— to assume, include (synonymously); and

— to ascribe, at t r ibute

are cases of a semantic correspondence. On the
other hand, to imphj informationally can simply
appropriate the meanings as

— to interweave, interwine, interlace informati-
onally; and

— to embrace, involve informationally.

Definition 10 [OPERATOR OF INFORMATIONAL

IMPLICATION] Operator of informational implica-
tion, marked by =$>, is a particularized form of
the general informational operator \=, e.g. \=—*..

F=implicatively; f=involvingly; eZC. J. (le injormatlO-

nally obvious reading of operator =$• is 'implies
informational ly' or Hnforms implicatively' (from
the left to the right side of formula). D

Similarly as in the traditional logic, informational
implication is one of the keystones of the informa­
tional reasoning and inference, by which various
informational derivations can come into existence.

2.2.5 Informational Operator of
Inference

Informational operator of detachment in an infe­
rence rule has usually the form of a fraction line
and a specific meaning.

Definition 11 [OPERATOR OF INFORMATIONAL

INFERENCE] In an ezpression (informational for­
mula) of the form %, where formula a is called the
premise and formula f3 the conclusion, the frac­
tion line (777) is an operator of informational in­
ference ivhich reads Hnform(s) inferentially' (or
detachably). Thus,

a

1
\® F inferentially P j

Premise a is marked by P and is a function of at
least two operands, e.g., A and B, that is, P (A, B).
Conclusion P is marked by C and is a function of

B, that is, C(B) . Thus, instead of the inferential
rule R in the form

R(A,B)
P(A,B)

C(B)

there is

L(A,B)^(P(A,B)h inferentially
C(B))

D

There are many "standard" forms of inference ru-
les with characteristic premise and conclusion en-
tities; they will be informationally examined in
Section 6.

2.2.6 Operator of Informational
Be ing- in—Informat ional
Inclus iv ism

Informational inclusion is a recursive concept
which brings to the surface the informational con-
nectedness or interweavement of informational en-
tities.

Definition 12 [OPERATOR OF INFORMATIONAL

INCLUSION] Operator of informational inclusion
or informational Being-in is marked by C. In the
contezt of operands a and P, it is defined by the
folloiving recursive (circular) informational for­
mula [12]:

(P\=a; \
(a C /3) ^Def \a\=p;

\E(acP)J

where for the eztensional part E (a C /?) of the in-
cludedness a C P, there is,

(
2(a C P) G V

{(P\=a)cP,)\
(4«c P,
(p |= a) C a,
(a \= P) C a })

The most complez element of power set V is de-
noted by

5 Ž > C P)
(P\=a)cP,a;
(a\=p)cP,a

Cases, where S (a C P) ̂ 0, and 0 denotes an
empty entity (informational nothing), are excep-
tional (reductionistic). •

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 141

2.2.7 Operator of Informational
Being-of—Informational
Funct ional i sm

Informational function, as defined by Deflnition 3
(the informational Being-of), is a recursive con­
cept of informational dependence between infor­
mational entities and represents a generalization
of the concept of a function known in mathema-
tics. Within a functional notation, e.g. (p(£), the
operator of functionality remains hidden, that is,
not explicitly visible. That which happens be-
tween the functional formula (p and its argument
formula £, is ladled by Deflnition 3. We can un-
derstand that informational structure, if instead
</?(£) the notation <,#*£ or even (<p)*(£) is used,
where both informational parts are clearly opera-
tionally distinguished. Thus, operator * functions
as a complex operator according to Deflnition 3.

On the other hand, operator [=0f is a narro-
wer functional operator, expressing only a part
of the functional concept. This operator can be
determined into further details, symbolizing the
informational dependence of functional entity <p
on argumentative entity £.

Deflnit ion 13 [O P E R A T O R S OF INFORMATION­

AL F U N C T I O N A L I S M] Symbols, which mark infor­
mational functionality of a broader and a narro-
wer sense, are

_a_function_of j N o r , -

They can be variouslij defined in a concrete infor­
mational manner. •

2.2.8 C o m p o s i t i o n and Decompos i t i on of
Informational Operators

Informational operators can be composed and de­
composed. Composition is a process of operatio-
nal design where distinguished informational ope­
rators are composed into bigger operator units.
Decomposition of an operator means to decon-
struct it by means of an adequate formula part in-
troducing the so-called informational gestalts [13]
into a formula with certain operands.

Deflnit ion 14 [C O M P O S E D AND D E C O M P O S E D

INFORMATIONAL O P E R A T O R S] TWO informatio­

nal operators, \=a and [=p can be composed into
a new operator, applving the special symbol o, that

is, \=a° \=p- More complex operator compositions
of operators \=ai! \=a2> '"> l=«„ must be properly
parenthesized, e.g.

(' • ' ((Ki 0 K 2) ° K 3) 0 - - - | = « n - l) 0 l=«n»

l=ai0(l=a2
0(l=«3 • • • 0 (Kn-1° |=«J • • 0)

To decompose an informational operator \=, for
instance in a formula a (= (3, means to put be-
tween operands a and /3 a part of formula, that
is an informational frame ([13], Deflnition 12),
where the original formula a \= /3 becomes <&a ^
P 2) or, formalhj,

[a |= (3) |= by.decomposition (< Š a ^ /?2))

There ezist infinitely many possibilities of an ope­
rator |= decomposition. •

2.2.9 Other Informational Operators

Other informational operators can be introduced
pragmatically considering a language convention
and the appropriateness of operator symbols. In
this sense, direct (clearly symbolical), particula-
rized and universalized operators can be introdu­
ced. For example, |=, G, —>,* in <^*£, C, ==>,
^ , etc. belong to the class of direct informa­
tional operators. Particularized operators, e.g.
H inferentially5 express a special, narrower proper-
ties of informing entities, while universahzed ope­
rators express broader properties of entities which
inform and are informed. There is a hierarchy of
operators in the sense of the particular towards
the general, which is particular-universal-general.

3 Concept of Informational
Formula

Informational formula is a well-formed sequence
of informational operands, operators and paren-
thesis pairs. The well-formedness of informational
formulas is determined recursively. A formula re­
presents an informationally arising informational
entity and behaves by itself as an arising infor­
mational entity. From the philosophical point of
view, a formula is nothing else than a result of
an observer's informational process, which repre­
sents the observed entity at the site and through
the view of the observer.

142 Informatica 19 (1995) 133-158 A.P. Zeleznikar

Informational formula is a model of the infor-
ming entity which is being analyzed, deconstruc-
ted and decomposed. This process of the informa­
tional identification of an entity through an infor­
mational formula or formula system can be conti-
nued to new forms, facts, constructions, designs,
etc. according to the abilities of the observing en-
tity. The observing entity can observe itself and
perform informational changes on itself, so, this
principle leads to the circular informing of an en-
tity, that is, to the circular structure of an entity
representing formula.

3.1 A General Syntax of
Informational Formulas
(Operands and Operators)

Informational formula is a general term including
also the system of informational formulas. A well-
formed informational formula acts as an informa­
tional operand. E.g. informational markers are
formulas which mark complex, composed formu­
las.

Definition 15 [INFORMATIONAL FORMULA

SYNTAX] Let a mark different informational ope­
rands a, (3, • • -, u>, A, B, • • -, Z, 21, OS, • • •, 3 ; F,
A, • • -, $7, A, 3, • • -, Z, • • • and let \= be the most
general informational operator which can repre-
sent any operational particularization and univer-
salization. Then, an informational formula (IF
for short) is informationally well-formed, if it is
constructed by the follouiing syntactic rules, where
operator <— has the meaning 'becomes (gets, is re-
placed by)':

1. Operand a (as a marker) is IF.

2. Rule a <— (a) says that operand a, represen­
ting a marker, formula or formula system,
can be put into parentheses. Ezpression (a)
is IF.

3. Rule a <— («i, 0:2, • • -,an) permits the re-
placement of a by a list (of mutually non-
informing) operands a.\, ct2, •••, an. Such
list of operands is IF.

M
4- Rule a *— I ' I says that a can be paralle-

lized by a uihere a's can represent different

entities informing in parallel. The parenthe-

ses can be omitted. Ezpression ' i s IF.

w
5. Rule a <— (a |=) allows the replacement of

a by a\=. Expression a |= is IF.

6. Rule a <— (|= a) enables the replacement of
a by |= a. Ezpression |= a is IF.

7. Rule a <— (a (= a) says that operand a can
be replaced by a \= a (where the parenthe­
ses are omitted), and the first and the second
operand a can differ arbitrarihj. Expression
a \= a is IF.

This list of syntactic rules can be broadened if ne-
cessary. •

Other syntactic structures are already deduced by
the defined list of syntactic rules. For instance,
function y>(£) is nothing else than an expression
<£>*£, where * is informational operator, that is,

^ (O ^ (^ 1= functionaUy.on £) •

Definition 16 [INFORMATIONAL OPERATOR
COMPOSITIONS] Compositions of informational
operators (10 for short), uihere o marks the ope­
rator composition, underlie the follouiing operator
syntactic rules:

1. Syrnbol f= represents the general 10.

2. Operator rule |= <— (\=a° \=p) says that
operator (= can be replaced by a meaningly
adeguate composition \=a o \=p of operators
\=a and |=0. An operator composition is 10.

S. If in an operator composition there are more
than two operators, they must be adeguatehj
parenthesized, e.g.

\=a°(\=l30 N7) o r (N«° K?)° K-

etc, uihere complez compositions are IO's.

4- Operator rule

particularly V I— universally » |— directlyj

uihere V means 'is alternative to', says
that 10 |= can be replaced by operators
F particularly •-"* p 2 universally OT f= directly U1HICH

are IO's. Operator |=directiy represents the
so-called directly ezpressed operators, e.g. C,
^, = > , *, •-, etc.

PRINCIPLES OF A FORMAL AXlOMATIC . . . Informatica 19 (1995) 133-158 143

Operator compositions follow a conceptual seman-
tics of the designing and designed entity and their
syntax (parenthesizing) is determined by Defini-
tion 14- D

The presented informational syntax is in no way
a final čase. The syntactic concepts can be re-
fined or detailed according to informational cir-
cumstances.

3.2 Equivalence of Informational
Formulas

There does not exist an informaional equiva-
lence of different informational formulas. But,
equivalence relations between different formalized
expressions can be introduced on an abstract and
reductionistic level, e.g. in mathematics. Within
GIT, it is possible to observe different formulas
with similar informational meaning (semantics,
pragmatics). Thus, for example, formulas a and
a \= a are not equivalent because the second for­
mula is a derivation of the first formula in the
sense of a consecutive application of modus po-
nens. The meaning of a is a marker, the meaning
of a \= a points to an inner circular (metaphysi-
cal, deconstructive, decompositional) structure of
entity represented by a.

3.3 Implic i tness and Explicitness of
Informational Formulas

In concern to the discussion in the previous sub-
section, formula a as a marker is entirely impli-
cit as long as it s meaning is determined on some
other plače by some other formula. We say, that
irrespective of the existence of such other, mea-
ningly determined formulas, formula a hides the
implicitness of its informational potentiality. This
means that a as any other, regular informational
entity, can be decomposed into more details, de-
termining its structure which, through decompo-
sition, becomes more and more complex, e.g. seri-
ally as well as in a parallel manner. For example,
a \= a is the first (although formally trivial) step
on the way of informational decomposition. In
this sense, formula a \= a informs more explicitly
than does formula a. The possibility for a further
explicitness of a formula does always exist.

3.4 Formula Parallel ism

The possibilities of parallelism of informational
formulas do always exist. The syntactic rule

is simultaneously a regular principle of an entity
parallel decomposition. By this rule, parallel for­
mulas, concerning entity a can be generated ad
infinitum.

Informational parallelism is straightforward
and cyclic, depending on the structure of parallel
formulas.

3.5 Formula Serialism

The possibilities of serialism of informational for­
mulas do always exist. The syntactic rule

a <- (a |= a)

assures the arising of serial formulas, which can
be straightforward, circular or metaphysical [10].
A straightfonvard serial formula is, for example,

(. . . (a | = / ?) l = - " V O I = "

and ali other formulas obtained by the well-
formed displacement of the parenthesis pairs. A
cyclical serial formula is, for instance,

((. • • (a |=/?) |=. . .y ,) l=^)ha

and ali other formulas obtained by the well-
formed displacement of the parenthesis pairs. A
metaphysical serial formula is, for example,

(((((a \= X) |= <£a) |= C„) |= <B„) |= ta) \= «

where 3a is informing, <£a is counterinforming, ca

is counterinformational entity, <Ba is informatio­
nal embedding, and ea is embedding informatio­
nal entity of informational entity a. Ali other me-
taphysical formulas concerning a can be obtained
by the well-formed displacement of the parenthe­
sis pairs.

3.6 Parallel and Serial Circularity of
Informational Formulas

The circularity of formulas can become very
complex, for example, parallel-serial and serial-
parallel.

144 Infoimatica 19 (1995) 133-158 A.P. Železnikar

A parallel-serial circularity is given by a set
of parallel formulas which are structured in such
a manner that a certain transitivity of occur-
ring operands through these parallel formula ta-
kes plače. A trivial example of a parallel-serial
scheme would be a formula system, marked by
ij)\\ tha t is,

Q

v>"
(a |= a\\

« i |= «2 5

an-i '

\

a„
\an \= a J

A serial-parallel circularity is obtained if in a se-
rial formula parallel subformulas appear, for in­
stance, in the form

(---««!= 41) |= «!) I «l[) |= a

where o^, alj, • • • , aH are parallel arrays of for­
mulas.

The reader can imagine how this basic example
can become more and more complicated.

3 . 7 T h e Č a s e of F o r m u l a a \= /3

The čase of formula a |= (3 offers a unique oppor-
tunity for clarification of the problem existing be-
tween a as informer and /3 as observer of a

Definition 17 [THE INFORMER AND OBSERVER
PROBLEM CONCERNING FORMULA a |= /3] Con-
sidering the concept of operator composition in
Definition 14, one has the folloiving definition:

(a \= (3) ?^def (« Na° N/? Z3)

Operator composition \=a o \=@ performs as an
informational transition filter betiueen entities re-
presented by operands a and /3. •

This definition explains how observer /3 can be
informed about a only to the extent within which
a informs in an a 's specific way and f3 is capable
to be informed in a (3's specific way.

It seems senseful to explain the nature of infor-
mingness a \= and informedness |= (3 additionally.
The first čase belongs to informational externa-
lism and means tha t entity represented by an ope­
rator marked by a informs strictly within the in-
forming abilities of a, that is, a-characteristically,
or

--ao \=

The occurring operator composition f=ao |= de-
monstrates tha t the informing of a happens
openly to the entire informational domain (field,
space, also realm) through operator |= at the right
end of the operator composition.

In the second čase we have to do with informa­
tional internabsm, which means that entity repre­
sented by operator marked by (3 is informed (in
fact, can be informed) strictly in the framework of
the informing abilities (informedness) of /?, tha t
is, /3-characteristically, or

The occurring operator composition |= o \=p de-
monstrates that the informedness of /3 happens
openly to the entire informational domain thro­
ugh operator |= at the left beginning of the ope­
rator composition.

Within formula a |= (3 the described informati­
onal openness of the left and the right operand is
blurred (however, implicitly present). Thus, pos-
sible complete meanings of the formula would be

ct{\=ao\=)o{\=o\=p)p
"((Na0 N)° N)° N/3 P

«MNo(N°hP

or
or

where in the basic form a \= (3 the characteristic
operator parts \=a and \=p are implicit (invisible)
and in the compositional form a |= a o |=/3 the ge­
neral operator (joker) |= is superfluous.

3 .8 I n f e r e n t i a l I n f o r m a t i o n a l F o r m u l a s

An inferential informational formula or inference
in short has a general form

-^ or C

where a marks the premise (marked also by P)
and j3 the conclusion (marked also by C) . Thus,
by % (or P / C) , there is an inferring (informing in
an inferential manner) from a to /3 (or P to C) .
What stands under the inferential line (informati­
onal operator of inference) is always a conclusion
(operand marker, formula or formula system) and
above of it, a premise (operand marker, formula
or formula system). Premise means assumption,

PRJNCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 145

postulate, hypothesis, axiom, principle, and the
like. E.g., a postulate is something (informational
formula) t aken as self-evident or assumed without
proof as a basis for reasoning. Thus, a postulate
within a premise performs as an axiom or as an
already derived operand, theorem, formula, for­
mula system, etc.

E.g., one cannot say that a infers /3; but, one
can always observe that a informs inferentialhj (3,
for instance in the sense, that the occurrence of
a calls for an inference to /3 or that from a, there
can be inferred to (3, etc. In this manner, the
informing of something expresses the capability or
characteristics of the informing entity in respect
to the informed entity.

In čase § we have the situation which must not
be forgotten:

\& |—a,inferentially ° |—/3,inferentially P)

If a |=a,inferentiaUy, there can be not only
|=/5,inferentially /?, but any other kind of conclu-
sion, say, |=7,inferentially 7: w i t h another, informa-
tionally different (logical) structure of 7 in com-
parison to /3. Rules of inference can arise as any
other regular informational formula. If one proce-
eds from standard inferential rules (e.g., tertium
non datur, modus ponens, modus tollens, e t c) ,
it does not mean that arbitrary inferential rules
cannot come to the theoretical surface or cannot
emerge during the theoretical discourse.

Further, it must be clarified what can the appli-
cation of an inferential rule p (or E) upon an in-
formationally approved formulas a and /3 (acting
as a premise P and conclusion C) mean, for in­
stance, in the form of the informational Being-of
or functionalism /J(Q:, /3) [or R (P , C)] . In this čase,
inferential rule p becomes an informational func-
tion over formulas (formula systems) marked by
a and /3.

4 The Propositional and the
Predicate versus the
Informational

4 . 1 T r a d i t i o n a l a n d I n f o r m a t i o n a l
L o g i c

Theory of logical propositions and predicates (for
instance, [5, 8]) introduces propositions and pre­

dicates (logical functions concerning elements as
functional arguments belonging to arbitrary sets)
in the value domain of t ru th and falseness (un-
t ru th) . Informational entities and informational
functions concern formulas which, within them
and in parallel, can produce formulas. as results
or "values". Let us demonstrate the difference
between both approaches on the level of existence
of something, t ru th of predicates, and informing
of something.

Something, marked by a, certainly has the
property of existence. The framed expression
something exists is a formula which transits in

a predicate form something exists is true

a formalized way, the predicate form
In

a exists is true

corresponds to the predicate E(a). A predicate is
always understood to be a mat ter of the observer,
e.g. mathematician. On the other hand, informa­
tional formula which expresses the fact ' a exists'
or, more precisely, ' a informs to exist', or ' a in­
forms existingly', that is, a |=exist) belongs not
to the observer, but to the informer a as a pro-
perty of its informing. The predicate form E(a),
expressed in an informational form, would be

(a |=exist) |= true

The truth of a predicate concerns the predicate
and not the entity as an argument of the predi­
cate. Thus, the framed expression

entity exists informs true

can be understood as a predicate E(a) with an
implicit (assumed) faculty of trueness on one side
and as an informational formula (a |=exist) |=true
which transparently (expressively) informs the fa-
culty of the entity itself, for example, in the form
as: entity is, as it does exist, and as it does exist
in a true way.

The other (contrary) čase is

entity does not exist informs true

which corresponds to the predicate form E(a) and
to the informational form

(« |^exist) |= true

146 Informatica 19 (1995) 133-158 A.P. Zeleznikar

In this point, one has to clarify how does entity
a (in German, das Seiende a) not exist. The an-
swer is: in a certain iuay! Informational operator
b^exist is in respect to operator |=exist nothing else
than a particularized operator of the type (=exist-
This is uniquely not clear in čase of E(a).

The difference which can now be drawn be-
tween the predicate view and the informational
one is the following: the predicate view concerns
implicitly the observer of an entity while, on con-
trary, the informational view concerns explicitly
the informer and the observer and where both can
perform in one and/or another way, that is, in­
former as informer and observer, and observer as
informer and observer, simultaneously. In the in­
formational čase, the observer must be explicitly
present (marked) and must inform and be infor-
med explicitly, through concrete, particularized
or universalized informational operators. While
the predicate čase concentrates on the observer
and the informer (the argument or variable of the
predicate) is only an object of the observer, the
informational view distributes the informing be-
tween both the observer (the informedness) and
informer (the informingness).

Axiomatically, the informer stands before the
observer and the observed (the informing entitv,
tha t is, informer) can only be tha t which informs.
Both are informationalb/ active and passive en-
tities (subject and object, simultaneously) and
explicitly present (informationalb/ determined).

Propositional and predicate logic stress the ob­
server^ view, tha t is, the so-called informational
internalism. Informational logic unites the so-
called informational ezternalism and internalism
in the framework of informational metaphysica-
lism and phenomenalism. And, in this kind of
view lies the novelty and the power of informati­
onal arising as a spontaneous and circular pheno-
menon, within the discourse which is on the way
and which follows.

4.2 The "Value" of an Informational
Formula

The concept of value belongs to the basic mathe-
matical concepts. In mathematics [15, 16], value
is the precise number or amount represented by
figure, quantity, etc. For instance, numbers, ele-
ments of sets, t ru th and falsity, magnitude, a po­
int in the range of a function, the value of a word,

etc. are values for variables and functions. A simi-
lar question can be reasonabb/ put to the surface
in čase of the informational: which are the values
of informational operands as variables, markers,
formulas and formula systems? Hov/ can infor­
mational values be achieved (accessed) and what
do they represent as informational formulas?

In music, value is the relative length or duration
of a tone signified by a note. In painting, it is due
or proper effect or importance; relative tone of
colour in each distinct section of a picture; a patch
characterized by a particular tone. In philosophy,
value means axiology.

An informing formula produces formula-like re-
sults. A result can be understood as a part , piece
of formula, as an arising parallel formula or for­
mula system, which value is a semantically and
pragmatically converted, transverse sort of infor-
mation, e.g. text, picture, voice, signal, etc. The
same principle can be used for the domain of input
operands, tha t is, informational variables, formu­
las, etc. as informing entities.

Informational formulas are, in respect to the
natural means (languages, pictures, voices, si-
gnals, e t c) , adequately informationally encoded
entities which, in any state or position, can be
understandingly decoded as values, in a "natural"
form. Informational encoding and decoding can
use any formalized (mathematized, systemized,
procedur al, etc.) means, methods, concepts, al-
gorithms, apparatuses, approaches, formulas, etc.
as well as those of the informational view, science,
theory, systems, etc.

4.3 Logical and Informational
Examples

Tautology and (informational) circularity are the
focal problems of traditional mathematical and
informational logic. We will show how a syntac-
tically circular formula in mathematical logic is
never comprehended as a circular (tautological)
scheme while within an informational logic just
this type of syntactic expression is considered to
be circular. Thus, traditionally, the formula cir-
cularity (tautology) is pushed off the conscious
horizon, while informationally circularity is con­
sidered as a cyclically operating kind of informing.
To get a clear picture of such phenomenalism, we
will use examples concerning the so-called foun-
dations of mathematics, tha t is, its metatheory.

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 147

E x a m p l e 1 [IMPLICATIVE A X I O M S FOR P R O ­

POSITIONAL C A L C U L U S] Formalizing the logical
reasoning (inference) in propositional calculus ([5]
p. 66), Hilbert lists a (geometrical) group of his
axiom formulas of implication:

A - (5 - A),
(A^{A^B)). - (A->B),

{A^B) - p_>c)-(A->CB
Informationallu, these implicative formulas exert
a sort of circularitu regarding propositional ope-
rands A, B and C. •

The first formula says that proposition A, if not
an axiom, has its logical cause in a proposition
B. It simply means the following: Something im­
plies that it is implied by something other. The
second formula stresses that if proposition A im­
plies an implication A —» B, then A implies B. It
can be interpreted as: If something implies that
it implies something other then something implies
something other. The third formula says: if A im­
plies B then the implication B -» C implies also
the implication A —• C. Said by other words,
there is: Something implies something other im­
plies the folloming: if something other implies so­
mething third then something implies something
third.

The listed axioms are in a certain accord with
common sense. Ali of them are identically true
logical formulas, which can be easily verified by

_A V Š V A,
(i A J) V I V 5 , _
(AAB) V (BAC)VAVC

respectively.
Reading the original formulas, a mathematician

does not observe the circular structure of the li­
sted axiomatic formulas. Implication seems to be
such a kind of the logical operator which does
not evoke the 'feeling' of circularity although the
markers of one and the same kind are used se-
veral times in the implicative expression (e.g. in
implication of implication). This fact becomes in-
formationally true if in original formulas the lo-
gic implication operator is replaced (universali-
zed) by the informational joker and operands are
adequately marked by aA, (3g and -je that is,

<*A f= (PB \= aA);
(aA \= (aA \= PB)) \= (<*A N PB);
(<*A \= PB) h ((PB |= le) h (<*A |= lc))

The first formula is circular in aA, the second one
in aA and PB, and the third one in aA, PB and 7c-
AU together form a parallel informational system
(operator ' ; ') .

Example 2 [IMPLICATIVE AxiOMS FOR I N -
FORMING OF INFORMATIONAL ENTITIES (O P E R -
ANDS)] An instruetive, now informational čase
with informational implication operator => is

a = ^ (/3 =>• a) ;
(a = • (a = • y9)) = » (a = » / ?) ;

(a=>P) =^ ((P=^7)=>
(a = > 7))

which leads to the basic informational axioms, for
example, of the form

(«N) => (a=»(a|=J);
(a =>. (a = » (a (=))) = > (a ==> (a |=));

(«=>(« 1=3) => (K*l=)=»

((a = • (\= a)))

The last example shows how the "global" Hil­
bert^ implicative axioms can reasonablv be applied
in the informational čase where the traditional
Truth of Propošitions is replaced by the Informing
of Informational Formulas. •

5 Phenomenalistic Axioms of
the Informational
Zur Erleichterung soli bei den ersten
Axiomen die sprachliche Fassung hinzu-
gefiigt werden.

—D. Hilbert und P. Bernays [5] 5

The so-called phenomenalistic axioms of the in­
formational are meant to be the axioms of the
object and metatheory, and the inference axioms
(initial rules for informational inference) underlie
the general informational phenomenalism. Gene­
ral informational theory is, namely, a unit of the
formal object theory and the formal metatheory,
that is, the theory of informational inferring (pro-
ving, causing, concluding—deriving). As stated
in the quotation of this seetion, the natural langu-
age comprehension cannot be avoided at the very
beginning of the presented informational axioma-
tization.

148 Informatica 19 (1995) 133-158 A.P. Zeleznikar

In this section the basic axioms will be presen-
ted in an aprioristic and postprioristic manner.
The independence of axioms will not be conside-
red. Later on, it will become clear that only one
informational axiom can be chosen, however, by
the use of informational inference rules, other axi-
oms can be derived (deduced).

5.1 Informational External ism

Let us try to state which sort of axiom could be
quite on the top of the informational. Already in
Example 2 we have applied Hilberfs axioms [5]
for the informational čase.

Axiom 1 [INFORMATIONAL EXTERNALISM] A-
prioristically (commonsensically, trivially, intui­
tiven [6]) at the top of the informational (system)
has to be something which deepeningly (most es-
sentially) concerns an informational entity a. So,
let it be an informational implication of the form

(a^(a=^ (a \=)J) = > (a = > (a |=))

This axiomatic formula says: "If informational
entity (represented by operand a) implies that it
implies its informing(ness), then the entity im­
plies that it informs." The next, substantial axi-
omatic rule of informational ezternalism (accor-
ding to Example 2 [5]) is

(a |=) = * (« = > (a h))

Informing(ness) of a implies that a itself is the
cause of its informing(ness). •

According to the last axiomatic formulas,
everything informational, irrespective of its infor­
mational structure or complexity, informs. Both
formulas are informationally (and traditional-
logically) consistent, that is, informationally (lo-
gically) noncontradictory. In traditional logic,
pertaining to truth, it would mean, that both for­
mulas are true (even identically true) or, expres-
sed informationally, (a = > (a (=)) f=true-

Example 3 [EXTERNALISM OF NON-INFORM-
ING] Informing and non-informing of an entity
a are parallel phenomena. Non-informing may be
comprehended as a particular phenomenon of in­
forming. Thus, operator \£ which reads 'does not
inform', is a particular čase of operator |=.

a |= means that a informs in a specific man­
ner, that is a-characteristically. a \£ means that
a does not inform in a certain way, that is, it
informs a-non-characteristically. Thus,

(a |=) ?=± (a 1=0«) and (a ^) ^ (a \£a)

Operator \=^a would mean informs differenthj in
comparison to a-characteristically.

According to Axiom 1, for a particular čase con-
cerning a, there is a = > (a |=particularly)- Accor­
ding to this principle, also

holds. This implication will become significant in
our further discussion. •

5.2 Informational Internalism

Informational internalism is a dualistic concept
in regard to informational externalism. Axioma-
tically, the question arises, which of both pheno­
mena is the primary one and which is the con-
sequence of the other. Thus, quite at the begin-
ning of axiomatization, the next axiom could also
be accepted.

Axiom 2 [INFORMATIONAL INTERNALISM] A-
prioristicallg (commonsensically, trivially) at the
top of the informational could also be something
vohich deepeninglg (most essentialhj) concerns an
informational entity a in the sense of its infor-
medness. So, let introduce an informational im­
plication of the form
(a =* (a = > (|= a))) = > (a = > (^ a))
This axiomatic formula says: "If informational
entity (represented by operand a) implies that it
implies its informedness, then the entity implies
that it is informed." The next, substantial axio-
matic rule of internalism is, for instance,

(1= < *) = • (« = • (h «))
Informedness of a implies that a itself is the ca­
use of its informedness. •

According to the last axiomatic formulas,
everything informational, irrespective of its in­
formational structure or complexity, is infor­
med. Both formulas are informationally (and
traditional-logically) consistent, that is, informa-
tionally (logically) noncontradictory. In traditi­
onal logic, pertaining to truth, it would mean,

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 149

tha t both formulas inform true (are identically
t rue) , or expressed informationally, (a ==>• ()=

Ot)) |= t rue-

5.3 Informational Metaphysical ism

Informational metaphysicalism is a general and
entity specific way of circular informing. In ge­
neral, it proceeds from the initial circular form
a \= a which is trivially circular, but becomes
structurally circular by decomposition. Specifi-
cally, the decomposition of this form can be stan-
dardized to some extent, introducing explicitly
the components of informing, counterinforming
and informational embedding as entities which in­
form within an informational entity [10].

A x i o m 3 [INFORMATIONAL M E T A P H V S I C A L ­

ISM] Aprioristically (commonsensically, trivially,
intuitively) at the top of the informational could
also be something tohich deepeningly (most essen-
tially) concerns an informational entity a in it­
self, as its inner informing or informational ari-
sing, called metaphysicalism. So, we can intro-
duce an informational implication of the form

(a =$• (a =>• (a |= a))) => (a = > (a |= a))

This axiomatic formula says: "If informational
entity (represented by operand a) implies that it
implies its metaphysicalism, then the entity im­
plies that it informs and is informed circularly."
The next, essential aziomatic rule of metaphysi-
calism is, for instance,

(a j= a) => (a =>• (a |= a))

Circular informing voithin a itself implies that a.
itself is the cause (phenomenon) of its metaphysi-
calism. •

According to the last axiomatic formulas,
everything informational, irrespective of its infor­
mational structure or complexity, informs and is
informed in a metaphysical manner.

5.4 Informational Phenomenal i sm

Informational phenomenalism means a paralle-
lism of informational externalism and internalism
regarding an informational entity a. By'this, an
entity is open as an informer and observer to its

environment and to itself (metaphysicalism). In­
formational phenomenalism is the most general
concept of informing of entities. This belief can
lead to the axiom which follows.

A x i o m 4 [INFORMATIONAL P H E N O M E N A L I S M]

Aprioristically (intuitively, commonsensically,
trivially) at the top of the informational could also
be something tohich deepeningly (most essentially)
concerns an informational entity a toiuard the
outside (outward, externally), toward the inside
(inward) and in itself, as its entire informing or
informational arising, called phenomenalism. So,
we can introduce an informational implication of
the form

(. - (- (# - (. - (#

This aziomatic formula says: "If informational
entity (represented by operand a) implies that it
implies its phenomenalism, then the entity implies
that it informs externalistically and is informed
internalistically." The next, essential aziomatic
rule of phenomenalism is, for instance,

Phenomenal informing of a implies that a itself
is the cause (phenomenon) of its phenomenalism.
D

According to the last axiomatic formulas,
everything informational, irrespective of its infor­
mational structure or complexity, informs and is
informed in a phenomenal manner.

It will be shown how Axioms 2, 3 and 4 can be
derived form Axiom 1 if the axiomatic inference
rule of informational modus ponens is adopted.

6 Axioms Related to
Informational Rules of
Inference

Inference rules of a theory pertain to the theory's
metatheorv, which performs as a theory of theory.
In this function, a metatheory concerns the pro-
ving, founding, logicism and formalism of a the-
ory, that is, in regard to metatheory, the object

150 Informatica 19 (1995) 133-158 A.P. Zeleznikar

theory. Separation between the object and me-
tareasoning is traditional and roots in mathema-
tics, in its platonistic (tautological) approach with
the intention to make theories function in a non-
contradictory, logically consistent and reductioni-
stic way.

6 .1 T h e T r u e v e r s u s t h e I n f o r m a t i o n a l

Truth is the central concept of any mathematical
theory and of mathematics as such. Everything
derived from axioms by rules of inference must be
true. Through mathematical proofs, the t ruth of
theorems or derived consequences must be veri-
fied. Otherwise, the derived results are not ma-
thematically correct. The basic question is how
this traditional approach could be diversified in
such a way that the mathematical t ru th becomes
only a particular informational entity (operand)
or an entity's property (operator)?

In Subsection 4.3 we have shown a possible di-
fference between the t rue and the informational.
The difference can exist in the following different
manners:

N

1
2
3
4

5
6
7

8

9

10
11

12

The true

Logicism
Particularization
Tertium non datur
A is true or

false
A informs true
A |=true
A informs false

A |= false Or

A |7=true
A is informed

true

F true "•
A is not informed

true
l^true A or

pfalse A

The informational

Informationalism
Generalization
Various informing
a is informational

a informs
a \=
a does not inform

in a way

a is informed

(= a
a is not informed

The last list of differences illustrates only the ini-
tial possibilities; so the reader can continue to list
further imaginable differences.

6.1.1 Identical Truth of Propos i t ions and
Pred icates

Propositional formulas (which are propositions re-
presenting logically connected propositions) can
be constructed in such a way tha t they do not
depend on the true and false values of their ope-
rands. Such formulas are said to be identically
true or identically false. For instance, propo­
sitional formula A —> (B —> A) is identically
true, while formula (its negation) A —»• (B —> A)
is identically false.

The triviality of logical axioms and rules of in­
ference lies in their identical trueness. For in­
stance, the pure implicative axioms of logic ([5],
p. 66) are identically true, tha t is, they do not
depend on the values of their propositional ar-
guments. The same is valid for the derivation
(deduction) rules of the type modus ponens and
modus tollens, which can be logically transcribed
into (A A (A -+B))-*B and ((A -> B) A ~B) -»• B,
respectively. In this way, something hidden (unre-
vealed, intuitive and, also, tautological) remains
in the background of these rules of inference.

6.1.2 T h e Value D o m a i n of t h e Logical

Following the principle of tertium not datur, there
are only two values of propositions and predica­
tes in traditional logic, that is—true and false. In
multivalued logic, more than two values are per-
mitted and gradations between true and false va­
lue are possible. But the nature of the principles
of trueness remains preserved in various manners
(e.g., probabilistically, modally [2], e t c) . A valu-
ation is an assignment of t ru th values (T and i.)
to the proposition sentences after their semantic
analysis.

6.1.3 T h e Formula Value D o m a i n of the
Informational

The informational formula value domain is
formula-like. Arguments and values of informati­
onal formulas are formulas as inputs and outputs.
The difference to the traditional-logical is tha t ar­
guments can influence the entity in question to
an informational extent (in trivial cases also to
an 'entire' extent) and that the so-called values
(results) are 'produced' (influenced) only to some
informational extent (triviallv, to a full extent).

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 151

Informational formulas simply absorb the propo-
sitional and predicate power of a traditional-logic
apparatus (calculus).

'To influence to an informational extent ' me-
ans to impact something informationally not as
a product but as an already existing entity; and
the similar concerns the informational impacte-
dness, where something performs its influence on
the entity impacted by it.

6.2 M a t h e m a t i c a l I m p l i c a t i o n v e r s u s
I n f o r m a t i o n a l I m p l i c a t i o n

As the mindful reader can observe, the mathe­
matical implication is not only logical. In fact,
the implication is a metamathematical (philoso-
phical, intuitive) connective of arguments, closely
tied to the semantics of each argument and the
implication as a semantic structure in particular.

Informational implication approaches to vari-
ous dictionary (informational) concepts of the
word 'implication'. It certainly absorbs the con-
cept of mathematical implication.

6 .3 R u l e s (A x i o m s) of I n f o r m a t i o n a l
M o d u s p o n e n s

Modus ponens (MP for short) belongs to the most
popular rules of inference as a mechanism for ma­
thematical deduction of formulas from an object
theory axioms and already deduced particular for­
mulas, called theorems. Simultaneously, modus
ponens is the main instrument in the proof pro-
cedures which are nothing else than just deduc­
tion processes as described. It considers the con-
veyance (an old law) and is the way in which
anything deduced is obtained. MP is a mode of
deductive operation (e.g. modus operandi or mo­
dus agendi).

The Latin verb pono (posui, positum) means to
set down, before; to lay out, put out at interest
in the sense to lay down as true, assert, assume,
etc. MP is a mood that affirms (in German, be-
jahender Modus). It is a rule by which from if
p then q together (and) with p, the operand q
may be inferred. The full meaning in Latin is
modus ponendo ponens or law of detachment (in
German, Abtrennungsregel), written in the form
(p, p —> q) —> q. The meaning is: if, simultaneo-
usly (in German, sowohl), p and also 'if p then q'
is valid (true), then also q is valid (true). Because

MP is a rule, the rule arrow —> has to be used
as a communication. sign for an action (operation)
instruction.

6.3.1 Interpretat ion of Logical M o d u s
ponens

In traditional logic, modus ponens (the rule of
detachment) has the form

P,P^ g

where the inferring line is the operator of de­
tachment. As already shown, this rule (when
neglecting its communication role) represents an
identically true formula in the form (p A (p —>
?)) — • <?•

The uttermost informational interpretation of
the above formula regarding the t ru th as the only
relevant logical value could be the following:

({p h t rue ; {P -> q) h t m e) |= t rue \ •_
I p 1 p t rue
V q |—true /

In the last čase, by the entering into formula of
MP, the t ruth of q has to be verified. If g is a
true theorem, then in the premise, p and p —»• q
are assumed to be valid, tha t is, t rue. Such an
understanding of MP seems to be commonsensi-
cal. However, MP informs t rue without regard to
the t ruth of the constituting components (p and
p - * q).

6.3.2 Informational M o d u s p o n e n s and
Its Poss ib le Interpretat ions

Together with the fundamental axiom of the
object informational theory, tha t is, a = > (a |=),
we need a fundamental inference axiom, by which
from the initial informational entity a the result
a |= can be derived (deduced).

Inference A x i o m 1 [INFORMATIONAL MODUS
PONENS] We adopt the following basic inference
axiom for informational derivation:

a; (a = ^ / 3)

By this rule, marked by Kmp(a,(3), ivhere 'mp' in
the subscript stands for 'modus ponens', operand
(formula, formula system) j3 voill be derived from
operand o. (formula, formula system), that is,

152 Informatica 19 (1995) 133-158 A.P. Zeleznikar

a ~* mp P or> simply, a -»/3

Formula a -»/3 is called derivation (by modus po-
nens) from a to /3. D

By means of the last inference axiom from the
first object axiom (e.g., Axiom 1) a theorem can
be proved which follows.

Theorem 1 [EXTERNALISTIC INFORMING OF
AN INFORMATIONAL ENTITY] If a is an infor-
mational formula, then a \= is an informationallu
regular (a-equivalent, a-replaceable) formula. It
means that in decompositions of a (serial, pa-
rallel, circular, metaphusical or ivhichever de-
construction), formula a (= performs as another
phenomenon of formula a. There is, certainlu,
a -» (a \=). •

Proof 1 [FORMULA
a |= AS A REGULAR OCCURRENCE OF a] The
initial 'axiom' of an informational operand a is
the operand itself. We must prove, that formula
a \= is derivable from a. Axiom 1 offers the in­
formational validitv of formula a = ^ (a f=). In
this way, we dispose with elements of the premise
necessary for modus ponens. Finally,

a- (g = > • (a |=))

«1=
In fact, this is a trivial (aprioristic) proof of the
informational existence of a f= if the existence of
operand a was axiomatized. Thus, the ezistence
of derivation a -» (a |=) is proved. O

Theorem 2 [INTERNALISTIC INFORMING OF AN
INFORMATIONAL ENTITY] / / a is an informatio­
nal formula, then \= a is an informationally regu­
lar (a-equivalent, a-replaceable) formula. It me­
ans that in decompositions of a (serial, parallel,
circular, metaphysical or ivhichever deconstruc-
tion), formula |= a performs as another phenome­
non of formula a. There is, certainly, a-» (|= a),
a

Proof 2
[FORMULA \= a AS A REGULAR OCCURRENCE
O F a] We must prove, that formula \= a is deri­
vable from a. Axiom 2 offers the informational

validity of formula a =$• (|= a). Let us shoiv
cases of proving the derivability of \= a.

The first possible čase (Axiom 2) is

a;(a=> (|= a))
f= a

The second possible čase considers the axiomatic
fact (a |=) =3> (|= a) as a necessity ivhich says
that if something informs, something must be in-
formed. Thus,

(«H;((^)=>(h4
| =a

At the end of the proof, let us show informati-
onallij three axiomatic implications ivhich follow
according to Example 1, the third rule:

(a ' (« 1=))
(((a \=) = > (|= a))

(a = » (|= a)) = »
(((H a) = • (a h))

((a |=) = • (h «)) = »
(« | = a) = * a) = > (C a | =)

(a =* (h a)));

(a = » (a h)))!

The implicative circularity of entities a, a\= and
|= a. is complete.

Thus, the existence of derivation a -» (|= a) is
proved. D

Theorem 3 [PHENOMENALISTIC INFORMING
OF AN INFORMATIONAL ENTITY] If a is an infor­
mational formula, then formula system a |=; |= a
is an informationally regular (a-equivalent, a-
replaceable) formula. It means that in decompo­
sitions of a (serial, parallel, circular, metaphysi-
cal or ivhichever deconstruction), formula system
a |=; |= a performs as another phenomenon of
formula a. There is, certainlij, a -»(a [=; |= a).
a

Proof 3 [FORMULA SYSTEM a |=; |= a AS A R E ­
GULAR OCCURRENCE OF a) A consequence of the
previous axioms and theorems is formula

a =$• (a |=; |= a)

By informational modus ponens, there is,

a ; (a = » (a |=; |= a))
a\=;\=a

This proves a -» (a |=; |= a) . D

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 153

T h e o r e m 4 [METAPHYSICALISTIC INFORMING

OF AN INFORMATIONAL E N T I T Y] / / a is an

informational formula, then formula a \= a is
an informationallv regular (a-equivalent, a-
replaceable) formula. It means that in decompo-
sitions of a (serial, parallel, circular, metaphvsi-
cal or uihichever deconstruction), formula a \= a
performs as another phenomenon of formula a.
There is, certainlu, a-»(a\= a). •

P r o o f 4 [F O R M U L A a\=a AS A R E G U L A R

O C C U R R E N C E OF a] A conseguence of the pre-

vious azioms and theorems is formula

(a \=;\= a) =>- (a \= a)

By informational modus ponens, there is,

(g |= ; |= g) ; ((g |=; [= g) = » • (g |= g))

a \= a

(See Definition 15 for a \= a.) This proves a -»
(a \= a). •

C o n s e q u e n c e 1 [R E P L A C E M E N T POSSIBILITIES

FOR AN INFORMATIONAL OR INFORMING E N -

T I T Y] Let us have

a, 6 G {a , a \=, \= a, a \= a, (a |=; |= a }

Then, for a 7̂ b, there is a -» b and, so, a <— 6. •

Consequence P r o o f 1 [PROVING o <— 6 FOR
E N T I T I E S AND T H E I R INFORMING] The last con­
seguence means the possibilities of replacements in
decomposition (deconstruction) procedures, that
is,

a <—

/« K \
\= a,
a \= a,

("t-\
; (« ! =)

\\\=<*)J
(<*, \

(! = «) « -

a |=,
a \= a, ; (a

VVN«;/
(a, \

a NA ^
{>")

a |=,

[= ",
\a |= a J

<-

\=

The conseguence can be prove
previou s axt 077 is and i heorem.

/ a , .
\= a,

\

a \= a,

(a.\-

\{\=o

a) « -

d by co
?. D

A
i

<))

/ « , \
a |=,

\{\=<*j)

nsidering

>

the

According to Subsubsection 6.3.1 where the lo-
gical modus ponens was informationally interpre-
ted, we can interpret the informational modus po­
nens in several informational manners. The first
possible and informationally consequent interpre-
tation of MP is externalistic and yields

(ah(tt=>)9)l=)l= 1=

where a and /3 can be arbitrarily complex formu-
las. As we see, its components (three of them in
the premise, one in the conclusion) and the en-
tire rule of MP inform in an externalistic manner.
The exact meaning of this interpretation could
be the following: if a informs its informational
existence and, in parallel, the implication a im-
plies /3 informs its informational existence, then /3
informs its informational existence. Under these
conditions, the respective formula of MP informs
its informational existence.

Other interpretations of informational MP co­
uld be internalistic, metaphysicalistic and pheno-
menalistic. The consequent internalistic interpre­
tation of MP is

t = (| = a ; [= (« = > / ?))

The consequent metaphysicalistic interpretation
becomes pretty cumbersome, tha t is,

(g |= g; (g = » /3) |= (g =>• /3)) \=

(g h c ; M P) 1= (" =• P))
c M h

(g |= g; (g = » /3) |= (g = » /3)) \=
(g |= g; (g = » /3) |= (g = > /3))

where metaphysicalism must be considered on ali
five components of the inference rule (metaphysi-
calism of two components of the premise; the pre­
mise as a whole; the conclusion; and the rule as a
whole).

The consequent phenomenalistic interpretation
is cumbersome too, which becomes evident from
the two equivalent inference rules, where the flrst
one informs and the second one is informed:

154 Informatica 19 (1995) 133-158 A.P. Zeleznikar

A«N;N«); \

'(a |=; |= a)

h I A(a=^/3)N;h(«=^))H

/3 | = ; |= ^ h

\

h

/ (a) = ; | = a) ;

/ « a = * / 3) h h (« = • / * »

(a | = ; | = a) ;

h | / ' ((a=M) h N (* =•#&!=;
h ((a =» /?) h N (a =» d)) j)

The reader can imagine how mixed externalistic,
internalistic, metaphysicalistic and phenomenali-
stic interpretations are possible. In this way an
informational explosion of MP possibilities exists.

6 .4 A G e n e r a l i z a t i o n of I n f o r m a t i o n a l
I n f e r e n c e R u l e I n t e r p r e t a t i o n

The čase of informational MP interpretation calls
for a generalization principle in the following
sense.

Inference Axiom 2 [INFERENCE RULE PHE-
NOMENALISM] An inference rule

L(A,B)
F(A,B)

C(B)

is by itself an informational formula ivhich under-
lies the principles of informational phenomena-
lism. Cases of the externalistic, internalistic, me-
taphvsicalistic and phenomenalistic forms of in­
ference rules, respectivelv, can be understood as
permissive replacements, that is as transformati-
ons of the initial rule R(A, B). Thus,

l(A,B)

/ R (A , B) h \
^ R (A , B) ,
R(A,B) | = R (A , B) ,

\(1(A,B)HNR(A,B)V

Concerning premise F (A, B) and conclusion C(B)
of a rule R(A, B), the following double-phenom-
enal cases are convenient, called ex-externalism,

in-internalism, meta-metaphysicalism and pheno-
phenomenalism of inferential rules, respectivelu:

P (A , B) h
C(B) |= h

• N F (A , B)
H | = C (B) '

P(A, B) \= P(A, B) F (A, B) |= F(A, B)
C(B) |= CB) C(B) |= CB)

/ P (A , B) h ; h P (A , B) \
C (B) | = ; I = C (B) F '
P (A , B) | = ; | = P (A , B)

\ h C(B)^CB) J
Phenomenalism of arguments A and B depends on
the structure of premise P and conclusion C . •

6.5 R u l e s of I n f o r m a t i o n a l M o d u s
t o l l e n s

Modus tollens (MT for short) , in full modus tol-
lendo tollens, belongs to the mood tha t denies and
is the rule that from ifp then q together with not-
q, not-p may be inferred. An inference in modus
tollendo tollens yields the contrary of the original
contrary hypothesis. It is the principle tha t , if a
conditional holds and also the negation of its con-
sequent, then the negation of its antecedent holds
[15]. MT is a mode of deductive operation.

The Latin verb tollo (sustuli, sublatum) me-
ans to lift or take up; to take away, remove, take
or carry off, make away with, destroy; to annul,
cancel, abolish. MT is a mood tha t denies (in
German, verneinender Modus).

6.5.1 Interpretat ion of Logical M o d u s
tol lens

In logic, modus tollens has the form

P^ g, g
P

where the inferring line is the operator of deta-
chment. This rule (when neglecting its communi-
cation role) represents an identically t rue formula
in the form ((p —> q) Aq) —»• p.

The uttermost informational interpretation of
the above formula regarding the t ru th as the only
relevant logical value is the following:

'((P - > i) h t rue ;<7 |= t rue) h t r u e "

PN true
h true

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 155

6.5.2 Informational M o d u s tol lens and
Its Poss ib le Interpretat ions

Together with the fundamental axioms of the
object informational theory, we need an inference
axiom, by which from the initial informational en-
tity a the result a \fc can be derived (deduced).

Inference A x i o m 3 [INFORMATIONAL MODUS

TOLLENS] We adopt the follouiing basic inference
axiom for informational derivation:

By this rule, raarked by R m t (a , / 3) , where 'mt'
in the subscript stands for 'modus tollens', ope­
rand (formula, formula system) a \fi will be de­
rived from operand a (formula, formula system),
that is,

a - » m t (a | ^) or, simply, a^(a\£)

Formula a -» (a \fi) is called derivation from a to
a \£ (by informational modus tollens). O

By means of the last inference axiom from the
first object axiom (e.g., Axiom 1) a theorem can
be proved which follows.

T h e o r e m 5 [E X T E R N A L I S T I C N O N - I N F O R M I N G
OF AN INFORMATIONAL E N T I T Y] / / a is an in­
formational formula, then a \£ is an informati-
onally regular (a-equivalent, a-replaceable) for­
mula. It means that in decompositions of a (se-
rial, parallel, circular, metaphysical or ivhichever
deconstruction), formula a \fi performs as ano-
ther phenomenon of formula a. There is, cer-
tainly, a -» (a \j£). D

Proof 5 [FORMULA a ^ AS A REGULAR
O C C U R R E N C E OF a] The initial 'axiom' of an in­
formational operand a is the operand itself. We
must prove, that formula a\fc is derivable from
a. Example 3 explains the informational validity
of formula a =£• (a \fi). In this way, we dis-
pose with elements of the premise necessary for
both modus ponens and modus tollens. Firstly, by
MP,

a; (g = » (a \£))

<*&

and secondly, by MT,

(a = > (a | =)) ; a ^ .

In fact, these are trivial (aprioristic) proof s of the
informational existence of a \fc at the given (alre-
ady derived) formula a. Thus, the existence of
derivation a-»(a\fi) is proved. •

We can join the theorems concerning the interna-
listic, phenomenalistic and metaphysicalistic non-
informing in the following manner.

T h e o r e m 6 [INTERNALISTIC, PHENOMENALI-
STIC AND M E T A P H Y S I C A L I S T I C N O N - I N F O R M I N G
OF AN INFORMATIONAL E N T I T Y] / / a is an in­
formational formula, then \fc a, (a \fi;\fi a) and
a \fi a are informationally regular (a-equivalent,
a-replaceable) formulas. It means that in de­
compositions of a (serial, parallel, circular, me-
taphysical or whichever deconstruction), these
formulas perform as. distinguished phenomena of
formula a. There is, certainlv, a -»(\£ a), a -»
(a \£; \fc a) and a -» (a \fi a) . •

Proof 6 [FORMULAS \fi a, (a\£]\fia) AND
a \£ a AS R E G U L A R O C C U R R E N C E S OF a} The
initial formula (axiom, theorem) of an infor­
mational operand a is represented by the ope­
rand itself. We must prove, that formulas \fc a,
(a \fc;\fc ct) and a \£ a are derivable from a.
Adequately as in Proof 5 we can infer by MP and
MT for the internalistic čase,

a ; (a = ^ (^ a)) (a = » (\= a));\£ a
\^a #a

for the phenomenalistic čase,

a;(a=^ (g fcfi g)) _
a\£;\£a

(q = » . (a | = ; | = a)) ; (a | ^ ; ^ a)
a\£;\£a

and for the metaphysicalistic čase,

a ; (Q = > (g \£ a)) (a = > (a \= a)) ; (a \£ a)
a \£ a ' a \fi a

Thus, the existence of derivations a -» (\£ a), a-»
(a \£; \fi a) and a -» (a \fc a) is proved. D

156 Informatica 19 (1995) 133-158 A.P. Zeleznikar

Cases of (with, through, in, by) informational ari-
sing can be illuminated through simultaneous in-
forming and particular non-informing of an infor­
mational entity. These cases may be seen as phe-
nomena belonging to the realm of informational
spontaneity. So, the following mixed externalistic,
internalistic, metaphysicalistic and phenomenali-
stic occurrences are possible:

(a |=; a \£); (f= a; ^ a); (a (= a; a & a);
(a \=; \£ a); (a ^ ; \= a); (a |^; |= a; \£ a)

e tc , infinitely.

6.6 Rules of Informational Modus
rectus

Modus rectus (MR for short) represents a direct
inference orientation to an experienced reality
(e.g. intention). It is a hidden, yet unrevealed in­
formational impacting governing an informing en-
tity in an informingly specific manner (e.g., ideo-
logically, cynically, demagogically, sociologically).
The informational hidenness of something j3 in
something a concerns the so-called informational
Being-in (inchidedness) [12], that is (3 C a. By
modus rectus, the yet-hidden component j3 in a
is inferred, that is, derived in the form a -^mif3.

In music, in a fugal composition, rectus has the
meaning of the version of a theme performed in
the basic or original, as opposed to the reversed
or inverted, order [15].

In Latin, rector means controller, director, go-
vernor, steersman, tutor, etc. By MR the con-
trolling, directing, governing, steering, tutoring
informational component is detached out of some
informing entitv. The Latin adjective rectus me­
ans straight; upright, erect; right, correct, proper,
appropriate, suitable, due; plain, simple, natural,
etc.

Inference Axiom 4 [INFORMATIONAL MODUS

RECTUS] We can adopt several inference axioms
for informational modus rectus:

(a; (i C a)) ;^ (a; (a ==» t)); (t C o) _
i L

(a; (a = » i); (t, C oQ);^ i C a
i i

etc. By these rules, marked by RJnr(a,A), where
'mr' in the subscript stands for 'modus rec­
tus', operand (formula, formula system) i *±

(t NintentionaUy; Hntent.ionally 0 Ulill be derived from

operand a (formula, formula system), that is,

a -»*mr (i) or, simply, a -» t

Formula a -» t, is called derivation from a to t. D

Formula t C a is recursively defined in [12]. Va-
rious theorems concerning modus rectus can be
derived according to concrete situations.

6.7 Rules of Informational Modus
obliquus

Modus obliquus (MO for short) represents an obli-
que, devious, indirect, evasive (winding) inference
orientation which appears simultaneously with a
direct orientation (e.g. intention). It is a hid­
den, also contradictorv, yet unrevealed informa­
tional impacting governing the background of an
informing entity in an informingly specific man­
ner (e.g., obliquely, trickily; cunningly, slyly, gui-
lefully, artfully; craftily; astutely; wile-likely).

The informational obliquity (divergence, per-
versity) of something fi in something a con­
cerns the so-called informational Being-in (inclu-
dedness) [12] and Being-of (functionalism) [13],
that is /3 C a and /3(a) or (3*a. By modus obli-
quus, the obliquely informing component f3 in a
is inferred, that is, derived in the form a -^mo/3.

The figurative meaning of the adjective obliaue
is not taking the straight or direct course to the
end in view; not going straight to the point; in-
directly stated or expressed; resulting or arising
indirectly; deviating from right informing or tho-
ught; informationally one-sided or perverse.

In Latin, obliquo means to turn sideways or
aside, turn awry. Obliauus means slanting, side-
ways, oblique; indirect, covert; envious.

Inference Axiom 5 [INFORMATIONAL MODUS

OBLIQUUS] We can adopt several inference axi-
oms for informational modus obliquus:

(a; (o C a)); o_ (a; (a =$> o)); o(a)
o o

(a ; (a=»- o);(oC«);o(a)) ;o
o

etc. By these rules, marked by R4o(a)0)> where
'mo' in the subscript stands for 'modus obli-
quus', operand (formula, formula system) o ^

PRINCIPLES OF A FORMAL AXIOMATIC . . . Informatica 19 (1995) 133-158 157

(o |=obliquely; hobiiquely o) will be derived (deta-
ched) from operand a (formula, formula system),
that is,

a -»-Jno (o) or, simply, a-» o

Formula a -» o is called derivation from a to o (by
informational modus obliquus). D

Formulas o C a and o(a) are recursively defined
in [12] and [13], respectively. Various theorems
concerning modus obliquus can be derived accor-
ding to concrete situations. As premises of modus
obliquus, various afnrmative, negatory, contrary,
subalternate, contradictory, absurd and other in­
formational entities can be conjoined. Such a pre-
mise structure can cause a parallel set of conclu-
sions by which the so-called zigzag effects of the
oblique discourse are coming into existence.

6.8 Informing of Informational
Inference Rules

Informational inference rules of the form R(a, /3)
inform as any other regular informational entity,
tha t is, by the entirely possible informational phe-
nomenalism. This principle does not coincide
with the traditional metamathematical inference
rules which are fixed once for ali. Thus, an IIR
can become not only as complex as possible but
also as unique (individual) as possible. Such a
principle enables the emerging of formulas, their
informational development in the sense of infor­
mational spontaneity and circularity.

7 Axioms of Informational
Operand Decomposition

Decomposition of informational operands (mar-
kers, formulas, formula systems) roots in particu-

• lar (particularized) inference rules by which infor­
mational items (parts, subformulas, informational
frames, gestalts) are informationally adequately
composed, added, connected [in]to existing for-
mal (symbolically identified) entities.

An operand decomposition applies serialization
(deconstruction) of formulas and their paralleliza-
tion according to some analytical criteria, enlar-
ging the initial formula system. The philosophy
of an informational operand decomposition calls
.for a separate exhaustive presentation since it is

one of the main informational phenomena of infor­
mational arising in the sense of spontaneity and
circularity.

8 Axioms of Informational
Operator Decomposition

It is possible to make a distinction between the
so-called operand decomposition and operator de­
composition. It depends from the view of the ob-
server which kind of decomposition will be prefer-
red in a čase of analytical investigation. In čase
of operator decomposition we are primarily con-
fronted with the so-called informational frames,
frame pairs or frame triplets (the left-, middle-
and the right-positioned frame) which constitute
a certain operator decomposition.

The advantage of operator decomposition lies
in the independence of an operand position wi-
thin a formula. This means that between any
two, arbitrarily positioned operands in a well-
structured formula, an adequate, in a decompo-
sing way structured frame, frame pair or frame
triplet can be positioned. We have shown some
characteristic possibilities of operator framing in
[13].

Informational operator decomposition is a new
discipline being not anchored in the traditional
mathematics (metamathematics) or elsewhere.
The philosophy of an informational operator de­
composition calls for an original and exhaustive
analysis and discussion since it belongs to the
main informational phenomena of informational
particularization (and universalization) in the
sense of spontaneity and circularity.

9 Conclusion

At the end, it is significant to stress that the key
to a theoretical and machine-oriented usage lies
in the axiomatization of the informational. There
are stili some philosophical and formal-theoretical
obstacles on the way to a well-formed axiomatiza-
tion, for instance, covering the axiomatic princi-
ples already known in metamathematics (see, for
example, at [5, 8]).

On the other hand, the contemporary infor­
mational mind is aware of the syllogistic, trivial,
intuitive, tautological but also contradictory and

158 Informatica 19 (1995) 133-158 A.P. Železnikar

absurd nature of the mathematical art and phi-
losophy of axiomatization within metamathema-
tics. The author recommends the reading of La­
katos' papers (for instance, [6]). It becomes evi-
dent that there do not exist entirely (universally)
axiomatized theories being completely free from
contradiction and that problems as stated within
the different fundamental mathematical programs
have been set on an idealistic or Platonic gro-
und through the history from the ancient Greek
era on. However, in spite of these philosophical
faultinesses and deficiencies, man has constructed
computing systems as successful tools in different
areas of his methodology and technology.

The tirne of sobering and disillusion has dawned
much prior to the appearance of the consciousness
of the informational. Thus, a general informati­
onal theory does not search anymore for an ide­
alistic (non-contradictory, decisive, algorithmic)
systems of information.

There are certainly substantial philosophical di-
fferences existing between metamathematics and
GIT. For example, logical quantifiers V and 3 re-
duce in ordinary informational operators. Irre-
spective of their nature, verbs are treated as ope­
rators and the verb to exist has not a specific in­
formational advantage as in logic, where it is tre­
ated as a quantifying entity. In the informational,
the verb to exist means to inform the existence of
something informational and nothing else.

The program of the informational axiomatiza-
tion continues into new directions and the discus-
sion shown in this article is merely a beginning.
Finally, informational axioms have to be develo-
ped to a satisfactory step of recognition—enabling
the general informational theory to become a solid
fundament for the development of new informati­
onal (intelligent) methodologies, tools, calculuses,
apparatuses, machines, etc.

References

[1] R. Carnap: Die logizistische Grundlegung
der Mathematik. Erkenntnis, 2. Band (1931)
91-106.

[2] B.F. Chellas: Modal Logic. (An Introduc-
tion) Cambridge University Press, Cam-
bridge, 1980.

[3] J. Derrida: La Voix et le Phenomene. Presses
Universitaires de France, Pariš, 1967.

[4] M. Heidegger: Being and Time. Harper &
Row, Publishers, New York, 1962.

[5] D. Hilbert und P. Bernays: Grundlagen der
Mathematik. Erster Band. Die Grundlagen
der mathematischen "VVissenschaften in Ein-
zeldarstellungen, Band XL. Verlag von Julius
Springer, Berhn, 1934.

[6] I. Lakatos: Inhnite Regress and Foundations
of Mathematics. In I. Lakatos: Mathema-
tics, Science and Epistomology. Vol. 2, pp. 3 -
24, Cambridge University Press, Cambridge,
1978.

[7] J. von Neuman: Die formalistische Grundle­
gung der Mathematik. Erkenntnis, 2. Band
(1931) 116-122.

[8] LT.C. HOBHKOB: djieMenriibi MameMamunecKou
JIOZUKU. rocyaapcTBeHHoe H3.naTeJTi.CTBO $H-

3HKO-MaTeMaTHHBCKOH J I H T e p a T y p H ($H3MaT-

rira), MocKBa, 1959.

[9] A.P. Železnikar: Principles of Information.
Cybernetica 31 (1988) 99-122.

[10] A.P. Železnikar: Metaphysicalism of Infor-
ming. Informatica 17 (1993) 65-80.

[11] A.P. Železnikar: Logos of the Informational.
Informatica 17 (1993) 245-266.

[12] A.P. Železnikar: Informational Being-in. In­
formatica 18 (1994) 1-24.

[13] A.P. Železnikar: Informational Being-of. In­
formatica 18 (1994) 277-298.

[14] S. Žižek, Ed.: Domination, Education, Ana-
lysis (In Slovene). A Collection of Texts of
the Lacan School of Psychoanalysis, DDU
Univerzum, Ljubljana, 1983.

[15] The Oxford English Dictionary. Second Edi-
tion (on compact disc), Oxford University
Press, Oxford, 1992.

[16] Wefaster's Encyclopedic Unabridged Dictio-
nary of the English Language. Portland Ho-
use, New York, 1989.

http://H3.naTeJTi.CTBO

Informatica 19 (1995) 159

IVEINDS AND MACHINES - Review essays discussing current problem si-
tuations will appear;

Minds and Machines is a journal for artificial in-
telligence, philosophy, and cognitive science. The
editor is James H. Fetzer and the book review
editor is William J. Rapaport. The editorial bo-
ard members are: Jon Barwise, Andy Clarc, Ro­
bert Cummins, Fred Dretske, Jerry Fodor, Clarc
Glymour, Stevan Harnad, John Haugeland, Jaa-
kko Hintikka, David Israel, Philip Johnson-Laird,
Frank Keil, Henry Kyburg, John McCarthy, Do-
nald Nute, Zenon Pylyshyn, Barry Richards, Da­
vid Rumelhart, Roger C. Schank, John Searl,
Brian Cantwell Smith, Paul Smolensky, Stephen
Stich, and Terry "VVmograd.

Minds and Machines is published in 4 issues
a year and, in 1995, Volume 5 is on the way.
Subscription priče, per volume is NLG 424 (or
USD 221.50) including postage. Subscriptions
should be sent to KLUWER ACADEMIC PUBLI-
SHERS GROUP, P.O. Box 322, 3300 AH Do-
RDRECHT, T H E NETHERLANDS, or at P.O. Box
358, ACCORD STATION, HINGHAM, MA 02018-
0358, U.S.A., or to any subscription agent. Pri-
vate subscriptions should be sent direct to the pu-
blishers. A special rate is available. For more
information, write to Professor James H. Moor,
Department of Philosophy, 6035 Thornton Hali,
Dartmouth College, Hanover, NH 03755-392,
U.S.A. or e-mail to james.moor@dartmouth.edu.

Aims and Scope

Minds and Machines affords an international fo­
rum for discussion and debate of important and
controversial issues concerning significant deve-
lopments within its areas ofeditorial focus. Well-
reasoned contributions from diverse theoretical
perspectives are welcome and every efFort will be
made to ensure their prompt publication. Among
the features that are intended to make this jour­
nal distinctive within the field are these:

— Strong stands on controversial issues are
especially encouraged;

— Important articles exceeding normal journal
length may appear;

— Special issues devoted to specific topics will
be a regular feature;

- Critical responses to previousb/ published pi-
eces are also invited.

This journal is intended to foster a tradition of
criticism within the Al and philosophical com-
munities on problems and issues of common con-
cern. Its scope explicitly encompasses philosophi­
cal aspects of computer science. Ali submissions
will be subject to review.

Information for Authors

Four copies of the manuscript should be sent di-
rectly to the editor: James H. Fetzer, Department
of Philosophy, University of Minnesota, 10 Uni-
versity Drive, Duluth, MN 55812, U.S.A.

Use double spacing and leave wide margins. In-
clude^an abstract of 100-200 words and a list of
key-words for use in indexing.

The author receives two sets of first page proofs
together with the manuscript. 25 offprints free
of charge will be supplied. No page charges are
levied on authors or their institutions.

Consent to publish in this journal entails the
author irrevocable and exclusive authorisation of
the publisher to collect any sums or considerati-
ons for copying or reproduction payable by third
parties.

Microfilm and microfiche editions of this jour­
nal are available from University Microfilm Inter­
national, 300 North Zeeb Road, Ann Arbor, MI
48106, U.S.A.

Minds and Machines is surveved by Cur­
rent Contents, Information Technologv and the
Lam, INSPEC, Psychological A bstracts, PsycLIT,
PsycINFO online database, Computer Abstracts,
Engineering Index, Ei Page One, Compendex
Plus.

A Look into the Journal

For the reader, the first look into a journal may
be essential and challenging. Such a look into No.
3 (August 1994) discovers the following contents:.
—CRITICAL EXCHANGE: Intentionality, Qualia,
and Mind/Brain Identity (Paul Schweizer); Tho-
ught and Qualia (David Cole);

mailto:james.moor@dartmouth.edu

160 Informatica 19 (1995)

— G E N E R A L A R T I C L E S : The Secret Operations of
the Mind (Saul Traiger); Representational Trajec-
tories in Connectionist Learning (Andy Clark);
Can Computers Carry Content 'Inexplicitly'?
(Paul G. Skokowski);
— D I S C U S S I O N R E V I E W : James H. Fetzer, Philo-
sophy and Cognitive Science, in Jay L. Garfleld
(ed.), Foundation of Cognitive Science: The Es-
sential Readings (Robert L. Causey);
—BOOK R E V I E W S : Hubert L. Dreyfus, Being-in-
the-World: A Commentary on Heidegger's Be-
ing and Time (Beth Preston); Daniel C. Den-
net t , Consciousness Explained (Matthew Elton);
Andy Clark, Microcognition: Philosophy, Cogni­
tive Science, and Parallel Distributed Processing
(Michael Losonsky); Leonard Angel, How to Bu-
ild a Conscious Machine (Saul Traiger); Geoffrey
Brown, Brains and Machines (Randall R. Di-
pert); David M. Rosenthal (ed.), The Nature of
Mind (Jerome A. Shaffer).

Citat ions from Minds and Machines

Let us show some interesting citations from Minds
and Machines, vol. 4 (1994), No.3, for the readers
of Informatica.

—(259, P. Schweizer) The two most important di-
stinguishing characteristics of the mind are often
taken to be intentionality and the experience of
subjective presentation or 'qualia'. Genuine co­
gnitive states are purported to possess a unique
and intrinsic property of 'aboutness ' or 'directe-
dness', and, in the tradition of Brentano, this in-
tentional aspect is held to be of central impor-
tance in distinguishing the mental from the non-
mental.

—(265, P. Schweizer) Subjective experience su-
pplies the starting point from which the objective
principles of science are gradually inferred, and
the resulting system of inferred principles is not
a sufficient basis from which to move in the re-
verse direction and deduce the nature of subjec­
tive experience. Only sentences are deducible wi-
thin the framework of a scientific/mathematical
formalism, and the formalism alone cannot yield
an interpretation of these sentences.

—(293, D. Cole) The qualia are the internal re-
presentations. Ali of their phenomenal properties,
the subjective character of the experience of thin-

king a thought, may be accounted for by the func-
tional role of the linguistic representation. But it
is not primarily the semantic representation that
is important here. It is the qualitative represen­
tation.

—(300-301, D. Cole) Computationalists such as
myself take qualia seriously. Having qualia is in-
formation processing. So having qualia is not epi-
phenomenal; it is essential for human mentality.
It is required to account for human behavior. It
seems to me that other accounts either t reat ha­
ving qualia as epiphenomenal or head off towards
a mysterious dualism. Having qualia is a brain
process, but it cannot perspicuously be under-
stood at the neural level—one can't see why there
are qualia, even given a complete neurophysiolo-
gical description of their activity (Leibniz's Mili).

—(303, P. Traiger) It is a common practice among
philosopher of psychology to trace the origins of
functionalism, and cognitive science more gene-
rally, to texts deep within the history of philoso-
phy. Plato, for example, is described by Hubert
Dreyfus as a "knowledge engineer" for the view
he develops in the Euthgphro of expertise as the
mastery of explicit rules and for the doctrine of
recollection in the Mono ...

—(319, A. Clark) One way of solving a learning
problem is, in effect, to give up on it. Thus it
could be argued that certain features are simply
unlearnable, by connectionist means, on the basis
of certain bodies of training data . . .

—(369, M. Elton) . . . i f you take čare of inten-
tionality, consciousness will take čare of itself.
. . . Arguments for reducing the problem of con­
sciousness to the problem of intentionality would
be of interest to the many philosophers who have
claimed that the phenomenon of consciousness is
a special challenge for functionalist theories of
mind.

The undersigned believes that information con-
cerning Minds and Machines is instructive for the
readers and authors of Informatica in the sense of
a journal aims, scope, possibilities, and contents
which concern philosophy, Al, computer science,
and information technology.

A.P. Zeleznikar

Informatica 19 (1995) 161

First Call for Papers

The Eighth Australian Joint Conference on Artificial Intelligence (AF95)
13 - 17 November 1995

Hosted by
Department of Computer Science
Universitv College, The University of New South Wales
Australian Defence Force Academy, Canberra, ACT 2600, Australia

About AI'95

AI'95 is the Eighth Australian Joint Conference
on--Artificial Intelligence. The last two conferen­
ces were held in Melbourne, Victoria (AF93), and
Armidale, New South Wales (AI'94). This an-
nual conference is the largest Australian Al con­
ference and also at t racts many overseas partici-
pants. Over 45% of submitted papers to AI'93
and AI'94 came from overseas. The proceedings
of previous conferences were published by World
Scientific Publishing Co. Ltd.

The main theme of AI'95 is "bridging the gaps"
i.e., bridging the gap between the classical symbo-
lic approach and other subsymbolic approaches,
such as artificial neural networks, evolutionary
computation and artificial life, to Al, and brid­
ging the gap between the Al theory and real world
apphcations. The goals of the conference are to
promote cross-fertilisation among different appro­
aches to Al and provide a common forum for both
researchers and practitioners in the Al held to
exchange new ideas and share their experience.
Tutorials and workshops on various topics of Al
will be organised before the main conference. A
separate call for proposals for tutorials and wor-
kshops will be distributed.

Paper Submission

Authors are invited to submit papers describing
both theoretical and practical work in any areas of
artificial intelligence. (Papers accepted or under
review by other conferences or journals are not
acceptable.) Topics of interest include, but are
not limited to:
Adaptive Behaviours
Artificial Life
Artificial Intelligence Applications

Automated Reasoning
Aiitonomous Intelligent Systems
Bayesian and Statistical Learning Methods "'
Cognitive Modelling Computer Vision
Distributed Artificial Intelligence
Evolutionary Learning
Evolutionary Optimisation
Fuzzy Systems
Group Decision Support Systems
Hybrid Systems
Image Analysis and Understanding
Intelligent Decision Support Systems
Knowledge Acquisition
Knowledge-Based Systems
Knowledge Representation
Machine Learning
Natural Language Processing
Neural Networks
Pattern Recognition
Philosophy of Al Planning and Scheduling
Robotics
Speech Recognition

Five hard copies of the completed paper must
be received by the conference programme commit-
tee chair before or on 9 J u n e 1994. Fax and
electronic submission are not acceptable. Papers
received after 9 June 1994 will be returned uno-
pened. A best š tudent paper award will be
given at the conference. The first author of the
paper must be a full-time študent, e.g., a PhD,
MSc, or Honours študent. A letter from the head
of the s tudenfs department, confirming the sta­
tus of the študent, must be submitted along with
the paper in order to be considered for the best
študent paper award. The award includes a $200
cheque and a certificate issued by the AI'95 Pro­
gramme Committee. Send ali paper submissions
to:

162 Informatica 19 (1995)

Dr X. Yao
AI'95 Programme Committee Chair
Department of Computer Science
Universitv College,
The University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, Australia
Email: xin@csadfa.cs.adfa.oz.au
Phone: +61 6 268 8819
Fax: +61 6 268 8581

Preparation of Manuscript

Ali five hard copies must be printed on 8.5 X 11
(inch2) or A4 paper using 12 point Times. The
left and right margin should be 25mm each. The
top and bottom margin should be 35mm each.
Each submitted paper must have a separate ti­
tle page and a body. The title page must include
a title, a 300 — 400 word abstract, a list of key-
words, the names and addresses of ali authors,
their email addresses, and their telephone and fax
numbers. The body must also include the title
and abstract, but the author information must be
excluded. The length of submitted papers (exclu-
ding the title page) must be no more than 8 single-
spaced, single-column pages including ali figures,
tables, and bibliography. Papers not conforming
to the above requirements may be rejected wi-
thout review.

Programme Committee

Dr. Xin Yao (Chair), UNSW/ADFA
Prof. Zeungnam Bien, KAIST, Korea
Mr. Phil Collier, University of Tasmania
A/Prof. Paul Compton, UNSW
Dr. Terry Dartnall, Griffith University
Prof. John Debenham, University of Technology,
Sydney
Dr. David Dowe, Monash University
Dr. David Fogel, Natural Selection, Inc., USA
A/Prof. Norman Foo, University of Sydney
A/Prof. Matjaž Gams, Jožef Štefan Institute,
Slovenia
Prof. Ray Jarvis, Monash University
A/Prof. Jong-Hwan Kim, KAIST, Korea
Prof. Guo-Jie Li, NCIC, PRC
Dr. Dickson Lukose, University of New England
Dr. Bob McKay, UNSW/ADFA

Prof. Zbigniew Michalewicz, UNC-Charlotte,
USA
Mr. Chris Rowles, Telecom Research Laborato­
ries
Dr. John Slaney, Australian National University
Prof. Rodney Topor, Griffith University
Dr. Chi Ping Tsang, University of Western Au­
stralia
Dr. Olivier de Vel, James Cook University of
North Queensland
Dr. Geoff Webb, Deakin University
Dr. Wilson Wen, Telecom Research Laboratories
A/Prof. Kit Po Wong, University of Western Au­
stralia
Dr. Chengqi Zhang, University of New England

Organising Committee

Dr. Bob McKay (Chair), UNSW/ADFA
Dr. Jennie Clothier, Defence Science and Tech-
nology Organisation
Dr. Richard Daviš, Commonwealth Scientific and
Industrial Research Organisation (CSIRO)
Mr. Warwick Graco, Health Insurance Commis-
sion
Dr. Tu Van Le, University of Canberra
Mr. John 0'Neill, Defence Science and Techno-
logy Organisation
Mr. Peter Whigham, UNSW/ADFA
Dr. Graham Williams, CSIRO
Dr. Xin Yao, UNSW/ADFA

Conference Location

AF95 will be held at ADFA (Australian Defence
Force Academy) in Canberra, the capital city of
Australia. ADFA is located less than 5km from
the CBD of Canberra.

Proposal Submission

Tutorials on various Al related topics will be or-
ganised on 13 and 14 November 1995 in paral-
lel with pre-conference workshops. The length of
each tutorial is 3 hours. Proposals dealing with
any Al related topics are solicited. Application-
oriented tutorials are particularly welcome, espe-

mailto:xin@csadfa.cs.adfa.oz.au

Informatica 19 (1995) 163

cially those relating to topics of interest to Can-
berra's large administrative sector. Topics of in­
terest include, but are not limited to:

Three hard copies of the tutorial proposal must
be received by the tutorial/workshop coordinator
at the following address before or on 7 April
1995.

Dr. J. R. Daviš
AI'95 Tutorial/Workshop Coordinator
CSIRO Division of Water Resources
P 0 Box 1666
Canberra City 2601, Australia
Email: r i c h a r d d @ c b r . d w r . c s i r o . a u
Phone: +61 6 246 5706
Fax: + 6 1 6 246 5800

Further Information

Further information about AI'95 can be obtained
by emailing the following address (preferred):

ai95@adfa .edu .au

or by contacting the organising committee chair
Dr. Bob McKay at the following address:

Dr Bob McKay
AI'95 Organising Committee Chair
Department of Computer Science
University College, The University of New South
Wales
Australian Defence Force Academy
Canberra, ACT 2600, Australia
Email: r im@csadfa .cs .adfa .oz .au
Phone: +61 6 268 8169
Fax: +61 6 268 8581

Workshop Proposal Submission

AI'95 continues the tradition of organising high
standard pre-conference workshops. Some of pre-
vious workshops have resulted in either journal
special issues or published proceedings. However,
workshops which focus on informal talks and di-
scussions are equally welcome. We invite poten-
tial workshop organisers to submit their proposals
for pre-conference workshops to AF95. The wor-
kshop organisers are only responsible for technical
issues such as sending out their CFPs , reviewing
submitted papers, inviting speakers, and prepa-
ring the programme. The conference organising

committee will look after aH the organisational
issues such as venue booking, registration, accom-
modation, etc.

Ali workshops will be held on 13 and 14 Novem­
ber 1995 in parallel with tutorials. The length of
a workshop should be at least half a day and at
most two days. Three copies of the proposal must
be received by the tutorial/workshop coordinator
Dr. J.R. Daviš before or on 7 Apri l 1995.

Important Dates

7 Apri l 1995 Deadline for VVorkshop Proposals.
5 M a y 1995 Notification of Proposal Accep-
tance.
9 June 1995 Deadline for Paper Submission.
21 July 1995 Notification of Acceptance.
18 Augus t 1995 Camera Ready Copy.
9 October 1995 Camera Ready Copy of Wor-
kshop Papers.
1 3 - 1 4 N o v e m b e r 1995 Tutorials/Workshops.
15—17 N o v e m b e r 1995 Conference Sessions.

mailto:richardd@cbr.dwr.csiro.au
mailto:ai95@adfa.edu.au
mailto:rim@csadfa.cs.adfa.oz.au

164 Informatica 19 (1995)

This is the 2nd Call For Papers for a special journal issue of INFORMATICA on the topic:

MIND <> COMPUTER
[i.e. Mind NOT EQUAL Computer]

In this special issue we want to reevaluate the
soundness of current Al research positions (espe-
cially the heavily disputed strong-AI paradigm) as
well as pursue new directions aimed at achieving
true intelligence. This is a brainstorming special
issue about core ideas tha t will shape future AL
We are interested in critical papers representing
ali positions on the issues.

The first part of this special issue will be a small
number of invited papers, including papers by Wi-
nograd, Dreyfus, Michie, McDermott, Agre, Te-
cuci etc. Here we are soliciting additional papers
on the topic.

TOPICS: Papers are invited in ali subareas and
on ali aspects of the above topic, especially on:

— the current state, positions, and advance-
ments achieved in the last 5 years in parti-
cular subfields of Al,

— the trends, perspectives and foundations of
natural and artificial intelligence,

— strong Al versus weak Al and the reality of
most current "tvpical" publications in Al,

— new directions in AL

TIME TABLE AND CONTACTS: Papers in 5
hard copies should be received by May 15, 1995
at one of the following addresses (please, no e-
mail/FAX submissions):

North & South America:
Marcin Paprzycki
paprzycki_m@gusher .pb .u texas .edu
Department of Mathematics and
Computer Science ~
University of Texas of the Permian Basin
Odessa, TX 79762, USA

Asia, Australia:
Xindong Wu
x indong@insec t . sd .monash . edu .au
Department of Software Development,
Monash University
Melbourne, VIC 3145, Australia

Europe, Africa:
Matjaž Gams
m a t j a z . g a m s O i j s . s i
Jožef Štefan Institute, Jamova 39
61000 Slovenia, Europe

E-mail information about the special issue is
available from the above 3 contact editors.

The special issue will be published in late 1995.

FORMAT AND REVIEWING PROCESS: Pa­
pers should not exceed 8,000 vvords (including fi-
gures and tables but excluding references. A full
page figure should be counted as 500 words). Ide-
ally 5,000 words are desirable.

Each paper will be refereed by at least two ano-
nymous referees outside the author 's country and
by an appropriate subset of the program commit-
tee.

When accepted, the authors will be asked to
transform their manuscripts into the Informatica
]$TEX style (available from f t p . a r n e s . s i ; direc-
tory / m a g a z i n e s / i n f o r m a t i c a) .

More information about Informatica and the
Special Issue can be accessed through URL:
f t p : / / f t p . a r n e s . s i / m a g a z i n e s / i n f o r m a t i c a .

mailto:xindong@insect.sd.monash.edu.au
ftp://ftp.arnes.si
ftp://ftp.arnes.si/magazines/informatica

Informatica 19 (1995) 165

Call For Papers: KDD-95
The First International Conference on Knowledge Discovery and
Data Mining

Knowledge Discovery in Databases (KDD) and
Data Mining are areas of common interest to re-
searchers in machine learning, machine discovery,
statistics, intelligent databases, knowledge acqui-
sition, da ta visualization, high performance com-
puting, and expert systems. The rapid growth
of data and information created a need and an
opportunity for extracting knowledge from data­
bases, and both researchers and application deve-
lopers have been responding to that need. KDD
applications have been developed for astronomy,
biology, finance, insurance, marketing, medicine,
and many other fields. Core Problems in KDD
include representation issues, search complexity,
the use of prior knowledge, statistical inference,
and algorithms for the analysis of massive amo-
unts of da ta both in size and dimensionality.

Due to strong demand for participation and the
growing demand for formal proceedings, it has be-
come necessary to change the format of the pre-
vious KDD workshops to a conference with open
attendance. This conference will continue in the
tradition of the 1989, 1991, 1993, and 1994 KDD
workshops by bringing together researchers and
application developers from different areas, and
focusing on unifying themes such as the use of
domain knowledge, managing uncertainty, inte-
ractive (human-oriented) presentation, and appli­
cations. The topics of interest include:

— Foundational Issues and Core problems in KDD

— Database Mining Tools and Applications
— Computationally Efficient Search for Structure in

Data
— Interactive Data Exploration and Discovery
— Knowledge Representation Issues in KDD
— Data and Knowledge Visualization

— Data and Dimensionality Reduction

— Prior Domain Knowledge and Re-use of Discove-
red Knowledge

— Statistical and Probabilistic Aspects of KDD

— Dependency Models and Inference
— Machine Learning/D iscovery Algorithms for

Large Databases

— Managing Model Selection and Model Uncerta-
inty

— Assessment of Model Predictive Performance
— Integrated Discovery Systems and Theories
— Parallel techniques for data management and se­

arch
— Security and Privacy Issues in Machine Discovery

This list of topics is not intended to be exhau-
stive but an indication of typical topics of interest.
Prospective authors are encouraged to submit pa­
pers on any topics of relevance to Knowledge Di-
scovery and Data Mining. We also invite working
demonstrations of discovery systems. The confe­
rence program will include invited talks, a demo
and poster session, and panel discussions. Active
discussion format will be encouraged to maintain
the v/orkshop feel that previous participants fo-
und valuable and constructive. The conference
proceedings will be published by AAAI. As in pre­
vious KDD Workshops, a selected set of KDD-95
papers will be considered for publication in Jour­
nal special issues and as chapters in a book.

Please submit 5 *hardcopies* of a short paper
(a maximum of 9 single-spaced pages not inclu-
ding cover page but including bibliography, 1 inch
margins, and 12pt font) by March 3, 1995. A
cover page must include author(s) full address,
E-MAIL, a 200 word abstract, and up to 5 key-
words. This cover page must accompany the
paper. IN ADDITION, an electronic version of
the cover page MUST BE SENT BY E-MAIL to
kdd95@aig.jpl.nasa.gov by March 3, 1995.

Please mail the papers to :
KDD-95
AAAI
445 Burgess Drive
Menlo Park, CA 94025-3496
U.S.A.

send e-mail queries regarding submissions logi-
stics to: kdd@aaai.org

Important D a t e s
Submissions Due: March 3, 1995
Acceptance Notice: April 10, 1995
Camera-ready paper due: May 12, 1995

Conference Co-Chairs:

Usama M. Fayyad (Jet Propulsion Lab, Califor-
nia Institute of Technology)

mailto:kdd95@aig.jpl.nasa.gov
mailto:kdd@aaai.org

1 6 6 Informatica 19 (1995)

Ramasamy Uthurusamy (General Motors Rese­
arch Laboratories)
Program Committee

Rakesh Agrawal (IBM Almaden Research Center, USA)

Tej Anand (AT&T Global Information Solutions, USA)

Ron Brachman (AT&T Bell Laboratories, USA)

Leo Breiman (University of California, Berkeley, USA)

Wray Buntine (NASA AMES Research Center, USA)

Peter Cheeseman (NASA AMES Research Center, USA)

Greg Cooper (University of Pittsburgh, USA)

Brian Gaines (University of Calgary, Canada)

Clark Glymour (Carnegie-Mellon University, USA)

David Heckerman (Microsoft Corporation, USA)

Se June Hong (IBM T. J. Watson Research Center, USA)

Larry Jackel (ATfcT Bell Labs, USA)

Larry Kerschberg (George Mason University, USA)

Willi Kloesgen (GMD, Germanv)

David Madigan (University of Washington, USA)

Chris Matheus (GTE Laboratories, USA)

Heikki Mannila (University of Helsinki, Finland)

Gregory Piatetsky-Shapiro (GTE Laboratories, USA)

Daryl Pregibon (AT&T Bell Laboratories, USA)

Arno Siebes (CWI, Netherlands)

Evangelos Simoudis (Lockheed Research Center, USA)

Andrzej Skowron (University of Warsaw, Poland)

Padhraic Smyth (Jet Propulsion Laboratory, USA)

Alex Tuzhilin (NYU Sloan School, USA)

Xindong Wu (Monash Universitv, Australia)

Wojciech Ziarko (University of Regina, Canada)

Jan Zytkow (Wichita State University, USA)

Publicity Chair:

Padhraic Smyth, Jet Propulsion Laboratory

Industry Liason:

Gregory Piatetsky-Shapiro, GTE Laboratories

Usama M. Fayyad
Machine Learning Systems Group
Jet Propulsion Lab M/S 525-3660
California Institute of Technology
Pasadena, CA 91109
U.S.A.
(+1 818) 306-6197 Phone
(+ 1 818) 306-6912 FAX

Ramasamy Uthurusamy
Computer Science Department, AP/50
General Motors Research, Bldg 1-6
30500 Mound Road, Box 9055
Warren, MI 48090-9055
U.S.A.
(+ 1 810) 986-1989 Phone
(+ 1 810) 986-9356 Fax

Please send KDD-95 Publicity and related
inguiries to:

Padhraic Srnyth (KDD-95)
Email: kdd95@aig.jpl.nasa.gov

Jet Propulsion Laboratory
California Insti tute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109 U.S.A.
Phone: (+1 818) 306-6422
Fax: (+ 1 818) 306-6912

Contact Information

Please send KDD-95 conference registration and
related inquiries to:

KDD-95
American Association for Artificial Intelligence

(AAAI)
445 Burgess Drive Menlo Park
CA 94025-3496, U.S.A.
Phone: (+1 415) 328-3123;
Fax: (+1 415) 321-4457
Email: kdd@aaai.org

Please send technical program related gueries to
Program Co-Chairs:
(Email: kdd95@aig.jpl.nasa.gov)

Inguiries about KDD-95 sponsorship and
industry participation to:

Gregory Piatetsky-Shapiro
GTE Laboratories, MS-45
40 Sylvan Road
Waltham MA 02154-1120 USA
e-mail: gps@gte.com
tel: 617-466-4236
fax: 617-466-2960
URL: http: / / info.gte.com/ kdd/

mailto:kdd95@aig.jpl.nasa.gov
mailto:kdd@aaai.org
mailto:kdd95@aig.jpl.nasa.gov
mailto:gps@gte.com
http://info.gte.com/

Informatica 19 (1995) 167

CALL FOR PAPERS
International Conference on Software Quality

ICSQ '95
November, 6 - 9 1995

Maribor, Slovenia

Organised by:
University of Maribor
Faculty of Electrical Engineering and Computer
Science,
Faculty of Business and Economics,
Slovenia Section IEEE,
Association of Economics Maribor,
Slovene Society Informatika

Objectives

The aim of ICSQ '95 is to provide a platform for
technology and knowledge transfer between aca-
demia, industry and research institutions in the
software quality fleld, by:

— the introduction and discussion new research
results in software quality,

— offering the practising quality engineers an
insight into the results of ongoing research,

— acquainting the research community with the
problems of practical application.

Topics

Some important topics for the Conference include,
but are not limited to the following:

— quality management systems (QMS),

— metrics,

— process improvement,

— risk Management,

— methodologies,

— verification & validation methods,

— quality planning,

- QMS tools,

- total quality management (TQM),

- audits systems,

- human factors in quality management,

- standards.

Instructions for Authors

Four copies (in English) of the original work, not
longer than 4000 words (10 pages), should be sub-
mitted to the Scientific Conference Secretariat be-
fore May 15th, 1995. Papers should include a ti-
tle, a short abstract and a list of keywords, the
author's name, address and title should be on a
separate page. Ali papers received will be refereed
by the International Program Committee. The
accepted papers will be published in the Confe­
rence Proceedings and will be available to the de-
legates at the tirne of registration. The language
of the conference will be English.

Important Dates

May 15th, 1995 Full paper
June 30th, 1995 Notification of final acceptance
October l s t , 1995 Camera Ready Copy

Conference Location

The town Maribor was founded in the 12th cen-
tury. Today it is the second largest town of Slo­
venia, located in its North, close to the Austrian
border. Many businessmen and tourists enjoy the
variety of cultural, sports and gastronomic pos-
sibilities of the town. Maribor is surrounded by
vineyards and has one of the largest wine-cellars

168 Informatica 19 (1995)

in this part of Europe. Maribor is easily accessi-
ble by international air lines from the airport of
Brnik (Slovenia) and from Graz (Austria).

Conference Organisation
Organising Chairperson:
Marjan Pivka
Faculty of Business and Economics
Razlagova 14, Maribor 62000
Slovenia
Tel.: +386 62 224 611
Fax.: +386 62 227 056
Email: pivka@uni-mb.si
Programme Chairperson:
Ivan Rozman
Faculty of Electrical Engineering and Computer
Science
Smetanova 17, Maribor 62000
Slovenia
Tel.: +386 62 25 461, +386 62 221 112
Fax: +386 62 227 056
Email: i.rozman@uni-mb.si
Conference Secretariat:
Miss Cvetka Rogina
Association of Economics Maribor
Cafova ulica 7, 62000 Maribor
Slovenia
Tel.: +386 62 211 940
Fax.: +386 62 211 940

Machine Learning List
The Machine Learning List is moderated. Con-
tributions should be relevant to the scientific
study of machine learning. Mail contributi-
ons to ml@ics.uci.edu. Mail requests to be
added or deleted to ml-request@ics.uci.edu.
Back issues may be FTP'd from i c s . uc i . edu
in pub /ml - l i s t /V<X>/<N> or N.Z where X
and N are the volume and number of the is-
sue; ID: anonymous PASSWORD: <your mail
address> URL- h t tp : / /www. ics .uc i . edu /AI / -
ML/Machine-Learning.html

Programme Committee
Boris I. Cogan, Institute for Automation and
Control, Vladivostok (Russia)
Saša Dekleva, DePaul University (USA)
Matjaž Gams, J. Štefan Institute, Ljubljana (Slo­
venia)
Hannu Jaakkola, Tampere University of Techno-
logy (Finland)
Marjan Pivka, University of Maribor (Slovenia)
Heinrich C. Maver, University of Klagenfurt (Au­
stria)
Erich Ortner, University of Konstanz (Germany)
Ivan Rozman, University of Maribor (Slovenia)
Franc Solina, University of Ljubljana (Slovenia)
Stanislaw Wrycza, University of Gdansk (Poland)
Jože Zupančič, University of Maribor (Slovenia)

mailto:pivka@uni-mb.si
mailto:i.rozman@uni-mb.si
mailto:ml@ics.uci.edu
mailto:ml-request@ics.uci.edu
http://ics.uci.edu
http://www.ics.uci.edu/AI/-

Informatica 19 (1995) 169

The Fourteenth International Conference on
Object-Oriented & Entity Relationship Modelling
(Formerly the Entity-Relationship Conference)
Application of Entity-Relationship &; Object-Oriented Technology to
Information Systems Modelling.
December 13-15, 1995
Bond University, Gold Coast, Queensland,
Australia

The Conference

The objective of the Object-Oriented Entity-
Relationship (0 - 0 ER) Conference is is to pro-
vide a forum for researchers and practitioners in
the area of conceptual modelling to interact, pre-
sent existing results and explore directions that
will affect the current and future generation of
information systems.

The conference has been renamed to encom-
pass current technological thrusts and directions
in the area of conceptual modelling and to provide
a broader forum for researchers and practitioners
to exchange ideas and report on progress.

This year's theme will be dedicated to the
Application of Object-Oriented/Entity-Relation-
ship Technologies to Information Systems Model­
ling.

The Entity-Relationship approach has been
extensively used in many database systejn and in­
formation system design methodologies. Recen-
tly, Object-Oriented Technology has drawn tre-
mendous interest not only from the research com-
munity but it has also moved into mainstream
industrial software design and development.

The 0 - 0 ER conference provides an opportu-
nity towards integrating these two technologies
and opens new opportunities for modelling by
promoting better understanding of applications,
cleaner design practices, more updatable and ma-
intainable systems and provides a basis for re-
using and retrofitting existing systems and tech-
nology.

The topic of the conference is of tremendous
interest to both academia and industry and one
where technological advances in conceptual mo­
delling can have a profound impact on how or-
ganisations will model and meet future business

objectives and čope with an evolving technology.

Topics of Interest (not l imited to:)

Original papers are solicited on, and should cle-
arly emphasize, describe the role of modelling
tools and methodologies based on the 0 - 0 and /or
ER approaches. The topics of interest include:

Integrating the ER & 0 - 0 technologies, Com-
paring the power and methodologies of 0 - 0 and
ER modelling, Design Methodologies for Object-
Oriented Information Systems, Re-Engineering of
Database Systems, Business Process Modelling,
Enterprise Modelling, Active Databases, Wor-
kflows & Flexible Transaction Models, Inteili-
gent Object-Oriented Systems, View Mechani-
sms, Object Dynamics, Temporal Databases, Ge-
ographic Information Systems, Secure Databases,
Schema evolution, Interoperable Information Sy-
stems, Object-oriented Multi-media Databases,
Advanced Query Interfaces, ČASE Environments,
Expert Systems and Apphcations.

For the purposes of 0 - 0 ER'95 modelling will
be considered in a broad sense and can cover any
theoretical as well as practical issue. Practitio­
n e r s papers reporting on actual experience are
particularly welcome and will be reviewed in a
separate category.

Information for Authors

Five copies of original and compelling unpubli-
shed papers up to 5000 words tha t are not under
consideration for publication elsev/here during the
reviewing period should be sent to the Program
Committee Chair. Submissions must include con-
tact information (contact name, postal and e-mail
address, and phone number), a 100-word abstract ,

170 Informatica 19 (1995)

and explicitly indicate the paper area.
The edited proceedings of 0 -0 ER'95 will be

published by Springer-Verlag as part of the Lec-
ture Notes in Computer Science (LNCS) series.

Important Dates

Paper, Tutorial & Panel Submission: 21 April,
1995.
Notification of Acceptance: 26 June, 1995.
Camera Ready Papers due: 27 August, 1995.

General Conference Chair

Fred Lochovsky,
Dept. of Computer Science,
Hong-Kong Univ. of Science & Technology,
Clear Water Bay,
Kawloon,
Hong-Kong
tel. +852- 358-6996
fax. +852- 358-1477
e-mail: fred@cs .us t .hk

Program C o m m i t t e e Chair

Mike Papazoglou,
Queensland Univ. of Technology,
School of Information Svstems,
GPO Box 2434,
Brisbane 4001,
Australia
tel. +61-7-864 1972,
fax. nr. +61-7-864 1969.
e-mail: mikep@icis.qut.edu.au

Organizing Chair

Zahir Tari
Queensland Univ. of Technology,
School of Information Systems,
GPO Box 2434,
Brisbane 4001,
Australia
tel. +61-7-864 1945,
fax. nr. +61-7-864 1969.
e-mail: zah i r t@ic is .qu t .edu .au

Tutorial Chair

Makoto Takizawa (Tokyo Denki Univ.)

Panel Chair

Leszek Maciaszek (Macquarie Univ., Sydney)

Program C o m m i t t e e

Peter Apers (Twente Univ., Holland), Janis Bu-
benko (SISU, Sweden), Athman Bouguettaya
(QUT, Australia), Tiziana Catarci (Univ. of
Rome, Italy), Sang Cha (Seoul National Univer-
sity, Korea), Chin-Wan Chung (KAIST, Korea),
David Edmond (QUT, Australia), Ramez ElMa-
sri (Univ. of Texas, Arlington, USA), Opher Et-
zion (Technion, Israel), Joseph Fong (City Po-
lytechnic of Hong-Kong), Terry Halpin (Univ. of
Queensland, Australia), Jean-Luc Hainaut (Univ.
of Namur, Belgium), Igor Hawryszkiewycz (Univ.
of Technology, Sydney), Yahiko Kambayashi (Ko-
yoto Univ., Japan), Dimitris Karagiannis (Univ.
of Vienna, Austria), Roger King (Univ. of Co-
lorado, USA), Qing Li (HKUST, Hong-Kong),
Tok Wang Ling (NUS, Singapore), Peri Louco-
poulos (UMIST, UK), Robert Meersman (Univ.
of Tilburg, Holland), John Mylopoulos (Univ.
of Toronto, Canada), Erich Neuhold (GMD-
IPSI, Germany), Anne Ngu (UNSW, Australia),
Oscar Nierstrasz (Bern Univ., Switzerland), Ma-
rian Nodine (Brown Univ., USA), Christine Pa-
rent (Univ. of Burgundy, France), Niki Pissinou
(Univ. of SouthWestern Louisiana, USA), Sudha
Ram (Univ. of Arizona, USA), Gunter Schlage-
ter (Fern Univ. Hagen, Germany), Arie Segev
(Berkeley Univ., USA), Graeme Shanks (Monash
Univ., Australia), Amit Sheth (Univ. of Geor-
gia, USA), Arne Solvberg (Univ. of Trondheim,
Norway), Stefano Spaccapietra (EPFL, Switzer-
land), A. Min Tjoa (Technical Univ. of Vienna,
Austria), Kazumasa Yokota (ICOT, Japan), Kyu
Whang (KIST, Korea), Carson Woo (Univ. of
British Columbia), John Zeleznikow (La Trobe
Univ., Australia)

mailto:mikep@icis.qut.edu.au
mailto:zahirt@icis.qut.edu.au

Informatica 19 (1995) 171

3rd International Conference on
Computer Aided Engineering Education

Slovak Technical University in Bratislava
Facultv of Electrical Engineering and Information Technologv

13 - 15 September 1995
Bratislava, Slovakia

Introduct ion Organizer of the conference

The International Conference on Computer Ai­
ded Engineering Education CAEE'95 is the 3rd
in the series of biennial CAEE conferences. It
follows CAEE'91 in Prague and CAEE'93 in Bu-
charest, and also the conferences on Computer
Aided Learning and Instruction in SCience and
Engineering CALISCE'91 held in Lausanne and
CALISCE'94 in Pariš. Since 1994, the conferences
CAEE and CALISCE have been twinned and are
organized alternateb/. The aim of the Conference
is to bring together people involved in the theory,
design and exploitation of Computer Aided Lear­
ning/ Instruction methods and tools (CAL, CAI,
multimedia, simulations) in learning of fundamen-
tal and technical sciences. The aspiration of the
Conference is to promote existing hardware and
software products, to encourage mutual exchange
of expertise in higher scientific and technical edu­
cation, and to create an opportunity for establi-
shing new professional contacts.

Scopes of the conference

The scopes of the Conference include the theory
of educational and learning software, which opens
new ways towards more efficient interactions be-
tween students and computers, mainly through
the use of multimedia and hypermedia. Much at-
tention will be paid to the development of new
educational software (courseware) and to its bet-
ter and more productive exploitation. Finally,
experience will be exchanged and practical train­
ing methods will be discussed and/or demonstra-
ted, particularly those based on modelling and
simulation.

The Conference is organized by the Slovak Tech­
nical University (STU) in Bratislava. The main
mission of STU is to provide a broad spectrum
and various forms of technical education by uni-
fying the educational and research activities. At
the same time, STU is one of the most important
centres of science, fundamental and applied rese­
arch in Slovakia. The Conference will be held in
the premises of the Faculty of Electrical Enginee­
ring and Information Technology.

The Conference is organized in co-operation
with Apple Computer, Sweden.

Scientific programme

The invited lectures will be given by internati-
onally renowned experts in currently important
topics.

The preliminary list of invited speakers inclu-
des:
A. DRESLING (Aalborg Universitv, Denmark)
E. FORTE (EPFL Lausanne, Switzerland)
P. J. HICKS (UMIST Manchester, UK)
M. F. ISKANDER (University of Utah, USA)
J. KORVINK (ETH Zurich, Switzerland)
J. de SOUSA PIRES (Apple Computer,
Stockholm, Sweden).

The scope of the Conference is very wide and
it is assumed that the presented lectures will con-
tribute to the development of education in nume-
rous branches of science. Nevertheless, particular
attention will be paid to electronics, electrical en­
gineering and information technology. The pro­
gramme of the Conference will be divided into
parallel sections, in accordance with discussed to­
pics. Sufncient space will be given to presen-
tations of new software, practical training, and
exchange of software tools for educational purpo-
ses.

172 Informatica 19 (1995)

International programme commit t ee

J. BREZA (STU Bratislava, Slovakia)
I. F. de CASTRO (University of S. Sebastian,
Spain)
M. CHRZANOWSKI (Polvtechnic Krakow, Po-
land)
F. de COULON (EPFL Lausanne, Switzerland)
J. L. DESSALLES (Telecom Pariš, France)
D. DONOVAL (STU Bratislava, Slovakia)
E. FORTE (EPFL Lausanne, Switzerland)
N. FRISTACKY (STU Bratislava, Slovakia)
P. J. HICKS (UMIST Manchester UK)
D. IOAN (Universitv of Bucharest, Romania)
G. KARLSSON (KTH Stockholm, Sweden)
J. KORVINK (ETH Zurich, Switzerland)
K. KVETON (CTU Praha, Czech Republic)
L. MACARI (MEDC Paislev, UK)
S. MEDHAT (University Bournemouth, UK)
J. MICHEL (ENPCH Pariš, France)
J. MURGAS (STU Bratislava, Slovakia)
J. MURIN (STU Bratislava, Slovakia)
P. NAVRAT (STU Bratislava, Slovakia)
D. PONTA (University of Genoa, Italy)
J. de SOUSA PIRES (Apple Computer
Stockholm, Sweden)
J. VANNEUVILLE (KIHWV Oostende, Bel-
gium)
G. WACHUTKA (TU Munich, Germany)
M. WALD (HAP Hamburg, Germany)

Registrat ion fee

The Conference fee is 500,- DM or equivalence in
the local currencv. The fee includes admission to
ali scientific sections, a copy of the proceedings,
luncheons and the conference banquet. The štu­
dent rate is 200,- DM. To qualify for the študent
rate a letter of recommentation from the supervi-
sor should be submitted along with the applica-
tion form.

Official language

The language of the Conference is English, neither
translation nor interpretation will be provided.

Location

vakia, Austria. and Hungary. The city is nicely
located on the southern slopes of the Small Car-
pathian Mountains, in an area of excellent and
famous wines. It can be reached easily by air,
train or road (or even by regular ship connecti-
ons from Vienna or Budapest). The visitors are
advised to use the services of the Airport in Bra­
tislava, or they can fly to the Airport in Vienna-
Schwechat, which lies approximately 50 km west
of Bratislava. Regular bus or taxi transport from
the Airport in Schwechat is provided.The most
convenient road and train links lead from Vienna
(60 km), Prague (350 km) or Budapest (200 km).

Social programme

In the course of the Conference, short guided trips
and sightseeing tours through the city of Brati­
slava and the closest vicinity will be organized
for accompanying persons. In the weekend fol-
lowing the Conference, the organizers are ready
to prepare a longer trip through Slovakia for ali
interested participants.

Further information can be obtained and ali
correspondence should be addressed to:
CAEE '95
Conference Secretariat
Slovak Technical University
Microelectronics Department
Ilkovicova 3
SK - 812 19 Bratislava
SLOVAKIA

phone: +42-7-723486
fax: +42-7-723480
e-mail: caee95@elf.stuba.sk

Bratislava, the capital of Slovakia, lies on the Da-
nube, near the border of three countries - Slo-

mailto:caee95@elf.stuba.sk

Informatica 19 (1995) 173

Announcement and Call For P a p e r s

GLOCOSM
Global Conference on Small & Medium Industry &c Business
3-5 January 1996
Bangalore, India
Organized by
S D M Inst i tute for Management Deve lopment , India
and Indiana Universi ty Purdue University Fort Wayne, U .S .A.

Educators, executives and government ofiicials
from around the world are invited to participate
in this unique conference whose theme is "Small
& Medium Industry & Business in the New Glo­
bal Environment: Prospects & Problems." Pa­
pers, abstracts or symposium/workshop propo-
sals related to the theme are solicited. Submissi-
ons in accounting, commerce, economics, finance,
human resources management/organizational be-
haviour, information systems, operations manage-
ment, quantitative methods/statistics, strategy,
environmental/ethical/legal issues, public sector
management, social/cultural issues, technology
management and other topics relevant to the glo-
bal community of management professionals scho-
lars are also welcome.

Deadline for submission of contribution: 15
April 1995.

The Address of General Chair

Dr. B.P. Lingaraj
General Chair - GLOCOSM
Department of Management & Marketing
Indiana University Purdue University
Fort Wayne, IN 46805, U.S.A
E-mail: l i nga ra j@cvax . ipfw. i n d i a n a . e d u

For other details (instructions for the auth-
ors etc.) please contact the member of the Pro-
gramme Committee:
Professor Ludvik Bogataj
University of Ljubljana
Faculty of Economics
Kardeljeva ploščad 17, P.O.Box 103
61000 Ljubljana
Slo veni a
Phone: +386 (061) 168-33 -33
Fax: +386 (061) 301-110
E-Mail: l u d v i k . b o g a t a j @ u n i - l j . s i

http://indiana.edu

174 Informatica 19 (1995)

THE MINISTRY OF SCIENCE AND TECHNOLOGY
OF THE REPUBLIC OF SLOVENIA

Address: Slovenska 50, 61000 Ljubljana, Tel.: +386
61 1311 107, Fax: +386 61 1324 140.
WWW:http://www.mzt.si
Minister: Prof. Rado Bohinc, Ph.D.
State Secretarv for Int. Coop.: Rado Genorio, Ph.D.
State Secretarv for Sci. and Tech.: Ciril Baškovič
Secretarv General: Franc Hudej, Ph.D.

The Ministrv also includes:
The Standards and Metrologv Institute of the Repu-
blic of Slovenia
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 314 882., and
The Industrial Propertv Protection Office of the Re-
public of Slovenia
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 318 983.

Scientific Research and Development Potential.
The statistical data for 1993 showed that there were
180 research and development-institutions in Slovenia.
Altogether, they emploved 10,400 people, of whorn
4,900 were researchers and 3,900 expert or technical
staff.

In the past ten years, the number of researchers has
almost doubled: the number of Ph.D. graduates incre-
ased from 1,100 to 1,565, while the number of M.Se.'s
rose from 650 to 1,029. The "Young Researchers""(i.e.
postgraduate students) program has greatly helped to-
wards revitalizing research. The average age of rese­
archers has been brought down to 40, with one-fifth of
them being younger than 29.

The table below shows the distribution of resear­
chers aceording to educational level and sectors (in
1993):

Sector Ph.D. M.Sc.
Business enterprises
Government
Private non-profit organizations
Higher education organizations
Total

51
482

10
1022

1,565

196
395

12
426

1,029

Financing Research and Development. Stati­
stical estimates indicate that US$ 185 million (1,4%
of GDP) was spent on research and development in
Slovenia in 1993. More than half of this comes from
public expenditure, mainly the state budget. In the
last three years, R&D expenditure by business organi­
zations has stagnated, a result of the current economic
transition. This transition has led to the fmancial de-
cline and inereased insolvency of firms and companies.
These cannot be replaced by the growing number of

mainly small businesses. The shortfall was addres-
sed by inereased public-seetor spending: its share of
GDP nearly doubled from the mid-seventies to 0,86%
in 1993.

Income of R&D organizations spent on R&D aeti-
vities in 1993 (in million US$):

Sector

Business ent.
Government
Private non-p.
Higher edu.
Total

Total

83,9
58,4

1,3
40,9

184,5

Basic
res.
4,7

16,1
0,2

24,2
45,2

App.
res.
32,6
21,5

0,6
8,7

63,4

Exp.
dev.
46,6
20,8
0,5

8
75,9

The policy of the Slovene Government is to inere-
ase the percentage intended for R&D in its budget.
The Science and Technology Council of the Republic
of Slovenia is preparing the draft of a national research
program (NRP). The government will harmonize the
NRP with its general development policy, and submit
it first to the parliamentary Committee for Science,
Technology and Development and after that to the
parliament. The parliament approves the NRP each
year, thus setting the basis for deciding the level of
public support for R&D.

The Ministry of Science and Technology is mainly
a government institution responsible for controlling
expenditure of the R&D budget, in compliance with
the NRP and the eriteria provided by the Law on Re­
search Activities. The Ministry finances research or
co- finances development projeets through public bid-
ding, partially finances infrastrueture research insti­
tutions (national institutes), while it directly finances
management and top-level science.

The focal points of R&D policy in Slovenia are:

— maintaining the high level and quality of research
activities,

— stimulating collaboration between research and
industrial institutions,

— (co)financing and tax assistance for companies
engaged in technical development and other
applied research projeets,

— research training and professional development of
leading experts,

— close involvement in international research and
development projeets,

— establishing and operating facilities for the trans-
fer of technology and experience.

http://www.mzt.si

JOŽEF ŠTEFAN INSTITUTE

Informatica 19 (1995) 1 7 5

Jožef Štefan (1835-1893) was one of the most pro-
minent physicists of the 19th čentury. Bom to Slovene
parents, he obtained his Ph.D. at Vienna Universitg,
where he ivas later Director of the Physics Institute,
Vice-President ofthe Vienna Academij of Sciences and
a member of several scientific institutions in Europe.
Štefan explored many areas in hydrodynamics, optics,
acoustics, electricity, magnetism and the kinetic the-
°H/ °f gases. Among other things, he originated the
lavi that the total radiation from a black body is pro-
portional to the Jfth poiver of its absolute temperature,
known as the Stefan-Boltzmann law.

The Jožef Štefan Insti tute (JSI) is the leading in­
dependent scientific research in Slovenia, covering a
broad spectrum of fundamental and applied research
in the fields of phvsics, chemistrv and biochemistrv,
electronics and information science, nuclear science te-
chnologv, energv research and environmental science.

The Jožef Štefan Institute (JSI) is a research orga-
nisation for pure and applied research in the natural
sciences and technologv. Both are closelv intercon-
nected in research departments composed of different
task teams. Emphasis in basic research is given to the
development and education of young scientists, while
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the deve­
lopment of the national economy and society in gene­
ral.

At present the Institute, with a total of about
700 staff, has 500 researchers, about 250 of whom
are postgraduates, over 200 of whom have doctora-
tes (Ph.D.) , and around 150 of whom have permanent
professorships or temporary teaching assignments at
the Universities.

In view of its activities and status, the JSI plays the
role of a national institute, complementing the role of
the universities and bridging the gap between basic
science and applications.

Research at the JSI includes the following major fi­
elds: physics; chemistry; electronics, informatics and
computer sciences; biochemistry; ecology; reactor te-
chnology; applied mathematics . Most of the activities
are more or less closely connected to information sci­
ences, in particular computer sciences, artiticial intel-
ligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics
and robotics, computer automation and control, pro-
fessional electronics, digital Communications and ne-

tworks, and applied mathematics .

The Institute is located in Ljubljana, the capital of
the independent state of Slovenia (or S^n ia) . The
capital today is considered a crossroad between East,
West and Mediterranean Europe, offering excellent
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče,
Bern and Munich, ali within a radius of 600 km.

In the last year on the site of the Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technologi-
cal development to foster synergies between research
and industry, to promote joint ventures between uni-
versity bodies, research institutes and innovative in-
dustry, to act as an incubator for high-tech initiatives
and to accelerate the development cycle of innovative
products.

At the present tirne, part of the Insti tute is being
reorganized into several high-tech units supported by
and connected within the Technology park at the Jožef
Štefan Institute, established as the beginning of a re-
gional Technology park "Ljubljana". The project is
being developed at a particularly historical moment,
characterized by the process of state reorganisation,
privatisation and private initiative. The national Te-
chnology Park will take the form of a shareholding
company and will host an independent venture-capital
institution.

The promoters and operational entities of the pro­
ject are the Republic of Slovenia, Ministry of Science
and Technology and the Jožef Štefan Insti tute. The
framevrork of the operation also includes the Univer-
sity of Ljubljana, the National Inst i tute of Chemistry,
the Institute for Electronics and Vacuum Technology
and the Institute for Materials and Construction Re­
search among others. In addition, the project is su­
pported by the Ministry of Economic Relations and
Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Štefan Insti tute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:+386 61 1773 900, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
W W W : http:/ /www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se
Public relations: Natalija Polenec

http://www.ijs.si
mailto:matjaz.gams@ijs.si

*

Informatica 19 (1995)

REVIEW REPORT

Bas ic Ins truct ions
Informatica publishes scientific papers accepted

by at least two referees outside the author's co-
untry. Each author should submit three copies of
the manuscript with good copies of the figures and
photographs to one of the editors from the Edi-
torial Board or to the Contact Person. Editing
and refereeing are distributed. Each editor can
conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from
the author 's country. The names of the referees
should not be revealed to the authors under any
circumstances. The names of referees will appear
in the Refereeing Board. Each paper bears the
name of the editor who appointed the referees.

It is highly recommended that each referee wri-
tes as m a n y remarks as possible directly
on t h e manuscript , ranging from typing errors
to global philosophical disagreements. The cho-
sen editor will send the author copies with re­
marks, and if accepted also to the Contact Per­
son with the accompanying completed Review
Reports. The Executive Board will inform the
author that the paper is accepted, meaning that
it will be published in less than one year after re-
ceiving original figures on separate sheets and the
text on an IBM P C DOS floppy disk or through e-
mail - both in ASCII and the Informatica LaTeX
format. Style and examples of papers can be ob-
tained by e-mail from the Contact Person or from
F T P or W W W (see the last page of Informatica).

Date Sent:

Date to be Returned:

Name and Country of Referee:

Signature of Referee:

Name of Editor:

Title:

Authors:

Additional Remarks:

Ali boxes should be filled with numbers 1-10
with 10 as the highest rated.

The final mark (recommendation) consists of
two orthogonal assessments: scientific quality and
readability. The readability mark is based on the
estimated perception of average reader with fa-
culty education in computer science and informa-
tics. It consists of four subfields, representing if
the article is interesting for large audience (intere-
sting), if its scope and approach is enough gene­
ral (generality), and presentation and language.
Therefore, very specihc articles with high scienti­
fic quality should have approximately similar re­
commendation as general articles about scientific
and educational viewpoints related to computer
science and informatics.

• SCIENTIFIC QUALITY

I J Originality

| | Significance

j | Relevance

I I Soundness

| I Presentation

• R E A D A B I L I T Y

I | Interesting

| | Generality

j | Presentation

| J Language

• F I N A L R E C O M M E N D A T I O N

j | Highly recommended

| j Accept without changes

I | Accept with minor changes

I | Accept with major changes

| | Author should prepare a major revision

j | Reject

Informatica 17

INFORMATICA
AN INTERNATIONAL JOURNAL OF C O M P U T I N G AND INFORMATICS

INVITATION, COOPERATION

Submi.ssions and Refereeing

Please submit three copies of the rnanuscript with
good copies of the figures and photographs to one of
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the author's
country will examine it, and they are invited to make
as many remarks as possible directly on the rnanu­
script, from typing errors to global philosophical di-
sagreements. The chosen editor will send the author
copies with remarks. If the paper is accepted, the edi­
tor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper
has been accepted, in which čase it will be published
within one year of receipt of the original figures on se-
parate sheets and the text on an IBM PC DOS floppy
disk or by e-mail - both in ASCII and the Informatica
I#TEX format. Style and examples of papers can be
obtained by e-mail from the Contact Person or from
FTP or WWW (see the last page of Informatica).

Opinions, news, calls for conferences, calls for papers,
etc. should be sent directly to the Contact Person.

Q U E S T I O N N A I R E

I I Send Informatica free of charge

| Yes, we subscribe

Please, complete the order form and send it to
Dr. Rudi Murn, Informatica, Institut Jožef Štefan, Ja­
mova 39, 61111 Ljubljana, Slovenia.

Since 1977, Informatica has been a major Slovenian
scientific journal of computing and informatics, inclu-
ding telecommunications, automation and other rela-
ted areas. In its 16th year (more than two years ago)
it became truly international, although it stili rema-
ins connected to Central Europe. The basic aim of
Informatica is to impose intellectual values (science,
engineering) in a distributed organisation.

Informatica is a journal primarily covering the Euro-
pean computer science and informatics community -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Com­
munications between different European structures on
the basis of equal rights and international refereeing.
It publishes scientific papers accepted by at least two
referees outside the author's country. In addition, it
contains information about conferences, opinions, cri-
tical examinations of existing publications and news.
Finally, major practical achievements and innovations
in the computer and information industry are presen-
ted through commercial publications as well as thro-
ugh independent evaluations.

Editing and refereeing are distributed. Each editor
can conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from the
author's country. If new referees are appointed, their
names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, edu­
cational and governmental institutions. Others should
subscribe (see the last page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):
Title and Profession (optional):

E-mail Address (optional):
Home Address and Telephone (optional):

Signature and Date:

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the Eu-
ropean computer science and informatics community;
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Com­
munications between different European structures on
the basis of equal rights and international refereeing.
It publishes scientific papers accepted by at least two
referees outside the author 's country. In addition, it
contains information about conferences, opinions, cri-
tical examinations of existing publications and news.
Finally, major practical achievements and innovations
in the computer and information industry are presen-
ted through commercial publications as well as thro-
ugh independent evaluations.

Editing and refereeing are distributed. Each edi-
tor from the Editorial Board can conduct the referee­
ing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Refe­
rees should not be from the author 's country. If new
referees are appointed, their names will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees. Each editor can
propose new members for the Editorial Board or Bo­
ard of Referees. Editors and referees inactive for a
longer period can be automatically replaced. Chan-
ges in the Editorial Board and Board of Referees are
confirmed by the Executive Editors.

The coordination necessary is made through the
Executive Editors who examine the reviews, sort the
accepted articles and mainta ih appropriate internati­
onal distribution. The Executive Board is appointed
by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and
Technology.

Each author is guaranteed to receive the reviews of
his article. When accepted, publication in Informatica
is guaranteed in less than one year after the Executive
Editors receive the corrected version of the article.

E x e c u t i v e E d i t o r — E d i t o r i n Chie f
Anton P. Zeleznikar
Volaričeva 8, Ljubljana, Slovenia
E-mail: anton.p.zeleznikar@ijs.si .

E x e c u t i v e A s s o c i a t e E d i t o r (C o n t a c t P e r s o n)
Matjaž Gams, Jožef Štefan Insti tute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1259 199, Fax: +386 61 219 385
E-mall: matjaz.gams@ijs.si

E x e c u t i v e A s s o c i a t e E d i t o r (Technical Ed i tor)
Rudi Murn, Jožef Štefan Inst i tute

P u b l i s h i n g Counci l : Tomaž Banovec,
Ciril Baškovič, Andrej Jerman-Blažič,
Dagmar Suster, Jernej Virant

B o a r d of Adv i sors :
Ivan Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

Edi tor ia l B o a r d
Suad Alagic (Bosnia and Herzegovina)
Shuo Bai (China)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Canada)
Janusz Brozyna (France)
Ivan Bruha (Canada)
Luca Console (Italy)
Hubert L. Drevfus (USA)
Jožo Dujmovic (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Janez Grad (Slovenia)
Noel Heather (UK)
Francis Heylighen (Belgium)
Bogomir Horvat (Slovenia)
Hiroaki Kitano (Japan)
Sylva Kočkova (Czech Republic)
Miroslav Kubat (Austria) •
Jean-Pierre Laurent (France)
Jadran Lenarčič (Slovenia)
Magoroh Maruyama (Japan)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Sašo Prešern (Slovenia)
Luc De Raedt (Belgium)
Paranandi Rao (India)
Giacomo Della Riccia (Italy)
Wilhelm Rossak (USA)
Claude Sammut (Australia)
Johannes Schwinn (Germany)
Jifi Sledita (UK)
Branko Souček (Italy)
Harald Stadlbauer (Austria)
Oliviero Stock (Italy)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Claes Wohlin (Sweden)
Štefan Wrobel (Germany)
Xindong Wu (Australia)

mailto:anton.p.zeleznikar@ijs.si
mailto:matjaz.gams@ijs.si

Volume 19 Number 1 February 1995 ISSN 0350-5596

\M/wwl/%Mf
An International Journal of Computing and Informatics

Contents :
Profile: Haneef Fatmi

Introduction

Supporting the Evolution of Distributed,
Non-stop, Mission and Safety Critical Systems

Loose Specification of Real Time Systems
^

An Object-Oriented Approach for Modeling and
Analysis of Safety-Critical Real-time Systems

' ' • ' _ ' : ' - " " , - - • " ' - " - : • " • ' . • - " . . ' " . ' •

Supporting'High Integrity and Behavioural
Predictability of Hard Real-Time Systems

A Novel Approach to Off-line Scheduling in
Real-Time Systems:

On-line Algorithrris for Alločating
Periodic-time-critical Tasks on Multiprocessor
Svsterris- , . " : - . •

A Semi-Distributed Load Balancing Model for
Parallel Real-time Systems

" ""

Optimal Algorithm for Real-Time Fault Tolerant
Distributed Processing Using Checkpoints

Fully Deterministic Real-Time Protocol for a
CSMA/CD Type Local Area Network

Principles of a Formal Axiomatic Structure of the
Informational

• -

-

C.W. McKay ,
C. Atkinson

Jan van Katwijk
Hans Toetenel;

J. Lin
D.C. Kung -:

P. Hsia

M. Colnarič
D. Verber
W.A. Halang

G. Yu
L.R. Welch

S. Davari
S.K. Dhall

K. Erciye§
0 . Ozkasap ^
N. Akta§

Z.M. Wojcik
B.E. Wojcik

B.Tchouaffe
J.Zalewski

A.P. Zeleznikar

1

3

7

25

43

' - -

59

71

83

97

111

123

133

Reports and Announcements 159

