STFE-Net:Enhanced Deep Learning for Real-Time Abnormal Behavior Detection in Video Surveillance

Cong Chen, Xianjun  Fu, Yi Li

Abstract


A spatiotemporal feature enhancement network (STFE-Net) is proposed for real-time abnormal behavior detection in surveillance video. The model integrates optimized 3D convolution kernels, a multi-scale convolution strategy, and a feature fusion module with skip connections and attention mechanisms, followed by an improved fully connected classification structure. STFE-Net achieves an average accuracy of 0.85 on the UCF-Crime dataset and 0.82 on multiple datasets, outperforming traditional 3D-CNNs (average 0.65) and RNN-based models (average 0.68). False alarm rates are reduced to 0.10 and false negative rates to 0.07, demonstrating improved precision and robustness. Compared with baseline methods, STFE-Net shows a 26.2% increase in average accuracy and up to 50% reduction in false positives, significantly improving real-time surveillance reliability.


Full Text:

PDF

References


.Umale-Nagmote A, Goel C, Lal N. Enhanced intelligent video monitoring using hybrid integration of spatiotemporal autoencoders and convolutional LSTMs. Online-only issue. 2025;49(18).

.Aberkane S, Elarbi-Boudihir M. Deep reinforcement learning-based anomaly detection for video surveillance. Online-only issue. 2022;46(2).

.Alarcon JA, Santamaria F, Al-Sumaiti AS, Rivera S. Low-Capacity Exploitation of Distribution Networks and Its Effect on the Planning of Distribution Networks. Energies. 2020;13(8). DOI: 10.3390/en13081920

.Zhang YX, Song JC, Jiang YH, Li HJ. Online Video Anomaly Detection. Sensors. 2023;23(17). DOI: 10.3390/s23177442

.Chen W, Yu ZH, Yang CC, Lu YY. Abnormal Behavior Recognition Based on 3D Dense Connections. International Journal of Neural Systems. 2024;34(09). DOI: 10.1142/s0129065724500497

.Li JN, Zhou BR, Yao WF, Zhao WM, Cheng RL, Ou MY, et al. Research on dynamic robust planning method for active distribution network considering correlation. Frontiers in Energy Research. 2023;11. DOI: 10.3389/fenrg.2023.1338136

.Chen D, Zhang S. Deep learning-based involution feature extraction for human posture recognition in martial arts. Online-only issue. 2025;49(12).

.Li JN, Wang T, Tang SQ, Jiang JR, Chen SY. Planning distribution network using the multi-agent game and distribution system operators. Frontiers in Energy Research. 2023;11. DOI: 10.3389/fenrg.2023.1244394

.Le T, Huynh-Duc N, Nguyen CT, Tran MT. Motion embedded images: An approach to capture spatial and temporal features for action recognition. Online-only issue. 2023;47(3).

.Chang CW, Chang CY, Lin YY. A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection. Multimedia Tools and Applications. 2022;81(9):11825-43. DOI: 10.1007/s11042-021-11887-9

.Wu CF, Cheng ZX. A Novel Detection Framework for Detecting Abnormal Human Behavior. Mathematical Problems in Engineering. 2020;2020. DOI: 10.1155/2020/6625695

Sugianto N, Tjondronegoro D, Sorwar G. Collaborative federated learning framework to minimize data transmission for AI-enabled video surveillance. Information Technology & People. 2025;38(3):1526–50. doi:10.1108/ITP-08-2021-0598.

Lysova T. Intersecting perspectives: Video surveillance in urban spaces through surveillance society and security state frameworks. Cities. 2025;156:105544. doi:10.1016/j.cities.2024.105544.

.Li ZH, Wu WC, Zhang BM, Tai X. Feeder-corridor-based distribution network planning model with explicit reliability constraints. Iet Generation Transmission & Distribution. 2020;14(22):5310-8. DOI: 10.1049/iet-gtd.2020.1093

.Duja KU, Khan IA, Alsuhaibani M. Video Surveillance Anomaly Detection: A Review on Deep Learning Benchmarks. Ieee Access. 2024;12:164811-42. DOI: 10.1109/access.2024.3491868

.Deng LJ, Fu RC, Sun Q, Jiang M, Li ZH, Chen H, et al. Abnormal behavior recognition based on feature fusion C3D network. Journal of Electronic Imaging. 2023;32(2). DOI: 10.1117/1.Jei.32.2.021605

.Ardabili BR, Pazho AD, Noghre GA, Katariya V, Hull G, Reid S, Tabkhi H. Exploring public's perception of safety and video surveillance technology: A survey approach. Technology in Society. 2024;78:102641. doi:10.1016/j.techsoc.2024.102641. DOI: 10.17775/cseejpes.2021.08540

.Lv ZH, Xiao J, He GW, Jiao H, Zhou YP. A planning method based on total supply capability for active distribution network. Energy Reports. 2025;13:973-86. DOI: 10.1016/j.egyr.2024.12.056

.Lovecek T, Boros M, Mäkká K, Maris L. Designing of intelligent video-surveillance systems in road tunnels using software tools. Sustainability. 2023;15(7):5702. doi:10.3390/su15075702.

.Ammar H, Cherif A. DeepROD: a deep learning approach for real-time and online detection of a panic behavior in human crowds. Machine Vision and Applications. 2021;32(3). DOI: 10.1007/s00138-021-01182-w

.Teall AM, Bobek H, Zeno R, Graham MC. An innovative well-child video project to teach developmental surveillance and anticipatory guidance. Journal of Nursing Education. 2023;62(7):412–5. doi:10.3928/01484834-20230315-03.

.Liang PH, Li XJ, Guo YC. Local governments and the diffusion of video surveillance in China: Evidence from the public procurement contracts. Journal of Chinese Political Science. 2025. doi:10.1007/s11366-025-09916-7.




DOI: https://doi.org/10.31449/inf.v49i23.10130

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.