Integrating BiLSTM-CRF and DOKS for Enhanced AI-Based Data Encryption in Cloud-Edge Environments
Abstract
This study addresses the challenge of secure and efficient data protection in cloud-edge collaborative environments by proposing an artificial intelligence–driven encryption framework. The method integrates a bidirectional long short-term memory network with a conditional random field model to extract sensitive information, and applies a stream encryption mechanism based on a modified Feistel structure to selectively encrypt identified entities. Experimental results show that the model achieves an accuracy of 0.99 and an F1 score of 0.94 in sensitive entity recognition. It requires only 134 milliseconds to encrypt and 183 milliseconds to decrypt one hundred kilobytes of data, and reaches ninety percent accuracy within twenty-eight training iterations. The encryption system also demonstrates strong statistical security with an average bit change rate of 45.5 percent and information entropy close to the ideal value of eight. These findings confirm that the proposed method effectively balances data confidentiality, processing efficiency, and real-time deployability for edge computing scenarios.
Full Text:
PDFReferences
Kaur, G., Agarwal, R., & Patidar, V. (2022). Color image encryption scheme based on fractional Hartley transform and chaotic substitution-permutation. The Visual Computer, 38(3), 1027-1050. https://doi.org/10.1007/s00371-021-02066-w
Hanif, R., Mustafa, S., Iqbal, S., & Piracha, S. (2023). A study of time series forecasting enrollments using fuzzy interval partitioning method. Journal of Computational and Cognitive Engineering, 2(2), 143-149. https://doi.org/10.47852/bonviewJCCE2202159
Aldabbas, H. (2023). Efficient bandwidth allocation in SDN-based peer-to-peer data streaming using machine learning algorithm. Journal of Supercomputing, 79(6), 6802-6824. https://doi.org/10.1007/s11227-022-04929-y
Sun, W. L., Tang, Y. H., & Huang, Y. L. (2023). HiRAM: A hierarchical risk assessment model and its implementation for an industrial Internet of Things in the cloud. Software Testing, Verification and Reliability, 33(5), 1-27. https://doi.org/10.1002/stvr.1847
Liu, D., Zhen, H., Kong, D., Chen, X., Zhang, L., Yuan, M., & Wang, H. (2021). Sensors anomaly detection of industrial Internet of Things based on isolated forest algorithm and data compression. Scientific Programming, 21(1), 254-261. https://doi.org/10.1155/2021/6699313
Kumar, R., & Tripathi, R. (2021). DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies, 32(4), 25-37. https://doi.org/10.1002/ett.4222
Wu, H., Tian, H., Fan, S., & Ren, J. (2020). Data age aware scheduling for wireless powered mobile-edge computing in industrial Internet of Things. IEEE Transactions on Industrial Informatics, 32(12), 12-32.
Yang, L., Zou, W., Wang, J., & Tang, Z. (2022). Edge Share: A blockchain-based edge data-sharing framework for Industrial Internet of Things. Neurocomputing, 485(7), 219-232. https://doi.org/10.1016/j.neucom.2021.01.147
Gilmolk, A. M. N., & Aref, M. R. (2024). Lightweight image encryption using a novel chaotic technique for the safe Internet of Things. International Journal of Computational Intelligence Systems, 17(1), 146-152. https://doi.org/10.1007/s44196-024-00535-3
Peng, X., & Zeng, Y. (2020). Image encryption application in a system for compounding self-excited and hidden attractors. Chaos, Solitons & Fractals, 139(6), 1144-1159. https://doi.org/10.1016/j.chaos.2020.110044
Boussif, M., Aloui, N., & Cherif, A. (2020). Securing DICOM images by a new encryption algorithm using Arnold transform and Vigenère cipher. IET Image Processing, 14(6), 1209-1216. https://doi.org/10.1049/iet-ipr.2019.0042
Wang, X., & Gao, S. (2020). Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Information Sciences, 539(9), 195-214. https://doi.org/10.1016/j.ins.2020.06.030
Jain, K., Aji, A., & Krishnan, P. (2021). Medical image encryption scheme using multiple chaotic maps. Pattern Recognition Letters, 152(12), 356-364. https://doi.org/10.1016/j.patrec.2021.10.033
Zarebnia, M., Pakmanesh, H., & Parvaz, R. (2019). A fast multiple-image encryption algorithm based on hybrid chaotic systems for gray scale images. Optik, 179(3), 761-773. https://doi.org/10.1016/j.ijleo.2018.10.025
Hu, W., & Dong, Y. (2022). Quantum color image encryption based on a novel 3D chaotic system. Journal of Applied Physics, 131(11), 1142-1155. https://doi.org/10.1063/5.0084611
Huang, H., Yang, S., & Ye, R. (2020). An efficient symmetric image encryption by using a novel 2D chaotic system. IET Image Processing, 14(6), 1157-1163. https://doi.org/10.1049/iet-ipr.2019.0551
Nie, Z., Liu, Z. X., He, X. T., & Gong, L. H. (2019). Image compression and encryption algorithm based on advanced encryption standard and hyper-chaotic system. Optica Applicata, 49(4), 545-558. https://doi.org/10.37190/oa190402
Li, B., Feng, Y., Xiong, Z., Yang, W., & Liu, G. (2021). Research on AI security enhanced encryption algorithm of autonomous IoT systems. Information Sciences, 575(3), 379-398. https://doi.org/10.1016/j.ins.2021.06.016
Yao, M., Chen, Z., Deng, H., et al. (2025). A color image compression and encryption algorithm combining compressed sensing, Sudoku matrix, and hyperchaotic map. Nonlinear Dynamics, 113(3), 2831-2865. https://doi.org/10.1007/s11071-024-10334-2
Singh, D., & Kumar, S. (2025). Image authentication and encryption algorithm based on RSA cryptosystem and chaotic maps. Expert Systems with Applications, 274(15), 141-152. https://doi.org/10.1016/j.eswa.2025.126883
Wang, A., Shen, C., Pan, J., et al. (2023). Research on multiple-image encryption method using modified Gerchberg-Saxton algorithm and chaotic systems. Optical Engineering, 62(9), 098103. https://doi.org/10.1117/1.OE.62.9.098103
Liu, Y., & Xue, R. (2024). 3D medical image encryption algorithm using biometric key and cubic S-box. Physica Scripta, 99(5), 55035-55055. https://doi.org/10.1088/1402-4896/ad3b3d
Guo, L., Du, H., & Huang, D. (2021). A quantum image encryption algorithm based on the Feistel structure. Quantum Information Processing, 21(1), 20-37. https://doi.org/10.1007/s11128-021-03364-x
Zhang, Z., Tang, J., & Ni, H. (2023). Image adaptive encryption algorithm using a novel 2D chaotic system. Nonlinear Dynamics, 111(11), 10629-10652. https://doi.org/10.1007/s11071-023-08397-8
Erkan, U., Toktas, A., Toktas, F., & Alenezi, F. (2022). 2D eπ-map for image encryption. Information Sciences, 589, 770-789. https://doi.org/10.1016/j.ins.2021.12.126
Jin, B., Fan, L., & Zhang, B. (2024). Image encryption hiding algorithm based on digital time-varying delay chaos model and compression sensing technique. Microelectronics Journal, 27(9), 141-153. https://doi.org/10.1016/j.isci.2024.110717
Singh, P., Acharya, B., & Chaurasiya, R. K. (2022). Low-area and high-speed hardware architectures of Lblock cipher for Internet of Things image encryption. Journal of Electronic Imaging, 31(3), 033012. https://doi.org/10.1117/1.JEI.31.3.033012
Chen, L. W., Tsai, K. L., & Leu, F. Y. (2024). Time parameter based low-energy data encryption method for mobile applications. *CMES-Computer Modeling in Engineering & Sciences, 140*(3), 2779-2794. https://doi.org/10.32604/cmes.2024.052124
Xia, M., Li, C., & Li, Y. (2024). Further study on the Rulkov neuron: geometric control, circuit realization and chaos-based encryption. Physica Scripta, 99(7), 20-38. https://doi.org/10.1088/1402-4896/ad4e17
Saminu, S., Xu, G., Zhang, S., Kader, I. A. E., Aliyu, H. A., Jabire, A. H., Ahmed, Y. K., & Adamu, M. J. (2023). Applications of artificial intelligence in automatic detection of epileptic seizures using EEG signals: A review. Artificial Intelligence and Applications, 1(1), 11-25. https://doi.org/10.47852/bonviewAIA2202297
DOI: https://doi.org/10.31449/inf.v49i26.10344
This work is licensed under a Creative Commons Attribution 3.0 License.








