Recurrent Neural Network Training using ABC Algorithm For Traffic Volume Prediction

Adrian Bosire

Abstract


This study evaluates the use of the Artificial Bee Colony (ABC) algorithm to optimize the Recurrent Neural Network (RNN) that is used to analyze traffic volume. Related studies have shown that Deep Neural Networks are superseding the Shallow Neural Networks especially in terms of performance. Here we show that using the ABC algorithm in training the Recurrent Neural Network yields better results, compared to several other algorithms that are based on statistical or heuristic techniques that were preferred in earlier studies. The ABC algorithm is an example of swarm intelligence algorithms which are inspired by nature. Therefore, this study evaluates the performance of the RNN trained using the ABC algorithm for the purpose of forecasting. The performance metric used in this study is the Mean Squared Error (MSE) and ultimately, the outcome of the study may be generalized and extended to suit other domains.

Full Text:

PDF

References


Basturk, B., & Karaboga, D. (2006). An Artificial Bee Colony Algorithm (ABC) for Numeric Function Optimization. IEEE Swarm Intelligence Symposium. Indianapolis, Indiana, USA.

Beale, M. H., Hagan, M. T., & Demuth, H. B. (2018, February). MATLAB R2018a. Neural Network Toolbox Version 11.1. MathWorks Inc. Retrieved from https://www.mathworks.com/products/deep-learning.html

Bianchini, M., & Scarselli, F. (2014, August). On the complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1553-1565. doi:10.1109/TNNLS.2013.22993637

Bosire, A., Okeyo, G., & Cheruiyot, W. (2018, October). Performance of Deep Neural Networks in the Analysis of Vehicle Traffic Volume. International Journal of Research and Scientific Innovation, 5(10), 57-66.

De Luca, G., & Gallo, M. (2017). Artificial Neural Networks for forecasting user flows in transportation networks: literature review, limits, potentialities and open challenges. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (pp. 919-923). Naples, Italy: IEEE. doi:10.1109/MTITS.2017.8005644

Deng, L., & Yu, D. (2013). Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7, 197-387. doi:10.1561/2000000039

Department for Transport. (2018, June). Traffic counts. Retrieved June 2018, from Traffic counts: https://www.dft.gov.uk/traffic-counts/about.php

Garro, B. A., & Vázquez, R. A. (2015). Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms. Computational Intelligence and Neuroscience. doi:10.1155/2015/369298

Haris, P., Gopinathan, E., & Ali, C. (2012, July). Artificial Bee Colony and Tabu Search Enhanced TTCM Assisted MMSE Multi-User Detectors for Rank Deficient SDMA-OFDM System. Wireless Personal Communications, 65(2), 425-442. doi:10.1007/ s11277-011-0264-0

Hassim, Y. M., & Ghazali, R. (2012). Training a Functional Link Neural Network Using an Artificial Bee Colony for Solving a Classification Problems. Journal of Computing, 4(9), 110-115.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report, Erciyes University, Computer Engineering Department, Turkey.

Karaboga, D., & Akay, B. (2009, August). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. doi:10.1016/j.amc.2009.03.090

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. doi:10.1007/s10898-007-9149-x

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 687–697. doi:10.1016/j.asoc.2007.05.007

Karaboga, D., & Ozturk, C. (2009). Neural Networks training by Artificial Bee Colony algorithm on pattern classification. Neural Network World, 19(3), 279–292.

Karaboga, D., Basturk, B., & Ozturk, C. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In Modeling Decisions for Artificial Intelligence (pp. 318-329). Springer,Berlin,Heidelberg. doi:10.1007/978-3-540-73729-2_30

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications. Artif Intell Rev, 42, 21–57 . doi:10.1007/s10462-012-9328-0

Kayabasi, A. (2018). An Application of ANN Trained by ABC Algorithm for Classification of Wheat Grains. International Journal of Intelligent Systems and Applications in Engineering, 6(1), 85-91. doi:10.18201/ijisae.2018637936

Kim, J., Kim, J., Thu, H. L., & Kim, H. (2016). Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection. 1-5. doi:10.1109/PlatCon.2016.7456805

Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S., Cereci, I., & Kilic, H. (2012). An empirical study about search-based refactoring using alternative multiple and population-based search techniques. In E. Gelenbe, R. Lent, & G. Sakellari (Ed.), Computer and information sciences II (pp. 59-66). Springer, London. doi:10.1007/978-1-4471-2155-8_7

Kriegeskorte, N. (2015). Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing. Annual Review of Vision Science, 1, 417–446. doi:10.1146/annurev-vision-082114-035447

Kumar, A., Kumar, D., & Jarial, S. K. (2017). A Review on Artificial Bee Colony Algorithms and Their Applications to Data Clustering. Cybernetics and Information Technologies, 17(3). doi:10.1515/cait-2017-0027

Omkar, S., & Senthilnath, J. (2009). Artificial Bee Colony for Classification of Acoustic Emission Signal Source. International Journal of Aerospace Innovations, 1(3), 129-143. doi:10.1260/175722509789685865

Ozturk, C., & Karaboga, D. (2011). Hybrid Artificial Bee Colony Algorithm for Neural Network Training. 2011 IEEE Congress of Evolutionary Computation (CEC), 84-88. doi: 10.1109/CEC.2011.5949602

Seyyed, R. K., Maleki, I., Hojjatkhah, S., & Bagherinia, A. (2013, August). Evaluation of the Efficiency of Artificial Bee Colony and Firefly Algorithm in Solving the Continuous Optimization Problem. International Journal on Computational Sciences & Applications, 3(4).

Shukran, M. A., Chung, Y. Y., Yeh, W.-C., Wahid, N., & Zaidi, A. M. (2011, August). Artificial bee colony based data mining algorithms for classification tasks. Modern Applied Science, 5(4), 217–231. doi:10.5539/mas.v5n4p217

Vazquez, R. A., & Garro, B. A. (2015). Training Spiking Neural Models Using Artificial Bee Colony. Computational Intelligence and Neuroscience. doi:10.1155/2015/947098

Xiangyu, K., Liu, S., & Wang, Z. (2013). An Improved Artificial Bee Colony Algorithm and Its Application. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6(6), 259-274. doi:10.14257/ijsip.2013.6.6.24

Yann, L., & Ranzato, M. (2013). Deep learning tutorial. Tutorials in International Conference on Machine Learning (ICML’13).




DOI: https://doi.org/10.31449/inf.v43i4.2709

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.