Recurrent Neural Network Training using ABC Algorithm For Traffic Volume Prediction
Abstract
Full Text:
PDFReferences
Basturk, B., & Karaboga, D. (2006). An Artificial Bee Colony Algorithm (ABC) for Numeric Function Optimization. IEEE Swarm Intelligence Symposium. Indianapolis, Indiana, USA.
Beale, M. H., Hagan, M. T., & Demuth, H. B. (2018, February). MATLAB R2018a. Neural Network Toolbox Version 11.1. MathWorks Inc. Retrieved from https://www.mathworks.com/products/deep-learning.html
Bianchini, M., & Scarselli, F. (2014, August). On the complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1553-1565. doi:10.1109/TNNLS.2013.22993637
Bosire, A., Okeyo, G., & Cheruiyot, W. (2018, October). Performance of Deep Neural Networks in the Analysis of Vehicle Traffic Volume. International Journal of Research and Scientific Innovation, 5(10), 57-66.
De Luca, G., & Gallo, M. (2017). Artificial Neural Networks for forecasting user flows in transportation networks: literature review, limits, potentialities and open challenges. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (pp. 919-923). Naples, Italy: IEEE. doi:10.1109/MTITS.2017.8005644
Deng, L., & Yu, D. (2013). Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7, 197-387. doi:10.1561/2000000039
Department for Transport. (2018, June). Traffic counts. Retrieved June 2018, from Traffic counts: https://www.dft.gov.uk/traffic-counts/about.php
Garro, B. A., & Vázquez, R. A. (2015). Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms. Computational Intelligence and Neuroscience. doi:10.1155/2015/369298
Haris, P., Gopinathan, E., & Ali, C. (2012, July). Artificial Bee Colony and Tabu Search Enhanced TTCM Assisted MMSE Multi-User Detectors for Rank Deficient SDMA-OFDM System. Wireless Personal Communications, 65(2), 425-442. doi:10.1007/ s11277-011-0264-0
Hassim, Y. M., & Ghazali, R. (2012). Training a Functional Link Neural Network Using an Artificial Bee Colony for Solving a Classification Problems. Journal of Computing, 4(9), 110-115.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report, Erciyes University, Computer Engineering Department, Turkey.
Karaboga, D., & Akay, B. (2009, August). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. doi:10.1016/j.amc.2009.03.090
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. doi:10.1007/s10898-007-9149-x
Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 687–697. doi:10.1016/j.asoc.2007.05.007
Karaboga, D., & Ozturk, C. (2009). Neural Networks training by Artificial Bee Colony algorithm on pattern classification. Neural Network World, 19(3), 279–292.
Karaboga, D., Basturk, B., & Ozturk, C. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In Modeling Decisions for Artificial Intelligence (pp. 318-329). Springer,Berlin,Heidelberg. doi:10.1007/978-3-540-73729-2_30
Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications. Artif Intell Rev, 42, 21–57 . doi:10.1007/s10462-012-9328-0
Kayabasi, A. (2018). An Application of ANN Trained by ABC Algorithm for Classification of Wheat Grains. International Journal of Intelligent Systems and Applications in Engineering, 6(1), 85-91. doi:10.18201/ijisae.2018637936
Kim, J., Kim, J., Thu, H. L., & Kim, H. (2016). Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection. 1-5. doi:10.1109/PlatCon.2016.7456805
Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S., Cereci, I., & Kilic, H. (2012). An empirical study about search-based refactoring using alternative multiple and population-based search techniques. In E. Gelenbe, R. Lent, & G. Sakellari (Ed.), Computer and information sciences II (pp. 59-66). Springer, London. doi:10.1007/978-1-4471-2155-8_7
Kriegeskorte, N. (2015). Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing. Annual Review of Vision Science, 1, 417–446. doi:10.1146/annurev-vision-082114-035447
Kumar, A., Kumar, D., & Jarial, S. K. (2017). A Review on Artificial Bee Colony Algorithms and Their Applications to Data Clustering. Cybernetics and Information Technologies, 17(3). doi:10.1515/cait-2017-0027
Omkar, S., & Senthilnath, J. (2009). Artificial Bee Colony for Classification of Acoustic Emission Signal Source. International Journal of Aerospace Innovations, 1(3), 129-143. doi:10.1260/175722509789685865
Ozturk, C., & Karaboga, D. (2011). Hybrid Artificial Bee Colony Algorithm for Neural Network Training. 2011 IEEE Congress of Evolutionary Computation (CEC), 84-88. doi: 10.1109/CEC.2011.5949602
Seyyed, R. K., Maleki, I., Hojjatkhah, S., & Bagherinia, A. (2013, August). Evaluation of the Efficiency of Artificial Bee Colony and Firefly Algorithm in Solving the Continuous Optimization Problem. International Journal on Computational Sciences & Applications, 3(4).
Shukran, M. A., Chung, Y. Y., Yeh, W.-C., Wahid, N., & Zaidi, A. M. (2011, August). Artificial bee colony based data mining algorithms for classification tasks. Modern Applied Science, 5(4), 217–231. doi:10.5539/mas.v5n4p217
Vazquez, R. A., & Garro, B. A. (2015). Training Spiking Neural Models Using Artificial Bee Colony. Computational Intelligence and Neuroscience. doi:10.1155/2015/947098
Xiangyu, K., Liu, S., & Wang, Z. (2013). An Improved Artificial Bee Colony Algorithm and Its Application. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6(6), 259-274. doi:10.14257/ijsip.2013.6.6.24
Yann, L., & Ranzato, M. (2013). Deep learning tutorial. Tutorials in International Conference on Machine Learning (ICML’13).
DOI: https://doi.org/10.31449/inf.v43i4.2709
This work is licensed under a Creative Commons Attribution 3.0 License.