Categorization of Event Clusters from Twitter Using Term Weighting Schemes
Abstract
Full Text:
PDFReferences
[Alsaedi et al., 2016] Alsaedi, N., Burnap, P., and
Rana, O. F. (2016). Automatic summarization of
real world events using twitter. In Proceedings of
the Tenth International Conference on Web and So-
cial Media, Cologne, Germany, May 17-20, 2016.,
pages 511–514.
[Cardoso-Cachopo, 2007] Cardoso-Cachopo, A.
(2007). Improving methods for single-label text
categorization. PhD Thesis, Instituto Superior
Tecnico, Universidade Tecnica de Lisboa.
[Debole and Sebastiani, 2003] Debole, F. and Sebas-
tiani, F. (2003). Supervised term weighting for automated text categorization. In Proceedings of
the 2003 ACM Symposium on Applied Computing,
SAC ’03, pages 784–788, New York, NY, USA.
ACM.
[Escalante et al., 2015] Escalante, H. J., Garc´ ıa-
Limón, M. A., Morales-Reyes, A., Graff, M.,
Montes-y Gómez, M., Morales, E. F., and
Mart´ ınez-Carranza, J. (2015). Term-weighting
learning via genetic programming for text classi-
fication. Know.-Based Syst., 83(C):176–189.
[Joachims, 1998] Joachims, T. (1998). Text catego-
rization with support vector machines: Learning
with many relevant features. In Proceedings of
the 10th European Conference on Machine Learn-
ing, ECML’98, pages137–142, Berlin, Heidelberg.
Springer-Verlag.
[Kalyanam et al., 2016] Kalyanam, J., Quezada, M.,
Poblete, B., and Lanckriet, G. (2016). Prediction
and characterization of high-activity events in so-
cial media triggered by real-world news. PLOS
ONE, 11(12):1–13.
[Lan et al., 2006] Lan, M., Tan, C. L., and Low,
H. (2006). Proposing a new term weighting
scheme for text categorization. In Proceedings,
The Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Appli-
cations of Artificial Intelligence Conference, July
-20, 2006, Boston, Massachusetts, USA, pages
–768.
[Malliaros and Skianis, 2015] Malliaros, F. D. and
Skianis, K. (2015). Graph-based term weight-
ing for text categorization. In 2015 IEEE/ACM
International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pages
–1479.
[McMinn et al., 2013] McMinn, A.J., Moshfeghi, Y.,
and Jose, J. M. (2013). Building a large-scale cor-
pus for evaluating event detection on twitter.
[Ng et al., 1997] Ng, H. T., Goh, W. B., and Low,
K. L. (1997). Feature selection, perceptron learn-
ing, and a usability case study for text categoriza-
tion. In Proceedings of the 20th annual interna-
tional ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’97,
pages 67–73.
[Quan et al., 2011] Quan, X., Wenyin, L., andQiu, B.
(2011). Term weighting schemes for question cate-
gorization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(5):1009–1021.
[Radev et al., 2004] Radev, D. R., Jing, H., Sty´ s, M.,
and Tam, D. (2004). Centroid-based summariza-
tion of multiple documents. Inf. Process. Manage.,
(6):919–938.
[Reed et al., 2006] Reed, J. W., Jiao, Y., Potok, T. E.,
Klump, B. A., Elmore, M. T., and Hurson, A. R.
(2006). Tf-icf: A new term weighting scheme for
clustering dynamic data streams. In 2006 5th In-
ternational Conference on Machine Learning and
Applications (ICMLA’06), pages 258–263.
[Wang et al., 2015] Wang, T., Cai, Y., Leung, H.,
Cai, Z., and Min, H. (2015). Entropy-based term
weighting schemes for text categorization in vsm.
In 2015 IEEE 27th International Conference on
Tools with Artificial Intelligence (ICTAI), pages
–332.
[Wu et al., 2017] Wu, H., Gu, X., and Gu, Y. (2017).
Balancing between over-weighting and under-
weighting in supervised term weighting. Inf. Pro-
cess. Manage., 53(2):547–557.
[Yang and Pedersen, 1997] Yang, Y. and Pedersen,
J. O. (1997). A comparative study on feature se-
lection in text categorization. In Proceedings of
the Fourteenth International Conference on Ma-
chine Learning, ICML ’97, pages 412–420, San
Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.
DOI: https://doi.org/10.31449/inf.v45i3.3063
This work is licensed under a Creative Commons Attribution 3.0 License.