Image Segmentation Based on Color Dissimilarity
Abstract
This study aims to develop a segmentation technique that can be used to identify objects in an image. The concept used is to imitate the human concept of recognizing an object based on its color difference. A color is considered different if it has different R, G or B values. Humans can only distinguish two colors clearly if they both have a DeltaE value of at least 8. The difference in DeltaE values is obtained from differences in the values of R, G or B, either alone or in pairs. The application of this concept to the segmentation technique has shown good results. This technique is able to give the same results and is good for images with JPG, PNG and BMP file types. The results of this segmentation will be very suitable for the process of identifying objects in an image.
Full Text:
PDFReferences
D. Kaur and Y. Kaur, “Various Image Segmentation Techniques: A Review,” Int. J. Comput. Sci. Mob. Comput., 2014.
Y. Song and H. Yan, “Image Segmentation Techniques Overview,” in 2017 Asia Modelling Symposium (AMS), 2017, pp. 103–107.
G. Phonsa and K. Manu, “A Survey: Image Segmentation Techniques,” in Advances in Intelligent Systems and Computing, 2019, pp. 1123–1140.
F. Garcia-Lamont, J. Cervantes, A. López, and L. Rodriguez, “Segmentation of images by color features: A survey,” Neurocomputing, vol. 292, pp. 1–27, May 2018, doi: 10.1016/j.neucom.2018.01.091.
C. S. Gode and A. N. Ganar, “Image Retrieval by Using Colour, Texture adn Shape Features,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 3, no. 4, pp. 8637–8644, 2014, [Online]. Available: http://www.ijareeie.com.
M. Safar, C. Shahabi, and X. Sun, “Image retrieval by shape: a comparative study,” in Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, 2000, vol. 1, pp. 141–144.
G. Mandloi, “A Survey on Feature Extraction Techniques for Color Images,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 4615–4620, 2014.
S. Kumar and E. A. Chauhan, “A survey on feature extraction techniques for color images,” Int. J. Sci. Eng. Reserarch, vol. 5, no. 9, pp. 371–376, 2014.
I. Bramão, A. Reis, K. M. Petersson, and L. Faísca, “The Role of Color Information on Object Recognition: A Review and Meta-Analysis,” Acta Psychol. (Amst)., vol. 138, no. 1, pp. 244–253, 2011.
K. Yang, S. Gao, C. Li, and Y. Li, “Efficient color boundary detection with color-opponent mechanisms,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp. 2810–2817.
M. A. Dzulkifli and M. F. Mustafar, “The influence of colour on memory performance: A review,” Malaysian J. Med. Sci. MJMS, vol. 20, no. 2, p. 3, 2013.
R. L. Adlington, K. R. Laws, and T. M. Gale, “Visual processing in Alzheimer’s disease: Surface detail and colour fail to aid object identification,” Neuropsychologia, vol. 47, no. 12, pp. 2574–2583, 2009.
A. Byrne, “Color and Similarity,” Philos. Phenomenol. Res., vol. 66, no. 3, pp. 641–665, May 2003, doi: 10.1111/j.1933-1592.2003.tb00282.x.
M. Wallin and R. Meganck, “Mapping Color,” 2014.
D. Senthamaraikannan, S. Shriram, and J. William, “Real time color recognition,” Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., vol. 2, no. 3, 2014.
P. Kaur, S. Thakral, and M. Singh, “Color Based Image Retrieval System,” IOSR J. Comput. Eng., 2012, doi: 10.9790/0661-0150105.
S. V Sakhare and V. G. Nasre, “Design of feature extraction in content based image retrieval (CBIR) using color and texture,” Int. J. Comput. Sci. Informatics, vol. 1, no. 2, pp. 57–61, 2011.
S.-C. Cheng and C.-K. Yang, “A fast and novel technique for color quantization using reduction of color space dimensionality,” Pattern Recognit. Lett., vol. 22, no. 8, pp. 845–856, 2001.
L. Brun and A. Trémeau, “Color quantization,” Digit. Color Imaging Handb., pp. 589–638, 2003.
X. Zhang and J. Yang, “The analysis of the color similarity problem in moving object detection,” Signal Processing, 2009, doi: 10.1016/j.sigpro.2008.10.027.
H. Zimmer and A. Steiner, “Colour Specificity in Episodic and in Perceptual Object Recognition with Enhanced Colour Impact,” Eur. J. Cogn. Psychol., vol. 15, no. 3, pp. 349–370, 2003.
R. Dass, Priyanka, and S. Devi, “Image Segmentation Techniques,” Int. J. Electron. Commun. Technol., vol. 3, no. I, pp. 66–70, 2012.
D. Jayagar and D. Jeyakumari, “A Survey of Various Image Segmentation Techniques,” Int. J. Mod. Trends Eng. Res., vol. 02, no. 05, pp. 273–278, 2015.
N. M. Zaitoun and M. J. Aqel, “Survey on Image Segmentation Techniques,” 2015, doi: 10.1016/j.procs.2015.09.027.
J. S. D. Rasi, “A Survey on Image segmentation algorithms,” Int. J. Comput. Trends Technol., vol. 35, no. 4, pp. 170–174, 2016, doi: 10.14445/22312803/IJCTT-V35P132.
M. Ivanovici, N. Richard, and D. Paulus, “Color image segmentation,” in Advanced Color Image Processing and Analysis, 2013.
R. V. R. Chary, D. R. Lakshmi, and K. V. N. Sunitha, “Feature Extraction Methods for Color Image Similirity,” Adv. Comput., vol. 3, no. 2, pp. 147–157, 2012, doi: 10.5121/acij.2012.3215.
M. Hassan and C. Bhagvati, “Structural Similarity Measure for Color Images,” Int. J. Comput. Appl., vol. 43, no. 14, pp. 7–12, Apr. 2012, doi: 10.5120/6169-8590.
Y. Deng, B. S. Manjunath, C. Kenney, M. S. Moore, and H. Shin, “An efficient color representation for image retrieval,” IEEE Trans. Image Process., vol. 10, no. 1, pp. 140–147, 2001.
A. Mojsilovic, H. Hu, and E. Soljanin, “Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis,” IEEE Trans. Image Process., vol. 11, no. 11, pp. 1238–1248, Nov. 2002, doi: 10.1109/TIP.2002.804260.
M. S. Mulekar and C. S. Brown, “Distance and Similarity Measures,” in Encyclopedia of Social Network Analysis and Mining, New York, NY: Springer New York, 2017, pp. 1–16.
S. S. Harshvardhan, S. Kiran, and S. Kumari, “Color Texture Segmentation using Binary Tree Cluster Quantization Technique,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 6, no. 6, pp. 5820–5827, 2015, doi: 10.15680/ijircce.2015. 0306109.
W. S. Mokrzycki and M. Tatol, “Colour difference ∆E-A survey,” Mach. Graph. Vis., vol. 20, no. 4, pp. 383–411, 2011.
Z. Schuessler, “Delta E 101,” 2016. http://zschuessler.github.io/DeltaE/learn/.
I. G. M. Karma, “Determination and Measurement of Color Dissimilarity,” Int. J. Eng. Emerg. Technol., vol. 5, no. 1, pp. 67–71, 2020, [Online]. Available: https://ojs.unud.ac.id/index.php/ijeet/article/view/57630.
DOI: https://doi.org/10.31449/inf.v46i5.3645
This work is licensed under a Creative Commons Attribution 3.0 License.