Geo-Spatial Disease Clustering for Public Health Decision Making
Abstract
Full Text:
PDFReferences
Sarfraz, M.S., Tripathi, N.K., Tipdecho, T., Thongbu, T., Kerdthong, P. & Souris, M. (2012) Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 2012, 12:853
Sarfraz, M.S., Tripathi, N.K., Faruque, F.S., Bajwa, U.I., Kitamoto, A. & Souris, M. (2014) Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on climatic and physical parameters. Geospatial Health 8(3), 2014, pp. S685-S697.
Sarfraz, M.S., Tripathi, N.K. & Kitamoto, A. (2014) Near real-time Characterization of urban environments: a holistic approach for monitoring dengue fever risk areas, International Journal of Digital Earth, 7:11, 916-934.
A. Rahman, M.H. Salam, S. Jamil (2013) Virtual Clinic: A Telemedicine Proposal for Remote Areas of Pakistan, Conference: 3rd World Congress on Information and Communication Technologies, Vietnam.
A. Rahman, A. Bakry, K. Sultan, M.A.A. Khan, M. Farooqui, D. Musleh (2018) Clinical Decision Support System in Virtual Clinic, Journal of Computational and Theoretical Nanoscience 15(6):1795-1804.
A. Rahman, J. Alhiyafi (2018) Health Level Seven Generic Web Interface, Journal of Computational and Theoretical Nanoscience 15(4), DOI: 10.1166/jctn.2018.7302.
Regis, L. N., Acioli, R. V., Silveira Jr, J. C., de Melo-Santos, M. A. V., da Cunha, M. C. S., Souza, F., ... & Monteiro, A. M. V. (2014). Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian island. Acta tropica, 137, 80-87.
Zambrano, L. I., Sierra, M., Lara, B., Rodríguez-Núñez, I., Medina, M. T., Lozada-Riascos, C. O., & Rodríguez-Morales, A. J. (2017). Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS). Journal of infection and public health, 10(4), 446-456.
Rogers, D. J., Suk, J. E., & Semenza, J. C. (2014). Using global maps to predict the risk of dengue in Europe. Acta tropica, 129, 1-14.
Sanz-Arigita, E. J., Schoonheim, M. M., Damoiseaux, J. S., Rombouts, S. A., Maris, E., Barkhof, F., ... & Stam, C. J. (2010). Loss of ‘small-world ‘networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity. PloS one, 5(11), e13788.
Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., ... & Ourselin, S. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996.
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., ... & Hobden, P. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143.
Talawar, A. S., & Pujar, H. S. (2010). An outbreak of chikungunya epidemic in South India-Karnataka. International Journal of Research and Reviews in Applied Sciences, 5(3), 229-34.
Moraga, P. (2018) Small Area Disease Risk Estimation and Visualization Using R. The R Journal Vol. 10(1), pp. 495-506. July.
A. Rahman, F.A. Alhaidari, “Querying RDF Data”, Journal of Theoretical and Applied Information Technology 26(22):7599-7614, 2018.
A. Rahman, F.A. Alhaidari, “The Digital Library and the Archiving System for Educational Institutes”, Pakistan Journal of Information Management and Libraries (PJIM&L), vol. 20 (1), pp. 94-117, 2019.
www.appliedmedicalsystems.com
A. Rahman et. al (2019) A Comprehensive Study of Mobile Computing in Telemedicine: Second International Conference, ICAICR 2018, CCIS, pp. 413-425, Shimla, India.
N. Aldhafferi, A. Alqahtani, A. Rahman, M. Azam (2018) Constraint Based Rule Mining in Patient Claim Data. Journal of Computational and Theoretical Nanoscience 15(3):1064-1071.
A. Rahman, Kiran Sultan, Dhiaa Musleh, Nahier Aldhafferi, Abdullah Alqahtani, and Maqsood Mahmud, “Robust and Fragile Medical Image Watermarking: A Joint Venture of Coding and Chaos Theories,” Journal of Healthcare Engineering, vol. 2018, Article ID 8137436, 11 pages, 2018.
A. Rahman, M. Mahmud, K. Sultan, N. Aldhafferi, D. Musleh (2018) Medical Image Watermarking for Fragility and Robustness: A Chaos, Error Correcting Codes and Redundant Residue Number System Based Approach. Journal of Medical Imaging and Health Informatics 8(1):1192-1200.
A. Rahman, Kiran Sultan, Nahier Aldhafferi, Abdullah Alqahtani, and Maqsood Mahmud (2018) “Reversible and Fragile Watermarking for Medical Images,” Computational and Mathematical Methods in Medicine, vol. 2018, Article ID 3461382, 7 pages. https://doi.org/10.1155/2018/3461382.
A. Rahman, A. Bakry, K. Sultan, M.A.A. Khan, M. Farooqui, D. Musleh, “Clinical Decision Support System in Virtual Clinic”, Journal of Computational and Theoretical Nanoscience, 15(6):1795-1804, 2018.
M.T. Naseem, I.M. Qureshi, A. Rahman, M.Z. Muzaffar, “Robust and fragile watermarking for medical images using redundant residue number system and chaos,” Neural Network World, vol. 30, no. 3, pp. 177-192, 2020.
A. Rahman, K. Sultan, I. Naseer, R. Majeed, D. Musleh et.al., “Supervised Machine Learning-based Prediction of COVID-19,” Computers, Materials & Continua, vol. 69, no.1, pp. 21-34, 2021.
DOI: https://doi.org/10.31449/inf.v46i6.3827
This work is licensed under a Creative Commons Attribution 3.0 License.