Feature Selection Method Based on Honeybee-SMOTE for Medical Data Classification
Abstract
Full Text:
PDFReferences
Abbass, H. A. (2001) 'MBO: Marriage in honey bees optimization a haplometrosis polygynous swarming approach', Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1, pp. 207–214. doi: 10.1109/cec.2001.934391.
Abbass, H. A. H. (2001) 'A monogenous MBO approach to satisfiability', Proceeding of the international conference on computational intelligence for modelling, control and automation, CIMCA, (October 2001). Available at: https://www.researchgate.net/publication/2481231_A_Monogenous_MBO_Approach_to_Satisfiability.
Adamu, A. et al. (2021) 'An hybrid particle swarm optimization with crow search algorithm for feature selection', Machine Learning with Applications. Elsevier Ltd., 6(July), p. 100108. doi: 10.1016/j.mlwa.2021.100108.
Aljarah, I. et al. (2018) 'Simultaneous Feature Selection and Support Vector Machine Optimization Using the Grasshopper Optimization Algorithm', Cognitive Computation. Cognitive Computation, 10(3), pp. 478–495. doi: 10.1007/s12559-017-9542-9.
Arora, S. and Anand, P. (2019) 'Binary butterfly optimization approaches for feature selection', Expert Systems with Applications. Elsevier Ltd, 116, pp. 147–160. doi: 10.1016/j.eswa.2018.08.051.
Bunkhumpornpat, C., Sinapiromsaran, K. and Lursinsap, C. (2009) 'Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem', Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5476 LNAI, pp. 475–482. doi: 10.1007/978-3-642-01307-2_43.
Chawla, N. V. et al. (2002) 'snopes.com: Two-Striped Telamonia Spider', Journal of Artificial Intelligence Research, 16(Sept. 28), pp. 321–357. Available at: https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp.
Chen, B. et al. (2021) 'RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise', Information Sciences. Elsevier Inc., 553, pp. 397–428. doi: 10.1016/j.ins.2020.10.013.
Engelbrecht, A. P., Grobler, J. and Langeveld, J. (2019) 'Set based particle swarm optimization for the feature selection problem', Engineering Applications of Artificial Intelligence. Elsevier Ltd, 85(July), pp. 324–336. doi: 10.1016/j.engappai.2019.06.008.
Fayyad, U. and Stolorz, P. (1997) 'Data mining and KDD: Promise and challenges', Future Generation Computer Systems, 13(2–3), pp. 99–115. doi: 10.1016/s0167-739x(97)00015-0.
Haddad, O. B., Afshar, A. and Mariňo, M. A. (2011) 'Multireservoir optimization in discrete and continuous domains', Proceedings of the Institution of Civil Engineers: Water Management, 164(2), pp. 57–72. doi: 10.1680/wama.900077.
Han, H., Wang, W. Y. and Mao, B. H. (2005) 'Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning', Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3644 LNCS, pp. 878–887. doi: 10.1007/11538059_91.
Hegazy, A. E., Makhlouf, M. A. and El-Tawel, G. S. (2020) 'Improved salp swarm algorithm for feature selection', Journal of King Saud University - Computer and Information Sciences. King Saud University, 32(3), pp. 335–344. doi: 10.1016/j.jksuci.2018.06.003.
Holmes, J. H. (2013) Knowledge Discovery in Biomedical Data: Theory and Methods. Error, Methods in Biomedical Informatics: A Pragmatic Approach. Error. Elsevier Inc. doi: 10.1016/B978-0-12-401678-1.00007-5.
Kumar, L. and Bharti, K. K. (2019) An improved BPSO algorithm for feature selection, Lecture Notes in Electrical Engineering. Springer Singapore. doi: 10.1007/978-981-13-2685-1_48.
Mafarja, M. and Mirjalili, S. (2018) 'Whale optimization approaches for wrapper feature selection', Applied Soft Computing. Elsevier B.V., 62, pp. 441–453. doi: 10.1016/j.asoc.2017.11.006.
Marinaki, M., Marinakis, Y. and Zopounidis, C. (2010) 'Honey Bees Mating Optimization algorithm for financial classification problems', Applied Soft Computing Journal. Elsevier B.V., 10(3), pp. 806–812. doi: 10.1016/j.asoc.2009.09.010.
Remeseiro, B. and Bolon-Canedo, V. (2019) 'A review of feature selection methods in medical applications', Computers in Biology and Medicine. MIPRO, 112(May), pp. 25–29. doi: 10.1016/j.compbiomed.2019.103375.
Rodrigues, D. et al. (2014) 'A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest', Expert Systems with Applications. Elsevier Ltd, 41(5), pp. 2250–2258. doi: 10.1016/j.eswa.2013.09.023.
Sayed, G. I., Hassanien, A. E. and Azar, A. T. (2019) 'Feature selection via a novel chaotic crow search algorithm', Neural Computing and Applications. Neural Computing and Applications, 31(1), pp. 171–188. doi: 10.1007/s00521-017-2988-6.
Speiser, J. L. (2021) 'A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data', Journal of Biomedical Informatics. Elsevier Inc., 117(March), p. 103763. doi: 10.1016/j.jbi.2021.103763.
Tubishat, M. et al. (2021) 'Dynamic Salp swarm algorithm for feature selection', Expert Systems with Applications. Elsevier Ltd, 164(November 2019), p. 113873. doi: 10.1016/j.eswa.2020.113873.
Vieira, S. M. et al. (2013) 'Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients', Applied Soft Computing Journal, 13(8), pp. 3494–3504. doi: 10.1016/j.asoc.2013.03.021.
Wang, K. J. et al. (2014) 'A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients', Applied Soft Computing Journal. Elsevier B.V., 20, pp. 15–24. doi: 10.1016/j.asoc.2013.09.014.
Zawbaa, H. M. et al. (2018) 'Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach', Swarm and Evolutionary Computation. Elsevier B.V., 42(February), pp. 29–42. doi: 10.1016/j.swevo.2018.02.021.
Chen, C. W., Tsai, Y. H., Chang, F. R., & Lin, W. C. (2020). Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results. Expert Systems, 37(5), e12553.
Rostami, M., Forouzandeh, S., Berahmand, K., & Soltani, M. (2020). Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics, 112(6), 4370-4384.
DOI: https://doi.org/10.31449/inf.v46i9.4098
This work is licensed under a Creative Commons Attribution 3.0 License.