An Empirical Study of Aging Related Bug Prediction Using Cross Project in Cloud Oriented Software
Abstract
Full Text:
PDFReferences
Ahmad, A.: Predicting software aging related bugs from imbalanced datasets by using data mining techniques
Alcal´a-Fdez, J., Fern´andez, A., Luengo, J., Derrac, J., Garc´ıa, S., S´anchez, L., Herrera, F.: Keel data-mining software tool: data set
repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic & Soft Computing 17
(2011)
Apat, S.K., Rao, S.A., Patra, P.S.K.: Software bug prediction analysis using various machine learning approaches (2020)
Araujo, J., Matos, R., Maciel, P., Matias, R.: Software aging issues on the eucalyptus cloud computing infrastructure. In: 2011 IEEE
international conference on systems, man, and cybernetics, pp. 1411–1416. IEEE (2011)
Cotroneo, D., Natella, R., Pietrantuono, R.: Is software aging related to software metrics? In: 2010 IEEE Second international workshop
on software aging and rejuvenation, pp. 1–6. IEEE (2010)
Cotroneo, D., Natella, R., Pietrantuono, R.: Predicting aging-related bugs using software complexity metrics. Performance Evaluation
(3), 163–178 (2013)
Cotroneo, D., Natella, R., Pietrantuono, R., Russo, S.: A survey of software aging and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 10(1), 1–34 (2014)
D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches. In: 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pp. 31–41. IEEE (2010)
Ferenc, R.: Bug forecast: A method for automatic bug prediction. In: International Conference on Advanced Software Engineering and
Its Applications, pp. 283–295. Springer (2010)
Ficco, M., Pietrantuono, R., Russo, S.: Aging-related performance anomalies in the apache storm stream processing system. Future
Generation Computer Systems 86, 975–994 (2018)
Herbold, S.: Training data selection for cross-project defect prediction. In: Proceedings of the 9th international conference on predictive models in software engineering, pp. 1–10 (2013)
Herbold, S.: A systematic mapping study on cross-project defect prediction. arXiv preprint arXiv:1705.06429 (2017)
Kaur, A., Kaur, I.: An empirical evaluation of classification algorithms for fault prediction in open source projects. Journal of King Saud
University-Computer and Information Sciences 30(1), 2–17 (2018)
Kumar, L., Sureka, A.: Aging related bug prediction using extreme learning machines. In: 2017 14th IEEE India Council International
Conference (INDICON), pp. 1–6. IEEE (2017)
Kumar, L., Sureka, A.: Feature selection techniques to counter class imbalance problem for aging related bug prediction: aging related
bug prediction. In: Proceedings of the 11th innovations in software engineering conference, pp. 1–11 (2018)
Machida, F., Xiang, J., Tadano, K., Maeno, Y.: Aging-related bugs in cloud computing software. In: 2012 IEEE 23rd international
symposium on software reliability engineering workshops, pp. 287–292. IEEE (2012)
Markov, Z., Russell, I.: An introduction to the weka data mining system. ACM SIGCSE Bulletin 38(3), 367–368 (2006)
Ohira, M., Kashiwa, Y., Yamatani, Y., Yoshiyuki, H., Maeda, Y., Limsettho, N., Fujino, K., Hata, H., Ihara, A., Matsumoto, K.: A dataset
of high impact bugs: Manually-classified issue reports. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp. 518–521. IEEE (2015)
Pandey, S.K., Mishra, R.B., Triphathi, A.K.: Software bug prediction prototype using bayesian network classifier: A comprehensive
model. Procedia computer science 132, 1412–1421 (2018)
Qin, F., Wan, X., Yin, B.: An empirical study of factors affecting cross-project aging-related bug prediction with tlap. Software Quality
Journal pp. 1–28 (2019)
Qin, F., Zheng, Z., Bai, C., Qiao, Y., Zhang, Z., Chen, C.: Cross-project aging related bug prediction. In: 2015 IEEE International
conference on software quality, reliability and security, pp. 43–48. IEEE (2015)
Qin, F., Zheng, Z., Qiao, Y., Trivedi, K.S.: Studying aging-related bug prediction using cross-project models. IEEE Transactions on
Reliability 68(3), 1134–1153 (2018)
Rathore, S.S., Kumar, S.: An empirical study of some software fault prediction techniques for the number of faults prediction. Soft
Computing 21(24), 7417–7434 (2017)
Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open source software. Empirical software engineering 19(6),
–1705 (2014)
Wan, X., Zheng, Z., Qin, F., Qiao, Y., Trivedi, K.S.: Supervised representation learning approach for cross-project aging-related bug
prediction. In: 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE), pp. 163–172. IEEE (2019)
Wu, X., Zheng, W., Pu, M., Chen, J., Mu, D.: Invalid bug reports complicate the software aging situation. Software Quality Journal pp.
–26 (2020)
DOI: https://doi.org/10.31449/inf.v46i8.4197
This work is licensed under a Creative Commons Attribution 3.0 License.