ASM-based Formal Model for Analysing Cloud Auto-Scaling Mechanisms
Abstract
Full Text:
PDFReferences
N. Herbst, S. Kounev, and R. Reussner (2013). Elasticity in cloud computing: What it is, and what it is not. In Proceedings of the 10th International Conference on Autonomic Computing (ICAC 13) pp. 23–27, 2013.
M. A. Netto, C. Cardonha, R. L. Cunha, and M. D. Assun¸cao (2014). Evaluating auto-scaling strategies for cloud computing environments, In 2014 IEEE 22nd International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems. IEEE pp. 187–196.
T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano (2014). A review of auto-scaling techniques for elastic applications in cloud environments. Journal of grid computing, vol. 12, no. 4, pp. 559–592.
Y. Gurevich (1993) Evolving algebras: an attempt to discover semantics.
N. Roy, A. Dubey, and A. Gokhale (2011). Efficient autoscaling in the cloud using predictive models for workload forecasting. In 2011 IEEE 4th International Conference on Cloud Computing, IEEE, pp. 500–507.
C. Qu, R. N. Calheiros, and R. Buyya (2018). Auto-scaling web applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–33.
J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen (2013). Workload predicting-based automatic scaling in service clouds. In 2013 IEEE Sixth International Conference on Cloud Computing, IEEE, pp. 810–815.
E. B¨orger (2010). The abstract state machines method for high-level system design and analysis. In Formal Methods: State of the Art and New Directions, Springer, 2010, pp. 79–116.
P. Arcaini, R.-M. Holom, and E. Riccobene (2016). Asm-based formal design of an adaptivity component for a cloud system. Formal Aspects of Computing, vol. 28, no. 4, pp. 567– 595.
G. Kecskemeti (2015). Dissect-cf: a simulator to foster energy-aware scheduling in infrastructure clouds. Simulation Modelling Practice and Theory, vol. 58, pp. 188–218.
H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai (2012). Optimal autoscaling in a iaas cloud. In Proceedings of the 9th international conference on Autonomic computing. ACM, pp. 173–178.
A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang (2014). Adaptive, model-driven autoscaling for cloud applications. In 11th International Conference on Autonomic Computing ({ICAC} 14), pp. 57–64.
D. Saxena and A. K. Singh (2021). A proactive autoscaling and energy-efficient vm allocation framework using online multi-resource neural network for cloud data center. Neurocomputing, vol. 426, pp. 248–264.
A. Al-Dulaimy, J. Taheri, A. Kassler, M. R. H. Farahabady, S. Deng, and A. Zomaya (2020). Multiscaler: A multi-loop auto-scaling approach for cloud-based applications. IEEE Transactions on Cloud Computing.
Q. Z. Ullah, G. M. Khan, and S. Hassan (2020). Cloud infrastructure estimation and auto-scaling using recurrent cartesian genetic programming-based ann. IEEE Access, vol. 8, pp. 17 965–17 985.
T. LakshmiPriya and R. Parthasarathi, “An asm model for an autonomous network infrastructure grid,” in International Conference on Networking and Services (ICNS’07). IEEE, 2007, pp. 29–29.
A. Bianchi, L. Manelli, and S. Pizzutilo (2011), A distributed abstract state machine for grid systems: A preliminary study. In Proceedings of the Second International Conference on Parallel, Distributed, Grid And Cloud Computing For Engineering, Civil Comp Press, Ajaccio, France, Paper, vol. 84.
A. Bianchi, L. Manelli, and S. Pizzutilo (2013). An asm-based model for grid job management. Informatica, vol. 37, no. 3, 2013.
P. Arcaini, R.-M. Holom, and E. Riccobene (2016), Asm-based formal design of an adaptivity component for a cloud system, Formal Aspects of Computing, vol. 28, no. 4, pp. 567– 595.
E. B¨orger (2003). The asm refinement method. Formal aspects of computing, vol. 15 (2-3): pp. 237–257. https://doi.org/10.1007/s00165-003-0012-7
J. Fitzgerald and P. Larsen (2009). Modelling systems: practical tools and techniques in software development, Cambridge University Press
DOI: https://doi.org/10.31449/inf.v47i6.4622
This work is licensed under a Creative Commons Attribution 3.0 License.