Empirical Evaluation of Algorithm Performance: Addressing Execution Time Measurement Challenges
Abstract
Full Text:
PDFReferences
T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.
T. Dobravec. Algator — an automatic algo-
rithm evaluation system. Advances in Com-
puters, 116(1):65–131, 2019.
T. Dobravec. Exact time measuring chal-
lenges. In Proceedings of the 25th Interna-
tional Multiconference Information Society,
IS MATCOS, volume I, pages 21–24, Koper,
-14 October 2022.
M. Fern ́andez. Models of Computation,
An Introduction to Computability Theory.
Springer, 2009.
D. Johnson. A theoretician’s guide to
the experimental analysis of algorithms.
DOI:10.1090/dimacs/059/11, 12 2001.
R. Kumar. Instruction Level Parallelism:
Branch Prediction and Optimization. LAP
LAMBERT Academic Publishing, 2012.
C. C. McGeoch. Experimental analysis of
algorithms. Notices of the AMS, 48(3), 2001.
B. Moret. Towards a discipline of experi-
mental algorithmics. Monograph in Discrete
Mathematics and Theoretical Computer Sci-
ence, 2001.
M. Price. Hot code is faster code - addressing
jvm warm-up. QCon, April 2016.
B. Swathi. A comparative study and analy-
sis on the performance of the algorithms. In-
ternational Journal of Computer Science and
Mobile Computing, 5(1):91–95, Januar 2016.
M. Tedre and N. Moisseinen. Experiments in
computing: A survey. The Scientific World
Journal, 2014(1):1–11, 2014.
DOI: https://doi.org/10.31449/inf.v48i4.4752
This work is licensed under a Creative Commons Attribution 3.0 License.