Formation Control Algorithm for Multiple Mobile Robots BasedonFuzzy Mathematics
Abstract
Full Text:
PDFReferences
Guan J, Zhou W, Kang S, Sun Y, Liu Z. Robot formation control based on internet of thingstechnology platform. IEEE Access, 2020, 8: 96767-96776. [2] Koung D, Kermorgant O, Fantoni I, Belouaer L. Cooperative multi-robot object transportationsystem based on hierarchical quadratic programming. IEEE Robotics and Automation Letters, 2021, 6(4): 6466-6472. [3] Lu P, Wang H, Zhang F, Yu W, Chen G. Formation control of nonholonomic mobile robotsusing distributed estimators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020,67(12): 3162-3166. [4] Yin H, Guo S, Liu M. A virtual linkage-based dual event-triggered formation control strategyfor multiple amphibious spherical robots in constrained space with limited communication. IEEESensors Journal, 2022, 22(13): 13395-13406. [5] Kamel M A, Yu X, Zhang Y. Formation control and coordination of multiple unmanned groundvehicles in normal and faulty situations: A review. Annual Reviews in Control, 2020, 49: 128-144. [6] Dong X, Sitti M. Controlling two-dimensional collective formation and cooperative behaviorof magnetic microrobot swarms. The International Journal of Robotics Research, 2020, 39(5):617-638. [7] Fu W, Qin J, Zheng W X, Chen Y, Kang Y. Resilient cooperative source seeking ofdouble-integrator multi-robot systems under deception attacks. IEEE Transactions on IndustrialElectronics, 2020, 68(5): 4218-4227. [8] Hu J, Bhowmick P, Lanzon A. Group coordinated control of networked mobile robots withapplications to object transportation. IEEE Transactions on Vehicular Technology, 2021, 70(8):8269-8274. [9] Asai R, Sakurama K. Cooperative reference frame estimation for multi-agent systems viaformation control. Advanced Robotics, 2023, 37(3): 198-209. [10] Liu D, Zong C, Wang D, Zhao W, Wang Y, Lu W. Multi-robot formation control based onhigh-order bilateral consensus. Measurement and Control, 2020, 53(5-6): 983-993. [11] Khalaji A K, Zahedifar R. Lyapunov-based formation control of underwater robots. Robotica, 2020, 38(6): 1105-1122. [12] Dai S L, Lu K, Fu J. Adaptive finite-time tracking control of nonholonomic multirobotformation systems with limited field-of-view sensors. IEEE Transactions on Cybernetics, 2021, 52(10): 10695-10708. [13] Kamel M A, Yu X, Zhang Y. Formation control and coordination of multiple unmannedground vehicles in normal and faulty situations: A review. Annual Reviews in Control, 2020, 49:128-144. [14] Hu J, Bhowmick P, Jang I, Arvin F, Lanzon A. A decentralized cluster formation containmentframework for multirobot systems. IEEE Transactions on Robotics, 2021, 37(6): 1936-1955. [15] Qu S, Zhao L, Xiong Z. Cross-layer congestion control of wireless sensor networks based onfuzzy sliding mode control. Neural Computing and Applications, 2020, 32: 13505-13520. [16] Fei J, Wang Z, Liang X, Feng Z, Xue Y. Fractional sliding-mode control for microgyroscopebased on multilayer recurrent fuzzy neural network. IEEE Transactions on Fuzzy Systems, 2021, 30(6): 1712-1721. [17] Li J, Wang J, Peng H, Hu Y, Su H. Fuzzy-torque approximation-enhanced sliding modecontrol for lateral stability of mobile robot. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 52(4): 2491-2500. [18] Teng L, Gull M A, Bai S. PD-based fuzzy sliding mode control of a wheelchair exoskeletonrobot. IEEE/ASME Transactions on Mechatronics, 2020, 25(5): 2546-2555. [19] Cao Z, Niu Y, Lam H K, Zhao J. Sliding mode control of Markovian jump fuzzy systems: Adynamic event-triggered method. IEEE Transactions on Fuzzy Systems, 2020, 29(10): 2902-2915.
DOI: https://doi.org/10.31449/inf.v48i10.5737
This work is licensed under a Creative Commons Attribution 3.0 License.