Exploring the Power of Dual Deep Learning for Fake News Detection

Hounaida Moalla, Hana Abid, Dorsaf Sallami, Esma Aïmeur, Bassem Ben Hamed

Abstract


The rise of social media has intensified the spread of fake news, a problem further exacerbated by generative artificial intelligence (AI). Hence, the need for improved detection of both human-created and AI-generated fake news using advanced AI models is critical. This paper proposes a survey to assess knowledge and attitudes towards news and AI, combining demographic data, personality traits, and the ability to distinguish between real and AI-generated news. Additionally, we create a new dataset, ERAF-News, containing real, fake, AI-generated true, and AI-generated fake news. To classify different types of news, we developed a dual-stream transformer model, DuSTraMo. This model leverages the capabilities of two parallel transformers to enhance the accuracy of news classification. The survey, involving 83 participants from 9 countries, revealed that respondents struggle to differentiate human-generated from AI-generated news. Notably, BERT outperformed GPT-2 and BART in generating realistic text, and RoBERTa and DistilBERT achieved over 98% accuracy in fake news classification. Dual-GPT models also showed high accuracy.
This study underscores the effectiveness of the DuSTraMo model and the ERAF-News dataset in enhancing the detection of both human-created and AI-generated fake news. The findings highlight the increasing dominance of AI in this domain and the pressing need for advanced methods to combat fake news. Additionally, a survey examining users’ responses to fake news reveals a concerning inability to accurately
identify false information.


Full Text:

PDF

References


Velichety, S., & Shrivastava, U. (2022). Quantifying the impacts of online fake news on the equity value of social media platforms–Evidence from Twitter. International Journal of Information Management, 64, 102474. https://doi.org/10.1016/j.ijinfomgt.2022.102474

Gupta, M., Dennehy, D., Parra, C. M., Mäntymäki, M., & Dwivedi, Y. K. (2023). Fake news believability: The effects of political beliefs and espoused cultural values. Information & Management, 60(2), 103745. https://doi.org/10.1016/j.im.2022.103745

Choi, J., & Lee, J. K. (2022). Confusing effects of fake news on clarity of political information in the social media environment. Journalism Practice, 16(10), 2147-2165. https://doi.org/10.1080/17512786.2021.1903971

Loos, E., & Ivan, L. (2022). Fighting Fake News: A Generational Approach

(p. 172). MDPI-Multidisciplinary Digital Publishing Institute. https://doi.org/10.

/soc12020057

Baptista, J.P.; Gradim, A. (2022). A Working Definition of Fake News. Encyclopedia 2022, 2, 632-645. https://doi.org/10.3390/encyclopedia2010043

Leeder, C. (2019). How college students evaluate and share “fake news” stories. Library & Information Science Research, 41(3), 100967. https://doi.org/10.1016/j.lisr.2019.100967

Abu Arqoub, O., Abdulateef Elega, A., Efe Özad, B., Dwikat, H., & Adedamola Oloyede, F. (2022). Mapping the scholarship of fake news research: A systematic review. Journalism Practice, 16(1), 56-86. https://doi.org/10.1080/17512786.2020.1805791

Sallami, D. (2022). Personalized fake news aware recommendation system. https://doi.org/1866/27492

Amri, S., Sallami, D., & Aı̈meur, E. (2021). Exmulf: an explainable multimodal content-based fake news detection system. In International Symposium on Foundations and Practice of Security (pp. 177-187). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-08147-7 12

Sallami, D., Ben Salem, R., & Aı̈meur, E. (2023). Trust-based Recommender System for Fake News Mitigation. In Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization (pp. 104-109). https://doi.org/10.1145/3563359.3597395

Pennycook, G., & Rand, D. G. (2021). The psychology of fake news. Trends in cognitive sciences, 25(5), 388-402. https://doi.org/10.1016/j.tics.2021.02.007

Ansar, W., & Goswami, S. (2021). Combating the menace: A survey on characterization and detection of fake news from a data science perspective. International Journal of Information Management Data Insights, 1(2), 100052. https://doi.org/10.1016/j.jjimei.2021.100052

Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A., & Petersen, M. B.

(2021). Partisan polarization is the primary psychological motivation behind political fake news sharing on Twitter. American Political Science Review, 115(3), 999-1015. https://doi.org/10.1017/S0003055421000290

Igwebuike, E. E., & Chimuanya, L. (2021). Legitimating falsehood in social media: A discourse analysis of political fake news. Discourse & Communication, 15(1), 42-58. https://doi.org/10.1177/1750481320961659

Li, Q., Hu, Q., Lu, Y., Yang, Y., & Cheng, J. (2020). Multi-level word features based on CNN for fake news detection in cultural communication. Personal and Ubiquitous Computing, 24, 259-272. https://doi.org/10.1007/s00779-019-01289-y

Dabbous, A., Aoun Barakat, K., & de Quero Navarro, B. (2022). Fake news detection and social media trust: a cross-cultural perspective. Behaviour & Information Technology, 41(14), 2953-2972. https://doi.org/10.1080/0144929X.2021.1963475

Petratos, P. N. (2021). Misinformation, disinformation, and fake news: Cyber risks to business. Business Horizons, 64(6), 763-774. https://doi.org/10.1016/j.bushor.2021.07.012

Fong, B. (2021). Analysing the behavioural finance impact of’fake news’ phenomena on financial markets: a representative agent model and empirical validation. Financial Innovation, 7(1), 1-30. https://doi.org/10.1186/s40854-021-00271-z

Kondamudi, M. R., Sahoo, S. R., Chouhan, L., & Yadav, N. (2023). A comprehensive survey of fake news in social networks: Attributes, features, and detection approaches. Journal of King Saud University-Computer and Information Sciences, 35(6), 101571. https://doi.org/10.1016/j.jksuci.2023.101571

Obadă, D. R., & Dabija, D. C. (2022). Can Fake News About Companies Lead to an Increased Social Media Usage? An Empirical Investigation. https://philpapers.org/rec/OBACFN

Radwan, E., Radwan, A., & Radwan, W. (2020). The role of social media in spreading panic among primary and secondary school students during the COVID-19 pandemic: An online questionnaire study from the Gaza Strip, Palestine. Heliyon, 6(12). https://doi.org/10.1016/j.heliyon.2020.e05807

Weiss, A. P., Alwan, A., Garcia, E. P., & Garcia, J. (2020). Surveying fake news: Assessing university faculty’s fragmented definition of fake news and its impact on teaching critical thinking. International Journal for Educational Integrity, 16, 1-30. https://doi.org/10.1007/s40979-019-0049-x

Baptista, J. P., Correia, E., Gradim, A., & Piñeiro-Naval, V. (2021). The influence of political ideology on fake news belief: The Portuguese case. Publications, 9(2), 23. https://doi.org/10.3390/publications9020023

Zanatta, E. T., Wanderley, G. P. D. M., Branco, I. K., Pereira, D., Kato, L. H., & Maluf, E. M. C. P. (2021). Fake news: The impact of the internet on population health. Revista da Associação Médica Brasileira, 67, 926-930. https://doi.org/10.1590/1806-9282.20201151

Pérez-Escoda, A., Pedrero-Esteban, L. M., Rubio-Romero, J., & Jiménez-Narros, C. (2021). Fake news reaching young people on social networks: Distrust challenging media literacy. Publications, 9(2), 24. https://doi.org/10.3390/publications9020024

Sampat, B., & Raj, S. (2022). Fake or real news? Understanding the gratifications and personality traits of individuals sharing fake news on social media platforms. Aslib Journal of Information Management, 74(5), 840-876. https://doi.org/10.1108/AJIM-08-2021-0232

Torabi, M., & Sotudeh, H. (2022). The Role of Risk Perception and Ability to Detect Fake News in Acceptance of COVID-19 Vaccine among Students of Shiraz University, Iran. Health Information Management, 18(6), 265-271. https://doi.org/10.22122/him.v18i1.4440

Chuai, Y., & Zhao, J. (2022). Anger can make fake news viral online. Frontiers in Physics, 10, 970174. https://doi.org/10.3389/fphy.2022.970174

Tan, W. K., & Hsu, C. Y. (2023). The application of emotions, sharing

motivations, and psychological distance in examining the intention to share COVID-19-related fake news. Online Information Review, 47(1), 59-80. https://doi.org/10.1108/OIR-08-2021-0448

Qian, K., & Yahara, T. (2020). Mentality and behavior in COVID-19 emergency status in Japan: Influence of personality, morality and ideology. PloS one, 15(7), e0235883. https://doi.org/10.1371/journal.pone.0235883

Gao, Y., González, V. A., & Yiu, T. W. (2020). Exploring the relationship between construction workers’ personality traits and safety behavior. Journal of construction engineering and management, 146(3), 04019111. https://doi.org/10.1061/(ASCE) CO.1943-7862.0001763

Guo, Z., Schlichtkrull, M., & Vlachos, A. (2022). A survey on automated fact-checking. Transactions of the Association for Computational Linguistics, 10, 178-206. https://doi.org/10.1162/tacl a 00454

Ghadiri, Z., Ranjbar, M., Ghanbarnejad, F., & Raeisi, S. (2022). Automated

Fake News Detection using cross-checking with reliable sources. arXiv:2201.00083. https://doi.org/10.48550/arXiv.2201.00083

Himdi, H., Weir, G., Assiri, F., & Al-Barhamtoshy, H. (2022). Arabic fake news detection based on textual analysis. Arabian Journal for Science and Engineering, 47(8), 10453-10469. https://doi.org/10.1007/s13369-021-06449-y

Hu, L., Wei, S., Zhao, Z., & Wu, B. (2022). Deep learning for fake news detection: A comprehensive survey. AI Open. https://doi.org/10.1016/j.aiopen.2022.09.001

Sallami, D., Gueddiche, A., & Aı̈meur, E. (2023). From Hype to Reality: Revealing the Accuracy and Robustness of Transformer-Based Models for Fake News Detection. https://ceur-ws.org/Vol-3593/paper2.pdf

Ibrishimova, M. D., & Li, K. F. (2020). A machine learning approach to

fake news detection using knowledge verification and natural language processing. In Advances in Intelligent Networking and Collaborative Systems: The 11th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2019) (pp. 223-234). Springer International Publishing. https://doi.org/10.1007/978-3-030-29035-1 22

de Oliveira, N. R., Pisa, P. S., Lopez, M. A., de Medeiros, D. S. V., & Mattos, D. M. (2021). Identifying fake news on social networks based on natural language processing: trends and challenges. Information, 12(1), 38. https://doi.org/10.3390/info12010038

Shu, K., Wang, S., Lee, D., & Liu, H. (2020). Mining disinformation and fake news: Concepts, methods, and recent advancements. Disinformation, misinformation, and fake news in social media: Emerging research challenges and opportunities, 1-19. https://doi.org/10.1007/978-3-030-42699-6 1

Al Ayub Ahmed, A., Aljabouh, A., Donepudi, P. K., & Suh Choi, M. (2021).

Detecting Fake News Using Machine Learning: A Systematic Literature Review. arXiv-2102. https://doi.org/10.48550/arXiv.2102.04458

Khan, J. Y., Khondaker, M. T. I., Afroz, S., Uddin, G., & Iqbal, A. (2021).

A benchmark study of machine learning models for online fake news detection.

Machine Learning with Applications, 4, 100032. https://doi.org/10.1016/j.mlwa.

100032

Zhang, X., & Ghorbani, A. A. (2020). An overview of online fake news: Characterization, detection, and discussion. Information Processing & Management, 57(2), 102025. https://doi.org/10.1016/j.ipm.2019.03.004

Aı̈meur, E., Amri, S., & Brassard, G. (2023). Fake news, disinformation and misinformation in social media: a review. Social Network Analysis and Mining, 13(1), 30. https://doi.org/10.1007/s13278-023-01028-5

Natarajan, R., Mehbodniya, A., Rane, K. P., Jindal, S., Hasan, M. F., Vives,

L., & Bhatt, A. (2022). Intelligent gravitational search random forest algorithm for fake news detection. International Journal of Modern Physics C, 33(06), 2250084. https://doi.org/10.1142/S012918312250084X

Hussain, M. G., Hasan, M. R., Rahman, M., Protim, J., & Al Hasan, S. (2020). Detection of bangla fake news using mnb and svm classifier. In 2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE) (pp. 81-85). IEEE. https://doi.org/10.1109/iCCECE49321.2020.9231167

Jain, P., Sharma, S., & Aggarwal, P. K. (2022). Classifying fake news detection using SVM, Naive Bayes and LSTM. In 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 460-464). IEEE. https://doi.org/10.1109/Confluence52989.2022.9734129

Kula, S., Choraś, M., & Kozik, R. (2021). Application of the BERT-based architecture in fake news detection. In 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020) 12 (pp. 239-249). Springer International Publishing. https://doi.org/10.1007/978-3-030-57805-3 23

Farokhian, M., Rafe, V., & Veisi, H. (2023). Fake news detection using dual BERT deep neural networks. Multimedia Tools and Applications, 1-18. https://doi.org/10.1007/s11042-023-17115-w

Tourille, J., Sow, B., & Popescu, A. (2022, June). Automatic Detection of Bot-generated Tweets. In Proceedings of the 1st International Workshop on Multimedia AI against Disinformation (pp. 44-51). https://doi.org/10.1145/3512732.3533584

Aladeen, H. (2023). Breaking News: Machine Learning Helps to Spot Fake News Before it Spreads. IConFN’23, June 03–05, 2023, Wadiya.

Faustini, P. H. A., & Covoes, T. F. (2020). Fake news detection in multiple

platforms and languages. Expert Systems with Applications, 158, 113503. https://doi.org/10.1016/j.eswa.2020.113503

Biradar, S., Saumya, S., & Chauhan, A. (2023). Combating the infodemic:

COVID-19 induced fake news recognition in social media networks. Complex &

Intelligent Systems, 9(3), 2879-2891. https://doi.org/10.1007/s40747-022-00672-2

Adoma, A. F., Henry, N. M., & Chen, W. (2020). Comparative analyses of

bert, roberta, distilbert, and xlnet for text-based emotion recognition. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 117-121). IEEE. https://doi.org/10.1109/ICCWAMTIP51612.2020.9317379

Wagh, V., Khandve, S., Joshi, I., Wani, A., Kale, G., & Joshi, R. (2021).

Comparative study of long document classification. In TENCON 2021-2021 IEEE Region 10 Conference (TENCON) (pp. 732-737). IEEE. https://doi.org/10.1109/TENCON54134.2021.9707465

Nasir, J. A., Khan, O. S., & Varlamis, I. (2021). Fake news detection: A hybrid CNN-RNN based deep learning approach. International Journal of Information Management Data Insights, 1(1), 100007. https://doi.org/10.1016/j.jjimei.2020.100007

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., &

Choi, Y. (2019). Defending against neural fake news. Advances in neural information processing systems, 32. https://shorturl.at/mBHL7

Schuster, T., Schuster, R., Shah, D. J., & Barzilay, R. (2020). The limitations of stylometry for detecting machine-generated fake news. Computational Linguistics, 46(2), 499-510. https://doi.org/10.1162/coli a 00380

Fröhling, L., & Zubiaga, A. (2021). Feature-based detection of automated language models: tackling GPT-2, GPT-3 and Grover. PeerJ Computer Science, 7, e443. https://doi.org/10.7717/peerj-cs.443

Yang, Z., Ma, J., Chen, H., Lin, H., Luo, Z., & Chang, Y. (2022). A Coarse-

to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection. arXiv:2209.14642. https://doi.org/10.48550/arXiv.2209.14642

Pan, Y., Pan, L., Chen, W., Nakov, P., Kan, M. Y., & Wang, W. Y. (2023). On the Risk of Misinformation Pollution with Large Language Models. arXiv:2305.13661. https://doi.org/10.48550/arXiv.2305.13661

Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv:2005.14165. https://shorturl.at/BJQX4

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774

Yanagi, Y., Orihara, R., Sei, Y., Tahara, Y., & Ohsuga, A. (2020, July). Fake

news detection with generated comments for news articles. In 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES) (pp. 85-90). IEEE. https://doi.org/10.1109/INES49302.2020.9147195

Kreps, S., McCain, R. M., & Brundage, M. (2022). All the news that’s fit to fabricate: AI-generated text as a tool of media misinformation. Journal of experimental political science, 9(1), 104-117. https://doi.org/10.1017/XPS.2020.37

Xu, D., Fan, S., & Kankanhalli, M. (2023). Combating misinformation in the era of generative AI models. In Proceedings of the 31st ACM International Conference on Multimedia (pp. 9291-9298). https://doi.org/10.1145/3581783.3612704

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., ... & Wang, J. (2019). Release strategies and the social impacts of language models. arXiv:1908.09203. https://doi.org/10.48550/arXiv.1908.09203

Kumarage, T., Garland, J., Bhattacharjee, A., Trapeznikov, K., Ruston, S., & Liu, H. (2023). Stylometric detection of ai-generated text in twitter timelines.

arXiv:2303.03697. https://doi.org/10.48550/arXiv.2303.03697

Najee-Ullah, A., Landeros, L., Balytskyi, Y., & Chang, S. Y. (2021). Towards detection of AI-generated texts and misinformation. In International Workshop on Socio-Technical Aspects in Security (pp. 194-205). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-10183-0 10

Chang, S. Y. (2022). Towards detection of AI-generated texts and misinfor-

mation. In Socio-Technical Aspects in Security: 11th International Workshop,

STAST 2021, Virtual Event (p. 194). Springer Nature. https://doi.org/10.1007/

-3-031-10183-0

Gillioz, A., Casas, J., Mugellini, E., & Abou Khaled, O. (2020, September).

Overview of the Transformer-based Models for NLP Tasks. In 2020 15th Conference on Computer Science and Information Systems (FedCSIS) (pp. 179-183). IEEE. https://doi.org/10.15439/2020F20

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. https://shorturl.at/cCL23

Yu, Y., Zhan, F., Wu, R., Pan, J., Cui, K., Lu, S., ... & Miao, C. (2021). Diverse image inpainting with bidirectional and autoregressive transformers. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 69-78). https://doi.org/10.1145/3474085.3475436

Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of naacLHLT (Vol. 1, p. 2). https://shorturl.at/gyGMS

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv:1910.01108. https://doi.org/10.48550/arXiv.1910.01108

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V.

(2019). Roberta: A robustly optimized bert pretraining approach. arXiv:1907.11692. https://doi.org/10.48550/arXiv.1907.11692

Papapicco, C., Lamanna, I., & D’Errico, F. (2022). Adolescents’ vulnerability to fake news and to racial hoaxes: a qualitative analysis on italian sample. Multimodal Technologies and Interaction, 6(3), 20. https://doi.org/10.3390/mti6030020

Arin, K. P., Mazrekaj, D., & Thum, M. (2023). Ability of detecting and willingness to share fake news. Scientific Reports, 13(1), 7298. https://doi.org/10.1038/s41598-023-34402-6

Peng, Y., Pei, C., Zheng, Y., Wang, J., Zhang, K., Zheng, Z., & Zhu, P. (2020). A cross-sectional survey of knowledge, attitude and practice associated with COVID-19 among undergraduate students in China. BMC public health, 20(1), 1-8. https://doi.org/10.1186/s12889-020-09392-z

Mehta, Y., Majumder, N., Gelbukh, A., & Cambria, E. (2020). Recent trends in deep learning based personality detection. Artificial Intelligence Review, 53, 2313-2339. https://doi.org/10.1007/s10462-019-09770-z

Shi, D., & Maydeu-Olivares, A. (2020). The effect of estimation methods on SEM fit indices. Educational and psychological measurement, 80(3), 421-445. https://doi.org/10.1177/0013164419885

Schreiber, J. B. (2022). Key processes and popular analyses in the SEM family of techniques. Contemporary Research Methods in Pharmacy and Health Services, 601-616. https://doi.org/10.1016/B978-0-323-91888-6.00023-5

Zyphur, M. J., Bonner, C. V., & Tay, L. (2023). Structural equation modeling in organizational research: The state of our science and some proposals for its future. Annual Review of Organizational Psychology and Organizational Behavior, 10, 495-517. https://doi.org/10.1146/annurev-orgpsych-041621-031401

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ...

& Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv:1910.13461. https://doi.org/10.48550/arXiv.1910.13461

Kang, H. L., Na, S. D., & Kim, M. N. (2021). A method for enhancing speech and warning signals based on parallel convolutional neural networks in a noisy environment. Technology and Health Care, 29(S1), 141-152. https://doi.org/10.3233/THC-218015

Cai, S., Han, D., Yin, X., Li, D., & Chang, C. C. (2022). A hybrid parallel deep learning model for efficient intrusion detection based on metric learning. Connection Science, 34(1), 551-577. https://doi.org/10.1080/09540091.2021.2024509

Song, Y. F., Zhang, Z., Shan, C., & Wang, L. (2020, October). Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition. In proceedings of the 28th ACM international conference on multimedia (pp.1625-1633). https://doi.org/10.1145/3394171.3413802

Singh, A., Sengupta, S., & Lakshminarayanan, V. (2020). Explainable deep learning models in medical image analysis. Journal of imaging, 6(6), 52. https://doi.org/10.3390/jimaging6060052

Ras, G., Xie, N., Van Gerven, M., & Doran, D. (2022). Explainable deep learning: A field guide for the uninitiated. Journal of Artificial Intelligence Research, 73, 329-396. https://doi.org/10.1613/jair.1.13200

Singh, N., Kaliyar, R. K., Vivekanand, T., Uthkarsh, K., Mishra, V., & Goswami, A. (2022). B-LIAR: A novel model for handling Multiclass Fake News data utilizing a Transformer Encoder Stack-based architecture. In 2022 1st International Conference on Informatics (ICI) (pp. 31-35). IEEE. https://doi.org/10.1109/ICI53355.2022.9786925

Nield, T. (2022). Essential Math for Data Science. ” O’Reilly Media, Inc.”. https://shorturl.at/ekvxH

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). Bertscore: Evaluating text generation with bert. arXiv:1904.09675. https://doi.org/10.48550/arXiv.1904.09675

Sellam, T., Das, D., & Parikh, A. P. (2020). BLEURT: Learning robust metrics for text generation. arXiv:2004.04696. https://doi.org/10.48550/arXiv.2004.04696

Zhou, M., Li, Z., Tan, B., Zeng, G., Yang, W., He, X., ... & Xie, P. (2021).

On the generation of medical dialogs for COVID-19. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 2: Short Papers). https://par.nsf.gov/servlets/purl/10345461

Yuan, W., Neubig, G., & Liu, P. (2021). Bartscore: Evaluating generated text as text generation. Advances in Neural Information Processing Systems, 34, 27263-27277. https://shorturl.at/adqX0

He, T., Zhang, J., Wang, T., Kumar, S., Cho, K., Glass, J., & Tsvetkov, Y.

(2022). On the blind spots of model-based evaluation metrics for text generation. arXiv:2212.10020. https://doi.org/10.48550/arXiv.2212.10020

Hunt, J. (2019). A beginners guide to Python 3 programming. Springer. https://doi.org/10.1007/978-3-030-20290-39

Petrelli, M. (2021). Introduction to Python in Earth Science Data Analysis: From Descriptive Statistics to Machine Learning. Springer Nature. https://doi.org/10.1007/978-3-030-78055-5

Bhattarai, B., Granmo, O. C., & Jiao, L. (2021). Explainable tsetlin machine framework for fake news detection with credibility score assessment. arXiv preprint arXiv:2105.09114. https://doi.org/10.48550/arXiv.2105.09114

Guo, M., Liu, L., Guo, M., Liu, S., & Xu, Z. (2023). Accurate Generated Text Detection Based on Deep Layer-wise Relevance Propagation. In 2023 IEEE 8th International Conference on Big Data Analytics (ICBDA) (pp. 215-223). IEEE. https://doi.org/10.1109/ICBDA57405.2023.10104941




DOI: https://doi.org/10.31449/inf.v48i4.5977

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.