Efficient Line-Based Visual Marker System Design with Occlusion Resilience
Abstract
Full Text:
PDFReferences
References
. Jayatilleke, L., Zhang, N. Landmark-based localization for unmanned aerial vehicles. IEEE International Systems Conference (SysCon), 2013, pp. 448–451. http://dx.doi.org/10.1109/SysCon.2013.6549921
. Romero-Ramire, F. J., Munoz-Salinas, R., Medina-Carnicer, R. Fractal Markers: a new approach for long-range marker pose estimation under occlusion. IEEE Access, (2019), 7, pp. 169908–169919. http://dx.doi.org/10.1109/ACCESS.2019.2951204
. Zhenglong, G., Qiang, F., & Quan, Q. Pose estimation for multicopters based on monocular vision and AprilTag, 37th Chinese Control Conference (CCC), 2018, pp. 4717–4722. http://dx.doi.org/10.23919/ChiCC.2018.8483685
. Hagbi, N., Bergig, O., El-Sana, J., & Billinghurst, M. Shape recognition and pose estimation for mobile augmented reality. IEEE Transactions on Visualization and Computer Graphics, 17(10), 2010, pp. 1369–1379. http://dx.doi.org/10.1109/TVCG.2010.241
. Sani, M. F., & Karimian, G. Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker and inertial sensors. International Conference on Computer and Drone Applications (IConDA), 2017, 102–107. http://dx.doi.org/10.1109/ICONDA.2017.8270408
. Sarmadi, H., Muñoz-Salinas, R., M. Álvaro, B., Luna, A., Medina-Carnicer, R. 3D Reconstruction and alignment by consumer RGB-D sensors and fiducial planar markers for patient positioning in radiation therapy, Computer Methods and Programs in Biomedicine,Volume 180,2019,105004, https://doi.org/10.1016/j.cmpb.2019.105004
. Olson, E. AprilTag: A robust and flexible visual fiducial system. IEEE International Conference on Robotics and Automation, (2011), pp. 3400–3407. (2011) http://dx.doi.org/10.1109/ICRA.2011.5979561
. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., & Marín-Jiménez, M. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47, 2280–2292. (2014). http://dx.doi.org/10.1016/j.patcog.2014.01.005
. Rhijn, A., Jurriaan, M. Optical Tracking using Line Pencil Fiducials. (2004), 10.2312/EGVE/EGVE04/035-044.
. Chahir, Y., Mostefai, M., & Saidat, H. New Efficient Visual OILU Marker, The 25th International Conference on Image Processing Computer Vision, & Pattern Recognition (IPCV 2021), Book of Abstracts, 138, ISBN # 1-60132-514-2, (2021).
. Adalsteinsson, D., Sethian, J. A Fast Level Set Method For Propagating Interfaces, Comp Phys., (1995), Vol. 118, pp. 269-277. doi:10.1006/jcph.1995.1098
. Kato, H., & Billinghurst, M. Marker tracking and hmd calibration for a video-based augmented reality conferencing system. Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99),(1999), pp. 85–94. http://dx.doi.org/10.1109/IWAR.1999.803809
. Fiala, M. ARTag, a fiducial marker system using digital techniques. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), (2005), pp. 590–596. http://dx.doi.org/10.1109/CVPR.2005.74
. Fiala, M. Comparing ARTag and ARToolkit Plus fiducial marker systems. IEEE International Workshop on Haptic Audio Visual Environments and Their Applications, (2005). 6--pp. http://dx.doi.org/10.1109/HAVE.2005.1545669
. Yu, G., & Hu, Y., & Dai, J. TopoTag: A Robust and Scalable Topological Fiducial Marker System. IEEE Transactions on Visualization and Computer Graphics. (2020). http://dx.doi.org/10.48550/arXiv.1908.01450
. DeGol, J., Bretl, T., & Hoiem, D. Chromatag: A colored marker and fast detection algorithm. Proceedings of the IEEE International Conference on Computer Vision, (2017), pp. 1472–1481. https://doi.org/10.1109/ICCV.2017.16
. Calvet, L., Gurdjos, P., Griwodz, C., Gasparini, S. Detection and accurate localization of circular fiducials under highly challenging conditions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 562–570. http://dx.doi.org/10.1109/CVPR.2016.67
. Bergamasco, F., Albarelli, A., Torsello, A. Pi-tag: a fast image-space marker design based on projective invariants. Machine vision and applications, (2013), 24(6):1295–1310. http://dx.doi.org/10.1007/s00138-012-0469-6
. Bergamasco, F., Albarelli, A., Rodolà, E., Torsello, A. RUNE-Tag: A high accuracy fiducial marker with strong occlusion resilience. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (2011), pp.113 - 120. http://dx.doi.org/10.1109/CVPR.2011.5995544
. Birdal, T., Dobryden, I., Ilic, S. X-Tag: A Fiducial Tag for Flexible and Accurate Bundle Adjustment. (2016), pp. 556-564. http://dx.doi.org/10.1109/3DV.2016.65
. Burak, B., Cihan, T., Cuneyt, A. STag: A stable fiducial marker system, Image and Vision Computing, Vol 89, 2019, pp.158-169. https://doi.org/10.1016/j.imavis.2019.06.007
. Shingo, K., Hashimoto, K. Homography Estimation Using Marker Projection Control: A Case of Calibration-Free Projection Mapping, IFAC-Papers On Line, Vol 56, Issue 2, 2023, pp. 2951-2956. http://dx.doi.org/10.1016/j.ifacol.2023.10.1418
. Gonzalez, R. C., Woods, R. E. Digital image processing. Pearson Education limited, 4th Edition. (2017). https://doi.org/10.1117/1.3115362
. Suzuki, S., Be, K. , Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1), (1985), 32–46. https://doi.org/10.1016/0734-189X(85)90016-7
. Douglas, D. H., & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: International Journal for Geographic Information and Geovisualization, 10(2), (1973), pp. 112–122. http://dx.doi.org/10.3138/FM57-6770-U75U-7727
. Li, Y., Zhu, S., Yu, Y., & Wang, Z. An improved graph-based visual localization system for indoor mobile robot using newly designed markers. International Journal of Advanced Robotic Systems, 15(2), (2018). https://doi.org/10.1177/1729881418769191
. Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), (1979), pp. 62–66. http://dx.doi.org/10.1109/21.35351
. Xuancen, L., Shifeng, Z., Jiayi, T., Longbin, L. An Onboard Vision-Based System for Autonomous Landing of a Low-Cost Quadrotor on a Novel Landing Pad, Sensors, (2019), 19, 4703. https://doi.org/10.3390/s19214703
. Acuna, R., Willert, V. Dynamic Markers: UAV Landing Proof of Concept, (2018) Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR), Workshop on Robotics in Education (WRE), Joao Pessoa, (2018), pp. 496-502. http://dx.doi.org/10.48550/arXiv.1709.04981
. Hartley, R., Zisserman, A. Multiple View Geomerty in Computer Vision. Cambridge University Press, second edition, 2003. https://doi.org/10.1017/s0263574700223217
. Vasileios, L., Panagiotis Minaidis, P., Lentaris, G., Dimitrios, S. Accelerating AI and Computer Vision for Satellite Pose Estimation on the Intel Myriad X Embedded SoC, Microprocessors and Microsystems, Volume 103, (2023). https://doi.org/10.1016/j.micpro.2023.104947
. Tourani, A., Bavle, H., Sanchez-Lopez, J. L., Salinas, R. M., Voos, H. Marker-Based Visual SLAM Leveraging Hierarchical Representations," 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 3461-3467. https://doi.org/10.1109/iros55552.2023.10341891
DOI: https://doi.org/10.31449/inf.v49i1.7259

This work is licensed under a Creative Commons Attribution 3.0 License.