Self-Learning Model for Pattern Recognition in Vision System Based on Adaptive Kernel
Abstract
Full Text:
PDFReferences
] Aradea, A., Supriana, I., & Surendro, K. (2020). Self-adaptive model based on goal-oriented requirements engineering for handling service variability. Journal of Information and Communication Technology, 19(2), 225-250. doi.org/10.32890/jict2020.19.2.4
] Aradea, I. Supriana, and K. Surendro, (2023) “ARAS: Adaptation Requirements for Adaptive Systems,” Automated Software Engineering, vol. 30, no. 2, 2023, doi: 10.1007/s10515-022-00369-3.
] Danny Weyns, (2021) An Introduction to Self-Adaptive Systems - A Contemporary Software Engineering Perspective: Wave VII Learning from Experience, pp. 201-226, IEEE Press, John Wiley & Sons Ltd, 2021.
] Ali, Mollajan., AmirHossein, Shahdadi., Afshin, Ashofteh., Fatemeh, Hamedani-KarAzmoudehFar., Seyed, Hossein, Iranmanesh. (2023). System Adaptability Enhancement Based on Improving the System Reconfigurability by Modularization of the System Architecture. doi: 10.2139/ssrn.4519777.
] M. Bhadra, D. S. Lopera, R. Kunzelmann and W. Ecker, "A Model-Driven Architecture Approach to Accelerate Software Code Generation," 2024 7th International Conference on Software and System Engineering (ICoSSE), Paris, France, 2024, pp. 23-30, doi: 10.1109/ICoSSE62619.2024.00012.
] Mike Huisman, Jan N Van Rijn, and Aske Plaat(2021), A survey of deep meta-learning. Artificial Intelligence Review, 54(6):4483–4541.
] T. Gong, X. Zheng and X. Lu, "Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6510005, doi: 10.1109/LGRS.2022.3174277.
] P. Terhörst, M. Huber, N. Damer, F. Kirchbuchner, K. Raja and A. Kuijper, "Pixel-Level Face Image Quality Assessment for Explainable Face Recognition," in IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 5, no. 2, pp. 288-297, April 2023, doi: 10.1109/TBIOM.2023.3263186.
] S. Malakar, W. Chiracharit and K. Chamnongthai, "Masked Face Recognition With Generated Occluded Part Using Image Augmentation and CNN Maintaining Face Identity," in IEEE Access, vol. 12, pp. 126356-126375, 2024, doi: 10.1109/ACCESS.2024.3446652.
] H. -I. Kim, K. Yun and Y. M. Ro, "Face Shape-Guided Deep Feature Alignment for Face Recognition Robust to Face Misalignment," in IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 4, pp. 556-569, Oct. 2022, doi: 10.1109/TBIOM.2022.3213845.
] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object Detection with YOLOv8,” arXiv Prepr., 2023, doi: 10.48550/arXiv.2305.09972.
] Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN COMPUT. SCI. 2, 420 (2021). https://doi.org/10.1007/s42979-021-00815-1
] C. Xu, "Applying MLP and CNN on Handwriting Images for Image Classification Task," 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Wuhan, China, 2022, pp. 830-835, doi: 10.1109/AEMCSE55572.2022.00167.
] Kurniasari, L., Setyanto, A., 2020, Sentiment Analysis using Recurrent Neural Network, Journal of Physics: Conference Series, Vol. 1471, Bukit Tinggi, 18 Oktober, doi: 10.1088/1742-6596/1471/1/012018.
] G. Priyadharshini and D. R. Judie Dolly, "Comparative Investigations on Tomato Leaf Disease Detection and Classification Using CNN, R-CNN, Fast R-CNN and Faster R-CNN," 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2023, pp. 1540-1545, doi: 10.1109/ICACCS57279.2023.10112860.
] Soydaner, D. (2020). A comparison of optimization algorithms for deep learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(13), 2052013.
] G. L. Sree and R. Baskar, "Performance Analysis of CNN Algorithm in Comparison with LR algorithm for Face Recognition in Smart-Lock," 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, Pune, India, 2024, pp. 1-5, doi: 10.1109/TQCEBT59414.2024.10545038.
] Kabir, H. M., Abdar, M., Jalali, S. M. J., Khosravi, A., Atiya, A. F., Nahavandi, S., & Srinivasan, D. (2020). Spinalnet: Deep neural network with gradual input. arXiv preprint arXiv:2007.03347.
] Aradea., Supriana, I., Surendro, K., & Darmawan, I. (2017). Integration of self-adaptation approach on requirements modeling. In T. Herawan, R. Ghazali, N. M. Nawi, & M. M. Deris (Eds.), Recent advances on soft computing and data mining (pp. 233–243). Springer International Publishing.
] Aradea, I. Supriana, K. Surendro, (2018) “Self-adaptive software modeling based on contextual requirements. Telecommunication, Computing, Electronics and Control 16(3): (2018) 1276-1288. http://dx.doi.org/10.12928/telkomnika.v16i0.7032.
] Aradea, Rianto, Husni Mubarok. (2021) "Inference Model for Self-Adaptive IoT Service Systems", International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021, DOI: 10.22266/ijies2021.0831.30
] Aradea, Rianto and Husni Mubarok, (2022) "Cultivating Service Knowledge Models for IoT-Based Systems Adaptability", Informatica, Vol. 46, No.5, 2022, doi: https://doi.org/10.31449/inf.v46i5.3874
] M. Acheli, D. Grigori and M. Weidlich, "Discovering and Analyzing Contextual Behavioral Patterns From Event Logs," in IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5708-5721, 1 Dec. 2022, doi: 10.1109/TKDE.2021.3077653.
] B. Yang, W. Wu, Y. Liu and H. Liu, "A Novel Sleep Stage Contextual Refinement Algorithm Leveraging Conditional Random Fields," in IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-13, 2022, Art no. 2505313, doi: 10.1109/TIM.2022.3154838.
] W. Zhao, S. Peng, J. Chen and R. Peng, "Contextual-Aware Land Cover Classification With U-Shaped Object Graph Neural Network," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6510705, doi: 10.1109/LGRS.2022.3177778.
DOI: https://doi.org/10.31449/inf.v49i14.7272

This work is licensed under a Creative Commons Attribution 3.0 License.