K-LSTM-ECM Model for Predicting Poverty Alleviation Impacts of Digital Financial Inclusion

Yichuan Li

Abstract


To evaluate the poverty alleviation effects of digital financial inclusion, this study proposes a comprehensive financial data analysis and prediction method by integrating K-means clustering, Long Short-Term Memory (LSTM) neural networks, and the Error Correction Model (ECM), collectively forming the K-LSTM-ECM model. The model first employs K-means clustering to group user data and uncover behavioral patterns of different user groups. Subsequently, LSTM is used to model and predict time-series data. Finally, the ECM is introduced to correct systematic errors and enhance prediction accuracy. The model was validated using diverse datasets, including World Bank Open Data, IMF economic indicators, and UNDP Human Development Reports. The results show that the error range of K-LSTM-ecm model is the lowest in mean square error, mean absolute error and root mean square error (e.g., mean square error is the lowest 1.44%), and the prediction precision rate reaches 91.23% on average. In terms of recall rate and false positive rate, K-LSTM-ecm model outperforms other models, with the highest recall rate reaching 94.45% and the lowest false positive rate reaching 2.08%. Through case studies, the prediction results of K-LSTM-ecm model for 2021 and 2022 are closer to the actual data, with poverty values of 0.212 and 0.181, respectively, and the prediction results of key indicators such as the proportion of subsistence population and rural disposable income are also better than other models. These findings verify the efficiency and reliability of the K-LSTM-ECM model in predicting the poverty alleviation effects of digital financial inclusion, providing robust data support for policymakers and the financial industry.


Full Text:

PDF

References


Bruckner B, Hubacek K, Shan Y, Zhong H, & Feng K. (2022). Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain, 5(4), 311-320. https://doi.org/10.1038/s41893-021-00842-z

Chen Z. (2022). Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm. JCCE, 1(3), 103-108. https://doi.org/10.47852/bonviewJCCE149145205514

Ghazal T M. (2021). Performances of K-means clustering algorithm with different distance metrics. Intell. Autom. Soft Comput, 30(2), 735-742. https://doi.org/10.32604/iasc.2021.019067

Hasan M M, Yajuan L, & Khan S. (2022). Promoting China’s inclusive finance through digital financial services. Glob. Bus. Rev, 23(4), 984-1006. https://doi.org/10.1177/0972150919895348

Kanchanawong P, & Calderwood D A. (2023). Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol, 24(2), 142-161. https://doi.org/10.1038/s41580-022-00531-5

Khera P, Ng S, Ogawa S, & Sahay R. (2022). Measuring digital financial inclusion in emerging market and developing economies: A new index. Asian Economic Policy Review, 17(2), 213-230. https://doi.org/10.1111/aepr.12377

Lees T, Buechel M, Anderson B, Slater L, Reece S, Coxon G, & Dadson S J. (2021). Benchmarking data-driven rainfall - runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrol Earth Syst Sci, 25(10), 5517-5534. https://doi.org/10.5194/hess-25-5517-2021

Biju A K V N, Thomas A S, Thasneem J. (2024) Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis. Quality & Quantity, 58(1): 849-878. https://doi.org/10.1007/s11135-023-01673-0

Barra S, Carta S M, Corriga A, Podda A S, Recupero D R. (2020) Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA Journal of Automatica Sinica, 7(3): 683-692. https://doi.org/10.1109/JAS.2020.1003132

Kurani A, Doshi P, Vakharia A, Shah M. (2023) A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1): 183-208. https://doi.org/10.1007/s40745-021-00344-x

Al Dulaimi J A A B, Muter K J, Younis N N. (2023) The use of data mining technology in financial forecasting of accounting profits: An applied study. International Journal Of Construction Supply Chain Management, 13(1): 37-49. https://doi.org/10.14424/ijcscm2023130103

Li J, & Li B. (2022). Digital inclusive finance and urban innovation: Evidence from China. Rev. Dev. Econ, 26(2), 1010-1034. https://doi.org/10.1111/rode.12846

Malladi C M, Soni R K, & Srinivasan S. (2021). Digital financial inclusion: Next frontiers - Challenges and opportunities. CSI Trans. ICT, 9(2), 127-134. https://doi.org/10.1007/s40012-021-00328-5

Polyzos S, Samitas A, & Spyridou A E. (2021). Tourism demand and the COVID-19 pandemic: An LSTM approach. Tour. Recreat. Res, 46(2), 175-187. https://doi.org/10.1080/02508281.2020.1777053

Priyadarshini I, & Cotton C. (2021). A novel LSTM-CNN-grid search-based deep neural network for sentiment analysis. J Supercomput, 77(12), 13911-13932. https://doi.org/10.1007/s11227-021-03838-w

Rastogi S, Sharma A, Panse C, & Bhimavarapu V M. (2021). Unified Payment Interface (UPI): A digital innovation and its impact on financial inclusion and economic development. Universal Journal of Accounting and Finance, 9(3), 518-530. https://doi.org/10.13189/ujaf.2021.090326

Shen S L, Atangana Njock P G, Zhou A, & Lyu H M. (2021). Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning. Acta Geotech, 16(1), 303-315. https://doi.org/10.1007/s11440-020-01005-8

Swathi T, Kasiviswanath N, & Rao A A. (2022). An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis. Appl. Intell, 52(12), 13675-13688. https://doi.org/10.1007/s10489-022-03175-2

Zhao C, Li X, Yan J. (2024) The effect of digital finance on Residents' happiness: the case of mobile payments in China. Electronic Commerce Research, 24(1): 69-104. https://doi.org/10.1007/s10660-022-09549-5

Ahmad M, Majeed A, Khan M A, Sohaib M, Shehzad K. (2021) Digital financial inclusion and economic growth: Provincial data analysis of China. China Economic Journal, 14(3): 291-310. https://doi.org/10.1080/17538963.2021.1882064

Xun Z, Guanghua W, Jiajia Z, Zongyue H. (2020) Digital economy, financial inclusion and inclusive growth. China Economist, 15(3): 92-105. https://doi.org/10.19602/j.chinaeconomist.2020.05.07

Kangwa D, Mwale J T, Shaikh J M. (2021) The social production of financial inclusion of generation Z in digital banking ecosystems. Australasian Accounting, Business and Finance Journal, 15(3): 95-118. http://dx.doi.org/10.14453/aabfj.v15i3.6

Panos G A, Wilson J O S. (2020) Financial literacy and responsible finance in the FinTech era: capabilities and challenges. The European Journal of Finance, 26(4-5): 297-301. https://doi.org/10.1080/1351847X.2020.1717569

Breidbach C F, Keating B W, Lim C. (2020) Fintech: research directions to explore the digital transformation of financial service systems. Journal of Service Theory and Practice, 30(1): 79-102. https://doi.org/10.1108/JSTP-08-2018-0185

Goyal K, Kumar S. (2021) Financial literacy: A systematic review and bibliometric analysis. International Journal of Consumer Studies, 45(1): 80-105. https://doi.org/10.1111/ijcs.12605

Kharisma D B. (2021) Urgency of financial technology (Fintech) laws in Indonesia. International Journal of Law and Management, 63(3): 320-331. https://doi.org/10.1108/IJLMA-08-2020-0233

Fields D. (2022) Automated landlord: Digital technologies and post-crisis financial accumulation. Environment and Planning A: Economy and Space, 54(1): 160-181. https://doi.org/10.1177/0308518X19846514

Niemand T, Rigtering J P C, Kallmünzer A, Kraus S, Maalaoui A. (2021) Digitalization in the financial industry: A contingency approach of entrepreneurial orientation and strategic vision on digitalization. European management journal, 39(3): 317-326. https://doi.org/10.1016/j.emj.2020.04.008

Luo S, Yimamu N, Li Y, Wu H, Irfan M, Hao Y. (2023) Digitalization and sustainable development: How could digital economy development improve green innovation in China? Business Strategy and the Environment, 32(4): 1847-1871. https://doi.org/10.1002/bse.3223

Wójcik D, Ioannou S. (2020) COVID‐19 and finance: market developments so far and potential impacts on the financial sector and centres. Tijdschrift voor economische en sociale geografie, 111(3): 387-400. https://doi.org/10.1111/tesg.12434




DOI: https://doi.org/10.31449/inf.v49i17.7621

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.