Parallelized Louvain-Based Community Detection and AntiBenford Subgraph Mining for Financial Fraud Detection in Transaction Networks
Abstract
Detection of financial fraud remains an issue of concern since there is always a dynamic nature in the illegal patterns of transactions that conceal themselves in massive banking systems. The paper is a hybrid system that integrates the use of the AntiBenford statistical deviation analysis and graph-based community detection to identify the most appropriate methods to identify suspicious behavior. A transaction network graph forms the basis of the approach. Monetary flows, or directed edges, exist between each entity, which are an account, bank or merchant. AntiBenford module identifies digit anomalies of transaction records, whereas the augmented Louvain community detection algorithm, which runs in parallel, identifies well-knit communities, which are indicative of money laundering or collusion. We evaluated the model using the IBM Transactions Anti Money Laundering (AML) dataset where we obtained an accuracy of 96.57 percent more than traditional machine learning, rule-based and statistical anomaly methods. The reliability and interpretability of the method are validated by ROC AUC and precision-recall analysis. Combining statistical anomaly assessing with graph mining, this paper provides a scalable, flexible remedy to network fraud.
Full Text:
PDFReferences
References
Somkunwar, R. K., Pimpalkar, A., Katakdound, K. M., Bhide, A. S., Chinchalkar, S. P., & Patil, Y. M., (2023). A Fraud Detection System in Financial Networks Using AntiBenford Subgraphs and Machine Learning Algorithms. In International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), Ballari, India, pp. 1-6. https://doi.org/10.1109/AIKIIE60097.2023.10390325.
Deckert, J., Myagkov, M., & Ordeshook, P., (2011). Benford's Law and the detection of election fraud. Political Analysis, 19(3), 245-268. https://doi.org/10.1093/pan/mpr014
Dyck, A., Morse, & A., Zingales, L., (2010). Who blows the whistle on corporate fraud?. The Journal of Finance, 65(6), 2213-2253. https://doi.org/10.1111/j.1540-6261.2010.01614.x
Ziming, Z., Zhaoxuan, L., Zhihao, Z., Jiongchi, Y., Zhuoxue, S., Xiaofei, X., Fan, Z., & Rui, Z., (2024). DDoS family: A novel perspective for massive types of DDoS attacks. Computers & Security, 138, 103663. https://doi.org/10.1016/j.cose.2023.103663
Yajing, L., Zhengya, S., & Wensheng Z., (2023). Improving fraud detection via hierarchical attention-based Graph Neural Network. Journal of Information Security and Applications, 72, 103399. https://doi.org/10.1016/j.jisa.2022.103399
Jianping, L., Yanpeng, C., Yinghui W., & Xiaoqian, Z., (2023). Tracking down financial statement fraud by analyzing the supplier-customer relationship network. Computers & Industrial Engineering, 178, 109118. https://doi.org/10.1016/j.cie.2023.109118
Xiaodong, Z., Jian, G., Xinchang, Z., & Guiqing, L., (2023). Attack scenario reconstruction via fusing heterogeneous threat intelligence. Computers & Security, 133, 103420. https://doi.org/10.1016/j.cose.2023.103420
Li, J., & Yang, D., (2023). Research on Financial Fraud Detection Models Integrating Multiple Relational Graphs. Systems, 11, 539. https://doi.org/10.3390/systems11110539
Lingfei, R., Ruimin, H., Dengshi, L., Yang, L., Junhang, W., Yilong, Z., & Wenyi, H., (2023). Dynamic graph neural network-based fraud detectors against collaborative fraudsters. Knowledge-Based Systems, 278, 110888. https://doi.org/10.1016/j.knosys.2023.110888
Chen, T., & Tsourakakis, C., (2022). AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Networks. KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2762 – 2770. https://doi.org/10.1145/3534678.3539100
Xiaobing, S., Wenjie, F., Shenghua, L., Yuyang, X., Siddharth, B., Bryan, H., Wenhan, W., & Xueqi, C., (2022). MonLAD: Money Laundering Agents Detection in Transaction Streams. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM '22). Association for Computing Machinery, New York, NY, USA, 976–986. https://doi.org/10.48550/arXiv.2201.10051
Gridley, J., & Seneviratne, O., (2022). Significant Digits: Using Large-Scale Blockchain Data to Predict Fraudulent Addresses. In IEEE International Conference on Big Data, Osaka, Japan, pp. 903-910. https://doi.org/10.1109/BigData55660.2022.10020971.
Shigang, W., Jianping, L., Xiaoqian, Z., & Mingxi, L. (2022). Analysis of financial fraud based on manager knowledge graph. Procedia Computer Science, 199, 773-779. https://doi.org/10.1016/j.procs.2022.01.096
Xuting, M., Hao, S., Xiaoqian, Z., & Jianping, L., (2022). Financial fraud detection using the related-party transaction knowledge graph. Procedia Computer Science, 199, pp. 733-740. https://doi.org/10.1016/j.procs.2022.01.091
Pourhabibi, T., Kok-Leong, O., Booi, H. K., & Yee, L. B., (2020). Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems, 133, 113303. https://doi.org/10.1016/j.dss.2020.113303
Kurshan, E., Shen, H., & Yu, H., (2020). Financial Crime & Fraud Detection Using Graph Computing: Application Considerations & Outlook. In Second International Conference on Transdisciplinary AI (TransAI), 125-130. https://doi.org/10.1109/TransAI49837.2020.00029.
Ganguli, R., Mehta, A., Debnath, N., Aljahdali, S., & Sen, S., (2020). An integrated framework for friend recommender system based on graph theoretic approach. In Gordon Lee and Ying Jin (editors). Proceedings of 35th International Conference on Computers and Their Applications, 69, pp 242-255. https://doi.org/10.29007/4bwn
Ozili, P., (2020). Advances and issues in fraud research: a commentary. Journal of Financial Crime, 27(1), 92-103. https://doi.org/10.1108/JFC-01-2019-0012
Wang, D. et al., (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, pp. 598-607. https://doi.org/10.1109/ICDM.2019.00070.
Bernaschi, M., Bisson, M., Mastrostefano, E., & Vella, F., (2018). Multilevel Parallelism for the Exploration of Large-Scale Graphs. In IEEE Transactions on Multi-Scale Computing Systems, 4, 3, pp. 204-216. https://doi.org/10.1109/TMSCS.2018.2797195.
Kiljan, S., Vranken, H., & Eekelen, M., (2018). Evaluation of transaction authentication methods for online banking. Future Generation Computer Systems, 80, pp. 430-447. https://doi.org/10.1016/j.future.2016.05.024
Nica, I., Delcea, C., & Chiriță, N., (2024). Mathematical Patterns in Fuzzy Logic and Artificial Intelligence for Financial Analysis: A Bibliometric Study. Mathematics. 12(5):782. https://doi.org/10.3390/math12050782
Askari, S., & Hussain, A., (2020). IFDTC4.5: Intuitionistic fuzzy logic based decision tree for E-transactional fraud detection. Journal of Information Security and Applications, 52, 102469. https://doi.org/10.1016/j.jisa.2020.102469
Chinchalkar, S.P., & Somkunwar, R.K., (2024). An innovative keylogger detection system using machine learning algorithms and dendritic cell algorithm. Revue d'Intelligence Artificielle, 38, 1, pp. 269-275. https://doi.org/10.18280/ria.380128
Pham, T., & Lee, S., (2017). Anomaly Detection in Bitcoin Network Using Unsupervised Learning Methods. https://doi.org/10.48550/arXiv.1611.03941
Kamble, N., & Mishra, N., (2024). Hybrid optimization enabled squeeze net for phishing attack detection. Computers & Security, 144, 103901. https://doi.org/10.1016/j.cose.2024.103901
Ngai, E.W.T., Yong, H., Wong, Y.H., Yijun, C., & Xin, S., (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50, 3, pp. 559-569. https://doi.org/10.1016/j.dss.2010.08.006
Panigrahi, S., Kundu, A., Sural, S., & Majumdar, A. (2009). Credit card fraud detection: a fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), pp. 354-363. https://doi.org/10.1016/j.inffus.2008.04.001
Saini, D. K. J. B., Shelke, N., Prajwalasimha, S. N., Pimpalkar, A., Kumar G. H., & Monish, L., (2025). Advanced Deep Learning for Real-Time Fraud Detection in Banking: Scalable and High-Accuracy Solutions, In Proceedings of the 6th International Conference for Emerging Technology (INCET), Belgaum, India, pp. 1-6. https://doi.org/10.1109/INCET64471.2025.11139964
Prajwalasimha, S. N., Saini, D. K. J. B., Shelke, N., Pimpalkar, A., Kumar G. H., & Shree P. H. R., (2025). Trustworthy and Interpretable AI for Robust Fraud Detection in Financial Transactions, In Proceedings of the 6th International Conference for Emerging Technology (INCET), Belgaum, India, pp. 1-6. https://doi.org/10.1109/INCET64471.2025.11140975.
Kumar G. H., Shelke, N., Pimpalkar, A., Saini, D. K. J. B., Prajwalasimha, S. N., & Dileep K., (2025). Zero Trust-Enabled Digital Twins for Real-Time Anomaly Detection in Industrial Cyber Physical Systems," In Proceedings of the Third International Conference on Networks, Multimedia and Information Technology (NMITCON), Bengaluru, India, pp. 1-6. https://doi.org/10.1109/NMITCON65824.2025.11188236
Hiwase, A., Pimpalkar, A., Dange, B., Thakre, N., Jaiswal, S., & Mankar, T. (2025). EBSSPA: Efficient Deep Learning Model for Enhancing Blockchain Scalability and Security Through Fusion Pattern Analysis. Acta Informatica Pragensia, 14 (3), pp. 316-339. https://doi.org/10.18267/j.aip.260
Alatrista-Salas, H., Hancco, J. F. A., & Espinoza-Villalobos L., (2025). Algorithms For Anomaly Detection on Time Series: A Use Case on Banking Data. Informatica. 49, 13, pp. 203–220. https://doi.org/10.31449/inf.v49i13.6243
Gupta, P., Arora, M., & Thakur H. K., (2025). Community Detection in Social Networks: A Deep Learning Approach Using Autoencoders. Informatica, 49, 5, pp. 195–212. https://doi.org/10.31449/inf.v49i5.7018
Lun, L., John, C., Doyle, W. W., & David, A., (2005). Towards a Theory of Scale-Free Graphs: Definition. Properties, and Implication, 2, 4.
Hanghang, T. & Christos, F., (2006). Center-piece subgraphs: problem definition and fast solutions. In Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos (Eds.). ACM, pp. 404-413. https://doi.org/10.1145/1150402.1150448
Berger, A., & Theodore P. H., (2011). A basic theory of Benford's Law. Probab Surveys, 8, 1 – 126. https://doi.org/10.1214/11-PS175
Pereira, A. G., & Kohlsdorf, T., (2023). Repeated evolution of similar phenotypes: Integrating comparative methods with developmental pathways. Genetics and Molecular Biology, 46, 1 suppl 2. https://doi.org/10.1590/1678-4685-GMB-2022-0384
Kanezashi H., & Suzumura, T., (2016). An incremental local-first community detection method for dynamic graphs. 2016 In Proceedings of the IEEE International Conference on Big Data (Big Data), Washington, DC, USA, pp. 3318-3325. https://doi.org/10.1109/BigData.2016.7840991
Erik A., Jovan B., Luc von N., Béni E., Andreea A., & Kubilay A., (2023). Realistic synthetic financial transactions for anti-money laundering models. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS '23). Curran Associates Inc., NY, USA, Article 1300, pp. 29851–29874. https://dl.acm.org/doi/10.5555/3666122.3667422
Cappi, C., Chapdelaine, C., Gardes, L., Jenn, E., Lefevre, B., Picard, S., & Soumarmon, T., (2021). Dataset Definition Standard (DDS). https://doi.org/10.48550/arXiv.2101.03020
DOI: https://doi.org/10.31449/inf.v498i4.8298
This work is licensed under a Creative Commons Attribution 3.0 License.








