Evaluating Centrality-Based Seed Node Strategies for Influence Diffusion in OSNs: A Study across SCC, WCC and Full Networks using SIR, LT and IC Diffusion Models
Abstract
This study investigates influence diffusion in online social networks (OSNs) through a comprehensive analysis of centrality measures and diffusion models using the Higgs Twitter dataset. We model OSNs as directed graphs, focusing on strongly connected components (SCCs) and weakly connected components (WCCs). Seven centrality measures (out-degree, in-degree, betweenness, closeness, eigenvector, PageRank, and Katz centrality) are calculated to identify key influential nodes. The top-ranked nodes are then subjected to influence diffusion simulations using three models: Linear Threshold (LT), Independent Cascade (IC), and Susceptible-Infected-Recovered (SIR) across three types of activity networks with different structural characteristics. Our findings reveal significant variations in centrality performance depending on network topology and diffusion dynamics. This methodology integrates structural network analysis with dynamic diffusion modeling to evaluate the effectiveness of influence spread. The experimental results show that out-degree and betweenness centralities are most effective for influence propagation, with the SIR model supporting sustained diffusion. The experimental results reveal that out-degree and betweenness centralities are the most effective measures for influence propagation, with out-degree being particularly impactful for initiating diffusion. The SIR model demonstrated superior efficacy for sustained influence spread, aligning more closely with real-world influence dynamics. Additionally, analyzing influence propagation within WCCs enables more computationally efficient identification of key influencers, without significant loss in accuracy. This work offers actionable insights for influence modeling and provides a practical methodology for selecting centrality measures tailored to specific diffusion scenarios. It explores the influence diffusion across different platforms, enabling researchers to assess and compare user impact by offering a detailed examination of network structures, key node significance and influence diffusion.
Full Text:
PDFReferences
Safari, R. M., Rahmani, A. M., & Alizadeh, S. H. (2019). User behavior mining on social media: a systematic literature review. Multimedia Tools and Applications,78(23),33747-33804. https://doi.org/10.1007/s11042-019-08046-6
Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., & Jia, W. (2018). Influence analysis in social networks: A survey. Journal of Network and Computer Applications,106,17-32. https://doi.org/10.1016/j.jnca.2018.01.005
Yan, Z., Zhou, X., Ren, J., Zhang, Q., & Du, R. (2023). Identifying underlying influential factors in information diffusion process on social media platform: A hybrid approach of data mining and time series regression. Information Processing & Management,60(5),103438. https://doi.org/10.1016/j.ipm.2023.103438
Shen, B., Guan, T., Ma, J., Yang, L., & Liu, Y. (2021). Social network research hotspots and trends in public health: A bibliometric and visual analysis. Public Healt in Practice, 2, 100155. https://doi.org/10.1016/j.puhip.2021.100155
Ni, P., Zhu, J., Gao, Y., & Wang, G. (2024). Minimizing the misinformation concern over social networks. Information Processing & Management, 61(1),103562. https://doi.org/10.1016/j.ipm.2023.103562
Zheng, H., Zhao, H., & Ahmadi, G. (2024). Towards improving community detection in complex networks using influential nodes. Journal of Complex Networks, 12(1),cnae001. https://doi.org/10.1093/comnet/cnae001
Wang, W., & Street, W. N. (2018). Modeling and maximizing influence diffusion in social networks for viral marketing. Applied network science, 3, 1-26. https://doi.org/10.1007/s41109-018-0062-7
Medjahed, F., Molina, E., & Tejada, J. (2025). Effectiveness of Centrality Measures for Competitive Influence Diffusion in Social Networks. Mathematics (2227-7390),13(2). https://doi.org/10.3390/math13020292
Meshcheryakova, N., & Shvydun, S. (2024). A comparative analysis of centrality measures in complex networks. Automation and Remote Control, 85(8), 685-695. https://doi.org/10.1134/S0005117924700127
Baabcha, H., Laifa, M., & Akhrouf, S. (2022). Social Influence Analysis in Online Social Networks for Viral Marketing: A Survey. In International Conference on Managing Business Through Web Analytics (pp. 143-166). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-06971-0_11
Sarkar, D., Kole, D. K., & Jana, P. (2016). Survey of influential nodes identification in online social networks. International Journal of Virtual Communities and Social Networking (IJVCSN), 8(4), 57-69. https://doi.org/ 10.4018/IJVCSN.2016100104
Singh, S. S., Singh, K., Kumar, A., Shakya, H. K., & Biswas, B. (2019). A survey on information diffusion models in social networks. In Advanced Informatics for Computing Research: Second International Conference, ICAICR 2018, Shimla, India, July 14–15, 2018, Revised Selected Papers, Part II 2 (pp. 426-439). Springer Singapore.
https://doi.org/10.1007/978-981-13-3140-4
Arrami, S., Oueslati, W., & Akaichi, J. (2018). Detection of opinion leaders in social networks: A survey. In Intelligent Interactive Multimedia Systems and Services 2017 10 (pp. 362-370). Springer International Publishing.
https://doi.org/10.1007/978-3-319-59480-4_36
Ribeiro, A. C., Azevedo, B., Oliveira e Sá, J., & Baptista, A. A. (2020). How to measure influence in social networks? In International Conference on Research Challenges in Information Science (pp. 38-57). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-50316-1_3
Singh, R. R. (2022). Centrality measures: a tool to identify key actors in social networks. Principles of Social Networking: The New Horizon and Emerging Challenges, 1-27.
https://doi.org/10.1007/978-981-16-3398-0_1
Yujie, Y. (2020). A survey on information diffusion in online social networks. In Proceedings of the 2020 European Symposium on Software Engineering (pp. 181-186). https://doi.org/10.1145/3393822.343232
Li, M., Wang, X., Gao, K., & Zhang, S. (2017). A Survey on Information Diffusion in Online Social Networks: Models and Methods. Information, 8(4), 118. https://doi.org/10.3390/info8040118
Khatri, I., Choudhry, A., Rao, A., Tyagi, A., Vishwakarma, D. K., & Prasad, M. (2023). Influence Maximization in social networks using discretized Harris’ Hawks Optimization algorithm. Applied Soft Computing, 149, 111037. https://doi.org/10.1016/j.asoc.2023.111037
Dhingra, S., Dodwad, P. S., & Madan, M. (2016). Finding strongly connected components in a social network graph. International Journal of Computer Applications, 136(7), 1-5. https://doi.org/10.5120/ijca201690848
Bonifazi, G., Buratti, C., Corradini, E., Marchetti, M., Parlapiano, F., Ursino, D., & Virgili, L. (2025). Defining, Detecting, and Characterizing Power Users in Threads. Big Data and Cognitive Computing, 9(3), 69. https://doi.org/10.3390/bdcc9030069
Puigbò, J. Y., Sánchez-Hernández, G., Casabayó, M., & Agell, N. (2014). Influencer detection approaches in social networks: A current state-of-the-art. In Artificial intelligence research and development (pp. 261-264). https://doi.org/10.3233/978-1-61499-452-7-261
Guzman, J. D., Deckro, R. F., Robbins, M. J., Morris, J. F., & Ballester, N. A. (2014). An analytical comparison of social network measures. IEEE Transactions on Computational Social Systems, 1(1), 35-45. https://doi.org/10.1109/TCSS.2014.2307451
Zafarani, R. (2014). Social Media Mining: An Introduction. Cambridge University Press. https://doi.org/10.1017/CBO9781139088510
Wang, Y., Zhang, L., Yang, J., Yan, M., & Li, H. (2024). Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks. Chaos, Solitons & Fractals, 180, 114485. https://doi.org/10.1016/j.chaos.2024.114485
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry https://doi.org/10.2307/3033543
Pereira, F. S., Gama, J., de Amo, S., & Oliveira, G. M. (2018). On analyzing user preference dynamics with temporal social networks. Machine Learning, 107, 1745-1773.
https://doi.org/10.1007/s10994-018-5740-2
Rashid, Y., & Bhat, J. I. (2024). Topological to deep learning era for identifying influencers in online social networks: a systematic review. Multimedia Tools and Applications, 83(5), 14671-14714. https://doi.org/10.1007/s11042-023-16002-8
Borgatti, S. P., & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social networks, 28(4), 466-484. https://doi.org/10.1016/j.socnet.2005.11.005
Duda, R. O., & Hart, P. E. (2006). Pattern classification. John Wiley & Sons
Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics reports, 650, 1-63. https://doi.org/10.1016/j.physrep.2016.06.007
Liao, H., Mariani, M. S., Medo, M., Zhang, Y. C., & Zhou, M. Y. (2017). Ranking in evolving complex networks. Physics Reports, 689, 1-54. https://doi.org/10.1016/j.physrep.2017.05.001
Wenji, C., Bo, Y., Ruigang, Z., Qiong, W., Binsha, Z., Zengbo, L., & Kai, N. (2022). Research on Key Node Identification Method of Transmission Network based on Improved PageRank Algorithm. In 2022 41st Chinese Control Conference (CCC) (pp. 5056-5061). IEEE. https://doi.org/10.23919/CCC55666.2022.9902364
Zhao, L., Sun, P., Zhang, J., Peng, M., Zhong, Y., & Liang, W. (2023). A complex network important node identification based on the KPDN method. Applied Sciences, 13(14), 8303. https://doi.org/10.3390/app13148303
Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137-146). https://doi.org/10.1145/956750.956769
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925. https://doi.org/10.1103/RevModPhys.87.925
Badr, N., Abdel-Kader, H., & Ali, A. H. (2021). Diffusion Models for Social Analysis, Influence and Learning. IJCI. International Journal of Computers and Information, 8(2), 162-169.
https://doi.org/ 10.21608/ijci.2021.207863
Tian, S., Mo, S., Wang, L., & Peng, Z. (2020). Deep reinforcement learning-based approach to tackle topic- aware influence maximization. Data Science and Engineering, 5, 1-11.
https://doi.org/10.1007/s41019-020-00117-1
Khalife, S., Read, J., & Vazirgiannis, M. (2021). Structure and influence in a global capital–ownership network. Applied Network Science, 6, 1-21.
https://doi.org/10.1007/s41109-021-00359-6
Ji, F., & Jin, J. (2025). A map-reduce algorithm to find strongly connected components of directed graphs. Soft Computing, 1-20. https://doi.org/10.1007/s00500-025-10451-z
Zhong, Z., Lin, L., Jiang, Z., Yuan, X., Ngai, E., Lam, J., & Kwok, K. W. (2025). Connectivity Determination Algorithm for Complex Directed Networks. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2025.3549777
Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2), 146-160. https://doi.org/10.1137/0201010
Tarjan, R. E., & Zwick, U. (2024). Finding strong components using depth-first search. European Journal of Combinatorics, 119, 103815. https://doi.org/10.1016/j.ejc.2023.103815
Sobhi, N. A. M. Detection of terminal strongly connected components using a novel DFS-like algorithm (Doctoral dissertation, Universiteit van Amsterdam).
Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of the 21st international conference on World Wide Web (pp. 519-528). https://doi.org/10.1145/2187836.2187907
Yanchenko, E., Murata, T., & Holme, P. (2024). Influence maximization on temporal networks: a review. Applied Network Science, 9(1), 16. https://doi.org/10.1007/s41109-024-00625-3
Yang, W., Shi, Q., Yan, J., Wang, C., Song, M., & Wu, M. (2024). Complementary influence maximization under comparative linear threshold model. Expert Systems with Applications, 238, 121826. https://doi.org/10.1016/j.eswa.2023.121826
Jaouadi, M., & Romdhane, L. B. (2024). A survey on influence maximization models. Expert Systems with Applications, 248, 123429. https://doi.org/10.1016/j.eswa.2024.123429
Monserrat, T. J. K. P., Pabico, J. P., & Albacea, E. A. (2015). A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs. arXiv preprint arXiv:1507.02766. https://doi.org/10.48550/arXiv.1507.02766
Veerman, J. J. P., & Kummel, E. (2019). Diffusion and consensus on weakly connected directed graphs. Linear Algebra and its Applications, 578, 184-206.
https://doi.org/10.1016/j.laa.2019.05.014
Tang, L., Zhou, Y., Wang, L., Purkayastha, S., Zhang, L., He, J., ... & Song, P. X. K. (2020). A review of multi‐compartment infectious disease models. International Statistical Review, 88(2), 462-513. https://doi.org/10.1111/insr.12402
Bhat, N., Aggarwal, N., & Kumar, S. (2020). Identification of influential spreaders in social networks using improved hybrid rank method. Procedia Computer Science, 171, 662-671. https://doi.org/10.1016/j.procs.2020.04.072
Zhao, X., Liu, F. A., Wang, J., & Li, T. (2017). Evaluating influential nodes in social networks by local centrality with a coefficient. ISPRS International Journal of Geo-Information, 6(2), 35. https://doi.org/10.3390/ijgi6020035
Talukder, A., Alam, M. G. R., Tran, N. H., Niyato, D., Park, G. H., & Hong, C. S. (2019). Threshold estimation models for linear threshold-based influential user mining in social networks. IEEE Access,7,105441-105461. https://doi.org/10.1109/ACCESS.2019.2931925
Ishfaq, U., Khan, H. U., & Iqbal, S. (2022). Identifying the influential nodes in complex social networks using centrality-based approach. Journal of King Saud University-Computer and Information Sciences, 34(10), 9376-9392. https://doi.org/10.1016/j.jksuci.2022.09.016
Şimşek, A. (2022). Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model. Journal of King Saud University-Computer and Information Sciences, 34(8), 4810-4820.
https://doi.org/10.1016/j.jksuci.2021.06.010
Waniek, M., Michalak, T. P., Wooldridge, M. J., & Rahwan, T. (2018). Hiding individuals and communities in a social network. Nature Human Behaviour, 2(2), 139-147.
https://doi.org/10.1038/s41562-017-0290-3
Ghalmane, Z., El Hassouni, M., & Cherifi, H. (2018, October). Betweenness centrality for networks with non-overlapping community structure. In 2018 IEEE workshop on complexity in engineering (COMPENG) (pp.1-5).IEEE. https://doi.org/10.1109/CompEng.2018.8536229
Doostmohammadian, M., Rabiee, H. R., & Khan, U. A. (2020). Centrality-based epidemic control in complex social networks. Social Network Analysis and Mining, 10, 1-11.
https://doi.org/10.1007/s13278-020-00638-7
More, J. S., & Lingam, C. (2019). A gradient-based methodology for optimizing time for influence diffusion in social networks. Social Network Analysis and Mining, 9(1), 5.
https://doi.org/10.1007/s13278-018-0548-4
Shelke, S., & Attar, V. (2019). Source detection of rumor in social network–a review. Online Social Networks and Media, 9, 30-42.
https://doi.org/10.1016/j.osnem.2018.12.001
DOI: https://doi.org/10.31449/inf.v49i22.9193
This work is licensed under a Creative Commons Attribution 3.0 License.








