Individual Classification: an Ontological Fuzzy Based Approach

Asma Djellal, Zizette Boufaida

Abstract


Recently, serval reasoners for very expressive fuzzy Description Logics have been implemented. However, in some cases, applications do not require all the reasoner services and would benefit from the efficiency of just certain reasoning tasks. To this scope, we are interested in the individual fuzzy classification issue. In fact, decision-making applications for real world domain is often based on classifying new situations into fuzzy categories. Therefore, we propose Fuzzy Realizer to offer an effective classification even with imprecise/vague or incomplete knowledge so that appropriate decision can be made. Fuzzy Realizer is a Java prototype implementation for realizing fuzzy ontologies. It supports the well-known fuzzy description logic Z SHOIN (D). It allows (i) fuzzy concrete domains, (ii) modified and (iii) weighted concepts. It is able to (i) classify new individuals, even with incomplete descriptions, (ii) provide a more human-oriented classification by hiding the crisp boundaries between different fuzzy categories and (iii) to populate fuzzy ontologies which address an aspect of fuzzy ontologies evolution, a topic which is rarely discussed.



Full Text:

PDF

References


Alexopoulos, P., Wallace, M., Kafentzis, K. & Askounis, D. (2012) 'IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones', Knowledge and Information Systems, Vol. 32 No. 3, pp. 667-695.

Bobillo, F., Delgado, M. & Gómez-Romero, J. (2013) 'Reasoning in Fuzzy OWL 2 with DeLorean'. In Bobillo, F. et al. (Eds.), Uncertainty Reasoning for the Semantic Web II, Vol. 7123 of Lecture Notes in Computer Science, Springer-Verlag, pp. 119-138.

Bobillo, F. & Straccia, U. (2008) 'fuzzyDL: an expressive fuzzy description logic reasoner'. In Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), IEEE Computer Society Press, pp. 923-930.

Bobillo, F. & Straccia, U. (2011) Fuzzy ontology representation using OWL 2. International Journal of Approximate Reasoning, Vol. 52 No. 7, pp. 1073-1094.

Bobillo, F. & Straccia, U.(2013) General concept inclusion absorptions for fuzzy description logics: A _rst step. In Description Logics. pp. 513-525.

Bobillo, F., & Straccia, U. (2016). The fuzzy ontology reasoner fuzzyDL. Knowledge-Based Systems, 95, 12-34.

Calegari, S. & Ciucci, D. (2007) 'Fuzzy ontology, fuzzy description logics and fuzzy-owl'. In Proceedings of the 7th International Workshop on Fuzzy Logic and Applications (WILF 2007), volume 4578 of Lecture Notes in Computer Science, Springer Verlag, pp. 118–126.

Djellal,A. & Boufaida, Z. (2012)'Conceptualisation d’une Ontologie Floue'.In Proceedings of 9eme Colloque sur l’Optimisation et les Systèmes d'Information, Tlemcen, Algeria, pp. 62-73.

Djellal,A. & Boufaida, Z. (2014) 'Fuzzy ontology evolution: classification of a new individual', Journal of Emerging Technologies in Web Intelligence, Vol. 6 No.1, pp. 9-14.

Djellal,A. & Boufaida, Z. (2016) 'Individual Relocation: a Fuzzy Classification Based Approach', Accepted paper to the 6th International Conference on Model and Data Engineering, Almeria, Spain.

Djezzar, M., Hemam, M. & Boufaida, Z. (2012) 'Ontological re-classification of individuals: a multi-viewpoints approach'. In Proceedings of the 2nd international conference on Model and Data Engineering. LNCS 7602 Springer, pp. 91-102, Poitiers, France.

Ferrara, A., Ludovico, L.A., Montanelli, S., Castano, S. & Haus, G. (2006) 'A semantic web ontology for context-based classification and retrieval of music resources', ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), Vol. 2 No. 3, pp. 177-198.

Gao, M. & Liu, C. (2005) 'Extending OWL by fuzzy description logic'. In Proceedings of 17th IEEE International Conference on Tools with Artificial Intelligence: (ICTAI 05), IEEE Computer Society, pp. 562-567.

Ghorbel, H., Bahri, A. & Bouaziz, R. (2009) 'Fuzzy Protégé for fuzzy ontology models'. In Proceedings of 11th International Protégé Conference (IPC’2009), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

Hecham, A. & Iaiche, I. E. (2015) 'Système de classification et de visualisation d'instances dans une ontologie floue'. Masters thesis, Constantine 2- Abdelhamid Mehri University, Constantine, Algeria.

Kaufmann, M., & Meier, A. (2009, June). An inductive fuzzy classification approach applied to individual marketing. In Fuzzy Information Processing Society. NAFIPS 2009. Annual Meeting of the North American (pp. 1-6). IEEE.

Mariño, O. (1993) 'Raisonnement classificatoire dans une représentation à objets multi-points de vue'. PhD thesis, Joseph-Fourier-Grenoble I University, France.

Meier, A., Schindler, G. & Werro, N. (2008) 'Fuzzy classification on relational databases'. In J. Galindo (Ed.), Handbook of Research on Fuzzy Information Processing in Databases, Vol. 2, Idea Group Publishing, Hershey, PA, pp. 586-614.

Palash, D., Hrishikesh, B. & Tazid, A. (2011). 'Fuzzy arithmetic with and without using α-cut method: a comparative study'. In International Journal of Latest Trends in Computing, Vol. 2 No. 1, pp. 99-107.

Pérez, I. J., Wikström, R., Mezei, J., Carlsson, C., & Herrera-Viedma, E. (2013). A new consensus model for group decision making using fuzzy ontology. Soft Computing, 17(9), 1617-1627.

Rodríguez, N. D., Cuéllar, M. P., Lilius, J., & Calvo-Flores, M. D. (2014). A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowledge-Based Systems, 66, 46-60.

Scharrenbach, T. & Bernstein, A. (2009) 'On the evolution of ontologies using probabilistic description logics'. In Proceedings of the First ESWC Workshop on Inductive Reasoning and Machine Learning on the Semantic Web.

Simou, N., Mailis, T.P., Stoilos, G., Stamou, G.B. (2010) Optimization techniques for fuzzy description logics. In Description Logics

Stoilos, G., Simou, N., Stamou, G. & Kollias, S. (2006) 'Uncertainty and the semantic web: intelligent systems', IEEE Intelligent Systems, Vol. 21 No. 5, pp. 84-87.

Stoilos, G., Stamou, G. & Pan, J.Z. (2010). 'Fuzzy extensions of OWL: logical properties and reduction to fuzzy description logics', International Journal of Approximate Reasoning, Vol. 51 No. 6, pp. 656-679.

Straccia, U. (2001) 'Reasoning within fuzzy description logics', Journal of Artificial Intelligent Research (JAIR), Vol. 14, pp. 137-166.

Straccia, U. (2012) 'Description Logics with Fuzzy Concrete Domains'. arXiv preprint arXiv:1207.1410.

Straccia, U. (2013). Foundations of Fuzzy Logic and Semantic Web Languages. CRC Press.

Straccia, U. (2015). 'All About Fuzzy Description Logics and Applications'. In Reasoning Web. Web Logic Rules. Springer International Publishing pp. 1-31.

Tsatsou, D., Dasiopoulou, S., Kompatsiaris, I., & Mezaris, V. (2014). LiFR: A Lightweight Fuzzy DL Reasoner. In The Semantic Web: ESWC 2014 Satellite Events (pp. 263-267). Springer International Publishing.

Werro, N. (2015). Fuzzy classification of online customers. Springer. ISBN : 3319159690 9783319159690

Zablith, F., Antoniou, G., d'Aquin, M., Flouris, G., Kondylakis, H., Motta, E., ... & Sabou, M. (2015). Ontology evolution: a process-centric survey. The Knowledge Engineering Review, 30(01), 45-75.

Zadeh, L.A. (1965) 'Fuzzy sets', Information and Control, Vol. 8 No. 3, pp. 338-353. doi:10.1016/S0019-9958(65)90241-X.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.