Mining Multi-Dimensional Intra and Inter-Association Patterns of Call Records for Targeted Advertising using Multi-Granulation Rough Sets
Abstract
Full Text:
PDFReferences
S. Sumathi and S. N. Sivanandam, Introduction to data mining and its applications. Berlin ; [London] : Springer, 2006.
J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000.
J. Pei, J. Han, M. B. Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, “PrefixSpan Mining Sequential Patterns Efficiently by Prefix Projected Pattern Growth,” in Proc.17th Int’l Conf. on Data Eng., 2001, pp. 215–226.
H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal, “Multi-dimensional sequential pattern mining,” Conf. Inf. Knowl. Manag., p. 81, 2001.
J. Pei, J. Han, M. B. Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, “PrefixSpan Mining Sequential Patterns Efficiently by Prefix Projected Pattern Growth,” in Proc.17th Int’l Conf. on Data Eng., 2001, pp. 215–226.
M. Gupta and J. Han, “Approaches for Pattern Discovery Using Sequential Data Mining,” Pattern Discov. Using Seq. Data …, no. c, pp. 1–20, 2012.
V. Boonjing and P. Songram, “Efficient algorithms for mining closed multidimensional sequential patterns,” Proc. - Fourth Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2007, vol. 2, no. Fskd, pp. 749–753, 2007.
S. Systems and C. Science, “Closed multidimensional sequential pattern mining Panida Songram * and Veera Boonjing,” vol. 2, no. 4, pp. 460–479, 2008.
L. Feng, T. Dillon, and J. Liu, “Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meteorological data,” Data Knowl. Eng., vol. 37, no. 1, pp. 85–115, 2001.
Q. Li, L. Feng, and A. Wong, “From intra-transaction to generalized inter-transaction: Landscaping multidimensional contexts in association rule mining,” Inf. Sci. (Ny)., vol. 172, no. 3, pp. 361–395, 2005.
W. Hämäläinen, “Assessing the statistical significance of association rules,” arXiv Prepr. arXiv1405.1360, 2014.
J. Yang, Xi-bei; Qian, Yu-hua; Yang, “Hierarchical Structures on Multigranulation Spaces,” J. Comput. Sci. Technol., vol. Vol. 27, no. 6, pp. 1169–1183, 2012.
Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data. Norwell, MA, USA: Kluwer Academic Publishers, 1992.
Z. Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–356, 1982.
Z. Pawlak, “Data Mining { a Rough Set Perspective,” pp. 3–12, 1999.
G. M. Weiss, “Data Mining in Telecommunications,” in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA: Springer US, 2005, pp. 1189–1201.
T.-R. Qiu, Q. Liu, and H.-K. Huang, “A Granular Computing Approach to Knowledge Discovery in Relational Databases,” Acta Autom. Sin., vol. 35, no. 8, pp. 1071–1079, 2009.
Y. Yao and Y. She, “Rough set models in multigranulation spaces,” Inf. Sci. (Ny)., vol. 327, pp. 40–56, 2016.
Y. Qian, J. Liang, Y. Yao, and C. Dang, “MGRS: A Multi-granulation Rough Set,” Inf. Sci., vol. 180, no. 6, pp. 949–970, Mar. 2010.
X. Wu, C. Zhang, and S. Zhang, “Efficient Mining of Both Positive and Negative Association Rules,” ACM Trans. Inf. Syst., vol. 22, no. 3, pp. 381–405, Jul. 2004.
P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.
R. a Becker, R. Cáceres, K. Hanson, J. M. Loh, S. Urbanek, A. Varshavsky, and C. Volinsky, “Clustering Anonymized Mobile Call Detail Records to Find Usage Groups,” 1st Work. Pervasive Urban Appl., 2011.
A. Bascacov, C. Cernazanu, and M. Marcu, “Using data mining for mobile communication clustering and characterization,” in Applied Computational Intelligence and Informatics (SACI), 2013 IEEE 8th International Symposium on, 2013, pp. 41–46.
DOI: https://doi.org/10.31449/inf.v43i3.2161
This work is licensed under a Creative Commons Attribution 3.0 License.