Creation of Facial Composites from User Selections using Image Gradient
Abstract
Full Text:
PDFReferences
Davies, G., van der Willik, P., & Morrison, L. J. (2000). Facial composite production: A comparison of mechanical and computer-driven systems. Journal of Applied Psychology, 85(1), 119. https://doi.org/10.1037/0021-9010.85.1.119
Frowd, C. D., McQuiston-Surrett, D., Anandaciva, S., Ireland, C. G., & Hancock, P. J. (2007). An evaluation of US systems for facial composite production. Ergonomics, 50(12), 1987-1998. https://doi.org/10.1080/00140130701523611
Hancock, P. J. (2000). Evolving faces from principal components. Behavior Research Methods, Instruments, & Computers, 32(2), 327-333. https://doi.org/10.3758/bf03207802
Solomon, C. J., Gibson, S. J., & Mist, J. J. (2013). Interactive evolutionary generation of facial composites for locating suspects in criminal investigations. Applied Soft Computing, 13(7), 3298-3306. https://doi.org/10.1016/j.asoc.2013.02.010
Tredoux, C., Nunez, D., Oxtoby, O., & Prag, B. (2006). An evaluation of ID: An eigenface based construction system. South African Computer Journal, 37, 90-97.
Kurt, B., Etaner-Uyar, A. S., Akbal, T., Demir, N., Kanlikilicer, A. E., Kus, M. C., & Ulu, F. H. (2006). Active appearance model-based facial composite generation with interactive natureinspired heuristics. International Workshop on Multimedia Content Representation, Classification and Security, 2006. pp. 183-190. https://doi.org/10.1007/11848035_26
Frowd, C. D., Hancock, P. J., & Carson, D. (2004). EvoFIT: A holistic, evolutionary facial imaging technique for creating composites. ACM Transactions on Applied Perception, 1(1), 19-39. https://doi.org/10.1145/1008722.1008725
Frowd, C. D., Pitchford, M., Bruce, V., Jackson, S., Hepton, G., Greenall, M., ... & Hancock, P. J. (2011). The psychology of face construction: Giving evolution a helping hand. Applied Cognitive Psychology, 25(2), 195-203. https://doi.org/10.1002/acp.1662
Frowd, C. D., Skelton, F., Atherton, C., Pitchford, M., Hepton, G., Holden, L., ... & Hancock, P. J. (2012). Recovering faces from memory: the distracting influence of external facial features. Journal of Experimental Psychology: Applied, 18(2), 224. https://doi.org/10.1037/a0027393
Frowd, C. D., Pitchford, M., Skelton, F., Petkovic, A., Prosser, C., & Coates, B. (2012). Catching even more offenders with EvoFIT facial composites. IEEE Third International Conference on Emerging Security Technologies (EST), 2012. pp. 20-26 https://doi.org/10.1109/est.2012.26
Ellis, H. D., Shepherd, J. W., & Davies, G. M. (1979). Identification of familiar and unfamiliar faces from internal and external features: Some implications for theories of face recognition. Perception, 8(4), 431-439. https://doi.org/10.1068/p080431
Frowd, C., Bruce, V., McIntyre, A., & Hancock, P. (2007). The relative importance of external and internal features of facial composites. British Journal of Psychology, 98(1), 61-77. https://doi.org/10.1348/000712606x104481
Frowd, C., Park, J., McIntyre, A., Bruce, V., Pitchford, M., Fields, S., Kenirons, M. & Hancock, P. J. (2008). Effecting an improvement to the fitness function. How to evolve a more identifiable face. IEEE ECSIS Symposium on Bio-inspired Learning and Intelligent Systems for Security (BLISS'08), 2008. pp. 3-10. https://doi.org/10.1109/bliss.2008.28
Hancock, P. J., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4(9), 330-337. https://doi.org/10.1016/s1364-6613(00)01519-9
Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face recognition. Memory & Cognition, 25(5), 583-592. https://doi.org/10.3758/bf03211301
Frowd, C. D., Bruce, V., Plenderleith, Y., & Hancock, P. J. B. (2006). Improving target identification using pairs of composite faces constructed by the same person. IET Conference on Crime and Security, 2006. pp. 390-395. https://doi.org/10.1049/ic:20060341
Little, A. C., & Hancock, P. J. (2002). The role of masculinity and distinctiveness in judgments of human male facial attractiveness. British Journal of Psychology, 93(4), 451-464. https://doi.org/10.1348/000712602761381349
Kemp, R., Pike, G., White, P., & Musselman, A. (1996). Perception and recognition of normal and negative faces: The role of shape from shading and pigmentation cues. Perception, 25(1), 37-52. https://doi.org/10.1068/p250037
Yip, A. W., & Sinha, P. (2002). Contribution of color to face recognition. Perception, 31(8), 995- 1003. https://doi.org/10.1068/p3376
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71-86.
Craw, I., & Cameron, P. (1991). Parameterising images for recognition and reconstruction. British Machine Vision Conference. Springer London. pp. 367-370. https://doi.org/10.5244/c.5.52
Hancock, P. J., Burton, A. M., & Bruce, V. (1996). Face processing: Human perception and principal components analysis. Memory & Cognition, 24(1), 26-40. https://doi.org/10.3758/bf03197270
Bruce, V., Hanna, E., Dench, N., Healey, P., & Burton, M. (1992). The importance of ‘mass’ in line drawings of faces. Applied Cognitive Psychology, 6(7), 619-628. https://doi.org/10.1002/acp.2350060705
O'Toole, A. J., Vetter, T., Blanz, V. (1999) Threedimensional shape and two-dimensional surface reflectance contributions to face recognition: An application of three-dimensional morphing. Vision Research, 39, 3145-3155. https://doi.org/10.1016/s0042-6989(99)00034-6
Sinha, P., Balas, B. J., Ostrovsky, Y. & Russell, R. (2006). Face recognition by humans. In Zhao, W. and Chellappa, R. (Eds.), Face processing: Advanced modeling and methods, Amsterdam: Elsevier/Academic Press, 257-292
Shah, M. (1997). Fundamentals of computer vision (Unpublished manuscript). University of Central Florida.
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679-698. https://doi.org/10.1109/tpami.1986.4767851
Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. ACM Transactions on Graphics, 22(3), 313-318. https://doi.org/10.1145/882262.882269
Garcia-Zurdo, R. (2016). Evolutive gradient face compositing using the Poisson equation. Perception, 45(2), 25-26.
Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. Behavior Research Methods, 42(1), 286-291. https://doi.org/10.3758/brm.42.1.286
Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. IEEE Conference on Computer Vision and Pattern Recognition, 2014. pp. 1867-1874. https://doi.org/10.1109/cvpr.2014.241
Liu, J., Mei, K., Ge, C., & Zheng, N. (2011). Interactive Poisson photometric propagation for facial composite. 1st International Symposium on Access Spaces (ISAS), 2011, pp. 121-126. https://doi.org/10.1109/isas.2011.5960932
Riviere, M., Teytaud, O., Rapin, J., LeCun, Y. and Couprie, C. (2019). Inspirational adversarial image generation. arXiv:1906.11661.
Appendix. Gradient integration by solving Poisson’s equation
DOI: https://doi.org/10.31449/inf.v44i1.2340
This work is licensed under a Creative Commons Attribution 3.0 License.