A New Hybrid LGPMBWM-PIV Method for Automotive Material Selection

Saif Wakeel, Sedat Bingol, Shafi Ahmad, M. Nasir Bashir, Mir Seyed Mohammad Mohsen Emamat, Zhou Ding, Fayaz Hussain

Abstract


Efforts are continuously being made by researchers to improve fuel efficiency and to reduce CO2 emissions from the passenger cars. To achieve these goal, recent trend is to make the cars components light in weight for which manufacturing car roofs using natural fiber reinforced composites (NFCs) is one of the method. Several natural fibers (NFs)are available as alternative reinforcements for the fabrication of NFCs. Different NFs possess different properties and therefore, it is necessary to select the most appropriate natural fiber for fabrication of the composites which in turn will lead to the desired performance of the vehicle. Selection of the optimal natural fiber, amongst the several alternatives, is basically a multi criteria decision making (MCDM) problem as selection is based on the evaluation of several conflicting criteria. In this study, twelve alternative natural fibers (Flax, Hemp, Jute, Kenaf, Ramie, Okra, PALF, Coir, Isora, Cotton, Banana and Sisal) and six evaluation criteria (Tensile strength, Stiffness, Failure strain, Density, Degradation temperature and Moisture gain) are considered and selection of the optimal NF is made using a newly developed hybrid MCDM method i.e. Linear goal programming model for Best-Worst method (LGPMBWM) and Proximity index value method (PIV). Results of the study reveal that among all considered natural fibers, Ramie fiber is the most suitable alternative for the fabrication of composites and coir fiber is the worst candidate for the same.

Full Text:

PDF

References


L. Chapman (1997). Transport and climate change: a review, Int. J. Environ. Pollut.,7(3), 327-342.

H. Helms, U. Lambrecht (2017). The potential contribution of light-weighting to reduce transport energy consumption, Int. J. Life Cycle Assess. 12(1), 58-64. http://dx.doi.org/10.1065/lca2006.07.258

J.P Howell (1996). The side load distribution on a Rover 800 saloon car under crosswind conditions. J. Wind Eng. and Ind. Aero. 60, 139-153. https://doi.org/10.1016/0167-6105(96)00029-3

P.M. Samuel, K. Robert D. Christopher, M.B (2010). Eileen Mortality and injury patterns associated with roof crush in rollover crashes. Accident Analysis and Prevention, 42. https://doi.org/10.1016/j.aap.2010.02.013

F.M. Al-Oqla, S.M. Sapuan (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Cleaner Prod., 66, 347-354. https://doi.org/10.1016/j.jclepro.2013.10.050

F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, A.A. Nuraini (2015). A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int. J. Polym. Anal. and Charact., 20(3), 191-205. https://doi.org/10.1080/1023666X.2015.990184

F.M. Al-Oqla, S.M Sapuan, M.R Ishak, A.A. Nuraini (2016). A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. J. Compos. Mater., 50(4), 543-556. https://doi.org/10.1177/0021998315577233

L.P. Maskepatil, A.U. Gandigude, S.A. Kale (2014). Selection of material for wind turbine blade by analytic hierarchy process (AHP) method. In Appl. Mech. Mater., 612,145-150. https://doi.org/10.4028/www.scientific.net/AMM.612.145

M. Luqman, M.U. Rosli, C.Y. Khor, S. Zambree, H. Jahidi (2018). Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP). In IOP Conf. Ser. Mater. Sci. Eng., 318 (1), 012058. https://doi.org/10.1088/1757-899X/318/1/012058

L. Anojkumar, M. Ilangkumaran, V. Sasirekha (2014). Comparative analysis of MCDM methods for pipe material selection in sugar industry, Expert Systems with Applications 41(6), 2964-2980. https://doi.org/10.1016/j.eswa.2013.10.028

K. Anupam, P.S. Lal, V. Bist, A.K. Sharma, V. Swaroop (2014). Raw material selection for pulping and papermaking using TOPSIS multiple criteria decision making design. Environ. Prog. Sustainable Energy, 33(3), 1034-1041. https://doi.org/10.1002/ep.11851

F.M. Al-Oqla, S.M. Sapuan, M.R. Ishak, A.A. Nuraini (2015). Decision making model for optimal reinforcement condition of natural fiber composites. FiberPolym., 16(1), 153-163. https://doi.org/10.1007/s12221-015-0153-3

A. Majumdar, B. Sarkar, P.K. Majumdar (2004). Application of analytic hierarchy process for the selection of cotton fibers. FiberPolym., 5(4), 297-302. https://doi.org/10.1007/BF02875528

M.K. Ozturk, O.B. Berkalp, B. Nergis (2017). Design of a light weight fabric from natural cellulosic fibers with improved moisture related properties. In IOP Conf. Ser.: Mater. Sci. Eng. 254 (18), 182005. https://doi.org/10.1088/1757-899X/254/18/182005

R. Mohammed, B.R. Reddy, S. Kakarla, B.B. Krishna, M.P. Khan (2017). Mechanical Characterization & TOPSIS Ranking of Glass Fiber Reinforced particulate filled Epoxy based Hybrid Composites. J. Chem. Pharm. Sci., Special, (2), 311-317.

K. Jha, R. Kumar, K. Verma, B. Chaudhary, Y.K. Tyagi, S. Singh (2018). Application of modified TOPSIS technique in deciding optimal combination for bio-degradable composite. Vacuum, 157, 259-267. https://doi.org/10.1016/j.vacuum.2018.08.063

S. Ahmad Fadli (2017). An integrated software quality model in a fuzzy analytical hierarchy process-based evaluation framework for e-learning software/Ahmad Fadli Saad(Doctoral dissertation, University of Malaya). http://studentsrepo.um.edu.my/id/eprint/8129

N.M. Ishak, S.D. Malingam, M.R. Mansor (2016). Selection of natural fibre reinforced composites using fuzzy VIKOR for car front hood. Int. J. Mate. Product Technol., 53(3-4), 267-285.

Chang, K. L. (2015). The use of a hybrid MCDM model for public relations personnel selection. Informatica, 26(3), 389-406.

Chakraborty, S., Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making. Informatica, 25(1), 1-20.

Aliakbari Nouri, F., Khalili Esbouei, S., Antucheviciene, J. (2015). A hybrid MCDM approach based on fuzzy ANP and fuzzy TOPSIS for technology selection. Informatica, 26(3), 369-388.

Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.

Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010

Saheb, D. N., Jog, J. P. (1999). Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), 351-363.https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu (2008). Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1): 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012.

S. Tsai (2018). Introduction to composite materials. Routledge.

R. Latif, S. Wakeel, N.Z. Khan, A.N. Siddiquee, S.L. Verma Z.A. Khan (2018). Surface treatments of plant fibers and effects on mechanical properties of fiber-reinforced composites, J. Reinf. Plast. Compos.

https://doi.org/10.1177/0731684418802022

Pickering, K. L., Efendy, M. A., Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038

Akil, H., Omar, M. F., Mazuki, A. A. M., Safiee, S. Z. A. M., Ishak, Z. M., Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9), 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008

Thakur, V. K., Thakur, M. K., Gupta, R. K. (2014). raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization, 19(3), 256-271. https://doi.org/10.1080/1023666X.2014.880016

Wang, W., Sain, M., Cooper, P. A. (2006). Study of moisture absorption in natural fiber plastic composites. Composites science and technology, 66(3-4), 379-386. https://doi.org/10.1016/j.compscitech.2005.07.027

Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering: A, 517(1-2), 344-353. https://doi.org/10.1016/j.msea.2009.04.027

Robertson, N. L. M., Nychka, J. A., Alemaskin, K., Wolodko, J. D. (2013). Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. Journal of applied polymer science, 130(2), 969-980. https://doi.org/10.1002/app.39237

R. Kumar, Ray (2015). A Selection of material under conflicting situation using simple ratio optimization technique. In: Proceedings of fourth international conference on soft computing for problem solving, advances in intelligent systems and computing, 335, 513–519. https://doi.org/10.1007/978-81-322-2217-0_42

A. Komuraiah, N.S. Kumar, B.D. Prasad (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater., 50(3), 359-376. https://doi.org/10.1007/s11029-014-9422-2

S.P.S. Tita, R. Mederios, J.R. Tarpani (2018). Chemical modification of sugarcane baggase and sisal fibers using hydroxylmethylated lignin: Influence on Impact strength and water absorption of phenolic composites J. Compos. Mater. 52 (20), 2743-2753. https://doi.org/10.1177/0021998317753886

M. Kracka, W.K.M. Brauers, E.K. Zavadskas (2010). Ranking heating losses in a building by applying the MULTIMOORA. Eng. Econ. 21(4), 352–359.

B.W. Rosen (1973). Stiffness of fibre composite materials. Composites, 4(1), 16-25. https://doi.org/10.1016/0010-4361(73)90291-7

C. Scarponi, C.S. Pizzinelli (2009). Interface and mechanical properties of natural fibres reinforced composites: a review. International J. Mater. Product Technol., 36(1-4), 278-303.

AMIRI, M., EMAMAT, M. S. M. M. (2020). A Goal Programming Model for BWM. INFORMATICA, 31(1), 21-34. https://doi.org/10.15388/20-INFOR389

Rezaei J (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega; 64, 126-130. https://doi.org/10.1016/j.omega.2014.11.009

Abadi F., Sahebi I., Arab A., Alavi A., Karachi H (2018). Application of best-worst method in evaluation of medical tourism development strategy. Decision Science Letters; 7(1), 77-86. 10.5267/j.dsl.2017.4.002

Shojaei P., Haeri S. A. S., Mohammadi S (2018). Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. Journal of Air Transport Management; 68, 4-13.

https://doi.org/10.1016/j.jairtraman.2017.05.006

Salimi N., Rezaei J (2018). Evaluating firms’ R&D performance using best worst method. Evaluation and program planning; 66, 147-155. https://doi.org/10.1016/j.evalprogplan.2017.10.002

Gupta H (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management; 68, 35-47. https://doi.org/10.1016/j.jairtraman.2017.06.001

Ahmad W. N. K. W., Rezaei J., Sadaghiani S., Tavasszy L. A . (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. J. Cleaner Prod.; 153, 242-252.

https://doi.org/10.1016/j.jclepro.2017.03.166

Gupta H., Barua M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Cleaner Prod; 152, 242-258. https://doi.org/10.1016/j.jclepro.2017.03.125

van de Kaa G., Kamp L., Rezaei, J (2017). Selection of biomass thermochemical conversion technology in the Netherlands: A best worst method approach. J. Cleaner Prod.; 166, 32-39. https://doi.org/10.1016/j.jclepro.2017.07.052

Rezaei J., Hemmes A., Tavasszy L (2017). Multi-criteria decision-making for complex bundling configurations in surface transportation of air freight. Journal of Air Transport Management; 61, 95-105.

https://doi.org/10.1016/j.jairtraman.2016.02.006

Rezaei, J (2015). Best-worst multi-criteria decision-making method. Omega; 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009

Mufazzal S., Muzakkir S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438.https://doi.org/10.1016/j.cie.2018.03.045.

Prakash C., Barua M. K (2015). Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. Journal of Manufacturing Systems; 37, 599-615.

https://doi.org/10.1016/j.jmsy.2015.03.001

Mangla S. K., Kumar P., Barua M. K (2015). Risk analysis in green supply chain using fuzzy AHP approach: a case study. Resour., Conserv. Recycl.; 104, 375-390.

https://doi.org/10.1016/j.resconrec.2015.01.001

Triantaphyllou E (2000). A Sensitivity Analysis Approach for MCDM Methods. In Multi-criteria Decision Making Methods: A Comparative Study (pp. 131-175), Springer; Boston, MA. https://doi.org/10.1007/978-1-4757-3157-6_8




DOI: https://doi.org/10.31449/inf.v45i1.3246

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.