A New Hybrid LGPMBWM-PIV Method for Automotive Material Selection
Abstract
Full Text:
PDFReferences
L. Chapman (1997). Transport and climate change: a review, Int. J. Environ. Pollut.,7(3), 327-342.
H. Helms, U. Lambrecht (2017). The potential contribution of light-weighting to reduce transport energy consumption, Int. J. Life Cycle Assess. 12(1), 58-64. http://dx.doi.org/10.1065/lca2006.07.258
J.P Howell (1996). The side load distribution on a Rover 800 saloon car under crosswind conditions. J. Wind Eng. and Ind. Aero. 60, 139-153. https://doi.org/10.1016/0167-6105(96)00029-3
P.M. Samuel, K. Robert D. Christopher, M.B (2010). Eileen Mortality and injury patterns associated with roof crush in rollover crashes. Accident Analysis and Prevention, 42. https://doi.org/10.1016/j.aap.2010.02.013
F.M. Al-Oqla, S.M. Sapuan (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Cleaner Prod., 66, 347-354. https://doi.org/10.1016/j.jclepro.2013.10.050
F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, A.A. Nuraini (2015). A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int. J. Polym. Anal. and Charact., 20(3), 191-205. https://doi.org/10.1080/1023666X.2015.990184
F.M. Al-Oqla, S.M Sapuan, M.R Ishak, A.A. Nuraini (2016). A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. J. Compos. Mater., 50(4), 543-556. https://doi.org/10.1177/0021998315577233
L.P. Maskepatil, A.U. Gandigude, S.A. Kale (2014). Selection of material for wind turbine blade by analytic hierarchy process (AHP) method. In Appl. Mech. Mater., 612,145-150. https://doi.org/10.4028/www.scientific.net/AMM.612.145
M. Luqman, M.U. Rosli, C.Y. Khor, S. Zambree, H. Jahidi (2018). Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP). In IOP Conf. Ser. Mater. Sci. Eng., 318 (1), 012058. https://doi.org/10.1088/1757-899X/318/1/012058
L. Anojkumar, M. Ilangkumaran, V. Sasirekha (2014). Comparative analysis of MCDM methods for pipe material selection in sugar industry, Expert Systems with Applications 41(6), 2964-2980. https://doi.org/10.1016/j.eswa.2013.10.028
K. Anupam, P.S. Lal, V. Bist, A.K. Sharma, V. Swaroop (2014). Raw material selection for pulping and papermaking using TOPSIS multiple criteria decision making design. Environ. Prog. Sustainable Energy, 33(3), 1034-1041. https://doi.org/10.1002/ep.11851
F.M. Al-Oqla, S.M. Sapuan, M.R. Ishak, A.A. Nuraini (2015). Decision making model for optimal reinforcement condition of natural fiber composites. FiberPolym., 16(1), 153-163. https://doi.org/10.1007/s12221-015-0153-3
A. Majumdar, B. Sarkar, P.K. Majumdar (2004). Application of analytic hierarchy process for the selection of cotton fibers. FiberPolym., 5(4), 297-302. https://doi.org/10.1007/BF02875528
M.K. Ozturk, O.B. Berkalp, B. Nergis (2017). Design of a light weight fabric from natural cellulosic fibers with improved moisture related properties. In IOP Conf. Ser.: Mater. Sci. Eng. 254 (18), 182005. https://doi.org/10.1088/1757-899X/254/18/182005
R. Mohammed, B.R. Reddy, S. Kakarla, B.B. Krishna, M.P. Khan (2017). Mechanical Characterization & TOPSIS Ranking of Glass Fiber Reinforced particulate filled Epoxy based Hybrid Composites. J. Chem. Pharm. Sci., Special, (2), 311-317.
K. Jha, R. Kumar, K. Verma, B. Chaudhary, Y.K. Tyagi, S. Singh (2018). Application of modified TOPSIS technique in deciding optimal combination for bio-degradable composite. Vacuum, 157, 259-267. https://doi.org/10.1016/j.vacuum.2018.08.063
S. Ahmad Fadli (2017). An integrated software quality model in a fuzzy analytical hierarchy process-based evaluation framework for e-learning software/Ahmad Fadli Saad(Doctoral dissertation, University of Malaya). http://studentsrepo.um.edu.my/id/eprint/8129
N.M. Ishak, S.D. Malingam, M.R. Mansor (2016). Selection of natural fibre reinforced composites using fuzzy VIKOR for car front hood. Int. J. Mate. Product Technol., 53(3-4), 267-285.
Chang, K. L. (2015). The use of a hybrid MCDM model for public relations personnel selection. Informatica, 26(3), 389-406.
Chakraborty, S., Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making. Informatica, 25(1), 1-20.
Aliakbari Nouri, F., Khalili Esbouei, S., Antucheviciene, J. (2015). A hybrid MCDM approach based on fuzzy ANP and fuzzy TOPSIS for technology selection. Informatica, 26(3), 369-388.
Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.
Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010
Saheb, D. N., Jog, J. P. (1999). Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), 351-363.https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu (2008). Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1): 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012.
S. Tsai (2018). Introduction to composite materials. Routledge.
R. Latif, S. Wakeel, N.Z. Khan, A.N. Siddiquee, S.L. Verma Z.A. Khan (2018). Surface treatments of plant fibers and effects on mechanical properties of fiber-reinforced composites, J. Reinf. Plast. Compos.
https://doi.org/10.1177/0731684418802022
Pickering, K. L., Efendy, M. A., Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
Akil, H., Omar, M. F., Mazuki, A. A. M., Safiee, S. Z. A. M., Ishak, Z. M., Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9), 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008
Thakur, V. K., Thakur, M. K., Gupta, R. K. (2014). raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization, 19(3), 256-271. https://doi.org/10.1080/1023666X.2014.880016
Wang, W., Sain, M., Cooper, P. A. (2006). Study of moisture absorption in natural fiber plastic composites. Composites science and technology, 66(3-4), 379-386. https://doi.org/10.1016/j.compscitech.2005.07.027
Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering: A, 517(1-2), 344-353. https://doi.org/10.1016/j.msea.2009.04.027
Robertson, N. L. M., Nychka, J. A., Alemaskin, K., Wolodko, J. D. (2013). Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. Journal of applied polymer science, 130(2), 969-980. https://doi.org/10.1002/app.39237
R. Kumar, Ray (2015). A Selection of material under conflicting situation using simple ratio optimization technique. In: Proceedings of fourth international conference on soft computing for problem solving, advances in intelligent systems and computing, 335, 513–519. https://doi.org/10.1007/978-81-322-2217-0_42
A. Komuraiah, N.S. Kumar, B.D. Prasad (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater., 50(3), 359-376. https://doi.org/10.1007/s11029-014-9422-2
S.P.S. Tita, R. Mederios, J.R. Tarpani (2018). Chemical modification of sugarcane baggase and sisal fibers using hydroxylmethylated lignin: Influence on Impact strength and water absorption of phenolic composites J. Compos. Mater. 52 (20), 2743-2753. https://doi.org/10.1177/0021998317753886
M. Kracka, W.K.M. Brauers, E.K. Zavadskas (2010). Ranking heating losses in a building by applying the MULTIMOORA. Eng. Econ. 21(4), 352–359.
B.W. Rosen (1973). Stiffness of fibre composite materials. Composites, 4(1), 16-25. https://doi.org/10.1016/0010-4361(73)90291-7
C. Scarponi, C.S. Pizzinelli (2009). Interface and mechanical properties of natural fibres reinforced composites: a review. International J. Mater. Product Technol., 36(1-4), 278-303.
AMIRI, M., EMAMAT, M. S. M. M. (2020). A Goal Programming Model for BWM. INFORMATICA, 31(1), 21-34. https://doi.org/10.15388/20-INFOR389
Rezaei J (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega; 64, 126-130. https://doi.org/10.1016/j.omega.2014.11.009
Abadi F., Sahebi I., Arab A., Alavi A., Karachi H (2018). Application of best-worst method in evaluation of medical tourism development strategy. Decision Science Letters; 7(1), 77-86. 10.5267/j.dsl.2017.4.002
Shojaei P., Haeri S. A. S., Mohammadi S (2018). Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. Journal of Air Transport Management; 68, 4-13.
https://doi.org/10.1016/j.jairtraman.2017.05.006
Salimi N., Rezaei J (2018). Evaluating firms’ R&D performance using best worst method. Evaluation and program planning; 66, 147-155. https://doi.org/10.1016/j.evalprogplan.2017.10.002
Gupta H (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management; 68, 35-47. https://doi.org/10.1016/j.jairtraman.2017.06.001
Ahmad W. N. K. W., Rezaei J., Sadaghiani S., Tavasszy L. A . (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. J. Cleaner Prod.; 153, 242-252.
https://doi.org/10.1016/j.jclepro.2017.03.166
Gupta H., Barua M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Cleaner Prod; 152, 242-258. https://doi.org/10.1016/j.jclepro.2017.03.125
van de Kaa G., Kamp L., Rezaei, J (2017). Selection of biomass thermochemical conversion technology in the Netherlands: A best worst method approach. J. Cleaner Prod.; 166, 32-39. https://doi.org/10.1016/j.jclepro.2017.07.052
Rezaei J., Hemmes A., Tavasszy L (2017). Multi-criteria decision-making for complex bundling configurations in surface transportation of air freight. Journal of Air Transport Management; 61, 95-105.
https://doi.org/10.1016/j.jairtraman.2016.02.006
Rezaei, J (2015). Best-worst multi-criteria decision-making method. Omega; 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009
Mufazzal S., Muzakkir S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438.https://doi.org/10.1016/j.cie.2018.03.045.
Prakash C., Barua M. K (2015). Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. Journal of Manufacturing Systems; 37, 599-615.
https://doi.org/10.1016/j.jmsy.2015.03.001
Mangla S. K., Kumar P., Barua M. K (2015). Risk analysis in green supply chain using fuzzy AHP approach: a case study. Resour., Conserv. Recycl.; 104, 375-390.
https://doi.org/10.1016/j.resconrec.2015.01.001
Triantaphyllou E (2000). A Sensitivity Analysis Approach for MCDM Methods. In Multi-criteria Decision Making Methods: A Comparative Study (pp. 131-175), Springer; Boston, MA. https://doi.org/10.1007/978-1-4757-3157-6_8
DOI: https://doi.org/10.31449/inf.v45i1.3246
This work is licensed under a Creative Commons Attribution 3.0 License.