Research on Estimation of Paddy Field Area Index Based on UAV Remote Sensing Images

Xiuli Lu, Zhou Yang, Yongli Yang, Amit Sharma

Abstract


In order to verify the superiority and effectiveness of extracting rice information based on UAV images. This paper takes the rice plot as the research object, and uses the portable UAV Mavic Pro for aerial photography. Preprocess the acquired UAV images to generate orthophotos with a resolution of 3.95cm/pix. Using object-oriented thinking, visual evaluation and ESP tools are combined to quickly select the optimal segmentation scale to be 300, and support is applied. Vector machine, random forest, and nearest neighbor supervised classification methods have carried out ground object classification and rapid extraction of rice area. The classification results and area accuracy are evaluated by visual classification results. The method with the highest overall accuracy is the nearest neighbor classification method. At this time, the user accuracy of rice classification is 95%, and the area consistency accuracy is 99%. The results show that UAV remote sensing and automatic classification can quickly obtain high resolution images and extract rice planting area in plain rice planting area, make up for the lack of ground survey data when Nongshan is blocked, and provide samples and verification basis for the calculation of large-scale rice planting area, yield and other information.


Full Text:

PDF

References


Habibi, L. N., Komariah, K., Ariyanto, D. P., Syamsiyah, J., & Tanaka, T. S. (2019). Estimation of Soil Organic Matter on Paddy Field using Remote Sensing Method. SAINS TANAH-Journal of Soil Science and Agroclimatology, 16(2), 159-168.

https://doi.org/10.20961/stjssa.v16i2.35395

Hu, W., Li, C. H., Ye, C., Wang, J., Wei, W. W., & Deng, Y. (2019). Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database. Ecological Modelling, 410, 108779.

https://doi.org/10.1016/j.ecolmodel.2019.108779

Singh, A., & Kumar, A. (2020). Identification of paddy stubble burnt activities using temporal class-based sensor-independent indices database: modified possibilistic fuzzy classification approach. Journal of the Indian Society of Remote Sensing, 48(3), 423-430.

https://doi.org/10.1007/s12524-019-01093-4

Sharma, A., Singh, P. K., & Kumar, Y. (2020). An integrated fire detection system using IoT and image processing technique for smart cities. Sustainable Cities and Society, 61, 102332.

https://doi.org/10.1016/j.scs.2020.102332

Sharma, A., Singh, P. K., Sharma, A., & Kumar, R. (2019). An efficient architecture for the accurate detection and monitoring of an event through the sky. Computer Communications, 148, 115-128.

https://doi.org/10.1016/j.comcom.2019.09.009

Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., & Qin, X. (2002). Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 16(4), 38-1.

https://doi.org/10.1029/2001GB001425

Liu, H., Zhang, J., Pan, Y., Shuai, G., Zhu, X., & Zhu, S. (2018). An efficient approach based on UAV orthographic imagery to map paddy with support of field-level canopy height from point cloud data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 2034-2046. https://doi.org/10.1109/JSTARS.2018.2829218

Dai, J. G., Zhang, G. S., Guo, P., Zeng, T. J., Cui, M., & Xue, J. L. (2019). Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing. Trans. CSAE, 35, 63-70. https://doi.org/10.1016/j.scs.2020.102332

Zhang, F., Jing, Z. X., Ji, B. Y., Pei, L. X., Chen, S. Q., Wang, X. Y., & Huang, L. Q. (2019). Study of extracting natural resources of Chinese medicinal materials planted area in Luoning of Henan province based on UAV of low altitude remote sensing technology and remote sensing image of satellite. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 44(19), 4095-4100. https://doi.org/10.1016/j.scs.2020.102332

Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. https://doi.org/10.3390/s19173796

Mekonnen, Y., Namuduri, S., Burton, L., Sarwat, A., & Bhansali, S. (2019). Machine learning techniques in wireless sensor network based precision agriculture. Journal of the Electrochemical Society, 167(3), 037522.

https://doi.org/10.1149/2.0222003JES

Dhillon, S., Madhu, C., Kaur, D., & Singh, S. (2020). A solar energy forecast model using neural networks: Application for prediction of power for wireless sensor networks in precision agriculture. Wireless Personal Communications, 1-20. https://doi.org/10.1007/s11277-020-07173-w

Mazloumzadeh, S. M., Shamsi, M., & Nezamabadi-Pour, H. (2010). Fuzzy logic to classify date palm trees based on some physical properties related to precision agriculture. Precision agriculture, 11(3), 258-273.

https://doi.org/10.1007/s11119-009-9132-2

Pudumalar, S., Ramanujam, E., Rajashree, R. H., Kavya, C., Kiruthika, T., & Nisha, J. (2017, January). Crop recommendation system for precision agriculture. In 2016 Eighth International Conference on Advanced Computing (ICoAC) (pp. 32-36). IEEE.

https://doi.org/10.1109/ICoAC.2017.7951740

Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines for crop/weeds identification in maize fields. Expert Systems with Applications, 39(12), 11149-11155.

https://doi.org/10.1016/j.eswa.2012.03.040

Abdullahi, H. S., Sheriff, R., & Mahieddine, F. (2017, August). Convolution neural network in precision agriculture for plant image recognition and classification. In 2017 Seventh International Conference on Innovative Computing Technology (INTECH) (Vol. 10). Ieee.

https://doi.org/10.1109/INTECH.2017.8102436

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 7(4), 4026-4047.

https://doi.org/10.3390/rs70404026

Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22-32. https://doi.org/10.1016/j.compag.2017.05.001

Mahlein, A. K. (2016). Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Plant disease, 100(2), 241-251.

https://doi.org/10.1094/PDIS-03-15-0340-FE

Panda, S. S., Ames, D. P., & Panigrahi, S. (2010). Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sensing, 2(3), 673-696. https://doi.org/10.3390/rs2030673

Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote sensing of environment, 114(6), 1312-1323. https://doi.org/10.1016/j.rse.2010.01.010

Lu, Y., Tao, H., & Wu, H. (2007). Dynamic drought monitoring in Guangxi using revised temperature vegetation dryness index. Wuhan University journal of Natural sciences, 12(4), 663-668. https://doi.org/10.1007/s11859-006-0315-7

Sharma, A., Tomar, R., Chilamkurti, N., & Kim, B. G. (2020). Blockchain based smart contracts for internet of medical things in e-healthcare. Electronics, 9(10), 1609.

https://doi.org/10.3390/electronics9101609

Poongodi, M., Sharma, A., Vijayakumar, V., Bhardwaj, V., Sharma, A. P., Iqbal, R., & Kumar, R. (2020). Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers & Electrical Engineering, 81, 106527.

https://doi.org/10.1016/j.compeleceng.2019.106527

Cao, Y., Li, G. L., Luo, Y. K., Pan, Q., & Zhang, S. Y. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Computers and Electronics in Agriculture, 171, 105331.

https://doi.org/10.1016/j.compag.2020.105331

Shrestha, R., Di, L., Eugene, G. Y., Kang, L., SHAO, Y. Z., & BAI, Y. Q. (2017). Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. Journal of Integrative Agriculture, 16(2), 398-407. https://doi.org/10.1016/S2095-3119(16)61502-2

Sharma, A., & Singh, P. K. (2020). Taxonomy on localization issues and challenges in wireless sensor networks. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 13(2), 193-202.

https://doi.org/10.2174/2352096512666190212153057

Sharma, A., & Singh, P. K. (2021). Localization in Wireless Sensor Networks for Accurate Event Detection. International Journal of Healthcare Information Systems and Informatics (IJHISI), 16(3), 74-88.

https://doi.org/10.4018/IJHISI.20210701.oa5

Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS journal of photogrammetry and remote sensing, 146, 124-136. https://doi.org/10.1016/j.isprsjprs.2018.09.008

Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science, 24(2), 152-164.

https://doi.org/10.1016/j.tplants.2018.11.007

Rokhmana, C. A. (2015). The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, 24, 245-253.

https://doi.org/10.1016/j.proenv.2015.03.032

Kim, J., Ryu, Y., Jiang, C., & Hwang, Y. (2019). Continuous observation of vegetation canopy dynamics using an integrated low-cost, near-surface remote sensing system. Agricultural and forest meteorology, 264, 164-177.

https://doi.org/10.1016/j.agrformet.2018.09.014

Fang, H., Chen, H., Jiang, H., Wang, Y., Liu, Y., Liu, F., & He, Y. (2019). Research on Method of Farmland Obstacle Boundary Extraction in UAV Remote Sensing Images. Sensors, 19(20), 4431.

https://doi.org/10.3390/s19204431

Wang, Y., Zhang, K., Tang, C., Cao, Q., Tian, Y., Zhu, Y., & Liu, X. (2019). Estimation of rice growth parameters based on linear mixed-effect model using multispectral images from fixed-wing unmanned aerial vehicles. Remote sensing, 11(11), 1371.

https://doi.org/10.3390/rs11111371




DOI: https://doi.org/10.31449/inf.v45i5.3558

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.