Deep Reinforcement Learning-based anomaly detection for Video Surveillance
Abstract
Full Text:
PDFReferences
S. Ji, W. Xu, M. Yang, and K. Yu (2013) 3d convolutional neural networks for human action recognition, IEEE Trans, Pattern Analysis and Machine Intelligence.
K. Simonyan and A. Zisserman (2014) Two stream convolutional networks for action recognition in videos, NIPS.
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei (2014) Large-scale video classification with convolutional neural networks, CVPR.
C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: A local svm approach, in IEEE ICPR, 2004.
M. Ryoo and J. Aggarwal (2009) Spatiotemporal relationship match: Video structure comparison for recognition of complex human activities, ICCV, pp. 15931600.
W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank (2007) Semantic-based surveillance video retrieval Image Processing, IEEE Transactions, vol. 16, no. 4, pp. 11681181.
Meina Qiao, Tian Wang, Jiakun Li, Ce Li, Zhiwei Lin, and Hichem Snoussi (2017) Abnormal event detection based on deep autoencoder fusing optical flow, Control Con-
ference (CCC) 36th, IEEE, Chinese, pages 1109811103.
Ali Khaleghi and Mohammad ShahramMoin (2018) Improved anomaly detection in surveillance videos based on a deep learning method. 2018 8th Conference of AI &
Robotics and 10th RoboCup Iranopen International Symposium (IRANOPEN), IEEE, pages 7381.
Yong Shean Chong and Yong Haur Tay (2017) Abnormal event detection in videos using spatiotemporal autoencoder, International Symposium on Neural Networks, Springer, pages 189196.
M. Hasan, J. Choi, J. Neumann, A. K. RoyChowdhury, and L. S. Davis (2016) Learning temporal regularity in video sequences, CVPR.
Waqas Sultani, Chen Chen, and Mubarak Shah (2018) Real-world anomaly detection in surveillance videos, Center for Research in Computer Vision (CRCV).
Min-hwan Oh, Garud Iyengar (2020) Sequential Anomaly Detection using Inverse Reinforcement Learning, arXiv:2004.10398v1[cs.LG].
Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot and Nando de Freitas (2016) Dueling Network Architectures for Deep Reinforcement Learning,
arXiv:1511.06581v3[cs.LG].
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al (2015) Human-level control through deep reinforcement learning, Nature, 518(7540):529533.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., (2013) Playing atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602.
X. Lan, H. Wang, S. Gong, and X Zhu (2017) Deep reinforcement learning attention selection for person re-identification, BMVC.
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri (2015) Learning spatiotemporal features with 3d convolutional net-works, ICCV.
Tom Schaul, John Quan, Ioannis Antonoglou and David Silver (2016) Prioritizied Experience Replay, arXiv:1511.05952v4 [cs.LG].
Xavier Glorot, Antoine Bordes, Yoshua Bengio (2011) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR 15:315-323.
J. Duchi, E. Hazan, and Y. Singer (2011) Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res.
C. Lu, J. Shi, and J. Jia (2013) Abnormal event detection at 150 fps in matlab, ICCV.
DOI: https://doi.org/10.31449/inf.v46i2.3603
This work is licensed under a Creative Commons Attribution 3.0 License.