Crime Prediction Using Twitter Sentiments and Crime Data
Abstract
Full Text:
PDFReferences
ToppiReddy HKR, Saini B, Mahajan G. Crime Prediction & Monitoring Framework Based on Spatial Analysis. Procedia Comput Sci [Internet]. 2018;132(Iccids):696–705. Available from: https://doi.org/10.1016/j.procs.2018.05.075
Umair A, Sarfraz MS, Ahmad M, Habib U, Ullah MH, Mazzara M. Spatiotemporal Analysis of Web News Archives for Crime Prediction. Appl Sci. 2020;10.
Tompson L, Johnson S, Ashby M, Perkins C, Edwards P. UK open source crime data: Accuracy and possibilities for research. Cartogr Geogr Inf Sci. 2015;42(2):97–111.
Oladimeji OO, Oladimeji A, Oladimeji O. Classification models for likelihood prediction of diabetes at early stage using feature selection. Appl Comput Informatics. 2021;
Oladimeji OO, Oladimeji O. Predicting Survival of Heart Failure Patients Using Classification Algorithms. JITCE (Journal Inf Technol Comput Eng [Internet]. 2020 Sep 30;4(02):90–4. Available from: http://jitce.fti.unand.ac.id/index.php/JITCE/article/view/75
Malathi A, Baboo SS. Enhanced Algorithms to Identify Change in Crime Patterns. Int J Comb Optim Probl Informatics. 2011;2(3):32–8.
Brayne S, Christin A. Technologies of Crime Prediction: The Reception of Algorithms in Policing and Criminal Courts. Soc Probl. 2021;68(3):608–24.
Manzanares MCS, Diez JJR, Sánchez RM, Yáñez MJZ, Menéndez RC. Lifelong learning from sustainable education: An analysis with eye tracking and data mining techniques. Sustain. 2020;12(5).
Kotevska O, Kusne AG, Samarov D V., Lbath A, Battou A. Dynamic Network Model for Smart City Data-Loss Resilience Case Study: City-to-City Network for Crime Analytics. IEEE Access. 2017;5:20524–35.
Ahishakiye E, Omulo EO, Taremwa D, Niyonzima I. Crime prediction using Decision Tree (J48) classification algorithm. Int J Comput Inf Technol. 2017;06(03):188–95.
Nasridinov A, Ihm SY, Park YH. A decision tree-based classification model for crime prediction. Lect Notes Electr Eng. 2013;253 LNEE:531–8.
Iqbal R, Murad MAA, Mustapha A, Panahy PHS, Khanahmadliravi N. An experimental study of classification algorithms for crime prediction. Indian J Sci Technol. 2013;6(3):4219–25.
Chen X, Cho Y, Jang SY. Crime prediction using Twitter sentiment and weather. 2015 Syst Inf Eng Des Symp SIEDS 2015. 2015;(c):63–8.
Ohana B, Tierney B. Sentiment classification of reviews using SentiWordNet. 9th IT T Conf. 2009;
Mousa SR, Bakhit PR, Osman OA, Ishak S. A comparative analysis of tree-based ensemble methods for detecting imminent lane change maneuvers in connected vehicle environments. Transp Res Rec. 2018;2672(42):268–79.
Zhang X, Liu L, Lan M, Song G, Xiao L, Chen J. Interpretable machine learning models for crime prediction. Comput Environ Urban Syst [Internet]. 2022;94(November 2021):101789. Available from: https://doi.org/10.1016/j.compenvurbsys.2022.101789
Qi Z. The Text Classification of Theft Crime Based on TF-IDF and XGBoost Model. Proc 2020 IEEE Int Conf Artif Intell Comput Appl ICAICA 2020. 2020;1241–6.
Mitchell R, Frank E. Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput Sci. 2017;2017(7).
Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng [Internet]. 2018;2(10):749–60. Available from: http://dx.doi.org/10.1038/s41551-018-0304-0
Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2019;126(4):552–64.
Putatunda S, Rama K. A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost. ACM Int Conf Proceeding Ser. 2018;6–10.
DOI: https://doi.org/10.31449/inf.v48i6.4749
This work is licensed under a Creative Commons Attribution 3.0 License.