Methods for Representing Earthquake Time Series with Networks

Romi Koželj, Lovro Šubelj, Jurij Bajc

Abstract


An earthquake is a natural phenomenon that occurs as a result of the internal dynamics of the Earth. It originates deep below the surface of the planet and cannot be predicted with our current knowledge. In this paper, we use a network analysis approach to analyze the characteristics and evolution of seismic activity over time. We implement several network models based on temporal and spatial interactions between earthquakes and on the assumption of self-similarity of seismic activity in selected geographic areas. We create sequences of networks generated in consecutive time windows and compare the networks between different models and time intervals. Additionally, we calculate a set of network structural characteristics and study their changes over time. The analysis shows that most models produce networks with such a structure that changes consistently with the intensity of seismic activity. Thus, based on the structural changes of networks, we can reliably identify the time windows with increased seismic activity.

Full Text:

PDF

References


S. Seth, M. Wysession, An introduction to seismology, earthquakes, and earth structure, Blackwell, 2003, Ch. 3, p.

The Seismology and Natural Hazards Divisions of the European Geosciences Union (EGU), https://www.egu.eu/sm/can-we-predict-earthquakes/ (Visited: 25. 7. 2020).

Uprava Republike Slovenije za zaščito in reševanje, Izpostava Koper, Ocena potresne ogroženosti obalne regije, Tech. rep. (2019).

Y. Y. Kagan, D. D. Jackson, Probabilistic forecasting of earthquakes, Geophysical Journal International 143 (2) (2000) 438–453. doi:10.1046/j.1365-246X.2000.01267.x.

S. Rezaei, A. Darooneh, N. Lotfi, N. Asaadi, The earthquakes network: Retrieving the empirical seismological laws, Physica A: Statistical Mechanics and its Applications 471 (2017) 80–87. doi:10.1016/j.physa.2016.12.003.

S. Abe, N. Suzuki, Scale-Free Network of Earthquakes, Europhysics Letters 65 (4) (2004) 581–586. doi:10.1209/epl/i2003-10108-1.

X. He, H. Zhao, W. Cai, Z. Liu, S.-Z. Si, Earthquake networks based on space–time influence domain, Physica A: Statistical Mechanics and its Applications 407 (2014) 175–184. doi:10.1016/j.physa.2014.03.093.

M. Baiesi, M. Paczuski, Scale-free networks of earthquakes and aftershocks, Phys. Rev. E 69 (Jun 2004). doi:10.1103/PhysRevE.69.066106.

L. Telesca, M. Lovallo, Analysis of seismic sequences by using the method of visibility graph, Europhysics Letters 97 (02 2012). doi:10.1209/0295-5075/97/50002.

J. N. Tenenbaum, S. Havlin, H. E. Stanley, Earthquake networks based on similar activity patterns, Phys. Rev. E 86 (Oct 2012). doi:10.1103/PhysRevE.86.046107.

N. Lotfi, A. H. Darooneh, F. A. Rodrigues, Centrality in earthquake multiplex networks, Chaos 28 (June 2018). doi:10.1063/1.5001469.

S. Abe, N. Suzuki, Dynamical evolution of clustering in complex network of earthquake, The European Physical Journal B - Condensed Matter and Complex Systems 59 (2007) 93–97. doi:10.1140/epjb/e2007-00259-3.

High Sensitivity Seismograph Network Laboratory, http://www.hinet.bosai.go.jp/topics/JUICE/ (Visited: 1. 6. 2020).

Insitituto nazionale di geofisica e vulcanologia, http://iside.rm.ingv.it/ (Visited: 1. 6. 2020).

Northern California Earthquake Data Center, https://www.ncedc.org/ncedc/catalog-search.html (Visited: 1. 6. 2020).

Southern California Earthquake Data Center, https://scedc.caltech.edu/eq-catalogs/ (Visited: 1. 6. 2020).

C. Godano, E. Lippiello, L. de Arcangelis, Variability of the b value in the Gutenberg–Richter distribution, Geophysical Journal International 199 (3) (2014) 1765–1771. doi:10.1093/gji/ggu359.

J. Wang, D. Huang, S.-C. Chang, Y. Wu, New Evidence and Perspective to the Poisson Process and Earthquake Temporal Distribution from 55,000 Events around Taiwan since 1900, Natural Hazards Review 15 (2014) 38–47. doi:10.1061/(ASCE)NH.1527- 6996.0000110.

J. Greenhough, I. Main, A Poisson model for earthquake frequency uncertainties in seismic hazard analysis, Geophysical Research Letters 35 (07 2008). doi:10.1029/2008GL035353.

S. Abe, N. Suzuki, Main shocks and evolution of complex earthquake networks, Brazilian Journal of Physics 39 (2009) 428–430.

D. W. Steeples, D. D. Steeples, Farfield aftershocks of the 1906 earthquake, Bulletin of the Seismological Society of America 86 (4) (1996) 921–924. arXiv:https://pubs.geoscienceworld.org/bssa/article-pdf/86/4/921/2708582/BSSA0860040921.pdf.

J. K. Gardner, L. Knopoff, Is the sequence of earthquakes in southern california, with aftershocks removed, poissonian?, (1974).

M. Suzuki, A three dimensional box counting method for measuring fractal dimensions of 3d models, Proceedings of the 11th IASTED International Conference on Internet and Multimedia Systems and Applications, IMSA 2007 (01 2007).

P. Laurienti, K. Joyce, Q. Telesford, J. Burdette, S. Hayasaka, Universal fractal scaling of self-organized networks, Nature Precedings 5 (09 2010). doi:10.1038/npre.2010.4894.1.

M. Mukaka, Statistics corner: A guide to appropriate use of correlation coefficient in medical research, Malawi medical journal: the journal of Medical Association of Malawi 24 (2012) 69–71.

M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for exploring and manipulating networks (2009). URL http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

F. Dragan, M. Habib, L. Viennot, Revisiting radius, diameter, and all eccentricity computation in graphs through certificates (03 2018).

V. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics Theory and Experiment 2008 (04 2008). doi:10.1088/1742-5468/2008/10/P10008.

R. van der Hofstad, Configuration Model, Vol. 1 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2016, p. 216–255. doi:10.1017/9781316779422.010.

V. Traag, L. Waltman, N. J. van Eck, From louvain to leiden: guaranteeing well-connected communities, Scientific Reports 9 (2019) 5233. doi:10.1038/s41598-019-41695-z.

N. Laptev, J. Yosinski, L. E. Li, S. Smyl, Time-series extreme event forecasting with neural networks at uber, in: International Conference on Machine Learning, no. 34, (2017), pp. 1–5.




DOI: https://doi.org/10.31449/inf.v48i14.5176

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.