A PSO-CNN-based approach for Enhancing Precision in Plant Leaf Disease Detection and Classification
Abstract
Full Text:
PDFReferences
S. Baranwal, S. Khandelwal, A. Arora, Deep
learning convolutional neural network for apple
leaves disease detection, SSRN Electron. J.
(2019), https://doi.org/ 10.2139/ssrn.3351641.
Y. Zhao, et al., Plant disease detection using
generated leaves based on DoubleGAN, IEEE
ACM Trans. Comput. Biol. Bioinf (2021),
https://doi.org/ 10.1109/TCBB.2021.3056683,
–1
Department of Computer Science, Sukkur IBA
University, Pakistan. et al., Plant disease
detection using deep learning, Int. J. Recent
Technol. Eng. IJRTE 9 (1) (May 2020) 909–
,
https://doi.org/10.35940/ijrte.A2139.059120.). I
L. Li, S. Zhang, B. Wang, Plant disease
detection and class. by deep learning—a review,
IEEE Acc 9 (2021) 56683–56698,
https://doi.org/10.1109/ACESS..3069646.
R.A.D.L. Pugoy, V.Y. Mariano, Automated
Rice Leaf Disease Detection Using Color Image
Analysis, Chengdu, China, Apr. 2011, 80090F,
https://doi.org/10.1117/ 12.896494.
D. Tiwari, M. Ashish, N. Gangwar, A. Sharma,
S. Patel, S. Bhardwaj, Potato leaf diseases
detection using deep learning, in: 2020 4th
International Conference on Intelligent
Computing and Control Systems (ICICCS),
May 2020, pp. 461–466,
https://doi.org/10.1109/ICICCS48265.2020.91
Madurai, India
P.M. Kwabena, B. Asubam, A. Abra, Gabor
capsule network for plant disease detection, Int.
J. Adv. Comput. Sci. Appl. 11 (10) (2020),
https://doi.org/
14569/IJACSA.2020.0111048.
Xiaoyang Rao and Xuesong Yan, Particle
Swarm Optimization Algorithm Based on
Information Sharing in Industry 4.0, Hindawi
Wireless Communications and Mobile
Computing Volume 2022, Article ID 4328185,
pages https://doi.org/10.1155/2022/4328185
Ahmed G. Gad, Particle Swarm
Optimization Algorithm and Its
Applications: A Systematic Review,
Springer, Archives of Computational
Methods in Engineering (2022) 29:2531–
https://doi.org/10.1007/s11831-021-
-4.
S.V. Militante, B.D. Gerardo, N.V.
Dionisio, Plant leaf detection and disease
recognition using deep learning, in: 2019
IEEE Eurasia Conference on IOT,
Communication and Engineering,
ECICE), 2019, pp. 579–582.
A. Venkataramanan, D.K.P. Honakeri, P.
Agarwal, Plant disease detection and
classification using deep neural networks,
Int. J. Comput. Sci. Eng. 11 (9) (2019) 40–
A. Abbas, S. Jain, M. Gour, S.
Vankudothu, Tomato plant disease
detection using transfer learning with CGAN synthetic images, Comput. Electron.
Agric. 187 (Aug. 2021), 106279,
https://doi.org/10.1016/j.compag.2021.10
M. Ali Jan Ghasab, S. Khamis, F.
Mohammad, H. Jahani Fariman, Feature
decisionmaking ant colony optimization
system for an automated recognition of
plant species, Expert Syst. Appl. 42 (5)
(2015) 2361–2370,
https://doi.org/10.1016/j.
eswa.2014.11.011. Apr.
G.K. Sandhu, R. Kaur, Plant disease
detection techniques: a review, in: 2019
International Conference on Automation,
Computational and Technology Management
(ICACTM), London, United Kingdom, Apr.
, pp. 34–38, https://
doi.org/10.1109/ICACTM.2019.8776827.
R. Patil, S. Udgave, S. More, D. Nemishte, M.
Kasture, Grape leaf disease detection using kmeans clustering algorithm, Int. Res. J. Eng.
Technol. IRJET 3 (4) (2016) 2330–2333.
M. Kumar, P. Gupta, P. Madhav, Sachin,
Disease detection in coffee plants using
convolutional neural network, in: 2020 5th
International Conference on Communication
and Electronics Systems (ICCES), 2020, pp.
–760, https://doi.
org/10.1109/ICCES48766.2020.9138000.
Coimbatore, India, Jun.
H.T. Rauf, B.A. Saleem, M.I.U. Lali, M.A.
Khan, M. Sharif, S.A.C. Bukhari, A citrus fruits
and leaves dataset for detection and
classification of citrus diseases through
machine learning, Data Brief 26 (Oct. 2019),
, https://doi.org/10.1016/j.
dib.2019.104340.
A.Gupta, Sanjeev k Gupta, P.Yadav, D.Gupta,
Design and Develop Novel Framework for
Plant Disease DetectionUsing Convolution
Neural Network, RandomForest Classifier
andSupport Vector Machine, Eur. Chem. Bull.
,12(10), 1539-155
DOI: https://doi.org/10.31449/inf.v47i9.5188
This work is licensed under a Creative Commons Attribution 3.0 License.