Enhancing Colonoscopy Image Quality Through Multi-Step Computational Pre-Processing Techniques
Abstract
Full Text:
PDFReferences
M. Tharwat, N. A. Sakr, S. El-Sappagh, H. Soliman, K. S. Kwak, and M. Elmogy, “Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques,” Sensors, vol. 22, no. 23, pp. 1–35, 2022, doi: 10.3390/s22239250.
B. Martinez-Vega et al., “Evaluation of Preprocessing Methods on Independent Medical Hyperspectral Databases to Improve Analysis,” Sensors, vol. 22, no. 22, 2022, doi: 10.3390/s22228917.
M. Dabass and J. Dabass, “Preprocessing Techniques for Colon Histopathology Images,” Lecture Notes in Electrical Engineering, vol. 668. pp. 1121–1138, 2021, doi: 10.1007/978-981-15-5341-7_85.
M. Salvi, U. R. Acharya, F. Molinari, and K. M. Meiburger, “The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis,” Comput. Biol. Med., vol. 128, p. 104129, 2021, doi: 10.1016/j.compbiomed.2020.104129.
A. M. Moreira, “Data Preprocessing Strategies in Cancer Stage Prediction,” 2022.
C. Sindhu, S. Subhashini, T. Swathi, and G. S. S, “Colorectal Cancer Detection Using Image Processing Techniques : A Knowledge Transfer Perspective,” Ajast, vol. 2, no. 2, pp. 1–9, 2018.
D. N. and S. S. R. R. Karthikha, “Effect of U-Net Hyperparameter Optimisation in Polyp Segmentation from Colonoscopy Images,” Third Int. Conf. Intell. Comput. Instrum. Control Technol. (ICICICT), Kannur, India, pp. 1359–1364, 2022, doi: 10.1109/ICICICT54557.2022.9917700.
G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, no. 1995, pp. 60–88, 2017, doi: 10.1016/j.media.2017.07.005.
Abhishek et al., “Classification of Colorectal Cancer using ResNet and EfficientNet Models,” Open Biomed. Eng. J., vol. 18, no. 1, 2024, doi: 10.2174/0118741207280703240111075752.
A. M. Reza, “Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement,” J. VLSI Signal Process. Syst. Signal Image. Video Technol., vol. 38, no. 1, pp. 35–44, 2004, doi: 10.1023/B:VLSI.0000028532.53893.82.
N. J. D. Karthikha R, “Enhancing Colonoscopy Image Quality with CLAHE in the GASTROLAB Dataset,” 3rd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), Bengaluru, India, pp. 324–330, 2023, doi: 10.1109/ICIMIA60377.2023.10426190.
R. Ezatian, D. Khaledyan, K. Jafari, M. Heidari, A. Z. Khuzani, and N. Mashhadi, “Image quality enhancement in wireless capsule endoscopy with Adaptive Fraction Gamma Transformation and Unsharp Masking filter,” 2020 IEEE Glob. Humanit. Technol. Conf. GHTC 2020, 2020, doi: 10.1109/GHTC46280.2020.9342851.
H. Avcı and J. Karakaya, “A Novel Medical Image Enhancement Algorithm for Breast Cancer Detection on Mammography Images Using Machine Learning,” Diagnostics, vol. 13, no. 3, 2023, doi: 10.3390/diagnostics13030348.
K. Saha, M. K. Bhowmik, and D. Bhattacharjee, Computational Intelligence in Digital Forensics: Forensic Investigation and Applications, vol. 555, no. January. 2014.
“CVC-ClinicDB-Kaggle,” 2019, [Online]. Available: https://www.kaggle.com/datasets/balraj98/cvcclinicdb.
D. R. I. M. Setiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,” Multimed. Tools Appl., vol. 80, no. 6, pp. 8423–8444, 2021, doi: 10.1007/s11042-020-10035-z.
A. Ignatov, D. Park, P. N. Michelini, G. Shakhnarovich, L. Wong, and X. Wang, “NTIRE 2019 Challenge on Image Enhancement : Methods and Results,” 2019.
Huang, R., Dung, L., Chu, C., & Wu, Y. (2016). Noise Removal and Contrast Enhancement for X-Ray Images. Journal of Biomedical Engineering and Medical Imaging, 3, 56. https://doi.org/10.14738/JBEMI.31.1893.
Suman, S., Hussin, F., Malik, A., Walter, N., Goh, K., Hilmi, I., & Ho, S. (2014). Image Enhancement Using Geometric Mean Filter and Gamma Correction for WCE Images. , 276-283. https://doi.org/10.1007/978-3-319-12643-2_34.
Moradi, M., Falahati, A., Shahbahrami, A., & Zare-Hassanpour, R. (2015). Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization. 2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA), 1-5. https://doi.org/10.1109/PRIA.2015.7161645.
Anwar, S., & Rajamohan, G. (2020). Improved Image Enhancement Algorithms based on the Switching Median Filtering Technique. Arabian Journal for Science and Engineering, 45, 11103 - 11114. https://doi.org/10.1007/s13369-020-04983-9.
B, A., &Kalirajan, K. (2023). Contrast Enhancement of Alzheimer’s MRI using Histogram Analysis. Journal of Innovative Image Processing.https://doi.org/10.36548/jiip.2023.4.003.
Mathew, J., Zollanvari, A., & James, A. (2018). Edge-Aware Spatial Denoising Filtering Based on a Psychological Model of Stimulus Similarity. IEEE Access, 6, 3433-3447. https://doi.org/10.1109/ACCESS.2017.2745903.
Safitri, I., Pertiwi, Y., Mengko, T., & Puspasari, I. (2023). Image Enhancement for Breast Cancer Based on Image Contrast, Interpolation and Filtering. 2023 International Conference on Electrical Engineering and Informatics (ICEEI), 1-6. https://doi.org/10.1109/ICEEI59426.2023.10346968.
DOI: https://doi.org/10.31449/inf.v48i23.6498
This work is licensed under a Creative Commons Attribution 3.0 License.