Brain Tumor Classification in MRI Images Using VGG19 with Type2 Fuzzy Logic

Rasha Ali Dihin, Nesreen Readh Hamza

Abstract


A Brain Tumor are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors.  In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % while the validation accuracy of 0.9953 %. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967 %. Additionally, the proposed method achieved F1- score of 0.9991 %.

Full Text:

PDF

References


References

G. A. Amran et al., “Brain Tumor Classification and Detection

Using Hybrid Deep Tumor Network,” Electron., vol. 11, no. 21,

pp. 1–21, 2022, doi:10.3390/electronics11213457.

H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain

tumor classification in MRI image using convolutional neural

network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,

, doi: 10.3934/MBE.2020328.

F. J. Díaz-Pernas, M. Martínez-Zarzuela, D. González-Ortega, and

M. Antón-Rodríguez, “A deep learning approach for brain tumor

classification and segmentation using a multiscale convolutional

neural network,” Healthc., vol. 9, no. 2, 2021, doi:

3390/healthcare9020153.

R. Vankdothu and M. A. Hameed, “Brain tumor MRI images

identification and classification based on the recurrent

convolutional neural network,” Measurement: Sensors, vol. 24 p.

, 2022, doi: 10.1016/j.measen.2022.100412.

N. Saranya, D. Karthika Renuka and J. N. Kanthan, “Brain tumor

classification using convolution neural network,” Journal of

Physics Conference Series, vol. 1916, no. 1, pp. 012206, 2021,

doi:10.1088/1742-6596/1916/1/012206

M. A. Khan et al., “Multimodal brain tumor classification using

deep learning and robust feature selection: A machine learning

application for radiologists,” Diagnostics, vol. 10, no. 8, pp. 1–19,

, doi: 10.3390/diagnostics10080565.

A. Rehman, S. Naz, M. Razzak, F. Akram, and M. Imran, “A

Deep Learning-Based Framework for Automatic Brain Tumors

Classification Using Transfer Learning,” Circuits, Systems, and

Signal Processing, vol. 39, no. 2, pp. 757–775, 2020, doi:

1007/s00034-019-01246-3.

G. A. Amran et al., “Brain Tumor Classification and Detection

Using Hybrid Deep Tumor Network,” Electron., vol. 11, no. 21,

pp. 1–21, 2022, doi: 10.3390/electronics11213457.

H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain

tumor classification in MRI image using convolutional neural

network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,

, doi: 10.3934/MBE.2020328.

A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A

Deep Learning-Based Framework for Automatic Brain Tumors

Classification Using Transfer Learning,” Circuits, Syst. Signal

Process., vol. 39, no. 2, pp. 757–775, 2020, doi:

1007/s00034-019-01246-3.

A. Naseer, T. Yasir, A. Azhar, T. Shakeel, and K. Zafar,

“Computer-Aided Brain Tumor Diagnosis: Performance

Evaluation of Deep Learner CNN Using Augmented Brain MRI,”

Int. J. Biomed. Imaging, vol. 2021, 2021, doi:

1155/2021/5513500.

N. Remzan, K. Tahiry, and A. Farchi, “Brain tumor classification

in magnetic resonance imaging images using convolutional

neural network,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, pp.

-6674, 2022, doi: 10.11591/ijece.v12i6.

M. A. Gómez-Guzmán et al., “Classifying Brain Tumors on

Magnetic Resonance Imaging by Using Convolutional Neural

Networks,” Electron., vol. 12, no. 4, pp. 1–22, 2023, doi:

3390/electronics12040955.

D. P. and D. S. T., “a Feature-Based Decision-Making Approach

(Fbdma) for Tumor Detection Using Deep Learning,” Indian J.

Computer. Sci. Eng., vol. 14, no. 1, pp. 63–80, 2023, doi:

21817/indjcse/2023/v14i1/231401068.

D. Filatov and G. N. A. H. Yar, “Brain Tumor Diagnosis and

Classification via Pre-Trained Convolutional Neural Networks,”

pp. 0–5, 2022, [Online]. Available:

http://arxiv.org/abs/2208.00768.

S. S. Pal, P. Ray Mahapatra, S. Paul, and S. Dolui, “A Novel

Brain Tumor Classification Model Using Machine Learning

Techniques,” no. 7, pp. 87–98, 2023, doi: 10.46647/ijetms.

v07i02.011.

T. ÖZTÜRK and O. KATAR, “A Deep Learning Model Collaborates

with an Expert Radiologist to Classify Brain Tumors from MR

Images,” Turkish J. Sci. Technol., vol. 17, no. 2, pp. 203–210,

, doi: 10.55525/tjst.1143392.

A. A. Abbood, Q. M. Shallal, and M. A. Fadhel, “Automated brain

tumor classification using various deep learning models: A

comparative study,” Int. J. Electr. Comput. Eng., vol. 22, no. 1.

pp.252–259, 2021, doi: 10.11591/ijeecs. v22.i1.

O. Castillo, M. A. Sanchez, C. I. Gonzalez, and G. E. Martinez,

“Review of recent type-2 fuzzy image processing applications,”

Inf., vol. 8, no. 3, pp. 1–18, 2017, doi: 10.3390/info8030097.

F. Orujov, R. Maskeliūnas, R. Damaševičius, and W. Wei, “Fuzzy

based image edge detection algorithm for blood vessel detection

in retinal images,” Appl. Soft Comput. J., vol. 94, 2020, doi:

1016/j.asoc.2020.106452.

P. K. Mishro, S. Agrawal, R. Panda, and A. Abraham, “A Novel

Type-2 Fuzzy C-Means Clustering for Brain MR Image

Segmentation,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 3901–

, 2021, doi: 10.1109/TCYB.2020.2994235.

A. Taskin and T. Kumbasar, “An open source matlab/Simulink

toolbox for interval type-2 fuzzy logic systems,” Proc. - 2015

IEEE Symp. Ser. Comput. Intell. SSCI 2015, pp. 1561–1568,

, doi: 10.1109/SSCI.2015.220.

Luo, Na, et al. "Fuzzy logic and neural network-based risk

assessment model for import and export enterprises: A review."

Journal of Data Science and Intelligent Systems, vol. 1, no. 1,

pp.2-11, 2023.‏

M. Kabir, J. Mobin, A. Hassanat, and M. S. Rahman, “Image

Contrast Enhancement using Fuzzy Technique with Parameter

Determination using Metaheuristics,” arXiv:2301.12682v1 pp.

–14, 2023, [Online]. Available:

http://arxiv.org/abs/2301.12682.

H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain

tumor classification in MRI image using convolutional neural

network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,

, doi: 10.3934/MBE.2020328.

S. Tammina, “Transfer learning using VGG-16 with Deep

Convolutional Neural Network for Classifying Images,” Int. J.

Sci. Res. Publ., vol. 9, no. 10, 2019.

M. M. Zahoor and S. H. Khan, “Brain Tumor MRI Classification

using a Novel Deep Residual and Regional CNN,” 2022, [Online].

Available: http://arxiv.org/abs/2211.16571.

J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor

classification using ensemble of deep features and machine

learning classifiers,” Sensors, vol. 21, no. 6, pp. 1–21, 2021,

doi: 10.3390/s21062222.

N. Salih, M. Ksantini, N. Hussein, D. B. Halima, and S. Ahmed,

Learning Models and Fusion Classification Technique for

Accurate Diagnosis of Retinopathy of Prematurity in Preterm

Newborn, Baghdad Sic. J., 2023, doi:

https://doi.org/10.21123/bsj.2023.8747.

M., EL ATILLAH, K. EL FAZAZY, and J. Riffi, Classification of

Arabic Alphabets Using a Combination of a Convolutional Neural

Network and the Morphological Gradient Method, Baghdad Sic.

J., vol. 21, no. 1, 2024, doi:https://doi.org/10.21123/bsj.2023.




DOI: https://doi.org/10.31449/inf.v49i13.7161

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.