Brain Tumor Classification in MRI Images Using VGG19 with Type2 Fuzzy Logic
Abstract
Full Text:
PDFReferences
References
G. A. Amran et al., “Brain Tumor Classification and Detection
Using Hybrid Deep Tumor Network,” Electron., vol. 11, no. 21,
pp. 1–21, 2022, doi:10.3390/electronics11213457.
H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain
tumor classification in MRI image using convolutional neural
network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,
, doi: 10.3934/MBE.2020328.
F. J. Díaz-Pernas, M. Martínez-Zarzuela, D. González-Ortega, and
M. Antón-Rodríguez, “A deep learning approach for brain tumor
classification and segmentation using a multiscale convolutional
neural network,” Healthc., vol. 9, no. 2, 2021, doi:
3390/healthcare9020153.
R. Vankdothu and M. A. Hameed, “Brain tumor MRI images
identification and classification based on the recurrent
convolutional neural network,” Measurement: Sensors, vol. 24 p.
, 2022, doi: 10.1016/j.measen.2022.100412.
N. Saranya, D. Karthika Renuka and J. N. Kanthan, “Brain tumor
classification using convolution neural network,” Journal of
Physics Conference Series, vol. 1916, no. 1, pp. 012206, 2021,
doi:10.1088/1742-6596/1916/1/012206
M. A. Khan et al., “Multimodal brain tumor classification using
deep learning and robust feature selection: A machine learning
application for radiologists,” Diagnostics, vol. 10, no. 8, pp. 1–19,
, doi: 10.3390/diagnostics10080565.
A. Rehman, S. Naz, M. Razzak, F. Akram, and M. Imran, “A
Deep Learning-Based Framework for Automatic Brain Tumors
Classification Using Transfer Learning,” Circuits, Systems, and
Signal Processing, vol. 39, no. 2, pp. 757–775, 2020, doi:
1007/s00034-019-01246-3.
G. A. Amran et al., “Brain Tumor Classification and Detection
Using Hybrid Deep Tumor Network,” Electron., vol. 11, no. 21,
pp. 1–21, 2022, doi: 10.3390/electronics11213457.
H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain
tumor classification in MRI image using convolutional neural
network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,
, doi: 10.3934/MBE.2020328.
A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A
Deep Learning-Based Framework for Automatic Brain Tumors
Classification Using Transfer Learning,” Circuits, Syst. Signal
Process., vol. 39, no. 2, pp. 757–775, 2020, doi:
1007/s00034-019-01246-3.
A. Naseer, T. Yasir, A. Azhar, T. Shakeel, and K. Zafar,
“Computer-Aided Brain Tumor Diagnosis: Performance
Evaluation of Deep Learner CNN Using Augmented Brain MRI,”
Int. J. Biomed. Imaging, vol. 2021, 2021, doi:
1155/2021/5513500.
N. Remzan, K. Tahiry, and A. Farchi, “Brain tumor classification
in magnetic resonance imaging images using convolutional
neural network,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, pp.
-6674, 2022, doi: 10.11591/ijece.v12i6.
M. A. Gómez-Guzmán et al., “Classifying Brain Tumors on
Magnetic Resonance Imaging by Using Convolutional Neural
Networks,” Electron., vol. 12, no. 4, pp. 1–22, 2023, doi:
3390/electronics12040955.
D. P. and D. S. T., “a Feature-Based Decision-Making Approach
(Fbdma) for Tumor Detection Using Deep Learning,” Indian J.
Computer. Sci. Eng., vol. 14, no. 1, pp. 63–80, 2023, doi:
21817/indjcse/2023/v14i1/231401068.
D. Filatov and G. N. A. H. Yar, “Brain Tumor Diagnosis and
Classification via Pre-Trained Convolutional Neural Networks,”
pp. 0–5, 2022, [Online]. Available:
http://arxiv.org/abs/2208.00768.
S. S. Pal, P. Ray Mahapatra, S. Paul, and S. Dolui, “A Novel
Brain Tumor Classification Model Using Machine Learning
Techniques,” no. 7, pp. 87–98, 2023, doi: 10.46647/ijetms.
v07i02.011.
T. ÖZTÜRK and O. KATAR, “A Deep Learning Model Collaborates
with an Expert Radiologist to Classify Brain Tumors from MR
Images,” Turkish J. Sci. Technol., vol. 17, no. 2, pp. 203–210,
, doi: 10.55525/tjst.1143392.
A. A. Abbood, Q. M. Shallal, and M. A. Fadhel, “Automated brain
tumor classification using various deep learning models: A
comparative study,” Int. J. Electr. Comput. Eng., vol. 22, no. 1.
pp.252–259, 2021, doi: 10.11591/ijeecs. v22.i1.
O. Castillo, M. A. Sanchez, C. I. Gonzalez, and G. E. Martinez,
“Review of recent type-2 fuzzy image processing applications,”
Inf., vol. 8, no. 3, pp. 1–18, 2017, doi: 10.3390/info8030097.
F. Orujov, R. Maskeliūnas, R. Damaševičius, and W. Wei, “Fuzzy
based image edge detection algorithm for blood vessel detection
in retinal images,” Appl. Soft Comput. J., vol. 94, 2020, doi:
1016/j.asoc.2020.106452.
P. K. Mishro, S. Agrawal, R. Panda, and A. Abraham, “A Novel
Type-2 Fuzzy C-Means Clustering for Brain MR Image
Segmentation,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 3901–
, 2021, doi: 10.1109/TCYB.2020.2994235.
A. Taskin and T. Kumbasar, “An open source matlab/Simulink
toolbox for interval type-2 fuzzy logic systems,” Proc. - 2015
IEEE Symp. Ser. Comput. Intell. SSCI 2015, pp. 1561–1568,
, doi: 10.1109/SSCI.2015.220.
Luo, Na, et al. "Fuzzy logic and neural network-based risk
assessment model for import and export enterprises: A review."
Journal of Data Science and Intelligent Systems, vol. 1, no. 1,
pp.2-11, 2023.
M. Kabir, J. Mobin, A. Hassanat, and M. S. Rahman, “Image
Contrast Enhancement using Fuzzy Technique with Parameter
Determination using Metaheuristics,” arXiv:2301.12682v1 pp.
–14, 2023, [Online]. Available:
http://arxiv.org/abs/2301.12682.
H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain
tumor classification in MRI image using convolutional neural
network,” Math. Biosci. Eng., vol. 17, no. 5, pp. 6203–6216,
, doi: 10.3934/MBE.2020328.
S. Tammina, “Transfer learning using VGG-16 with Deep
Convolutional Neural Network for Classifying Images,” Int. J.
Sci. Res. Publ., vol. 9, no. 10, 2019.
M. M. Zahoor and S. H. Khan, “Brain Tumor MRI Classification
using a Novel Deep Residual and Regional CNN,” 2022, [Online].
Available: http://arxiv.org/abs/2211.16571.
J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor
classification using ensemble of deep features and machine
learning classifiers,” Sensors, vol. 21, no. 6, pp. 1–21, 2021,
doi: 10.3390/s21062222.
N. Salih, M. Ksantini, N. Hussein, D. B. Halima, and S. Ahmed,
Learning Models and Fusion Classification Technique for
Accurate Diagnosis of Retinopathy of Prematurity in Preterm
Newborn, Baghdad Sic. J., 2023, doi:
https://doi.org/10.21123/bsj.2023.8747.
M., EL ATILLAH, K. EL FAZAZY, and J. Riffi, Classification of
Arabic Alphabets Using a Combination of a Convolutional Neural
Network and the Morphological Gradient Method, Baghdad Sic.
J., vol. 21, no. 1, 2024, doi:https://doi.org/10.21123/bsj.2023.
DOI: https://doi.org/10.31449/inf.v49i13.7161

This work is licensed under a Creative Commons Attribution 3.0 License.