Advances in Machine Learning Framework for Near-Infrared Spectroscopy: A Taxonomic Review on Food Quality Assessment

Nguyen Thi Hoang Phuong, Hieu Nguyen Van, Xuan Nguyen Thi Thanh, Phien Nguyen Ngoc

Abstract


This review taxonomically analyzes and evaluates recent advances in machine learning (ML) frameworks applied to near-infrared spectroscopy (NIRS) for food quality assessment. Through a comprehensive literature search across IEEE Explore, ScienceDirect, and Springer (2021-2024), we examine key framework components: data acquisition, public datasets, preprocessing, wavelength selection, and advanced ML architectures. Our analysis reveals the current state: miniaturized devices and multi-device data collection are expanding spectral coverage, while public datasets focus mainly on nutritional indices, lacking safetyrelated data. Framework-wide challenges persist in device compatibility, dataset comprehensiveness, and model interpretability. Recent advances show promising developments through: specialized deep learning architectures achieving 97-100% accuracy, data transformation techniques (2D-COS, GAFD) enhancing interpretability, hybrid traditional-deep learning models, and effective transfer learning for cross-device applications. Based on these insights, we propose three critical research directions: expanding food safety datasets through regulatory partnerships, developing multi-level fusion for heterogeneous device data, and creating automated techniques for model optimization and interpretability. These directions are vital for advancing ML-NIRS applications in food quality assessment, improving both efficiency and reliability


Full Text:

PDF

References


H. Pu, J. Yu, D.-W. Sun, et al. "Feature construction methods for processing and analysing spectral images and their applications in food quality inspection". In: Trends in Food Science & Technology 138 (2023), pp. 726–737. doi: 10.1016/j.tifs.2023.06.036.

S. M. Pires, H. G. Redondo, J. Pessoa, et al. "Risk ranking of foodborne diseases in Denmark: Reflections on a national burden of disease study". In: Food Control 158 (2024), p. 110199. doi: 10.1016/j.foodcont.2023.110199.

W. Tian, Y. Li, C. Guzman, et al. "Quantification of food bioactives by NIR spectroscopy: Current insights, long-lasting challenges, and future trends". In: Journal of Food Composition and Analysis 124 (2023), p. 105708. doi: 10.1016/j.jfca.2023.105708.

Y. Ozaki et al. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications. Singapore: Springer Singapore, 2021.

A. Hassoun, S. Jagtap, G. Garcia-Garcia, et al. "Food quality 4.0: From traditional approaches to digitalized automated analysis". In: Journal of Food Engineering 337 (2023), p. 111216. doi: 10.1016/j.jfoodeng.2022.111216.

I. Latreche, S. Slatnia, O. Kazar, et al. "A Review on Deep Learning Techniques for EEG-Based Driver Drowsiness Detection Systems". In: Informatica 48.3 (2024). doi: 10.31449/inf.v48i3.5056.

H. A. Mohammed and I. M. Husien. "A Deep Transfer Learning Framework for Robust IoT Attack Detection". In: Informatica 48.12 (2024). doi: 10.31449/inf.v48i12.5955.

J. Ravniˇcan et al. "A Prestudy of Machine Learning in Industrial Quality Control Pipelines". In: Informatica 46.2 (2022). doi: 10.31449/inf.v46i2.3938.

P. Mishra, D. Passos, F. Marini, et al. "Deep learning for near-infrared spectral data modelling: Hypes and benefits". In: TrAC Trends in Analytical Chemistry 157 (2022), p. 116804. doi: 10.1016/j.trac.2022.116804.

H. Nobari Moghaddam, Z. Tamiji, M. Akbari Lakeh, et al. "Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics". In: Journal of Food Composition and Analysis 107 (2022), p. 104343. doi: 10.1016/j.jfca.2021.104343.

S. Othman, N. R. Mavani, M. A. Hussain, et al. "Artificial intelligence-based techniques for adulteration and defect detections in food and agricultural industry: A review". In: Journal of Agriculture and Food Research 12 (2023), p. 100590. doi: 10.1016/j.jafr.2023.100590.

S. A. D. M. Zahir, A. F. Omar, M. F. Jamlos, et al. "A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection". In: Sensors and Actuators A: Physical 338 (2022), p. 113468. doi: 10.1016/j.sna.2022.113468.

S. A. D. M. Zahir, M. F. Jamlos, A. F. Omar, et al. "Review – Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 304 (2024), p. 123273. doi: 10.1016/j.saa.2023.123273.

H. Ni, W. Fu, J. Wei, et al. "Non-destructive detection of polysaccharides and moisture in Ganoderma lucidum using near-infrared spectroscopy and machine learning algorithm". In: LWT 184 (2023), p. 115001. doi: 10.1016/j.lwt.2023.115001.

M. I. S. Mohd Hilmi Tan, M. F. Jamlos, A. F. Omar, et al. "Ganoderma boninense classification based on near-infrared spectral data using machine learning techniques". In: Chemometrics and Intelligent Laboratory Systems 232 (2023), p. 104718. doi: 10.1016/j.chemolab.2022.104718.

D. Wang et al. "Determination of polysaccharide content in shiitake mushroom beverage by NIR spectroscopy combined with machine learning: A comparative analysis". In: Journal of Food Composition and Analysis 122 (2023), p. 105460. doi: 10.1016/j.jfca.2023.105460.

Y.-Q. Zhong, J.-Q. Li, X.-L. Li, et al. "Near infrared spectroscopy for simultaneous quantification of five chemical components in Arnebiae Radix (AR) with partial least squares and support vector machine algorithms". In: Vibrational Spectroscopy 127 (2023), p. 103556. doi: 10.1016/j.vibspec.2023.103556.

Z. Guo, Y. Zhang, J. Wang, et al. "Detection model transfer of apple soluble solids content based on NIR spectroscopy and deep learning". In: Computers and Electronics in Agriculture 212 (2023), p. 108127. doi: 10.1016/j.compag.2023.108127.

C. Saenphon, S. Ditcharoen, C. Malai, et al. "Total soluble solids, dry matter content prediction and maturity stage classification of durian fruit using long-wavelength NIR reflectance". In: Journal of Food Composition and Analysis 124 (2023), p. 105667. doi: 10.1016/j.jfca.2023.105667.

S. Nawoya, F. Ssemakula, R. Akol, et al. "Computer vision and deep learning in insects for food and feed production: A review". In: Computers and Electronics in Agriculture 216 (2024), p. 108503. doi: 10.1016/j.compag.2023.108503.

S. Zhang, S. Liu, L. Shen, et al. "Application of near-infrared spectroscopy for the non-destructive analysis of wheat flour: A review". In: Current Research in Food Science 5 (2022), pp. 1305–1312. doi: 10.1016/j.crfs.2022.08.006.

M. M. Nagy, S. Wang, and M. A. Farag. "Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications". In: Trends in Food Science & Technology 123 (2022), pp. 290–309. doi: 10.1016/j.tifs.2022.03.005.

L. Shuai, Z. Li, Z. Chen, et al. "A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing". In: Computers and Electronics in Agriculture 217 (2024), p. 108577. doi: 10.1016/j.compag.2023.108577.

Y. Liu, H. Pu, and D.-W. Sun. "Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices". In: Trends in Food Science & Technology 113 (2021), pp. 193–204. doi: 10.1016/j.tifs.2021.04.042.

W. Zhang, L. C. Kasun, Q. J. Wang, et al. "A Review of Machine Learning for Near-Infrared Spectroscopy". In: Sensors 22 (2022), p. 9764. doi: 10.3390/s22249764.

P. Mishra, R. Nikzad-Langerodi, F. Marini, et al. "Are standard sample measurements still needed to transfer multivariate calibration models between near-infrared spectrometers? The answer is not always". In: TrAC Trends in Analytical Chemistry 143 (2021), p. 116331. doi: 10.1016/j.trac.2021.116331.

H. Ji, D. Pu, W. Yan, et al. "Recent advances and application of machine learning in food flavor prediction and regulation". In: Trends in Food Science & Technology 138 (2023), pp. 738–751. doi: 10.1016/j.tifs.2023.07.012.

Y. Zhang and Y. Wang. "Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects". In: Food Chemistry: X 19 (2023), p. 100860. doi: 10.1016/j.fochx.2023.100860.

C. A. Nunes, M. N. Ribeiro, T. C. de Carvalho, et al. "Artificial intelligence in sensory and consumer studies of food products". In: Current Opinion in Food Science 50 (2023), p. 101002. doi: 10.1016/j.cofs.2023.101002.

B. Debus et al. "Deep learning in analytical chemistry". In: TrAC Trends in Analytical Chemistry 145 (2021), p. 116459. doi: 10.1016/j.trac.2021.116459.

M. Zareef, M. Arslan, M. M. Hassan, et al. "Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review". In: Trends in Food Science & Technology 116 (2021), pp. 815–828. doi: 10.1016/j.tifs.2021.08.012.

M. Hernández-Jiménez, I. Revilla, A. M. Vivar-Quintana, et al. "Performance of benchtop and portable spectroscopy equipment for discriminating Iberian ham according to breed". In: Current Research in Food Science 8 (2024), p. 100675. doi: 10.1016/j.crfs.2024.100675.

L. Yuan, X. Meng, K. Xin, et al. "A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 288 (2023), p. 122120. doi: 10.1016/j.saa.2022.122120.

Widyaningrum, Y. A. Purwanto, S. Widodo, et al. "Rapid assessment of vanilla (Vanilla planifolia) quality parameters using portable near-infrared spectroscopy combined with random forest". In: Journal of Food Composition and Analysis 133 (2024), p. 106346. doi: 10.1016/j.jfca.2024.106346.

R. Chen, S. Li, H. Cao, et al. "Rapid quality evaluation and geographical origin recognition of ginger powder by portable NIRS in tandem with chemometrics". In: Food Chemistry 438 (2024), p. 137931. doi: 10.1016/j.foodchem.2023.137931.

J. P. Cruz-Tirado, M. S. S. Vieira, O. O. V. Correa, et al. "Detection of adulteration of Alpaca (Vicugna pacos) meat using a portable NIR spectrometer and NIR-hyperspectral imaging". In: Journal of Food Composition and Analysis 126 (2024), p. 105901. doi: 10.1016/j.jfca.2023.105901.

R. Zhu et al. "High-accuracy classification and origin traceability of peanut kernels based on near-infrared (NIR) spectroscopy using Adaboost - Maximum uncertainty linear discriminant analysis". In: Current Research in Food Science 8 (2024), p. 100766. doi: 10.1016/j.crfs.2024.100766.

J. Liang et al. "Integrating portable NIR spectrometry with deep learning for accurate Estimation of crude protein in corn feed". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 314 (2024), p. 124203. doi: 10.1016/j.saa.2024.124203.

K. Yao, J. Sun, B. Zhang, et al. "On-line monitoring of egg freshness using a portable NIR spectrometer combined with deep learning algorithm". In: Infrared Physics & Technology 138 (2024), p. 105207. doi: 10.1016/j.infrared.2024.105207.

S. Ghidini, M. O. Varrà, D. Bersellini, et al. "Real-time and non-destructive control of the freshness and viability of live mussels through portable near-infrared spectroscopy". In: Food Control 160 (2024), p. 110353. doi: 10.1016/j.foodcont.2024.110353.

Z. Wu, C. Li, H. Liu, et al. "Quantification of caffeine and catechins and evaluation of bitterness and astringency of Pu-erh ripen tea based on portable near-infrared spectroscopy". In: Journal of Food Composition and Analysis 125 (2024), p. 105793. doi: 10.1016/j.jfca.2023.105793.

K. B. Béc, J. Grabska, and C. W. Huck. "Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives". In: Foods 11 (2022), p. 1465. doi: 10.3390/foods11101465.

J. M. Netto et al. "Authenticity of almond flour using handheld near infrared instruments and one class classifiers". In: Journal of Food Composition and Analysis 115 (2023), p. 104981. doi: 10.1016/j.jfca.2022.104981.

X. Chu et al. Chemometric Methods in Analytical Spectroscopy Technology. Singapore: Springer Nature Singapore, 2022.

J. A. Diaz-Olivares, A. Van Nuenen, M. J. Gote, et al. "Near-infrared spectra dataset of milk composition in transmittance mode". In: Data in Brief 51 (2023), p. 109767. doi: 10.1016/j.dib.2023.109767.

D. Li et al. "Research on Data Fusion and Sharing Based on Power Big Data". In: 2023 9th Annual International Conference on Network and Information Systems for Computers (ICNISC). Wuhan, China, 2023, pp. 287–290. doi: 10.1109/ICNISC60562.2023.00070.

L. Zhang et al. "Multi-source heterogeneous data fusion". In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). Chengdu, China, 2018, pp. 47–51. doi: 10.1109/ICAIBD.2018.8396165.

Tianzhe Jiao et al. "A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications". In: Computers, Materials and Continua 80.1 (2024), pp. 1–35. doi: 10.32604/cmc.2024.053204.

G. Van Kollenburg, Y. Weesepoel, H. Parastar, et al. "Dataset of the application of handheld NIR and machine learning for chicken fillet authenticity study". In: Data in Brief 29 (2020), p. 105357. doi: 10.1016/j.dib.2020.105357.

I. Malounas, W. Vierbergen, S. Kutluk, et al. "SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation". In: Data in Brief 52 (2024), p. 110040. doi: 10.1016/j.dib.2024.110040.

G. Bonifazi et al. "A dataset of visible – Short wave InfraRed reflectance spectra collected on pre-cooked pasta products". In: Data in Brief 36 (2021), p. 106989. doi: 10.1016/j.dib.2021.106989.

M. Ryckewaert, D. Héran, C. Feilhes, et al. "Dataset containing spectral data from hyperspectral imaging and sugar content measurements of grapes berries in various maturity stage". In: Data in Brief 46 (2023), p. 108822. doi: 10.1016/j.dib.2022.108822.

A. A. Munawar, Kusumiyati, and D. Wahyuni. "Near infrared spectroscopic data for rapid and simultaneous prediction of quality attributes in intact mango fruits". In: Data in Brief 27 (2019), p. 104789. doi: 10.1016/j.dib.2019.104789.

R. Hayati, A. A. Munawar, and F. Fachruddin. "Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango". In: Data in Brief 30 (2020), p. 105571. doi: 10.1016/j.dib.2020.105571.

Agussabti et al. "Data analysis on near infrared spectroscopy as a part of technology adoption for cocoa farmer in Aceh Province, Indonesia". In: Data in Brief 29 (2020), p. 105251. doi: 10.1016/j.dib.2020.105251.

A. Zgouz, D. Héran, B. Barthès, et al. "Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties". In: Data in Brief 31 (2020), p. 106013. doi: 10.1016/j.dib.2020.106013.

K. Kusumiyati et al. "Enhanced visible/near-infrared spectroscopic data for prediction of quality attributes in Cucurbitaceae commodities". In: Data in Brief 39 (2021), p. 107458. doi: 10.1016/j.dib.2021.107457.

I. Malounas et al. "Evaluation of a hyperspectral image pipeline toward building a generalisation capable crop dry matter content prediction model". In: Biosystems Engineering 247 (2024), pp. 153–161. doi: 10.1016/j.biosystemseng.2024.09.009.

H. Parastar et al. "Integration of handheld NIR and machine learning to "Measure & Monitor" chicken meat authenticity". In: Food Control 112 (2020), p. 107149. doi: 10.1016/j.foodcont.2020.107149.

J.-L. Z. Zaukuu, A. A. Nkansah, E. T. Mensah, et al. "Non-destructive authentication of melon seed (Cucumeropsis mannii) powder using a pocket-sized near-infrared (NIR) spectrophotometer with multiple spectral preprocessing". In: Journal of Food Composition and Analysis 134 (2024), p. 106425. doi: 10.1016/j.jfca.2024.106425.

Tôi sẽ tiếp tục liệt kê một cách chính xác:

S. Wang, M. Lin, Y. Meng, et al. "Self-expansion full information optimization strategy: Convenient and efficient method for near infrared spectrum auto-analysis". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303 (2023), p. 123224. doi: 10.1016/j.saa.2023.123224.

S. Wang, P. Zhang, J. Chang, et al. "A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 282 (2022), p. 121631. doi: 10.1016/j.saa.2022.121631.

U. Blazhko et al. "Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra". In: Chemometrics and Intelligent Laboratory Systems 215 (2021), p. 104367. doi: 10.1016/j.chemolab.2021.104367.

A. Sitorus and R. Lapcharoensuk. "Development of automatic tuning for combined preprocessing and hyperparameters of machine learning and its application to NIR spectral data of coconut milk adulteration". In: Food Chemistry 457 (2024), p. 140108. doi: 10.1016/j.foodchem.2024.140108.

N. D. Arianti, E. Saputra, and A. Sitorus. "An automatic generation of pre-processing strategy combined with machine learning multivariate analysis for NIR spectral data". In: Journal of Agriculture and Food Research 13 (2023), p. 100625. doi: 10.1016/j.jafr.2023.100625.

J.-M. Roger, A. Biancolillo, and F. Marini. "Sequential preprocessing through ORThogonalization (SPORT) and its application to near infrared spectroscopy". In: Chemometrics and Intelligent Laboratory Systems 199 (2020), p. 103975. doi: 10.1016/j.chemolab.2020.103975.

Z. Wang, Q. Wu, and M. Kamruzzaman. "Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour". In: Food Control 138 (2022), p. 108970. doi: 10.1016/j.foodcont.2022.108970.

Y. Qin, K. Song, N. Zhang, et al. "Robust NIR quantitative model using MIC-SPA variable selection and GA-ELM". In: Infrared Physics & Technology 128 (2023), p. 104534. doi: 10.1016/j.infrared.2022.104534.

M. Marañón, J. Fernández-Novales, J. Tardaguila, et al. "NIR attribute selection for the development of vineyard water status predictive models". In: Biosystems Engineering 229 (2023), pp. 167–178. doi: 10.1016/j.biosystemseng.2023.04.001.

K. Yao, J. Sun, J. Cheng, et al. "Monitoring S-ovalbumin content in eggs during storage using portable NIR spectrometer and multivariate analysis". In: Infrared Physics & Technology 131 (2023), p. 104685. doi: 10.1016/j.infrared.2023.104685.

B. Mahanty. "Adaptive Bottom-Up Space Exploration in model population analysis: An agile variable selection algorithm for PLS models". In: Chemometrics and Intelligent Laboratory Systems 203 (2020), p. 104057. doi: 10.1016/j.chemolab.2020.104057.

J. Li, J. Deng, X. Bai, et al. "Quantitative analysis of aflatoxin B1 of peanut by optimized support vector machine models based on near-infrared spectral features". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303 (2023), p. 123208. doi: 10.1016/j.saa.2023.123208.

X. Miao, Y. Miao, Y. Liu, et al. "Measurement of nitrogen content in rice plant using near infrared spectroscopy combined with different PLS algorithms". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 284 (2023), p. 121733. doi: 10.1016/j.saa.2022.121733.

C. Du, L. Sun, H. Bai, et al. "Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection". In: Chemometrics and Intelligent Laboratory Systems 219 (2021), p. 104445. doi: 10.1016/j.chemolab.2021.104445.

C. Du, L. Sun, H. Bai, et al. "Quantitative detection of talcum powder in wheat flour based on near-infrared spectroscopy and hybrid feature selection". In: Infrared Physics & Technology 123 (2022), p. 104185. doi: 10.1016/j.infrared.2022.104185.

R. Zheng, Y. Jia, C. Ullagaddi, et al. "Optimizing feature selection with gradient boosting machines in PLS regression for predicting moisture and protein in multi-country corn kernels via NIR spectroscopy". In: Food Chemistry 456 (2024), p. 140062. doi: 10.1016/j.foodchem.2024.140062.

Z. Guo, L. Zhai, Y. Zou, et al. "Comparative study of Vis/NIR reflectance and transmittance method for on-line detection of strawberry SSC". In: Computers and Electronics in Agriculture 218 (2024), p. 108744. doi: 10.1016/j.compag.2024.108744.

Z. Ji, J. Zhu, J. Deng, et al. "Quantitative determination of zearalenone in wheat by the CSA-NIR technique combined with chemometrics algorithms". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2024), p. 124858. doi: 10.1016/j.saa.2024.124858.

J. Zhu et al. "Improve the accuracy of FT-NIR for determination of zearalenone content in wheat by using the characteristic wavelength optimization algorithm". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 313 (2024), p. 124169. doi: 10.1016/j.saa.2024.124169.

A. Tan et al. "1D-inception-resnet for NIR quantitative analysis and its transferability between different spectrometers". In: Infrared Physics & Technology 129 (2023), p. 104559. doi: 10.1016/j.infrared.2023.104559.

X. Zhou, C. Zhao, J. Sun, et al. "Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 290 (2023), p. 122288. doi: 10.1016/j.saa.2022.122288.

X. Chen et al. "Rapid identification of total phenolic content levels in boletes by two-dimensional correlation spectroscopy combined with deep learning". In: Vibrational Spectroscopy 121 (2022), p. 103404. doi: 10.1016/j.vibspec.2022.103404.

J. A. Martins, D. Rodrigues, A. M. Cavaco, et al. "Estimation of soluble solids content and fruit temperature in "Rocha" pear using Vis-NIR spectroscopy and the SpectraNet–32 deep learning architecture". In: Postharvest Biology and Technology 199 (2023), p. 112281. doi: 10.1016/j.postharvbio.2023.112281.

D. Saha, T. Senthilkumar, C. B. Singh, et al. "Rapid and non-destructive detection of hard to cook chickpeas using NIR hyperspectral imaging and machine learning". In: Food and Bioproducts Processing 141 (2023), pp. 91–106. doi: 10.1016/j.fbp.2023.07.006.

L. Wang, J. Liang, F. Li, et al. "Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton". In: Journal of Food Composition and Analysis 126 (2024), p. 105890. doi: 10.1016/j.jfca.2023.105890.

S. Castillo-Girones, R. Van Belleghem, N. Wouters, et al. "Detection of subsurface bruises in plums using spectral imaging and deep learning with wavelength selection". In: Postharvest Biology and Technology 207 (2024), p. 112615. doi: 10.1016/j.postharvbio.2023.112615.

J. Yang, X. Ma, H. Guan, et al. "A recognition method of corn varieties based on spectral technology and deep learning model". In: Infrared Physics & Technology 128 (2023), p. 104533. doi: 10.1016/j.infrared.2022.104533.

G. Wang, X. Jiang, X. Li, et al. "Determination of watermelon soluble solids content based on visible/near infrared spectroscopy with convolutional neural network". In: Infrared Physics & Technology 133 (2023), p. 104825. doi: 10.1016/j.infrared.2023.104825.

Z. Chen, X. Luan, and F. Liu. "Deep learning near-infrared quality prediction based on multi-level dynamic feature". In: Vibrational Spectroscopy 123 (2022), p. 103450. doi: 10.1016/j.vibspec.2022.103450.

W. He, H. He, F. Wang, et al. "Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network". In: Food Measure 15 (2021), pp. 4497–4507. doi: 10.1007/s11694-021-01012-7.

Fujia Dong et al. "Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning". In: Computers and Electronics in Agriculture 198 (2022), p. 107027. issn: 0168-1699. doi: 10.1016/j.compag.2022.107027.

Z. Liu et al. "Detection of apple moldy core disease by fusing vibration and Vis/NIR spectroscopy data with dual-input MLP-Transformer". In: Journal of Food Engineering 382 (2024), p. 112219. doi: 10.1016/j.jfoodeng.2024.112219.

Y. Li et al. "Combined gramian angular difference field image coding and improved mobile vision transformer for determination of apple soluble solids content by Vis-NIR spectroscopy". In: Journal of Food Composition and Analysis 131 (2024), p. 106200. doi: 10.1016/j.jfca.2024.106200.

J. Yang et al. "TeaNet: Deep learning on Near-Infrared Spectroscopy (NIR) data for the assurance of tea quality". In: Computers and Electronics in Agriculture 190 (2021), p. 106431. doi: 10.1016/j.compag.2021.106431.

Xin Zhou et al. "Determination of lead content in oilseed rape leaves in silicon-free and silicon environments based on deep transfer learning and fluorescence hyperspectral imaging". In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 311 (2024), p. 123991. issn: 1386-1425. doi: 10.1016/j.saa.2024.123991.




DOI: https://doi.org/10.31449/inf.v49i11.7482

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.