FusionNet: A KNN-MLP Hybrid Model for Bengali Handwritten Digit Recognition using HOG and LBP Features
Abstract
Full Text:
PDFReferences
A. Dalui, R. Sarkar, S. Sharma, A. Ghosh, S. Brahnam and S. R. Dash, ”A Deep Convolutional Neural Network Approach to Recognize Bangla
Handwritten Digits,” 2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), Bhubaneswar, India, 2024, pp. 1-5, doi: 10.1109/ASSIC60049.2024.10507895.
Azgar, A., Imran Nazir, M., Akter, A., Saddam Hossain, M., Anwar
Hussen Wadud, M., Reazul Islam, M. (2024). MNIST Handwritten
Digit Recognition Using a Deep Learning-Based Modified Dual Input Convolutional Neural Network (DICNN) Model. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Ninth International Congress on Information and Communication Technology. ICICT 2024
Lecture Notes in Networks and Systems, vol 1014. Springer, Singapore. https://doi.org/10.1007/978-981-97-3562-4 44
Ali, A., Senan, N., Murli, N. (2024). Convolutional Neural Network
Using Regularized Conditional Entropy Loss (CNNRCoE) for MNIST
Handwritten Digits Classification. In: Ghazali, R., Nawi, N.M., Deris,
M.M., Abawajy, J.H., Arbaiy, N. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2024. Lecture Notes in Networks and Systems, vol 1078. pringer, Cham. https://doi.org/10.1007/978-3031-66965-1 33
Pandey, Harikesh, and Arun Prakash Agrawal. ”Multi-lingual handwritten character recognition using Deep Learning.” In SCI, pp. 19-28. 2024
Amin, R.; Reza, M.S.; Okuyama, Y.; Tomioka, Y.; Shin,
J. A Fine-Tuned Hybrid Stacked CNN to Improve Bengali Handwritten Digit Recognition. Electronics 2023, 12, 3337.
https://doi.org/10.3390/electronics12153337
Chatterjee, S., Dutta, R.K., Ganguly, D., Chatterjee, K. and Roy, S., 2019. Bengali handwritten character classification using transfer learning on deep convolutional neural network. arXiv preprint arXiv:1902.11133.
Akhand, M.A.H., Ahmed, M. and Rahman, M.M., 2016. Convolutional Neural Network based Handwritten Bengali and Bengali English Mixed Numeral Recognition. International Journal of Image, Graphics & Signal Processing, 8(9).
Sufian, A., Ghosh, A., Naskar, A., Sultana, F., Sil, J. and Rahman, M.H., 2022. Bdnet: bengali handwritten numeral digit recognition based on densely connected convolutional neural networks. Journal of King Saud University-Computer and Information Sciences, 34(6), pp.2610-2620.
Maity, S., Dey, A., Chowdhury, A. and Banerjee, A., 2020. Handwritten Bengali character recognition using deep convolution neural network.
In Machine Learning, Image Processing, Network Security and Data Sciences: Second International Conference, MIND 2020, Silchar, India, July 30-31, 2020, Proceedings, Part II 2 (pp. 84-92). Springer Singapore.
Amin, R., Reza, M.S., Okuyama, Y., Tomioka, Y. and Shin, J., 2023. A Fine-Tuned Hybrid Stacked CNN to Improve Bengali Handwritten Digit Recognition. Electronics, 12(15), p.3337.
Azad, M.A., Singha, H.S. and Nahid, M.M.H., 2020, November. Bangla handwritten character recognition using deep convolutional autoencoder neural network. In 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) (pp. 295-300). IEEE.
Mondal, S. and Mahfuz, N., 2020. Convolutional neural networks based bengali handwritten character recognition. In Cyber Security and Computer Science: Second EAI International Conference, ICONCS 2020, Dhaka, Bangladesh, February 15-16, 2020, Proceedings 2 (pp. 718-729). Springer International Publishing.
Datta, T., Purkaystha, B. and Islam, M.S., Bengali Handwritten Character Recognition Using Deep Convolutional Neural Network. In 2017 20th International Conference on Computer and Information Technology (ICCIT) (pp. 22-24).
Bappi, J.O., Rony, M.A.T. and Islam, M.S., 2024. BNVGLENET: Hypercomplex Bangla =handwriting character recognition with hierarchical class expansion using Convolutional Neural Networks. Natural Language Processing Journal, 7, p.100068.
Shawon, A., Rahman, M.J.U., Mahmud, F. and Zaman, M.A., 2018, September. Bangla handwritten digit recognition using deep cnn for large and unbiased dataset. In 2018 international conference on Bangla speech and language processing (ICBSLP) (pp. 1-6). IEEE.
https://doi.org/10.48550/arXiv.1806.02452
https://yann.lecun.com/exdb/mnist/
Ahamed, M., Kabir, R.B., Dipto, T.T., Al Mushabbir, M., Ahmed, S. and Kabir, M.H., Performance Analysis of Few-Shot Learning Approaches for Bangla Handwritten Character and Digit Recognition.
M. Tan and Q. Le, ”EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” International Conference on Machine Learning (ICML), pp. 6105-6114, 2019.
J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, ”ImageNet: A large-scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi: 10.1109/CVPR.2009.5206848.
S. A. Chaudhari and R. M. Gulati, ”An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier,” 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), Vallabh Vidyanagar, India, 2013, pp. 190-193, doi: 10.1109/ISSP.2013.6526900
Matei, O., Pop, P.C. Valean, H. Optical character recognition in real˘ environments using neural networks and k-nearest neighbor. Appl Intell 39, 739–748 (2013). https://doi.org/10.1007/s10489-013-0456-2
Anukriti Rajput, Anish Kumar Singh. (2024). Handwritten Digit Recognition Accuracy Comparison Using Knn,Cnn And Svm. Educational Administration: Theory and Practice, 30(2), 638–643. https://doi.org/10.53555/kuey.v30i2.1676
DOI: https://doi.org/10.31449/inf.v49i4.9117
This work is licensed under a Creative Commons Attribution 3.0 License.








